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Abstract

We investigate a two players zero sum differential game with incomplete infor-
mation on the initial state: The first player has a private information on the initial
state while the second player knows only a probability distribution on the initial
state. This could be view as a generalization to differential games of the famous
Aumann-Maschler framework for repeated games. In an article of the first author,
the existence of the value in random strategies was obtained for a finite number
of initial conditions (the probability distribution is a finite combination of Dirac
measures). The main novelty of the present work consists in : first extending the
existence of a value result in random strategies for infinite number of initial condi-
tions and second - and mainly - proving the existence of a value in pure strategies
when the initial probability distribution is regular enough (without atoms).

1 Introduction

We consider a two-player, zero-sum differential game with dynamics{
x′(t) = f(x(t), u(t), v(t)) u(t) ∈ U, v(t) ∈ V
x(t0) = x0

and terminal cost g : RN → R, which is evaluated at a terminal time T > 0. The
first player acts on the system through his control u(·) in order to minimize a final cost

∗This work has been partially supported by the Commission of the European Communities under the
7-th Framework Programme Marie Curie Initial Training Networks Project SADCO , FP7-PEOPLE-
2010-ITN, No 264735. This was also supported partially by the French National Research Agency ANR-
10-BLAN 0112.
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g(X(T )) while the second player wants to maximize g(X(T )) by choosing his control
v(·).

Let us now describe how the game is played: fix an initial time t0 ∈ [0, T ].
- before the game starts, the initial position x0 is chosen randomly according to a proba-
bility measure µ0,
- the initial state x0 is communicated to Player I but not to Player II,
- the game is played on the time interval [t0, T ],
- both players know the probability µ0 and observe their opponents controls.

Such a game with incomplete information (the first player has a private information
not available for the second player) was introduced in the 1960’s in the framework of
repeated games by Aumann and Maschler and are extensively studied since then (see for
instance [3]).

For differential games, the similar problem were introduced by the first author in
[6]: in this paper the existence of a value in mixed strategies was obtained when the
unknown information for the players belongs to a finite set. Further investigations and
generalizations on this topics can be found in [4, 8] and the references therein. In all
these works the private information is given as a finite number of types. The case of a
continuum of types for games in continuous times has been addressed only recently in [9],
in a very particular situation where there is no dynamics and where the information issue
lies on the payoff.

In the game we investigate here, the role of the information is crucial. Indeed the
second Player does not know what the current state of the game is. However he can try
to guess it—at least partially—by observing the actions of the first Player. For this reason
the first Player’s interest is to hide as much as possible his actions by playing randomly
(choosing a random strategy), of course still trying to achieve his own goals. The second
Player’s interest is also to reveal at least his action by playing random strategies.

The main phenomenon that appears here lies in the fact that when the initial measure
µ0 has no atoms, one can built on it a “kind of randomness” which avoids the use of
random strategies. This is precisely this phenomenon that is explained in our main result
(Theorem 4.1) of the paper. Such a statement is reminiscent of the existence of pure
strategies in noncooperative, nonatomic games: see in particular Schmeidler [13]. Note
however that the frameworks are very different. This is also related to the notion of
purification of strategies (e.g. for instance [11]).

The paper is organized as follows: the first section concerns basic fact on probability
measure spaces, the complete description of the model, and a brief summary of results
and methods of proof. Section 2 is devoted to the regularity of the values in random
strategies. As a byproduct of this regularity, the existence of the value in random strategies
is obtained for arbitrary probability measure µ0. The last section contains our main result
showing the existence of a value in pure strategy when µ0 has no atoms.

2 Preliminaries

2.1 Probability Distribution on the initial condition

Notations: Throughout the paper |·| denotes the euclidian norm in the ambient space (in
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general RN). Given a Lipschitz continuous function φ, we let lip(φ) denote its Lipschitz
constant. Finally, for m ∈ N∗, Lm is the Lebesgue measure on Rm.

Throughout the paper, we will restrict ourselves to Borel probability measures µ0 on
RN with compact support (denoted by supp(µ0) ). We denote by P(RN) the set of such
probability measures. It is well-known that P(RN) can be endowed with the Wasserstein
distance

W2(µ, ν) := inf
γ∈Π(µ,ν)

{(∫
R2N

|x− y|2dγ(x, y)

) 1
2

}
where Π(µ, ν) is the set of probability measures γ on R2N which has µ as first marginal
and ν as second one. It is known that the infimum is actually a minimum. Such optimal
measures γ are then called optimal plan from µ to ν (see [14]). It is well known that the
distance W2 is compatible with the weak convergence of measures (cf. for instance [14]).

For µ ∈ P(RN) and φ : RN → RN a Borel measurable with at most a linear growth,
we denote by φ]µ the push-forward of µ by φ, i.e., the measure in P(RN) such that

φ]µ(A) = µ
(
φ−1(A)

)
∀A ⊂ RN , Borel measurable.

Let us recall the following result (cf. [1] and [12]) that we will use several times in the
paper:

Proposition 2.1 Let m ∈ N and P and Q be two Borel probability measures on Rm with
a compact support. If P has no atom, there exists a sequence (hn)n of Borel measurable
maps from Rm to Rm such that:

hn]P = Q and lim
n→+∞

∫
Rm
|x− hn(x)|2 dP (x) = W 2

2 (P,Q).

If, moreover, P is absolutely continuous with respect to the Lebesgue measure on Rm, there
exists a unique Borel measurable map h : Rm → Rm such that

h]P = Q and

∫
Rm
|x− h(x)|2 dP (x) = W 2

2 (P,Q).

2.2 Model, values and Strategies

2.2.1 Dynamics

We consider a two-player zero-sum differential game with dynamics given by the controlled
differential equation

(1)

{
x′(t) = f(x(t), u(t), v(t)) u(t) ∈ U, v(t) ∈ V
x(t0) = x0

In the above equation, t0 ∈ [0, T ] is the initial time—T being the finite horizon of the
game—and x0 ∈ RN is the initial position. We denote by U and V are the sets of actions
for each player, U for the first one and V for the second one; we assume that U and V are
compact subsets of some finite dimensional spaces. The dynamics f : RN ×U × V → RN

3



is continuous in all variables, Lipschitz continuous in the state variable, and bounded. We
will denote by U(t0) (respectively V(t0)) the set of measurable controls u(·) : [t0, T ] 7→ U
(respectively v(·) : [t0, T ] 7→ V ).

The sets of controls U(t0) and V(t0) are endowed with the L1
U [t0, T ] and L1

V [t0, T ]
topology associated with the following distance : for u1 and u2 in L1

U [t0, T ], dL1
U

(u1, u2) :=∫ T
t0
dU(u1(t), u2(t))dt where dU denotes the distance on the compact metric space U (the

definition of dL1
V

is similar).
Under our assumptions, to any pair of controls (u(·), v(·)) ∈ U(t0) × V(t0) one can

associate in a unique way a solution to (1) that will be denoted by t 7→ X t0,x0,u,v
t .

Throughout the paper we will assume that Isaacs’ condition holds:

(2) ∀x ∈ RN , ∀ξ ∈ RN , inf
u∈U

sup
v∈V

f(x, u, v).ξ = sup
v∈V

inf
u∈U

f(x, u, v).ξ.

Let us recall that this condition is generally used for differential games with perfect
information in order to prove the existence of a value.

2.2.2 Pure strategies and values in pure strategies

The main novelty of the differential game studied in this paper lies in its information
structure: given a measure µ0 ∈ P(RN), we suppose that
- before the game starts, the initial position x0 is chosen randomly according to a proba-
bility measure µ0,
- the initial state x0 is communicated to Player I but not to Player II,
- the game is played on the time interval [t0, T ],
- both players know the probability µ0 and observe their opponents controls.

Because of this structure of information, the strategies of the players should be defined
according only their available information. This leads to the following notions of strategies
(compare with [4, 6]).

Definition 2.2 A pure strategy for Player II is a Borel measurable map1 β : U(t0) 7→
V(t0) which is nonanticipative with delay (NAD in short): namely there exists τβ > 0
such that for any u1, u2 ∈ U(t0), for any t ∈ [t0, T ), if u1 = u2 a.e. on [t0, t], then
β(u1) = β(u2) a.e. on [t0, (t+ τβ) ∧ T ].

A pure strategy for Player I is a Borel measurable map:

α : RN × V(t0) → U(t0)
(x0, v(·)) 7→ α(x0, v).

for which there is a delay τα > 0 such that, for any x0 ∈ RN , the map α(x0, ·) : V(t0) 7→
U(t0) is nonanticipative with delay τα .

The set of pure strategies for Player I (resp. Player II) is denoted by A(t0) (resp.
B(t0)).

1This means that the measurability property is considered when U(t0) and V(t0) are endowed with
the Borel σ-field associated with L1

U [t0, T ] and L1
V [t0, T ].
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Observe that, in order to formalize the information of the players, the definition of their
strategies is not symmetric: Player I knows the initial state x0, but this initial state is
not known by Player II.

In order to write the game in a normal form we need the following:

Lemma 2.3 For any pair of pure strategies (α, β) ∈ A(t0)× B(t0), and any initial con-
dition x0 ∈ RN , there is a unique pair (ux0 , vx0) ∈ U(t0)× V(t0), such that

(3) α(x0, vx0) = ux0 and β(ux0) = vx0 .

Furthermore the map x0 7→ (ux0 , vx0) ∈ U(t0)× V(t0) is Borel measurable.

The proof of this Lemma is a particular case of the proof of Lemma 2.6 (stated later on

for the random strategies). We denote by t 7→ X
t0,x0,α(x0,·),β(·)
t the solution x(·) to (1) with

the controls (ux0 , vx0).
It is now time to introduce the payoff: let g : RN → R be a Lipschitz continuous

and bounded terminal map. The first player acts on the system by choosing the control
u(·), his goal being to minimize a final cost g(X(T )) while the second player wants to
maximize g(X(T )) by choosing the control v(·).

The upper value function in pure strategies is:

(4) V +(µ0) := inf
α∈A(t0)

sup
β∈B(t0)

∫
RN
g(X

t0,x,α(x,·),β(·)
T ) dµ0(x),

while the lower value in pure strategies can be defined in the same way by:

(5) V −(µ0) := sup
β∈B(t0)

inf
α∈A(t0)

∫
RN
g(X

t0,x,α(x,·),β(·)
T ) dµ0(x).

We will use the following notation:

J(µ0, α, β) =

∫
RN
g(X

t0,x,α(x,·),β(·)
T ) dµ0(x).

2.2.3 Random strategies and values in random strategies

Now we will give the definition of random strategy:

Definition 2.4 Let S be the set of triples (Ω,F , P ) such that Ω = [0, 1]m for some m, F
is a σ-field contained in the class of Borel sets B([0, 1]m) and P a probability measure on
(Ω,F).

A random strategy for Player 1 is a pair ((Ωα,Fα, Pα), α) where (Ωα,Fα, Pα) ∈ S,
such that there exists a delay τα > 0 with

1- the map α : RN × Ωα × V (t0)→ U(t0) is Borel measurable,
2- for any ωα ∈ Ωα and x ∈ RN , the strategy v ∈ V(t0) 7→ α(x, ωα, v) is non anticipa-

tive with delay τα.
Similarly a random strategy for Player II is a pair ((Ωβ,Fβ, Pβ), β) where β : Ωβ ×

U(t0) → V (t0) is a Borel measurable map and there exists a delay τβ > 0 such that for
all ωβ ∈ Ωβ β(ωβ, ·) : U(t0) 7→ V(t0) is nonanticipative with delay τβ.

The set of random strategies for Player I (resp. Player II) is denoted by Ar(t0) (resp.
Br(t0)).
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Remark 2.5 Our random strategy concept—borrowed from [6]—is closely related with
Aumann’s notion of strategies [2]. It is worth pointing out that it slightly differs from the
mixed strategies for differential games introduced in [5]. In contrast to repeated games,
there is no well admitted definition of mixed strategies or behavior strategies for differential
games, at least up to now. Finding a concept which would allow to dispense of Isaacs’
condition (2) is a difficult task and is out of the scope of the paper.

Lemma 2.6 For any pair of random strategies (α, β) ∈ Ar(t0) × Br(t0), for any ω :=
(ωα, ωβ) ∈ Ωα × Ωβ and for any initial condition x0 ∈ RN , there is a unique pair
(uω,x0 , vω,x0) ∈ U(t0)× V(t0), such that

(6) α(x0, ωα, vω,x0) = uω,x0 and β(ωβ, uω,x0) = vω,x0 .

Furthermore the map (ω, x0) 7→ (uω,x0 , vω,x0) ∈ U(t0)× V(t0) is Borel measurable.

Proof : Existence and uniqueness of (uω,x0 , vω,x0) is due to the delays and is proved in
[7]. We show here the measurability of (ω, x0) ∈ Ωα × Ωβ × RN 7→ (uω,x0 , vω,x0) when
Ωα × Ωβ × RN is equipped with the σ-field Fα ⊗ Fβ ⊗ B(RN) and U(t0) and V(t0) are
endowed with the Borel σ-fields associated with L1

U [t0, T ] and L1
V [t0, T ].

Define τ := min{τα, τβ}. We will prove by induction on the integer n that the map
(ω, x0) 7→ (uω,x0 , vω,x0) is measurable onto L1

U [t0, t0 + nτ ]× L1
V [t0, t0 + nτ ].

Consider the case n = 1. Fix (ū, v̄) ∈ U(t0)×V(t0). For any ω := (ωα, ωβ) and x ∈ Rn

the maps α(x, ωα, ·) and β(ωβ, ·) are nonanticipative with delay τ . So the restrictions of
α(x, ωα, v̄) and β(ωβ, ū) on [t0, t0 +τ ] are independent on ū and v̄. Thus the measurability
of

(x, ω) 7→ (uω,x0 , vω,x0)|[t0,t0+τ ] = (α(x, ωα, v̄), β(ωβ, ū))|[t0,t0+τ ] ∈ L1
U [t0, t0+τ ]×L1

V [t0, t0+τ ]

is derived from the fact that α and β are measurable.
Consider now n > 1 and suppose that the map (ω, x0) 7→ (uω,x0 , vω,x0) is measurable

onto L1
U [t0, t0 + nτ ] × L1

V [t0, t0 + nτ ]. Let us prove that this still holds true when n
is replaced by n + 1. Fix (ū, v̄) ∈ U(t0) × V(t0). For any u ∈ U(t0) we denote by
u|[t0,t0+nτ ] � ū|[t0+nτ,T ] the measurable control which restriction on [t0, t0 + nτ ] is u and
which restriction on [t0 + nτ, T ] is ū. Clearly the map

ΥU : u ∈ U(t0) 7→ u|[t0,t0+nτ ] � ū|[t0+nτ,T ] ∈ U(t0)

is continuous for the L1
U norm. We clearly have the same property for a map ΥV sim-

ilarly defined in V(t0). Because of the nonanticipativity property, the restrictions of
α(x, ωα, u|[t0,t0+nτ ] � ū|[t0+nτ,T ]) and β(ωβ, v|[t0,t0+nτ ] � v̄|[t0+nτ,T ]) on [t0 + nτ, t0 + (n+ 1)τ ]
do not depend on ū and v̄. Then because

(uω,x0)|[t0,t0+(n+1)τ ] = (α(x, ωα, (vω,x0)|[t0,t0+nτ ] � v̄|[t0+nτ,T ]))|[t0,t0+(n+1)τ ]

and
(vω,x0)|[t0,t0+(n+1)τ ] = (β(ωβ, (uω,x0)|[t0,t0+nτ ] � ū|[t0+nτ,T ]))|[t0,t0+(n+1)τ ]
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do not depend on ū and v̄, the map

(x, ω) 7→ (uω,x0 , vω,x0)|[t0,t0+(n+1)τ ] ∈ L1
U [t0, t0 + (n+ 1)τ ]× L1

V [t0, t0 + (n+ 1)τ ]

is measurable as a composition of the maps α β, ΥU , ΥV and (ω, x0) 7→ (uω,x0 , vω,x0)|[t0,t0+nτ ]

which are measurable.
The result follows by induction.

QED

Lemma 2.6 allows to associate a trajectory t 7→ X
t0,x,α(x,ω,·)β(ω′,·)
t to any pair of random

strategies (α, β) ∈ Ar(t0) × Br(t0), any υ := (ω, ω′) ∈ Ωα × Ωβ and any initial condition
x ∈ RN . So we may now define the values of the game in random strategies:

(7) V +
r (µ0) := inf

α∈Ar(t0)
sup

β∈Br(t0)

∫
Ωα

∫
Ωβ

∫
RN
g(X

t0,x,α(x,ω,·)β(ω′,·)
T ) dµ0(x)dPα(ω)dPβ(ω′),

(8) V −r (µ0) := sup
β∈Br(t0)

inf
α∈Ar(t0)

∫
Ωα

∫
Ωβ

∫
RN
g(X

t0,x,α(x,ω,·)β(ω′,·)
T ) dµ0(x)dPα(ω)dPβ(ω′).

We will use the notation:

Jr(µ0, α, β) =

∫
Ωα

∫
Ωβ

∫
RN
g(X

t0,x,α(x,ω,·)β(ω′,·)
T ) dµ0(x)dPα(ω)dPβ(ω′).

Remark 2.7 As usually for random strategies, one can show that the upper value does
not change if the first player plays a random strategy against a pure strategy of the second
player:

(9) V +
r (µ0) := inf

α∈Ar(t0)
sup

β∈B(t0)

∫
Ωα

∫
RN
g(X

t0,x,α(x,ω,·)β(·)
T ) dµ0(x)dPα(ω),

Similarly for the lower value we have

(10) V −r (µ0) := sup
β∈Br(t0)

inf
α∈A(t0)

∫
Ωβ

∫
RN
g(X

t0,x,α(x,·)β(ω′,·)
T ) dµ0(x)dPβ(ω′).

From this fact, because a pure strategy can be viewed as a particular case of a random
strategy, one can derive the following inequalities for any µ0 ∈ P(RN)

(11) V −(µ0) ≤ V −r (µ0) ≤ V +
r (µ0) ≤ V +(µ0).

On can also show that the space of random strategies could be restricted to Ω = [0, 1]:

Lemma 2.8 Let ((Ω, B(Ω), P ), α) ∈ S be such that :

• Ω = [0, 1]m
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• B(Ω) is the class of Borel subsets of Ω,

• P is a probability measure on Ω

• α : RN × Ω× V (t0)→ U(t0) is a random strategy for the first player.

Then there exists a random strategy (([0, 1], B([0, 1]),L1), ᾱ) which is equivalent to α in
the following sense:

∀x ∈ RN , ∀β ∈ B(t0),

∫
Ω

g(X
t0,x,α(x,ω,·),β(·)
T ) dP (ω) =

∫
[0,1]

g(X
t0,x,ᾱ(x,z,·),β(·)
T ) dz.

Remark 2.9 Lemma 2.8 actually means that we could reduce the class S to the singleton
([0, 1], B([0, 1]),L1) (or extending it to any (Ω, B(Ω), P ) where Ω is a compact subset of
Rm for some n ∈ N∗ and P is any probability measure supported on Ω).

Proof : Let P̄ := 1[0,1]×{0}m−1 dLm. It is a non-atomic probability measure. So, by
Proposition 2.1, there exists h : [0, 1]m → [0, 1]m such that h]P̄ = P . Set ᾱ(x, z, ·) :=
α(x, h(z, 0, ..., 0), ·) for any x ∈ RN and z ∈ [0, 1]. Then, for any x ∈ RN and β ∈ B(t0),
we have: ∫

Ω

g(X
t0,x,α(x,ω,·),β(·)
T ) dP (ω) =

∫
[0,1]m

g(X
t0,x,α(x,h(ω′),·),β(·)
T ) dP̄ (ω′)

=

∫
[0,1]

g(X
t0,x,α(x,h(z,0,..0),·),β(·)
T ) dz =

∫
[0,1]

g(X
t0,x,ᾱ(x,z,·),β(·)
T ) dz.

QED

Now we recall the result of the first author showing the existence of a value for a finite
number of initial conditions. In our framework, it can be reformulated as follows:

Proposition 2.10 ([6], section 6) Assume that Isaacs condition (2) holds and that the
initial probability distribution is a finite combination of Dirac masses: µ0 =

∑J
i=1 aiδxi0.

Then the differential game with incomplete information has a value in random strategies:

V +
r (t0, µ0) = V −r (t0, µ0).

2.3 Outline of the main results

Our paper contains two main results: the first one (Theorem 3.2) states that, under Isaacs’
condition, the game has a value in mixed strategies: equality V +

r (t0, µ0) = V −r (t0, µ0) holds
for any (t0, µ0). In other words, we can remove the “finite support condition” required in
Proposition 2.10.

Our second main result (Theorem 4.1) is the existence of a value in pure strategies
for measures without atoms: V +(t0, µ0) = V −(t0, µ0) if µ0 is non-atomic. We actually
show a stronger statement: for any non-atomic measure µ0, one always have V ±(t0, µ0) =
V ±r (t0, µ0) (even without Isaacs’ condition). Then the first Theorem gives the result under
Isaacs’ condition.
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Both results are proved under the assumption that the measure µ0 has compact sup-
port and for games with incomplete information on one side. Extensions to more general
measures and to games with incomplete information on both sides are discussed in Re-
marks 4.2 and 4.3 below.

Comments on the proofs are now in order. To show our first result (existence of a
value in mixed strategies), we have to overcome the issue that the method used in [6] is
no longer available: indeed [6] heavily relies on techniques of partial differential equations
which have—up to now—no counterpart for general measures. Our idea is to extend
the existence of a value for measures with finite support to game to general measures.
The main step for this is a Lipschitz continuity property of the value functions V +

r and
V −r (Proposition 3.1), which is proved by optimal transport techniques: these technique
appear to be extremely useful here because they allow to transport properties of one
measure to properties for another one. With the regularity of V ±r we can conclude by
using Proposition 2.10 and the density into P(RN) of measures with finite support. For
the second statement (existence of a value in pure strategies), we start by approximating
the measure µ0 by discrete ones; then we transform ε−optimal random strategies for
these discrete measures into pure strategies for non-atomic ones by optimal transport
techniques. The resulting pure strategies turn out to be also ε−optimal for the initial
measure µ0.

3 Values in Random Strategies

This section is devoted to obtain a Lipschitz continuity property of the values in random
strategies and then to deduce the existence of a value for arbitrary initial probability
distribution µ0.

Proposition 3.1 The values with random strategies V −r and V +
r : P(RN) 7→ R are

Lipschitz continuous with respect to the Wasserstein distance W2.

Proof : We will only prove that V +
r is Lipschitz continuous, the proof for V −r being

similar. Consider µ0 and µ1 in P(RN). Fix ε > 0. Let ((Ωα,Fα, Pα), α) be a random
strategy which is ε-optimal for V +

r (µ0): namely

(12) sup
β∈Br(t0)

∫
Ωα

∫
Ωβ

∫
RN
g(X

t0,x,α(x,ω,·)β(ω′,·)
T ) dµ0(x)dPα(ω)dPβ(ω′) ≤ V +

r (µ0) + ε.

Fix β ∈ Br(t0).
Let γ be an optimal plan for W2(µ1, µ0). Then we disintegrate the measure γ with

respect to µ1 as follows
dγ(x, y) = dγy(x)dµ1(y).

By Proposition 2.1, there exists2 a map ξ : (y, ω′′) ∈ supp(µ1)× [0, 1]N 7→ ξ(y, ω′′) ∈
RN such that

ξ(y, ·)]LN = γy for µ1-almost all y, and W 2
2 (LN , γy) =

∫
[0,1]N

|ω′′ − ξ(y, ω′′)|2dω′′.

2Here we use the notation supp(µ1) for the support of the probability measure µ1.
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We now prove the Borel measurability of ξ which is a technical but important claim for
further considerations.

First, by the classical desintegration Theorem (cf. for instance [10]) we know that the
map y ∈ supp(µ1) 7→ γy ∈ P(RN) is Borel Measurable (when P(RN) is equipped with the
Borel σ- fields associated with the distance W2).

Second, the map ν ∈ P(supp(µ0)) 7→ h ∈ L2([0, 1]N ,RN ,LN) is continuous (here
h : [0, 1]N 7→ RN is the unique optimal transport such that W 2

2 (LN , ν) =
∫

[0,1]N
|ω′′ −

h(ω′′)|2dω′′)). For this fact the reader can refer to [14] page 71. Since this map is contin-
uous it is also Borel Measurable.

Last, it is well known that the map (x, φ) ∈ RN × L2(RN ,RN ,LN) 7→ φ(x) ∈ RN is
Borel measurable.

The map ξ being the composition of the three above maps, it is Borel measurable.
Our claim is proved.

This enables us to define the following random strategy for the first player

α̃ : (y, ω, ω′′, v) ∈ RN × Ωα × [0, 1]N × V(t0) 7→ α(ξ(y, ω′′), ω, v) ∈ U(t0).

Then for any β ∈ Br(t0) we have

J(µ1, α̃, β) =

∫
Ωα×[0,1]N

∫
Ωβ

∫
RN
g(X

t0,y,α̃(y,ω,ω′′,·)β(ω′,·)
T ) dµ1(y)dPα(ω)d(ω′′)dPβ(ω′)

=

∫
Ωα×RN×RN×Ωβ

g(X
t0,y,α(x,ω,·)β(ω′,·)
T ) dPα(ω)dγy(x)dµ1(y)dPβ(ω′)

(Using Fubini Theorem and the definition of α̃)

=

∫
Ωα×RN×RN×Ωβ

g(X
t0,y,α(x,ω,·)β(ω′,·)
T ) dPα(ω)dγ(x, y)dPβ(ω′)

≤
∫

Ωα×RN×RN×Ωβ

g(X
t0,x,α(x,ω,·)β(ω′,·)
T ) dPα(ω)dγ(x, y)dPβ(ω′)+CLip(g)

∫
RN×RN

|x−y|dγ(x, y)

=

∫
Ωα×RN×Ωβ

g(X
t0,x,α(x,ω,·)β(ω′,·)
T ) dPα(ω)dµ0(x)dPβ(ω′) + CLip(g)

∫
RN×RN

|x− y|dγ(x, y)

because, by standard estimates on trajectories of (1), we have for some constant C > 0:

|X t0,y,α(x,ω,·)β(ω′,·)
T −X t0,x,α(x,ω,·)β(ω′,·)

T | ≤ C|x− y|.

Using Cauchy-Schwarz inequality, we obtain

J(µ1, α̃, β) ≤ J(µ0, α, β)+CLip(g)(

∫
R2N

|x−y|2 dγ(x, y))
1
2 = J(µ0, α, β)+CLip(g)W2(µ0, µ1).

Hence by (12), by passing to the supremum over β we obtain

sup
β∈Br(t0)

J(µ1, α̃, β) ≤ V +
r (µ0) + CLip(g)W2(µ0, µ1) + ε.

Consequently since ε is arbitrary, this yields

V +
r (µ1) ≤ V +

r (µ0) + CLip(g)W2(µ0, µ1).

Interchanging µ0 and µ1, the proof is complete.
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QED

We recall that any measure in P(RN) can be written as a limit—for the Wasserstein
distance—of a sequences of probability measures which are finite combinations of Dirac
masses. Then in view of Proposition 2.10, we can deduce from Proposition 3.1 the exis-
tence of a value for general probability measures:

Theorem 3.2 Under Isaacs condition (2), the differential game with incomplete infor-
mation has a value in random strategies:

∀µ0 ∈ P(RN), V −r (µ0) = V +
r (µ0).

4 Values in Pure Strategies

In this section, we prove that the game has a value in pure strategy when the initial
probability measure µ0 has no atoms.

Theorem 4.1 Consider µ0 is a compactly supported probability measure on RN without
atoms. Then

(13) V +
r (µ0) = V +(µ0) and V −r (µ0) = V −(µ0).

If moreover we suppose that Isaacs’ condition (2) holds true then the value of the game
exists in pure strategies for µ0:

V +(µ0) = V −(µ0).

Proof : We only prove (13) for upper values, the proof being similar for lower values.
Let us approximate µ0 by a sequence of discrete probability measures µn:

µn :=
n∑
k=1

θk(n)δxk(n) with xk(n) all different, lim
n→+∞

W2(µ0, µn) = 0

Let ς ∈]0, 1
n2 [ be small enough such that for all k 6= k′ the balls B(xk, ς) and B(xk′ , ς) do

not intersect. We introduce the following sequence of probability measures:

νn :=
n∑
k=1

θk(n)

ζN ςN
1B(xk,ς) L

N ,

(where ζN = LN(B(0, 1)). We have that

(14) W2(µn, νn) ≤

(
n∑
k=1

ς2LN(B(xk, ς))
θk(n)

ζN ςN

)1/2

= ς ≤ 1

n2
.

Let ε = 1
n

and (([0, 1]m, B([0, 1]m),Lm), α) an ε-optimal mixed strategy for V +
r (µn).

Namely, in view of Remark 2.7:

(15) sup
β∈B(t0)

∫
Ωα

∫
RN
g(X

t0,x,α(x,ω,·)β(·)
T ) dµn(x)dPα(ω) ≤ V +

r (µn) +
1

n
.
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With the random strategy α we associate a pure strategy α̂ in the following way. There

exists Tk a Borel measurable map such that Tk]
(

1
ζN ςN

1B(xk,ς) LN
)

= 1[0,1]mLm (cf. [14]

for instance). Then we set

α̂ : RN × V(t0) → U(t0)
(x, v) 7→

∑n
k=1 α(xk, Tk(x), v)1B(xk,ς)(x).

Then for all β ∈ B(t0), using the definition of α̂, we have:

J(νn, α̂, β) =

∫
RN

g(X
t0,x,α̂(x,·),β
T ) dνn(x)

=
n∑
k=1

∫
B(xk,ς)

g(X
t0,x,α(xk,Tk(x),·),β
T )

θk(n)

ζN ςN
dx

≤
n∑
k=1

∫
B(xk,ς)

g(X
t0,xk,α(xk,Tk(x),·),β
T )

θk(n)

ζN ςN
dx+ nCLip(g)ς

(thanks to standard estimates on trajectories of (1) )

=
n∑
k=1

∫
[0,1]m

g(X
t0,xk,α(xk,ω,·),β
T )θk(n) dω + nCLip(g)ς

≤ Jr(µn, α, β) + nCLip(g)ς ≤ Jr(µn, α, β) +
CLip(g)

n
.

Then taking the suppremum on β ∈ B(t0), using the Lipschitz property of V +
r (Proposi-

tion 3.1) and the 1
n
-optimality of α (equation 15), we get

V +
r (νn) ≤ V +(νn) ≤ sup

β∈B(t0)

J(νn, α̂, β) ≤ sup
β∈B(t0)

Jr(µn, α, β) +
CLip(g)

n

≤ V +
r (µn) +

CLip(g)

n
+

1

n
≤ V +

r (νn) + CLip(g)(W2(µn, νn) +
1

n
) +

1

n
.

In view of (14), this implies that there exists some constant C ′ > 0 (independent of n)
such that for n large enough

(16) V +
r (νn) ≤ sup

β∈B(t0)

J(νn, α̂, β) ≤ V +
r (νn) +

C ′

n
.

This means that the pure strategy α̂ is C′

n
-optimal for the value in random strategies

V +
r (νn).

From Proposition 2.1, the probability measure µ0 being non-atomic, there exists a
minimizing sequence of maps (Sn)n such that Sn]µ0 = νn and :(∫

|x− Sn(x)|2dµ0(x)

)1/2

≤ W2(µ0, νn) +
1

n
.
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Let us define ᾱn(x, ·) := α̂(Sn(x), ·). Then for any β ∈ B(t0), we obtain

J(µ0, ᾱn, β) =

∫
RN
g(X

t0,x,α̂(Sn(x),·),β
T ) dµ0(x)

≤
∫
RN
g(X

t0,Sn(x),α̂(Sn(x),·),β
T ) + CLip(g)|x− Sn(x)| dµ0(x)

≤
∫
RN
g(X

t0,x,α̂(x,·),β
T ) dνn(x) + CLip(g)(W2(µ0, νn) +

1

n
)

Passing to the supremum on β ∈ B(t0) in the above inequality yields in view of (16)

V +(µ0) ≤ sup
β∈B(t0)

J(µ0, ᾱn, β) ≤ sup
β∈B(t0)

∫
RN
g(X

t0,x,α̂(x,·),β
T ) dνn(x)+CLip(g)(W2(µ0, νn)+

1

n
)

≤ V +
r (νn) +

C ′

n
+ CLip(g)(W2(µ0, νn) +

1

n
)

≤ V +
r (µ0) + 2CLip(g)W2(µ0, νn) +

1

n
(C ′ + CLip(g)).

Since νn converge to µ0 as n → +∞, passing to the limit on n of the above inequality
gives

V +(µ0) ≤ V +
r (µ0).

According to (11), the reverse inequality also holds true. So we obtain that V +(µ0) =
V +
r (µ0). This proves the first part (13) of the Theorem.

Assume now that the Isaacs condition holds true. The inequality V +(µ0) = V −(µ0) is
a direct consequence of (13) and of Theorem 3.2. The proof is complete.

QED

Remark 4.2 Our results are also valid if we consider instead P(RN) (the set of Borel
probability measures with compact support) by P2(RN) (the set of Borel probability mea-
sures µ with finite second moment

∫
RN |x|

2dµ(x) < +∞) and if the assumption of Lipschitz
continuity and boundedness of g is replaced by Lipschitz continuity and

∃a > 0, ∀x ∈ RN , g(x) ≤ a(1 + |x|2).

We have chosen not to consider this more general case because this would require to make
a new proof of measurability arguments used to obtain the measurability of the function ξ
in the proof of Proposition 3.1 (in the compact support case, we can refer to [14]). This
would be make much longer our paper which main aim is not optimal transport theory
neither measurability.

Remark 4.3 Our approach could be extended to differential games with a incomplete
information for both player as follows. Suppose that the state space RN is a product spaces
RN = Y ×Z (this is the case in particular for pursuit differential games where each player
acts only on a component of the dynamics). The game is then played as follows: the game
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starts at time t0, where the initial position x0 = (y0, z0) is chosen randomly according to
a probability measure µ0 ⊗ ν0,
- the component y0 of the initial state is communicated to Player I but not to Player II,
while the component z0 of the initial state is communicated to Player II but not to Player I
- both players know the probability µ0 ⊗ ν0 and they observe their opponents controls
- the game is played until the terminal time T .

The payoff is again of the form g(x(T )).
Both main results of the paper (i.e., the existence of a value in random strategy for

µ0 ⊗ ν0 ∈ P(RN) and the existence of value in pure strategy when µ0 ⊗ ν0 has no atoms)
are still valid in this context. Indeed our approach is based on Proposition 2.10 which is
also valid for µ0⊗ν0 =

∑J
i=1 ai(δyi0⊗δzi0) (cf. [6]). The proofs of analogues of Proposition

3.1 and Theorem 4.1 can be generalized using the same arguments.
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