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Abstract. We study the symmetry properties for solutions of elliptic systems of the
type 

−div(a1(x, |∇u1|(X))∇u1(X)) = F1(x, u1(X), . . . , un(X)),
...
−div(an(x, |∇un|(X))∇un(X)) = Fn(x, u1(X), . . . , un(X)),

where x ∈ Rm with 1 ≤ m < N , X = (x, y) ∈ Rm × RN−m, and F1, . . . , Fn are
the derivatives with respect to ξ1, . . . , ξn of some F = F (x, ξ1, . . . , ξn) such that for
any i = 1, . . . , n and any fixed (x, ξ1, . . . , ξi−1, ξi+1, . . . , ξn) ∈ Rm × Rn−1 the map
ξi → F (x, ξ1, . . . , ξi, . . . , ξn) belongs to C2(R). We obtain a Poincaré-type formula for
the solutions of the system and we use it to prove a symmetry result both for stable and
for monotone solutions.

1. Introduction

In this paper we deal with symmetry results for solutions to the following system of
partial differential equations defined in an open subset Ω of RN

(1)


−div(a1(x, |∇u1|(X))∇u1(X)) = F1(x, u1(X), . . . , un(X)),

...

−div(an(x, |∇un|(X))∇un(X)) = Fn(x, u1(X), . . . , un(X)).

Here x ∈ Rm with 1 ≤ m < N , X = (x, y) ∈ Rm × RN−m, and F1, . . . , Fn are the
derivatives with respect to ξ1, . . . , ξn of some F = F (x, ξ1, . . . , ξn) such that, for any
i = 1, . . . , n and any fixed (x, ξ1, . . . , ξi−1, ξi+1, . . . , ξn) ∈ Rm × Rn−1, the map ξi →
F (x, ξ1, . . . , ξi, . . . , ξn) belongs to C2(R). We also assume that

• ai ∈ L∞(Rm × [α−, α+]), for any α+ > α− > 0, i = 1, . . . , n;
• for any fixed t ∈ (0,+∞) and any i = 1, . . . , n, infx∈Rm ai(x, t) > 0;
• for any fixed x ∈ Rm and any i = 1, . . . , n, the map t→ ai(x, t) is C1 on (0,+∞).

The physical motivation for (1) comes from “fibered”, or “stratified” media: namely,
the medium, say Ω ⊂ RN , is nonhomogeneous, but this nonhomogeneity only occurs in
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The first author has been supported by EPSRC grant EP/K024566/1 “Monotonicity formula methods
for nonlinear PDE”. During the preparation of this paper the second author was supported by MIUR and
by Fondazione CaRiPaRo Project “Nonlinear Partial Differential Equations: models, analysis, and control-
theoretic problems”. The second author is now supported by ERC ADG GeMeThnES and GNAMPA .

1



2 SERENA DIPIERRO, ANDREA PINAMONTI

lower dimensional slices (here, the medium is supposed to be homogeneous with respect
to y ∈ RN−m and nonhomogeneous with respect to x ∈ Rm).

Systems similar to (1) have been studied in [5]. Precisely, the authors considered the
following system  ∆u = uv2,

∆v = vu2,
u, v > 0,

(2)

which arises in phase separation for multiple states Bose-Einstein condensates. They
proved that there exists a solution to (2) in R, which is nondegenerate and reflectionally
symmetric, namely that there exists x0 ∈ R such that u(x − x0) = v(x − x0). Moreover,
they obtained a result that may be seen as the analogue of a famous conjecture of De Giorgi
for problem (2) in dimension 2, that is they proved that monotone solutions of (2) in R2

(see Definition 1.2 below) have one-dimensional symmetry under the additional growth
condition

(3) u(x) + v(x) ≤ C(1 + |x|).
On the other hand, in [29], it has been proved that the linear growth is the lowest possible
for solutions to (2); in other words, if there exists α ∈ (0, 1) such that

u(x) + v(x) ≤ C(1 + |x|)α,
then u = v ≡ 0.

In [6] the authors replaced the monotonicity condition by the stability of the solutions
(which is a weaker assumption), showing that the above mentioned one-dimensional sym-
metry still holds in R2. Moreover, they proved that there exist solutions to (2) which do
not satisfy the growth condition (3), constructing solutions with polynomial growth.

We mention the paper [37], where the author showed that, for any n ≥ 2, a solution
to (2) which is a local minimizer and satisfies the growth condition (3) has one-dimensional
symmetry.

In [23] it is proved that the symmetry result stated in [5] holds also for a more general
class of nonlinearities.

Finally, in [16], the author considered a class of quasilinear (possibly degenerate) el-
liptic systems in Rn and proved that, under suitable assumptions, the solutions have
one-dimensional symmetry, showing that the results obtained in [5, 6, 23] hold in a more
general setting. We also refer the reader to [18], where symmetry results for systems driven
by non local operators are studied.

Results similar to the ones described above are also well-understood in the case of one
equation. In particular, in low dimensions, De Giorgi conjecture on the flatness of level sets
of standard phase transition ([15]) has been proved, see [2, 3, 4, 24, 25]. Later, Savin in [31]
showed that the conjecture is true up to dimension 8 under an additional hypothesis on
the behaviour of the solution at infinity. Finally, in dimension n ≥ 9 Del Pino, Kowalczyk
and Wei constructed a solution to the Allen-Cahn equation which is monotone in one
direction but not one-dimensional, see [14].

It is also worth noticing that an analogous of the De Giorgi conjecture has been studied
for more general operators. In particular, we mention [20], where quasilinear operators of
p-Laplacian and curvature type are considered, and [8, 33], where the authors proved a
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similar De Giorgi-type result for an equation involving the fractional Laplacian in dimen-
sion n = 2; see also [7, 9, 10] for further extensions.

First of all, we give the following definition:

Definition 1.1. An n−tuple (u1, . . . , un) is said to be a weak solution of (1) if, for any
ψ = (ψ1, . . . , ψn) ∈ C∞c (Ω,Rn),

∫
Ω

〈
ai(x, |∇ui|(X))∇ui(X),∇ψi(X)

〉
dX =

∫
Ω
Fi(x, u

1, . . . , un)ψi(X)dX, i = 1, . . . , n.

(4)

In order to state our results we start pointing out our assumptions. In particular, from
now on we will always assume that every weak solution (u1, . . . , un) of (1) is such that1

ui ∈ C1(Ω) ∩ C2(Ω ∩ {∇ui 6= 0}) ∩ L∞(Ω)

and ∇ui ∈ L∞(Ω,RN ) ∩W 1,2
loc (Ω,RN ), i = 1, . . . , n.

(5)

Moreover, we will also assume that, for every k = 1, . . . , n, the map

Ak : Rm × (RN \ {0}) −→Mat(N ×N)

defined by2

Akij = Akij(x, η) := ak(x, |η|)δij +
∂ak
∂t

(x, |η|)ηiηj
|η|

, 1 ≤ i, j ≤ N

is such that3

(x, y) = X → Ai(x,∇ui(X)) belongs to L∞({∇ui 6= 0} ∩BR)

for any R > 0 and any i = 1, . . . , n.
(6)

The following definition was introduced in [23].

Definition 1.2. A solution4 (u1, . . . , un) of (1) is said to be F−monotone if

i) for every i ∈ {1, . . . , n}, ∂yN−mui 6= 0 in Ω,

ii) for i < j, we have Fij ∂yN−m u
i∂yN−mu

j ≥ 0 in Ω.

As it is customary in this setting, we recall the notion of stability:

Definition 1.3. A solution (u1, . . . , un) of (1) is said to be stable if
n∑
i=1

∫
Ω

〈
Ai(x,∇ui(X))∇ψi(X),∇ψi(X)

〉
dX

−
n∑

i,j=1

∫
Ω
Fij(x, u

1, . . . , un)ψi(X)ψj(X)dX ≥ 0,

(7)

1At the end of this paper we present some explicit cases in which these assumptions are fulfilled.
2Here, as usual, Mat(N ×N) denotes the vector space of real N ×N matrices.
3Let us observe that condition (6) is implied if, for example, ∂ak

∂t
∈ L∞(Rm × [α−, α+]), for all α+ >

α− > 0.
4We recall that condition (5) is assumed throughout the paper.
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for any ψ = (ψ1, . . . , ψn) ∈ C∞c (Ω,Rn).

Let us note that (1) represents the Euler-Lagrange system associated to a suitable
energy functional I (see the appendix). In particular, the notion of stability given in
Definition 1.3 states that I has positive (formal) second variation (we refer to [2, 3, 20]
for more details, see also Lemma A.3 in the Appendix).

According to [11, 20, 34], for every fixed x ∈ Rm and c ∈ R, we define

Hu = Hu,x,c := {y ∈ RN−m | u(x, y) = c}
and

Lu = Lu,x,c := {y ∈ Hu | ∇yu(x, y) 6= 0}.
We also define

Ru := {(x, y) ∈ Ω | ∇yu(x, y) 6= 0}, Su :=

m∑
i=1

N−m∑
j=1

(uxiyj )
2 − |∇x|∇yu||2,

Tu :=
N−m∑
j=1

〈
∇u,∇uyj

〉2 − 〈∇u,∇|∇yu|〉2 , Uu :=

N−m∑
j=1

|∇uyj |2 − |∇|∇yu||2.

We recall that the tangential gradient along Lu, ∇L, is defined for every ȳ ∈ Lu and any
G : RN−m −→ R smooth in the vicinity of ȳ as

∇LG(ȳ) := ∇yG(ȳ)−
〈
∇yG(ȳ),

∇yu(x, ȳ)

|∇yu(x, ȳ)|

〉
∇yu(x, ȳ)

|∇yu(x, ȳ)|
,

and since Lu is a smooth (N −m − 1)−manifold we define, for every y ∈ Lu, the length
of the second fundamental form by

Ku(x, y) :=

√√√√N−m−1∑
j=1

k2
j (x, y),

where k1,u(x, y), . . . , kN−m−1,u(x, y) are the principal curvatures of Lu.

We are now in position to state our main results. We establish first a geometric in-
equality, which involves the tangential gradients and the curvatures of the level sets of the
solution. This inequality holds in every open set Ω ⊂ RN .

Theorem 1.4. Let (u1, . . . , un) be a weak stable solution of (1) satisfying (5).
Then, for each ψ = (ψ1, . . . , ψn) ∈ C∞c (Ω,Rn), we have

n∑
k=1

∫
R
uk

N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉
−
〈
Ak∇|∇yuk|,∇|∇yuk|

〉 (ψk)2(8)

−
n∑

k,j=1,j 6=k

∫
Ω
Fkj

(
(ψk)2

〈
∇yuj ,∇yuk

〉
− ψjψk|∇yuk||∇yuj |

)
≤
∫

Ω

n∑
k=1

〈
Ak∇ψk,∇ψk

〉
|∇yuk|2.
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Moreover,

n∑
k=1

∫
R
uk

[
ak(x, |∇uk|)(Suk +K2

uk |∇yu
k|2 + |∇L|∇yuk||2) +

∂ak
∂t (x, |∇uk|)
|∇uk|

Tuk

]
(ψk)2

≤
∫

Ω

n∑
k=1

〈
Ak∇ψk,∇ψk

〉
|∇yuk|2

−
n∑

k,j=1,j 6=k

∫
Ω
Fkj

(
(ψk)2|∇yuk||∇yuj | − ψjψk

〈
∇yui,∇yuk

〉)
.

Next, we state our symmetry results both for stable and for monotone solutions to (1).
In the proof of the subsequent theorems, we will use the geometric inequality in (8)
with Ω = RN .

Theorem 1.5. Let (u1, . . . , un) be a weak stable solution of (1) in the whole RN satisfy-
ing (5). Let us also assume that there exist non-zero functions θi ∈ C1(RN ), i = 1, . . . , n,
which do not change sign, such that for all i, j with 1 ≤ i < j ≤ n it holds

Fij(x, u
1(X), . . . , un(X)) θi(X) θj(X) ≥ 0, ∀X ∈ RN .(9)

Moreover, we assume that, for any i = 1, . . . , n, Ai(x,∇ui(X)) satisfies (6), it is positive
definite at almost any X ∈ RN and there exist C1, . . . , Cn ≥ 1 such that the largest

eigenvalue Ai(X) of Ai(x,∇ui(X)) satisfies∫
BR

Ai(X)|∇ui(X)|2dX ≤ CiR2(10)

for any R ≥ max{C1, . . . , Cn}.
Then, for each i = 1, . . . , n, there exist ūi : Rm × R −→ R and ωi : Rm −→ SN−m−1

such that

ui(X) = ui(x, y) = ūi(x, 〈ωi(x), y〉)
for any (x, y) ∈ Rm×RN−m. Moreover, each ωi(x) is constant in any connected component
of {∇yui 6= 0}.

Theorem 1.6. Let (u1, . . . , un) be a weak F−monotone solution of (1) in the whole RN
satisfying (5). We assume that, for any i = 1, . . . , n, Ai(x,∇ui(X)) satisfies (6), it is

positive definite at almost any X ∈ RN and Ai(X) satisfies (10).
Then, there exist ūi : Rm × R −→ R and ωi ∈ SN−m−1 such that

ui(X) = ui(x, y) = ūi(x, 〈ωi, y〉)

for any (x, y) ∈ Rm × RN−m.
If, in addition, there exists U ⊆ Rm × Rn open such that, for every j, k = 1, . . . , n,

Fjk > 0 (or Fjk < 0) in U , then ωj = ωk = ω.

Some comments are now in order. We start recalling that a result similar to the one
in Theorem 1.4 has been proved in [11, 12, 19, 20, 32, 34, 35] in the case of one equation
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and in [23, 17] for particular systems of equations. Precisely, a geometric inequality like
the one in (8) has been obtained in [23] in the case

ai(x, t) = 1, Fi(x, u
1, . . . , un) = Fi(u

1, . . . , un),

and in [17], for n = 2, in the case

ai(x, t) = ai(t), Fi(x, u
1, u2) = Fi(u

1, u2).

We also mention the papers [21, 22, 30], where an inequality similar to the one obtained
in Theorem 1.4 has been established for solutions to semilinear problems in Riemannian
and sub-Riemannian manifolds.

We remark that Theorems 1.5 and 1.6 generalize to fibered media the results contained
in [23, 17] and allow us to take into account more general systems than the ones considered
in [23, 17] (see also the appendix for some explicit examples).

We want to stress on the fact that among the operators considered in this paper there
is the p(x)-Laplacian, and therefore Theorems 1.5 and 1.6 apply to the regular solutions
of a system involving the p(x)-Laplacian. This case was not considered in the previous
works, and so in this setting our symmetry results are new.

The paper is organized as follows. In the next section we prove the geometric inequality
in Theorem 1.4. Sections 3 and 4 are devoted to the proof of Theorems 1.5 and 1.6.
Finally, there is an Appendix, which contains some comments on the assumptions made
in our theorems.

2. A geometric inequality: proof of Theorem 1.4

Aim of this section is to prove Theorem 1.4. We recall first the following lemma, which
has been proved in [11, 34, 35].

Lemma 2.1. For any u ∈ C2(Ω), the following equalities hold

N−m∑
j=1

〈
A∇uyj ,∇uyj

〉
− 〈A∇|∇yu|,∇|∇yu|〉 = a(x, |∇u|)Uu +

∂a
∂t (x, |∇u|)
|∇u|

Tu on Ru,

Uu − Su =
N−m∑
i,j=1

(uyiyj )
2 − |∇y|∇yu||2 = K2

u|∇yu|2 + |∇L|∇yu||2 on Ru.

Moreover, Su, Tu ≥ 0 on Ru.

In the sequel, we will need also the following result.

Proposition 2.2. Let (u1, . . . , un) be a weak solution of (1) satisfying (5). Suppose that,
for each i = 1, . . . , n, Ai verifies (6).
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Then, for every j = 1, . . . , N − m, the family (u1
yj , . . . , u

n
yj ) is a weak solution of the

following system

− div(A1(x,∇u1(X))∇u1
yj (X)) =

n∑
i=1

F1i(x, u
1(X), . . . , un(X))uiyj (X),

...

− div(An(x,∇un(X))∇unyj (X)) =

n∑
i=1

Fni(x, u
1(X), . . . , un(X))uiyj (X).

Proof. We need to prove that, for every ψ = (ψ1, . . . , ψn) ∈ C∞c (Ω,Rn), the following
equalities hold (we drop for short the dependence of Ai):

(11)



∫
Ω

〈
A1∇u1

yj (X),∇ψ1(X)
〉

=
n∑
i=1

∫
Ω
F1i(x, u

1(X), . . . , un(X))uiyj (X)ψ1(X),

...∫
Ω

〈
An∇unyj (X)∇ψn(X)

〉
=

n∑
i=1

∫
Ω
Fni(x, u

1(X), . . . , un(X))uiyj (X)ψn(X).

To this end, we fix i ∈ {1, . . . , N−m}, and we use (4) with (ψ1
yi , . . . , ψ

n
yi) as test functions.

Hence (dropping for short the dependence of Fj and aj), we have∫
Ω
Fj ψ

j
yi =

∫
Ω

〈
aj∇uj ,∇ψjyi

〉
= −

∫
Ω

〈
(aj∇uj)yi ,∇ψj

〉
= −

∫
Ω

〈
Aj∇uyi ,∇ψj

〉
.(12)

Moreover, ∫
Ω
Fj ψ

j
yi = −

∫
Ω

(Fj)yi ψ
j = −

n∑
k=1

∫
Ω
Fjk u

k
yi ψ

j ,(13)

and putting together (12) and (13) we get the thesis. �

Remark 2.3. By an easy density argument (see [12] for the details), we have that (11)

holds for any ψ = (ψ1, . . . , ψn) ∈W 1,2
0 (Ω,Rn).

Proof of Theorem 1.4: Let us fix 1 ≤ j ≤ N −m and ψ = (ψ1, . . . , ψn) ∈ C∞c (Ω,Rn).

Then, by (5), we have that ϕi := uiyj (ψ
i)2 ∈ W 1,2

0 (Ω). Hence, by Remark 2.3, we can

use ϕ = (ϕ1, . . . , ϕn) as a test function in (11). It follows that (dropping for short the
dependence of Ai and Fij), for any k = 1, . . . n,∫

Ω

〈
Ak∇ukyj ,∇(ukyj (ψ

k)2)
〉

=
n∑
i=1

∫
Ω
Fki u

i
yj u

k
yj (ψk)2.

Summing over j, we have

N−m∑
j=1

∫
Ω

〈
Ak∇ukyj ,∇(ukyj (ψ

k)2)
〉

=

n∑
i=1

∫
Ω
Fki (ψk)2

〈
∇yui,∇yuk

〉
,
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which implies∫
Ω
Fkk (ψk)2|∇yuk|2 =

N−m∑
j=1

∫
Ω

〈
Ak∇ukyj ,∇(ukyj (ψ

k)2)
〉

−
n∑

i=1,i 6=k

∫
Ω
Fki (ψk)2

〈
∇yui,∇yuk

〉
.

(14)

Using Stampacchia’s Theorem (see, for istance, [28, Theorem 6.19]), we get

∇|∇yuk| = 0 = ∇ukyj for a.e. x ∈ Rm, and a.e. y ∈ RN−m s.t. ∇yu(x, y) = 0.(15)

Hence, summing over k = 1, . . . , n in (14), we obtain

n∑
k=1

∫
Ω
Fkk (ψk)2|∇yuk|2 =

n∑
k=1

∫
R
uk

N−m∑
j=1

〈
Ak∇ukyj ,∇(ukyj (ψ

k)2)
〉

−
n∑

k,i=1,i 6=k

∫
Ω
Fki (ψk)2

〈
∇yui,∇yuk

〉
.

(16)

Using ϕk := |∇yuk|ψk, with ψ = (ψ1, . . . , ψn) ∈ C∞c (Ω,Rn), as a test function in (7)

(we point out that by the regularity assumptions on ui it follows that ϕi ∈ W 1,2
0 (Ω),

i = 1, . . . , n), and recalling (15), we obtain

0 ≤
n∑
k=1

∫
R
uk

〈
Ak∇|∇yuk|,∇|∇yuk|

〉
(ψk)2 +

〈
Ak∇ψk,∇ψk

〉
|∇yuk|2

+ 2
〈
Ak∇|∇yuk|,∇ψk

〉
|∇yuk|ψk

−
n∑

k,j=1,j 6=k

∫
Ω
Fkj |∇yuk||∇yuj |ψjψk −

n∑
k=1

∫
Ω
Fkk|∇yuk|2(ψk)2,

which together with (16) implies

0 ≤
n∑
k=1

∫
R
uk

〈
Ak∇|∇yuk|,∇|∇yuk|

〉
(ψk)2 +

〈
Ak∇ψk,∇ψk

〉
|∇yuk|2(17)

+
1

2

〈
Ak∇|∇yuk|2,∇(ψk)2

〉
+

n∑
k,j=1,j 6=k

∫
Ω
Fkj

(
(ψk)2

〈
∇yuj ,∇yuk

〉
− ψjψk|∇yuk||∇yuj |

)

−
n∑
k=1

∫
R
uk

N−m∑
j=1

(ψk)2
〈
Ak∇ukyj ,∇u

k
yj

〉
−

n∑
k=1

1

2

∫
R
uk

Ak
〈
∇|∇yuk|2,∇(ψk)2

〉
.
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Rewriting the inequality in (17) in a more compact form, we obtain

0 ≤
n∑
k=1

∫
R
uk

[(〈
Ak∇|∇yuk|,∇|∇yuk|

〉
−
N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉)
(ψk)2

+
〈
Ak∇ψk,∇ψk

〉
|∇yuk|2

]
+

n∑
k,j=1,j 6=k

∫
Ω
Fkj

(
(ψk)2

〈
∇yuj ,∇yuk

〉
− ψjψk|∇yuk||∇yuj |

)
,

which is the first part of the statement. For the second part, we observe that, by Lemma
2.1, we get〈

Ak∇|∇yuk|,∇|∇yuk|
〉
−
N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉
(18)

=− ak(x, |∇uk|)(Suk +K2
uk |∇yu

k|2 + |∇L|∇yuk||2)−
∂ak
∂t (x, |∇uk|)
|∇uk|

Tuk on Ruk .

Therefore, plugging (18), into (17) we get the thesis. �

3. Stable solutions and proof of Theorem 1.5

Recalling the definition of stable solutions to (1) given in (7), in this section we will
prove Theorem 1.5.

First, we recall the following lemma from [12].

Lemma 3.1. Let R > 0 and h : BR ⊂ RN −→ R be a nonnegative measurable function.
For any ρ ∈ (0, R), let

ξ(ρ) := 2

∫
Bρ

h(X)dX.

Then, ∫
BR\B√R

h(X)

|X|2
dX ≤

∫ R

√
R
t−3ξ(t)dt+

ξ(R)

R2
.

Proof of Theorem 1.5: In order to prove Theorem 1.5, we use the geometric inequality
in (8), with Ω = RN . Since Ak is positive definite, inequality (8) becomes

n∑
k=1

∫
R
uk

N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉
−
〈
Ak∇|∇yuk|,∇|∇yuk|

〉 (ψk)2(19)

−
n∑

k,j=1,j 6=k

∫
RN

Fkj

(
(ψk)2

〈
∇yuj ,∇yuk

〉
− ψjψk|∇yuk||∇yuj |

)
≤

n∑
k=1

∫
RN
Ak|∇ψk|2|∇yuk|2.
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By Lemma 3.1 in [11], we have

N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉
−
〈
Ak∇|∇yuk|,∇|∇yuk|

〉
≥ 0, k = 1, . . . , n.

Moreover, by (9), we have that there exist non-zero functions θ1, . . . , θn ∈ C1(RN ) with
constant sign such that

Fij θ
i θj ≥ 0, ∀i, j ∈ {1, . . . , n}, i < j.(20)

For any R > 1, we define ηR : RN −→ R as

ηR(X) :=


1 if X ∈ B√R,

2
logR− log |X|

logR
if X ∈ BR \B√R,

0 if X ∈ RN \BR,
and consider

ηiR := sgn(θi)ηR,(21)

where sgn(x) is the Sign function. It follows that, for each i = 1, . . . , n, ηiR ∈ C∞c (BR),
0 < |ηiR(X)| < 1 for any X ∈ RN , and

|∇ηiR(X)| ≤ χR(X)

2|X| logR
,

where

χR(X) :=

{
1 if X ∈ BR \B√R,
0 otherwise.

Moreover, from (20), we have

Fij sgn(θi) sgn(θj) ≥ 0, ∀i, j ∈ {1, . . . , n}, i < j.

Using (21) as a test function in (19), and observing that

Fkj sgn(θk) sgn(θj) = sgn(Fkj)Fkj ,

we get

n∑
k=1

∫
R
uk

N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉
−
〈
Ak∇|∇yuk|,∇|∇yuk|

〉(ηkR)2
(22)

−
n∑

k,j=1,j 6=k

∫
RN

(
sgn(Fkj)

〈
∇yuj ,∇yuk

〉
− |∇yuk||∇yuj |

)
Fkj sgn(Fkj) η

2
R

≤ 1

4 log2R

n∑
k=1

∫
BR\B√R

Ak|∇yuk|2

|X|2

≤C 1

logR
,
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where in the last inequality we have used the fact that |∇yu|2 ≤ |∇u|2, Lemma 3.1 with

h(X) := Ak|∇yuk|2 and the assumption (10).
Sending R→ +∞ in (22), we conclude that

(23)
N−m∑
j=1

〈
Ak∇ukyj ,∇u

k
yj

〉
−
〈
Ak∇|∇yuk|,∇|∇yuk|

〉
= 0, a.e. in Ruk , k = 1, . . . , n,

and

(24)
(
sgn(Fkj)

〈
∇yuj ,∇yuk

〉
− |∇yuk||∇yuj |

)
sgn(Fkj)Fkj = 0, a.e. in RN ,

for any k, j = 1, . . . , n, with j 6= k.
By (23) and Corollary 3.2 in [11], we obtain that, for any level set L of uk and any

X ∈ Ruk ∩ L,

Kuk = 0 = |∇L|∇yuk||.
Therefore, using Lemma 2.11 in [20], this implies that, for each k = 1, . . . , n, there exist
ωk : Rm −→ SN−m−1 and ūk : Rm × R −→ R such that

uk(x, y) = ūk(x, 〈ωk(x), y〉).
Moreover, by Lemma A.1 in [12] we have that each ωk(x) is constant in any connected

component of {∇yuk 6= 0}. This concludes the proof. �

There are some cases in which the directions ω1, . . . , ωn may be related or may coincide.
In fact, as a corollary of Theorem 1.5, we prove that this happens under some additional
assumptions on the functions Fkj . For this, we denote by =(u1, . . . , un) the image of the

map (u1, . . . , un) : RN → Rn, that is

=(u1, . . . , un) :=
{

(u1(X), . . . , un(X)), X ∈ RN
}
.

Then, the following symmetry result holds:

Corollary 3.2. Under the assumptions of Theorem 1.5, we assume that, for every x ∈ Rm
and for every j, k = 1, . . . , n, j 6= k,

there exist open intervals Ix1 , . . . , I
x
n ⊂ R such that (Ix1 × . . .× Ixn) ∩ =(u1, . . . , un) 6= ∅

and Fkj(x, u1, . . . , un) > 0 (or Fkj(x, u1, . . . , un) < 0)

for any (u1, . . . , un) ∈ Ix1 × . . .× Ixn.

(25)

Then there exist Cjk : RN −→ R and Djk : Rm −→ {−1, 1} such that

∇yuj(X) = Cjk(X)∇yuk(X) and ωj(x) = Djk(x)ωk(x).(26)

If, in addition, I :=
⋂n
i=1{∇yui 6= 0} 6= ∅ is connected, then ω1 ≡ . . . ≡ ωn in I.

Proof. By Theorem 1.5, for each j, k = 1, . . . , n,

uj(x, y) = ūj(x, 〈ωj(x), y〉), uk(x, y) = ūk(x, 〈ωk(x), y〉),(27)

for some ūj , ūk : Rm × R −→ R and ωj , ωk : Rm −→ SN−m−1.
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Now, for any fixed x ∈ Rm, arguing as in the proof of the second part of Theorem
1.8 in [18], one can prove that there exists a non-empty open set V ⊂ RN−m such that
ui(x, y) ∈ Ixi and ∇yui(x, y) 6= 0, for all y ∈ V and i = 1, . . . , n.

Therefore, using (24) and (25), we obtain that there exists y∗ ∈ V such that

sgn(Fkj)
〈
∇yuj(x, y∗),∇yuk(x, y∗)

〉
− |∇yuk(x, y∗)||∇yuj(x, y∗)| = 0,(28)

for any j, k = 1, . . . , n, j 6= k. Moreover, from (27), we have that ∇yuj(x, y∗) is propor-

tional to ωj(x) and ∇yuk(x, y∗) is proportional to ωk(x). Hence, (28) together with (27)
implies (26).

If I 6= ∅ is connected, we have that

ωi(x) = ωi, i = 1, . . . , n,

because, from Theorem 1.5, we know that each ωi is constant in any connected component
of
{
∇yui 6= 0

}
.

Now, plugging the functions in (27) into (28), we have that

|∂zuj ||∂zuk|
(
± 〈ωj , ωk〉 − 1

)
= 0, j, k = 1, . . . , n, j 6= k,

where ∂zu
i denotes the derivative of the function ui with respect to the last variable.

Therefore, from the last equality, we deduce that, for every j, k = 1, . . . , n,

〈ωj , ωk〉 = ±1, in I.

If ωk = −ωj , we have that uj(x, y) = uj(x, 〈ωj , y〉) and uk(x, y) = uk(x, 〈−ωj , y〉); then,

we can define ũk(x, y) := uk(x,−y), and obtain uk(x, y) = ũk(x, 〈ωj , y〉). This means that

we can take ωj = ωk up to renaming the function that describes uk. Hence, we have that
ωj = ωk for every j, k = 1, . . . , n, and this concludes the proof. �

4. Monotone solutions and proof of Theorem 1.6

In this section we prove our symmetry result for monotone solutions to (1). First of all,
we show that F−monotonicity implies stability (see Definitions 1.2 and 1.3).

Proposition 4.1. If (u1, . . . , un) is a F−monotone solution of (1), then it is also stable.
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Proof. Choosing ψi :=
ξ2i

uiyN−m
∈W 1,2

0 (Ω) in (11), where ξi ∈ C∞c (Ω) 5, we obtain

n∑
j=1

∫
Ω
Fij

ujyN−m
uiyN−m

ξ2
i =

∫
Ω

〈
Ai∇uiyN−m ,

(∇ξ2
i )uiyN−m − ξ

2
i ∇uiyN−m

(uiyN−m)2

〉
(29)

= −
∫

Ω

ξ2
i

(uiyN−m)2

〈
Ai∇uiyN−m ,∇u

i
yN−m

〉
+ 2

∫
Ω

ξi
uiyN−m

〈
Ai∇uiyN−m ,∇ξi

〉
≤
∫

Ω

〈
Ai∇ξi,∇ξi

〉
,

where in the last inequality we have used the fact that since Ai is positive definite then
the following inequality holds for each a ∈ R, v, w ∈ RN , i ∈ {1, . . . , n}:

2a
〈
Aiv, w

〉
− a2

〈
Aiw,w

〉
−
〈
Aiv, v

〉
=
〈
Ai(v − aw), aw − v

〉
≤ 0.

Summing over i ∈ {1, . . . , n} in (29), we get

n∑
i,j=1

∫
Ω
Fij

ujyN−m
uiyN−m

ξ2
i ≤

n∑
i=1

∫
Ω

〈
Ai∇ξi,∇ξi

〉
, ∀ξi ∈ C∞c (Ω).(30)

Moreover,

n∑
i,j=1

Fij
ujyN−m
uiyN−m

ξ2
i =

n∑
i,j=1

Fij u
i
yN−mu

j
yN−m

ξ2
i

(uiyN−m)2
(31)

=

n∑
i=1

Fii ξ
2
i +

∑
i<j

Fij u
i
yN−m u

j
yN−m

(
ξ2
i

(uiyN−m)2
+

ξ2
j

(ujyN−m)2

)

≥
n∑

i,j=1

Fij ξi ξj ,

where in the last inequality we have used ii) of the definition of F−monotone. Putting
together (30) and (31) we get the thesis. �

Proof of Theorem 1.6: By Proposition 4.1, every monotone solution of (1) is also sta-
ble. Moreover, the assumption in (9) is verified (it is enough to take θi := uiyN−m ,

θj := ujyN−m which belong to C1(RN ) thanks to (5)). Then, the hypotheses of Theo-

rem 1.5 are satisfied, and therefore we conclude that there exist ūi : Rm × R −→ R and
ωi ∈ SN−m−1 such that

ui(X) = ui(x, y) = ūi(x, 〈ωi, y〉)(32)

for any (x, y) ∈ Rm × RN−m, i ∈ {1, . . . , n}.

5We explicitly observe that this is possible thanks to Remark 2.3, moreover ψi is well defined by i) in
the definition of F−monotone.
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Let us now assume that there exists U ⊆ Rm × Rn open such that, for every j, k =
1, . . . , n, Fjk > 0 (or Fjk < 0) in U . Using (24) and (32), we get

±|∂zuj ||∂zuk| 〈ωj , ωk〉 = |∂zuj ||∂zuk| in U,

which implies 〈ωj , ωk〉 = ±1, and hence ωj = ωk = ω (see the comments at the end of the
proof of Corollary 3.2). This concludes the proof. �

Appendix A

In this appendix we analyze the assumptions made in Section 1 in order to get our
symmetry results.

A.1. Optimality of the assumptions. We start observing that the regularity assump-
tions (5) are fulfilled in a lot of interesting cases. Precisely, let (u1, . . . , un) be a solution
of (1) with ui ∈W 1,pi(Ω) ∩ L∞(Ω), and define

bji (x,∇u
i(X)) := ai(x, |∇ui|(X))∂ju

i(X), Gi(X) := Fi(x, u
1(X), . . . , un(X)).

Let us assume that for every i = 1, . . . , n

bji ∈ C
0(Rm × RN ) ∩ C1(Rm × RN \ {0}), j = 1, . . . , N(33)

N∑
j,k=1

∂bji
∂ηk

(x, η)ξjξk ≥ σ(k + |η|)pi−1|ξ|2,(34)

N∑
j,k=1

∣∣∣∣∣ ∂bji∂ηk
(x, η)

∣∣∣∣∣ ≤ Γ(k + |η|)pi−2,(35)

N∑
j,k=1

∣∣∣∣∣ ∂bji∂xk
(x, η)

∣∣∣∣∣ ≤ Γ(k + |η|)pi−2|η|,(36)

|Gi(X)| ≤ Γ,(37)

for all η ∈ RN \ {0}, ξ ∈ RN , X ∈ RN , with pi ≥ 2, k ∈ [0, 1], Γ, σ > 0.
Then, by [16, 27, 36, 26], we conclude that ui ∈ C1(RN ) ∩ C2({∇ui 6= 0}) for each

i = 1, . . . , n.
Moreover, using (2.2.2) in [36] and Theorem 1.1 and Proposition 2.2 in [13], we conclude

that also the assumption ui ∈ W 1,2
loc (RN ) is always verified if either {∇ui = 0} = ∅ for

i = 1, . . . , n or 1 < p < 3.
Therefore, the functions ui satisfy the regularity assumptions in (5) provided the con-

ditions in (33)-(37) hold.
It is interesting to note that, as in the scalar case, the assumption |∇u| ∈ L∞(Ω) cannot

be removed. Indeed, without such an assumption, one can find a solution which is not
one-dimensional, according to the following proposition (see Proposition 3.1 in [20]):

Proposition A.1. Let k > 0 and ψ ∈ C1((k,+∞)) satisfying ψ̇(t) > 0 in (k,+∞)
and limt→+∞ ψ(t) = +∞. Then, there exists a ∈ C1((0,+∞)) strictly positive, and
u ∈ C2(RN ) which is a stable solution of

−div
(
a(|∇u(X)|)∇u(X)

)
= N
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and such that |∇u(X)| = ψ(|X|) for any |X| suitably large.
Moreover, u does not possess one-dimensional symmetry.

We also mention that, proceeding exactly as in [20, 17], the assumption on the reg-
ularity of F , i.e. for any (x, ξ1, . . . , ξi−1, ξi+1, . . . , ξn) ∈ Rm × Rn−1 the map ξi →
F (x, ξ1, . . . , ξi, . . . , ξn) belongs to C2(R), can be weakened requiring that the map ξi →
F (x, ξ1, . . . , ξi, . . . , ξn) is only C1,1

loc (R). Notice that the extension to locally Lipschitz non-
linearities could be very interesting from a physical viewpoint; indeed, very often, physical
applications are run by locally Lipschitz forces.

A.2. On the F−monotonicity condition. Proceeding in our discussion about the con-
sistency of assumptions made in Section 1, it is worth noticing that, as pointed out in [23],
the notion of F−monotonicity (see Definition 1.2) seems to be crucial in order prove that
a solution is one-dimensional. Indeed, let us consider the following system

−∆u+∇F (u) = 0 in R2,(38)

where F : R2 −→ R is defined by:

F (x1, x2) := (x1 − 1)2x2
2 + (x2

2 − 1)2.

Then, F does not satisfy condition ii) in the Definition 1.2, indeed

F12(x1, x2) = 4x2(x1 − 1).

Moreover,

F ∈ C2(R2), F ((1, 1)) = 0, F ((1,−1)) = 0, F (ξ) > 0 for ξ 6= (1, 1), (1,−1),

∇2F ((1, 1)) ≥ I, ∇2F ((1,−1)) ≥ I
∇F (ξ) · ξ ≥ 0 for |ξ| ≥ R0, for some R0 > 1,

which, by [1, Theorem 1.1], imply that there exist entire solutions (u1, u2) of (38) which
are not one-dimensional.

A.3. Minimizers and stable solutions. We point out some conditions which ensure
the validity of (10). As mentioned in the introduction, the system in (1) is associated to
a suitable energy functional. Precisely, let us define

λi1(x, t) :=
∂ai
∂t

(x, t)t+ ai(x, t), λi2(x, t) := ai(x, t), i = 1, . . . , n,

and

Λi2(x, t) :=

∫ t

0
λi2(x, |τ |)τ dτ.

Then, it is a matter of computations that the energy functional related to (1) is

IΩ(u1, . . . , un) :=

n∑
i=1

∫
Ω

Λi2(x, |∇ui|)− F (x, u1, . . . , un).(39)

According to [12], we give the following definition:
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Definition A.2. A family (u1, . . . , un) is said to be a local minimizer for IΩ if, for any
bounded open set U ⊂ Ω, IU (u1, . . . , un) is well-defined and finite, and

IU (u1 + ψ1, . . . , un + ψn) ≥ IU (u1, . . . , un)

for any (ψ1, . . . , ψn) ∈ C∞c (U,Rn).

The following lemma is the exact counterpart for systems of the result proved in [12,
Lemma B.1] for the case of one equation.

Lemma A.3. Let Ω ⊂ RN be an open set. If (u1, . . . , un) is a local minimizer of IΩ, then
(u1, . . . , un) is a weak solution of (1) and is stable.

Proof. We start proving that every local minimizer u = (u1, . . . , un) of IΩ is a weak solution
of (1). To this end, let U ⊂ Ω be open and bounded and consider ψ ∈ C∞c (U). Then, for
every i = 1, . . . , n, we get

d

ds

∣∣∣
s=0

IU (u1, . . . , ui + sψ, . . . , un) = 0,

and, recalling the definition of IU in (39),∫
Ω
ai(x, |∇ui|(X))

〈
∇ui(X),∇ψ(X)

〉
dX =

∫
Ω
Fi(x, u

1, . . . , un)ψ(X) dX,

which is the first part of the thesis.
Finally, for every ψ = (ψ1, . . . , ψn) ∈ C∞c (U,Rn),

0 ≤ d2

ds2

∣∣∣
s=0

IU (u1 + sψ1, . . . , un + sψn)

=

n∑
i=1

d

ds

∣∣∣
s=0

∫
Ω

(
ai(x, |∇ui + s∇ψi|(X))

〈
∇ui + s∇ψi,∇ψi

〉
− Fi(x, u1 + sψ1, . . . , un + sψn)ψi(X)

)
dX

=

n∑
i=1

∫
Ω

〈
Ai(x,∇ui(X))∇ψi(X),∇ψi(X)

〉
dX

−
n∑

i,j=1

∫
Ω
Fij(x, u

1, . . . , un)ψi(X)ψj(X) dX,

and the proof is accomplished. �

In the following proposition we give a sufficient condition for the assumption (10) to
hold for local minimizers.

Proposition A.4. Let N ≤ 3, and assume that, for each i = 1, . . . , n, there exists Ci > 0
such that

λi1(x, t) > 0, ∀x ∈ Rm, t ∈ (0,+∞),(40)

λi1(x, t)t2, λi2(x, t)t2 ≤ CiΛi2(x, t), ∀x ∈ Rm, t ∈ (0, Ci].(41)
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Moreover, we assume that for all x ∈ Rm, and s, t ∈ [0,+∞)

Λi2(x, s) ≥ 0,(42)

Λi2(x, s+ t) ≤ C̄i
[
Λi2(x, s) + Λi2(x, t)

]
,(43)

Λi2(x, s) ≤ αi(x)gi(s),(44)

for some C̄i > 0, αi ∈ L∞loc(Rm) and gi : [0,+∞) −→ R monotone increasing. Finally, for
all x ∈ Rm and ξ ∈ Rn, we suppose that the following holds

F (x, ξ) ≤ 0,(45)

F (x, ξ) = 0, ∀x ∈ Rm, ∀ξ ∈ Sn−1,(46)

and

sup
x∈Rm,|ξ|≤1

|F (x, ξ)| ≤ +∞.(47)

Then, assumption (10) is satisfied for every local minimizer (u1, . . . , un) of IRN such
that |ui|+ |∇ui| ≤M , i = 1, . . . , n.

Proof. We start observing that, for each i = 1, . . . , n, and x ∈ Rm, if ξ, v ∈ RN with
|v| ≤ 1 and |ξ| ≤M , then

|ξ|2
〈
Ai(x, ξ)v, v

〉
≤ CMΛi2(x, |ξ|).(48)

Indeed, by a simple calculation we get

|ξ|2
〈
Ai(x, ξ)v, v

〉
=
∂ai
∂t

(x, |ξ|)|ξ| 〈ξ, v〉2 + ai(x, |ξ|)|v|2|ξ|2

= λi1(x, |ξ|) 〈ξ, v〉2 + λi2(x, |ξ|)
[
|v|2|ξ|2 − 〈ξ, v〉2

]
≤
(
λi1(x, |ξ|) + λi2(x, |ξ|)

)
|v|2|ξ|2

≤ CMΛi2(x, |ξ|),

where in the last inequality we have used (41) and the fact that |v| ≤ 1.
Let R > 1 and take ψ = (ψ1, . . . , ψn) ∈ (C∞c (RN ))n with the property that, for each

i = 1, . . . , n, ψi = −1 in BR−1, ψi = 1 on ∂BR and |∇ψi| ≤ M in BR \ BR−1. Let us
define

vi(X) := min{ui(X), ψi(X)}, i = 1, . . . , n,

and observe that, by the minimality of u and (45),

n∑
i=1

∫
BR

Λi2(x, |∇ui|) ≤ IBR(u1, . . . , un) ≤ IBR(v1, . . . , vn).
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By (42), (46),(43) and (47) we get

n∑
i=1

∫
BR

Λi2(x, |∇ui|) ≤
∫
BR\BR−1

n∑
i=1

Λi2(x, |∇vi|)− F (x, v1, . . . , vn)

≤ max{C̄i}
∫
BR\BR−1

n∑
i=1

(
Λi2(x, |∇ui|) + Λi2(x, |∇ψi|)

)
+ sup

Rm×Q
|F |,

where Q := [−1, 1]× · · · × [−1, 1] is the cube in Rn. Using (44), we obtain

n∑
i=1

∫
BR

Λi2(x, |∇ui|) ≤ max{C̄i}
∫
BR\BR−1

n∑
i=1

αi(x)
(
gi(|∇ui|) + gi(|∇ψi|)

)
+ sup

Rm×Q
|F |

(49)

≤ 2 max{C̄i}
∫
BR\BR−1

n∑
i=1

gi(M) sup
x
αi + sup

Rm×Q
|F |

≤ CRN−1,

for some C > 0. Finally, thanks to (48), (49) and the fact that Ai is positive definite, we
have ∫

BR

|∇ui|2
〈
Ai(x,∇ui)v, v

〉
≤ CRN−1,

and, taking as v the normalized eigenvector corresponding to Ai, we get the thesis. �

We conclude this Appendix providing an example of functional which satisfies the hy-
potheses in Proposition A.4, and hence the assumption (10), obtaining, from Theorem 1.5,
the one-dimensional symmetry for local minimizers.

Corollary A.5. Let N ≤ 3, and let α ∈ L∞(Rm) be strictly positive, and F ∈ C2(R2)
such that G := αF satisfies (45)-(47). Suppose that F12 does not change sign.

For every p1, p2 ∈ (1, 3), let us define the functional

IRN :=

∫
RN
|∇u1(X)|p1 + |∇u2(X)|p2 − α(x)F (u1(X), u2(X))dX.

Then, for every local minimizer (u1, u2) of IRN such that u1 ∈ W 1,p1(RN ) ∩ L∞(RN ),
u2 ∈W 1,p2(RN )∩L∞(RN ), with |∇u1|, |∇u2| ∈ L∞(RN ), there exist u1

0, u
2
0 : Rm×R −→ R

and ω1, ω2 : Rm → SN−m−1 such that

u1(x, y) = u1
0(x, 〈ω1(x), y〉), u2(x, y) = u2

0(x, 〈ω2(x), y〉),

for any (x, y) ∈ Rm × RN−m. Moreover, ωi, i = 1, 2, is constant in any connected
component of

{
∇yui 6= 0

}
.

Proof. The proof easily follows from Theorem 1.5 and Proposition A.4 . Indeed,

Λ1
2(x, t) = |t|p1 , Λ2

2(x, t) = |t|p2
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satisfy conditions (42), (43), (44) and

λ1
1(x, t) = (p1 − 1)|t|p1−2, λ2

1(x, t) = (p2 − 1)|t|p2−2,

λ1
2(x, t) = |t|p1−2, λ2

2(x, t) = |t|p2−2

satisfy (40) and (41). Moreover, as proved in [11], both A1,A2 are positive definite for
every p1, p2 > 1 and satisfy (6) when p1, p2 ≥ 2, and even for p1, p2 > 1 as long as
{∇u1 = 0} = {∇u2 = 0} = ∅. �
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