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Abstract. We deal with an optimal matching problem, that is, we want to transport two
measures to a given place, where they will match, minimizing the total transport cost that in
our case is given by the sum of the Euclidean distance that each measure is transported. We
show that such a problem has a solution. Furthermore we perform a method to approximate
the solution of the problem taking limit as p→∞ in a system of PDE’s of p−Laplacian type.

1. Introduction

We are interested in an optimal matching problem (see [6], [5]) that consists in transporting
two commodities (say nuts and screws, we assume that we have the same total number of nuts
and screws) to a prescribed location (say factories where we ensemble the nuts and the screws)
in such a way that they match there (each factory receive the same number of nuts and of
screws) and the total cost of the operation, measured in terms of the Euclidean distance that
the commodities are transported, is minimized.

Optimal matching problems for uniformly convex cost where analyzed in [3], [5], [6] and have
implications in economic theory (hedonic markets and equilibria), see [6], [7], [8], [9], [5] and
references therein. However, when one considers the Euclidean distance as cost new difficulties
appear since we deal with a non-uniformly convex cost.

Clearly, the optimal matching problem under consideration is related to the classical Monge-
Kantorovich’s mass transport problem. Using tools from this theory, we prove the existence of
a solution of the optimal matching problem. We show that, in fact, the existence of solution
is true changing the Euclidean norm by any norm in RN . Next, one of our main contributions
in this paper is to perform a method to solve the problem taking limit as p → ∞ in a system
of PDE’s of p−Laplacian type, which allows us to give more information about the matching
measure and the Kantorovich potentials for the involved transport. This procedure to solve
mass transport problems (taking limit as p→∞ in a p−Laplacian equation) was introduced by
Evans and Gangbo in [12] and reveals quite fruitful, see [1], [16], [13]. We have to remark that
the limit as p → ∞ in the system requires some care since the system is nontrivially coupled
and therefore the estimates for one component are related to the ones for the other, and we
believe that it is interesting by its own.
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1.1. The optimal matching problem. To write the optimal matching problem in mathemat-
ical terms, we fix two non-negative compactly supported functions f+, f− ∈ L∞, with supports
X+, X−, respectively, satisfying the mass balance condition

M0 :=

∫
X+

f+ =

∫
X−

f−.

We also consider a compact set D (the target set). Then we take a large bounded domain Ω
such that it contains all the relevant sets, the supports of f+ and f−, X+, X− and the target
set D. For simplicity we will assume that Ω is a convex C1,1 bounded open set. We also assume
that

X+ ∩ X− = ∅,
(
X+ ∪X−

)
∩D = ∅ and

(
X+ ∪X−

)
∪D ⊂⊂ Ω.

Whenever T is a map from a measure space (X,µ) to an arbitrary space Y , we denote by
T#µ the pushforward measure of µ by T . Explicitly, (T#µ)[B] = µ[T−1(B)]. When we write
T#f = g, where f and g are nonnegative functions, this means that the measure having density
f is pushed-forward to the measure having density g.

For Borel functions T± : Ω→ Ω such that T+#f+ = T−#f−, we consider the functional

F(T+, T−) :=

∫
Ω

|x− T+(x)|f+(x)dx+

∫
Ω

|y − T−(y)|f−(y)dy.

The optimal matching problem can be stated as the minimization problem

(1.1) min
(T+,T−)∈AD(f+,f−)

F(T+, T−),

where

AD(f+, f−) :=
{

(T+, T−) : T± : Ω→ Ω are Borel functions, T±(X±) ⊂ D,∫
T−1
+ (E)

f+ =

∫
T−1
− (E)

f− for all Borel subset E of Ω
}
.

If (T ∗+, T
∗
−) ∈ AD(f+, f−) is a minimizer of the optimal matching problem (1.1), we shall

call the measure µ∗ := T ∗+#f+ = T ∗−#f− a matching measure to the problem. Note that
there is no reason why a matching measure should be absolutely continuous with respect to the
Lebesgue measure. In fact we shall see examples of matching measures that are singular (see
Example 4.1).

We have the following existence theorem.

Theorem 1.1. The optimal matching problem (1.1) has a solution, that is, there exist Borel
functions (T ∗+, T

∗
−) ∈ AD(f+, f−) such that

F(T ∗+, T
∗
−) = inf

(T+,T−)∈AD(f+,f−)
F(T+, T−).
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Moreover, we can obtain a solution (T̃+, T̃−) of the optimal matching problem (1.1) with a
matching measure supported on the boundary of D.

Remark 1.2. We note that the fact that there is an optimal matching measure supported on
∂D greatly simplifies the problem, since it allows to reduce the target set to its boundary.

For the quadratic cost function c(x, y) = |y − x|2, the existence of a matching measure
supported on the boundary of D is not true in general, see [6].

We provide two different proofs to this existence theorem. The first one is more direct but
does not provide a constructive way of getting the optimal matching measure in D, which is
one of the unknowns in this problem; consequently, the construction of optimal transport maps
(that are proved to exist) remains a difficult task. The main tool in this first proof is the use of
ingredients from the classical Monge-Kantorovich theory. The second proof is by approximation
of the associated Kantorovich potentials by a system of p−Laplacian type problems when p goes
to ∞. This approach provides an approximation of the potentials but also allows us to obtain
the optimal measure in the limit. In addition we present several examples (that show that, in
general, there is no uniqueness of the optimal configuration) and characterize when the optimal
matching measure is a δ.

Let us now introduce some notations, concepts and results from the Monge-Kantorovich Mass
Transport Theory (see [1], [11], [17] and [18]) that will be used in the rest of the paper.

1.2. Monge-Kantorovich’s Mass Transport Theory. Let Ω be an open bounded domain
of RN . We denote byM(Ω) the set of all Radon measures on Ω and byM+(Ω) the non-negative
elements of M(Ω). Given µ, ν ∈M+(Ω) satisfying the mass balance condition

(1.2) µ(Ω) = ν(Ω)

we denote by A(µ, ν) the set of transport maps pushing µ to ν, that is, the set of Borel maps
T : Ω → Ω such that T#µ = ν. In the case µ = fLN Ω and ν = gLN Ω, we shall write
A(f, g).

The Monge problem. Given µ, ν ∈M+(Ω) satisfying the mass balance condition (1.2). The
Monge problem, associated with the measures µ and ν, is to find a map T ∗ ∈ A(µ, ν) which
minimizes the cost functional

F̃(T ) :=

∫
Ω

|x− T (x)| dµ(x)

in the set A(µ, ν). A map T ∗ ∈ A(µ, ν) satisfying F̃(T ∗) = min{F̃(T ) : T ∈ A(µ, ν)}, is called
an optimal transport map of µ to ν.

In general, the Monge problem is ill-posed. To overcome the difficulties of the Monge problem,
in 1942, L. V. Kantorovich ([14]) proposed to study a relaxed version of the Monge problem
and, what is more relevant here, introduced a dual variational principle.
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Let us define πt(x, y) := (1− t)x+ ty. Given a Radon measure γ in Ω×Ω, its marginals are
defined by projx(γ) := π0#γ, projy(γ) := π1#γ.

The Monge-Kantorovich problem. Fix µ, ν ∈M+(Ω) satisfying the mass balance condition
(1.2). The Monge-Kantorovich problem is the minimization problem∫

Ω×Ω

|x− y| dγ∗(x, y) = min

{∫
Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) := {Radon measures γ in Ω× Ω : π0#γ = µ, π1#γ = ν}. The elements γ ∈
Π(µ, ν) are called transport plans between µ and ν, and a minimizer γ∗ an optimal transport
plan. These minimizers always exist.

The Monge-Kantorovich problem has a dual formulation that can be stated in this case as
follows (see for instance [17, Theorem 1.14]).

Kantorovich-Rubinstein Theorem. Let µ, ν ∈M(Ω) be two measures satisfying the mass
balance condition (1.2). Then,

(1.3) min

{∫
Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(µ, ν)

}
= sup

{∫
Ω

u d(µ− ν) : u ∈ K1(X)

}
,

where K1(Ω) := {u : X → R : |u(x) − u(y)| ≤ |x − y| ∀x, y ∈ Ω} is the set of 1-Lipschitz
functions in Ω.

The maximizers u∗ of the right hand side of (1.3) are called Kantorovich potentials.

Let us briefly summarize the contents of this paper. Section 2 is devoted to the proof of
Theorem 1.1; in Section 3 we study the limit as p → ∞ in a p−Laplacian system obtaining
more information about the solution of the matching problem; in Section 4 we describe some
examples and characterize the geometrical configurations for which the matching measure is a
point mass, finally, in Section 5 we collect final remarks.

2. Proof of Theorem 1.1

Let us denote by

M(D,M0) := {µ ∈M+(Ω) : supp(µ) ⊂ D, µ(Ω) = M0}
the set of all possible matching measures. Given µ ∈M(D,M0), we can consider the following
minimization problem

(2.1) inf
µ∈M(D,M0)

inf
(T+,T−)∈A(f+,f−,µ)

F(T+, T−),

where
A(f+, f−, µ) := {(T+, T−) : T+ ∈ A(f+, µ), T− ∈ A(f−, µ)}.

We have that, in fact,

(2.2) inf
µ∈M(D,M0)

inf
(T+,T−)∈A(f+,f−,µ)

F(T+, T−) = inf
(T+,T−)∈AD(f+,f−)

F(T+, T−).
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Indeed, observe that given (T+, T−) ∈ AD(f+, f−), if we define

µ(E) :=

∫
T−1
+ (E)

f+,

we have that µ ∈M(D,M0) and (T+, T−) ∈ A(f+, f−, µ).

Note that in (2.1) we are considering all possible measures supported in D with total mass
M0 and then we minimize the total transport cost. This is probably the most natural way of
looking at the optimal matching problem and, as shown above, it is equivalent to our previous
formulation.

We can see the optimal matching problem (2.1) as a kind of Monge’s problem (recall the
results gathered in the previous section). The corresponding Monge-Kantorovich’s problem is
the following

inf
µ∈M(D,M0)

inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−,

where Π(f+, f−, µ) := {(γ+, γ−) ∈M+(Ω× Ω)2 : γ+ ∈ Π(f+, µ), γ− ∈ Π(f−, µ)}. For this prob-
lem, similarly to (2.2), we have that

(2.3)

inf
µ∈M(D,M0)

inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−

= inf
(γ+,γ−)∈ΠD(f+,f−)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−,

where

ΠD(f+, f−) =
{

(γ+, γ−) ∈M+(Ω× Ω)2 : π0#γ± = f±, π1#γ+ = π1#γ−, supp(π1#γ±) ⊂ D
}
.

Proof of Theorem 1.1. For a fixed µ ∈ M(D,M0), it is well known (see for instance [1]) that
there exist Kantorovich potentials u±,µ ∈ W 1,∞(Ω), depending on µ, with |∇u±,µ|∞ ≤ 1, such
that ∫

Ω

u+,µ(f+ − µ) = max
u∈W 1,∞(Ω), |∇u|∞≤1

∫
Ω

u(f+ − µ) = min
T∈A(f+,µ)

∫
Ω

|x− T (x)|f+(x)dx

= min
γ∈Π(f+,µ)

∫
Ω×Ω

|x− y|dγ

and ∫
Ω

u−,µ(f− − µ) = max
u∈W 1,∞(Ω), |∇u|∞≤1

∫
Ω

u(f− − µ) = min
T∈A(f−,µ)

∫
Ω

|x− T (x)|f−(x)dx

= min
γ∈Π(f−,µ)

∫
Ω×Ω

|x− y|dγ.
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Therefore,

(2.4)

sup
v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)µ = inf
(T+,T−)∈A(f+,f−,µ)

F(T+, T−)

= inf
(γ+,γ−)∈Π(f+,f−,µ)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ− .

Hence, from (2.2) and (2.3), we get

W := inf
µ∈M(D,M0)

sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)µ = inf
(T+,T−)∈AD(f+,f−)

F(T+, T−)

= inf
(γ+,γ−)∈ΠD(f+,f−)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ− .

Now, it is easy to see that there exists µ∞ ∈M(D,M0) such that

inf
µ∈M(D,M0)

sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

vf+−wf−+(w−v)µ = sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

vf+−wf−+(w−v)µ∞.

Hence, by (2.4) for µ = µ∞ we get that

W = inf
(T+,T−)∈A(f+,f−,µ∞)

F(T+, T−) = inf
(γ+,γ−)∈Π(f+,f−,µ∞)

∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ− .

Now, the proof of existence of optimal transport maps for the matching problem follows by [1,
Theorem 6.2] which states the existence of an optimal transport map T ∗+ transferring f+ to µ∞,
and an optimal transport map T ∗− transferring f− to µ∞.

Now, let us show that in our optimal matching problem we can restrict ourselves to measures
supported on ∂D. Let us consider a minimizer (T ∗+, T

∗
−) of the matching problem and h∞ =

T ∗+#f+ the corresponding matching measure. Let us see that we can obtain a matching measure
supported on ∂D. For x ∈ supp(f+), let

α(x) := min{α ∈ [0, 1] : (1− α)x+ αT ∗+(x) ∈ D}.
We define

T̃+(x) := (1− α(x))x+ α(x)T ∗+(x),

that is, T̃+(x) is the first point in D of the segment that goes from x to T ∗+(x). Then,

(2.5)

∫
Ω

|x− T ∗+(x)|f+(x)dx =

∫
Ω

|x− T̃+(x)|f+(x)dx+

∫
Ω

|T̃+(x)− T ∗+(x)|f+(x)dx

=

∫
Ω×Ω

|x− y|d((Id× T̃+)#f+)(x, y) +

∫
Ω×Ω

|x− y|d((T̃+ × T ∗+)#f+)(x, y).
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If we define the measure h̃∞ := T̃+#f+, which is supported on ∂D, we have that (Id× T̃+)#f+

is a transport plan induced by the map T̃+ between f+ and the measure h̃∞. On the other
hand, since

π0#((T̃+ × T ∗+)#f+)(B) = (T̃+ × T ∗+)#f+(π−1
0 (B)) = f+(((T̃+ × T ∗+))−1(π−1

0 (B)))

= f+(T̃−1
+ (B)) = T̃+#f+(B) = h̃∞(B).

and

π1#((T̃+ × T ∗+)#f+)(B) = (T̃+ × T ∗+)#f+(π−1
1 (B)) = f+(((T̃+ × T ∗+))−1(π−1

1 (B)))

= f+(T ∗+
−1(B)) = T ∗+#f+(B) = h∞(B),

we have that γ̃(x, y) := ((T̃+ × T ∗+)#f+)(x, y) is a transport plan between h̃∞ and h∞.

Now, by (2.5), (Id× T̃+)#f+ is an optimal transport plan between f+ and h̃∞, and γ̃ is an

optimal transport plan between h̃∞ and h∞.

By [1, Theorem 6.2], there exists an optimal transport map T̃− transferring f− to h̃∞. Let
us see that (T̃+, T̃−) is a solution, for the matching problem, that is,

(2.6) F(T̃+, T̃−) = F(T ∗+, T
∗
−).

Indeed, if we consider the gluing transport of (Id× T̃−)#f− and γ̂(x, y) := γ̃(y, x), we have that∫
Ω×Ω

|x− y|d((Id× T ∗−)#f−)(x, y) +

∫
Ω×Ω

|x− y|dγ̂(x, y)

≥
∫

Ω×Ω

|x− y|d((Id× T̃−)#f−)(x, y).

Therefore,

F(T ∗+, T
∗
−) =

∫
Ω

|x− T ∗+(x)|f+(x)dx+

∫
Ω

|x− T ∗−(x)|f−(x)dx

=

∫
Ω

|x− T̃+(x)|f+(x)dx+

∫
Ω

|T̃+(x)− T ∗+(x)|f+(x)dx+

∫
Ω

|x− T ∗−(x)|f−(x)dx

≥
∫

Ω

|x− y|d((Id× T̃+)#f+)(x, y) +

∫
Ω×Ω

|x− y|d((Id× T̃−)#f−)(x, y) = F(T̃+, T̃−).

Which implies the equality (2.6). Moreover, we also have that the gluing transport of (Id ×
T̃−)#f− and γ̂ is an optimal transport plan between f+ and h̃∞. �

Remark 2.1. Let us remark that Theorem 1.1 is also true in the case that we change in the
cost function the Euclidean norm by any norm in RN . In fact, we only need to have in mind
that in this case Kantorovich potentials also exist (e.g., [17]), and the result in [4] that shows
the existece of optimal transport maps T ∗+ transferring f+ to µ∞ amd T ∗− transferring f− to
µ∞.
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Remark 2.2. Since

sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

v(f+ − µ) + w(f− − µ) = sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)µ,

and ∫
Ω

vf+ − wf− + (w − v)µ =

∫
Ω

vf+ − (w −min
D

(w − v))f− + (w −min
D

(w − v)− v)µ

≤ sup
ṽ, w̃ ∈W 1,∞(Ω)

|∇ṽ|∞, |∇w̃|∞ ≤ 1
ṽ ≤ w̃ in D

∫
Ω

ṽf+ − w̃f− + (w̃ − ṽ)µ,

we have

sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1

∫
Ω

v(f+ − µ) + w(f− − µ) = sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ.

Therefore,

W = inf
µ∈M(D,M0)

sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ

= sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ∞ .

If we could change inf sup by sup inf in the above expression, then we should get

W = inf
µ∈M(D,M0)

sup
v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ

= sup
v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

inf
µ∈M(D,M0)

∫
Ω

vf+ − wf− + (w − v)µ = sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− ,

and hence we expect that

sup
v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ∞ = sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− .
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We will show that in fact the above equality is true, which is the key of our approach to
the problem. The proof of this equality is based on the approximation of this problem by a
p−Laplacian system (see the next section) and does not use min-max arguments.

3. The limit as p→∞ in a p−Laplacian system

In this section we show that we can follow the ideas of Evans-Gangbo, [12], to get the matching
measure, and the Kantorovich potentials at the same time.

Take p > N in this section and recall that, for simplicity, we assumed that Ω is a convex C1,1

bounded open set.

First, we need some preliminary results.

Lemma 3.1 (A Poincaré’s type inequality). There exists a constant C > 0 such that

‖(f, g)‖p ≤ C

(
‖(∇f,∇g)‖p +

∣∣∣∣∫
Ω

(f + g)

∣∣∣∣)
for all (f, g) ∈ W 1,p(Ω)×W 1,p(Ω), f ≤ g in D, f(x0) = g(x0) for some x0 ∈ D.

Proof. Let us argue by contradiction supposing that there exists (fn, gn) ∈ W 1,p(Ω)×W 1,p(Ω),
fn ≤ gn in D, fn(xn) = gn(xn) for some xn ∈ D, such that

‖(fn, gn)‖p ≥ n

(
‖(∇fn,∇gn)‖p +

∣∣∣∣∫
Ω

(fn + gn)

∣∣∣∣) .
By homogeneity we can suppose that

(3.1) ‖(fn, gn)‖p = 1.

So,

(3.2) ‖(∇fn,∇gn)‖p → 0

and

(3.3)

∫
Ω

(fn + gn)→ 0.

Therefore, there exists a subsequence, denoted equal, such that

(fn, gn)→ (f, g) uniformly and weakly in W 1,p(Ω)×W 1,p(Ω),

and

xn → x ∈ D, f(x) = g(x).

Now, by (3.2), f and g are constants, so equal. And by (3.3), f = g = 0, which contradicts the
fact that they come from the uniform limit of a subsequence satisfying (3.1). �

The following consequence is immediate.
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Corollary 3.2. There exists C > 0 such that

(3.4) ‖(f, g)‖p ≤ C‖(∇f,∇g)‖p
for all (f, g) ∈ W 1,p(Ω)×W 1,p(Ω), f ≤ g in D, f(x0) = g(x0) for some x0 ∈ D, with∫

Ω

(f + g) = 0.

Remark 3.3. The constants that appear in Lemma 3.1 and in Corollary 3.2 may depend on
p. The method used in the proof does not allow to quantify such dependence (and it is not our
aim in this paper to make this dependence precise), then we are not allowed to use these results
in the passage to the limit as p → ∞, they are used only to show existence and uniqueness of
a solution of the elliptic system under consideration. To pass to the limit we rely on a local
Morrey inequality, see the proof of Theorem 3.5 below.

Let us consider the following variational problem

(3.5) min
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v ≤ w in D

1

p

∫
Ω

|Dv|p +
1

p

∫
Ω

|Dw|p −
∫

Ω

vf+ +

∫
Ω

wf−.

Our next result in this section deals with existence and uniqueness of solutions for the varia-
tional problem (3.5).

Theorem 3.4. There exists a minimizer (vp, wp) of (3.5). In addition any two minimizers
differ by a constant, that is, if (vp, wp) and (ṽp, w̃p) are minimizers then there exists a constant
c with vp = ṽp + c and wp = w̃p + c.

Proof. Set

Ψ(v, w) :=
1

p

∫
Ω

|Dv|p +
1

p

∫
Ω

|Dw|p −
∫

Ω

vf+ +

∫
Ω

wf− .

Let us begin by observing that, since the functions in W 1,p(Ω) are continuous, it is easy to see
that

(3.6) min
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v ≤ w in D

Ψ(v, w) = min
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v ≤ w in D

∃x0 ∈ D, v(x0) = w(x0)

Ψ(v, w).

Moreover, since

Ψ(v, w) = Ψ(v − c, w − c) for any constant c,

by taking

c =
1

2

(
1

|Ω|

∫
Ω

v +
1

|Ω|

∫
Ω

w

)
,
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we can minimize Ψ(v, w) between functions (v, w) with∫
Ω

v +

∫
Ω

w = 0.

Now, by Corollary 3.2,

Ψ(v, w) :=
1

p

∫
Ω

|Dv|p +
1

p

∫
Ω

|Dw|p −
∫

Ω

vf+ +

∫
Ω

wf−

is a finite lower semicontinuous and coercive convex functional for the closed convex subset of
W 1,p(Ω)×W 1,p(Ω), B, given by{

(v, w) ∈ W 1,p(Ω)×W 1,p(Ω) : v ≤ w in D, v(x0) = w(x0) for some x0 ∈ D,
∫

Ω

(v + w) = 0

}
.

Then, by [2, Corollary 3.23], Ψ attains its infimum on B, which is equivalent to say that

inf
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v ≤ w in D

Ψ(v, w)

is attained.

Finally, let us show uniqueness of the minimizer up to an additive constant. Equivalently, we
prove uniqueness of the minimizer when we impose the constraint∫

Ω

v +

∫
Ω

w = 0.

Assume that we have two pairs (vp, wp) and (ṽp, w̃p) of minimizers and that

(3.7)

∫
Ω

vp +

∫
Ω

wp =

∫
Ω

ṽp +

∫
Ω

w̃p = 0.

By the strict convexity of the function ξ 7→ ‖ξ‖p (we have 1 < p < ∞) we obtain that
Dvp = Dṽp and Dwp = Dw̃p. Then there are constants c1 and c2 such that vp = ṽp + c1 and
wp = w̃p + c̃2. Hence, from (3.7) we get that

c1 + c2 = 0.

Therefore, we obtain

Ψ(vp, wp) = Ψ(ṽp, w̃p)− c1

(∫
Ω

f+ +

∫
Ω

f−
)

and we conclude that

c1 = c2 = 0

from the fact that both pairs are minimizers. �

Now we prove that we can pass to the limit as p→∞ in the sequence of minimizer functions.
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Theorem 3.5. Let (vp, wp) be minimizer functions of (3.5). Then, up to a subsequence,

lim
p→∞

(vp, wp) = (v∞, w∞) uniformly,

where (v∞, w∞) is a solution of the variational problem

(3.8) max
v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf−.

Remark 3.6. As we will see, the limit (v∞, w∞) gives a pair of Kantorovich potentials for our
optimal matching problem. But in fact this limit procedure gives much more since it allows us
to identify the optimal matching measure (see Theorem 3.11 below).

Proof of Theorem 3.5. Let us take (vp, wp) ∈ B a minimizer of (3.5). For (v, w) ∈ W 1,∞(Ω) ×
W 1,∞(Ω), with |∇v|∞, |∇w|∞ ≤ 1 and v ≤ w in D, we have that

(3.9)

−
∫

Ω

vpf
+ +

∫
Ω

wpf
− ≤ 1

p

∫
Ω

|Dvp|p +
1

p

∫
Ω

|Dwp|p −
∫

Ω

vpf
+ +

∫
Ω

wpf
−

≤ 1

p

∫
Ω

|Dv|p +
1

p

∫
Ω

|Dw|p −
∫

Ω

vf+ +

∫
Ω

wf−

≤ 2
|Ω|
p
−
∫

Ω

vf+ +

∫
Ω

wf−.

Now, by (3.6), we can assume that there exists xp ∈ D such that vp(xp) = wp(xp). We can
also assume that vp(z∞) = 0 for all p, for any z∞ ∈ Ω. Hence, as p > N , we have:

(3.10) ‖vp‖∞ ≤ C1‖Dvp‖p,
and

(3.11) ‖wp‖∞ ≤ C1 (‖Dwp‖p + ‖Dvp‖p) ,
with C1 not depending on p. Indeed, for a fixed x ∈ Ω, there exists x = x0, x1, ..., xm = z∞ and
m balls Qi (i = 1, 2, ...,m) of certain fixed diameter r > 0, such that xi, xi+1 ∈ Qi+1 and r ·m is
bounded independently of x, z∞ and m. Then, local Morrey’s inequality (see, e.g., the Remark
in page 268 of [10] or [2]), implies

|vp(x)| = |vp(x)− vp(z∞)| ≤
m∑
i=1

|vp(xi)− vp(xi+1)| ≤ C0r
1−N/pm‖∇vp‖p ≤ C1‖∇vp‖p,

being Ci independent of p. With the same argument, but changing the extreme points and the
function, we obtain

|wp(x)| = |wp(x)− wp(xp)|+ |vp(xp)| ≤
m̃∑
i=1

|wp(yi)− wp(yi+1)|+ |vp(xp)|
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≤ C0r
1−N/pm̃‖∇wp‖p + |vp(xp)| ≤ C1‖∇wp‖p + |vp(xp)|.

From (3.9), using Hölder’s inequality and having in mind (3.10) and (3.11), we get

1

p

∫
Ω

|Dvp|p +
1

p

∫
Ω

|Dwp|p ≤ C2(‖vp‖Lp(Ω) + ‖wp‖Lp(Ω) + 1) ≤ C3(‖Dvp‖Lp(Ω) + ‖Dwp‖Lp(Ω) + 1),

with Ci independent of p. Hence,

(3.12) ‖∇vp‖p−1
Lp(Ω), ‖∇wp‖

p−1
Lp(Ω) ≤ pC4 ∀p > N,

with C4 independent of p.

Therefore, ‖vp‖W 1,p(Ω) and ‖wp‖W 1,p(Ω) are bounded uniformly in p, and, by Morrey’s inequal-
ity  |vp(x)− vp(y)| ≤ C5|x− y|1−

N
p ,

|wp(x)− wp(y)| ≤ C5|x− y|1−
N
p ,

for some constant C5 not depending on p. Then, by Arzela-Ascoli’s compactness criterion we
can extract a sequence pi →∞ such that

vpi → v∞ uniformly in Ω,

wpi → w∞ uniformly in Ω,

and, so, v∞ ≤ w∞ in D. Moreover, by (3.12), we have

‖∇v∞‖∞, ‖∇w∞‖∞ ≤ 1.

Finally, passing to the limit in (3.9), we get∫
Ω

v∞f
+ − w∞f− = sup

v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− .

This ends the proof. �

Remark 3.7. Remark that the convergence as p→∞ is only along a subsequence. The main
content of our result is that there is enough compactness to pass to the limit along subsequences
and moreover that all possible limits are solutions to the maximization limit problem.

We now prove some properties of the minimizers and their limits that show that we have
found (in the limit) Kantorovich potentials and an optimal matching measure for our matching
problem.

We divide the proof of these properties in a series of lemmas.

Lemma 3.8. Let (vp, wp) be minimizer functions of problem (3.5). Then, there exists a positive
Radon measure hp of mass M0 such that
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(1)

{
−∆pvp = f+ − hp in Ω,

|∇vp|p−2∇vp · η = 0 on ∂Ω,

{
−∆pwp = hp − f− in Ω,

|∇wp|p−2∇wp · η = 0 on ∂Ω.

(2) The positive measure hp is supported on {x ∈ D : vp(x) = wp(x)}.

Proof. Recall that since p > N , we have W 1,p(Ω) ⊂ C(Ω). For any ϕ, ψ ∈ W 1,p(Ω) such that
ϕ = ψ in D, since (vp, wp) is a minimizer of Ψ in the set

{(v, w) ∈ W 1,p(Ω)×W 1,p(Ω) : v ≤ w in D},

the function

I1(t) := Ψ(vp + tϕ, wp + tψ)

has a minimum at t = 0. Therefore, I ′1(0) = 0, from where it follows that

(3.13)

∫
Ω

|∇vp|p−2∇vp∇ϕ+

∫
Ω

|∇wp|p−2∇wp∇ψ =

∫
Ω

f+ϕ−
∫

Ω

f−ψ.

Observe that, taking ψ = ϕ in (3.13), we get that

(3.14)

{
−∆pvp −∆pwp = f+ − f− in Ω,

|∇vp|p−2∇vp · η + |∇wp|p−2∇wp · η = 0 on ∂Ω.

Similarly, for any ϕ ∈ W 1,p(Ω), ϕ ≥ 0, and any t > 0, we have

I2(t) := Ψ(vp − tϕ, wp)−Ψ(vp, wp) ≥ 0

and

I3(t) := Ψ(vp, wp + tϕ)−Ψ(vp, wp) ≥ 0.

Then, by taking limits in Ii(t)
t
i = 2, 3, as t→ 0, we get{

−∆pvp ≤ f+ in Ω,

−∆pwp ≥ −f− in Ω.

Therefore, hp := ∆pvp + f+ defines a positive measure which, thanks to (3.14), is equal to
f− − ∆pwp. The fact that hp is supported on {x ∈ D : vp(x) = wp(x)} follows from the fact
that, for ϕ ∈ D(Ω) supported on Ω \ {x ∈ D : vp(x) = wp(x)} and t 6= 0 small enough,

I4(t) := Ψ(vp + tϕ, wp)−Ψ(vp, wp) ≥ 0.

Again, by taking limits in I4(t)
t

as t→ 0, we conclude. This gives the proof of (2).

Given ϕ ∈ D(RN), if we take ψ ∈ D(Ω) such that ϕ = ψ en D, (3.13) says that∫
Ω

|∇vp|p−2∇vp∇ϕ+

∫
Ω

|∇wp|p−2∇wp∇ψ =

∫
Ω

f+ϕ−
∫

Ω

f−ψ.
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But, since ψ ∈ D(Ω) and supp(hp) ⊂ D, we have∫
Ω

|∇wp|p−2∇wp∇ψ =

∫
Ω

ψdhp −
∫

Ω

f−ψ =

∫
Ω

ϕdhp −
∫

Ω

f−ψ.

Then, from the two above expressions, by density we obtain that

(3.15)

∫
Ω

|∇vp|p−2∇vp∇ϕ =

∫
Ω

f+ϕ−
∫

Ω

ϕdhp, ∀ϕ ∈ W 1,p(Ω),

which shows the first statement in (1) for the first problem. Similarly, we obtain the second
one. From here, now, it is an easy consequence that (just take ϕ = 1 in (3.15))∫

Ω

dhp = M0,

and the proof concludes. �

Lemma 3.9. Under the same assumptions of Lemma 3.8, up to a subsequence,

hp ⇀ h∞ as p→∞, weakly∗ as measures,

with h∞ a positive Radon measure of mass M0 supported on {x ∈ D : v∞(x) = w∞(x)}. And
the limit (v∞, w∞) obtained in Theorem 3.5 satisfies:

v∞ is a Kantorovich potential for the transport of f+ to h∞,

w∞ is a Kantorovich potential for the transport of h∞ to f−,

with respect to the Euclidean distance.

Proof. From the last equality in the proof of the previous lemma,∫
Ω

dhp = M0,

we can assume that there exists a positive Radon measure h∞ of mass M0 such that, up to a
subsequence,

hp ⇀ h∞.

Let ϕ ∈ D(Ω) be supported on Ω \ {x ∈ D : v∞(x) = w∞(x)}. Then, since

lim
p

(vp, wp) = (v∞, w∞) uniformly,

there exists p0 > N such that ϕ is supported on Ω \ {x ∈ D : vp(x) = wp(x)} for all p ≥ p0.
Therefore, ∫

Ω

ϕdh∞ = lim
p→∞

∫
Ω

ϕdhp = 0.

Consequently, h∞ is supported on {x ∈ D : v∞ = w∞}.
Since |ξ|p − |η|p ≤ p|ξ|p−2ξ · (ξ − η) for any ξ, η ∈ RN , we have

1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dhp)vp +

∫
Ω

|∇vp|p−2∇vp · (∇ϕ−∇vp)−
∫

Ω

(f+ − dhp)(ϕ− vp)
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≤ 1

p

∫
Ω

|∇ϕ|p −
∫

Ω

(f+ − dhp)ϕ

for every ϕ ∈ W 1,p(Ω). Then, having in mind (3.15), we have∫
Ω

|∇vp|p−2∇vp · (∇ϕ−∇vp)−
∫

Ω

(f+ − dhp)(ϕ− vp)) = 0,

and we arrive to

(3.16)
1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dhp)vp ≤
1

p

∫
Ω

|∇ϕ|p −
∫

Ω

(f+ − dhp)ϕ ∀ϕ ∈ W 1,p(Ω).

Therefore, for any v ∈ W 1,∞(Ω), |∇v|∞ ≤ 1,

−
∫

Ω

(f+ − dhp)vp ≤
1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dhp)vp

≤ 1

p

∫
Ω

|∇v|p −
∫

Ω

(f+ − dhp)v ≤
1

p
|Ω| −

∫
Ω

(f+ − dhp)v.

Taking limit as p→∞ in the last inequality, we get∫
Ω

(f+ − dh∞)v ≤
∫

Ω

(f+ − dh∞)v∞,

from where it follows that∫
Ω

(f+ − dh∞)v∞ = sup
v ∈W 1,∞(Ω)

|∇v|∞ ≤ 1

∫
Ω

v(f+ − dh∞),

and consequently, v∞ is a Kantorovich potential for the transport of f+ to h∞, with respect to
the Euclidean distance. The proof for w∞ is similar. �

Lemma 3.10. (v∞, w∞) and h∞ satisfy

(3.17)

∫
Ω

v∞f
+ − w∞f− = inf

µ∈M(D,M0)
sup

v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ

= min
(γ+,γ−)∈ΠD(f+,f−)

{∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−
}

= inf
(T+,T−)∈AD(f+,f−)

∫
Ω

|x− T+(x)|f+(x)dx+

∫
Ω

|x− T−(x)|f−(x)dx.

Proof. From Lemma 3.9 we have∫
Ω

v∞(f+ − dh∞) = inf
µ∈A(f+,h∞)

∫
|x− y|dµ =

∫
|x− y|dµ0,
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µ0 ∈ A(f+, h∞) and∫
Ω

w∞(dh∞ − f−) = inf
ν∈A(h∞,f−)

∫
|x− y|dν =

∫
|x− y|dν0,

ν0 ∈ A(h∞, f
−). Then, by adding the above inequalities and since

∫
Ω

(w∞− v∞)h∞ = 0, we get

(3.18)

∫
Ω

v∞f
+ − w∞f−

=

∫
Ω

v∞f
+ − w∞f− + (w∞ − v∞)dh∞ =

∫
|x− y|dµ0 +

∫
|x− y|dν0

≥ inf
(γ+,γ−)∈ΠD(f+,f−)

{∫
Ω×Ω

|x− y|dγ+ +

∫
Ω×Ω

|x− y|dγ−
}

= sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ∞

≥ sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf− ,

where µ∞ is the optimal measure given in Section 2. �

Theorem 3.11. The measure h∞ is a matching measure to the optimal matching problem (1.1).

Proof. From Lemma 3.9, there exists a positive measure h∞ and Lipschitz continuous functions
v∞, w∞ satisfying:

v∞ is a Kantorovich potential for the transport of f+ to h∞,

w∞ is a Kantorovich potential for the transport of h∞ to f−,

with respect to the Euclidean distance. Moreover, h∞ is supported on {x ∈ D : v∞ = w∞}.
Then, by [1, Theorem 2.1] and Kantorovich-Rubinstein Theorem (e.g. [17, Theorem 1.14]), we
have∫

Ω

|x− T ∗+(x)|f+(x)dx = min

{∫
Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(f+, h∞)

}
=

∫
Ω

v∞(f+ − h∞)

and∫
Ω

|y − T ∗−(x)|f−(x)dx = min

{∫
Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(h∞, f
−)

}
=

∫
Ω

w∞(h∞ − f−).
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Therefore, having in mind (3.17), we get

inf
(T+,T−)∈AD(f+,f−)

∫
Ω

|x− T+(x)|f+(x)dx+

∫
Ω

|x− T−(x)|f−(x)dx

=

∫
Ω

|x− T ∗+(x)|f+(x)dx+

∫
Ω

|y − T ∗−(x)|f−(x)dx ,

which finishes the proof. �

Observe that the above result gives an alternative proof for the first statement in Theorem 1.1.
We will see in Theorem 3.14 that in some cases this approach also selects a matching measure
supported on the boundary of the target set, which is the second statement of Theorem 1.1.

Remark 3.12. Note that, for the measure µ∞ given in Section 2, it also holds that

(3.19)

∫
Ω

(w∞ − v∞)µ∞ = 0,

which implies that µ∞ is, in fact, supported where v∞ = w∞ in D. Indeed, by (3.18),∫
Ω

v∞f
+ − w∞f− = sup

v, w ∈W 1,∞(Ω)
|∇v|∞, |∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)µ∞

≥
∫

Ω

v∞f
+ − w∞f− + (w∞ − v∞)µ∞ ≥

∫
Ω

v∞f
+ − w∞f− ,

which implies (3.19).

Lemma 3.13. If (vp, wp) is a pair solving the equations in Lemma 3.8 for a positive measure hp,
and

vp ≤ wp in D,

supp(hp) ⊂ {x ∈ D : vp(x) = wp(x)},
then, (vp, wp) is a minimizer in the minimization problem (3.5).

Proof. We have that

1

p

∫
Ω

|∇vp|p −
∫

Ω

(f+ − dhp)vp ≤
1

p

∫
Ω

|∇ϕ|p −
∫

Ω

(f+ − dhp)ϕ ∀ϕ ∈ W 1,p(Ω),

and
1

p

∫
Ω

|∇wp|p −
∫

Ω

(dhp − f−)wp ≤
1

p

∫
Ω

|∇ψ|p −
∫

Ω

(dhp − f−)ψ ∀ψ ∈ W 1,p(Ω).

Adding up both expressions, since hp is supported in D where vp = wp, and vp ≤ wp in D,

1

p

∫
Ω

|∇vp|p +
1

p

∫
Ω

|∇wp|p −
∫

Ω

f+vp +

∫
Ω

f−wp
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≤ 1

p

∫
Ω

|∇ϕ|p +
1

p

∫
Ω

|∇ψ|p −
∫

Ω

f+ϕ+

∫
Ω

f−ψ

for all ϕ, ψ ∈ W 1,p(Ω), ϕ ≤ ψ in D. �

Theorem 3.14. Assume that D is the closure of a smooth domain Θ, then hp is supported on
∂D and hence h∞ is concentrated on the boundary of D.

Proof. Let ṽp, w̃p be minimizers of

min
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v ≤ w in ∂D

Ψ(v, w).

and let h̃p be a positive measure, supp(h̃p) ⊂ {x ∈ ∂D : ṽp(x) = w̃p(x)}, such that{
−∆pṽp = f+ − h̃p in Ω,

|∇ṽp|p−2∇ṽp · η = 0 on ∂D,

{
−∆pw̃p = h̃p − f− in Ω,

|∇w̃p|p−2∇w̃p · η = 0 on ∂D.

Set now vp = ṽp in Ω \D, and define vp in D as the solution of{
−∆pv = 0 in Θ,

v = ṽp on ∂D.

Similarly we define wp. Observe that, by the the Maximum Principle

vp ≤ wp in D

and also ∫
Θ

|Dvp|p ≤
∫

Θ

|Dṽp|p,
∫

Θ

|Dwp|p ≤
∫

Θ

|Dw̃p|p.

Then,

Ψ(vp, wp) =
1

p

∫
Ω

|Dvp|p +
1

p

∫
Ω

|Dwp|p −
∫

Ω

vpf
+ +

∫
Ω

wpf
−

=
1

p

∫
Ω\D
|Dṽp|p +

1

p

∫
Θ

|Dvp|p +
1

p

∫
Ω\D
|Dw̃p|p +

1

p

∫
Θ

|Dwp|p −
∫

Ω

ṽpf
+ +

∫
Ω

w̃pf
−

≤ 1

p

∫
Ω\D
|Dṽp|p +

1

p

∫
Θ

|Dṽp|p +
1

p

∫
Ω\D
|Dw̃p|p +

1

p

∫
Θ

|Dw̃p|p −
∫

Ω

ṽpf
+ +

∫
Ω

w̃pf
−

= Ψ(ṽp, w̃p).

In fact, since vp ≤ wp in ∂D,

Ψ(vp, wp) = Ψ(ṽp, w̃p).
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Hence, by Theorem 3.4, there exists a constant c such that (vp, wp) = (ṽp + c, w̃p + c), and
consequently,{

−∆pvp = f+ − h̃p in Ω,

|∇vp|p−2∇vp · η = 0 on ∂Ω,

{
−∆pwp = h̃p − f− in Ω,

|∇wp|p−2∇wp · η = 0 on ∂Ω.

Then, since vp ≤ wp in D, by Lemma 3.13, we have (vp, wp) is a minimizer of Problem (3.5).
Therefore, by Theorem 3.4, there exists a constant c such that (vp, wp) = (vp + c, wp + c), and

consequently, hp = h̃p, which implies that h∞ is supported on ∂D. �

4. Examples

Let us first compute some examples that illustrate our results and next characterize when
the optimal matching measure is a delta.

Example 4.1. Consider the optimal matching problem for the data: Ω =] − 4, 4[, f+ =
bχ]−3,−2[ + (1 − b)χ]2,3[, f

− = χ]−2,−1[ and D = [0, 1], where 0 ≤ b ≤ 1 is fixed. Then, any
matching measure in D is of the form bδ0 +µ, for any positive Radon measure µ, of mass 1− b,
supported on D. Indeed, it is easy to see that, for

T ∗+(x) =

{
0 if − 3 < x < −2

t∗+(x) in other case,

where t∗+ is any optimal transport map transporting (1− b)χ]2,3[ to µ, and

T ∗−(x) =

{
0 if − 2 < x < −2 + b

t∗−(x) in other case,

where t∗− is any optimal transport map transporting χ]−2+b,−1[ to µ,

F(T ∗+, T
∗
−) = 4.

Also, for

v∗(x) :=

{
−x if x ≤ 0

x if x ≥ 0,

and

w∗(x) = x,∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx = 4.
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Then, our assertion follows from∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx

≤ sup
v, w ∈W 1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf−

= inf
(T+,T−)∈AD(f+,f−)

F(T+, T−) ≤ F(T ∗+, T
∗
−).

Observe also that, in this case, the cost for the usual transport of f+ to f− is (b− 2)2.

We distinguish three cases:

1. If b = 1, δ0 is the unique matching measure.

2. If 0 < b < 1, there are infinitely many matching measures but all of them with singular
part.

3. If b = 0, we also have infinitely many matching measures, infinitely many without singular
part and infinitely many with singular part. Moreover, only in this case, the cost of the matching
problem is the same as the cost of the classical transport problem of f+ to f−.

So we can not expect uniqueness of h∞ in general, but it may hold for some special configu-
rations of the masses and the target set. Uniqueness of h∞ holds in one-dimension if and only
if the target set D is located to the left or to the right from the supports of f+ and f−, while if
there is some mass of f+ to the left of D and some mass of f− to the right (or viceversa) then
there are infinitely many optimal measures h∞.

Moreover, in one dimension there is necessarily a singular part in the optimal measure h∞
if the masses f+ and f− has some part of both of them to the left or to the right of D, while
if f+ is completely on the right and f− completely on the left of D then there are optimal h∞
without singular part.

Now, let us come back to the symmetric situation given in the case b = 0. In this case we
can also compute optimal pairs (vp, wp). Let

zp(x) =
p− 1

p
|x|

1
p−1x.

This antisymmetric function zp is a solution to −(|z′|p−2z′)′(x) = −1 for x > 0 with z′(0) = 0.
Note that (zp)

′(1) = 1 and zp(1) = p−1
p

. Also note that

zp(x)→ x as p→∞.
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With the aid of this zp let us define vp,c and wp,c as follows. For any c ∈ [0, 1] we consider the
functions

vp,c(x) =



0, −4 ≤ x ≤ 0,

cx, 0 ≤ x ≤ 1,

x+ c− 1, 1 ≤ x ≤ 2,

zp(x− 3) + 2p−1
p

+ c, 2 ≤ x ≤ 3,

2p−1
p

+ c, 3 ≤ x ≤ 4,

and

wp,c(x) =



−2p−1
p
, −4 ≤ x ≤ −2,

zp(x+ 2)− 2p−1
p
, −2 ≤ x ≤ −1,

x, −1 ≤ x ≤ 0,

cx, 0 ≤ x ≤ 1,

c, 1 ≤ x ≤ 4.

A simple computation gives

−(|(vp,c)′|p−2(vp,c)
′)′ = f+ − (cp−1δ0 + (1− cp−1)δ1)

and

−(|(wp,c)′|p−2(wp,c)
′)′ = (1− cp−1)δ0 + cp−1δ1 − f−.

Hence, taking

c =

(
1

2

) 1
p−1

,

if we define vp := vp,c and wp := wp,c, we have

−∆pvp = f+ − hp and −∆pvp = hp − f−,
being hp := 1

2
δ0 + 1

2
δ1. Moreover vp ≤ wp in D and hp is supported on {x ∈ D : vp(x) = wp(x)}.

Therefore we have obtained a sequence of minimizers (vp, wp) that gives in the limit the matching
measure 1

2
δ0 + 1

2
δ1. In addition it can be checked that the optimal Kantorovich potentials that

appear in this limit procedure are just given by

v∞(x) =


0, −4 ≤ x ≤ 0,

x, 0 ≤ x ≤ 3,

3, 3 ≤ x ≤ 4,

and

w∞(x) =


−2, −4 ≤ x ≤ −2,

x, −2 ≤ x ≤ 1,

1, 1 ≤ x ≤ 4.
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Note that (vp, wp) is unique, up to a constant, that is, any other minimizer is of the form
(vp + c, wp + c), c constant. Therefore, this example shows that not every possible optimal
matching measure can be obtained using this procedure.

Let us characterize now, in any space dimension, the set of configurations for which the
matching measure is a delta concentrated at a point z0 ∈ D.

Theorem 4.2. Assume that there is a point z0 ∈ D such that for any pair of points x ∈ X+

and y ∈ X− we have

(4.1) min
z∈D
{|x− z|+ |y − z|} = |x− z0|+ |y − z0|

then the measure M0δz0 is an optimal matching measure.

Conversely, if M0δz0 is an optimal matching measure, then for any pair of points x ∈ X+ and
y ∈ X− we have (4.1).

Proof. Let â(x) := |x− z0| for x ∈ X+ and b̂(x) = −|x− z0| for x ∈ X−. Both are 1–Lipschitz
functions.

Let now a(x) := supy∈X+
{â(x)− |x− y|} for x ∈ Ω, and b(x) := infy∈X−{b̂(x) + |x− y|} for

x ∈ Ω, the lower 1–Lipschitz extension of a to Ω and the upper 1–Lipschitz extension of b to Ω,
respectively (in fact these are the McShane and Whitney extensions, see [15, 19]).

Let us see that a ≤ b on D. By (4.1) we have that, for z ∈ D,

|x− z0| − |x− z| ≤ −|y − z0|+ |y − z| ∀x ∈ X+ and ∀y ∈ X−;

therefore, taking the supremum in x and the infimum in y we get that a(z) ≤ b(z).

Let us see now that (a, b) is a maximizer of (3.8). Let (v, w) a pair of test functions, then

v(x) ≤ v(z0) + |x− z0| ∀x ∈ X+

and

w(y) ≥ w(z0)− |y − z0| ∀y ∈ X−.
Therefore, using that v ≤ w in D, we get∫

Ω

vf+ −
∫

Ω

wf− ≤ (v(z0)− w(z0))

∫
Ω

f+ +

∫
Ω

|x− z0|f+(x)dx+

∫
Ω

|y − z0|f−(y)dy

≤
∫

Ω

|x− z0|f+(x)dx+

∫
Ω

|y − z0|f−(y)dy =

∫
Ω

af+ −
∫

Ω

bf−.

Observe now that, setting T ∗+(x) = z0 for x ∈ X+ and T ∗−(x) = z0 for x ∈ X−,∫
Ω

af+ −
∫

Ω

bf− =

∫
Ω

|x− T ∗+(x)|f+(x)dx+

∫
Ω

|y − T ∗−(y)|f−(y)dy .

Therefore, M0δz0 is an optimal matching measure.
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To see the converse we argue by contradiction. Hence, assume that M0δz0 is an optimal
matching measure and that there are two points x0 ∈ X+ and y0 ∈ X− such that (4.1) does not
hold, that is, there exists z1 ∈ D such that

|x0 − z1|+ |y0 − z1| < |x0 − z0|+ |y0 − z0|.

By continuity we can find a positive number η and two small radii r1 and r2 such that

(4.2) |x− z1|+ |y − z1| < |x− z0|+ |y − z0| − η,

for every x ∈ Br1(x0) and every y ∈ Br2(y0) and such that

(4.3)

∫
Br1 (x0)

f+(x) dx =

∫
Br2 (y0)

f−(y) dy = k > 0.

Note that, thanks to this mass balance condition (4.3), we have an optimal transport map
x = S(y) that sends f−χBr2 (y0) to f+χBr1 (x0). In particular S satisfies∫

Br1 (x0)

A(x)f+(x) dx =

∫
Br2 (y0)

A(S(y))f−(y) dy

for every continuous function A. Hence,∫
Br1 (x0)

|x− zi|f+(x)dx =

∫
Br2 (y0)

|S(y)− zi|f−(y)dy, i = 0, 1;

and using (4.2), we obtain that∫
Br1 (x0)

|x− z1|f+(x)dx+

∫
Br2 (y0)

|y − z1|f−(y)dy

=

∫
Br2 (y0)

(|S(y)− z1|+ |y − z1|)f−(y)dy

≤
∫
Br2 (y0)

(|S(y)− z0|+ |y − z0|)f−(y)dy − kη

=

∫
Br1 (x0)

|x− z0|f+(x)dx+

∫
Br2 (y0)

|y − z0|f−(y)dy − kη.

Now let us define

T̃+(x) =

{
z0, x ∈ X+ \Br1(x0),
z1, x ∈ Br1(x0),

and T̃−(y) =

{
z0, y ∈ X− \Br2(y0),
z1, y ∈ Br2(y0).
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This pair corresponds to the transport of f+ and f− to the measure (M0 − k)δz0 + kδz1 that is
supported in D. We have∫

Ω

|x− T̃+(x)|f+(x)dx+

∫
Ω

|y − T̃−(y)|f−(y)dy

=

∫
X+\Brx (x0)

|x− z0|f+(x)dx+

∫
X−\Bry (y0)

|y − z0|f−(y)dy

+

∫
Brx (x0)

|x− z1|f+(x)dx+

∫
Bry (y0)

|y − z1|f−(y)dy

<

∫
X+

|x− z0|f+(x)dx+

∫
X−

|y − z0|f−(y)dy − kη,

a contradiction with the fact that M0δz0 is an optimal matching measure. �

Let us compute a more geometrical form of the condition (4.1) in case that D is convex.

Assume that (4.1) holds, then differentiation of |x− z|+ |y − z| with respect to z gives that
z0 ∈ D satisfies

(4.4)

〈
x− z0

|x− z0|
+

y − x0

|y − z0|
, z − z0

〉
≤ 0 for all x ∈ X+, y ∈ X− and z ∈ D

(note that z0 may belong to ∂D). Hence (4.1) implies (4.4).

The converse also holds: if z0 ∈ D satisfies (4.4) then (4.1) holds. Indeed, arguing by
contradiction, suppose that for some z ∈ D, we have,

(4.5) |x− z|+ |y − z| < |x− z0|+ |y − z0|.

Now, by convexity of z 7→ |x− z|+ |y − z|, for 0 < t < 1,

|x− (tz + (1− t)z0)|+ |y − (tz + (1− t)z0)|

≤ t(|x− z|+ |y − z|) + (1− t)(|x− z0|+ |y − z0|)

= t(|x− z|+ |y − z| − |x− z0| − |y − z0|) + |x− z0|+ |y − z0|,

that is
1

t
(|x− (tz + (1− t)z0)|+ |y − (tz + (1− t)z0)| − |x− z0| − |y − z0|)

≤ |x− z|+ |y − z| − |x− z0| − |y − z0|.
Therefore, taking limit as t→ 0, and using (4.5),

−
〈
x− z0

|x− z0|
+

y − z0

|y − z0|
, z − z0

〉
≤ |x− z|+ |y − z| − |x− z0| − |y − z0| < 0,

which gives a contradiction.
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Remark 4.3. Since we know that the target set in this problem can be reduced to the boundary,
it is worth to search for a z0 ∈ ∂D such that, for any pair of points x ∈ X+ and y ∈ X−,

min
z∈∂D
{|x− z|+ |y − z|} = |x− z0|+ |y − z0|;

which also ensures the existence of a matching measure M0δz0 , now concentrated on the bound-
ary of D.

5. Extensions

With the same ideas we can also consider the situation in which the cost is different for the
transport of f+ to the set D and for f− to the set D. In fact we can consider the following cost
functional ∫

Ω

1

A
|x− T+(x)|f+(x)dx+

∫
Ω

1

B
|x− T−(x)|f−(x)dx.

With the constants A and B we are taking into account that the cost of transporting nuts and
screws can be different (for example due to a difference in the weight).

For this kind of problems we only have to modify the p−Laplacian approximation replacing
the Lp-norm of the gradient with

1

p

∫
Ap|Dv|p.

In fact, doing this we are lead to consider variational problems of the form

(5.1) min
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v ≤ w in D

1

p

∫
Ω

Ap|Dv|p +
1

p

∫
Ω

Bp|Dw|p −
∫

Ω

vf+ +

∫
Ω

wf−,

and when we pass to the limit as p→∞ we arrive to

max
v, w ∈W 1,∞(Ω)

A|∇v|∞, B|∇w|∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf−.

Note that the constraint A|∇v|∞, B|∇w|∞ ≤ 1 is equivalent to

|v(x)− v(y)| ≤ 1

A
|x− y|, |w(x)− w(y)| ≤ 1

B
|x− y|.

Hence we find Kantorovich potentials for the optimal matching problem of minimizing∫
Ω

1

A
|x− T+(x)|f+(x)dx+

∫
Ω

1

B
|x− T−(x)|f−(x)dx.

Another possible extension is the following. We can consider a matching problem with more
than two commodities. Let f 1, f 2, ... ,fn, be nonnegative functions with the same total mass,
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that is, ∫
f i = M0

for every i. Given a target set D we can look at the minimization problem

min
(Ti)∈AD

n∑
i=1

∫
Ω

|x− Ti(x)|f i(x)dx.

where

AD :=
{

(Ti) : Ti : Ω→ Ω are Borel functions, Ti(supp(f i)) ⊂ D,∫
T−1
i (E)

f i =

∫
T−1
j (E)

f j for all Borel subset E of Ω
}
.

To handle this situation, say for three commodities, the minimization problem to take into
account is given by

min
(v, w, z) ∈ (W 1,p(Ω))3

v + w + z ≤ 0 in D

1

p

∫
Ω

|Dv|p +
1

p

∫
Ω

|Dw|p +
1

p

∫
Ω

|Dz|p −
∫

Ω

vf 1 −
∫

Ω

wf 2 −
∫

Ω

zf 3.

Note that this is similar to what we did before since (3.5) can be rewritten as

min
(v, w) ∈W 1,p(Ω)×W 1,p(Ω)

v + w ≤ in D

1

p

∫
Ω

|Dv|p +
1

p

∫
Ω

|Dw|p −
∫

Ω

vf+ −
∫

Ω

wf−.

We presented the details for only two masses since this simpler case shows how to handle the
main mathematical difficulties.

Remark 5.1. One can try to solve the optimal matching problem for the Euclidean distance
by taking the optimal matching measures for the cost |x− y|r with r > 1 (these are uniformly
convex costs) and then take the limit as r → 1. This passage to the limit seems delicate and
hence we preferred to perform instead the p−Laplacian approximation since it gives us not only
the optimal matching measure but also gives the Kantorovich potentials.
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mazon@uv.es

J. D. Rossi
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