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Abstract

In this paper we describe the asymptotic behavior of rigid spin lattice energies by
exhibiting a continuous interfacial limit energy as scaling to zero the lattice spacing.
The limit is not trivial below a percolation threshold: it can be characterized by two
phases separated by an interface. The macroscopic surface tension at this interface is
defined through a first-passage percolation formula, related to the chemical distance
on the lattice Z2. We also show a continuity result, that is the homogenization of
rigid spin system is a limit case of the elliptic random homogenization.

1 Introduction

In the context of Variational theories in Materials Science it is often necessary to model
media with fine microstructure and to describe their properties via averaged effective
energies. This is the main goal of Homogenization theory (see e.g. [8, 13]). In some cases
periodic microstructure is not sufficient, so that random media have to be considered.

The model problem that we have in mind is that of a crystalline two-dimensional
solid subject to fracture. We suppose that the relevant scale is that of the surface
(fracture) energy so we may neglect the elastic energy of the lattice (this can be taken
separately into account as in the paper [10]). In this case, depending on the applied
forces or boundary displacement of the sample, a fracture may appear, separating two
regions where the displacement is constant. In the Griffith theory of Fracture (see [18])
the energy necessary for the creation of a crack is proportional to its area; in a discrete
setting this is translated in the number of atomic bonds that are broken. In our model,
at the atomistic level, there is a random distribution of ‘strong’ unbreakable bonds and
‘weak’ (ferromagnetic) breakable bonds. This model translates into a rigid spin problem,
where the two values of the spin parametrize the two regions of constant displacement
of the crystal. We note that in this problem the random distribution of rigid or weak
bonds is considered as fixed and as characteristic of the crystalline material, so that we
are interested in almost sure properties of the overall energies when the measure of the
sample is large with respect to the atomic distance.
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The way we will describe the overall behavior of this system is by scaling the domain
lattice by a small parameter ε and introducing the corresponding scaled energies, and
then compute the variational limit (Γ-limit) of such energies, which is defined on the
continuum and it can be considered as an effective energy.

The microscopic energy under examination can be written as∑
ij

σωij(1− uiuj), (1.1)

where ui ∈ {±1} is a spin variable indexed on the lattice Z2, the sum runs on nearest
neighbors (i.e. |i− j| = 1) in a given portion Ω∩Z2 of Z2, the coefficients σωij depend on
the realization ω of an independent and identically distributed (i.i.d.) random variable
and

σωij =

{
+∞ with probability p

1 with probability 1− p,

with p ∈ [0, 1] fixed and the convention +∞ · 0 = 0. In place of (1.1) we could consider
the energies

−
∑
ij

σωijuiuj , (1.2)

but in this case, just to avoid ambiguities in the sum, σωij = +∞ forces ui = uj and this
gives a constraint for the problem.

In recent papers Braides and Piatnitski [11, 12] treated the cases of elliptic random
spin energies, that is with equi-bounded strictly positive random coefficients, and of dilute
spin energies, with random coefficients given by

σ̃ωij =

{
1 with probability p

0 with probability 1− p.

In order to describe the behavior as the size of Ω diverges we introduce a scaled
problem, as is customary in the passage from lattice systems to continuous variational
problems, in which, on the contrary, Ω is kept fixed, but scaled energies are defined as
follows. A small parameter ε > 0 is introduced, the lattice is scaled accordingly to εZ2,
and the energies (1.1) are scaled (after multiplying by 2) to

Eωε (u) :=
∑
ij

εσωij(ui − uj)2. (1.3)

Note that uniform states (which are pointwise minimizers of the “integrand”) have zero
energy; moreover, the “surface scaling” ε is driven by the knowledge that for p = 0 (i.e.,
for ferromagnetic interactions) the Γ-limit with that scaling is not trivial (as shown e.g.
by Alicandro, Braides and Cicalese [1]). After this scaling, the sum is taken on
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nearest neighbors in Ω ∩ εZ2, and the normalization allows also to consider Ω = R2 (in
this case the domain of the energy is composed of all u which are constant outside a
bounded set).

The coarse graining of these energies corresponds to a general approach in the theory
of Γ-convergence for lattice system where the discrete functions u = {ui} are identified
with their piecewise-constant extensions, and the scaled lattice energies with energies
on the continuum whose asymptotic behavior is described by taking L1-limits in the u
variable and applying a mesoscopic homogenization process to the energies. A general
theory for interfacial energies by Ambrosio and Braides [2] suggests the identification
of limit energies with functionals of the form∫

Ω∩∂{u=1}
ϕ(x, ν) dH1,

with ν the normal to ∂{u = 1}.
Our analysis will be carried out by using results from Percolation theory. Percolation

is a model for random media (see [19, 23]). We are interested in bond percolation on
the square lattice Z2: we view Z2 as a graph with edges between neighboring vertices,
and all edges are, independently of each other, chosen to be ‘strong’ with probability
p and ‘weak’ with probability 1 − p. A weak path is a sequence of consecutive weak
edges, a weak cluster is a maximal connected component of the collection of weak edges.
Percolation exhibits a phase transition: there exists a critical value of probability pc, the
percolation threshold, such that if p < pc then with probability one there exist a unique
infinite weak cluster, while if p > pc then all the weak clusters are finite almost surely.
For bond percolation on Z2, the percolation threshold is given by pc = 1

2 .
Actually, the structure of the Γ-limit of the energies (1.3) depends on probability

through the percolation threshold. Above the percolation threshold the Γ-limit is +∞
on the functions not identically equal to 1 or -1. Below the percolation threshold instead
the coarse graining leads first to showing that indeed we may define a limit magnetization
u taking values in {±1}. This u is obtained as a L1-limit on the scaled infinite weak
cluster, thus neglecting the values ui on nodes i isolated from that cluster. The surface
tension is obtained by optimizing the almost sure contribution of the interfaces, and
showing that it can be expressed as a first-passage percolation problem, so that the limit
is of the form ∫

Ω∩∂{u=1}
λp(ν) dH1. (1.4)

The Γ-lim inf inequality is obtained by a blow-up argument. We perform a construction
based on the Channel property (Theorem 4.2) which allows to modify the test sets in
order to get a ‘weak’ boundary, avoiding bonds with infinite energy. This is useful also
for the construction of a recovery sequence.

This type of variational percolation results can be linked to the paper by Braides
and Piatnitski [10] where discrete fracture of a membrane is studied and linked to
large deviations for the chemical distance in supercritical Bernoulli percolation. The
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value λp(ν) is defined through the asymptotic behavior of the chemical distance (that is,
the distance on the infinite weak cluster) between a pair of points aligned with ν. The
general framework for first-passage percolation and chemical distance can be found in
[20, 21]. The result of this paper is that in the subcritical case, a crack in the crystal
may appear following a minimal path on the infinite weak cluster and the microscopical
pattern of the lattice (this fact justifies the anisotropy of the fracture energy (1.4)). In
the supercritical case, instead, the solid almost surely is rigid and there is no fracture.

The paper is organized as follows. In Section 2 we fix notation and recall some
definitions and results from Geometric Measure Theory and Γ-convergence in dimension
d ≥ 2, even though the main result of this paper holds in R2. In Section 3 we present the
setting of the problem describing the energies that we will consider. Section 4 contains
some results from percolation theory necessary for the computations. Section 5 contains
the proof of the main result: in the subcritical regime (that is, for p < pc), the energies
Γ-converge to a deterministic anisotropic perimeter whose density is obtained by means
of an asymptotic first-passage percolation formula related to the chemical distance on
the lattice; in the supercritical regime (that is, for p > pc), the Γ-limit is identically
+∞. In Section 6 we show that the homogenization of rigid spin systems is actually a
limit case of the elliptic random homogenization of spin systems; that is, the behavior
of a rigid spin system is approximated by that of an elliptic spin system with one of the
interaction coefficients very large. The proof of this new “continuity” property of the
surface tension (Proposition 6.5) essentially relies on a percolation result (Lemma 6.1).

2 Notation

Let d ≥ 2. If A is a measurable subset of Rd, we denote its d-dimensional Lebesgue
measure indifferently by Ld(A) or |A|. Hk denotes the k-dimensional Hausdorff measure.
Bρ(x) is the open ball of center x and radius ρ and Sd−1 is the boundary of B1(0). If
ν ∈ S1, Qνρ(x) is the square centered at x, of side length ρ and one side orthogonal to ν,
that is

Qνρ(x) = {y ∈ R2 : |〈y − x, ν〉| ≤ ρ/2, |〈y − x, ν⊥〉| ≤ ρ/2},

where ν⊥ = (−ν2, ν1) denotes the clockwise rotation by π/2 of ν.

2.1 Functions of bounded variation and sets of finite perimeter

For the general theory of functions of bounded variation and sets of finite perimeter we
refer to [3, 5]; we recall some definitions and results necessary in the sequel. Let Ω be
an open subset of Rd. We say that u ∈ L1(Ω) is a function of bounded variation if its
distributional first derivatives Diu are Radon measures with finite total variation in Ω.
We denote this space by BV (Ω) and we write u ∈ BV (Ω; {±1}) when the function u is
of bounded variation in Ω and takes only the values -1 and +1.
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Let u : Ω −→ R be a Borel function. We say that z ∈ R is the approximate limit of
u at x if for every ε > 0

lim
ρ→0+

ρ−dLd({y ∈ Bρ(x) ∩ Ω : |u(y)− z| > ε}) = 0.

We define the jump set S(u) of function u as the subset of Ω where the approximate
limit of u does not exist. It turns out that S(u) is a Borel set and Ld(S(u)) = 0. If
u ∈ BV (Ω), then S(u) is countably (d − 1)-rectifiable; that is, S(u) = N ∪

(⋃
i∈NKi

)
,

where Hd−1(N) = 0 and (Ki) is a sequence of compact sets, each contained in a C1

hypersurface Γi. A normal unit vector νu to S(u) exists Hd−1-almost everywhere on
S(u), in the sense that, if S(u) is represented as above, then νu(x) is normal to Γi for
Hd−1-almost everywhere x ∈ Ki.

Let E be a Borel subset of Rd. The essential boundary ∂∗E of E is defined as

∂∗E =

{
x ∈ Rd : lim sup

ρ→0

Ld(Bρ(x) ∩ E)

ρd
> 0, lim sup

ρ→0

Ld(Bρ(x)\E)

ρd
> 0

}
.

The set E is of finite perimeter in Ω if the characteristic function χE is in BV (Ω).
The total variation |DχE |(Ω) is the perimeter of E in Ω, denoted by P (E; Ω). For
Hd−1-almost every x ∈ ∂∗E, the limit

νE(x) = lim
ρ→0

DχE(Bρ(x))

|DχE |(Bρ(x))

exists and belongs to Sd−1; the vector νE is the generalized inner normal to ∂∗E. The
set of points x ∈ supp(DχE)∩Ω where this property holds is called the reduced boundary
of E. For any x in the reduced boundary of E, the sets (E − x)/ρ locally converge in
measure as ρ → 0 to the half-space orthogonal to νE(x) and containing νE(x). The
measure DχE can be represented as

DχE = νEHd−1 ∂∗E.

In particular, for every set E of finite perimeter in Ω, P (E; Ω) = Hd−1(∂∗E ∩ Ω).

2.2 Γ-convergence

For the definition and properties of Γ-convergence we refer to [6, 7, 8, 14]. We just recall
the definition of Γ-convergence of a family of functionals (Fε)ε>0 defined on BV (Ω): we
say that (Fε) Γ-converges to F (on BV (Ω) with respect to the convergence in measure)
if for all u ∈ BV (Ω) and for all sequences (εj) of positive numbers converging to 0

(i) (lower bound) for all sequences (uεj ) converging to u in measure we have
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F (u) ≤ lim inf
j→+∞

Fεj (uεj );

(ii) (upper bound) there exists a sequence (uεj ) converging to u in measure such that

F (u) ≥ lim sup
j→+∞

Fεj (uεj ).

If (i) and (ii) hold then we write F (u) = Γ- lim
ε→0

Fε(u). We define the Γ-lower limit as

Γ- lim inf
ε→0

Fε(u) = inf

{
lim inf
j→+∞

Fεj (uεj ) : uεj → u

}
and the Γ-upper limit as

Γ- lim sup
ε→0

Fε(u) = inf

{
lim sup
j→+∞

Fεj (uεj ) : uεj → u

}
,

respectively.
Then (i) also reads F (u) ≤ Γ- lim inf

ε→0
Fε(u) and (ii) reads F (u) ≥ Γ- lim sup

ε→0
Fε(u).

3 Setting of the problem

We use the notation for bond-percolation problems as in Braides-Piatnitski [10], Sec-
tion 2.4. In this percolation model, we assign the label “strong” or “weak” to a bond
with probability p and 1−p, respectively, the choice being independent on distinct bonds.

Denote by Ẑ2 the dual grid of Z2, that is the set of the middle points of the segments
[i, j], i, j ∈ Z2, |i − j| = 1, of the standard integer grid Z2. The notation i(ẑ), j(ẑ) is
used for the endpoints of the segment containing ẑ. We may identify each point ẑ ∈ Ẑ2

with the corresponding closed segment [i(ẑ), j(ẑ)], so that points in Ẑ2 are identified
with bonds in Z2.

Let (Σ,F ,P) be a probability space, and let {ξẑ, ẑ ∈ Ẑ2} be a family of independent
identically distributed random variables such that

ξẑ =

{
1 (“strong”) with probability p

0 (“weak”) with probability 1− p,

and p ∈ [0, 1] is fixed. Let ω ∈ Σ be a realization of this i.i.d. random variable in Z2

and introduce the coefficients

σωẑ =

{
+∞ if ξẑ(ω) = 1

1 otherwise.

We write σωẑ = σωij , after identifying each ẑ with a pair of nearest neighbors in Z2.
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For each ω we consider the energies

Eωε (u) =
1

8

∑
i,j∈Ωε

εσωij(ui − uj)2, (with the convention ∞ · 0 = 0) (3.1)

defined on u : Ωε → {±1}, where we use the notation Ωε = 1
εΩ ∩ Z2 and Ω is an open

subset of R2 with Lipschitz boundary. The factor 8 is a normalization factor due to the
fact that each bond is accounted twice and (ui − uj)2 ∈ {0, 4}.

Each function u : Ωε → {±1} is identified with the piecewise-constant function
(which, with a slight abuse of notation, we also denote by u) such that u(x) = ui on
each coordinate square of center εi and side length ε contained in Ω and 1 otherwise,
no matter what this value is. In this way all u can be considered as functions in L1(Ω),
and more precisely in BV (Ω; {±1}).

The case p = 0 corresponds to a ferromagnetic spin system, which can be described
approximately as ε→ 0 by the anisotropic perimeter energy (see [1])

F0(u) =

∫
∂∗{u=1}∩Ω

‖νu‖1 dH1

defined on u ∈ BV (Ω; {±1}), here ∂∗{u = 1} denotes the measure-theoretical reduced
boundary of the set of finite perimeter {u = 1}, νu its inner normal (see subsection 2.1)
and ‖ · ‖1 the `1-norm defined by

‖x‖1 = |x1|+ |x2|,

where x = (x1, x2).
In this passage from discrete to continuous we identify each function u : Ωε → {±1}

with the set A =
⋃
{εi + εQ : i ∈ Ωε : ui = 1} or the function u ∈ BV (Ω; {±1}) given

by u = 2χA − 1, where Q =
[
−1

2 ,
1
2

)
×
[
−1

2 ,
1
2

)
denotes the coordinate semi-open unit

square in R2 centered at 0.

4 Some results from percolation theory

We recall some results from percolation theory (see [10], and Grimmett [19], Kesten [23]
for general references on percolation theory).

We introduce a terminology for weak points, that is those points ẑ ∈ Ẑ2 such that
ξẑ = 0. Keeping in mind the identification of ẑ with [i(ẑ), j(ẑ)] stated in the previ-
ous section, we denote the corresponding bond also by ẑ, and we refer to ẑ as a weak
bond or point, indifferently. We say that two weak points ẑ and ẑ′ are adjacent if the
corresponding two segments have an endpoint in common. A sequence of weak bonds
γ = {ẑ1, . . . , ẑk} is said to be a weak path if any two consecutive points of this sequence
are adjacent. In what follows we identify a weak path with the subset of R2 composed
of the union of the corresponding segments; the length of the weak path γ is the number
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of its connections, and we denote it by |γ|. A subset A of Ẑ2 of weak points is said to
be connected if for every two points ẑ′, ẑ′′ of A there exists a weak path as above such
that ∀j ∈ {1, 2, . . . , k}, ẑj ∈ A, ẑ1 = ẑ′, ẑk = ẑ′′. A maximum connected component of
adjacent weak points is called a weak cluster.

A first result deals with the existence of infinite weak clusters and it shows that there
is a critical probability (pc = 1

2 in two dimensions for the square lattice) which separates
two different behaviors of the bond-percolation system.

Theorem 4.1. (Percolation threshold). For any p > pc = 1/2 (supercritical regime)
all the weak clusters are almost surely finite, while for any p < 1/2 (subcritical regime)
with probability one there is exactly one infinite weak cluster Wω.

From now on we will refer to Wω simply as the weak cluster. Let ν = (ν1, ν2) ∈ S1

and 0 < δ < 1. We denote by T δν the rectangle

T δν = {x ∈ R2 : |〈x, ν〉| ≤ δ/2, 0 ≤ 〈x, ν⊥〉 ≤ 1}.

A path joining the smaller sides of the rectangle will be called a channel (or left-right
crossing). A weak path with this property will be called a weak channel. The follow-
ing result gives a lower bound on the number of weak channels almost surely crossing
sufficiently large rectangles (or squares) in the subcritical regime.

Theorem 4.2. (Channel property). Let p < 1/2, ω denote a realization and M > 0.
Then there exist constants c(p) > 0 and c1(p) > 0 such that almost surely for any δ,
0 < δ ≤ 1 there is a number N0 = N0(ω, δ) such that for all N > N0 and for any T δν
and |x0| ≤M the rectangle N(T δν + x0) contains at least c(p)Nδ disjoint weak channels
which connect the smaller sides of the rectangle. Moreover, the length of each such a
channel does not exceed c1(p)N .

A realization ω ∈ Σ is said to be typical if the statement of the Theorem 4.2 holds
for such an ω. Now we introduce some terminology also for strong bonds, that is those
points ẑ ∈ Ẑ2 such that ξẑ = 1. We consider the shifted lattice Zb = Z2 +

(
1
2 ,

1
2

)
and notice that the set of middle points of its bonds coincides with Ẑ2. Thus, to each
point ẑ ∈ Ẑ2 we can associate the corresponding bond in Zb. If ẑ is identified with the
corresponding segment with endpoints in Zb, then we may define the notion of adjacent
points as for weak bonds. The notion of a strong channel and a strong cluster is modified
accordingly. For p > 1/2 there is almost surely a unique infinite strong cluster and the
channel property stated above holds for the strong channels as well.

To simplify the notation, from now on we will denote by x (in place of x̂) a generic
point in Ẑ2. If p < 1/2 and two points x, y ∈ Ẑ2 belong to the weak cluster, then by
definition of cluster there is at least a path γ in the cluster joining x and y. To describe
the metric properties of the weak cluster we introduce a random distance.

Definition 4.3. Let x, y ∈ Ẑ2 and ω be a realization of the random variable. The
chemical distance Dω(x, y) between x and y in the realization ω is defined as

Dω(x, y) = min
γ
|γ|, (4.1)

8



where |γ| is the length of the path γ and the minimum is taken on the set of paths
joining x and y and that are weak in the realization ω.

Remark 4.4. The chemical distance is defined only if x and y are in the same cluster;
otherwise, by convention, Dω(x, y) = +∞.

When it is finite, the random distance Dω(x, y) is thus the minimal number of weak
bonds needed to link x and y in the realization ω (also x and y are taken into account),
and is thus not smaller than ‖x−y‖1. When p < 1

2 , Dω(0, x) on the weak cluster can be
seen as a travel time between 0 and x in a first-passage percolation model (see [17, 22])
where the passage times of the edges are independent identically distributed random
variables with common distribution pδ+∞ + (1− p)δ1. The following Lemma deals with
the existence of an asymptotic time constant in a given direction.

Lemma 4.5. Assume that 0 ∈ Wω. For any τ ∈ R2 the following limit exists almost
surely and does not depend on ω

λp(τ) = lim
m→+∞

0←→bmτc

1

m
Dω(0, bmτc), (4.2)

where bmτc = (bmτc1, bmτc2), bmτck = bmτkc is the integer part of the k-th component
of mτ and 0←→ bmτc means that 0 and bmτc are linked by a path in the weak cluster.
Moreover, λp defines a norm on R2.

Proof. See Garet-Marchand [16], Corollary 3.3.

The same asymptotic result holds for sequences of points in the weak cluster ‘asymp-
totically aligned’ with τ , that is xm, ym such that ym − xm = mτ + o(m) as m → ∞.
The proof of this fact relies essentially on the following large deviation result for the
chemical distance (see Garet-Marchand [17]):

Theorem 4.6. Let p < 1/2 and λp be the norm on R2 given by Lemma 4.5. Then

∀ε > 0, lim sup
m→+∞

log P[0←→ bmτc, Dω(0, bmτc)/λp(τ) /∈ (1− ε, 1 + ε)]

m
< 0. (4.3)

Proposition 4.7. Let (xm), (ym) be two sequences of points in Ẑ2 contained in the weak
cluster such that

sup
m

{
|xm|
m

+
|ym|
m

}
≤ C < +∞ and ym − xm = mτ + o(m), (4.4)

where τ ∈ R2, C is a positive constant and o(m)/m → 0 as m → +∞. Then the
following limit exists almost surely and does not depend on ω

λp(τ) = lim
m→+∞

1

m
Dω(xm, ym). (4.5)
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Proof. We denote by λ̃p(τ) the right hand side of equation (4.5). We prove (4.5) in
the case that ym = bmx + mτc and xm = bmxc, x 6= 0. The stationarity of the i.i.d.
Bernoulli process ensures that the probability law of Dω(bmxc, bmx+ mτc) is the same
of Dω(0, bmτc).

Therefore, by (4.3) we have that

∀ε > 0, lim sup
m→+∞

log P
[
bmxc ←→ bmx+mτc, D

ω(bmxc,bmx+mτc)
λp(τ) /∈ (1− ε, 1 + ε)

]
m

< 0.

By Borel-Cantelli Lemma we obtain that ∀ε > 0,

lim sup
m→+∞

bmxc←→bmx+mτc

1

m
Dω(bmxc, bmx+mτc) ∈ [(1− ε)λp(τ), (1 + ε)λp(τ)]

P-almost surely, that is,

lim
m→+∞

bmxc←→bmx+mτc

1

m
Dω(bmxc, bmx+mτc) = λp(τ)

P-almost surely. By a compactness argument, we have that λ̃p(τ) ≤ λp(τ). Indeed, if
xm, ym are as in (4.4), then there exist a subsequence mj → +∞ and x̃, ỹ such that
xmj
mj
→ x̃,

ymj
mj
→ ỹ, with ỹ = x̃+ τ . Therefore, in the computation of the limit in (4.5)

we can choose xm = bmx̃c and ym = bmx̃+mτc.
Now, if we consider two points xm, ym on the weak cluster satisfying (4.4), we can

find x such that xm and bmxc, ym and bmx + mτc almost surely are linked by weak
paths whose length is at most o(m). Hence,

Dω(bmxc, bmx+mτc) ≤ Dω(xm, ym) + o(m)

and from this it follows that λp(τ) ≤ λ̃p(τ).

Remark 4.8. If ν ∈ R2 is a unit vector and τ = ν⊥, then by symmetry λp(ν) = λp(τ).

5 The rigid percolation theorem

We first remark that the energies Eωε defined by (3.1) are equi-coercive with respect to
the strong L1-convergence. The proof is immediate as in the elliptic case, while for dilute
spin energies this result requires a more difficult argument (see [12], Section 3.1).

Lemma 5.1. (Equi-coerciveness of Eωε ). Let Ω be a bounded Lipschitz open set. For
any ω in a set Σ̃ ⊆ Σ with P(Σ̃) = 1, if (uεk) is a sequence such that supk E

ω
εk

(uεk) <
+∞, then there exists a function u ∈ BV (Ω; {±1}) and a subsequence, still denoted by
(uεk), such that uεk → u in L1(Ω).
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Proof. Equi-boundedness of the energies forces the coefficients σωij to be equal to 1 almost
surely if (uεk)i 6= (uεk)j , so that the equi-coerciveness follows from that of ferromagnetic
energies (see e.g. [11], Section 2).

The main result of this paper is the following.

Theorem 5.2. (Rigid percolation theorem). Let Ω be a bounded Lipschitz open set
and Eωε be the energies defined by (3.1). Then we have two regimes:

(a) If p < 1/2 (subcritical regime), then P-almost surely there exists the Γ-limit of Eωε
with respect to the L1(Ω)-convergence on BV (Ω; {±1}), it is deterministic, and is
given by

Fp(u) =

∫
Ω∩∂∗{u=1}

λp(ν) dH1, (5.1)

for u ∈ BV (Ω; {±1}). In (5.1) λp is defined by (4.2), (4.5) and ν is the unit
normal vector at ∂∗{u = 1}.

(b) If p > 1/2 (supercritical regime), then P-almost surely there exists the Γ-limit of
Eωε and it coincides with F (u) ≡ +∞ on the whole L1(Ω) except for u constant
identically ±1.

Proof. (a) We begin with the proof of the lower bound (liminf inequality), and fix a
typical realization ω and a family uε → u in L1(Ω) with u ∈ BV (Ω; {±1}) such that
lim inf
ε→0

Eωε (uε) <∞. We can assume, up to a subsequence, that such a liminf is actually

a limit.
For all ε we consider the set in the dual lattice εẐ2 of εZ2 defined by

Sε =

{
εk : k =

i+ j

2
, i, j ∈ Ωε, |i− j| = 1, uε(εi) = 1, uε(εj) = −1

}
and the measure

µε =
∑
εk∈Sε

εσωk δεk.

Note that Eωε (uε) = µε(Ω), so that the family of measures {µε} is equi-bounded. Hence,
up to further subsequences, we can assume that µε ⇀

∗ µ, where µ is a finite measure.
Let A = {u = 1} and Aε = {uε = 1}. With fixed h ∈ N, we consider the collection

Qh of squares Qνρ(x) such that the following conditions are satisfied:

(i) x ∈ ∂∗A and ν = ν(x);

(ii)
∣∣(Qνρ(x) ∩A)4Πν(x)

∣∣ ≤ 1
hρ

2, where Πν(x) = {y ∈ R2 : 〈y − x, ν〉 ≥ 0};

11



(iii)

∣∣∣∣µ(Qνρ(x))

ρ
− dµ

dH1 ∂∗A
(x)

∣∣∣∣ ≤ 1

h
;

(iv)

∣∣∣∣∣1ρ
∫
Qνρ(x)∩∂∗A

λp(ν(y)) dH1(y)− λp(ν(x))

∣∣∣∣∣ ≤ 1

h
;

(v) µ(Qνρ(x)) = µ(Qνρ(x)).

For fixed x ∈ ∂∗A and for ρ small enough (ii) is satisfied by definition of reduced
boundary (see subsection 2.1), (iii) follows from the Besicovitch Derivation Theorem
provided that

dµ

dH1 ∂∗A
(x) < +∞;

(iv) holds by the same reason (x is a Lebesgue point of λp), and (v) is satisfied for
almost all ρ > 0 since µ is a finite measure (and so µ(∂Qνρ(x)) = 0).

We deduce that Qh is a fine covering of the set

∂∗Aµ =

{
x ∈ ∂∗A :

dµ

dH1 ∂∗A
(x) < +∞

}
,

so that (by Morse’s lemma, see [24]) there exists a countable family of disjoint closed

squares {Qνjρj (xj)} still covering ∂∗Aµ. Note that

H1(∂∗A\∂∗Aµ) = 0

because of the existence of the derivative of the measure µ with respect to H1 ∂∗A.
We now fix one of such squares Qνρ(x). We would like to use the sets 1

εAε as test
sets to estimate from below the part of µ concentrated on ∂∗A. Since these sets could
not have correct boundary data, we modify them on the boundary. As in the case of
spin energies with bounded coefficients (see [11, 12]), we could truncate the sets with the
hyperplane ∂Πν = {〈y− x, ν〉 = 0}, but it may have infinite energy (possibly containing
some strong bond), so we approximate it with a weak path γω.

We subdivide the construction of test sets into steps.
Step 1: Construction of the weak path γω. Let 0 < δ ≤ 1. We cover the set
∂Πν(x) ∩Qνρ(x) by considering the points

xj = x+ jρδν⊥, |j| = 0, 1, . . . ,

⌊
1

2δ

⌋
+ 1, (5.2)

and the rectangles Rj centered at xj , with side-lengths ρδ and 2ρδ and the small sides
parallel to ν. The rectangles Rj and Rj+1 have in common a square of side-length ρδ

and we denote it by Qjρδ. From the channel property (Theorem 4.2) for ε small enough

we can find a weak channel γj (the highest) in Rj and a weak channel γj+1 (the lowest)

in Rj+1 whose length is at most 2c1(p)ρδ/ε. Applying the same property to Qjρδ we

12



ν

γj

γj+1

γj,⊥

∂Πν(x)
xj xj+1

Figure 1: Construction of γ̃j,j+1.

can find a weak channel γj,⊥ connecting the two opposite sides of Qjρδ orthogonal to ν,

whose length is at most c2(p)ρδ/ε. The union γj ∪ γj,⊥ ∪ γj+1 contains a weak path
γ̃j,j+1 connecting the smaller sides of the rectangle Rj ∪Rj+1 (see Fig. 1).

We can repeat this construction for Rj+1, Rj+2 and Qj+1
ρδ choosing γj+1, the highest

weak channel γj+2 in Rj+2 and γj+1,⊥ in Qj+1
ρδ to define the weak path γ̃j+1,j+2. If we

repeat iteratively this procedure for any couple of rectangles Rj , Rj+1, j as in (5.2), the
desired γω will be obtained by gluing all the paths γ̃j,j+1.
Step 2: Estimates. Note that γω disconnects Qνρ(x) and we denote by Q+

ω the con-
nected component of Qνρ(x) containing Qνρ(x) ∩ {〈y − x, ν〉 ≥ ρδ/2}. We have that∣∣(Qνρ(x) ∩Πν(x))4Q+

ω )
∣∣ ≤ ρ2δ. (5.3)

By (ii) and (5.3), choosing ε small enough and using the fact that |Aε4A| → 0, we
obtain ∣∣(Qνρ(x) ∩Aε)4Q+

ω

∣∣ ≤ ∣∣(Qνρ(x) ∩A)4Πν(x)
∣∣+
∣∣Qνρ(x) ∩ (Aε4A)

∣∣+
+
∣∣(Qνρ(x) ∩Πν(x))4Q+

ω )
∣∣ ≤ ρ2

(
2

h
+ δ

)
.

(5.4)

For simplicity of notation we can assume that x = 0 and ν = e2. With fixed η < 1/2,
from (5.4) it follows that

A :=
∣∣∣((Qνρ(x) ∩Aε)4Q+

ω

)
∩
{
y : ρ

η

2
≤ dist(y, ∂Qνρ(x)) ≤ ρη

}∣∣∣ ≤ ρ2

(
2

h
+ δ

)
. (5.5)

Step 3: Construction of an optimal weak circuit. We subdivide the annulus
between the two concentric squares (with side-lengths ρ(1 − η) and ρ(1 − 2η) respec-
tively) in four rectangles Ri(i = 1, . . . , 4) with side-lengths ρ(1− η) and ρη/2 (they have
in common, two by two, a little square of side-length ρη/2). From the channel prop-
erty (Theorem 4.2), for ε small enough in each of these rectangles we can find at least
c(p)ρη/2ε disjoint weak channels Ki connecting the smaller sides of the rectangle, and
with length at most c1(p)ρ(1 − η)/ε. Since A ≥

∑
Ki

(|Ki| ∩ A), from the mean value

theorem in each rectangle Ri there exists a weak channel K̃i such that

|K̃i ∩ A| ≤
A

#(Ki)
≤ ρ2(2/h+ δ)

4c(p)ρη/2ε
=

ρε

2c(p)η

(
2

h
+ δ

)
.

13



∂Aε

∂A
γω

ρ

∂Πνν

ρη
2

K̃i

Qνρ

Figure 2: Construction of a test set.

Therefore, considering the weak circuit K contained in
4⋃
i=1

K̃i, we have that

H1
((

(Qνρ(x) ∩Aε)4Q+
ω

)
∩K

)
≤ 2ρε

c(p)η

(
2

h
+ δ

)
. (5.6)

Step 4: Definition of the test sets. Now we define the subset A1
ε ⊂ Qνρ(x) as (see

Fig. 2)

A1
ε =

{
Aε, in the set containing 0 and whose boundary is K

Q+
ω , otherwise.

(5.7)

Note that

H1
(
(∂A1

ε\∂Aε) ∩Qνρ(x)
)
≤ 2ρε

c(p)η

(
2

h
+ δ

)
+ c̃(p)ρδ/2ε. (5.8)

We can find points xε, yε ∈ Ẑ2 such that εxε, εyε ∈ ∂A1
ε and |εxε+ ρ

2e1| ≤ 2ε, |εyε− ρ
2e1| ≤

2ε, and a weak path Kε in 1
ε (∂A1

ε ∩ Qνρ(x)) ∩ Ẑ2 connecting xε at yε. By the estimate
(5.8) we have

µε(Q
ν
ρ(x)) ≥ ε|Kε| −

(
2ρε2

c(p)η

(
2

h
+ δ

)
+ c̃(p)ρδ/2

)
≥ εDω(xε, yε)−

(
2ρε2

c(p)η

(
2

h
+ δ

)
+ c̃(p)ρδ/2

)
.
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Since |(yε − xε) − ρ
εe1| ≤ 4, choosing m = ρ/ε in the definition of λp (equation (4.5))

and for fixed η, δ and h we obtain

lim inf
ε→0

µε(Q
ν
ρ(x)) ≥ ρλp(e1)− c̃(p)ρδ/2 = ρλp(e2)− c̃(p)ρδ/2 = ρλp(ν)− c̃(p)ρδ/2.

By the (iv) above we then have

lim inf
ε→0

µε(Q
ν
ρ(x)) ≥

∫
Qνρ(x)∩∂∗A

λp(ν(y)) dH1(y)−
(
ρ

h
+ c̃(p)

ρ2δ

2

)
and finally

lim inf
ε→0

µε(Ω) ≥
∑
j

lim inf
ε→0

µε(Q
νj
ρj (xj) ∩ ∂∗A)

≥
∑
j

∫
Q
νj
ρj

(xj)∩∂∗A
λp(ν(y)) dH1(y)− C

(
ρ

h
+ c̃(p)

ρ2δ

2

)

=

∫
Ω∩∂∗A

λp(ν(y)) dH1(y)− C
(
ρ

h
+ c̃(p)

ρ2δ

2

)
;

the lim inf inequality then follows by the arbitrariness of ρ, δ and h.

The construction of a recovery sequence giving the upper bound (limsup inequality)
can be performed just for polyhedral sets, since they are dense in energy in the class
of sets of finite perimeter. We only give the construction when the set is of the form
Πν(x) ∩ Ω since it is easily generalized to each face of a polyhedral boundary. We can
localize the construction to the faces of a polyhedral set because the limit energy does
not concentrate at its corners: this follows by the chosen scaling.
It is no restriction to suppose that Πν(x) = Πν(0) =: Πν , that ν is a rational direction
(that is, there exists a positive real number S such that Sν ∈ Z2), and that

H1(∂Ω ∩ ∂Πν) = 0, (5.9)

since also with these restrictions we obtain a dense class of sets. We will compute the
Γ-limsup for u = 2χΠν − 1.

Let M > 0 be large enough so that Ω ⊂⊂ QνM (0), we set τ = ν⊥ and we fix η > 0 such

that η < M/2. There exists a path γε in the weak cluster of the dual lattice Ẑ2 contained
in the stripe {x : |〈x, ν〉| ≤ η/ε} and with the two endpoints lying at distance at most
2ε from the two sides {x : |〈x, τ〉| = ±M/2}. The existence of γε can be proved with
the same construction performed for γω in the proof of the Γ-lim inf inequality. After
identifying γε with a curve in R2, for ε small enough it disconnects 1

εΩ. We can therefore
consider Ω+

ε , the maximal connected component 1
εΩ\γε containing Ω ∪ {〈x, ν〉 ≥ η/ε},

and define

uηε(εi) =

{
1 if i ∈ Z2 ∩ Ω+

ε

−1 otherwise.
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Note that
Eωε (uηε) ≤ ε|γε| ≤ λp(τ)H1(∂Πν ∩ Ω) +O(η).

By a diagonal argument, for any fixed η > 0 we can construct a subsequence (still
denoted by uηε) converging in L1(Ω) as ε → 0 to uη, where uη is a function such that
‖uη − u‖L1(Ω) → 0 as η → 0. We have

lim sup
ε→0+

Eωε (uηε) ≤ λp(τ)H1(∂Πν ∩ Ω) +O(η), ∀η > 0,

and letting η → 0 we obtain

Γ- lim sup
ε→0+

Eωε (u) ≤ λp(τ)H1(∂Πν ∩ Ω) = λp(ν)H1(∂Πν ∩ Ω).

Eventually, we obtain the desired inequality recalling that H1(∂Πν ∩ Ω̄) = H1(∂Πν ∩Ω)
by (5.9).

(b) It will suffice to show that E′(u) := Γ- lim inf
ε→0

Eωε (u) = +∞ if u 6= −1 or u 6= 1

identically. We reason by contradiction and assume that there exists a non-constant
function u ∈ BV (Ω; {±1}) such that E′(u) < +∞. Fixed a point x ∈ S(u) and a square
Qνρ(x) of side-length ρ > 0 sufficiently large, by channel property (see Theorem 4.2 and
subsequent remarks) almost surely there exists (at least) a strong channel connecting two
opposite sides of the square. Therefore, if uε is a sequence converging to u, there must
be at least one pair i, j of nearest neighbors in the strong cluster such that (uε)i 6= (uε)j
so that Eωε (uε) = +∞. This implies that E′(u) = +∞.

6 A continuity result

The number λp(ν) defined by equation (4.5) describes the average distance on the weak
cluster in the direction ν (and, by Remark 4.8, also in the orthogonal direction). Its
value cannot be decreased by using ‘small portions’ of strong connections, as expressed
by the following result.

Lemma 6.1. Let η > 0 be fixed. Then there are δ ∈ (0, 1) and ρ > 0 such that almost
surely there exists N0 such that for all N ≥ N0 and all channels of length L connecting the
two shorter sides of NT δν and with L < (λp(ν)− η)N we have #(strong links) ≥ ρ(η)N .

The proof of this technical Lemma is contained in Braides and Piatnitski [10]
and it is used to prove that, in the subcritical case, the overall behavior of a discrete
membrane with randomly distributed defects is characterized by a fracture type energy,
and the surface interaction is described by the asymptotical chemical distance λp.

We would like to exploit Lemma 6.1 to prove that an elliptic random spin system
with coefficients 1 and β > 0, in the limit as β goes to +∞ (i.e. for β very large), has
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the same behavior of a rigid system (that is, with β = +∞). More precisely, if ϕp(β, ν)
is the surface tension coming from the elliptic problem, then

lim
β→+∞

ϕp(β, ν) = λp(ν) = ϕp(+∞, ν).

The expression λp(ν) = ϕp(+∞, ν) means that λp is the surface tension computed for
β = +∞. Such a continuity result seems to be interesting, because in general it does
not hold outside this random setting, as shown by the following simple example.

Example 6.2. Consider the energies

F βε (u) =
∑
ij

εcβij(ui − uj)
2, (6.1)

where

cβij =

{
β if i1 = j1 = 0

1 otherwise.
(6.2)

It is well known from the theory of homogenization of elliptic spin systems that there
exists the Γ-limit

Γ- lim
ε→0

F βε (u) = F β(u) =

∫
Ω∩∂∗{u=1}

ϕβ(ν) dH1 =

∫
Ω∩∂∗{u=1}

‖ν‖1 dH1; (6.3)

note that the sequences {cβij} and {ϕβ} (and consequently {F β}) are (trivially) increasing

in β and we can put c∞ij = sup
β>0

cβij , ϕ̃ = sup
β>0

ϕβ and

F̃ (u) = sup
β>0

F β(u) =

∫
Ω∩∂∗{u=1}

ϕ̃(ν) dH1 =

∫
Ω∩∂∗{u=1}

‖ν‖1 dH1.

Now if we consider the energies

F∞ε (u) =
∑
ij

εc∞ij (ui − uj)2, (6.4)

where

c∞ij =

{
+∞ if i1 = j1 = 0

1 otherwise.
(6.5)

(with the usual convention +∞ · 0 = 0) then we have that

F∞(u) = Γ- lim
ε→0

F∞ε (u) =

∫
Ω∩∂∗{u=1}∩{x1>0}

‖ν‖1 dH1 +

∫
Ω∩∂∗{u=1}∩{x1<0}

‖ν‖1 dH1.

Therefore, F̃ (u) 6= F∞(u).
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We recall the main results about homogenization of random spin systems (see Braides
and Piatnitski [11]). Given a probability space (Σ,F ,P), we consider an ergodic sta-
tionary discrete random process σωẑ , ẑ ∈ Ẑ2.
We are going to compute the Γ-limit of the energies

Eωε (u) :=
∑
ij

εσωij(ui − uj)2

(with the usual identification σωij = σωẑ ). For any x, y ∈ Z2 and ω ∈ Σ we define

ψω(x, y) = min

{
K∑
n=1

σωinin−1
: i0 = x, iK = y,K ∈ N

}
, (6.6)

where the minimum is taken over all paths joining x and y. The following statement
holds (we can compare it with Lemma 4.5).

Proposition 6.3. For any τ ∈ R2 the following limit exists P-almost surely and does
not depend on ω

ψ0(τ) = lim
m

1

m
ψω(0, bmτc), (6.7)

where bmτck = bmτkc is the integer part of the k-th component of mτ .
For any x ∈ R2 and τ ∈ R2 the limit relation

lim
m→+∞

1

m
ψω(bmxc, bmx+mτc) = ψ0(τ) (6.8)

holds P-almost surely.

At this point we can recall the main convergence theorem.

Theorem 6.4. (Elliptic random homogenization). Let σωij satisfy the hypothesis
of ellipticity 0 < α ≤ σωij ≤ β < +∞ for all i, j. Then the Γ- lim

ε→0
Eωε exists P-almost

surely, is deterministic and is given by

Fω(u) =

∫
Ω∩∂∗{u=1}

ϕp(ν) dH1. (6.9)

where
ϕp(ν) = ψ0(ν⊥). (6.10)

A particular case of the preceding random problem is obtained by considering the
i.i.d. Bernoulli bond-percolation model with coefficients

σωẑ =

{
β > 0 with probability p

1 with probability 1− p.
(6.11)
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With this choice of coefficients we find that the function ϕp of Theorem 6.4 now depends
also on β, ϕp = ϕp,β. We will prove that the case of rigid spin is the limit as β → +∞
of the problem defined by coefficients (6.11), in the sense expressed by the following
theorem.

Theorem 6.5. (Continuity). Let ϕp,β be defined by Theorem 6.4 when the coefficients
σωẑ are given by (6.11), and λp be defined by Proposition 4.7. Then, for all ν ∈ R2, we
have two cases:

(i) If p < 1/2, then lim
β→+∞

ϕp,β(ν) = λp(ν);

(ii) If p > 1/2, then lim
β→+∞

ϕp,β(ν) = +∞.

Proof. (i) Let p < 1/2. First remark that, with fixed ν ∈ R2 and for all β > 0, we have

ϕp,β(ν) ≤ λp(ν),

because the minimum in the definition of λp (see equation (4.5)) is taken in a smaller
set of paths.
Therefore, λp being independent of β,

lim
β→+∞

ϕp,β(ν) ≤ λp(ν).

Now suppose that there exists η > 0 such that lim
β→+∞

ϕp,β(ν) ≤ λp(ν)− η; we would like

to show that this assumption leads to a contradiction.
First of all, ϕp,β being increasing in β, we have that

ϕp,β(ν) ≤ λp(ν)− η, ∀β > 0. (6.12)

With fixed β, by (6.8) there exists n̄ ∈ N almost surely such that, for all n ≥ n̄

ψω(bnxc, bnx+ nτc) ≤ (λp(ν)− η′)n, (6.13)

where τ = ν⊥, η′ is a constant and x ∈ R2. Suppose that ψω(bnxc, bnx + nτc) =
K∑
m=1

σ̃ωimim−1
with i0 = bnxc, iK = bnx+ nτc and let γ be the corresponding path.

By means of Lemma 6.1, we can find δ ∈ (0, 1), a constant C = C(η′) > 0 such that if
n′ ≥ n is such that the channel γ connects the shorter sides of n′T δν , then from the fact
that

|γ| ≤
K∑
m=1

σ̃ωimim−1
≤ (λp(ν)− η′)n′, (6.14)

it follows that
#(strong links in γ) ≥ Cn′. (6.15)
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Now

βCn′ ≤
K∑
m=0

σ̃ωimim−1
≤ (λp(ν)− η′)n′, (6.16)

and letting β → +∞ we obtain a contradiction.
(ii) If p > 1/2, we can reason as in Theorem 5.2(b), because the percentage of β is fixed
by channel property. In particular, for large m, the paths linking bmxc and bmx+mτc
in equations (6.6), (6.7) and (6.8) contain at least a β-bond.
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