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1. Introduction

1.1. Overview. We present here a sharp stability theorem for the anisotropic Sobolev
inequality on functions of bounded variation. Previous contributions to this problem,
although providing sharp decay rates, were limited to the isotropic case. In this paper, by
a combination of optimal mass transportation methods and rearrangement techniques, we
are able to address the anisotropic case, still with sharp decay rates. Further interesting
improvements are also obtained: first, the new stability estimates come with explicit
constants, a feature of possible interest for numerical applications which was missing so
far; second, in the spirit of the celebrated result by Bianchi and Egnell [BE] for the Sobolev
inequality on W 1,2(Rn), the distance from the class of optimal functions is also controlled
(in a suitable form) at the level of gradients. Finally, by a simple argument, this analysis
is extended to the anisotropic 1-log-Sobolev inequality.

1.2. The anisotropic Sobolev inequality and the Wulff inequality. The anisotropic
Sobolev inequality is a natural extension of the standard Sobolev inequality on BV (Rn),
which is obtained by measuring gradients through the gauge function of a convex set,
rather than by the Euclidean norm. Precisely, given an open, bounded convex set K in
R

n (n ≥ 2), containing the origin, if we define the gauge function of K as

‖x‖∗ = sup {x · y : y ∈ K} , x ∈ R
n ,

then we have the following anisotropic Sobolev inequality
∫

Rn

‖ − ∇f(x)‖∗ dx ≥ n|K|1/n‖f‖Ln′ (Rn) , ∀ f ∈ C∞
c (Rn) .

Here, n′ = n/(n − 1) and |K| denotes the Lebesgue measure of K. By an approximation
argument the inequality holds true on BV (Rn), in the form

TVK(f) ≥ n|K|1/n‖f‖Ln′ (Rn) , ∀ f ∈ BV (Rn) , (1.1)

where TVK(f) denotes the anisotropic total variation of f ,

TVK(f) = sup

{ ∑

h∈N

‖ − Df(Eh)‖∗ : {Eh}h∈N is a Borel partition of R
n

}

= sup

{∫

Rn

f(x) div T (x) dx : T ∈ C1
c (Rn;K)

}
.



An important particular case of (1.1) is obtained when E is a set of finite perimeter in
R

n with |E| < ∞. In this case we have 1E ∈ BV (Rn), and TVK(1E) agrees with the
K-anisotropic perimeter PK(E) of E, namely,

TVK(1E) =

∫

∂∗E
‖νE‖∗ dHn−1 =: PK(E) .

(Here νE denotes the (measure theoretic) outer unit normal to E, and ∂∗E is the reduced
boundary of E.) Correspondingly, the anisotropic Sobolev inequality reduces to the Wulff
inequality

PK(E) ≥ n|K|1/n|E|1/n′

, (1.2)

which in turn agrees with the Euclidean isoperimetric inequality in the case K = B.

1.3. Equality cases and stability theorems. Equality holds in (1.2) if and only if E
is equivalent (with respect to Lebesgue measure) to x0 + r K for some x0 ∈ R

n and r > 0.
Sharp quantitative versions of (1.2) have been obtained in [FMP1] concerning the case
K = B, and in [FiMP] for the general anisotropic case (see also [CL] for an alternative
approach to the isotropic case). In particular, in [FiMP] it is proved that, if E is a set of
finite perimeter with |E| = 1, then there exists x0 ∈ R

n such that

PK(E) ≥ n|K|1/n

{
1 +

( |E∆(x0 + r0 K)|
C0(n)

)2
}

, r0 =
1

|K|1/n
, (1.3)

where one can take

C0(n) =
181n7

(2 − 21/n′)3/2
, (1.4)

(in the Euclidean case K = B, the factor n7 may be replaced by n3). In the case of the
anisotropic Sobolev inequality, optimal functions are precisely multiples of characteristic
functions of (rescaled and/or translated copies of) K. However, one has to be careful
when the sign changes: indeed, the equality TVK(1K) = TVK(−1K) holds if and only if
K = −K. If K is not symmetric with respect to the origin, then it turns out that the
“prototype” negative optimal function is −1−K , and not −1K (indeed, it is immediate to
check that TVK(1K) = TVK(−1−K), and so −1−K is optimal in (1.1)). With this caveat
in mind, one sees that the family of (non-zero) optimal functions in (1.1) is

ga,x0,r = a 1x0+ar K , a 6= 0 , x0 ∈ R
n , r > 0 .

We are now in the position to look for a quantitative improvement of (1.1), in the spirit
of (1.3). Let us agree to work, for the sake of simplicity and without loss of generality, in

the class M0 of those elements f ∈ BV (Rn) such that |f |n′

dx is a probability measure,
i.e.

M0 =

{
f ∈ BV (Rn) :

∫

Rn

|f |n′

= 1

}
.

Correspondingly, let {ĝa,x0
}a6=0 ,x0∈Rn be the class of those optimal functions in (1.1) which

belong to M0, that is
∫

Rn

|ĝa,x0
|n′

= 1 , ĝa,x0
= ga,x0,r(a) .

Finally, let us introduce the “distance” (see Remark 1.4 and Lemma 2.2),

d(f, g) =

∫

Rn

|f − g|n′

+ d0(f, g) , f, g ∈ BV (Rn) , (1.5)

where

d0(f, g) = inf

{‖ − D(f − g)‖∗(Rn \ E)

n|K|1/n
+

∫

E
|f |n′

+ |g|n′

: E is a Borel set in R
n

}
.



Notice that, up to multiplicative factors depending on K only, we could have replaced the
anisotropic total variation term ‖ −D(f − g)‖∗(Rn \E) with the standard total variation
|D(f − g)|(Rn \ E). However, with our definition, we can get a stability estimate with a
constant depending on the dimension only. Our main result takes then the following form.

Theorem 1.1. If f ∈ M0, then there exists a 6= 0 and x0 ∈ R
n such that

TVK(f) ≥ n|K|1/n

{

1 +

(
d(f, ĝa,x0

)

C1(n)

)2
}

, (1.6)

where
C1(n) = 1800

(
n + C0(n)

)√
n , (1.7)

and C0(n) is given by (1.4).

Remark 1.2. Introducing the scale and translation invariant Sobolev deficit functional,

δ(f) =
TVK(f)

n|K|1/n‖f‖Ln′ (Rn)

− 1 , f ∈ BV (Rn) , (1.8)

inequality (1.6) takes the form

C1(n)
√

δ(f) ≥ inf
{
d(f, ga,x0,r) : ‖f‖Ln′ (Rn) = ‖ga,x0,r‖Ln′ (Rn)

}
, ∀ f ∈ M0 . (1.9)

Of course, the restriction
∫

Rn |f |n′

= 1 in Theorem 1.1 is easily dropped by applying (1.6)
to f/‖f‖Ln′ (Rn).

Remark 1.3 (Previous contributions). Theorem 1.1 was proved in [FMP2] in the isotropic

case K = B, with a non-explicit constant in place of C1(n) and with
∫

Rn |f−ĝa,x0
|n′

in place
of d(f, ĝa,x0

). In [Ci], Cianchi presented an argument that, starting from a quantitative
version of the Wulff inequality, produces a quantitative version of the anisotropic Sobolev
inequality, where the distance between f and a suitable ĝa,x0

is measured in some Lorentz

space instead that in Ln′

. This method produces however a non-sharp decay rate, meaning
that the sharp power 2 appearing on the right-hand side of (1.6) has to be replaced by the
larger power 1 + 2n′ ∈ (3, 5].

Remark 1.4 (Sharpness of the distance). In [BE], Bianchi and Egnell proved the existence
of a (non-explicit) constant C(n) with the property that, for every f ∈ W 1,2(Rn), f 6= 0,
there exist a 6= 0, x0 ∈ R

n, and r > 0 such that
∫

Rn

|∇f |2 ≥ S(n, 2)2‖f‖2
L2⋆ (Rn)

+
1

C(n)

∫

Rn

|∇f −∇g|2 ,

where 2⋆ = 2n/(n− 2), S(n, 2) is the sharp constant in the Sobolev inequality, and where

g(x) =
a

(1 + |r(x − x0)|2)(n−2)/2
, x ∈ R

n .

The strong feature of this result, especially in comparison with the stability theorems
from [FMP2] and [Ci] for the Sobolev inequality on BV (Rn), is that the distance from
the set of optimal functions is measured by a Lebesgue norm of the gradients. However,
it is not clear what should be the correct “gradient distance” one can try to control in
a quantitative version of (1.1). A naive candidate distance could be of course the total
variation of f − ĝa,x0

, but it is easy to construct a sequence {fh}h∈N ⊂ M0 such that

lim
h→∞

δ(fh) = 0 , lim
h→∞

inf
a6=0 ,x0∈Rn

|D(fh − ĝa,x0
)|(Rn) > 0 ,

see Figure 1.1. Analogously, one cannot expect to control the L1 norm of the absolutely
continuous part of Df , since arguing by approximation and using the lower semicontinuity
of the total variation, one would actually be able to control the full total variation of Df ,
which (as we just observed) is impossible.



K
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Figure 1.1. In the case K = B, consider a sequence of ellipsoids {Eh}h∈N

converging to a ball Br with |Eh| = |Br| = 1 and Hn−1(∂Eh ∩ ∂B) = 0 for every

h ∈ N, and such that 1Eh
→ 1Br

in L1(Rn). It is clear that δ(1Eh
) → 0, while

|D(1Eh
− 1Br

)|(Rn) = P (Eh) + P (Br) → 2 P (Br). However, choosing as test

sets Cε in the definition of d0(1Eh
, 1B) the complements of ε-neighborhoods of

∂Eh ∪ ∂B, we easily see that d0(1Eh
, 1B) = 0 and d(1Eh

, 1B) = |Eh∆B| → 0.

However, as Theorem 1.1 shows, it is possible to control d0(f, ĝa,x0
), which amounts to

bound the total variation of f − ĝa,x0
limited to a subset of R

n whose complement has

small measure with respect to both |f |n′

dx and |ĝa,x0
|n′

dx.
Let us observe that, although d0 gives no extra informations when f is the characteristic

function of a set of finite perimeter (see Lemma 2.5), it provides stronger informations when
Df has some absolutely continuous part: for instance, if f is C1 and has small deficit,
then not only f is close in Ln′

to some optimizer ĝa,x0
, but also ∇f is small in L1 strictly

inside x0 + ar(a)K.

1.4. Strategy of proof and organization of the paper. The proof of the above result
is based on a careful combination of rearrangements techniques applied to Gromov’s proof
(via optimal transportation) of the anisotropic Sobolev inequality. More precisely, as
shown in the proof of Theorem 1.1, we can reduce to the case of a smooth non-negative
function f . This case is then adressed in Theorem 2.7. The core in the proof of this
latter results is Step I, where we show that a function with small deficit must be close (in
a precise quantitative way) to a characteristic function of an isoperimetric set x0 + rK.
Once this result is established, we conclude with the help of (1.3).

The paper is organized as follows: in Section 2 we introduce some notation and prelim-
inary results, and we show some basic properties of the “distance” d introduced in (1.5).
Then we prove Theorem 1.1 for smooth nonnegative functions (see Theorem 2.7), and we
show how the general result of Theorem 1.1 can be deduced from Theorem 2.7. Finally, in
Section 3 we observe how Theorem 1.1 implies a stability result for a family of anisotropic
1-log-Sobolev inequalities.

2. Stability for the anistropic Sobolev inequality on BV functions

2.1. Notation and preliminaries. We start with some notation and preliminary re-
marks which reveal useful in the sequel.

2.1.1. Functions of bounded variation. We shall work with the space BV (Rn) of the func-
tions of bounded variation in R

n, referring to the monograph [AFP] for all the needed
background. In particular, given f ∈ BV (Rn), Df shall denote the distributional gradi-
ent of f , which is required to define a R

n-valued Radon measure on R
n with finite total

variation |Df |, and

Df = ∇f dx + Dsf ,



shall be the Radon-Nykodim decomposition of Df with respect to the Lebesgue measure.
Concerning this decomposition, we shall need the following natural property of regular-
ization by convolution, the proof of which we were not able to track in the literature.

Lemma 2.1. Let f ∈ BV (Rn), and set fk = f ∗ρk, where {ρk}k∈N is a sequence of smooth
compactly supported convolution kernels. Then

lim
k→∞

∫

Rn\A
|∇fk −∇f | = 0 ,

whenever A is an open set such that |Dsf | is concentrated on A.

Proof. A truncation argument allows to reduce to the case when f has compact support
contained in a closed ball BR, R > 0. Correspondingly, we may assume A to be bounded.
If we now consider the compact set K = BR ∩ (Rn \ A), then we want to prove that

lim
k→∞

∫

K
|∇fk −∇f | = 0 . (2.1)

Since 1K∇f ∈ L1(Rn), by standard convolution estimates we have

lim
k→∞

∫

Rn

|(1K∇f) ∗ ρk − 1K∇f | = 0 ,

and thus (2.1) is equivalent to show that

lim
k→∞

∫

K
|∇fk − (1K∇f) ∗ ρk| = 0 . (2.2)

Since Dsf = Dsf A, we find that

∇fk − (1K∇f) ∗ ρk = (Df) ∗ ρk − (1K∇f) ∗ ρk

= (∇f) ∗ ρk + (Dsf) ∗ ρk − (1K∇f) ∗ ρk

= (1A ∇f) ∗ ρk + (Dsf A) ∗ ρk = (Df A) ∗ ρk ,

so that
∫

K
|∇fk − (1K∇f) ∗ ρk| =

∫

K
|(Df A) ∗ ρk| ≤

∫

K
(|Df | A) ∗ ρk dx .

Since (|Df | A) ∗ ρk weakly∗ converges to the measure |Df | A and K is compact, by the
standard upper semicontinuity of weak∗ convergence of Radon measures we obtain

lim sup
k→∞

∫

K
(|Df | A) ∗ ρk dx ≤

(
|Df | A

)
(K) = 0 ,

where the last equality follows from K ∩ A = ∅. This concludes the proof of (2.2), as
required. �

2.1.2. Anisotropic total variation. We will work with a fixed open, bounded and convex
set K in R

n, containing the origin. We associate to K two convex and positively 1-
homogeneous functions, ‖ · ‖ and ‖ · ‖∗, by setting for each x ∈ R

n,

‖x‖ = inf{λ > 0 : λ−1 x ∈ K} , ‖x‖∗ = sup {x · y : y ∈ K} .

In this way, K = {x ∈ R
n : ‖x‖ < 1}, and the Cauchy-Schwartz type-inequality

x · y ≤ ‖x‖ ‖y‖∗ , ∀x, y ∈ R
n ,

holds true. Moreover, if K = B, the Euclidean unit ball, then ‖x‖ = ‖x‖∗ = |x| for every
x ∈ R

n, where, here and in the following, | · | denotes the Euclidean norm. With this



notation at hand, the anisotropic total variation of a R
n-valued Radon measure µ defined

on R
n is defined by the formula

‖µ‖∗(E) = sup

{ ∑

h∈N

‖µ(Eh)‖∗ : {Eh}h∈N is a Borel partition of E

}
.

Correspondingly, the anisotropic total variation TVK(f) of f ∈ BV (Rn) is given by

TVK(f) = ‖ − Df‖∗(Rn) ,

where Df denotes the distributional gradient of f . Since K is a bounded open set con-
taining the origin, there exist constants aK , bK > 0 such that

aK |ν| ≤ ‖ν‖∗ ≤ bK |ν| ∀ ν ∈ R
n . (2.3)

In particular f ∈ BV (Rn) if and only if TVK(f) < ∞, as

aK |Df |(E) ≤ ‖ − Df‖∗(E) ≤ bK |Df |(E) , ∀E ⊂ R
n .

By standard density arguments we see that

TVK(f) = sup

{∫

Rn

f(x) div T (x)dx : T ∈ C1
c (Rn;K)

}
.

Moreover,

TVK(f) =

∫

Rn

‖ − ∇f(x)‖∗dx , ∀ f ∈ C1(Rn) , (2.4)

so that TVB(f) = ‖Df‖L1(Rn;Rn). Similarly, if E is a set of finite perimeter with reduced
boundary ∂∗E and measure theoretic outer unit normal νE , then we have

TVK(1E) =

∫

∂∗E
‖νE(x)‖∗ dHn−1(x) ,

so that TVB(1E) = P (E), the distributional perimeter of E. The anisotropic total varia-
tion of 1E is sometimes called the anisotropic perimeter of E with respect to K, see for
instance [FiMP, Section 1.2]. Recalling the definition of deficit introduced in (1.8), given
a set of finite perimeter E with |E| < ∞ we shall write for simplicity

δ(E) = δ(1E) .

Note that δ(1E) = δ(a1E) for every a 6= 0, since the notion of deficit is scale invariant.

2.2. Some properties of the “distance” d. In this short section, we list some simple
but important properties of the function d. In the following lemma we start investigating
the behavior of d with respect to the axioms of a distance.

Lemma 2.2. For any n ≥ 2, one has

d(f, g) ≥ 0, and d(f, g) = 0 if and only if f = g ,

aK

bK
d(g, f) ≤ d(f, g) ≤ bK

aK
d(g, f) ,

d(f, h) ≤ 4
(
d(f, g) + d(g, h)

)
,

for every f, g, h ∈ BV (Rn).

Proof. We only have to check the validity of the “extended” triangle inequality, the first
two properties being easily verified. Let f, g, h ∈ BV (Rn), and notice that

∫

Rn

|f − h|n′ ≤ 2n′−1

(∫

Rn

|f − g|n′

+

∫

Rn

|g − h|n′

)
. (2.5)



Next, consider two Borel sets E1 and E2 in R
n. We have

‖ − D(f − h)‖∗(Rn \ (E1 ∪ E2)) ≤
‖ − D(f − g)‖∗(Rn \ E1) + ‖ − D(g − h)‖∗(Rn \ E2) ,

(2.6)

and moreover
∫

E1∪E2

|f |n′

=

∫

E1

|f |n′

+

∫

E2\E1

|f |n′

≤
∫

E1

|f |n′

+ 2n′−1

(∫

Rn

|f − g|n′

+

∫

E2

|g|n′

)
.

(2.7)

Similarly, ∫

E1∪E2

|h|n′ ≤
∫

E2

|h|n′

+ 2n′−1

(∫

Rn

|g − h|n′

+

∫

E1

|g|n′

)
. (2.8)

By adding up (2.5), (2.6), (2.7) and (2.8), and by taking into account that 2n′−1 ≤ 2, if
we use E1 ∪ E2 as a test set in the definition of d0(f, h), then we find

d(f, h) ≤ ‖ − D(f − g)‖∗(Rn \ E1)

n|K|1/n
+

∫

E1

|f |n′

+ 2

∫

Rn

|f − g|n′

+ 2

∫

E2

|g|n′

+
‖ − D(g − h)‖∗(Rn \ E2)

n|K|1/n
+

∫

E2

|h|n′

+ 2

∫

Rn

|h − g|n′

+ 2

∫

E1

|g|n′

+ 2

∫

Rn

|f − g|n′

+ 2

∫

Rn

|g − h|n′

.

Minimizing with respect to E1 and E2 separately, we find

d(f, h) ≤ 4
(
d(f, g) + d(g, h)

)
,

as desired. �

The following two lemmas are essential in reducing the proof of Theorem 1.1 to the case
when f is smooth and compactly supported.

Lemma 2.3. Let f, g ∈ BV (Rn), and set fk = f ∗ ρk, where {ρk}k∈N is a sequence of
smooth compactly supported convolution kernels. Then d(fk, g) → d(f, g) for k → ∞.

Proof. Since fk → f in Ln′

(Rn), we only have to prove that d0(fk, g) → d0(f, g) when
k → ∞. Let us consider the Radon-Nykodim decompositions Df = ∇f dx+Dsf and Dg =
∇g dx + Dsg, and let F be a Borel set on which both |Dsf | and |Dsg| are concentrated,
with |F | = 0. Then, given ε > 0, we can consider an open set Aε ⊂ R

n such that F ⊂ Aε

and ∫

Aε

|f |n′

+ |g|n′

dx ≤ ε . (2.9)

Since |Dsf | and |Dsg| are both concentrated on Aε, for every Borel set E ⊂ R
n, we have

‖ − D(f − g)‖∗(Rn \ (E ∪ Aε)) =

∫

Rn\(E∪Aε)
‖ − (∇f −∇g)‖∗ dx .

Thus, if we restrict the competition class in the definition of d0(f, g) to the Borel sets of
the form E ∪ Aε, taking also (2.9) into account we find that

d0(f, g) ≤ ε + inf
E⊂Rn

{
1

n|K|1/n

∫

Rn\(E∪Aε)
‖ − (∇f −∇g)‖∗ dx +

∫

E
|f |n′

+ |g|n′

}
.



We now remark that∫

Rn\(E∪Aε)
‖ − (∇f −∇g)‖∗ dx

≤
∫

Rn\(E∪Aε)
‖ − (∇fk −∇g)‖∗ dx +

∫

Rn\(E∪Aε)
‖ − (∇fk −∇f)‖∗ dx

≤ ‖ − D(fk − g)‖∗(Rn \ E) +

∫

Rn\Aε

‖ − (∇fk −∇f)‖∗ dx ,

and ∫

E
|f |n′ ≤

(
‖fk‖Ln′ (E) + ‖f − fk‖Ln′ (Rn)

)n′

.

Hence, setting αk = ‖f − fk‖Ln′ (Rn), we conclude that

d0(f, g) ≤ ε +
1

n|K|1/n

∫

Rn\Aε

‖ − (∇fk −∇f)‖∗ dx

+ inf
E⊂Rn

{‖ − D(fk − g)‖∗(Rn \ E)

n|K|1/n
+
(
‖fk‖Ln′ (E) + αk

)n′

+

∫

E
|g|n′

}
.

(2.10)

Since αk → 0 thanks to Lemma 2.1, and since ‖ · ‖∗ is comparable to the Euclidean norm
by (2.3), letting first k → ∞, and then ε → 0+ we obtain

d0(f, g) ≤ lim inf
k→∞

d0(fk, g) .

If we repeat the above argument exchanging the roles of f and fk, in place of (2.10) we
get

d0(fk, g) ≤ ε +
1

n|K|1/n

∫

Rn\Aε

‖ − (∇f −∇fk)‖∗ dx

+ inf
E⊂Rn

{‖ − D(f − g)‖∗(Rn \ E)

n|K|1/n
+
(
‖f‖Ln′ (E) + αk

)n′

+

∫

E
|g|n′

}
,

which yields
d0(f, g) ≥ lim sup

k→∞
d0(fk, g) .

This concludes the proof. �

Lemma 2.4. If f ∈ BV (Rn) ∩ C∞(Rn), then

lim
R→∞

d(1BR
f, ga,x0,r) = d(f, ga,x0,r) , (2.11)

for every a 6= 0, x0 ∈ R
n and r > 0. Moreover,

δ(f) = lim
R→∞

δ(1BR
f) . (2.12)

Proof. First of all, we claim that

lim
R→∞

∫

∂BR

|f | dHn−1 = 0 . (2.13)

Indeed, by a simple computation in polar coordinates using the Fundamental Theorem of
Calculus, one can easily check that, for any 0 < R1 < R2 < ∞,

∣∣∣∣∣

∫

∂BR1

|f | dHn−1 −
∫

∂BR2

|f | dHn−1

∣∣∣∣∣ ≤
∫

BR2
\BR1

(
|∇f | + (n − 1)

|f |
R1

)
.

Since |f | and |∇f | are both integrable, this implies that the function

R 7→
∫

∂BR

|f | dHn−1



is uniformly continuous on [1,∞). Observing that
∫ ∞

0

∫

∂BR

|f | dHn−1 dR =

∫

Rn

|f | < ∞ ,

(2.13) follows easily.

Using (2.13), and taking also into account that |f |n′ ∈ L1(Rn) and that ‖ − ∇f‖∗ ∈
L1(Rn), we conclude that

∫

E
‖ − ∇f‖∗ = lim

R→∞

∫

E∩BR

‖ − ∇f‖∗ , (2.14)

∫

E
|f |n′

= lim
R→∞

∫

E∩BR

|f |n′

, (2.15)

0 = lim
R→∞

∫

E∩∂BR

|f | dHn−1 , (2.16)

uniformly with respect to E ⊂ R
n. Let us now set for the sake of brevity K0 = x0 + ar K.

Since

D(1BR
f − ga,x0,r) = 1BR

∇f dx − f νBR
Hn−1 ∂BR + a νK0

Hn−1 ∂K0 ,

D(f − ga,x0,r) = ∇f dx + a νK0
Hn−1 ∂K0 ,

by (2.14), (2.15) and (2.16) we find that

‖ − D(1BR
f − ga,x0,r)‖∗(E) + n|K|1/n′

∫

Rn\E
|1BR

f |n′

+ |ga,x0,r|n
′

=

∫

E∩BR

‖ − ∇f‖∗ +

∫

E∩∂BR

|f |‖ − νBR
‖∗ dHn−1 + |a|

∫

E∩∂K0

‖νK0
‖∗dHn−1

+ n|K|1/n′

∫

Rn\E
|1BR

f |n′

+ |ga,x0,r|n
′

,

as R → ∞ converges, uniformly with respect to E ⊂ R
n, to

∫

E
‖ − ∇f‖∗ + |a|

∫

E∩∂K0

‖νK0
‖∗dHn−1 + n|K|1/n′

∫

Rn\E
|f |n′

+ |ga,x0,r|n
′

= ‖ − D(f − ga,x0,r)‖∗(E) + n|K|1/n′

∫

Rn\E
|f |n′

+ |ga,x0,r|n
′

.

By the arbitrariness of E we immediately deduce the validity of (2.11). Finally, (2.12)
follows by

D(1BR
f) = 1BR

∇f dx − f νBR
dHn−1 ∂BR ,

and by (2.14), (2.15) and (2.16). �

We now prove that, on pairs of characteristic functions, d agrees with the L1-distance
between the corresponding sets.

Lemma 2.5. If E and F are sets of locally finite perimeter in R
n, then

d(a1E , b1F ) =

∫

Rn

|a 1E − b 1F |n
′

,

for every a, b ∈ R.

Proof. We just have to prove that d0(a1E , b1F ) = 0. To do this, we use as a test set
G = R

n \ (∂∗E ∪ ∂∗F ). In this way we find

‖D(b1F − a1E)‖∗(G) ≤ |a|
∫

G∩∂∗E
‖νE‖∗ dHn−1 + |b|

∫

G∩∂∗F
‖ − νF ‖∗ dHn−1 = 0 ,



while at the same time, since |Rn \ G| = 0,
∫

Rn\G
|a 1E |n

′

+ |b 1F |n
′

= 0 .

�

We conclude this section showing the following simple lemma.

Lemma 2.6. If f ∈ BV (Rn) and
∫

Rn |f |n′

= 1, then

inf
a,x0,r

d(f, ga,x0,r) ≤ inf
a,x0

d(f, ĝa,x0
) ≤ 8 inf

a,x0,r
d(f, ga,x0,r) . (2.17)

Proof. The first inequality in (2.17) being trivial, we focus on the second one. Pick any

a 6= 0, x0 ∈ R
n and r > 0, and correspondingly let b 6= 0 be such that |b|n′ |x0 + ar K| = 1,

choosing b > 0 (resp. b < 0) if a > 0 (resp. a < 0). Then we have

‖ĝb,x0
− ga,x0,r‖Ln′ (Rn) = |a − b||x0 + ar K|1/n′

=
∣∣∣‖a 1x0+ar K‖Ln′ (Rn) − ‖b 1x0+ar K‖Ln′ (Rn)

∣∣∣

=
∣∣∣‖a 1x0+ar K‖Ln′ (Rn) − 1

∣∣∣ =
∣∣∣‖a 1x0+ar K‖Ln′ (Rn) − ‖f‖Ln′ (Rn)

∣∣∣

≤ ‖f − ga,x0,r‖Ln′ (Rn) ≤ d(f, ga,x0,r)
1/n′

.

Thus by Lemma 2.2 and by Lemma 2.5 we find that

d(f, ĝb,x0
) ≤ 4

(
d(f, ga,x0,r) + d(ga,x0,r, ĝb,x0

)
)

= 4
(
d(f, ga,x0,r) +

∫

Rn

|ĝb,x0
− ga,x0,r|n

′

)
≤ 8 d(f, ga,x0,r) .

The conclusion follows by the arbitrariness of a, x0 and r. �

2.3. Proof of Theorem 1.1 for smooth nonnegative functions. We can now enter in
the proof of Theorem 1.1. We start dealing with the case of compactly supported, smooth,
positive functions. The general case shall then follow by an approximation argument based
on Lemma 2.3 and Lemma 2.4.

Theorem 2.7. If f ∈ C1
c (Rn), f ≥ 0,

∫
Rn fn′

= 1 and δ(f) ≤ (8n)−2, then

inf
a,x0

d(f, ĝa,x0
) ≤ 256 (n + C0(n))

√
δ(f) . (2.18)

Proof. The proof of this theorem is divided into several steps. The main one is to show
that δ(f) controls the total variation of f on a suitable set {f > t1}, and that f has small

Ln′

-norm in its complement {f ≤ t1}, see Figure 2.1. Then, we will do a “reduction to
sets” argument: we will find a new level set t0 ∈ (t1/2, t1) such that t11{f>t1} and t01{f>t0}

are d-close and, moreover, the Sobolev deficit of f controls the deficit of {f > t0}. Finally,
we will use the main result of [FiMP] to show that {f > t0} is close to a suitable translated
and scaled copy of K. A simple application of Lemma 2.2 will then show that d(f, ĝa,x0

)

is controlled by
√

δ(f) for suitable values of x0 and a.
Notice that, by a simple approximation argument, without loss of generality we can

assume that ∣∣∣
{

x : f(x) > 0, ∇f(x) = 0
}∣∣∣ = 0 . (2.19)
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{f > t1}
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Figure 2.1. The key step in the proof of Theorem 2.7. The smooth nonnegative

function f is close to a characteristic function, in the sense that there exists a heigth

t1 such that the total variation of f on {f > t1} is small, as well as its Ln
′

-norm

on {f ≤ t1}. After this step, it remains to prove that {f > t1} is close to x0 + r K

for some values of x0 ∈ R
n and r > 0.

Step I: There exists t1 > 0 such that
∫

{f>t1}
‖ − ∇f(x)‖∗dx ≤ 2n|K|1/n

√
δ(f) , (2.20)

∫

{f≤t1}
fn′

dx ≤ n
√

δ(f) , (2.21)

d(f, t11{f>t1}) ≤ 4n
√

δ(f) . (2.22)

Let us first give a brief description of the argument. The starting point consists in apply-
ing a “Gromov-type argument” to the Brenier map T between the probability densities
f(x)n

′

dx and |K|−11Kdy. More precisely, T ∈ BV (Rn;K) is the gradient of a convex
function and satisfies the push-forward condition

1

|K|

∫

K
h(y)dy =

∫

Rn

h(T (x))f(x)n
′

dx ,

for every Borel function h : R
n → [0,∞]. By the change of variables y = T (x) and through

a localization argument, we deduce that

det∇T (x) = |K| f(x)n
′

(2.23)

(note that |det∇T | = det∇T as ∇T is the Hessian of a convex function). In particular,
(2.23) can be rewritten as

n
(
det∇T (x)

)1/n
f(x) = n|K|1/nf(x)n

′

.

Integrating over R
n and applying the arithmetic-geometric mean inequality, one finds that

n|K|1/n =

∫

Rn

n|K|1/nf(x)n
′

dx =

∫

Rn

n
(
det∇T (x)

)1/n
f(x) dx ≤

∫

Rn

div T (x)f(x) dx

=

∫

Rn

T (x) · (−∇f(x))dx ≤
∫

Rn

‖T (x)‖ ‖ − ∇f(x)‖∗ dx ≤ TVK(f) ,

where we used (2.4) and the fact that ‖T (x)‖ ≤ 1 a.e. in R
n. This argument proves (1.1),

and provides a bound on the isoperimetric deficit in terms of T , namely

n|K|1/nδ(f) ≥
∫

Rn

(
1 − ‖T (x)‖

)
‖ − ∇f(x)‖∗ dx . (2.24)

We are going to prove (2.20)–(2.21) starting from this bound, while (2.22) will eventually
follow from (2.20) and (2.21).



Indeed, what (2.24) suggests is that the total variation of f is controlled by
√

δ(f) on

the region
{
1−‖T‖ ≥

√
δ(f)

}
, while, at the same time, the mass charged by fn′

dx on the

the complementary region
{
‖T‖ ≥ 1−

√
δ(f)

}
should be controlled by

√
δ(f), being this

region mapped by T into a
√

δ(f)-layer of ∂K. Of course, one should expect here some
difficulties regarding the regularity of these sets. A key idea is that it does not matter to
apply the above remarks directly to f , but rather it suffices to work with its anisotropic
radially symmetric decreasing rearrangement f⋆. We shall later recover the information
on f via the Coarea Formula.

This said, let us go into the details of the proof of Step I. Let us define f⋆ : R
n → [0,∞)

by

f⋆(x) = sup
{
t ≥ 0 : |{f > t}| ≥ |K|‖x‖n

}
, x ∈ R

n .

Then {f⋆ > t} = r(t)K for every t > 0, where r(t) > 0 is so that

|{f⋆ > t}| = |{f > t}| , ∀ t > 0 . (2.25)

It is well known that f⋆ ∈ W 1,1(Rn), and that there exists u ∈ ACloc([0, R]) such that
u′ ≤ 0 and f⋆(x) = u(‖x‖) (here R > 0 is determined by the relation |{f > 0}| = Rn|K|).
By (2.25), we have

∫
Rn fn′

=
∫

Rn(f⋆)n
′

= 1. Furthermore,

TVK(f) =

∫

Rn

‖ − ∇f(x)‖∗dx =

∫ ∞

0
PK({f > t})dt ≥

∫ ∞

0
n|K|1/n|{f > t}|1/n′

dt

≥ n|K|1/n‖f‖Ln′ (Rn) = n|K|1/n ,

where in the last inequality we have also applied an elementary inequality on decreasing
functions (see, e.g. [LY, Proof of (5.3.3)]). Since the first inequality is in fact an equality
if we replace f by f⋆, it follows that δ(f⋆) ≤ δ(f), and in particular

n|K|1/nδ(f) ≥ TVK(f) − TVK(f⋆) = n|K|1/n

∫ ∞

0
δ({f > t})µ(t)1/n′

dt , (2.26)

where we have used that

PK({f > t}) − n|K|1/n|{f > t}|1/n′

= PK({f > t}) − PK({f∗ > t})
= n|K|1/nδ({f > t})µ(t)1/n′

,

and we have set µ(t) = |{f > t}| for the sake of brevity.
We now perform Gromov’s argument to derive the inequalities (2.20)–(2.21). More

precisely, let g = |K|−1/n′

1K . When δ(f⋆) is small we expect f⋆ to be close to g (up to

a homothety). For this reason we parameterize gn′

with respect to (f⋆)n
′

by the function
τ : [0, R] → [0, 1] defined as

∫

rK
(f⋆)n

′

=

∫

τ(r)K
gn′

.

or, equivalently,

τ(r)n = n|K|
∫ r

0
u(s)n

′

sn−1ds , (2.27)

(we remark that the Brenier map between f⋆(x)n
′

dx and |K|−1 1K(y)dy is given by
T ∗(x) = τ(‖x‖)x/‖x‖). Clearly τ ∈ C1((0, R); (0, 1)), with τ(R) = 1, τ(0) = 0, τ > 0 on
(0, R), and

τ ′(r)τ(r)n−1 = |K|u(r)n
′

rn−1 .



Hence, by Young inequality,

u(r)n
′

= u(r)n
′/nu(r) = τ ′(r)1/n

(
τ(r)

r

)1/n′

u(r)

|K|1/n

≤
{

τ ′(r)

n
+

(τ(r)/r)

n′

}
u(r)

|K|1/n
=

1

nrn−1

(
τ(r)rn−1

)′ u(r)

|K|1/n
,

which combined with (2.27) gives

1 = τ(R)n =

∫ R

0
n|K|u(r)n

′

rn−1dr ≤ |K|1/n′

∫ R

0
(τ(r)rn−1)′u(r)dr .

Integrating by parts, and recalling that τ(0) = u(R) = 0 and that 0 ≤ τ ≤ 1, we get

n|K|1/n ≤ n|K|
∫ R

0
|u′(r)|rn−1τ(r)dr ≤ n|K|

∫ R

0
|u′(r)|rn−1dr =

∫

Rn

‖ − ∇f⋆(x)‖∗dx

= TVK(f⋆) ,

and so,

n|K|
∫ R

0
(1 − τ(r))|u′(r)|rn−1dr ≤ TVK(f⋆) − n|K|1/n = n|K|1/nδ(f⋆) (2.28)

(observe that this is just (2.24) for the function f⋆ in place of f). We now show how to
combine (2.26) and (2.28) to prove the theorem. Let us consider the set

J = {r ∈ [0, R] : 1 − τ(r) ≥
√

δ(f)} .

As δ(f) < 1 and τ is increasing, we have that J = [0, r1], where r1 ∈ (0, R) is such that

τ(r1) = 1 −
√

δ(f). By (2.28) and the definition of J we easily infer that
∫

r1K
‖ − ∇f⋆‖∗ ≤ n|K|1/n

√
δ(f) . (2.29)

Moreover, as 1 − (1 − ε)n ≤ nε for every ε ∈ [0, 1] and minding (2.27), we have
∫

Rn\r1K
(f⋆)n

′

= 1 − n|K|
∫ r1

0
u(s)n

′

sn−1ds = 1 − τ(r1)
n ≤ n

√
δ(f) .

Set now t1 = u(r1), so that {f⋆ > t1} = r1K thanks to (2.19). Thus, (2.21) follows
immediately by Fubini Theorem since |{f > t}| = |{f⋆ > t}|.

Let us now consider (2.20). We start by noticing that, by the Coarea Formula and
keeping in mind (2.19) and (2.29),
∫

{f>t1}
‖ − ∇f‖∗ =

∫ ∞

t1

PK({f > t}) dt

=

∫ ∞

t1

(
PK({f > t}) − PK({f⋆ > t})

)
dt +

∫ ∞

t1

PK({f⋆ > t})dt

=

∫ ∞

t1

(
PK({f > t}) − PK({f⋆ > t})

)
dt +

∫

{f∗>t1}
‖ − ∇f∗‖∗

≤
∫ ∞

t1

(
PK({f > t}) − PK({f⋆ > t})

)
dt + n|K|1/n

√
δ(f) .

(2.30)

By the isoperimetric inequality PK({f > t}) − PK({f⋆ > t}) ≥ 0, thus by (2.26) we have
∫ ∞

t1

PK({f > t}) − PK({f⋆ > t})dt ≤
∫ ∞

0
PK({f > t}) − PK({f⋆ > t})dt

= TVK(f) − TVK(f⋆) ≤ n|K|1/nδ(f) .

Inserting this last inequality into (2.30), we conclude the validity of (2.20).



Let us finally prove (2.22). We first claim that
∫

Rn

|f − t11{f>t1}|n
′ ≤ 2n

√
δ(f) . (2.31)

Indeed, by the anisotropic Sobolev inequality (1.1) applied to max{f − t1, 0}, and thanks
to (2.20)–(2.21), we have that

∫

Rn

|f − t11{f>t1}|n
′

=

∫

Rn\{f>t1}
fn′

+

∫

{f>t1}
|f − t1|n

′

≤ n
√

δ(f) +

(∫
{f>t1}

‖ − ∇f‖∗
n|K|1/n

)n′

≤ n
√

δ(f) + 2n′

δ(f)n
′/2

≤ 2n
√

δ(f) .

Notice that in the last inequality we have used that for every n ≥ 3 one has 2n′ ≤ n, while
for n = 2 one has 4δ(f) ≤ 2

√
δ(f) since by assumption δ(f) ≤ 1/4. At the same time, if

we plug the choice E = {f ≤ t1} in the definition of d0(f, t1 1{f>t1}), and notice that

‖ − D(f − t1 1{f>t1})‖∗({f > t1}) =

∫

{f>t1}
‖ − ∇f‖∗dx ,

then by (2.20)–(2.21) we immediately find

d0(f, t1 1{f>t1}) ≤ 2n
√

δ(f) .

Combining this estimate with (2.31), we conclude the proof of (2.22), and thus of Step I.

Step II: There exists t0 ∈ (t1/2, t1) such that

tn
′

1

∣∣{t0 < f ≤ t1
}∣∣ ≤ 4n

√
δ(f) , (2.32)

δ
(
{f > t0}

)
< 4 δ(f) . (2.33)

First of all, using the triangle inequality, recalling (2.31) and that
∫

Rn fn′

= 1, and thanks

to the assumption
√

δ(f) ≤ (8n)−1, we obtain

t1|{f > t1}|1/n′

= ‖t11{f>t1}‖Ln′ ≥ ‖f‖Ln′ − ‖f − t11{f>t1}‖Ln′

≥ 1 −
(
2n
√

δ(f)
)1/n′

≥ 1

2
.

(2.34)

Let us now consider the set

I =
{
t ∈ (t1/2, t1) : δ

({
f > t

})∣∣{f > t}
∣∣1/n′

> 2δ(f)/t1

}
.

By (2.26) we have H1(I) < t1/2, so that there exists t0 ∈ (t1/2, t1) \ I. Consequently,
by (2.34) we find that

2δ(f) > t1|{f > t0}|1/n′

δ({f > t0}) ≥ t1|{f > t1}|1/n′

δ({f > t0}) ≥
δ({f > t0})

2
,

hence (2.33) is established. To prove (2.32) it is enough to estimate, also thanks to (2.21),

tn
′

1

∣∣{t0 < f ≤ t1
}∣∣ ≤ tn

′

1

∣∣∣
{ t1

2
< f ≤ t1

}∣∣∣ ≤ 2n′

∫

{t1/2<f≤t1}
fn′ ≤ 2n′

n
√

δ(f) ≤ 4n
√

δ(f) .

Step III: Conclusion.
We are now ready to conclude the proof of the Theorem. First, we claim that there exist
x0 ∈ R

n and r > 0 such that

d(f, gt1,x0,r) ≤ 32
(
n + C0(n)

)√
δ(f) , (2.35)



where C0(n) is defined as in (1.4). To show this, observe that thanks to [FiMP, Theorem
1.1], there exist x0 ∈ R

n and r > 0 such that
∣∣{f > t0}∆(x0 + r K)

∣∣ ≤ C0(n)|{f > t0}|
√

δ({f > t0}) . (2.36)

Let us notice that

t1|{f > t0}|1/n′ ≤ 2
t1
2

∣∣∣∣

{
f >

t1
2

}∣∣∣∣
1/n′

≤ 2

(∫

{f>t1/2}
fn′

)1/n′

≤ 2 ,

so that tn
′

1 |{f > t0}| ≤ 2n′ ≤ 4. Hence, by (2.36) and (2.33) we find that

tn
′

1 |{f > t0}∆(x0 + r K)| ≤ 4C0(n)
√

δ({f > t0}) ≤ 8C0(n)
√

δ(f) .

Thus, by applying Lemma 2.2 and Lemma 2.5, and by (2.22) and (2.32), we get

d(f, gt1,x0,r) ≤ 4
(
d(f, t1 1{f>t1}) + d(t1 1{f>t1}, gt1,x0,r)

)

≤ 16n
√

δ(f) + 4tn
′

1

∣∣∣
{
f > t1

}
∆(x0 + rK)

∣∣∣

≤ 16n
√

δ(f) + 4tn
′

1

(∣∣{f > t0
}
∆(x0 + rK)

∣∣+
∣∣{t0 < f ≤ t1

}∣∣
)

≤ 32
(
n + C0(n)

)√
δ(f) ,

thus (2.35) follows. It is now sufficient to apply Lemma 2.6 to get

inf
a,x

d(f, ĝa,x) ≤ 256
(
n + C0(n)

)√
δ(f) ,

that is, (2.18). �

2.4. Proof of Theorem 1.1. We come now to the proof of Theorem 1.1, which follows
from Theorem 2.7 by a standard argument, cf. [FMP2].

Proof of Theorem 1.1. We divide for simplicity the proof in three steps.

Step I: Deficit uniformly bounded from below.
In this first step, we consider the situation when

√
δ(f) ≥ 1

8n
.

Take any a 6= 0 and x0 ∈ R
n. Using E = R

n as a test set it is immediate to observe that
d0(f, ĝa,x0

) ≤ 2, and then by the triangular inequality

d(f, ĝa,x0
) ≤

∫

Rn

|f − ĝa,x0
|n′

+ 2 ≤ 2n′

+ 2 ≤ 6 .

Consequently, we find

inf
a,x0

d(f, ĝa,x0
) ≤ 6 ≤ 48n

√
δ(f) ,

which a stronger estimate than (1.9).

Step II: Nonnegative functions with small deficit.
We address now the case

f ∈ BV (Rn) , f ≥ 0

∫

Rn

|f |n′

= 1 δ(f) <
1

(8n)2
. (2.37)

Thanks to Lemma 2.3, up to regularize f with a sequence of smooth compactly supported
convolution kernels {ρk}k∈N and then let k → ∞, we can directly assume that f ∈ C∞(Rn).
Analogously, by Lemma 2.4, we can now trade the smoothness of f for the compactness of
its support, that is to say, we may reduce to the case that spt(f) is compact and that (2.37)
holds true. Then, by a further application of Lemma 2.3, we regain the smoothness of f ,



without loosing the compactness of its support. Summarizing, it suffices to consider the
case

f ∈ C∞
c (Rn) , f ≥ 0

∫

Rn

|f |n′

= 1 δ(f) <
1

(8n)2
.

As this is exactly the situation covered in Theorem 2.7, we have finally proved that,
whenever f satisfies (2.37), then

inf
a,x0

d(f, ĝa,x0
) ≤ 256 (n + C0(n))

√
δ(f) .

In turn, also this inequality is stronger than (1.9).

Step III: Generic functions with small deficit.
We finally drop the sign condition. Thus, we now have

f ∈ BV (Rn) ,

∫

Rn

|f |n′

= 1 δ(f) <
1

(8n)2
. (2.38)

By Lemma 2.3 we may further assume that f ∈ C∞(Rn), so to have Df {f = 0} = 0.
Moreover, up to switch between f(x) and −f(−x), we may directly consider the case that

s =

∫

{f<0}
fn′ ≤ 1

2
.

Let f+ = max{f, 0} and f− = max{−f, 0}. By the Sobolev inequality,

TVK(f) = TVK(f+) + TVK(f−) ≥ n|K|1/n
(
s1/n′

+ (1 − s)1/n′)
.

In particular, from the elementary concavity inequality (see [FiMP, Figure 7])

s1/n′

+ (1 − s)1/n′ − 1 ≥
(
2 − 21/n′)

s1/n′

, s ∈ [0, 1/2] ,

we get

δ(f) ≥ (2 − 21/n′

)‖f − f+‖Ln′ (Rn) . (2.39)

We now notice that, since

e ≥ 2, 1/2 ≤ log(2) ≤ 1 , ex ≤ 1 +

(
1 − 1

e

)
x ∀x ∈ [−1, 0] ,

we have

2 − 21/n′

= 2
(
1 − e− log(2)/n

)
≥ 2

(
1 − 1

e

)
log(2)

n
≥ 1

2n
, (2.40)

Hence, by the triangle inequality and the fact that ‖f‖Ln′ (Rn) = 1, we conclude that

1 − 2n δ(f) ≤ ‖f+‖Ln′ (Rn) ≤ 1 .

Since TVK(f+) ≤ TVK(f), we deduce that

δ(f+) ≤ TVK(f)

n|K|1/n (1 − 2nδ(f))
− 1 =

2n + 1

1 − 2nδ(f)
δ(f) .

By (2.38) we have
1

1 − 2nδ(f)
≤ 1

1 − (1/32n)
≤ 64

63
, (2.41)

so that in conclusion, for the sake of writing a neat estimate, we may say that

δ(f+) ≤ 64

63

(
2n + 1

)
δ(f) ≤ 3n δ(f) .

Set now

f+
0 =

f+

‖f+‖Ln′ (Rn)

,



so that δ(f+
0 ) = δ(f+). Evidently, f+

0 satisfies the assumptions (2.37) considered in Step II.
Therefore, there exist a > 0 and x0 ∈ R

n such that

d(f+
0 , ĝa,x0

) ≤ 256 (n + C0(n))
√

δ(f+) ≤ 256 (n + C0(n))
√

3n
√

δ(f)

≤ 448 (n + C0(n))
√

n
√

δ(f) .
(2.42)

So, we are left to estimate d(f, f+
0 ). To this end, let us first notice that, by (2.39) and (2.40),

‖f − f+
0 ‖Ln′ (Rn) ≤

(
‖f − f+‖Ln′ (Rn) +

∣∣∣‖f+‖Ln′ (Rn) − 1
∣∣∣
)
≤ 2‖f − f+‖Ln′ (Rn) ≤ 4nδ(f) .

Since, by the small deficit assumption in (2.38), we have (4nδ(f))n
′ ≤ 4nδ(f) ≤

√
δ(f)/2,

we conclude that

d(f, f+
0 ) ≤

√
δ(f)

2
+ d0(f, f+

0 ) . (2.43)

We now use as test set in the definition (1.5) of d0(f, f+
0 ) the Borel set E = {f < 0}. First

of all we notice that, by definition and thanks to (2.39) and (2.40)

∫

E
(f+

0 )n
′

= 0 ,

∫

E
|f |n′ ≤ 2n δ(f) ≤

√
δ(f)

4
. (2.44)

Moreover, since Df {f = 0} = 0, we have

D(f − f+
0 ) = Df − Df {f > 0}

‖f+‖Ln′ (Rn)

=

(
1 − 1

‖f+‖Ln′ (Rn)

)
Df {f > 0} + Df {f < 0} .

Taking into account that ‖ − Df‖∗(Rn \ E) ≤ TVK(f) = n|K|1/n(1 + δ(f)) ≤ 2n|K|1/n,
we find that

‖ − D(f − f+
0 )‖∗(Rn \ E)

n|K|1/n
≤ 2

∣∣∣∣1 − 1

‖f+‖Ln′ (Rn)

∣∣∣∣ ≤ 2
‖f − f+‖Ln′ (Rn)

‖f+‖Ln′ (Rn)

≤ 4n δ(f)
64

63
≤ 5n δ(f) ≤ 5

8

√
δ(f) .

(2.45)

where we have applied again (2.39), (2.40), (2.41), and the small deficit assumption
in (2.38). Hence, by (2.43), (2.44) and (2.45), we see that

d(f, f+
0 ) ≤ 2

√
δ(f) .

Combining this last estimate with Lemma 2.2 and (2.42) we conclude that

d(f, ĝa,x0
) ≤ 4

(
d(f, f+

0 ) + d(f+
0 , ĝa,x0

)
)
≤ 1800

(
n + C0(n)

)√
n
√

δ(f) ,

from which (1.6) and (1.7) immediately follow. �

3. From Sobolev to log-Sobolev

We finally remark that Theorem 1.1 immediately gives a stability result for (a family
of) anisotropic 1-log-Sobolev inequalities. Let us recall that if n ≥ 2 and α ∈ (0, n′), then
for every f ∈ BV (Rn) we have

αn′

n′ − α
log

(
TVK(f)

n|K|1/n‖f‖Lα(Rn)

)
≥
∫

Rn

log

( |f |α∫
Rn |f |α dx

) |f |α∫
Rn |f |α dx

dx , (3.1)



which, for K = B and α = 1 amounts to the classical 1-log-Sobolev inequality on R
n.

The family of inequalities (3.1) follows immediately from the anisotropic Sobolev inequal-
ity (1.1) by the following argument:
∫

Rn

log

( |f |α∫
Rn |f |α dx

) |f |α∫
Rn |f |α dx

dx =
α

n′ − α

∫

Rn

log

(
|f |n′−α

(∫
Rn |f |α dx

)n′
−α

α

)
|f |α∫

Rn |f |α dx
dx

(Jensen) ≤ α

n′ − α
log

(∫

Rn

|f |n′−α+α

( ∫
Rn |f |α dx

)n′
−α

α
+1

dx

)

=
α n′

n′ − α
log

(
‖f‖Ln′ (Rn)

‖f‖Lα(Rn)

)

(Sobolev) ≤ α n′

n′ − α
log

(
TVK(f)

n|K|1/n‖f‖Lα(Rn)

)

.

A quick inspection of this chain of inequalities shows that, if we set

δLS,α(f) =
TVK(f)

n|K|1/n‖f‖Ln′ (Rn)

− ‖f‖Lα(Rn)

‖f‖Ln′ (Rn)

exp

(
n − α(n − 1)

n

∫

Rn

log

(
f

‖f‖Lα(Rn)

) |f |α
‖f‖α

Lα(Rn)

dx

)
,

then we have

δLS,α(f) ≥ δ(f) .

Observe that the formula defining δLS,α(f) makes sense also for α = n′, and reduces to
anisotropic Sobolev inequality (1.1) (since δLS,n′(f) = δ(f)). Moreover, if E is a set of
finite perimeter and measure, then a simple calculation ensures

δLS,α(1E) = δ(1E) , ∀α ∈ (0, n′] . (3.2)

In particular, δLS,α(f) = 0 if and only if f = a1x0+arK for some a 6= 0, x0 ∈ R
n and

r > 0. It is now easy to infer from Theorem 1.1 the following sharp quantitative versions
of these inequalities (the sharpness follows from (3.2) combined with the sharpness of the
quantitative anisotropic isoperimetric inequality proved in [FiMP]):

Theorem 3.1. If f ∈ BV (Rn), with ‖f‖Ln′ (Rn) = 1, then

C1(n)
√

δLS,α(f) ≥ inf
a,x0

d(f, ĝa,x0
) , ∀α ∈ (0, n′] ,

with C1(n) as in Theorem 1.1.
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