
CONGESTION-DRIVEN DENDRITIC GROWTH

BERTRAND MAURY, AUDE ROUDNEFF-CHUPIN AND FILIPPO SANTAMBROGIO

Abstract. In order to observe growth phenomena in biology where dendritic
shapes appear, we propose a simple model where a given population evolves
feeded by a diffusing nutriment, but is subject to a density constraint. The
particles (e.g., cells) of the population spontaneously stay passive at rest, and
only move in order to satisfy the constraint ρ ≤ 1, by choosing the minimal
correction velocity so as to prevent overcongestion. We treat this constraint by
means of projections in the space of densities endowed with the Wasserstein
distance W2, defined through optimal transport. This allows to provide an
existence result and suggests some numerical computations, in the same spirit
of what the authors did for crowd motion (but with extra difficulties, essentially
due to the fact that the total mass may increase). The numerical simulations
show, according to the values of the parameter and in particular of the diffusion
coefficient of the nutriment, the formation of dendritic patterns in the space
occupied by cells.

1. Introduction

Dendritic growth is very common in nature: solidified alloys, snowflake forma-
tion, corals, bacterial colonies, and some viscous fluid flows, present similar branch-
ing patterns. Those patterns reflect a wide variety of mechanisms. In most cases,
branches result from an external supply of a diffusing substance. The simplest
model for such a phenomenon is the following (Diffusion Limited Aggregation [29]).
An initial particle (seed) is located at some point, a second particle is introduced at
a large distance from the seed, and is assumed to perform a random walk. When-
ever it contacts the seed before escaping to infinity, it is assumed to irreversibly
stick to it. A third particle is then introduced, and so on. When a new particle
approaches the cluster, it is more likely to hit a growing part than a part close to
the seed, which tends to generate highly irregular patterns. In the context of cell
growth, the cluster corresponds to a zone occupied by living cells that grow at a
rate depending of the local concentration of some nutrient. The latter substance
diffuses outside the cluster, so that, like in the DLA process, nutrients are likely to
be eaten before reaching the “fjords”. Thus, the tips receive more nutrients than
underdeveloped zone, which may tend again to develop branches. Yet, the actual
growth of a branching cluster necessitates to account for cell motion. Linear diffu-
sion for the cells does not lead to dendritic growth, but more sophisticated models
(Kitsunezaki [13] or Kawaski [12], see details below) reproduce branching patterns
at different scales.

We aim here at investigating the possibility that the motion of cells, and thereby
the emergence of branching patterns, may result from a very simple mechanism,
namely congestion. We shall focus on the specify situation of Bacillus subtilis
colonies, but the principles are quite general: we shall consider a population of
entities that grow at a rate which depends on the local concentration of a nutrient.
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The nutrient propagates by passive diffusion (linear Fick’s Law), whereas the main
entity does not. The latter is simply subject to a maximal density constraint. When
the maximal density is attained, entities push against each other, which induces a
motion that ensures that the density constraint is not violated. We shall simply as-
sume here that the correction velocity field that advects the entities is the minimal
one (in the sense that it minimizes the L2 norm) among those that preserve the
density constraint. Before detailing this approach, we first give an overview of the
different models that have been proposed in the literature to describe the growth
of such cells.

Bacterial colonies of Bacillus subtilis develop very different patterns, depending
on the conditions they grow into. Many experiments have been conducted to de-
termine the morphological changes arising when the culture parameters are varied
(see for instance the work of Matsushita and Fujikawa [9, 16, 10] and Ben-Jacob et
al. [4]). In these experiments, bacteria are inoculated in the center of agar plates of
thickness small enough to ensure a two-dimensional evolution of the system. Only
two parameters are varied: the concentration of nutrients, denoted by Cn, and the
hardness of the medium, controlled by the agar concentration Ca. Other parameters
such as temperature are kept constant.

Five distinct morphological types have been identified (see Figure 1). In region
A, for low concentrations of nutrients and hard media, bacterial colonies are grow-
ing through DLA processes ([29]). It appears that bacteria cannot move at these
concentrations of agar, and that their evolution is only due to cell-division, thanks
to the diffusion of the nutrients towards the colony (see Matsushita et al. [17]). As
the nutrient concentration increases, colony branches become thicker and finally
form compact patterns (region B). The growth is also faster as Cn increases. For
intermediate hardness of agar, and high levels of nutrients (region C), the evolution
consists of alternative expanding and consolidating phases, forming concentric ring
patterns. Decreasing again the softness of the medium (region D), bacteria are able
to move on the agar surface. Their evolution is the conjunction of cell-division and
diffusion, and the growth consists of a disk expanding rapidly. Finally, for inter-
mediate values of Ca and low levels of nutrients, bacterial colonies develop dense
branches, the envelope of which is smooth and circular (region E).

Many models have been proposed to reproduce these morphological changes.
Some are microscopic and describe the behavior of each bacteria (see for instance
the communicating walkers models of Ben-Jacob et al. [5] or the cellular-automaton
model described in [3]), but most of them are macroscopic and study the two-
dimensional density of the bacterial colony via a reaction-diffusion equation. A
very simple model to account for the time evolution of the densities of bacteria and
nutrients b and n would be

(1)

{
∂tb = Db∆b + nb

∂tn = Dn∆n− nb.

Unfortunately, system (1) cannot reproduce the emergence of branching patterns.
In [13], Kitsunezaki proposes a model of non-linear diffusion, where two different
types of cells are considered: active ones (which move actively and perform cell-
divisions) of density b, and inactive ones, their density being denoted by a. The
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Figure 1. Morphology diagram of Bacillus subtilis colonies grown
by Matsushita et al. [17].

reaction-diffusion equation becomes

(2)







∂tb = D∆(bm+1) + nb− µb

∂tn = ∆n− nb

∂ta = µb.

Branching patterns can be obtained for suitable parameters. Kawaski et al. propose
another non-linear diffusion model, where the diffusion coefficient is proportional
to nb, pointing out that bacteria are active mostly in the regions where nutrients
are abundant (see [12]). This nutrient-dependent diffusion ensures the creation of
branches without the need of adding a death term, as it is for instance the case in
the models proposed in [18, 19, 20] by Mimura et al. More precisely, their model
include a death term in the bacterial population of the form

− µb

(1 + b)(1 + n)
.

The numerical simulations reproduce different morphological patterns. Moreover,
the authors prove in [8, 23] the existence and uniqueness of the solution of the
reaction-diffusion system, and characterize the asymptotic behavior of the total
bacterial population. More complicated models include specific features, such as
the presence of some lubricating fluid produced by the cells (see [11]), the effects
of chemotaxis described for example in [11, 15], or different states of mobility for
bacteria, as in [14].

We focus here on the case of hard media (high concentrations Ca), where bacteria
cannot move on the agar surface. It has been pointed out in [17] that cell-divisions
are in this case the only cause of growth. However, as explained before, the simple
reaction-diffusion system

(3)

{
∂tb = nb

∂tn = Dn∆n− nb.
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cannot produce branching patterns, which must be a consequence of other features
which are still to be added to this system. In the spirit of the models studied in the
context of crowd movements (see [21, 22]) and cell-migration (see [7]), we propose to
take into account the congestion of the bacterial population throught the constraint

b ≤ 1.

This constraint can be seen as a formal limit of the non-linear diffusion term

∇ · (bm∇b)
when m tends to infinity. As a matter of fact, this diffusion term tends to penalize
high bacterial densities, and can be seen as a form of soft congestion, opposite
to imposing a maximal density constraint, which is usually called hard congestion
(see [22] for more details on the different ways of dealing with congestion). Despite
its very simple formulation, this model contains many difficulties, both theoretical
and numerical. In particular, classical methods are inefficient to prove the well-
posedness of this type of problems. In [21], we turned to the theory of optimal
transport and gradient flows (see [1, 2, 27, 28]) to prove an existence result.

We detail in Section 2 the rigorous formulation of the model. We prove an
existence result in section 3, adapting the results obtained in [21] to the case where
the total population is growing. Numerical simulations are presented in section 4.

2. Description of a model driven by congestion

2.1. The congestion model. We propose in this work to take into account the
congestion of the bacterial population through the constraint

b ≤ 1

which has to be satisfied almost everywhere in the bounded domain Ω. Since the
experimental conditions ensure a two-dimensional evolution for the bacteria, this
maximal density constraint makes sense. Here the limit density has been fixed to 1
for simplicity, but it can be changed to any other value without loss of generality.
The reaction-diffusion system describing our model writes

(4)

{
∂tb+∇ · (bu) = nb in Ω,

∂tn = Dn∆n− nb in Ω,

where u is the minimal correction velocity (in a mean square sense) ensuring that
the density b does not exceed 1. This velocity has to counterbalance the growth
of the bacterial population, given by the term nb. More precisely, we choose the
velocity which minimizes the L2 norm among the admissible velocities, which are
roughly speaking the vector fields v such that ∇ · v ≥ n. More precisely, we define
the set Cb of admissible velocities by

(5) Cb =

{

v ∈ (L2(Ω))2 :

∫

Ω

v · ∇q ≤ −
∫

Ω

nq, ∀q ∈ H1
b

}

.

Here H1
b denotes a set of functions acting supported in the saturated area [b = 1] :

(6) H1
b =

{
q ∈ H1(Ω), q ≥ 0, q(1− b) = 0

}
.

Since the system evolves in a closed medium (the agar plate), we impose no-flux
conditions for the nutrients on the boundary

(7) ∇n · ν = 0 on ∂Ω,
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where ν denotes the outward normal of Ω.
Note that this model expresses the basic principles of bacterial growth. The

nutrients diffuse through the medium, and are consumed by the bacteria. The
spatial expansion of the bacterial colony is due to the correction velocity only. This
correction velocity is non-zero whenever there is a sufficient supply of nutrient to
induce a growth that activates the maximal density constraint.

Definition 2.1 (Weak solutions). We shall say that (b, n) is a weak solution
to (4)–(7) for initial data (b0, n0) whenever for all ϕ ∈ C1

c ([0, T [,Ω), for all ψ ∈
C1

c ([0, T [,Ω), we have
∫ T

0

∫

Ω

(∂tϕ(t, x) +∇ϕ(t, x) · u(t, x) + n(t, x)ϕ(t, x)) b(t, x) dx dt

+

∫

Ω

ϕ(0, x)b0(x) dx = 0

and
∫ T

0

∫

Ω

(∂tψ(t, x)n(t, x) −Dn∇ψ(t, x) · ∇n(t, x) − ψ(t, x)n(t, x)b(t, x)) dx dt

+

∫

Ω

ψ(0, x)n0(x) dx = 0.

The set Cb defined by (5) is closed and convex, therefore there is a unique u with
minimal L2 norm. We shall use in the proof the saddle-point characterization of
this minimizer:

Lemma 2.2. If (u, p) ∈ L2(Ω)2 ×H1
b is such that

(8)







u+∇p = 0,
∫

Ω

u · ∇q ≤ −
∫

Ω

nq, ∀q ∈ H1
b

and such that (complementary slackness condition)
∫

Ω

u · ∇p = −
∫

Ω

np,

then u minimizes the L2 norm over Cb.

Proof. The second equation of (8) ensures that u ∈ Cb. Now, from the first equation
of (8), u minimizes the quadratic functional

v 7−→ 1

2
||v||2L2 +

∫

Ω

(v · ∇p+ np) .

Thanks to the slackness condition, it holds that

1

2
||u||2L2 +

∫

Ω

(u · ∇p+ np)

︸ ︷︷ ︸

=0

≤ 1

2
||v||2L2 +

∫

Ω

(v · ∇p+ np) .

For any v ∈ Cb, the second term of the right-hand side above is non-positive, thus
||u|| ≤ ||v||. �
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Remark 1. The couple (u, p) ∈ L2(Ω)2 ×H1
b is a saddle-point for the Lagrangian

L(v, q) =
1

2
||v||2L2 +

∫

Ω

(v · ∇q + nq) ,

i.e. it holds

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀(v, q) ∈ L2(Ω)2 ×H1
b .

Despite its simple formulation, this model arises several difficulties. In particular,
the correction velocity has no a priori regularity (else than L2), and depends on b
through a highly non-linear equation. This prevents us from using classical methods
both in the theoretical and numerical aspects. We encountered the same difficulties
in [21] in the context of crowd motion. The evolution equation studied there was
very similar to the present one, since the crowd had also to respect a maximal
density constraint. In this work, the problem had been reformulated as a gradient
flow in the space of Wasserstein. The Wasserstein distance is indeed well-fitted to
consider displacements between measures of same total mass. It is defined (see for
more details [27, 28]) as the minimal transport cost from a measure µ to a measure
ν. More precisely, if µ and ν are absolutely continuous measures, it writes

(9) W 2
2 (µ, ν) = min

t#µ=ν

∫

Ω

|t(x) − x|2 dµ(x),

where t#µ denotes the push-forward measure of µ by t. In this context, it was
possible to obtain an existence result for the gradient flow problem, and prove that
this implies a solution to the original system.

We cannot apply straightforwardly these methods to our system. First, the total
mass of the bacterial density grows as time runs by, and this prevents us to consider
the Wasserstein distance between them. Moreover, since System (4) is a coupled
reaction-diffusion system, we have to deal with an evolving density of nutrients. We
present in the next section a splitting discrete scheme which makes it possible to
overcome these two major difficulties.

2.2. Description of an approximation scheme. In order to prove the existence
of a solution, we consider an approximating scheme of system (4). At each time
step, we first let the bacterial density grow thanks to the provision of nutrients,
disregarding the congestion constraint. Then we take the nearest bacterial density
among the densities which obey the constraint b ≤ 1. More precisely, for a time
step τ > 0, starting from initial conditions

b0τ = b0, nτ (0, ·) = n0,

we define discrete densities bkτ thanks to the splitting scheme

(10)







b̂kτ = bk−1
τ exp

(
∫ kτ

(k−1)τ

nτ (s, .) ds

)

,

bkτ = PK
mk
b̂kτ ,

where nτ is defined by taking, on each interval [(k − 1)τ, kτ ], the solution of

(11) ∂tnτ = Dn∆nτ − nτb
k−1
τ t ∈ [(k − 1)τ, kτ ],

(more precisely: on each interval [(k − 1)τ, kτ ] the density bk−1
τ is considered to be

given, as well as the initial value of nτ at time t = (k − 1)τ , then nτ is computed



CONGESTION-DRIVEN DENDRITIC GROWTH 7

as the solution of the above equation on [(k − 1)τ, kτ ], which makes it possible to
update the value of bkτ and nτ (kτ, ·) for the next interval).

Here, PKm
denotes the projection for the Wasserstein distance (defined in (9))

on the set of densities of total mass m, which satisfies the congestion constraint:

(12) Km =

{

b ∈M+(Ω) :

∫

Ω

b = m, b ≤ 1

}

,

and mk is the total mass of b̂kτ (and bkτ as well). Here M+(Ω) stands for the set of
positive finite measures on Ω. The constraint b ≤ 1 means in particular that they
should be absolutely continuous, and they are therefore confused with their density.

Indeed, it can be established (for details see [22], Proposition 2) that the distance
between any given density of mass mk and the set Km attains its minimum at a
unique point.

Note that b̂kτ is the solution at time kτ of
{

∂tb = nτ b,

b((k − 1)τ, .) = bk−1
τ ,

and that the equations on nτ and bkτ are no more coupled, since the equation on nτ

only involves bk−1
τ .

Our goal is to prove that these discrete densities converge to a solution of Sys-
tem (4) as τ tends to 0. With this aim in view, we define two families of interpolated
curves. The first one will be used to prove that the congestion constraint is satisfied,
and is defined by

bτ (t, .) = bkτ , t ∈](k − 1)τ, kτ ],

whereas nτ is simply given as the solution of (11). We also define discrete velocities
for the projection step as

(13) vk
τ =

id− tkτ
τ

,

where tkτ is the optimal transport from bkτ to b̂kτ . These velocities are interpolated
through

vτ (t, .) = vk
τ t ∈](k − 1)τ, kτ ],

and we also define the quantities

Eτ (t, .) = bkτv
k
τ t ∈](k − 1)τ, kτ ].

The second family of interpolated curves will ensure that the limit densities are
solutions of the reaction-diffusion system. We denote (see Fig. 2)

(14) b̃τ (t) = (Tk
t )#b̂

k
τ (t)

(notice that both sides of this equation are functions - densities of non-negative
measures of mass mk, actually - of the variable x, but the dependence will be often

omitted in the sequel for similar objects), where Tk
t and b̂kτ (t) are defined by

(15)

Tk
t = id+

t− (k − 1)τ

τ
(rkτ − id), b̂kτ (t, .) = bk−1

τ exp

(
∫ t

(k−1)τ

nτ (s, .) ds

)

,

and rkτ is the optimal transport from b̂kτ to bkτ (note that rkτ = (tkτ )
−1). The nutrient

density is simply given by

(16) ñτ (t, x) = nτ (t, (T
k
t )

−1(x)), t ∈](k − 1)τ, kτ ],
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and we denote by ṽτ the following interpolated velocity

ṽτ (t, .) =
rkτ − id

τ
◦ (Tk

t )
−1, t ∈](k − 1)τ, kτ ].

Note that on each interval ](k − 1)τ, kτ ], we have ṽτ = vτ ◦ rkτ ◦ (Tk
t )

−1. Finally,
we define

Ẽτ = b̃τ ṽτ .

We will prove in section 3 that these curves are somehow solutions of the reaction-
diffusion equation we consider at a discrete level.

rkτTk
t

bkτ

bk−1
τ

b̃τ (t)

b̂kτ

b̂kτ (t)

Exponential growth

Projection onto Kmk

Figure 2. Interpolation between bk−1
τ and bkτ .

3. Existence result

We prove in this section the existence of a solution for the model of bacterial
growth including congestion. More precisely, we prove the following theorem.

Theorem 3.1. Let Ω be a convex bounded set of Rd, b0 and n0 given initial admis-
sible densities, and (bτ , nτ ) constructed thanks to the approximating scheme defined
above in Section 2.2.
Then there exists a family of densities (b(t), n(t))t>0, and a family of velocities
(u(t))t>0 such that (bτ (t), nτ (t),Eτ (t)) narrowly converges to

(b(t), n(t), b(t)u(t))

for a.e. t. Moreover, (b, n,u) satisfies the equation:

(17)







∂tb +∇ · (bu) = nb in Ω,

∂tn = Dn∆n− nb in Ω,

∇n · ν = 0 on ∂Ω,

and u satisfies

u(t) ∈ argmin
v∈Cb(t)

||v||L2 for a.e. t,

where Cb(t) is defined in (5).
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To prove this result, the strategy will be the following (we briefly sketch it here
since the following subsections will be quite technical): we will use the approxima-
tion scheme developed in the previous section and

• we prove that b̃τ , ñτ and ṽτ satisfy the continuity equation;
• we prove that vτ is the minimal norm vector field that we consider in the
model thanks to a saddle point argument with a pressure function pτ ;

• we prove a priori bounds on bτ ,Eτ , b̃τ , Ẽτ and stronger bounds (suitable
H1 bounds) on nτ and pτ ;

• we use the a priori bounds to get the existence of converging subsequences
and we prove that the limits of bτ and b̃τ , Eτ and Ẽτ , nτ bτ and ñτ b̃τ are
the same;

• we show, by using the H1 bound on nτ (which implies strong L2 conver-
gence), that the limit of nτ bτ is the product of the two limits;

• we show that the minimality of vτ passes to the limit, by taking the limit
in the saddle point formulation. The only difficulty is the nonlinear con-
dition pτ (1 − bτ ) = 0, which passes also to the limit due to the stronger
bounds on pτ , even if this requires some effort since we only have a bound
in L2([0, T ];H1(Ω)).

3.1. Technical lemmas. We prove in this section several lemmas that will be
needed in the following. We first focus on the densities bτ and nτ .

Lemma 3.2. The discrete densities bτ , nτ satisfy

(i) bτ (t) ∈ [0, 1] a.e., for a.e. t ;
(ii) if n0 ∈ [0, N0] a.e., then nτ (t) ∈ [0, N0] a.e., for a.e. t.

Proof. Property (i) is obvious thanks to the definition of bkτ at (10). To prove (ii),
the maximum principle ensures that nτ is positive (since bkτ ∈ [0, 1]). We also prove
that nτ ≤ N0 by applying the maximum principle to N0 − nτ . �

The following lemma is the discrete equivalent of the saddle point formulation (8).

Lemma 3.3 (Saddle point properties for the velocity vk
τ ). There exists pkτ ∈ H1

bkτ
such that

vk
τ +∇pkτ = 0 a.e. on {b > 0}.

Proof. Let us recall that the velocity vk
τ is given by

vk
τ =

id− tkτ
τ

,

where tkτ is the optimal transport from bkτ to b̂kτ . Moreover, bkτ is the projection

of b̂kτ on the set Kmk of densities of same total mass, which satisfy the congestion
constraint. This means that bkτ solves

min W 2
2 (b, b̂

k
τ ) : b ∈ Kmk .

One can write (following lemma 3.2 p.13 of [21]) the optimality conditions charac-
terizing the optimal b. If one consider another admissible measure h ∈ Kmk and

defines b(ε) := (1 − ε)b + εh for ε ∈ [0, 1], we have W 2
2 (b(ε), b̂

k
τ ) ≥ W 2

2 (b, b̂
k
τ ) and

hence
d

dε
W 2

2 (b(ε), b̂
k
τ )|ε=0 ≥ 0.
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Yet, this derivative can be computed in terms of the Kantorovitch potential ψ in

the optimal transport from b to b̂kτ (see also [25]), thus getting
∫

ψ d(h− b) =
1

2

d

dε
W 2

2 (b(ε), b̂
k
τ )|ε=0 ≥ 0.

We recall that ψ is a Lipschitz function satisfying tkτ = id−∇ψ. This implies
∫

ψ dh ≥
∫

ψ db,

for all other densities h ∈ Kmk , which means that b solves a linearized problem
min

∫
ψ dh, h ∈ Kmk . Yet, this solution is easy to compute, since one only needs to

put as much density as he can on a level set {ψ < l}. More precisely, we must have






b = 1 on ψ < l,

b ∈ [0, 1] on ψ = l,

b = 0 on ψ > l.

It is easy to check that the function p := (l − ψ)+ belongs to H1
b (it is Lipshitz,

hence H1, it is positive, and it vanishes where b < 1). Moreover, we have

vk
τ =

id− tkτ
τ

=
∇ψ
τ

= −∇p
τ
, b− a.e.

This gives the required result by taking pkτ := p/τ . �

We define again an interpolation of the quantities pkτ thanks to

pτ (t) = pkτ t ∈](k − 1)τ, kτ ].

We switch now to some a priori estimates.

Lemma 3.4 (A priori estimates). We have

(i) vτ is τ-uniformly bounded in L2((0, T ), L2
bτ
(Ω)) ;

(ii) pτ is τ-uniformly bounded in L2((0, T ), H1(Ω)) ;
(iii) Eτ is a τ-uniformly bounded measure.

Proof. (i) Compute
∫ T

0

∫

Ω

|vτ |2bτ =
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

id− tkτ
τ

∣
∣
∣
∣

2

bkτ

=
1

τ

∑

k

∫

Ω

|id− tkτ |2bkτ

=
1

τ

∑

k

W 2
2 (b̂

k
τ , b

k
τ ),

since tkτ is the optimal transport from bkτ to b̂kτ . Moreover, as nτ is bounded by a

constant N0, b̂kτ satisfies for τ small enough

b̂kτ ≤ bk−1
τ (1 + 2N0τ),

with bk−1
τ ∈ [0, 1] a.e., which implies that there exists a universal constant C such

that

(18) W2(b̂
k
τ , b

k
τ ) ≤ Cτ



CONGESTION-DRIVEN DENDRITIC GROWTH 11

(see Theorem B.1 in the appendix for the proof of this inequality). This implies
finally

∫ T

0

∫

Ω

|vτ |2bτ ≤ C.

(ii) We have pτ = 0 when bτ is stricly below the maximal density, so
∫ T

0

∫

Ω

|∇pτ |2 =

∫ T

0

∫

Ω

|∇pτ |2bτ

=

∫ T

0

∫

Ω

|vτ |2bτ ≤ C

thanks to the discrete velocity decomposition (lemma 3.3), and (i).

(iii) Thanks to Cauchy-Schwarz inequality,
∫ T

0

∫

Ω

|Eτ | =

∫ T

0

∫

Ω

|vτ |bτ

≤
∫ T

0

(∫

Ω

|vτ |2bτ
) 1

2





∫

Ω

bτ
︸︷︷︸

≤1





1
2

≤
√

|Ω|
(
∫ T

0

∫

Ω

|vτ |2bτ
) 1

2
(
∫ T

0

1

) 1
2

≤
√

|Ω|
√
T

(
∫ T

0

∫

Ω

|vτ |2bτ
) 1

2

,

and therefore, thanks to inequality (18),

(19)

∫ T

0

∫

Ω

|Eτ | ≤ C
√

|Ω|
√
T .

�

We also prove an priori estimate for the nutrient discrete density.

Lemma 3.5. The density nτ is τ-uniformly bounded in H1([0, T ]×Ω)) if n(0, ·) ∈
H1(Ω).

Proof. We will assume that every density bkτ is regular enough just in order to per-
form the computations; indeed, all the estimates that we obtain could be extended
by approximating less regular functions, and only depend on L∞ bound on bkτ (which
are all smaller than 1) and on the H1 norm of the initial datum. Multiplying the
equation

∂tnτ = Dn∆nτ − nτ b
k−1
τ , t ∈ [(k − 1)τ, kτ [,

times nτ , we obtain that the L2-norm in space of nτ is decreasing as time runs by,
and hence is uniformly bounded by ||n0||L2 . If we multiply the same equation times
∂tnτ , we obtain moreover

Dn
d

dt

∫

Ω

|∇nτ |2+
∫

Ω

|∂tnτ |2 = −
∫

Ω

∂tnτ nτ b
k−1
τ ≤ 1

2

∫

Ω

|∂tnτ |2+
1

2

∫

Ω

n2
τ (b

k−1
τ )2,
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which implies

Dn
d

dt

∫

Ω

|∇nτ |2 +
1

2

∫

Ω

|∂tnτ |2 ≤ 1

2
||n0||2L2 .

This gives bounds both on the L2 norm of ∂tnτ and of ∇nτ :

∫

Ω

|∂tnτ |2 ≤ ||n0||2L2 ,

∫

Ω

|∇nτ |2 ≤ ||∇n0||2L2 +
T

2Dn
||n0||2L2 ,

and finally implies

||nτ ||2H1([0,T ]×Ω) ≤ T

((

1 +
T

2Dn

) ∫

Ω

|n0|2 +

∫

Ω

|∇n0|2
)

. �

We now focus on the densities b̃τ and ñτ . We first prove that they are solutions
of the reaction-diffusion equation.

Lemma 3.6. The densities b̃τ and ñτ are solutions of

∂tb̃τ +∇ · (b̃τ ṽτ ) = b̃τ ñτ .

Proof. For every ϕ ∈ C∞
c ([0, T [×Ω), we have

∫ T

0

∫

Ω

(∂tϕ(t, x) +∇ϕ(t, x) · ṽτ (t, x)) b̃τ (t, x) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

(

∂tϕ(t, x) +∇ϕ(t, x) · r
k
τ − id

τ

(
(Tk

t )
−1(x)

)
)

(Tk
t )#b̂

k
τ (t, x) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

(

∂tϕ(t,T
k
t (x)) +∇ϕ(t,Tk

t (x)) ·
rkτ − id

τ
(x)

)

b̂kτ (t, x) dx dt

=
∑

k

∫

Ω

[

ϕ(t,Tk
t (x))b̂

k
τ (t, x)

]kτ

(k−1)τ
dx −

∑

k

∫ kτ

(k−1)τ

∫

Ω

ϕ(t,Tk
t (x))∂t b̂

k
τ (t, x) dx dt.

The first term writes

∑

k

∫

Ω

[

ϕ(t,Tk
t (x))b̂

k
τ (t, x)

]kτ

(k−1)τ
dx

=
∑

k

(∫

Ω

ϕ(kτ, rkτ (x))b̂
k
τ (x) dx −

∫

Ω

ϕ((k − 1)τ, x)bk−1
τ (x) dx

)

=
∑

k






∫

Ω

ϕ(kτ, x) (rkτ )#b̂
k
τ (x)

︸ ︷︷ ︸

bkτ (x)

dx −
∫

Ω

ϕ((k − 1)τ, x)bk−1
τ (x) dx






= −
∫

Ω

ϕ(0, x)b0τ (x) dx.
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The second one satisfies

∑

k

∫ kτ

(k−1)τ

∫

Ω

ϕ(t,Tk
t (x))∂t b̂

k
τ (t, x) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

ϕ(t,Tk
t (x))nτ (t, x)b̂

k
τ (t, x) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

ϕ(t, x)nτ (t, (T
k
t )

−1(x))(Tk
t )#b̂

k
τ (t, x) dx dt

=

∫ T

0

∫

Ω

ϕ(t, x)ñτ (x)b̃τ (x) dx dt.

We finally obtain

∫ T

0

∫

Ω

(∂tϕ(t, x) +∇ϕ(t, x) · ṽτ (t, x)) b̃τ (t, x) dx dt

= −
∫

Ω

ϕ(0, x)b0τ (x) dx −
∫ T

0

∫

Ω

ϕ(t, x)ñτ (x)b̃τ (x) dx dt,

which corresponds to the weak formulation – given in Definition 2.1 – of the above
equation. �

Again, we can prove some a priori estimates.

Lemma 3.7 (A priori estimates). We have

(i) ṽτ is τ-uniformly bounded in L2((0, T ), L2
b̃τ
(Ω)) ;

(iii) Ẽτ is a τ-uniformly bounded measure.

Proof. (i) We have

∫ T

0

∫

Ω

|ṽτ |2b̃τ =
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ
◦ (Tk

t )
−1

∣
∣
∣
∣

2

(Tk
t )#b̂

k
τ (t, .)

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ

∣
∣
∣
∣

2

b̂kτ (t, .).

Moreover, thanks to the definition of b̂kτ (t, .) (Equation (15)), we have b̂kτ (t, .) ≤ b̂kτ ,
which implies

∫ T

0

∫

Ω

|ṽτ |2b̃τ ≤
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ

∣
∣
∣
∣

2

b̂kτ

=
1

τ

∑

k

W 2
2 (b̂

k
τ , b

k
τ ) ≤ C

thanks to Lemma 3.4 (i).
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(ii) We have

∫ T

0

∫

Ω

|Ẽτ | =

∫ T

0

∫

Ω

|ṽτ |b̃τ

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ
◦ (Tk

t )
−1

∣
∣
∣
∣
(Tk

t )#b̂
k
τ (t, .)

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ

∣
∣
∣
∣
b̂kτ (t, .)

≤
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ

∣
∣
∣
∣
b̂kτ

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

id− tkτ
τ

∣
∣
∣
∣
bkτ

=

∫ T

0

∫

Ω

|vτ |bτ ≤ C
√

|Ω|
√
T

thanks to Inequality (19). �

3.2. Convergence of the interpolated curves. We can now prove that the
curves defined at section 2.2 converge to a solution of our problem. Notice that,
unless differently stated, all the convergences we use in the sequel will be weak-*
convergence in the space of finite measures in the duality with continuous functions
over [0, T ]× Ω. We will also refer to this convergence as “weak convergence” and
write⇀ without using any ∗ and without precising any more the space of test func-
tions. When extra bounds are available, this convergence will turn into stronger
ones: in particular both b̃τ and bτ will actually converge weakly-* in L∞ (due to
the fact that these densities are uniformly bounded by 1) and nτ weakly converges
in H1 (and hence strongly in L2).

Let us start our analysis of the limits of the interpolated curves. Thanks to the a
priori estimations given in lemmas 3.4 and 3.7, we know that (bτ ,Eτ ) and (b̃τ , Ẽτ )
converge (up to subsequences) as τ tends to 0. We prove in the following that their
limits are the same.

Proposition 1 (Limit of bτ and b̃τ ). The curves bτ and b̃τ converge to the same
limit b as τ tends to 0.
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Proof. For every f ∈ C∞
c ([0, T ]× Ω), we have

∫ T

0

∫

Ω

f(t, x)(bτ (t, x)− b̃τ (t, x)) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(bkτ (x) − (Tk
t )#b̂

k
τ (t, x)) dx dt

=
∑

k

∫ kτ

(k−1)τ

(∫

Ω

f(t, x)bkτ (x) dx −
∫

Ω

f(t,Tk
t (x))b̂

k
τ (t, x)) dx

)

dt

=
∑

k

∫ kτ

(k−1)τ

(∫

Ω

f(t, x)(bkτ (x) − b̂kτ (t, x))) dx

+

∫

Ω

(f(t, x)− f(t,Tk
t (x)))b̂

k
τ (t, x)) dx

)

dt.

The first term writes

∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(bkτ (x)− b̂kτ (t, x))) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(bkτ (x) − b̂kτ (x))) dx dt

+
∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(b̂kτ (x)− b̂kτ (t, x))) dx dt.

On the one hand, we have, thanks to Lemma A.1 and to the estimation onW2(b
k
τ , b̂

k
τ )

proved at Inequality (18),

∣
∣
∣
∣
∣

∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(bkτ (x) − b̂kτ (x))) dx dt

∣
∣
∣
∣
∣

≤
∑

k

∫ kτ

(k−1)τ

||∇f ||L2(Ω)W2(b
k
τ , b̂

k
τ ) ≤ τ C ||∇f ||L2(Ω) −→

τ→0
0.

On the other hand, since nτ ∈ [0, N0] a.e.,

∣
∣
∣
∣
∣

∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(b̂kτ (x) − b̂kτ (t, x))) dx dt

∣
∣
∣
∣
∣

≤
∑

k

∫ kτ

(k−1)τ

∫

Ω

||f ||∞ bk−1
τ (x)
︸ ︷︷ ︸

≤ 1

∣
∣
∣
∣
∣
exp

(
∫ kτ

(k−1)τ

nτ

)

− exp

(
∫ t

(k−1)τ

nτ

)∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤ τN0eτN0

dx dt

≤ τ ||f ||∞N0 eτN
0∑

k

τ |Ω| ≤ τ ||f ||∞N0 eτN
0

T |Ω| −→
τ→0

0.
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The second term also tends to 0, since

∣
∣
∣
∣

∫

Ω

(f(t, x)− f(t,Tk
t (x)))b̂

k
τ (t, x)) dx dt

∣
∣
∣
∣

≤
∑

k

∫ kτ

(k−1)τ

∫

Ω

Lip (f) |x−Tk
t (x)|b̂kt (x)) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

Lip (f) |t− (k − 1)τ |
︸ ︷︷ ︸

≤ τ

∣
∣
∣
∣

rkτ − id

τ

∣
∣
∣
∣
b̂kt (x)) dx dt

≤ Lip (f) τ
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ
◦ (Tk

t )
−1

∣
∣
∣
∣
(Tk

t )#b̂
k
t (x)) dx dt

= Lip (f) τ

∫ T

0

∫

Ω

|Ẽτ |b̃τ

≤ C
√

|Ω|
√
T Lip (f) τ −→

τ→0
0. �

We can also prove that Eτ and Ẽτ converge to the same limit.

Proposition 2 (Limit of Eτ and Ẽτ ). The curves Eτ and Ẽτ converge to the same
limit E as τ tends to 0.

Proof. For every f ∈ C∞
c ([0, T ]× Ω) we have

∫ T

0

∫

Ω

f(t, x)(Eτ (t, x) − Ẽτ (t, x)) dx dt

=
∑

k

∫ kτ

(k−1)τ

(∫

Ω

f(t, x)
id− tkτ
τ

(x) bkτ (x)
︸ ︷︷ ︸

(rkτ )# b̂kτ (x)

dx.

−
∫

Ω

f(t, x)
rkτ − id

τ
◦ (Tk

t )
−1(x)(Tk

t )#b̂
k
τ (t, x)) dx

)

dt

=
∑

k

∫ kτ

(k−1)τ

(∫

Ω

f(t, rkτ (x))
rkτ − id

τ
(x)b̂kτ (x) dx

−
∫

Ω

f(t,Tk
t (x))

rkτ − id

τ
(x)b̂kτ (t, x)) dx

)

dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

(f(t, rkτ (x)) − f(t,Tk
t (x)))

rkτ − id

τ
(x)b̂kτ (x) dx dt

+
∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t,Tk
t (x))

rkτ − id

τ
(x)(b̂kτ (x)− b̂kτ (t, x)) dx dt.
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The first term writes
∣
∣
∣
∣
∣

∑

k

∫ kτ

(k−1)τ

∫

Ω

(f(t, rkτ (x))− f(t,Tk
t (x)))

rkτ − id

τ
(x)b̂kτ (x) dx dt

∣
∣
∣
∣
∣

≤
∑

k

∫ kτ

(k−1)τ

∫

Ω

Lip (f) |rkτ (x) −Tk
t (x)|

︸ ︷︷ ︸

≤ |rkτ (x)−x|

∣
∣
∣
∣

rkτ − id

τ
(x)

∣
∣
∣
∣
b̂kτ (x) dx dt

≤ τ Lip (f)
∑

k

∫ kτ

(k−1)τ

∫

Ω

∣
∣
∣
∣

rkτ − id

τ
(x)

∣
∣
∣
∣

2

b̂kτ (x) dx dt

≤ τ Lip (f)C −→
τ→0

0,

thanks to Lemma 3.7 (i). The second term also tends to 0 since
∣
∣
∣
∣
∣

∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t,Tk
t (x))

rkτ − id

τ
(x)(b̂kτ (x)− b̂kτ (t, x)) dx dt

∣
∣
∣
∣
∣

≤
∑

k

∫ kτ

(k−1)τ

∫

Ω

||f ||∞
∣
∣
∣
∣

rkτ − id

τ
(x)

∣
∣
∣
∣
b̂kτ (t, x)

∣
∣
∣
∣
∣
exp

(
∫ kτ

t

nτ (s, x) ds

)

− 1

∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤ τN0eτN0

dx dt

≤ τ ||f ||∞N0 eτN
0

∫ T

0

∫

Ω

|Ẽτ |b̃τ ≤ τ ||f ||∞N0 eτN
0

C −→
τ→0

0

thanks to Lemma 3.7 (ii). �

We finally prove that nτ bτ and ñτ b̃τ also converge to the same limit.

Proposition 3 (Limit of nτbτ and ñτ b̃τ ). The curves nτbτ and ñτ b̃τ converge to
the same limit as τ tends to 0.

Proof. For every f ∈ C∞
c ([0, T ]× Ω) we have

∫ T

0

∫

Ω

f(t, x)(nτ (t, x)bτ (t, x) − ñτ (t, x)b̃τ (t, x)) dx dt

=
∑

k

∫ kτ

(k−1)τ

∫

Ω

f(t, x)(nτ (t, x)b
k
τ (x) − nτ (t, (T

k
t )

−1(x))(Tk
t )#b̂

k
τ (t, x)) dx dt

=
∑

k

∫ kτ

(k−1)τ

(∫

Ω

f(t, x)nτ (t, x)b
k
τ (x) dx−

∫

Ω

f(t,Tk
t (x))nτ (t, x)b̂

k
τ (t, x)) dx

)

dt.

Since nτ is uniformly bounded with respect to τ , we can prove that these terms
tend to 0 in the same way as in proposition 1. �

3.3. Properties of the limit. We finally prove that the limits (b, n) of the curves
are solutions of our problem. First, the a priori estimates given at lemmas 3.5, 3.4,
and 3.7 prove that there exist the limits (in the weak sense of measures) of Ẽτ ,

b̃τ and ñτ b̃τ , and that this last limit is given by nb, where n is the limit of nτ in
H1([0, T ]× Ω)) and b the limit of bτ , the main difficulty is that the product of the
limits should be equal to the limit of the product, but nτ converges weakly in H1
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and hence strongly in L2. We can then pass to the limit in the linear equations
satisfied by the discrete curves, and obtain that (b, n) are weak solutions of







∂tb+∇ · (E) = nb in Ω,

∂tn = Dn∆n− nb in Ω,

∇n · ν = 0 on ∂Ω.

We have now to prove that the limit E is of the form bu, where u is the minimal
velocities among the admissible ones, i.e. it satisfies the saddle point formulation (8).

To do so, we will use the limit of Eτ rather than Ẽτ . Indeed, let us notice that
we have

Eτ = bτvτ = −bτ∇pτ = −∇pτ ,
since pτ = 0 on [bτ < 1]. Lemma 3.4 gives a bound on pτ , hence we can suppose
that we have pτ ⇀ p (up to subsequences and in the weak sense). We need to show
that p ∈ H1

b , which would allow us to write E = −∇p = bu with u = −∇p. Let us
suppose for a while that we have done this, and conclude.

Indeed, the limit equation would give, for a.e. t0, every h > 0, and every q ∈
H1

b(t0,.)
∫

Ω

(b(t0 + h, x)− b(t0, x)) q(x) dx

=

∫ t0+h

t0

∫

Ω

∇q(x) · u(t, x) b(t, x) dx dt +

∫ t0+h

t0

∫

Ω

n(t, x) b(t, x) q(x) dx dt.

Moreover, since b(t0, x) = 1 wherever q does not vanish, and since b(t0 + h, x) ≤ 1,
we have

1

h

∫

Ω

(b(t0 + h, x)− b(t0, x)) q(x) dx ≤ 0,

which implies

1

h

(
∫ t0+h

t0

∫

Ω

∇q(x) · u(t, x) b(t, x) dx dt +

∫ t0+h

t0

∫

Ω

n(t, x) b(t, x) q(x) dx dt

)

≤ 0.

Letting h tend to 0, we get
∫

Ω

∇q(x) · u(t0, x) b(t0, x) dx ≤ −
∫

Ω

n(t0, x) b(t0, x) q(x) dx,

and the reverse inequality can be obtained with h < 0.
Thanks to the saddle point formulation (8), this allows to conclude that u is

the desired vector field, the minimal one in Cb. Let us point out that the property
we obtained is stronger than expected : we have proved that the complementarity
relation holds for every test function in H1

b(t0,.)
.

The proof is complete once we establish the following lemma.

Lemma 3.8. If b and p are the weak limits (in L∞ and L2((0, T ), H1(Ω)), respec-
tively) of bτ and pτ , then we have p(1− b) = 0 and hence p ∈ H1

b .

Proof. We obviously have p ≥ 0, and we must prove that p = 0 on [b < 1]. Following
the method adopted in [21], let us consider the mean functions

pa,bτ =
1

b− a

∫ b

a

pτ (t) dt and pa,b =
1

b− a

∫ b

a

p(t) dt.
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The advantage of using pa,bτ is that it is a bounded sequence in H1, converging
(weakly in H1, strongly in L2) to pa,b. Since pτ = 0 on [bτ < 1], we have

∫ b

a

∫

Ω

pτ (t, x)(1 − bτ (t, x)) dx dt = 0,

which implies

1

b− a

(
∫ b

a

∫

Ω

pτ (t, x)(1 − bτ (a, x)) dx dt +

∫ b

a

∫

Ω

pτ (t, x)(bτ (a, x)− bτ (t, x)) dx dt

)

= 0.

As in [21], for a.e. a, if we take in the first term first the limit as τ → 0 and then
as b→ a, we get convergence to

∫

Ω

p(a, x)(1 − b(a, x)) dx.

Let us prove that the second term converges to 0. Let t ∈ [a, b], and ka, kt such
that bτ (a, .) = bka

τ and bτ (t) = bkt
τ . We have

∫ b

a

∫

Ω

pτ (t, x)(bτ (a, x)− bτ (t, x)) dx dt

=

∫ b

a

∫

Ω

pτ (t, x)(b
ka

τ (x) − bkt

τ (x)) dx dt

=

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b
k−1
τ (x) − bkτ (x)) dx dt

=

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b
k−1
τ (x) − b̂kτ (x)) dx dt

+

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b̂
k
τ (x) − bkτ (x)) dx dt.
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The first term writes
∣
∣
∣
∣
∣

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b
k−1
τ (x) − b̂kτ (x)) dx dt

∣
∣
∣
∣
∣

≤
∫ b

a

kt∑

ka

∫

Ω

|pτ (t, x)| |bk−1
τ (x)|
︸ ︷︷ ︸

≤ 1

|1− exp

(
∫ kτ

(k−1)τ

nτ (s, x) ds

)

|
︸ ︷︷ ︸

≤ τN0eτN0

dx dt

≤ N0eτN
0

∫ b

a

∫

Ω

(t− a)|pτ (t, x)| dx dt

≤ N0eτN
0

∫

Ω

(
∫ b

a

|t− a|2 dt
) 1

2
(
∫ b

a

|pτ (t, x)|2
) 1

2

dx

≤ N0eτN
0

∫

Ω

(
(b− a)3

3

) 1
2

(
∫ b

a

|pτ (t, x)|2
) 1

2

dx

≤ N0eτN
0 (b − a)

3
2

√
3

(
∫

Ω

∫ b

a

|pτ (t, x)|2 dx
) 1

2 (∫

Ω

dx

) 1
2

≤ N0eτN
0 (b − a)

3
2

√
3

√

|Ω| ||pτ ||L2((0,T ),L2(Ω)).

We have therefore, uniformly in τ ,

lim
b→a

lim
τ→0

1

b− a

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b
k−1
τ (x)− b̂kτ (x)) dx dt = 0.

Thanks to lemma A.1, the second term satisfies
∣
∣
∣
∣
∣

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b̂
k
τ (x)− bkτ (x)) dx dt

∣
∣
∣
∣
∣

≤
∫ b

a

kt∑

ka

||∇pτ (t)||L2(Ω)W2(b̂
k
τ , b

k
τ ) dt

≤
∫ b

a

kt∑

ka

||∇pτ (t)||L2(Ω)Cτ (thanks to Inequality (18))

≤ C

∫ b

a

(t− a) ||∇pτ (t)||L2(Ω)

≤ C

(
∫ b

a

|t− a|2 dt
) 1

2
(
∫ b

a

||∇pτ (t)||2L2(Ω)

) 1
2

≤ C
(b − a)

3
2

√
3

||∇pτ (t)||L2((0,T ),H1(Ω)).
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This implies that

lim
b→a

lim
τ→0

1

b− a

∫ b

a

kt∑

ka

∫

Ω

pτ (t, x)(b̂
k
τ (x) − bkτ (x)) dx dt = 0.

The limit is therefore given by
∫

Ω

p(a, x)(1 − b(a, x)) dx,

hence p(t) ∈ H1
b(t) for a.e. t. �

4. Numerical simulations

The numerical study of Problem (4), which we recall is given by
{
∂tb +∇ · (bu) = nb in Ω,

∂tn = Dn∆n− nb in Ω,

arises several difficulties. First of all, the correction velocity u is given as the
solution of a minimization problem on the space of admissible velocities Cb defined
at equation (5), which depends on the evolving density b. Its estimation seems to
be out of hand, and even if it could be calculated, it would surely lack regularity.
A different approach is therefore needed.

Following the idea exposed in [22], which we already used in the theoretical
work, we propose to use a splitting scheme to estimate the bacterial density. More
precisely, for a time step τ > 0, we define the densities bk thanks to

(20)

{
b̂k = bk−1 + τnk−1bk−1 (prediction),

bk = PK
mk
b̂k (correction),

where PK
mk

is the projection for the Wasserstein distance on the space of densities

of same total mass as b̂k which respect the congestion constraint b ≤ 1. Notice
that the exponential formula in (10), which was suitable for the theoretical proof
of convergence, is now replaced with a simple first order expansion. The density nk

is given as an approximated solution at time kτ of equation

(21)

{
∂tn = Dn∆n− nbk−1,

n|t=(k−1)τ = nk−1.

The spatial discretization also requires special attention. This kind of problems,
which involve unstable interfaces, are indeed very sensitive to anisotropy. Instead of
using cartesian meshes, we therefore turned to randomly generated Voronoi meshes.
An example of such a mesh is presented in Figure 3 on the left.

We chose to discretize equation (21) thanks to a semi-implicit finite volume
method. On each cell of the mesh, we write

∫

I

nk − nk−1

τ
= Dn

∫

I

∆nk −
∫

I

nk−1bk−1,

which implies, approximating bk and nk with bki and nk
i on the cell I,

(22)

(

1 +Dn

∑

J∼I

τ σij
ai d(xi, xj)

)

nk
i −Dn

∑

J∼I

τ σij
ai d(xi, xj)

nk
j = nk−1

i (1 + τbk−1
i ).
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xi

xj

I

J
σij ν

Figure 3. Left: example of a random Voronoi mesh. Right: no-
tations in one of the Voronoi cells.

Here, xi denotes the center of cell I, σij the length of the edge between cells I and
J , and ai the area of cell I (see Figure 3).

Concerning the bacterial density, the prediction step of equation (20) is easily
computed through the following scheme

b̂ki = bk−1
i + τnk−1

i bk−1
i .

However, the correction step is not straightforward. We propose to turn to a stochas-
tic method, which has proved to be efficient in the crowd motion context (see [22, 24]
for more details). We consider the cells where the density is beyond the conges-
tion constraint. For each of these cells, we take the additional mass, and start a
random walk which travels through the neighbor cells. As soon as this random
walk encounters non-saturated cells, it discharges as much mass as it can, and this
until all the additional mass has been redistributed. This method asymptotically
approaches the Wasserstein projection, in a sense which is precised in [24], and gives
good numerical results on several examples. Note that we perform a random walk
on a non regular mesh. The transition probability from one cell to another must
therefore depend on the geometry of the mesh. The natural coefficients appear to
be the ones that correspond to the discrete Laplacian on the mesh, which write

PI→J =

σij

d(xi,xj)
∑

L∼I
σil

d(xi,xl)

.

Note that the transition probabilities are consistent to the finite volume discretiza-
tion of the Laplace operator proposed in [26].

Numerical tests have been conducted with different parameters values. We
present in Figure 4 three results for a fixed initial bacterial density b0 = 0.7 localized
in a small area at the center of the domain, a fixed diffusion coefficient Dn = 10−6,
and three different initial nutrient densities, n0 = 2, n0 = 0.5 and n0 = 0.3. On the
first case, the evolution is fast and concentric. For lower nutrient densities, however,
branches appear and the evolution is slower. This example shows that branching
patterns can be obtained without the need of adding non-linear diffusion or death
terms.

It is known that the fractal dimension of patterns obtained thanks to diffusion-
limited aggregation is of order 1.71 (see [29]). In the present context, the created
patterns exhibit some fractal character down to a cut off scale (see the end of
this section). In particular we can estimate some sort of fractal dimension of our
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Figure 4. Evolution of bacteria (left) and nutrients (right) for an
initial nutrient density of 2 (top), 0.5 (center) and 0.3 (bottom).

branching patterns, thanks to the box-counting method. This method consists in
counting the number N(r) of boxes of size r which contain some bacteria. The

limit logN(r)
log r when r tends to 0 gives the so-called Minkowski-Bouligand dimension,

or Kolmogorov dimension of the pattern. Here, we plot on Figure 5 the curves
r 7→ N(r) in two examples presented in Figure 4. We obtain a slope of 1.96 in the
first case where n0 = 2, which corresponds to a concentric evolution, and a slope of
1.7 in the case where n0 = 0.3, which corresponds to a branching pattern. This fits
correctly with the estimations of DLA patterns.

Let us finally underline that the branching patterns we obtain are not fractal at
every scale. It seems that there exists a limit scale for the creation of instabilities.
More precisely, let us consider a typical situation where the border of the bacterial
colony has irregularities, and where nutrients are less concentrated in the holes than
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Figure 5. Log-log plot of the number of boxes of size r containing
some part of the pattern, in the case of an initial nutrient density
of 2 (dotted black line) and 0.3 (plain blue line).

on the peaks (see Figure 6). In this case, the irregularities will become unstable if
the characteristic time of the nutrients’ diffusion is slower than the time of growth
of the peaks. The diffusion characteristic time can be estimated by L2/Dn, where
L is the length of the peaks, whereas the growth time is given by L/U . This finally
gives the following condition for apparition of instabilities

Dn ≤ LU,

where U is the propagation speed of the bacteria, which is of order 1 if the nutrients
concentration is of order 1. Figure 7 gives the evolution of initial irregularities for
two different values of Dn. The initial nutrient distribution has been taken uniform
with n0 = 1 on the area free of bacteria. This numerical test confirms the apparition
of instability only for small diffusion coefficients. We have also plotted on Figure 8
the evolution of the amplitude of the instabilities for different diffusion coefficients.
It appears that the limit scale is indeed attained for diffusion coefficients of order the
length of the irregularities (here 0.5). Finally, Figure 9 gives the bacterial densities
obtained for two different diffusion coefficients Dn = 10−6 and Dn = 10−5. It
appears that the branches are thicker in the second case.
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n1

n2n2

L

Figure 6. Formation of instabilities in a typical situation where
the density of nutrients in the holes (n1) is lower than on the peaks
(n2).

Figure 7. Initial bacterial density (left), and evolution at time 20
for Dn = 10 (center), and Dn = 0.1 (right). In the first case, the
irregularities have been smoothed, whereas in the second case, they
have been amplified.

Figure 8. Evolution of the amplitude of the irregularities for dif-
ferent diffusion coefficients Dn. For top to bottom : Dn =
0.01, 0.1, 1, 10.
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Figure 9. Evolution of bacteria for the same nutrient concentra-
tion n0 = 0.3 and for Dn = 10−6 (left) and Dn = 10−5 (right).

Appendix A. A technical lemma

We recall here a result, first proved in [21] (Lemma 3.4). We give its proof for
the sake of completeness, since we used it several times.

Lemma A.1. Assume that µ and ν are absolutely continuous measures, whose
densities are bounded by a same constant C. Then, for all function f ∈ H1(Ω), we
have the following inequality:

(23)

∫

Ω

f d(µ− ν) ≤
√
C ||∇f ||L2(Ω)W2(µ, ν).

Proof. Let µt be the constant speed geodesic between µ and ν, and wt the velocity
field such that (µ,wt) satisfies the continuity equation ∂tµt +∇ · (wtµt) = 0, and
||wt||L2(µt) = W2(µ, ν). For all t, µt is absolutely continuous, and its density is
bounded by the same constant C a.e.. Therefore:

∫

Ω

f d(µ− ν) =

∫ 1

0

d

dt

(∫

Ω

f(x)dµt(x)

)

dt =

∫ 1

0

∫

Ω

∇f ·wt dµt dt

≤
(∫ 1

0

∫

Ω

|∇f |2 dµt dt

)1/2 (∫ 1

0

∫

Ω

|wt|2 dµt dt

)1/2

≤
√
C ||∇f ||L2(Ω)W2(µ, ν) �

Notice that this estimate makes a connection between the distance W2 and the
dual norm of H1, exactly as the distance W1 is connected to the dual of W 1,∞. On
the other hand, it is only valid provided some bound on the densities is supposed,
and it is easy to check that (A.1) could not hold without some bounds. In particular,
should one be allowed to use atomic measures µ, ν, the existence of an estimate like
(A.1) would imply the injection H1 →֒ C0, which is false in higher dimension.

Appendix B. Estimates in the Wasserstein projection

A useful estimate that we needed throughout the paper was the following: con-
sider ρ̄ be a probability density on Ω ⊂ R

d satisfying ρ̄(x) ≤ 1 + τ ≤ 2 a.e. and
K = {ρ ∈ P(Ω), : ρ(x) ≤ 1 a.e.}; then there exists a universal constant such that

min{W2(ρ̄, ρ) : ρ ∈ K} ≤ Cτ.
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This fact is quite easy to prove when Ω = R
d.

Indeed, consider the following transport

t(x) = x0 + (1 + τ)
1
d (x− x0),

where x0 is fixed in Ω. The transported density t#ρ̄ then belongs to K, since it has
the same total mass as ρ̄, and its density is given by

t#ρ̄(x) =
ρ̄

| det∇t| (t
−1(x)) ≤ 1.

Therefore, we have

min{W 2
2 (ρ̄, ρ) : ρ ∈ K} ≤ W 2

2 (ρ̄, t#ρ̄)

≤
∫

Ω

|x− t(x)|2ρ̄ dx

≤ |(1 + τ)
1
d − 1|2

∫

Ω

|x− x0|2 ρ̄ dx

≤ τ2
(
1

d
+ o(1)

)2 ∫

Ω

|x− x0|2 ρ̄ dx,

which gives
min{W2(ρ̄, ρ) : ρ ∈ K} ≤ Cτ,

for a constant C only depending on the second moment of ρ̄.
If on the one hand this last constant would become universal in the case of a

bounded domain Ω, on the other hand the same proof could not work, since the
dilatation t could fall out of Ω. This is why we develop a different proof in the
following theorem.

Theorem B.1. Let Ω ⊂ R
d be a convex and bounded domain with |Ω| > 1, ρ̄ a

probability density on Ω satisfying ρ̄(x) ≤ 1 + τ ≤ 2 a.e. and K = {ρ ∈ P(Ω), :
ρ(x) ≤ 1 a.e.}. Then it holds

min{W2(ρ̄, ρ) : ρ ∈ K} ≤ Cτ

for a constant C only depending on Ω.

Proof. We will select a particular density ρ through a minimization problem, prove
that ρ ∈ K, and give an estimate on W2(ρ̄, ρ). We will suppose that ρ̄ has some
extra regularity properties, namely that it is Hölder continuous and bounded from
below by a positive constant. We will remove this assumption later.

Let us solve the following minimization problem

min

(

F (ρ) + ε

∫

f(ρ(x))dx +
1

2(1− c)−1τ
W 2

2 (ρ, ρ̄)

)

,

where ε is a small parameter that we will send to 0 later on, c < 1 is such that
c|Ω| = 1, f is a given convex function of the form f(t) = 1

t + tp for p > d (so that,

in particular,
∫
f(ρ) <∞ only if ρ > 0 a.e.) and

F (ρ) =
1

2

∫

|∇φ|2dx, where φ is the weak solution of

{

−∆φ = ρ− c, in Ω,
∂φ
∂n = 0 on ∂Ω,

(obviously F (ρ) = +∞ if ρ does not belong to the dual of H1).
It is easy to see that a solution exists, by semicontinuity, and we can assume that

ρ ∈ Lp, ρ > 0 a.e. and φ ∈ H1.
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Let us consider the usual optimality conditions (see [6]) for this problem. We get

φ+ εf ′(ρ) +
1

(1− c)−1τ
ψ = const ρ− a.e.

(here ψ is the Kantorovitch potential for the quadratic transport from ρ to ρ̄). Since
we know that ρ is strictly positive a.e. then we have actually

φ+ εf ′(ρ) +
1

(1− c)−1τ
ψ = const a.e.

We want now to prove ρ ≤ 1. To do that we first analyze its regularity. Notice
that ρ ∈ Lp, then φ ∈ W 2,p ⊂ C1,α. Since ψ is Lipschitz continuous, we deduce
that f ′(ρ) also is Lipschitz, and hence it is bounded. Since f ′(t) = −1/t2 + ptp−1

explodes near zero, this shows that ρ must be bounded away from 0. Moreover,
since (f ′)−1 is Lipschitz (just compute f ′′ and see that it is bounded from below by
a positive constant), then ρ is also Lipschitz.

Hence we can apply Caffarelli’s regularity theory since both ρ and ρ̄ are bounded
from above and below and Hölder continuous, and we get that ψ is C2,α. Also φ is
C2,α since ρ is C0,α (for the regularity on φ, we must apply standard regularity the-
ory with Neumann boundary conditions, which could require some extra regularity
on ∂Ω).

We can now look for the maximum point x0 of ρ, which is also a maximum point
for εf ′(ρ), and hence a minimum point for φ+ 1

(1−c)−1τ ψ. We claim that this point

cannot be on the boundary, unless the gradient of φ + 1
(1−c)−1τ ψ vanishes at x0.

Actually, the normal derivative of φ vanishes on the boundary, and that of ψ is
positive, since T (x0) = x0 − ∇ψ(x0) ∈ Ω, which implies ∇ψ(x0) · n ≥ 0. But a
minimum point on the boundary cannot have strictly positive normal derivative,
so that, even if the minimum is on the boundary, we can anyway prove that the
gradient vanishes and, passing to a second order analysis, that the Hessian is positive
definite. In particular, we get

(24) 0 ≤ ∆φ(x0) +
1

(1− c)−1τ
∆ψ(x0) = c− ρ(x0) +

1− c

τ
∆ψ(x0).

We want to prove ρ(x0) ≤ 1. We know, by Monge-Ampère equation

ρ(x0) = ρ̄(T (x0)) det(I −D2ψ(x0))

≤ (1 + τ)

(
d−∆ψ(x0)

d

)d

=

[

(1 + τ)1/d
(

1− ∆ψ(x0)

d

)]d

where we used ρ̄ ≤ 1 + τ but also the geometric-arithmetic mean inequality for
the eigenvalues of the positive matrix I − D2ψ(x0). We also use the inequality
(1 + τ)1/d ≤ 1 + τ

d to get

ρ(x0)
1/d ≤ (1 + τ)1/d

(

1− ∆ψ(x0)

d

)

≤ 1 +
τ −∆ψ(x0)

d
− τ∆ψ(x0)

d2
.

Assuming by contradiction that ρ(x0) > 1, from the Laplacian inequality (24) we
get ∆ψ(x0) ≥ τ > 0 which implies, from the last inequality, ρ(x0) < 1. This proves
that ρ(x0) ≤ 1.

We can also give an estimate onW2(ρ, ρ̄), since ρ has been chosen as an optimizer
and hence it gives a better result than ρ̄, i.e.

(25)
1

2(1− c)−1τ
W 2

2 (ρ, ρ̄) + F (ρ) + ε

∫

f(ρ(x))dx ≤ F (ρ̄) + ε

∫

f(ρ̄(x))dx.
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First we want to send ε→ 0. What we have proven so far is that, for every ε > 0
and for fixed ρ̄ (Hölder continuous and bounded away from 0), there is a measure
ρ = ρε, satisfying the inequality (25). Since ε

∫
f(ρ̄(x))dx → 0 (ρ̄ is fixed and it has

been chosen so that
∫
f(ρ̄(x))dx < +∞) and ε

∫
f(ρε(x))dx ≥ 0, if ρε ⇀ ρ (and it

is always possible to assume convergence, up to subsequences), one gets

1

2(1− c)−1τ
W 2

2 (ρ, ρ̄) + F (ρ) ≤ F (ρ̄),

where we used the semicontinuity of F and of W2.
Now we want to get rid of the regularity assumption on ρ̄: if we take an arbi-

trary ρ̄ ≤ 1 + τ and a sequence of densities ρ̄k ⇀ ρ̄ that are Hölder continuous and
bounded away from 0, weakly converging in L2 and satisfying all ρ̄k ≤ 1 + τ (the
convergence could be taken in L∞, but we do not need it) to our original measure,
we can infer F (ρ̄k) → F (ρ̄) (actually, weak convergence in L∞, for ρ̄k means H2

weak convergence for the corresponding functions φ̄k, and hence H1 strong conver-
gence, which gives

∫
|∇φ̄k|2 →

∫
|∇φ̄|2). Moreover, we can also assume that the

corresponding densities ρk converge to some ρ and, by semicontinuity, we still have
1

2(1−c)−1τW
2
2 (ρ, ρ̄) + F (ρ) ≤ F (ρ̄),.

This inequality is unfortunately not enough, since it gives an estimate of the
order of

√
τ if we do not improve it. What we can do is bounding F (ρ̄)− F (ρ):

F (ρ̄)− F (ρ) =
1

2

∫

|∇φ̄|2 − 1

2

∫

|∇φ|2

=
1

2

∫

(∇φ̄+∇φ) · (∇φ̄ −∇φ) = −1

2

∫

(φ̄+ φ)(∆φ̄ −∆φ)

=
1

2

∫

(φ̄+ φ)(ρ̄ − ρ) ≤ C||∇(φ̄ + φ)||L2W2(ρ, ρ̄) ≤ CW2(ρ, ρ̄),

where we used both the inequality that we proved in Lemma A.1 (see also Lemma
3.4 in [21] for details), which is valid since both measures are bounded by 2, and
the fact that the H1 norm of φ is uniformly bounded as soon as the L∞ norm of ρ
is bounded.

Finally we get

W 2
2 (ρ, ρ̄) ≤ CτW2(ρ, ρ̄),

which implies the thesis. �
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