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Abstract. Sharp stability inequalities for planar double bubbles are proved.
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1. Introduction

1.1. Overview. In this paper we address the global stability problem for standard double bub-
bles in the plane. This is accomplished by combining the general stability theory for isoperimetric
problems with multiple volume constraints developed in the companion paper [CLM12] with an
ad-hoc analysis of the isoperimetric problem for planar double bubbles, which addresses the pres-
ence of singularities and the delicate interaction of multiple volume constraints in connection
with stability issues.

1.2. Standard double bubbles. A standard double bubble in R3 is the familiar soap bubble
configuration where three spherical caps meet at 120 degree angles along a circle; see Figure 1.
From the mathematical point of view, standard double bubbles arise as solutions of isoperimetric
problems with two volume constraints. Indeed, let us consider the geometric variational problems

inf
{
P (E) : E = {E(1), E(2)} , vol (E) = (|E(1)|, |E(2)|) = (m1,m2)

}
, m2 ≥ m1 > 0 , (1.1)

where E(1) and E(2) are two disjoint open sets with piecewise C1-boundary in Rn, n ≥ 2, and
the perimeter of E is defined as

P (E) = Hn−1
(
∂E(1) ∩ ∂E(2)

)
+Hn−1

(
∂E(1) \ ∂E(2)

)
+Hn−1

(
∂E(2) \ ∂E(1)

)
. (1.2)

(Here |E| denotes the volume (Lebesgue measure) of E ⊂ Rn, while Hn−1 stands for the (n−1)-
dimensional Hausdorff measure on Rn.) For every m2 ≥ m1 > 0, there exists a unique way (up
to isometries) to enclose volumes m1 and m2 in Rn by three (n− 1)-dimensional spherical caps
meeting at 120 degrees angles along a (n − 2)-dimensional sphere. This construction leads to
define standard double bubbles in every dimension and for every pair of prescribed volumes, and
standard double bubbles are the unique minimizers in the variational problems (1.1). This has
been first proved by Foisy, Alfaro, Brock, Hodges, and Zimba [FAB+93] in R2, by Hutchings,
Morgan, Ritoré, and Ros [Hut97, HMRR02] in R3 with a major breakthrough, and, finally,
by a delicate elaboration of the methods developed in [HMRR02], by Reichardt [Rei08] in Rn,
n ≥ 4 (see also [RHLS03]). A common point of all these papers is the study of the stationarity
(vanishing first variation) and stability (non-negative second variation) properties of standard
double bubbles. In this direction, we also mention the paper by Morgan and Wichiramala
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Figure 1. Standard double bubbles.

[MW02], where standard double bubbles are shown to be the unique double bubbles with non-
negative second variation.

1.3. Two global stability theorems for double bubbles. Given a planar double bubble E
with vol (E) = (m1,m2), m2 ≥ m1 > 0, let E0 denote a standard double bubble with vol (E0) =
vol (E), and define the isoperimetric deficit of E as

δ(E) = P (E)
P (E0)

− 1 , (vol (E) = vol (E0)) .

By [FAB+93], δ(E) ≥ 0, and δ(E) = 0 if and only if, up to isometries, E = E0. We seek to control,
in terms of δ(E), the distance (modulo isometries) of E from E0. Given two planar double bubbles
E and F with vol (E) = vol (F) we thus define the normalized L1-distance between E and F as

d(E ,F) =
|E(1)∆F(1)|

m1
+

|E(2)∆F(2)|
m2

, (vol (E) = vol (F)) ,

and, correspondingly, we consider the d-distance between E and E0 modulo isometries

α(E) = inf
{
d(E , f(E0)) : f(E0) = {f(E0(1)), f(E0(2))} , f : R2 → R2 is an isometry

}
.

In this way, δ(E) = 0 if and only if α(E) = 0. We call α(E) the Fraenkel asymmetry of the double
bubble E . Our main result provides a control on α(E) in terms of δ(E), with sharp decay rate
of α(E) as δ(E) → 0.

Theorem 1.1 (Global stability inequalities). If m2 ≥ m1 > 0, then there exists κ > 0, depending
on m1/m2 only, with the following property. If E0 is a standard double bubble in R2 with
vol (E0) = (m1,m2), then

δ(E) ≥ κα(E)2 , (1.3)

whenever E is a planar double bubble with vol (E) = vol (E0). In other words, for every planar
double bubble E with vol (E) = vol (E0) = (m1,m2), we have, up to isometries,

P (E) ≥ P (E0)
{
1 + κ

(m1

m2

)( |E(1)∆E0(1)|
m1

+
|E(2)∆E0(2)|

m2

)2}
.

Remark 1.1. We consider (1.3) as a global stability inequality, in the sense that no a priori
constraint is assumed on the double bubble E : for example, we do not assume E to be a local
variation or a small global perturbation of E0. In fact, inequality (1.3) will be proved in the case
E(1) and E(2) are merely sets of finite perimeter.

Remark 1.2 (Sharp decay rate). Inequality (1.3) is sharp in the sense that the validity of
δ(E) ≥ φ(α(E)) for some φ : [0,∞) → [0,∞) implies the existence of C ≥ 0 and t0 > 0 such
that φ(t) ≤ C t2 for every t ≤ t0. For a proof of this (in much greater generality), see [CLM12].
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Remark 1.3 (Explicit constants). Our approach to (1.3) does not produce an explicit stability
constant κ. Although this does not look such an immediate task, an explicit value of κ could
maybe be obtained by exploiting in a quantitative way the calibration proof of optimality of
standard double bubbles by Dorff, Lawlor, Sampson, and Wilson [DLSW09].

Remark 1.4. In connection with the already mentioned result by Morgan and Wichiramala
[MW02], Theorem 1.1 implies in particular that second variation of perimeter (with respect to
vector-fields which preserve volume at first order) is strictly positive at standard double bubbles.

The typical situation in which we expect to observe double bubbles E whose perimeter P (E)
is close to that of a standard double bubble E0 with vol (E0) = vol (E0), is when the double
bubble E is the solution to a geometric variational problem sufficiently close to (1.1). In this
direction, a natural family of problems to consider is

inf
{
P (E) + β

∫
E(1)∪E(2)

g(x) dx : vol (E) = (m1,m2)
}
, (1.4)

where the total free energy of the double bubble E is defined as the sum of its surface tension
energy (perimeter) P (E) plus a small potential energy term of the form

β

∫
E(1)∪E(2)

g(x) dx .

Here, β is a suitably small positive constant, while the potential g : R2 → [0,∞) is assumed to be
coercive (that is, g(x) → ∞ as |x| → ∞) in order to trivialize existence issues, and to be smooth
for the sake of simplicity. Under these assumptions, the regularity theory for planar minimizing
clusters (see, for example, [CLM12, Section 6]) implies that the boundary ∂Eβ = ∂Eβ(1)∪∂Eβ(2)
of every minimizer Eβ in (1.4) consists of finitely many C1,1-curves, meeting at finitely many
singular points, each singular point being the end-point of exactly three of these of curves. When
β is small, however, we expect a minimizer Eβ to closely resemble a standard double bubble E0.
Indeed, by comparing Eβ with E0, and knowing that both Eβ and E0 are contained in a same
ball of radius R = R(m1,m2, g), we find that

P (Eβ) ≤ P (E0) + β

∫
(E0(1)∪E0(2))\(E(1)∪E(2)))

g(x) dx ≤ P (E0) + β sup
BR

g ,

so that δ(Eβ) ≤ C β for some constant C = C(m1,m2, g); therefore, by Theorem 1.1, α(Eβ)2 ≤
(C/κ)β, and Eβ is close to E0 in L1-sense. However, due to the minimizing property of Eβ, we
expect proximity to E0 to hold true in a much stronger sense. Indeed, in [CLM12], we show the
existence of some positive constant β0 (depending onm1, m2, and g only) such that if β ∈ (0, β0),
then there exist C1,1-diffeomorphisms fβ : ∂E0 → ∂Eβ with ∥fβ − Id∥C1(∂E0;R2) vanishing as

β → 0+. This result implies in particular that ∂Eβ has the same topological structure of ∂E0,
that is, it consists of three simple curves meeting in threes at two distinct singular points.
(Moreover, in [CLM12], the (generalized) curvatures of these curves are shown to be uniformly
close to the constant curvatures of the corresponding standard double bubble.) In this paper,
exploiting Theorem 1.1 together with a suitable interpolation inequality, we provide a power law
stability estimate for ∥fβ − Id∥C1(∂E0;R2) in terms of the difference between the surface tension
energies of Eβ and E0.

Theorem 1.2 (Perturbed minimizing clusters). If m2 ≥ m1 > 0 and g : R2 → R is a smooth
function with g(x) → ∞ as |x| → ∞, then there exist κ0 > 0 and β0 > 0, depending on m1, m2,
and g only, with the following property. If Eβ is a minimizer in the variational problem (1.4)
for some β ∈ (0, β0), then there exists a standard double bubble E0 with vol (E0) = (m1,m2) and
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a C1,1-diffeomorphism fβ : ∂E0 → ∂Eβ such that

β

κ0
≥ P (Eβ)− P (E0) ≥ κ0 ∥fβ − Id∥6C1(∂E0;R2) .

Remark 1.5. Ren and Wei [RW12] consider a similar problem, focusing on the case of a
potential energy of non-local character, but limiting their analysis to the case m1 = m2.

1.4. Background and method of proof. After the pioneering contributions by Bernstein
[Ber05] and Bonnesen [Bon24], the analysis of global stability problems has received a renewed
attention in recent years, with the proof of the sharp stability inequality for the Euclidean isoperi-
metric problem [Fug89, Fug93, HHW91, Hal92, FMP08, CL12, FGP12], the Wulff isoperimetric
problem [FMP10], the Gaussian isoperimetric problem [CFMP11, MN12], Plateau-type prob-
lems [DPM11], fractional isoperimetric problems [FVM10], and isoperimetric problems in higher
codimension [BDF12]. (This list is probably incomplete, and it does not mention contributions
to stability problems for functional inequalities.)

In [CLM12] we have started the study of stability issues for isoperimetric problems with
multiple volume constraints. Among the various results proved in that paper, we have a reduc-
tion theorem for the global stability inequality (1.3). In the particular case of double bubbles,
this result shows that, in proving (1.3), one can directly consider comparison double bubbles E
with ∂E = f(∂E0) for a standard double bubble E0 and a C1,1-diffeomorphism f : ∂E0 → ∂E
with ∥f − Id∥C1(∂E0;R2) as small as wished.

This strategy of reduction to C1-small diffeomorphic images of the minimizers has been
introduced in [CL12, CL13] in the stability analysis of the Euclidean isoperimetric problem. In
that case the solution of the “reduced” stability problem is achieved rather easily by a Fourier
series argument originally introduced by Fuglede [Fug89, Fug93].

In the case of double bubbles the situation is much subtler, due to the presence of singu-
larities and to the interaction between multiple volume constraints, which act as underlying
constraints in the stability analysis of a “multiple” Poincaré-type inequality. We shall address
this problem by combining Fourier series arguments in the spirit of Fuglede with the solution of
certain one-dimensional variational problems, to proceed through a case by case analysis. Differ-
ent cases will correspond to different behaviors of the perturbed interfaces, based for example on
the relative size between their L2-mean deviation and their L2-distance from the corresponding
interfaces of the reference standard double bubble. The resulting argument, although based on
rather elementary mathematical tools, sheds light on the non-trivial interactions between single
interfaces, on which the global stability of standard double bubbles ultimately depends. As
an entirely analogous structure underlies the stability problem for standard double bubbles in
higher dimensions, the methods employed in this paper should thus be useful also in the analysis
of possible higher dimensional extensions, which we leave for future investigation.

We finally notice that, at present, there is only another instance of isoperimetric problem
with multiple volume constraints whose minimizers are explicitly known. This is the case of
the planar triple bubble problem, addressed by Wichiramala in [Wic04]. Considering that the
preliminary analysis from [CLM12] applies to this case as well, by further exploiting the methods
developed here it should be possible to obtain analogous results to Theorem 1.1 and Theorem
1.2 in the case of planar triple bubbles too.

1.5. Organization of the paper. In section 2 we introduce a notion of small perturbation
of a standard double bubble, and then derive suitable bounds on the isoperimetric deficit and
the Fraenkel asymmetry on such perturbations. In section 3 we prove a multiple Poincaré-type
inequality which implies Theorem 1.1 on the class of perturbations introduced in section 2.
Finally, in section 4, we prove Theorem 1.1 and Theorem 1.2.
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2. Small perturbations of standard double bubbles

A double bubble in Rn is a pair E = {E(1), E(2)} of sets of finite perimeter with 0 < |E(h)| <
∞, h = 1, 2, and |E(1) ∩ E(2)| = 0. We call E(1) and E(2) the chambers of E (note that these
sets are not assumed to be connected), and denote by E(0) = Rn \ (E(1) ∪ E(2)) the exterior
chamber of E . We set vol (E) = (|E(1)|, |E(2)|), and define the perimeter of E as

P (E) = 1

2

2∑
h=0

P (E(h)) . (2.1)

(Here, P (E) denotes the distributional perimeter of E ⊂ Rn, so that P (E) = Hn−1(∂E) when-
ever E is an open set with piecewise C1-boundary; see [Mag12, Example 12.7]. Thus, thanks
to the factor 1/2, (2.1) agrees with (1.2) whenever E(1) and E(2) are open set with piecewise
C1-boundary.) The analysis carried on in [CLM12], plus a trivial scaling argument, allows to
reduce the proof of Theorem 1.1 for planar double bubbles whose chambers are generic sets of
finite perimeter, to the proof of the following theorem.

Theorem 2.1 (Theorem 1.1 reduced). If m2 ≥ m1 > 0, then there exist κ > 0 and η > 0,
depending on m1 and m2 only, with the following property. If E0 is a standard double bubble in
R2 with vol (E0) = (m1,m2), then

δ(E) ≥ κα(E)2 , (2.2)

whenever E is a planar double bubble with vol (E) = vol (E0) and ∂E = f(∂E0) for a C1,1-
diffeomorphism f : ∂E0 → ∂E with

∥f − Id∥C1(∂E0;R2) < η .

Here we have set ∂E = ∂E(1) ∪ ∂E(2).

We refer readers to [CLM12] for the proof of the fact that Theorem 2.1 implies Theorem 1.1.
In this section, we introduce a class of small perturbations of standard double bubbles which
shall be used later on to describe the clusters E appearing in Theorem 2.1, and, correspondingly,
provide suitable estimates of δ(E) and α(E).

2.1. Circular arcs, circular sectors and their perturbations. Let B = {x ∈ R2 : |x| < 1}.
Given θ ∈ (0, π), we define a circular arc A(θ) ⊂ ∂B and a circular sector S(θ) ⊂ B by setting

A(θ) =
{
x ∈ R2 : |x| = 1 , x1 > cos θ

}
,

S(θ) =
{
t x : x ∈ A(θ) , 0 < t < 1

}
,

while, given u ∈ W 1,2
0 (A(θ)) we denote by A(θ, u) ⊂ R2 and S(θ, u) ⊂ R2 the perturbed circular

arc and perturbed circular sector defined as

A(θ, u) =
{
(1 + u(x))x : x ∈ A(θ)

}
,

S(θ, u) =
{
(1 + t u(x))x : x ∈ A(θ) , t ∈ (0, 1)

}
;

see Figure 2. (Notice that A(θ, 0) = A(θ) and S(θ, 0) = S(θ).) In the analysis of the case
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x1x1
θ θ

S(θ, u)S(θ)

A(θ) A(θ, u)

Figure 2. The circular arc A(θ), the circular sector S(θ), and their perturbations

defined by u ∈ W 1,2
0 (A(θ)).

m1 = m2, where the interface between the chambers is a segment, it is convenient to introduce
as a reference domain the vertical open segment H and its perturbations H(u) defined as

H =
{
x ∈ R2 : |x2| <

√
3

2
, x1 = 0

}
, (2.3)

H(u) =
{
x+ u(x) e2 : x ∈ H

}
, (2.4)

in correspondence of u ∈ W 1,2
0 (H). We sometime find it convenient to identify A(θ) with

the interval (−θ, θ) and H with the interval (−
√
3/2,

√
3/2); correspondingly, we shall identify

W 1,2
0 (A(θ)) with W 1,2

0 (−θ, θ) and W 1,2
0 (H) with W 1,2

0 (−
√
3/2,

√
3/2). The following elementary

lemma provides useful formulas for the area of S(θ, u) and the length of A(θ, u) in the case that
∥u∥W 1,2(−θ,θ) is small.

Lemma 2.2. If u ∈ W 1,2
0 (−θ, θ), then

|S(θ, u)| − |S(θ)| =

∫ θ

−θ
u+

u2

2
, (2.5)

H1(A(θ, u))−H1(A(θ)) =

∫ θ

−θ
u+

(u′)2

2
+ o

(∫ θ

−θ
u2
)
+ o

(∫ θ

−θ
(u′)2

)
. (2.6)

Moreover, if |u| ≤ 1, then

|S(θ, u)∆S(θ)| ≤ 3

2

∫ θ

−θ
|u| . (2.7)

Proof. Identity (2.5) is a straightforward consequence of

|S(θ, u)| =

∫ θ

−θ

(1 + u)2

2
.

Similarly, (2.7) follows as, provided |u| ≤ 1,

|S(θ, u)∆S(θ)| =
∫ θ

−θ

∣∣∣(1 + u)2 − 1

2

∣∣∣ ≤ 3

2

∫ θ

−θ
|u| .

Concerning (2.6), we notice that A(θ, u) = T (A(θ)) where we have set T : A(θ) → A(θ, u),

T (x) = (1+u(x))x, x ∈ A(θ). The Jacobian of T on A(θ) is JT =
√

(1 + u)2 + |u′|2. Therefore,
using the Taylor expansion

√
1 + t = 1 + (t/2)− (t2/8) + o (t2) we find

JT = 1 + u+
(u′)2

2
+ o (u2) + o ((u′)2) ,

and (2.6) follows by the area formula. �
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θ0
θ2θ1

P0 P1 P2

S

r0 r1
r2

x1

E0(1) E0(2)

Figure 3. The reference standard double bubble E0.

2.2. Reference planar standard double bubble. Given m2 ≥ m1, we now fix a reference
standard double bubble E0 with vol (E0) = (m1,m2) by requiring that the two point singularities
of E0 belong to the x2-axis, and that their middle-point lies at the origin (indeed, these geometric
requirements uniquely identify E0). In the case that m2 > m1, there exist Lk : R2 → R2

isometries, rk > 0, and θk ∈ (0, π), k = 0, 1, 2, such that

∂E0(1) ∩ ∂E0(2) = L0 r0A(θ0) , (2.8)

∂E0(1) \ ∂E0(2) = L1 r1A(θ1) , (2.9)

∂E0(2) \ ∂E0(1) = L2 r2A(θ2) . (2.10)

With reference Figure 3, we thus have

r0 = |S − P0| , θ0 = (P1P0S) ,

r1 = |S − P1| , θ1 = (P0P1S) ,

r2 = |S − P2| , θ2 = π − (P1P2S) ,

and it holds

r0 sin θ0 = r1 sin θ1 , r0 sin θ0 = r2 sin θ2 . (2.11)

By Plateau’s laws (vanishing of first variation), the three circular arcs meet at 120 degrees angles,

θ1 + θ0 =
2π

3
, θ2 − θ0 =

2π

3
, (2.12)

and, correspondingly, the following inequalities hold true

0 < θ0 <
π

3
,

π

3
< θ1 <

2π

3
,

2π

3
< θ2 < π . (2.13)

Vanishing of first variation also implies the following “law of pressures”,

1

r1
=

1

r2
+

1

r0
. (2.14)

Identities (2.11) and (2.12) provide four constraints on the six parameters rk and θk, k = 0, 1, 2.
Up to a scaling, which leaves the ratio m2/m1 invariant, we may add to (2.11) and (2.12) a fifth
constraint by requiring that

r2 = 1 .
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r
√
3

r

x1

r

P1 P2

E0(1) E0(2)

2π/3

Figure 4. The reference standard double bubble E0 with m1 = m2.

This choice allows to express the remaining five parameters as functions of r1 ∈ (0, 1), according
to the following relations,

r0 =
r1

1− r1
, (2.15)

θ0 = arctan
(1− r1
1 + r1

√
3
)
, (2.16)

θ1 =
2π

3
− θ0 , (2.17)

θ2 =
2π

3
+ θ0. (2.18)

Finally, in the case m1 = m2, we set m = m1 = m2, r = r1 = r2, we have

θ1 = θ2 =
2π

3
, θ0 = 0 , r0 = +∞ ,

and describe the interfaces of the reference standard double bubble E0 as

∂E0(1) ∩ ∂E0(2) = L0 r H, (2.19)

∂E0(1) \ ∂E0(2) = L1 r A

(
2π

3

)
, (2.20)

∂E0(2) \ ∂E0(1) = L2 r A

(
2π

3

)
, (2.21)

for some isometries Lk : R2 → R2, k = 0, 1, 2; see Figure 4. Notice that (2.20) and (2.21) are
obtained from (2.9) and (2.10) by setting θ1 = θ2 = (2/3)π, while (2.19) is not directly related
to (2.8). Finally, we show the following useful formula for P (E0) in terms of m1, m2, r1, and r2.

Lemma 2.3. If E0 is the standard double bubble with m2 > m1, then

P (E0) = 2
(m1

r1
+

m2

r2

)
, (2.22)

m1 = θ1 r
2
1 + θ0 r

2
0 −

√
3

2
r0 r1 , (2.23)

m2 = θ2 r
2
2 − θ0 r

2
0 +

√
3

2
r0 r2 . (2.24)

Moreover, (2.22) holds true also when m2 = m1 = m, and in that case, we have

m =
(2π

3
+

√
3

4

)
r2 . (2.25)
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P0 = (0, 0) P1 = (t1, 0) P2 = (t2, 0)

r0

θ0

r1
r2

π/3π/3

Figure 5. We have t1/ sin(π/3) = r1/ sin θ0 and t2/ sin(2π/3) = r2/ sin θ0.

Proof. We apply the divergence theorem on the chamber E0(1) to the vector field x − P1, and
on the chamber E0(2) to the vector field x− P2, to find that

2m1 = 2θ1 r
2
1 +

∫
∂E0(1)∩∂E0(2)

(x− P1) · νE0(1)(x) dH
1(x) , (2.26)

2m2 = 2θ2 r
2
2 +

∫
∂E0(1)∩∂E0(2)

(x− P2) · (−νE0(1)(x)) dH
1(x) . (2.27)

(Here, νE0(1) denotes the outer unit normal to E0(1).) In the case m2 > m1, we set the origin at

P0 (see Figure 3), and parameterize ∂E0(1)∩∂E0(2) as {r0 eiθ : |θ| < θ0}. In this way, see Figure
5, we have P1 = (t1, 0) and P2 = (t2, 0), where

t1
sin(π/3)

=
r1

sin θ0
,

t2
sin(2π/3)

=
r2

sin θ0
,

and, correspondingly∫
∂E0(1)∩∂E0(2)

(x− P1) · νE0(1)(x) dH
1(x) =

∫ θ0

−θ0

(r0 e
iθ − (t1, 0)) · ei θ r0 dθ

= 2θ0 r
2
0 − 2 sin θ0 r0 t1 = 2θ0 r

2
0 −

√
3 r0 r1 ,∫

∂E0(1)∩∂E0(2)
(P2 − x) · νE0(1)(x) dH

1(x) =

∫ θ0

−θ0

((t2, 0)− r0 e
iθ) · ei θ r0 dθ

= −2θ0 r
2
0 + 2 sin θ0 r0 t2 = −2θ0 r

2
0 +

√
3 r0 r2 .

We plug these identities into (2.26) and (2.27) to find (2.23) and (2.24); moreover, dividing (2.23)
and (2.24) by r1 and r2 respectively, by adding up the resulting inequalities, and by (2.14),

2
(m1

r1
+

m2

r2

)
= 2θ1 r1 + 2θ2 r2 + 2θ0

(r20
r1

− r20
r2

)
= 2θ1 r1 + 2θ2 r2 + 2θ0 r0 = P (E0) ,

that is (2.22). In the case m2 = m1, νE0(1)(x) = e1 and (x−P1) · e1 = (P2 − x) · e1 = ℓ for every
x ∈ ∂E0(1) ∩ ∂E0(2), where, by Pythagoras’ theorem, ℓ = r/2. Therefore, (2.26) gives

2m = 2
2π

3
r2 + ℓH1(∂E0(1) ∩ ∂E0(2)) =

4π

3
r2 +

√
3

2
r2 =

P (E0)
2

r ,

and (2.22) holds true when m2 = m1 too. �

2.3. (ε, σ)-perturbations of the reference standard double bubble. Let us consider the
reference standard double bubble E0 defined in section 2.2, and introduce a useful class of pertur-
bations of E0. For example, in the case that m2 > m1, these perturbations are obtained by first
replacing the circular arcs rk Lk A(θk) (k = 0, 1, 2) with perturbed circular arcs rk Lk A(θk, uk)
(k = 0, 1, 2) associated to functions uk ∈ C1

0 (A(θk)) with ∥uk∥C1 suitably small (note that this
operation leaves the singularities of E0 fixed), and then by dilating the resulting configuration by
a uniform factor 1+σ (an operation that moves the singularities by a distance |σ|). We now state
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this precisely. In the case m2 > m1, one says that a double bubble E is an (ε, σ)-perturbation
of E0 (ε and σ are small constants, ε is positive, σ with no sign restriction), if

vol (E) = vol (E0) = (m1,m2)

and if there exist functions uk ∈ C1
0 (A(θk)) with ∥u0∥C1 ≤ ε (k = 0, 1, 2), such that (compare

with (2.8), (2.9), and (2.10)),

∂E(1) \ ∂E(2) = (1 + σ)L1 r1A(θ1, u1) , (2.28)

∂E(2) \ ∂E(1) = (1 + σ)L2 r2A(θ2, u2) , (2.29)

∂E(1) ∩ ∂E(2) = (1 + σ)L0 r0A(θ0, u0) . (2.30)

In the case m2 = m1, we say that E is an (ε, σ)-perturbation of E0 provided there exist functions
v0 ∈ C1

0 (H), and uk ∈ C1
0 (A(θk)), ∥v0∥C1 ≤ ε and ∥uk∥C1 ≤ ε (k = 1, 2), such that (2.28) and

(2.29) hold true for u1 and u2, and, moreover (compare with (2.19)),

∂E(1) ∩ ∂E(2) = (1 + σ)L0 r H(v0) .

Remark 2.1. The double bubbles considered in Theorem 2.1 are, up to isometries, (ε, σ)-
perturbations of E0. Indeed, if E is a planar double bubble with vol (E) = vol (E0) and ∂E =
f(∂E0) for a C1-diffeomorphism f : ∂E0 → ∂E with ∥f − Id∥C1(∂E0;R2) < η, then up to a rotation
(turning the segment joining the singularities of E until it becomes parallel to the segment joining
the singularities of E0) and a translation (that makes the middle-points of these two segments
coincide), then E is an (ε, σ)-perturbation of E0 for some ε = ε(η) and σ = σ(η) such that
ε(η) → 0+ and σ(η) → 0 as η → 0+. More precisely, corresponding to the value of σ and to the
functions u0, u1, and u2 (in case m2 > m1) or v0, u1, and u2 (in case m2 = m1) that make E an
(ε, σ)-perturbation of E0, we may define a second C1-diffeomorphism g : ∂E0 → ∂E with

∥g − Id∥C1(∂E0;R2) ≤ C
(
|σ|+ max

k=0,1,2
∥uk∥C1(−θk,θk)

)
(2.31)

∥g − Id∥C1(∂E0;R2) ≤ C
(
|σ|+ ∥v0∥C1(−

√
3/2,

√
3/2) + max

k=1,2
∥uk∥C1(−2π/3,2π/3)

)
,

depending on whether m2 > m1 or m2 = m1. Therefore, it will suffice to prove Theorem 2.1 in
the case of (ε, σ)-perturbations of E0 with ε and σ sufficiently small (depending on m1 and m2).

Next, we introduce the following notation: in the case m2 > m1 we set

o (u2) = o
( 2∑

k=0

∫ θk

−θk

u2k

)
, o ((u′)2) = o

( 2∑
k=0

∫ θk

−θk

(u′k)
2
)
,

and, in the case m2 = m1,

o (u2) = o
( 2∑

k=1

∫ 2π/3

−2π/3
u2k

)
+ o

(∫ √
3/2

−
√
3/2

v20

)
,

o ((u′)2) = o
( 2∑

k=1

∫ 2π/3

−2π/3
(u′k)

2
)
+ o

(∫ √
3/2

−
√
3/2

(v′0)
2
)
.

We now consider an (ε, σ)-perturbation E of E0, and provide the second order Taylor expansion
of P (E) in terms of σ, o (u2), and o ((u′)2).

Lemma 2.4. If E is an (ε, σ)-perturbation of E0 and m2 > m1, then

P (E)− P (E0)
1 + σ

=

2∑
k=0

rk

∫ θk

−θk

((u′k)2
2

−
u2k
2

)
+

σ2

2
P (E0)

+o (u2) + o ((u′)2) + o (σ2) . (2.32)
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If, otherwise, m2 = m1 (and we set r1 = r2 = r), then we have

P (E)− P (E0)
1 + σ

= r

∫ √
3/2

−
√
3/2

(v′0)
2

2
+ r

2∑
k=1

∫ 2π/3

−2π/3

((u′k)2
2

−
u2k
2

)
+

σ2

2
P (E0)

+o (u2) + o ((u′)2) + o (σ2) . (2.33)

Proof. We prove the statement in the case m2 > m1, the proof in the other case being the same
up to minor changes. By (2.6), (2.28), (2.29) and (2.30), we find that

P (E)− P ((1 + σ)E0) = (1 + σ)
2∑

k=0

rk

(
H1(A(θk, uk))−H1(A(θk))

)
,

= (1 + σ)
2∑

k=0

rk

∫ θk

−θk

(
(u′k)

2

2
+ uk

)
+ o (u2) + o ((u′)2).

Therefore we may write

P (E)− P (E0)
1 + σ

=
2∑

k=0

rk

∫ θk

−θk

(
(u′k)

2

2
+ uk

)
+ (σ − σ2)P (E0) + o (u2) + o ((u′)2) + o (σ2)

=

2∑
k=0

rk

∫ θk

−θk

(
(u′k)

2

2
−

u2k
2

)
+

2∑
k=0

rk

∫ θk

−θk

(
u2k
2

+ uk

)
(2.34)

+(σ − σ2)P (E0) + o (u2) + o ((u′)2) + o (σ2) .

Again by (2.28), (2.29) and (2.30) we find that

|E(1)| − (1 + σ)2|E0(1)| = (1 + σ)2r21

(
|S(θ1, u1)| − |S(θ1)|

)
(2.35)

+(1 + σ)2r20

(
|S(θ0, u0)| − |S(θ0)|

)
,

|E(2)| − (1 + σ)2|E0(2)| = (1 + σ)2r22

(
|S(θ2, u2)| − |S(θ2)|

)
(2.36)

−(1 + σ)2r20

(
|S(θ0, u0)| − |S(θ0)|

)
.

Since vol (E) = vol (E0) = (m1,m2), by (2.5), (2.35) and (2.36) we infer( 1

(1 + σ)2
− 1
)
m1 = r21

∫ θ1

−θ1

(
u1 +

u21
2

)
+ r20

∫ θ0

−θ0

(
u0 +

u20
2

)
, (2.37)

( 1

(1 + σ)2
− 1
)
m2 = r22

∫ θ2

−θ2

(
u2 +

u22
2

)
− r20

∫ θ0

−θ0

(
u0 +

u20
2

)
. (2.38)

We now divide (2.37) and (2.38) by r1 and r2 respectively and sum the resulting identities to
find that( 1

(1 + σ)2
− 1
) (m1

r1
+

m2

r2

)
= r1

∫ θ1

−θ1

(
u1 +

u21
2

)
+ r2

∫ θ2

−θ2

(
u2 +

u22
2

)
+

(
1

r1
− 1

r2

)
r20

∫ θ0

−θ0

(
u0 +

u20
2

)
+ o (u2) + o ((u′)2) .

Taking into account (2.14) and (2.22) we conclude that( 1

(1 + σ)2
− 1
) P (E0)

2
=

2∑
k=0

rk

∫ θk

−θk

(
uk +

u2k
2

)
+ o (u2) + o ((u′)2) .
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Plugging this relation into (2.34) we find

P (E)− P (E0)
(1 + σ)

=

2∑
k=0

rk

∫ θk

−θk

(
(u′k)

2

2
−

u2k
2

)
(2.39)

+
(( 1

(1 + σ)2
− 1
)
+ 2(σ − σ2)

)P (E0)
2

+ o (u2) + o ((u′)2) + o (σ2) .

Since ((1 + σ)−2 − 1) + 2(σ − σ2) = σ2 + o (σ2) we finally have

P (E)− P (E0)
(1 + σ)

=

2∑
k=0

rk

∫ θk

−θk

(
(u′k)

2

2
−

u2k
2

)
+

σ2

2
P (E0) + o (u2) + o ((u′)2) + o (σ2) .

The lemma is proved. �

We now provide an upper bound on the relative asymmetry of an (ε, σ)-perturbation of E0.

Lemma 2.5. There exists a constant C (depending on m1/m2 only) with the following property.
If E is an (ε, σ)-perturbation of E0 with ε ≤ 1/C and |σ| < 1/2, then, in case m2 > m1,

α(E)2 ≤ C
(
σ2 +

2∑
k=0

r4kθk
m2

1

∫ θk

−θk

u2k

)
, (2.40)

while, in case m2 = m1 = m, setting r1 = r2 = r,

α(E)2 ≤ C
(
σ2 +

r4

m2

2∑
k=1

∫ 2π/3

−2π/3
u2k +

r4

m2

∫ √
3/2

−
√
3/2

v20

)
.

Proof. Once again, we directly focus on the case m2 > m1. In the following, the symbol C will
be used to denote generic constants, possibly depending on m1/m2. By definition of asymmetry,
since vol (E) = vol (E0) and (a+ b)2 ≤ 2(a2 + b2), we have

α(E)2 ≤ 2
( |E(1)∆E0(1)|

m1

)2
+ 2

( |E(2)∆E0(2)|
m2

)2
.

If ε ≤ 1/C for C large enough, then

|E(1)∆(1 + σ)E0(1)| = (1 + σ)2
1∑

k=0

r2k |S(θk, uk)∆S(θk)| ,

and thus, by the triangular inequality

|E(1)∆E0(1)| ≤ (1 + σ)2
1∑

k=0

r2k |S(θk, uk)∆S(θk)|+
∣∣∣(1 + σ)E0(1)∆E0(1)

∣∣∣ ,
By [FM11, Lemma 4], if |σ| < 1/2 and E ⊂ BR ⊂ Rn we have

|E∆(1 + σ)E| ≤ C(n)R |σ|P (E) ,

(for a constant depending on the ambient space dimension n only). Since, by scaling, and for
suitable values of C = C(m1/m2), we have E0(1) ⊂ BC

√
m1

and P (E0(1)) ≤ C
√
m1, we find∣∣∣(1 + σ)E0(1)∆E0(1)

∣∣∣ ≤ Cm1 |σ| .

Thus, by (1 + σ)2 ≤ 9/4 (recall that |σ| < 1/2), we conclude

|E(1)∆E0(1)|
m1

≤ C
( 1∑

k=0

r2k
m1

∫ θk

−θk

|uk|+ |σ|
)
≤ C

( 1∑
k=0

r2kθ
1/2
k

m1

(∫ θk

−θk

u2k

)1/2
+ |σ|

)
,
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where (2.7) was also taken into account. Thus,( |E(1)∆E0(1)|
m1

)2
≤ C

( 1∑
k=0

r4kθk
m2

1

∫ θk

−θk

u2k + σ2
)
.

By arguing similarly with E(2) in place of E(1), and since m2 > m1, we obtain (2.40). �

3. A multiple Poincaré-type inequality

The results of the previous section indicates that in order to prove (1.3) on (ε, σ)-perturbation
(say, in the case m2 > m1) we have to provide a control over

2∑
k=0

∫ θk

−θk

u2k (3.1)

in terms of
2∑

k=0

∫ θk

−θk

(u′k)
2 − u2k . (3.2)

The difficulty here is that the single term∫ θ

−θ
(u′)2 − u2 , (3.3)

is not L2-coercive on W 1,2
0 (−θ, θ), unless θ < π/2. Indeed, we easily see that

inf
{∫ θ

−θ
(u′)2 : u ∈ W 1,2

0 (−θ, θ) ,

∫ θ

−θ
u2 = 1

}
=
( π

2θ

)2
, ∀θ > 0 ,

so that the best control over ∥u∥2L2(−θ,θ) in terms of ∥u′∥2L2(−θ,θ) is∫ θ

−θ
(u′)2 ≥

( π

2θ

)2 ∫ θ

−θ
u2 , ∀u ∈ W 1,2

0 (−θ, θ) . (3.4)

In other words, if θ > π/2, then

inf
{∫ θ

−θ
(u′)2 − u2 : u ∈ W 1,2

0 (−θ, θ)
}
= −∞ .

Taking into account that θ1 and θ2 may possibly range on (π/2, π), see (2.13), we conclude that
in order to control (3.1) in terms of (3.2) we necessarily have to exploit the interaction between
the single perturbations uk through the multiple volume constraints. This will be achieved in
section 3.2 through a careful application of the two Poincaré-type inequalities discussed in the
next section.

3.1. Two Poincaré-type inequalities. We start by addressing the minimization of (3.3) un-
der a constraint on the mean value of u.

Lemma 3.1. If θ ∈ (0, π) and s ∈ R, then

inf
{∫ θ

−θ
(u′)2 − u2 : u ∈ W 1,2

0 (−θ, θ) ,

∫ θ

−θ
u = s

}
=

s2 cos θ

2(sin θ − θ cos θ)
. (3.5)

Notice that sin θ − θ cos θ defines an increasing function on (0, π), with values in (0, π). Thus
the right-hand side of (3.5) decreases from +∞ to 0 as θ ∈ (0, π/2), is equal to 0 for θ = π/2,
and decreases from 0 to −s2/2π as θ ∈ (π/2, π).
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Proof. Given u ∈ W 1,2
0 (−θ, θ) with

∫ θ
−θ u = s, let v(t) = u(tθ/π). Thus v ∈ W 1,2

0 (−π, π),∫ θ

−θ
v = s

π

θ
(3.6)

and ∫ θ

−θ
(u′)2 − u2 =

∫ π

−π

π

θ
(v′)2 − θ

π
v2.

Let {ϕk}k∈N ⊂ L2(−π, π) be the orthonormal basis of trigonometric functions with ϕ0 =

(2π)−1/2, and let ck =
∫ π
−π v ϕk the k-th Fourier coefficient of v. We have∫ π

−π

π

θ
(v′)2 − θ

π
v2 =

(
π

θ
− θ

π

)∫ π

−π
(v′)2 − θ

π

∫ π

−π
v2 − (v′)2

≥
(
π

θ
− θ

π

)∫ π

−π
(v′)2 +

θ

π

( ∞∑
k=1

k2 c2k −
∞∑
k=0

c2k

)

≥
(
π

θ
− θ

π

)∫ π

−π
(v′)2 − θ

π
c20

=

(
π

θ
− θ

π

)∫ π

−π
(v′)2 − s2

2θ
,

where in the last equality we used (3.6) to compute c0. We have thus proved that∫ θ

−θ
(u′)2 − u2 ≥

(
1−

( θ
π

)2)∫ θ

−θ
(u′)2 − 1

2θ

(∫ θ

−θ
u
)2

, ∀u ∈ W 1,2
0 (−θ, θ) ,

which immediately lead to prove the existence of minimizers in (3.5) by a standard application
of the Direct Method. We may thus consider a minimizer u in (3.5), that has to be a smooth
solution to the Euler-Lagrange equation{

u′′ + u = c ,
u(θ) = u(−θ) = 0 ,

(3.7)

for some c ∈ R. If θ = π/2, then u(t) = cos(t) solves (3.7) (with c = 0), and, correspondingly,
the infimum in (3.5) is equal to zero. If, instead, θ ̸= π/2, then (3.7) has solution

u(t) = c
(
1− cos t

cos θ

)
, |t| < θ .

A simple computation then gives,

s =

∫ θ

−θ
u = 2c

(
θ − tan θ

)
, that is c =

s

2(θ − tan θ)
.

Therefore, again by direct computation,∫ θ

−θ
(u′)2 − u2 =

−s2

2(θ − tan θ)
=

s2 cos θ

2(sin θ − θ cos θ)
.

�
Lemma 3.2. For every θ ∈ (0, π) there exists M = M(θ) such that, if u ∈ W 1,2

0 (−θ, θ) with(∫ θ

−θ
u

)2

≤ 1

M

∫ θ

−θ
u2 , (3.8)

then ∫ θ

−θ
(u′)2 − u2 ≥ 1

4

(
1− θ2

π2

) ∫ θ

−θ
(u′)2 +

1

2

(π2

θ2
− 1
) ∫ θ

−θ
u2 . (3.9)
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A possible value for M = M(θ) is

M =
1

θ

2π2

π2 − θ2
. (3.10)

Proof. Given u ∈ W 1,2
0 (−θ, θ), define v ∈ W 1,2

0 (−π, π) as v(t) = u(t θ/π). By (3.8),(∫ π

−π
v

)2

≤ π

θM

∫ π

−π
v2 , (3.11)

Let ϕk and ck be defined as in the proof of Lemma 3.1. For every λ ∈ (0, 1) we have

(1− λ)

∫ θ

−θ
(u′)2 −

∫ θ

−θ
u2 =

π

θ
(1− λ)

∞∑
k=1

k2c2k −
θ

π

∞∑
k=0

c2k

≥
(
π

θ
(1− λ)− θ

π

) ∞∑
k=0

c2k −
π

θ
(1− λ)c20

≥ π

θ

(
π

θ
(1− λ)− θ

π
− π(1− λ)

2θ2M

)∫ θ

−θ
u2, (3.12)

where we have estimated c0 thanks to (3.8) as follows,

c20 =
1

2π

(∫ π

−π
v

)2

≤ 1

2θM

∫ π

−π
v2 =

π

2θ2M

∫ θ

−θ
u2 .

Let us now rearrange (3.12) as∫ θ

−θ
(u′)2 − u2 ≥ λ

∫ θ

−θ
(u′)2 +

(
π2

θ2

(
1− 1

2θM

)
(1− λ)− 1

) ∫ θ

−θ
u2 .

We prove (3.9) by choosing M as in (3.10), by setting

λ =
1

4

(
1− θ2

π2

)
=

1

4

θ2

π2

(π2

θ2
− 1
)
,

and finally noticing that

π2

θ2

(
1− 1

2θM

)
(1− λ)− 1 ≥ π2

θ2
− 1− π2

θ2

(
λ+

1

2θM

)
=

1

2

(π2

θ2
− 1
)
.

�

3.2. A stability inequality on (ε, σ)-perturbations. We now come to the crucial estimate
of the paper.

Theorem 3.3. For every m2 ≥ m1 > 0, there exist positive constants ε1, σ1, and κ1 (depending
on m1/m2 only) with the following property. If E is an (ε, σ)-perturbation of E0 with vol (E0) =
(m1,m2), and if ε < ε1 and |σ| < σ1, then, in the case m2 > m1

P (E)− P (E0) ≥ κ1

(
σ2 +

2∑
k=0

rk

∫ θk

−θk

u2k

)
, (3.13)

while, in the case m2 = m1 (and r2 = r1 = r),

P (E)− P (E0) ≥ κ1

(
σ2 + r

∫ √
3/2

−
√
3/2

v20 +
2∑

k=1

r

∫ 2π/3

−2π/3
u2k

)
. (3.14)
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Proof. Step one: Let θ ∈ (0, π), and let M(θ) be as in (3.10). We notice that for every θ ∈ (0, π)
there exists ε(θ) > 0 such that if

∥u∥C0(−θ,θ) ≤ ε(θ) ,
(∫ θ

−θ
u+

u2

2

)2
≤ 1

2M(θ)

∫ θ

−θ
u2 ,

then (∫ θ

−θ
u
)2

≤ 1

M(θ)

∫ θ

−θ
u2 .

In the rest of the proof, given m1 and m2, and thus fixed θ1 and θ2 according to (2.17) and
(2.18), we shall assume to work with (ε, σ)-perturbations of E0 with ε < min{ε(θ1), ε(θ2)}.

Step two: We start considering the case m2 > m1. If E is an (ε, σ)-perturbation of E0 with
functions u0, u1, and u2, then, for t > 0, t E is an (ε, σ)-perturbation of t E0 with the same
functions u0, u1, and u2. Therefore, without loss of generality, in the following we may assume
that r2 = 1. For the sake of symmetry (and, thus, of clarity) we shall keep writing r2 in place
of 1 in the following formulas, until we exploit this scaling assumption. Let us now set

Ik =

∫ θk

−θk

uk +
u2k
2

, k = 0, 1, 2 ,

so that the volume constraints (2.35) and (2.36) take the form

I0 = −
(r1
r0

)2
I1 +

m1

r20

( 1

(1 + σ)2
− 1
)
, (3.15)

I0 =
(r2
r0

)2
I2 −

m2

r20

( 1

(1 + σ)2
− 1
)
. (3.16)

Multiplying (3.15) by m2/(m1 +m2), (3.16) by m1/(m1 +m2), and then adding up, we find

I0 =
m1

m1 +m2

(r2
r0

)2
I2 −

m2

m1 +m2

(r1
r0

)2
I1 . (3.17)

Similarly, multiplying both (3.15) and (3.16) by r20, and then subtracting the resulting identities,
we come to r21 I1 + r22 I2 = (m1 +m2)((1 + σ)−2 − 1), which gives

σ2 + o (σ2) =
(r21I1 + r22I2)

2

4(m1 +m2)2
+ o (u2) . (3.18)

By (3.18) we deduce that

σ2 + o (σ2) ≤ r41I
2
1 + r42I

2
2

2(m1 +m2)2
+ o (u2) , (3.19)

and, since Ik ≤ C
∫ θk
−θk

u2k, that o (σ
2) = o (u2). (This is a reflection of the fact that if the uk’s

are all zero, then, by the volume constraint, we necessarily have σ = 0.) Thus (2.32) gives

2
P (E)− P (E0)

1 + σ
=

2∑
k=0

rk

∫ θk

−θk

(u′k)
2 − u2k + P (E0)σ2 + o (u2) + o ((u′)2) . (3.20)

We now claim that, for a suitable constant C (depending on E0) we have

C (P (E)− P (E0)) ≥ r1 I
2
1 + r2 I

2
2 + o (u2) + o ((u′)2) . (3.21)

To this end, let us set for the sake of brevity

g(θ) =
cos θ

2(sin θ − θ cos θ)
, 0 < θ < π . (3.22)
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Figure 6. Plotting of β1(r) (left) and of (β1(r)β2(r)− β3(r)
2)/r (right) for r ∈ (0, 1).

In particular, β1(r)β2(r)−β3(r)
2 ≈ r for r small. The plots have been drawn by Maxima

v.5.28.0 (http://maxima.sourceforge.net) starting from equations r2 = 1, r1 = r ∈ (0, 1),

(2.15), (2.16), (2.17), (2.18), (2.22), (2.23), (2.24), (3.22), (3.25), (3.26), and (3.27).

By Lemma 3.1, for k = 0, 1, 2 we have∫ θk

−θk

(u′k)
2 − u2k ≥ g(θk)

(
Ik −

∫ θk

−θk

u2k
2

)2
= g(θk) I

2
k + o (u2), (3.23)

and thus, by inserting (3.18) and (3.23) into (3.20), and since o (σ2) = o (u2), we obtain

2
P (E)− P (E0)

1 + σ
≥

2∑
k=0

rk g(θk)I
2
k +

P (E0)(r21I1 + r22I2)
2

4(m1 +m2)2
+ o (u2) + o ((u′)2)

= β1 r1 I
2
1 + β2 r2 I

2
2 + 2β3

√
r1r2 I1 I2 + o (u2) + o ((u′)2) . (3.24)

Here, by taking into account (3.17), we have set

β1 = g(θ0)
r31
r30

m2
2

(m1 +m2)2
+ g(θ1) +

r31
4

P (E0)
(m1 +m2)2

, (3.25)

β2 = g(θ0)
r32
r30

m2
1

(m1 +m2)2
+ g(θ2) +

r32
4

P (E0)
(m1 +m2)2

, (3.26)

β3 = −g(θ0)
r
3/2
1 r

3/2
2

r30

m1m2

(m1 +m2)2
+

r
3/2
1 r

3/2
2

4

P (E0)
(m1 +m2)2

. (3.27)

The quadratic form in (
√
r1 I1,

√
r2 I2) on the right-hand side (3.24) is coercive: indeed, it suffices

to show the existence of β∗ > 0 (depending on m1/m2 only) such that

min{β1, β1β2 − β2
3} ≥ β∗ . (3.28)

To this end, let us note that, having set r2 = 1, it turns out that r0, θ0, θ1, θ2, m1, and m2 are all
explicit functions of r1 ∈ (0, 1) according to equations (2.15), (2.16), (2.17), (2.18), (2.23), and
(2.24). Correspondingly, the coefficients βk can be easily expressed as functions of r1 ∈ (0, 1),
and the validity of (3.28) can be deduced by a numerical plot; see Figure 6. As a consequence
of (3.28), and up to decrease the value of β∗, we find

β1 r1 I
2
1 + β2 r2 I

2
2 + 2β3

√
r1r2 I1 I2 ≥ β∗(r1 I

2
1 + r2 I

2
2 ) .

We combine this inequality with (3.24) to prove (3.21), as claimed. Now, by (3.19) and (3.21),

C (P (E)− P (E0)) ≥ σ2 + r1 I
2
1 + r2 I

2
2 + o (u2) + o ((u′)2) . (3.29)

By the choice of ε performed in step one, we now notice that, if for some k = 1, 2 we have

I2k ≤ 1

2M(θk)

∫ θk

−θk

u2k ,
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then, by Lemma 3.2,∫ θk

−θk

(u′k)
2 − u2k ≥ 1

4

(
1−

θ2k
π2

) ∫ θk

−θk

(u′k)
2 +

1

2

(π2

θ2k
− 1
) ∫ θk

−θk

u2k . (3.30)

Therefore, for k = 1, 2, either (3.30) holds true, or

I2k ≥ 1

2M(θk)

∫ θk

−θk

u2k . (3.31)

Concerning u0, let us notice that, by the sharp Poincaré inequality (3.4), and since θ0 < π/3,∫ θ0

−θ0

(u′0)
2 ≥

( π

2θ0

)2 ∫ θ0

−θ0

u20 ≥
9

4

∫ θ0

−θ0

u20 ,

which gives ∫ θ0

−θ0

(u′0)
2 − u20 ≥

1

3

∫ θ0

−θ0

(u′0)
2 +

(3
2
− 1
)∫ θ0

−θ0

u20 . (3.32)

We are now going to use (3.30), (3.31), and (3.32) together with (3.29) to prove that, for some
constant C depending on E0, we always have

C (P (E)− P (E0)) ≥ σ2 +
2∑

k=0

rk

∫ θk

−θk

(u′k)
2 + u2k . (3.33)

We divide the argument in three cases:

Case one: We assume that (3.30) holds true for k = 1, 2. By this assumption, (3.20), and (3.32),

C (P (E)− P (E0)) ≥ σ2 +

2∑
k=0

rk

∫ θk

−θk

(u′k)
2 + u2k + o (u2) + o ((u′)2) . (3.34)

Then, up to decrease the value of ε and up to increase the value of C, we may absorb o (u2) and
o ((u′)2) in the other terms on the right hand side, and deduce (3.33).

Case two: We assume that (3.31) holds true for k = 1, 2. In this case, by (3.20) we obtain

2
P (E)− P (E0)

1 + σ
≥ τ

( 2∑
k=0

rk

∫ θk

−θk

(u′k)
2 − u2k

)
+ (1− τ) 2

P (E)− P (E0)
1 + σ

+o (u2) + o ((u′)2)

(by (3.32)) ≥ τ
(r0
3

∫ θ0

−θ0

(u′0)
2 +

r0
2

∫ θ0

−θ0

u20

)
+ τ

2∑
k=1

rk

∫ θk

−θk

(u′k)
2 − u2k

(by (3.29)) +
1− τ

C

(
σ2 + r1 I

2
1 + r2 I

2
2

)
+ o (u2) + o ((u′)2)

≥ τ
(r0
3

∫ θ0

−θ0

(u′0)
2 +

r0
2

∫ θ0

−θ0

u20

)
+ τ

2∑
k=1

rk

∫ θk

−θk

(u′k)
2 − u2k

(by (3.31) for k = 1, 2) +
1− τ

C

(
σ2 +

2∑
k=1

rk
2M(θk)

∫ θk

−θk

u2k

)
+ o (u2) + o ((u′)2)

≥ τ
(r0
3

∫ θ0

−θ0

(u′0)
2 +

r0
2

∫ θ0

−θ0

u20

)
+ τ

2∑
k=1

rk

∫ θk

−θk

(u′k)
2

+
1− τ

2C

(
σ2 +

2∑
k=1

rk
2M(θk)

∫ θk

−θk

u2k

)
+ o (u2) + o ((u′)2) ,
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where in the last inequality we have absorbed the negative terms in u2k, k = 1, 2, by choosing τ
so small to have

τ ≤ 1− τ

4C
min
k=1,2

1

M(θk)
.

We have thus proved (3.34), and thus (3.33), up to suitably choose ε and C.

Case three: We assume that (3.30) holds true for k = 1, while (3.31) holds true for k = 2. By
arguing as in case two we find, for any τ ∈ (0, 1),

2
P (E)− P (E0)

1 + σ
≥ τ

(r0
3

∫ θ0

−θ0

(u′0)
2 +

r0
2

∫ θ0

−θ0

u20

)
+ τ

2∑
k=1

rk

∫ θk

−θk

(u′k)
2 − u2k

+
1− τ

C

(
σ2 + r1 I

2
1 + r2 I

2
2

)
+ o (u2) + o ((u′)2)

By using (3.30) for k = 1 and (3.31) for k = 2, and discarding some positive terms, we find

2
P (E)− P (E0)

1 + σ
≥ τ c

(
r0

∫ θ0

−θ0

(
(u′0)

2 + u20

)
+ r1

∫ θ1

−θ1

(
(u′1)

2 + u21

)
+ r2

∫ θ2

−θ2

(u′2)
2

)
+
1− τ

C

(
σ2 +

r2
2M(θ2)

∫ θ2

−θ2

u22

)
− τ r2

∫ θ2

−θ2

u22 + o (u2) + o ((u′)2) ,

for some positive constant c depending on E0. As in case two, we may choose τ small enough
to have the negative term in u22 absorbed by its positive counterpart, and come to prove (3.34).
Finally, when (3.30) holds true for k = 2 and (3.31) holds true for k = 1 (note that, formally,
this is a fourth different case, as m2 > m1), then we just repeat the very same argument.
Summarizing, we have proved the validity of (3.33), which of course implies (3.13). The theorem
is proved in the case m2 > m1.

Step three: We now address the case m2 = m1. In this case we set r = r1 = r2, m = m1 = m2,
and θ = θ1 = θ2 = 2π/3. Once again, up to scaling, we may assume that r = 1, so that

m =
2π

3
+

√
3

4
, P (E0) = 4m =

8π

3
+

√
3 .

The volume constraints now take the form(
(1 + σ)−2 − 1

)
m = I1 +

∫ √
3/2

−
√
3/2

v0 = I2 −
∫ √

3/2

−
√
3/2

v0 ,

so that, by arguing as in step one, we find, in analogy to (3.17) and (3.18),∫ √
3/2

−
√
3/2

v0 =
I2 − I1

2
, σ2 + o(σ2) =

(I1 + I2)
2

4m2
. (3.35)

By Lemma 3.1 we have (3.23) for k = 1, 2, and, similarly,∫ √
3/2

−
√
3/2

(v′0)
2 ≥

∫ √
3/2

−
√
3/2

v20 + g
(√3

2

)(∫ √
3/2

−
√
3/2

v0

)2
=

∫ √
3/2

−
√
3/2

v20 + g
(√3

2

) (I2 − I1)
2

4
. (3.36)
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(Notice that
√
3/2 < π/2, thus g(

√
3/2) is positive.) By (3.35) and (3.36), and since o (σ2) =

o (u2), from (2.33) we deduce

2
P (E)− P (E0)

1 + σ
=

∫ √
3/2

−
√
3/2

(v′0)
2 +

2∑
k=1

∫ 2π/3

−2π/3
(u′k)

2 − u2k +
σ2

2
P (E0) + o (u2) + o ((u′)2)

≥
∫ √

3/2

−
√
3/2

v20 + g
(√3

2

) (I2 − I1)
2

4
+ g
(2π

3

)
(I21 + I22 ) +

(I1 + I2)
2

2m

+o (u2) + o ((u′)2)

≥
∫ √

3/2

−
√
3/2

v20 + α1 I
2
1 + α2 I

2
2 + 2α3 I1 I2 ,+o (u2) + o ((u′)2) ,

provided we set

α1 = α2 =
1

4
g
(√3

2

)
+ g
(2π

3

)
+

1

2m

α3 = −1

4
g
(√3

2

)
+

1

2m
.

By direct evaluation we see that α1 > 0 and α1α2 − α2
3 > 0. Therefore there exists α∗ > 0 such

that α1 I
2
1 + α2 I

2
2 + 2α3 I1 I2 ≥ α∗(I

2
1 + I22 ), and thus

2
P (E)− P (E0)

1 + σ
≥
∫ √

3/2

−
√
3/2

v20 + α∗ (I
2
1 + I22 ) + o (u2) + o ((u′)2) . (3.37)

We conclude the proof exactly as in step two, with (3.37) playing the role of (3.21), and with∫ √
3/2

−
√
3/2

(v′0)
2 ≥ 1

2

∫ √
3/2

−
√
3/2

(v′0)
2 + v20 (3.38)

playing the role of (3.32). (Note that (3.38) follows trivially from (3.36).) This completes the
proof of Theorem 3.3. �

4. Proofs of the main theorems

Proof of Theorem 1.1. By the theory developed in [CLM12] and by a scaling argument, Theorem
1.1 follows immediately from Theorem 2.1. �
Proof of Theorem 2.1. By Remark 2.1, it suffices to show that for every m2 ≥ m1 > 0 there
exist positive constants κ, ε1 and σ1 such that δ(E) ≥ κα(E)2 for every (ε, σ)-perturbation E of
E0 with ε < ε1 and |σ| < σ1. This follows immediately from Theorem 3.3 and Lemma 2.5. �
Proof of Theorem 1.2. We directly focus on the case m2 > m1, the case m2 = m1 being entirely
analogous. As shown in [CLM12], there exists β0 > 0 such that if Eβ is a minimizer in (1.4)
for β ∈ (0, β0), then there exists a standard double bubble E0 with vol (E0) = (m1,m2) and a
C1,1-diffeomorphism fβ : ∂E0 → ∂Eβ with ∥fβ − Id∥C1(∂E0;R2) → 0 as β → 0. In particular, by
Remark 2.1, up to further decrease the value of β0, we may assume that if β < β0, then Eβ is an
(εβ, σβ)-perturbation of E0 for εβ ≤ ε1 and |σβ| ≤ σ1, where ε1 and σ1 are the constants defined
in Theorem 3.3. If we denote by gβ : ∂E0 → ∂Eβ the diffeomorphism associated to σβ and to the
functions {uβ,k}k=0,1,2, then by Theorem 3.3 and by (2.31) we find

P (Eβ)− P (E0) ≥ κ
(
σ2
β +

2∑
k=0

∫ θk

−θk

u2β,k

)
, (4.1)

∥gβ − Id∥C1(∂E0;R2) ≤ C
(
|σ|+ max

k=0,1,2
∥uβ,k∥C1(−θk,θk)

)
. (4.2)
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Since the curvatures of the interfaces ∂Eβ are converging to the corresponding values of ∂E0 (see,
again, [CLM12]), we have that

sup
β<β0

∥u′′β,k∥L∞(−θk,θk) ≤ Λ ,

for a suitable constant Λ. Thus, by (4.1) and by Lemma 4.1 below, it follows that

∥u′β,k∥C0(−θk,θk) ≤ 2Λ2/3∥uβ,k∥
1/3
L1(−θk,θk)

+
1

θ2k
∥uβ,k∥L1(−θk,θk)

≤ C ∥uβ,k∥
1/3
L2(−θk,θk)

≤ C
(
P (Eβ)− P (E0)

)1/6
. (4.3)

Since uβ,k(±θk) = 0, we conclude the proof by combining (4.2) and (4.3). �

Lemma 4.1 (An interpolation inequality). If u ∈ C1,1([0, s]), then

∥u′∥C0(0,s) ≤ 2 ∥u∥1/3
L1(0,s)

∥u′′∥2/3L∞(0,s) +
4

s2
∥u∥L1(0,s) .

Proof. By scaling, we can assume that s = 1. Up to change u with −u we may assume that

ℓ = ∥u′∥L∞(0,1) = max
[0,1]

|u′| = u′(x0) > 0 .

Notice that this last assumption (that is, the maximum of u′ is achieved at a point where u′ has
positive value), as well as the various norms of u, u′, and u′′ considered in the statement, are
preserved if we change u(x) with −u(1− x). We set Λ = ∥u′′∥L∞(0,1).

Case one: Assume that ℓ < 2Λ. Up to change u(x) with −u(1 − x) we may assume that
x0 < 1− (ℓ/2Λ). In this way, u′(x0 + t) ≥ ℓ/2 whenever 0 < t < ℓ/2Λ. If |u(x0)| ≥ ℓ2/4Λ, then

∥u∥L1(0,1) ≥
∫ x0+ℓ/4Λ

x0

|u| ≥
∫ x0+ℓ/4Λ

x0

(
|u(x0)| − ℓ t

)
dt ≥

∫ ℓ/4Λ

0

( ℓ2

4Λ
− ℓ t

)
dt =

ℓ3

8Λ2
;

if |u(x0)| < ℓ2/4Λ, then again

∥u∥L1(0,1) ≥
∫ x0+ℓ/4Λ

x0

|u| ≥
∫ x0+ℓ/4Λ

x0

(
ℓ t− |u(x0)|

)
dt ≥

∫ ℓ/4Λ

0

(
ℓ t− ℓ2

4Λ

)
dt =

ℓ3

8Λ2
.

Case two: Assume that 2Λ ≤ ℓ. In this case u′ ≥ ℓ/2 on [0, 1]. If u(0) ≥ 0 then ∥u∥L1(0,1) ≥ ℓ/2
and we are done. If u(0) < 0, but u(1) ≥ 0, then, up to switch u(x) with −u(1− x) we reduce
to the previous case. The only possibility left is that u(0) and u(1) are both negative. In this
case, of course, u(x) ≤ (ℓ/2)(1− x), and thus we find ∥u∥L1(0,1) ≥ ℓ/4. �
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[BDF12] V. Bögelein, F. Duzaar, and N. Fusco. A sharp quantitative isoperimet-
ric inequality in higher codimension. 2012. available for download at
http://cvgmt.sns.it/paper/1865/.

[Ber05] F. Bernstein. Uber die isoperimetriche eigenschaft des kreises auf der kugeloberflache
und in der ebene. Math. Ann., 60:117–136, 1905.

[Bon24] T. Bonnesen. Uber die isoperimetrische defizit ebener figuren. Math. Ann., 91:
252–268, 1924.

[CFMP11] A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli. On the isoperimetric deficit in
gauss space. Amer. J. Math., 133(1):131–186, 2011.

[CL12] M. Cicalese and G. P. Leonardi. A selection principle for the sharp quantitative
isoperimetric inequality. Arch. Rat. Mech. Anal., 206(2):617–643, 2012.

[CL13] M. Cicalese and G. P. Leonardi. Best constants for the isoperimetric inequality in
quantitative form. J. Eur. Math. Soc., 2013.



22 M. CICALESE, G. P. LEONARDI, AND F. MAGGI

[CLM12] M. Cicalese, G. P. Leonardi, and F. Maggi. On equilibrium shapes of perturbed
minimizing clusters and related global stability inequalities. 2012.

[DLSW09] R. Dorff, G. Lawlor, D. Sampson, and B. Wilson. Proof of the planar double bubble
conjecture using metacalibration methods. Involve, 2(5):611–628, 2009.

[DPM11] G. De Philippis and F. Maggi. Sharp stability inequalities for the plateau problem.
2011. preprint available at http://cvgmt.sns.it.

[FAB+93] J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba. The standard double soap
bubble in R2 uniquely minimizes perimeter. Pacific J. Math., 159(1), 1993.

[FGP12] N. Fusco, M. S. Gelli, and G. Pisante. On a bonnesen type inequal-
ity involving the spherical deviation. 2012. available for download at
http://cvgmt.sns.it/person/217/.

[FM11] A. Figalli and F. Maggi. On the shape of liquid drops and crystals in the small mass
regime. Arch. Rat. Mech. Anal., 201:143–207, 2011.

[FMP08] N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality.
Ann. Math., 168:941–980, 2008.

[FMP10] A Figalli, F. Maggi, and A. Pratelli. A mass transportation approach to quantitative
isoperimetric inequalities. Inv. Math., 182(1):167–211, 2010.

[Fug89] B. Fuglede. Stability in the isoperimetric problem for convex or nearly spherical
domains in Rn. Trans. Amer. Math. Soc., 314:619–638, 1989.

[Fug93] B. Fuglede. Lower estimate of the isoperimetric deficit of convex domains in Rn in
terms of asymmetry. Geom. Dedicata, 47(1):41–48, 1993.

[FVM10] N. Fusco, Millot V., and M. Morini. A quantitative isoperimetric inequality for
fractional perimeters. 2010. preprint available at http://cvgmt.sns.it/paper/1499/.

[Hal92] R. R. Hall. A quantitative isoperimetric inequality in n-dimensional space. J. Reine
Angew. Math., 428:161–176, 1992.

[HHW91] R. R. Hall, W. K. Hayman, and A. W. Weitsman. On asymmetry and capacity. J.
d’Analyse Math., 56:87–123, 1991.

[HMRR02] M. Hutchings, F. Morgan, M. Ritoré, and A. Ros. Proof of the double bubble
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