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Analisi matematica. — Some properties of Carnot-Carathéodory balls in the Heisenberg
group. Nota di Roberto Monti, presentata (*) dal Socio M. Miranda.

Abstract. — Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we
prove that: 1. |∇

Hn d (z; t )| = 1 in the classical sense for all (z; t ) ∈ H
n with z �= 0, where d is the distance

from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.
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Riassunto. — Alcune proprietá delle sfere di Carnot-Carathéodory nel gruppo di Heisenberg. Usando la
rappresentazione esatta per le sfere di Carnot-Carathéodory nel gruppo di Heisenberg, proviamo che: 1.
|∇

Hn d (z; t )| = 1 in senso classico per ogni (z; t ) ∈ H
n con z �= 0, dove d è la distanza dall’origine; 2. Le

sfere metriche non sono insiemi isoperimetrici ottimali nel gruppo di Heisenberg.

1. Introduction

In this Note we consider the Heisenberg group H
n = C

n × R as a metric space
endowed with its Carnot-Carathéodory distance d . We shall write an element of the
group indifferently (x; y; t ) = (x + iy; t ) = (z; t ) ∈ H

n with z ∈ C
n, x; y ∈ R

n and
t ∈ R. The group product in H

n is

(1.1) (ζ; τ ) · (z; t ) = (ζ + z; τ + t + 2 Imζ z̄ ) ;

and the Lie algebra of the group is generated by the vector fields

(1.2) Xj = @xj
+ 2yj@t and Yj = @yj

− 2xj@t ; j = 1; :::; n :

In H
n there are natural translations and dilations. Left translations τh : H

n → H
n,

h = (ζ; τ ) ∈ H
n, are defined by

(1.3) τh(z; t ) = (ζ; τ ) · (z; t ) :

Homogeneous dilations δλ : H
n → H

n, λ > 0, are defined by

(1.4) δλ(z; t ) = (λz; λ2t ):

The Carnot-Carathéodory distance d beetween two points is defined as the minu-
mum time necessary to connect them by curves with derivative in the sub-bundle
spanned pointwise by the Xj ’s and Yj ’s, and with somehow bounded coefficients. This
metric is well behaved with respect to translations and dilations

(1.5) d (τh(z;t ); τh(ζ;τ ))=d ((z;t ); (ζ;τ )); d (δλ(z;t ); δλ(ζ;τ ))=λd ((z;t ); (ζ;τ ))

where h ∈ H
n and λ > 0. See Section 2 for Carnot-Carathéodory metrics and see [23]

for an exhaustive introduction to the Heisenberg group.

(*) Nella seduta del 12 maggio 2000.
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The exact equations for geodesics in H
n yield parametric equations for the surface

of Carnot-Carathéodory metric balls. These equations show that the distance d (z; t ) =
d ((z; t ); 0) is regular outside the center of the group. Now, the natural intrinsic
gradient in the Heisenberg group is ∇

Hn = (X1; :::; Xn; Y1; :::; Yn), whose squared
modulus, when applied to a differentiable function, is |∇

Hn u|2 =
∑n

j=1(Xju)2 + (Yju)2.
The first result contained in this paper is that the distance has modulus of the gradient
equal to one

(1.6) |∇
Hn d (z; t )| = 1; for all (z; t ) ∈ H

n with z �= 0 :

This is quite analogous to the euclidean case. In fact, if d (x) = |x | with x ∈ R
n then

one immediately sees that |∇d (x)| = 1 for all x �= 0.
The second result is the negative answer to the question whether metric balls are

optimal sets for the isoperimetric problem in H
n. The isoperimetric inequality in H

n

is well established (see [22] and the generalizations [9, 13] where the related references
can be found). We show that, within the class of sets with given measure metric balls
have not minimum perimeter. This will follow by a simple convexity observation.

Property (1.6) suggests that among all homogeneous distances on H
n the Carnot-

Carathéodory metric is really the most «intrinsic» one. On the contrary, the lack of the
isoperimetric property for the balls in H

n points out an interesting difference from the
euclidean setting.

The plan of the paper is as follows. Section 2 contains the preliminar material:
we state some properties of Carnot-Carathéodory spaces and we recall the Pontryagin
Maximum Principle to derive the geodesics equations. In particular we show by a
simple proof that geodesics in the Heisenberg group are regular. In Section 3 we study
the Carnot-Carathéodory metric of H

1 and prove (1.6). In Section 4 we discuss the
isoperimetric inequality in H

1 and prove that metric balls in the Heisenberg group are
not isoperimetric.

It is now my pleasant task to acknowledge with gratitude Francesco Serra Cassano,
Daniele Morbidelli and Ermanno Lanconelli, who first introduced me in the study of
the Heisenberg group.

2. Geodesics in Carnot-Carathéodory spaces

Consider a family X = {X1; :::; Xm} of C ∞(Rn; Rn) vector fields. One can define on
R

n a new metric in the following way. A Lipschitz path γ : [0; T ] −→ R
n is said to be

subunit with respect to the fields if there exist measurable coefficients h = (h1; :::; hm)
such that

(2.7) γ̇(s) =
m∑

j=1

hj (s)Xj (γ(s)); and
m∑

j=1

h2
j (s) ≤ 1 for a.e. s ∈ [0; T ] :

Then we define

d (x; y) = inf{T ≥ 0 : there exists a subunit path γ : [0; T ] → R
n joining x to y}:
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It is not always possible to connect two points by a subunit path but if this happens d
turns out to be a metric. In the sequel we shall always assume the X -connectivity. The
metric space (Rn; d ) is usually called Carnot-Carathéodory or subriemannian space (see
for instance [2, 19, 24] for a general introduction to subriemannian geometry).

There are other different ways to define the metric d . Here we are interested in the
characterization of d by means of Control Theory. A Lipschitz path γ : [0; 1] → R

n is

admissible if γ̇(s) =
m∑

j=1

hj (s)Xj (γ(s)) with measurable coefficients hj . Define the «length»

of γ as l2(γ) =
(∫ 1

0
|h(s)|2ds

) 1
2

and define

d2(x; y) = inf{l2(γ) : γ is an admissible path joining x to y} :

It is not immediately obvious that the definitions are actually equal, in fact

(2.8) d = d2 :

For the proof see [18].

Definition 2.1. A Lipschitz-continuous subunit path γ : [0; T ] −→ R
n is said to be

a geodesic if d (γ(0); γ(T )) = T .

Theorem 2.2. Assume that R
n is X -connected. Then every pair of points x; y ∈ R

n can be
connected by a geodesic γ. Moreover d (γ(0); γ(s)) = s for any s ∈ [0; T ].

For a proof of this theorem see [17, Theorem 1.10].

Subriemannian geodesics are solutions of the following control problem (see [24, 19,
4, 8]). Taking into account (2.8), the cost functional to minimize is

(2.9) J (h) =
1
2

∫ 1

0
|h(s)|2ds =

∫ 1

0
L(h(s))ds ;

where L is the lagrangian, and h ∈ L2([0; 1]; Rm) are the controls. The state equation is

(2.10) ẋ = B(x)h =
m∑

j=1

hjXj (x)

where x ∈ Lip([0; 1]; Rn) and B is the n × m-matrix which has the vector fields
X1; :::; Xm as columns. The constraints are x(0) = x0 e x(1) = x1 ∈ R

n.
Assume that the problem is controllable. Then, in force of Theorem 2.2 the problem

of minimizing J has a solution. A pair (x; h) is said to be optimal if the control h
minimizes the functional (2.9) and x satisfies almost everywhere the corresponding state
equation (2.10) and the constraints. The Pontryagin Maximum Principle gives necessary
condition in order that a pair (x; h) be optimal.

Theorem 2.3 (Pontryagin Maximum Principle). If the pair (x; h) is optimal then there
exist a constant λ ∈ {0; 1} and an absolutely continuous function ξ ∈ AC ([0; 1]; Rn) such that :
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(i) |ξ(s)| + λ �= 0 for all s ∈ [0; 1];
(ii) ξ̇ = − @

@x ξT Bh for a.e. s ∈ [0; 1];
(iii) finally

〈ξ(s); Bh(s)〉 − λL(h(s)) = max
u∈Rm

〈ξ(s); Bu〉 − λL(u)

for a.e. s ∈ [0; 1].

For the proof of this classical result we refer for example to the book of Barbu [1].
Before stating a regularity Lemma for geodesics, we draw some consequences from the
Maximum Principle. If (h; x) is an optimal pair which corresponds to the case λ = 1,
then we deduce from (iii) the explicit expression for the optimal control

(2.11) h = BT ξ:

Thus, equations (ii) and (2.10), which hold for almost every s ∈ [0; 1], transform in
the well known system of Hamilton equations (see for example [2])

(2.12)




ẋ =
1
2

@H (x; ξ)
@ξ

ξ̇ = −1
2

@H (x; ξ)
@x

;

where the hamiltonian is H (x; ξ) =
∑m

j=1〈Xj (x); ξ〉2. We remark that H (x; ξ) is the
symbol of the laplacian («sum of squares») of the fields.

If λ = 0 the situation is less nice. From (i) in the Maximum Principle we deduce
ξ(s) �= 0. Moreover (iii) becomes 〈BT ξ(s); h〉 = maxu∈Rm 〈BT ξ(s); u〉. This can happen
only if BT ξ(s) ≡ 0, and this means that

(2.13) 〈Xj (x(s)); ξ(s)〉 ≡ 0; j = 1; :::; m :

The dual function ξ is orthogonal to the fields. In this case one is not allowed to
conclude that the Hamilton equations are satisfied. Geodesics corresponding to the case
λ = 0 are usually called singular or abnormal (see [20]).

Lemma 2.4. Suppose that the vector fields X1; :::; Xm are of class C ∞(Rn) and that R
n is

X -connected. If (x; h) is an optimal pair which corresponds to the case λ = 1, then x ∈
∈ C ∞([0; 1]).

Proof. Theorems 2.2 and 2.3 show that x(t ) a Lipschitz-continuous function which
satisfies (with its dual function ξ) equations (2.12) almost everywhere. Since the dual
variable ξ is absolutely continuous, the explicit expression (2.11) for h shows that the
control h, which a priori is only L2, actually is absolutely continuous. Thus from
the state equation (2.10) we deduce that ẋ is absolutely continuous. This proves that
x ∈ C 1([0; 1]). Moreover

ẍ = (
d
dt

B(x(s)))h + B(x(s))ḣ; a.e. in [0; 1] :
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Note that by (ii) ξ̇ is absolutely continuous, and thus by (2.11) ḣ ∈ AC ([0; 1]). Then
the expression for ẍ shows that ẍ ∈ AC ([0; 1]), and thus x ∈ C 2([0; 1]). Proceeding
in the same way we find by induction that x ∈ C ∞([0; 1]).

It is possible to write down explicitly the subriemannian geodesics in the Heisenberg
group. We have to check that the case λ = 0 in the Maximum Principle cannot occur.

Lemma 2.5. Geodesics in H
n are curves of class C ∞.

Proof. Let h1; h2 ∈ L2([0; 1]; Rn) be the controls and write h = (h1; h2)T . Write
(z; t ) = (x; y; t ) and (ζ; τ ) = (ξ; η; τ ). If B = col [X1; :::; Xn; Y1; :::; Yn] is the ma-
trix of the vector fields, then Bh =

∑m
j=1 h1jXj + h2jYj = (h1; h2; 2〈y; h1〉 − 2〈x; h2〉)

T .
Equations (ii) in the Maximum Principle give


ξ̇ (s) = 2βh2

η̇(s) = −2βh1

τ (s) = β

with β ∈ R. Suppose by contradiction that the optimal pair ((z; t ); h) corresponds to
the case λ = 0. Using the orthogonality condition (2.13) we find

{
ξ + 2βy = 0

η − 2βx = 0

and from this we see that it must be β �= 0. Indeed, if β = 0 then ζ(s) ≡ 0 and this
is not possible because of (i) in the Maximum Principle.

Differentiating the previous equations, and substituting above we get
{

ẋ(s) = −h1(s)

ẏ (s) = −h2(s):

But, from the state equation (2.10) we find
{

ẋ(s) = h1(s)

ẏ (s) = h2(s)

and thus h(s) ≡ 0. This is a contradiction and the case λ = 0 is excluded.

Geodesics in H
n. Geodesics equations in the Heisenberg group can be found in the

literature [15, 2], but without complete proofs. The regularity of Heisenberg geodesics
is also a special case of [24]. Here we give a self contained exposition. In the case of
Grushin vector fields in R

2 the problem of geodesics was solved by Franchi in [8].
Lemma 2.5 proves that geodesics in H

n are solutions of the Hamiltonian system
(2.12) with

H ((z; t ); (ζ; τ )) =
n∑

j=1

(ξj + 2yjτ )2 + (ηj − 2xjτ )2:
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One finds the equations



ẋ j = ξj + 2τ yj

ẏ j = ηj − 2τxj

ṫ =
n∑

j=1

2yjξj + 4τ y2
j − 2xjηj + 4τx2

j

ξ̇ j = 2τηj − 4τ 2xj

η̇j = −2τξj − 4τ 2yj

τ̇ = 0 :

Taking the initial data (z(0); t (0))= (0;0) and (ζ(0);τ (0))= (B1;:::;Bn; A1;:::;An;φ=4),
we find the solutions

(2.14)




xj (s) =
Aj (1 − cos φs) + Bj sin φs

φ

yj (s) =
−Bj (1 − cos φs) + Aj sin φs

φ

t (s) = 2
φs − sin φs

φ2

n∑
j=1

(A2
j + B2

j ) :

In the limit case φ = 0 one gets the euclidean geodesics (x(s); y(s); t (s)) = (Bs; As; 0).
The correct normalization is

∑n
j=1(A2

j + B2
j ) = 1.

Remark 2.6. If γ is a geodesic then the translated path τhγ is still a geodesic. This
shows that the hypothesis (z(0); t (0)) = (0; 0) is not restrictive. Notice also that, if
γ : [0;T ] → H

n is a geodesic joining (zo;to) to (z1;t1), then the path γ
λ

: [0; λT ]→ H
n

defined by γλ(s) = δλγ( s
λ

) is a geodesic joining δλ(zo; to) to δλ(z1; t1). If γ corresponds
to the initial datum (B; A; φ

4 ) then γλ solves Hamilton equations with initial datum
(B; A; φ

4λ
). Now, by a general result in Control Theory, normal extremals are always

locally optimal (see [19, Appendix C]). Since the renormalized dilation of a geodesic is
still a geodesic, this automatically proves that equations (2.14) and their translated are
all the geodesics in H

n. Notice also that the points (0; 0) and (z; t ) can be connected
only by one geodesic if (z; t ) =∈ Z where Z = {(z; t ) ∈ H

n : z = 0} is the center of the
group.

3. Regularity of the Carnot-Carathéodory metric in the Heisenberg group

We now deduce from equations (2.14) a parametrization of the surface of the unitary
metric ball centered at the origin. In order to simplify some calculations we fix n = 1.
Let S = {(x; y; t ) ∈ H

1 : d ((x; y; t ); 0) = 1}. First note that the velocity of a geodesic
γ is

γ̇(s) = (A sin φs + B cos φs)X (γ(s)) + (A cos φs − B sin φs)Y (γ(s));

with A2 + B2 = 1. The time s is exactly the Carnot-Carathéodory distance between 0
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and γ(s). If we choose s = 1 and set A = cos θ and B = sin θ we obtain

(3.15)




x(θ; φ) =
cos θ(1 − cos φ) + sin θ sin φ

φ

y(θ; φ) =
− sin θ(1 − cos φ) + cos θ sin φ

φ

t (θ; φ) = 2
(φ − sin φ)

φ2 ;

with 0 ≤ θ ≤ 2π and −2π ≤ φ ≤ 2π. From equations (3.15) one sees that the surface
S is of class C 1 where z = (x; y) �= 0.

It is now easy to show that the function (z; t ) → d (z; t ) = d ((z; t ); 0) is of class C 1

for z �= 0. Set A = {(θ; φ; ρ) ∈ R
3 : −2π ≤ φρ ≤ 2π; ρ ≥ 0} and define Φ : A −→ H

1

by Φ(θ; φ; ρ) = (x(θ; φ; ρ); y(θ; φ; ρ); t (θ; φ; ρ)), where

(3.16)




x(θ; φ; ρ) =
cos θ(1 − cos φρ) + sin θ sin φρ

φ

y(θ; φ; ρ) =
− sin θ(1 − cos φρ) + cos θ sin φρ

φ

t (θ; φ; ρ) = 2
(φρ − sin φρ)

φ2 :

The range of Φ is H
1. In fact, if ρ > 0 is fixed, then equations (3.16) with θ ∈ [0; 2π)

and − 2π
ρ

≤ φ ≤ 2π
ρ

parametrize @B(0; ρ). One can compute the determinant of the
jacobian

det J Φ(θ; φ; ρ) = 4
φρ sin φρ − 2(1 − cos φρ)

φ4 :

It is easily seen that the equation s sin s + 2 cos s = 2 has the solutions s = 0;±2π for
|s| ≤ 2π. This means that

det J Φ(θ; φ; ρ) = 0

if and only if φρ = ±2π or ρ = 0 (the case φ = 0 must be excluded). The set of the
points Φ(θ; φ; ρ) with φρ = ±2π is exactly the center Z = {(z; t ) ∈ H

1 : z = 0}. By
the inverse function Theorem the function Φ is a local diffeomorphism in the open
set {(θ; φ; ρ) : ρ > 0 and |φρ| < 2π}. By the definition of the distance d we have
Ψ(θ; φ; ρ) := d (Φ(θ; φ; ρ)) = ρ. Thus the function Ψ is of class C ∞. Now write
d = Ψ ◦ Φ−1 to show that d is of class C 1 outside the center.

We now state a general result recently proved, which will be needed. If d is a metric
on R

n generated by a family of vector fields and f : R
n → R is a Lipschitz function

with respect to d , then f is differentiable almost everywhere along the fields (for the
proof see [11, 14]).

Theorem 3.7. Let (Rn; d ) be a Carnot-Carathéodory space associated with a family of
vector fields X = (X1; :::; Xm), and suppose that
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1. d (x; y) < ∞ for all x; y ∈ R
n.

2. d is continuos with respect to the euclidean topology.

Then, for every L-Lipschitz function f : R
n −→ R there exists Xj f (x) for almost all x ∈ R

n,

j = 1; :::; m, and |Xf (x)| =
(∑m

j=1(Xj f (x))2
) 1

2 ≤ L a.e.

We are now in position to prove our result.

Theorem 3.8. Consider H
n endowed with its Carnot-Carathéodory metric d . Then we have

(3.17) |∇
Hn d (z; t )| = 1

for all (z; t ) ∈ H
n such that z �= 0.

Proof. The Heisenberg group satisfies the hypotheses of Theorem 3.7, and thus,
since d is clearly 1-Lipschitz

|∇
Hn d (z; t )| ≤ 1

almost everywhere on H
n. Now fix a point (z; t ) ∈ H

n \Z where this inequality holds.
Choose a geodesic γ : [0; T ] → H

n joining 0 to (z; t ). In particular γ is subunit

γ̇(s) =
n∑

j=1

h1jXj (γ(s)) + h2jYj (γ(s)); and
n∑

j=1

h1j (s)
2 + h2j (s)

2 ≤ 1:

If z �= 0 we may assume that γ(s) =∈ Z = {(z; t ) ∈ H
n : z = 0} for s > 0. If we

differentiate the identity s = d (γ(s)) (Theorem 2.2, regularity of γ and regularity of d )
we find

1 =
d
ds

d (γ(s)) = 〈Dd (γ(s)); γ̇(s)〉 =
n∑

j=1

h1j (s)Xjd (γ(s)) + h2j (s)Yjd (γ(s)) ≤ |∇
Hn d (γ(s))|

for all s ∈ (0; T ]. Choosing s = T we get

|∇
Hn d (z; t )| ≥ 1:

Thus we find |∇
Hn d (z; t )| = 1 almost everywhere in H

n. But ∇
Hn d (z; t ) is con-

tinuous outside the center Z and thus |∇
Hn d (z; t )| = 1 when z �= 0. The proof is

complete.

Remark 3.9. The partial derivatives Xjd and Yjd , which are defined only in H
n \Z ,

cannot be separately extended with continuity to the whole H
n. Thus one cannot hope

to extend the eikonal equation (3.17) to H
n.

Remark 3.10. If K ⊂ H
n is a closed set define dK (z; t ) = inf(ζ;τ )∈K d ((z; t ); (ζ; τ )).

The function dK needs not be differentiable in the classical sense. Nonetheless, the
derivatives along the Heisenberg vector fields exist a.e. and the eikonal equation
|∇

Hn dK (z; t )| = 1 holds for a.e. (z; t ) ∈ H
n \ K . This improvement of (3.17) will

be proved in [21].
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Example 3.11. If g ∈ L1(Hn) and f : H
n → R is Lipschitz with respect to d then

one can prove the following intrinsic coarea formula

(3.18)
∫

Hn

g (z; t )|∇
Hn f (z; t )| dzdt =

∫ +∞

−∞

∫
{f =s}

g (z; t )dP (Es) ds

where Es = {(z; t ) ∈ H
n : f (z; t ) > s} and P (Es) is the perimeter-measure P (Es)(Ω) =

= P (Es ; Ω) (see [10, 13 and next section]). Actually formula (3.18) is a particular case
of a more general coarea formula for vector fields (see [21]). If g : [0;∞) → R is
such that g (d (z; t )) ∈ L1(Hn) formula (3.18) with f = d reads (see also [7, Proposition
1.15]) ∫

Hn

g (d (z; t )) dzdt = P (B(0; 1))
∫ ∞

0
g (s)sQ−1 ds;

where Q = 2n + 2 is the homogeneous dimension of H
n. In fact, if P (B(0; s)) is the

Heisenberg perimeter of B(0; s) then P (B(0; s)) = sQ−1P (B(0; 1)) for s > 0 (see next
section).

4. Isoperimetric problem in H
1
: a negative answer

In this section we show that, given a metric ball in H
1 there exists a new set with

the same measure, but with strictly smaller Heisenberg perimeter.
Let us introduce the notion of perimeter in H

n. This is a particular case of a more
general construction for vector fields originally proposed in [10, 13]. Fix an open set
Ω ⊂ H

n, and if φ ∈ C 1
o (Ω; R2n) is a vector valued function define the Heisenberg

divergence of φ

div
Hnφ(z; t ) =

n∑
j=1

Xjφj (z; t ) + Yjφj+n(z; t ):

Now take f ∈ L1(Ω) and set

||∇
Hn f ||(Ω) = sup

{∫
Ω

f (z; t )div
Hnφ(z; t ) dzdt : φ ∈ C 1

o (Ω; R2n); |φ| ≤ 1
}

:

If ||∇
Hn f ||(Ω) <+ ∞ we say that f ∈ BV

Hn (Ω). Now, let E ⊂ H
n be measurable with

finite measure. Define the perimeter of E in Ω

P (E ; Ω) = sup
{∫

Ω∩E

div
Hnφ(z; t ) dzdt : φ ∈ C 1

o (Ω; R2n); |φ| ≤ 1
}

:

We write P (E ) = P (E ; Hn) and say that E has finite perimeter if P (E ) < ∞. By means
of Riesz Theorem P (E ; ·) is a Radon measure on R

2n+1.
The variational perimeter measure is the correct way to define an intrinsic surface

measure on H
n. There are at least three reasons for that. First, this measure is, as

in the euclidean setting, lower semicontinuous with respect to the L1(Hn) convergence
of sets. Together with a compactness theorem this is a crucial condition in order to
have existence in minimum problems. Moreover, if E ⊂ H

n is a bounded open set
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with C ∞ boundary then P (E ) coincides with the Minkowski content of @E (see [21]).
Finally, if E is a set with finite perimeter it can be proved that (up to a multiplicative
geometric constant) P (E ; ·) = SQ−1 @∗E , where SQ−1 is the (Q − 1)-dimensional
spherical Hausdorff measure in the CC metric d and @∗E is the reduced boundary of
E (to be understood in a suitable sense, see [12]). Thus all reasonable definitions of
surface measure in H

n seem to coincide (on regular sets) with the perimeter.

Lemma 4.12. Fix λ>0, h∈H
n and E ⊂H

n with finite perimeter. Then P (τh(E ))= P (E )
and P (δλ(E )) = λQ−1P (E ).

Proof. Let φ ∈ C 1
o (Hn; R2n) with |φ| ≤ 1. Since Xj and Yj are left invariant∫

τh (E )
div

Hnφ(z; t ) dzdt =
∫

E

div
Hnφ(τh(z; t )) dzdt =

∫
E

div
Hn (φ ◦ τh)(z; t ) dzdt

with φ ◦ τh ∈ C 1
o (Hn; R2n) and |φ ◦ τh| ≤ 1. Thus P (τhE ) ≤ P (E ). Beginning from E

one gets the other inequality. This proves that P (τh(E )) = P (E ).
As far as the dilation property is concerned, note first the homogeneous property of

the fields

(Xjψ(δλ(z; t )) =
1
λ

Xj (ψ ◦ δλ)(z; t ); (Yjψ(δλ(z; t )) =
1
λ

Yj (ψ ◦ δλ)(z; t ):

Thus∫
δλ(E )

div
Hnφ(z; t ) dzdt =

∫
E

div
Hnφ(δλ(z; t ))λQ dzdt = λQ−1

∫
E

div
Hn (φ◦δλ)(z; t )) dzdt:

Since φ ◦ δλ ∈ C 1
o (Hn; R2n) and |φ ◦ δλ| ≤ 1, we get P (δλ(E )) ≤ λQ−1P (E ). The other

inequality follows analogously.

Remark 4.13. Suppose that the open set Ω ⊂ H
n satisfies τh(Ω) = Ω for some

h ∈ H
n. The same proof as in the Lemma shows that P (E ; Ω) = P (τh(E ); Ω).

The isoperimetric inequality in H
1 was originally established by Pansu [22]. It is well

known that – in the euclidean framework – this inequality is equivalent to the Sobolev
imbedding theorem. This approach works in the more general context of Carnot-
Carathéodory spaces (see [9, 13]). It is an open problem the proof of the isoperimetric
inequality in H

n by means of the direct method of the Calculus of Variations. Indeed,
we have the following compactness theorem (see [13]).

Theorem 4.14. If Ω ⊂ H
n is a bounded and sufficiently regular open set then the imbedding

BV
Hn (Ω) ⊂ L1(Ω) is compact.

Now fix k > 0 and consider the following minimum problem for r > 0 large enough

(4.19) min{P (E ) : E ⊂ B(0; r) measurable and such that |E | = k}:

Using the compactness theorem and the lower semicontinuity of the perimeter it is
easy to show that this problem has a solution. Now, try to solve the problem

(4.20) min{P (E ) : E ⊂ H
n bounded, measurable and such that |E | = k}:
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One can always take a minimizing sequence of sets Eh ⊂ H
n, h ∈ N. But, since we do

not have the condition Eh ⊂ B(0; r), the sets could loose their measure by shrinking
at infinity. Within the euclidean setting De Giorgi proved in his celebrated paper [6]
that the minimum is a sphere thus providing the value of the optimal constant in the
isoperimetric inequality: given a set with finite measure one can always find a sphere
with the same measure and less perimeter. The same question naturally arises in the
Heisenberg group. Are metric balls solutions of problem (4.20)? Unfortunately the
answer is negative. This is a remarkable difference between the Heisenberg group and
the euclidean case. It is well known that balls are optimal isoperimetric sets also in some
riemannian manifolds such as spherical and Lobachevsky spaces (see [5]). Furthermore,
if one considers R

n with a suitable Finsler metric, the balls induced by this metric are
isoperimetric (see [3]).

Remark 4.15. One can easily check that |τh(E )| = |E | and |δλ(E )| = λQ |E | for every
Lebesgue measurable set E ⊂ H

n, h ∈ H
n and λ > 0. Here | · | stands for the Lebesgue

measure. Moreover, if Ω ⊂ H
n is an open set and E has finite Heisenberg perimeter

then P (E ; Ω) = P (Ω \ E ; Ω).

Proposition 4.16. The Carnot-Carathéodory ball in H
1 is not a solution of problem (4:20).

Proof. Let B = B(0; 1) be the metric ball centered at the origin, and fix k > 0 in
(4.20) such that |B| = k. We shall construct a new measurable set A ⊂ H

1 such that
|A| = k and P (A) < P (B).

The surface S = @B of B has equations (3.15). These equations are invariant under
the orthogonal transformations of R

3 = H
1 that fix the t -coordinate. Thus, B and S

have the same invariance. Moreover, B is not convex. To see this fact put

@t (θ; φ)
@φ

= 0 to find − φ − φ cos φ + 2 sin φ = 0;

which has the solutions φ = π and φ = −π. To these angular coordinates there
correspond the points of the surface with maximum and minimum height. We define

S+ = {(x(θ; φ); y(θ; φ); t (θ; φ)) ∈ S : π < φ ≤ 2π};

S− = {(x(θ; φ); y(θ; φ); t (θ; φ)) ∈ S : −2π ≤ φ < −π}:

The basic idea is to replace S+ with S− by a translation and vice versa. The set with
this new boundary has the same perimeter as the original one but its measure is greater.
If we contract that set, we can find the desired set A.

Here are some of the details. Fix h = (0; 0; 4
π

) (note that 4
π

is the t -size of B)
and define a new surface Σ obtained from S in the following way. S+ is replaced by
τh(S−) and S− is replaced by τ−h(S+). The surface Σ is continuous and of class C ∞

outside a set of null euclidean 2-Hausdorff measure. Call D the open and bounded set
whose boundary is Σ. It is straigthforward that |D| > |B|.

Call G the projection of S+ onto the plane xy, and consider the open set Ω =
G × R. If B+ is the open set in Ω with «cap» S+, then by Remark 4.15 we get
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Fig. 1. – The ball B and the set D.

P (B+; Ω) = P (τh(B+); Ω) = P (Ω \ τh(B+); Ω). The same argument shows that τh(S−)
and S− have the same perimeter-measure. This means that B and D can be split into
parts with the same perimeter. Thus

P (B) = P (B; Hn \ Ω) + P (B; Ω) = P (D; Hn \ Ω) + P (D; Ω) = P (D):

Now fix λ > 0 such that |δλ(D)| = k = |B| which gives

λ =
(

k
|D|

) 1
4

< 1:

If we define A = δλ(D) then |A| = |B| and using the homogeneous property of the
perimeter we see that

P (A) = λ3P (D) = λ3P (B) < P (B):
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the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144.

[14] N. Garofalo - D.M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems
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