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Abstract

Equilibrium states of elastic-brittle solids that may suffer nucleation of cracks in
finite deformation setting are analyzed. Crack patterns are described in terms of
appropriate Radon measures, namely curvature varifolds with boundary. A new form
of the energy is presented: it includes terms associated with the curvature of margins
and tips of possible cracks. Existence of minima of the energy are established in
classes of pairs of deformation and families of varifolds. Configurational balances
in weak form are determined with reference to generic curvature varifolds with
boundary. They include non-standard terms associated with the curvatures involved
in the energy. Pointwise balances of configurational actions are also evaluated in a
special case: new pointwise balances at the tips and along the margins of the crack
pattern emerge.
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Introduction

By following the suggestions in the pioneer work by Griffith [1], a variational
view on the mechanics of brittle fracture has been proposed in [2]. There the
overall energy E of an elastic-brittle simple solid is defined by

E (b, u) :=
Z
B
e (x,Du (x)) dx+

Z
b
φ dH2, (1)

where B is the region occupied in the three-dimensional ambient space by
the body under analysis, Du (x) the spatial derivative evaluated at x ∈ B of
the deformation x 7−→ u (x) ∈ R3, b the representation in B of a surface-like
crack occurring in the actual (deformed) place u (B), e the elastic energy in
the bulk, φ a constant surface energy along the margins of the crack, dH2

the two-dimensional Hausdorff measure. A cracking process is then a map
t 7−→ (b, u) (t), t ∈ [0, t̄], with b considered by definition an admissible crack
when it is a rectifiable set, consequently with zero volume measure. Minimality
of the energy at every time among all virtual crack-displacement pairs at that
time is required. Energy conservation throughout the time evolution is also
imposed (see [2] for all details).

In evaluating existence of minimizers of E in terms of pairs (b, u), the con-
vergence of sequences of surfaces in three-dimensions cannot be controlled
through the constraints imposed by the energy as it has been defined above.
The convenient simplification of identifying cracks with the jump sets of the
deformation has been then adopted variously in the subsequent literature. In
the minimum problem, then, the sole unknown remains the deformation u.
An accurate review of the essential aspects of the consequent results is pre-
sented in [3]. However, natural function spaces for minimizers u of the energy
host deformations with discontinuity set having closure with positive Lebesgue
measure. In this sense, the initial requirement that a crack must be a rectifi-
able subset of B to be admissible — as defined in [2] — is not assured this way.
Recall that rectifiability 1 is chosen to allow the representation of even really
complicated — although realistic — crack patterns, assuring the a.e. existence of
the approximate tangent space 2 which describes locally the orientation of the
crack. Also, the identification of a crack only with the jump set of u forbids
the description of partially closed cracks. At a certain instant of a fracture
process, in fact, it may happen that a crack occurred at a previous instant
and, due to the updated boundary conditions, at the current instant it is only
partially open: u jumps then across the opened part and is continuous across
the closed part. Along the latter, however, material bonds placed orthogonally

1 b can be represented as the image of a finite or countable number of Lipshitz
functions.
2 In the sense of geometric measure theory.
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to the crack facies do not exist. So, the identification of the crack with the
jump set of u does not describe such a physical circumstance.

Moreover, by definition, E does not include possible peculiar tip energy due
to the (possibly critical) tip arrangement of the material bonds. Also, E does
not take into account geometric peculiarities of the crack lateral sides, besides
their total area.

Here we take back the point of view proposed in [2] and maintain distinction
between the deformation and the crack. However, we propose a different de-
scription of the crack patterns, obtained by means of Radon measures over
appropriate fiber bundles, and adopt a different expression of the energy. We
take, in fact, into account (i) possible tip energy and (ii) a configurational
energy associated with the curvature of the crack margins.

Before going into technical details, it can be useful to discuss the general ideas
justifying the approach that we propose here.

Consider the typical starting point in traditional continuum mechanics: A
body occupies a region B — a region endowed with a certain regularity speci-
fied in various ways — and, starting from it, subsequent macroscopic placements
of the same body are reached by means of standard deformations x 7−→ u (x),
x ∈ B. The map u is assumed to be bijective, (at least approximately) differ-
entiable, and orientation-preserving (the spatial derivative of u has positive
determinant). The picture is standard and does not require further details.
It has to be stressed, however, that the body remains the same along this
process. In other words, B does not change, or better, the body in B does not
undergo mutations in its macroscopic material structure.

When a crack is induced by some prescribed deformation or, generically, load-
ing program, the common statement is that bijectivity of u is lost over some
subset of B. The statement implies and is supported by the recognition that
a crack changes the structure of a body. In other words, a cracking body is
a mutant body. Mutation is the occurrence of a crack. Here we consider a
cracking (in this sense mutant) body as a family of non-mutant bodies which
occupy the same region B and differ just by the crack pattern. The mutation
associated with some prescribed cracking process is then represented by some
specific family of bodies.

As already mentioned, a crack pattern can be represented in B (fictiously in
a sense) by a rectifiable subset b which is the pre-image, consistent with u, of
the set where there is rupture of atomic bonds in the deformed configuration
u (B). In other words, u (b) is the real physical crack. Along the process, the
subset b varies in a monotonous way: for t > t0, b (t) ⊇ b (t0). The assumption
that b is a rectifiable subset of B implies the existence of the approximate
tangent space at almost every x in b.
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Take a point x in B and consider the star of planes crossing x. Each plane
can, in principle, describe locally a possible crack which could cross x under
appropriate conditions. Considering the star of planes just mentioned is tanta-
mount to attach at x the Grassmanian of planes associated with B. Moreover,
the point x could be locus of a one-dimensional crack — a thin tube of matter
where the material bonds are broken. Such a type of crack is characterized at
x by the approximate tangent line (rather than plane). The star of straight
lines at x has then to be considered. It includes all possible directions that a
linear crack could take at x. As before, it can be substituted by the Grass-
manian of lines associated with B. If the procedure is repeated at every x, in
three-dimensional ambient space two fiber bundles can be constructed. Each
one is based on B, the characteristic fiber being the Grassmanian of planes in
one case and the Grassmanian of lines in the other one.

Radon measures 3 can be defined over such fiber bundles. These special Radon
measures are called varifolds (see [7], [8], [9]). Among all possible choices, we
are here interested in measures over sub-fiber bundles based on rectifiable
subsets of B with zero volume measure — our aim is, in fact, to represent
crack patterns. In particular, the measures used are connected to Hausdorff
measuresH2 andH1, in 3D−ambient space, admit integer valued density, and
(generalized) notions of boundary and curvature (see [10], [11]), and are called
integer rectifiable varifolds with boundary. Let V be one of these varifolds, A
its (generalized) curvature tensor (a third-rank tensor), ∂V the boundary of
V . If V is associated with the two-dimensional Hausdorff measure H2, then
∂V is connected with H1.

For example, consider b as a smooth bounded surface in B, and take an inte-
ger rectifiable two-dimensional varifold V(2), associated with the fiber bundle
constructed over b, by attaching at every x in b the Grassmanian of planes
crossing B. V(2) is function of places x ∈ b and tangent planes Π (x). The pro-
jection of V(2) over b is a measure there; when it is evaluated over the whole b,
its value is the area of b itself, and coincides with the so-called mass of V(2),
a number indicated byM

³
V(2)

´
. The projection of ∂V(2) over B measures the

intersection between b and ∂B, and the margin of b in B, namely the tip of
the crack represented by b. At every x in b, the value A (x) gives information
on the curvature of b at x.

3 A Radon measure is a measure on the σ-algebra of Borel sets of a Hausdorff
topological space X that is locally finite and inner regular. The presence at every
point of a neighborhood of finite measure is the property for the measure to be
locally finite. It is also said to be inner regular when the measure of every Borel
set in X is the supremum of the set of measures of all compact subsets of it. The
two properties allow one to define in a topological space measures with a defined
support compatible with the topology.
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The same considerations can be made in n−dimensional ambient space, for
a k−dimensional crack. The role of V(2) is played there by a k−dimensional
varifold V(k).

By restricting for a while the treatment to the three-dimensional case, in the
expression of the energy, the part associated with the crack can be then de-
scribed in terms of V(2). The option with respect to the standard way is not
only formal: the use of V(2) allows the natural introduction of an energy contri-
bution depending on the (generalized) curvature tensor A. Such an energy is
purely configurational because A ‘lives’ completely in B: with B in R3, in fact,
we find A (x) ∈ R3⊗R3∗⊗R3, x ∈ b ⊂ B, with b a rectifiable set which is the
basis of the fiber bundle where V(2) is defined 4 . In breaking material bonds,
in fact, bending effects may occur. They appear in the current configuration
u (B) when a crack occurs there. However, the rupture of material bonds in-
duces a mutation in the body — a cracks nucleates or grows — a configurational
effect which can be described then by a configurational part of the energy. This
energy has to be then associated with the curvature of the lateral margins of
the crack. The introduction of the (generalized) curvature-dependent config-
urational part of the energy can be then considered as a manner to account
indirectly for the effects due to the presence of latent microstructures at low
scales along the crack margins. The interpretation is enforced by indirect con-
nections — even analogies — with other works dealing with cracks in materials
where adsorption of atoms is permitted between crack margins [4], in generic
complex bodies [5] or in the special case of second-grade materials [6].

The appearance of the curvature dependent parts of the energy has also non-
trivial analytical consequences. There is, in fact, an interplay in the expression
of the energy between the presence of varifolds on b and their curvature ten-
sors. Take, in fact, a sequence

n
V(2),k

o
of two-dimensional integer rectifiable

varifolds with boundary. A sequence {bk} of H2−rectifiable sets is associated
with it. When all the elements of

n
V(2),k

o
are taken with bounded curvature,

regularity to the topological properties of {bk}− members is imposed. This
is regularity on the possible shapes of cracks. In this sense, the notion of
admissibility for the generic b (to be a rectifiable set) is restricted. Sets de-
scribing admissible cracks are not only H2−rectifiable subsets of B, but, in
addition, they must admit two-dimensional curvature varifold with bounded
curvature. The restriction in the admissibility criterion produces advantages:
the convergence of sequences of curvature varifolds with bounded curvature
can be assured, the relevant space is closed. Compactness problems can be
then naturally avoided.

However, there is something more.

4 The situation is more general than considering a smooth surface C as in the
previous example.
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By using varifolds, in fact, it is possible first to assign peculiar energy to the tip
and to other linear defects which can be in principle placed around the crack
and/or connected with it 5 . If a one-dimensional varifold V(1) is associated
with the tip, it is necessary to take into account that the tip is part of the
boundary of the set b describing in B the crack. That boundary is connected
with the boundary measure ∂V2. So a geometrical link between V(2) and V(1)
is necessary and is given here by

π#|∂V(2)| ≤ π#
¯̄̄
V(1)

¯̄̄
, (2)

where π# is the projection of measures over b, and |·| indicates the total
variation, when referred to a measure. The geometrical implications of the
condition (2) are not all self-evident. However, it is the sole necessary condition
to assure that the varifold V(1) describes (be supported by) the tip of the crack,
that is the part of the boundary of b enclosed in B. In fact, the varifold V(1)
can have boundary ∂V(1). It is based on the points where the tip has corners
or cusps. The set includes also the intersection points between the tip and the
external boundary of B.

We call the pair
³
V(2), V(1)

´
a stratified family of varifolds over B — or, better,

for the sake of conciseness, a stratified varifold. The terminology can be ex-
tended also to an analogous family of varifolds in dimension n — in that case
we have a family

n
V(k)

o
, k = 1, ..., n− 1, with the elements of it linked by the

extended version of (2), namely

π#|∂V(k)| ≤ π#
¯̄̄
V(k−1)

¯̄̄
. (3)

The word ‘stratified’ reminds that the set considered includes integer rec-
tifiable varifolds with bounded curvature, all based on submanifolds of B,
characterized by decreasing Hausdorff dimensions, and linked by the relation
(3).

This way, to the purpose of assigning peculiar different energies to various
parts of the crack, it is expedient to describe a crack by means of a stratified
family of varifolds, more than a single varifold.

The stratification of varifolds allows one to distribute the energy over sub-
manifolds stratified at dimensions lower than the one of the ambient space.
The technique can be then used in principle for describing clusters of defects
of various dimensions.

By looking only at a three-dimensional case, the energy E
³
u,
n
V(k)

o
,B
´
of an

5 That dislocations may be produced in front of a crack tip in crystalline materials
is a well known phenomenon. The description of such dislocations or other possible
linear defects in terms of one-dimensional varifolds seem to be natural.
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elastic-brittle solid, with
n
V(k)

o
a stratified varifold, k = 1, 2, is then expressed

by

E
³
u,
n
V(k)

o
,B
´
: =

Z
B
e (x, u (x) , Du (x)) dx+

2X
k=1

αk

Z
Gk(B)

¯̄̄
A(k)

¯̄̄pk
dV(k) +

+
2X

k=1

βkM
³
V(k)

´
+ γM

³
∂V(1)

´
, (4)

where αk, βk, and γ are constitutive constants adjusting dimensions; p1 and
p2 have also constitutive character. The density of energy e (·) is the difference
between the elastic energy density ê (x,Du) — it cannot depend on the field
u for reasons of objectivity — and the potential ŵ (u) of external body forces,
namely e (x, u,Du) = ê (x,Du)−ŵ (u). The addenda containing varifolds have
only configurational nature because they are defined on B and the deformation
is not involved — the gradient of deformation appears, in fact, only in the
expression of the bulk elastic energy.

The energy E (b, u) in (1), analyzed in [2] and subsequent literature (see [3]
for a critical review) is a special case of E

³
u,
n
V(k)

o
,B
´
. The surface energy

appearing in the explicit expression of E (see (1)) is here the term

β2M
³
V(2)

´
.

Besides the bulk energy which is common to the one in (1), the other terms
in (4) mark the difference with respect to (1), and account from energy con-
tributions from

1) the (generalized) curvature of the crack,

α2

Z
G2(B)

¯̄̄
A(2)

¯̄̄p2
dV(2)

2) the curvature of the tip,

α1

Z
G1(B)

¯̄̄
A(1)

¯̄̄p1
dV(1),

3) the length of the tip,
β1M

³
V(1)

´
,

4) possible corners and cusps of the tip,

γM
³
∂V(1)

´
.

This way we presume that, to change or create a crack, it is necessary to pay en-
ergy associated with the above listed geometric characteristics of the geometry

7



of the crack itself. The reason of our choice relies on the idea that, in produc-
ing a crack, part of the energy is dissipated, while another part re-distributes
along the material margins of the crack in accord with the local geometry
of the crack pattern and the nature of the material around. Such an energy
assures the stability of the matter. In this sense, the energy E

³
u,
n
V(k)

o
,B
´

is a refinement — so an evolution — of Griffith’s energy E (b, u).

In accord with [2], we require minimality of the energy at any time step of
some given loading program.

To us, assigned boundary conditions, the occurrence of a possible crack pat-
tern is such that the pair

³
u,
n
V(k)

o´
minimizes the energy E

³
u,
n
V(k)

o
,B
´

over an assigned region B.

In fact, we do not prescribe any initial pre-existing crack. For technical reasons,
we prefer to assign a initial comparison stratified varifold

n
Ṽ(k)

o
such that all

competing stratified varifolds
n
V(k)

o
satisfy the bound π#Ṽ(k) ≤ π#V(k). The

bound prescribes that, in presence of a pre-existing crack, the minimization
procedure of the energy can produce only a crack which is bigger or equal
to the existing one. In three-dimensions, for example, the condition becomes
π#Ṽ(2) ≤ π#V(2), and π#Ṽ(1) ≤ π#V(1).

However, the initial comparison varifold can be zero. In this case, the mini-
mality requirement describes the nucleation of possible cracks in the elastic-
brittle solid considered.

The quest for minimizers of E
³
u,
n
V(k)

o
,B
´
has to be developed in some func-

tional class hosting the pairs
³
u,
n
V(k)

o´
. The choice of such a class has strictly

constitutive nature. We have already mentioned that we choose sequences of
minimizing stratified varifolds in a space of integer rectifiable varifolds with
boundary and bounded curvature. This is a choice restricting the possible
geometries of the crack patterns. We have not yet mentioned functional as-
sumptions about the deformation field u. Outside the crack, u should describe
a standard non-linear deformation: it must be one-to-one, (at least approxi-
mately) differentiable, and orientation preserving. u may admit jumps which
are concentrated on the crack only. Moreover, since the crack is represented in
B by the set b where the stratified varifold

n
V(k)

o
is defined. The jump set of

u does not necessarily coincide with b. So, in contrast with other treatments
(see e.g. [21]), for us the jump set of u does not necessarily coincide with the
crack but, when it is not void, it is included in the cracked region b and at
most may coincide with it. This way, we are able to describe situation where
a crack is produced and is only partially open along the deformation.

The constraint that the jump set of u be contained or at most coincide with
b can be expressed by a link between u and

n
V(k)

o
. The reason is that b is
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not known a priori, rather it is determined by sequences of stratified varifolds
minimizing the energy. Different functional links between the jumps of u andn
V(k)

o
are possible. Their choice has constitutive nature. Here we adopt a

specific choice; its description, however, requires some preliminary remarks.

To have a control on the discontinuities of the map u : B→ R3, it is expedient
to consider the graph of the map itself. Since we have assumed that u be (at
least approximately) differentiable, a 3−vectorM (Du) can be associated with
the spatial derivative Du. The entries of M (Du) are all the minors of Du,
namely Du itself, adjDu, detDu. When calculated at a certain point, they
characterize the tangent plane to the graph at the same point. By means of
M (Du) it is possible to define a linear functional over the graph of u. Such a
functional is indicated by Gu and defined by

Gu (ω) :=
Z
B
< ω(x, u(x)) , M(Du(x)) > dx

for all forms ω which are compactly supported on B × R3. It is the so-called
current associated with u (precisely the integer rectifiable 3-current with mul-
tiplicity 1 ). Gu (ω) can be considered as an extended internal work. In fact, the
elements of M(Du(x)) characterize completely the deformation: Du, adjDu,
and detDu describe respectively the deformation of lines, volume and oriented
areas. Dual to them are respectively the stress (the first Piola-Kirchhoff repre-
sentation of it), and related averages over volume and oriented areas. However,
besides the possible physical interpretations, a geometrical property is essen-
tial for the developments presented here. In fact, a notion of boundary can be
associated with Gu. The boundary of Gu is indicated by ∂Gu and defined by

∂Gu(ω) := Gu(dω)

for all 2−forms which are compactly supported on B × R3. The key point is
that u has no ‘discontinuities’ when ∂Gu(ω) = 0 for any ω. In our case, u may
admit discontinuities but only over b. As anticipated previouly, this constraint
can be then expressed by connecting the varifold over b with ∂Gu:

π# |∂Gu| ≤
2X

j=1

π#V(j) + π#∂V(1)

Outside of the crack pattern, the additional constraint ∂Gu(ω) = 0 is imposed.

A new space then arises. It is called the space of extended weak diffeomor-
phisms. We are able to prove its closure with respect to converging sequencies.

Under the assumption that the bulk energy be polyconvex in Du, and the
positivity of the constitutive coefficients αk, βk, γ, we then prove an existence
theorem of a pair

³
u,
n
V(k)

o´
realizing the minimum of E

³
u,
n
V(k)

o
,B
´
. In

fact, the treatment has its natural extension in n−dimensional ambient space
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and we furnish the details leading to the existence theorem to this case in the
sequel, leaving the three-dimensional one to this introduction. Preliminarly,
we discuss also the two-dimensional case which allows us to put in evidence
some peculiar technical aspects.

The minimum pair
³
u,
n
V(k)

o´
can be such that

n
V(k)

o
is the null stratified

varifold when the initial comparison stratified varifold is also null. In this
case the body under scrutiny remains in a purely elastic phase, else it is
elastic-brittle. In the case of null initial comparison stratified varifold, the
transition from elastic to elastic-brittle behaviour is governed just by the
energy and the boundary condition, and does not need additional external
criteria prescribing a threshold.

Besides the possibility to treat cases of partially opened cracks, and to de-
scribe naturally the nucleation of cracks, our treatment has another essential
advantage: it is possible to evaluate the first variation of the energy when the
crack pattern is described by a stratified family of curvature varifolds. This
possibility is in constrast with approaches where only a field u is involved as
a variable, is considered as a special function with bounded variation, and
the crack is considered to be coincident with the jump set of u itself. In that
approaches, in fact, special additional regularity assumptions have to be made
on the topology of the crack pattern (see [3] for a detailed review of the rel-
evant literature). We do not need such assumptions to evaluate weak forms
of the balance equations. After evaluating them in general, we specialize such
equations in a case of a regular crack pattern. In this case we explicit point-
wise balances of interactions: they include standard balances and an additional
one which can be used in evaluating curving and kinking processes. Moreover,
when the crack geometry is regular — let say the crack is a smooth surface — our
balance equations contains the configurational contributions associated with
the curvature of the lateral margins of the crack and the tip itself. Ancillary
results arise: the main one is the proof that the vector form of the J-integral
is directed along the normal to the crack tip at a given point of the tip itself,
under some conditions of regularity up to the tip of the Hamilton-Eshelby
stress.

Details are presented in the ensuing sections.

1 Curvature varifolds with boundary

Definition of and notions on varifolds are collected in the present section. Two
examples show explicit forms of varifolds related with specific simple cracks.
Besides the definition, the compactness Theorem 4 is an essential tool for the
existence results presented later. Theorems 2 and 3 inform just about essential
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geometrical properties of varifolds. They enforce the decision of taking vari-
folds as descriptors of crack patterns. At a first reading they can be skipped
altogether. Meaning skipped without serious loss.

Rn, n ≥ 2, is the space selected as geometrical ambient, although we are
conscious that n = 3 and n = 2 are the dimensions with physical stringent
significance.

Let B be an open, bounded subset of Rn, n ≥ 2, with Lipschitz boundary.
For a positive integer k, 1 ≤ k ≤ n, the Grassmanian manifold of k-planes
through the origin in Rn is indicated by Gk,n and is also identified with the set
of projectors Π : Rn → Rn onto k-planes, characterized by

Π2 = Π, Π∗ = Π, Rank,Π = k,

a set which is a compact subset of Rn ⊗ Rn. Consider also the trivial bundle
Gk(B) := B × Gk,n with natural projection π : Gk(B) → B. A k-varifold on
B is a nonnegative Radon measure V over Gk(B), namely V ∈ M(Gk(B)).
The weight measure of V is the Radon measure π#V where π# is the natural
projection of measures associated with the projection π, and the mass of V is
M(V ) := V (Gk(B)) = π#V (B).

Denote by Hk the k-dimensional Hausdorff measure in Rn. If b is an Hk-
measurable, countably k-rectifiable subset of B and θ is a density function in
L1(b,Hk), for θHkxb a.e. x ∈ B there exists the approximate tangent k-space
Txb to b at x. Define

Vb,θ(ϕ) :=
Z
Gk(B)

ϕ(x,Π) dVb,θ(x,Π) :=
Z
b
θ(x)ϕ(x,Π(x)) dHk(x) (5)

for any ϕ ∈ C0
c (Gk(B)), where Π(x) is the orthogonal projection of Rn onto

Txb. The formula in (5) makes sense because the map

x 7−→ ϕ(x,Π(x))

is θHkxb-measurable. Vb,θ is called the rectifiable k-varifold associated with b,
with density θ.

A special case is the choice of a nonnegative integer valued function θ. In this
case, Vb,θ is called the integer rectifiable varifold associated with b with density
θ.

Rectifiable varifolds have been introduced in [7] as generalized surfaces. A
restricted class of varifolds for which a notion of (generalized) mean curva-
ture vector is available is analyzed in [8,9], where related regularity results
are proven. A more restricted class of varifolds without boundary having a
(generalized) second fundamental form has been introduced in [10], while the
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class of the integer rectifiable curvature varifolds that allow for a notion of
second fundamental form and for a notion of boundary has been analyzed in
[11] (see also [12]).

Definition 1 V is called a curvature k-varifold with boundary if

(1) V = Vb,θ is the integer rectifiable k-varifold associated with (b, θ,Hk),
(2) there exist a function A ∈ L1(Gk(B),Rn∗ ⊗ Rn ⊗ Rn∗), A = (Aci

j ), and a
vector Radon measure ∂V ∈M(Gk(B),Rn) such thatZ

Gk(B)
(ΠDxϕ+AtDΠϕ+ ϕAI) dV (x,Π) = −

Z
Gk(B)

ϕd∂V (x,Π)

for every ϕ ∈ C∞c (Gk(B)).

Moreover, for p ≥ 1 the subclass of curvature k-varifolds with boundary such
that A ∈ Lp(Gk(B)) is indicated by CV p

k (B).

The function x 7→ A(x,Π(x)) ∈ Rn∗ ⊗Rn ⊗Rn∗ is called the curvature of the
varifold V . The vector measure ∂V is called the varifold boundary measure.

In components, by considering Π (x) as the orthogonal projection onto Txb,
the integral density in the previous definition can be written asZ

b

µ
Πi
jDxjϕ(x,Π) +Aci

j (x,Π)DΠcj
ϕ(x,Π) +Aij

j (x,Π)ϕ(x,Π)
¶
θdHk

= −
Z
Gk(B)

ϕ(x,Π) d∂iV
(6)

for every ϕ ∈ C∞c (Gk(B)), i = 1, . . . , n. Summation over repeated indices is
understood.

The relation (6) is reminiscent of the formulasZ
b

µ
Πi
j(x)Dxjϕ(x,Π(x)) +Aci

j (x,Π(x))DΠc
j
ϕ(x,Π(x))

¶
dHk

+
Z
b
Hi(x)ϕ(x,Π(x)) dHk

= −
Z
∂b
ϕ(x,Π(x))mi(x) dHk−1 ∀ϕ ∈ C∞c (Gk(B))

(7)

for i = 1, . . . , n, that hold true for smooth k-manifolds b with smooth bound-
ary ∂b. Here H = (H1, . . . ,Hn) is the mean curvature vector of b at x,
i.e. Hi := (∇bΠi

j)
j, ∇b is the tangential gradient operator to b and m =

(m1, . . . ,mn) is the inward unit normal to ∂b in Txb. Finally, the third-rank
tensor A has components defined by Aci

j := (∇bΠc
j)
i.

The previous integral relation is justified by applying to vector fields

Xi(x) := ϕ(x,Π(x))ei, i = 1, 2, . . . , n,

12



with e1, e2, . . . , en the canonical basis in the ambient space Rn, the integration
by parts formula on the manifold b (see e.g. [13]), namelyZ

b
divbX dHk = −

Z
b
X ·H dHk −

Z
∂b
X ·mdHk−1 , (8)

where divb indicates, from now on, the divergence operator along b.

Moreover, if b is a smooth manifold, the curvature functions Aji
c (x) in (7) are

also linked with the second fundamental form IIx of b at x. More precisely, by
writing

Bc
ij(x) = IIx(Πei,Πej)

c,

we find (see [11])

Bc
ij = Πh

iA
cj
h , Aji

c = Bc
ij +Bj

ic . (9)

Therefore, bounds to A are actually bounds to the curvature of b. This aspect
addresses the physical interpretation of the terms containing A in the explicit
expression (4) of the energy.

Example 1 Let b the segment joining (−1, 0) to (1, 0) in R2. Then the cur-
vature 1-varifold V associated with b and density 1 exists. It is endowed with
zero curvature and boundary

∂V =

⎛⎜⎝−δ((−1,0),Π1) + δ((1,0),Π1)

0

⎞⎟⎠

where Π1 :=

⎛⎜⎝1 0
0 0

⎞⎟⎠. In fact equation (6) reduces to
⎧⎨⎩
R 1
−1 ϕx(x, 0,Π1) dx = ϕ((1, 0),Π1)− ϕ((−1, 0),Π1) ,R 1
−1 0 dx = 0 .

Example 2 Let b be the union of the two segments joining respectively
(−1, 0) with (1, 0) and (1, 0) with (1, 1). The curvature varifold associated
with b has zero curvature and boundary given by the sum of the boundaries
of the two segments, namely

∂V =

⎛⎜⎝−δ((−1,0),Π1) + δ((1,0),Π1)

−δ((1,0),Π2) + δ((1,1),Π2) .

⎞⎟⎠

where Π1 :=

⎛⎜⎝1 0
0 0

⎞⎟⎠ and Π2 :=

⎛⎜⎝0 0
0 1

⎞⎟⎠. Notice that the projection of the mass
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of the boundary, namely π#|∂V |, is concentrated at the endpoints (−1, 0) and
(1, 1) and at the corner point (1, 0), where the multiplicity is 2.

Similarly, consider several segments meeting at a point from different direc-
tions. The boundary of the corresponding curvature 1-varifold concentrates
also at the junction. In three dimensions, take cracks meeting at a curve.
The junction (that is the curve now) can be described by affirming that the
2-varifolds associated with the cracks have in common parts of the bound-
ary. An additional one-dimensional varifold can be also associated with the
junction.

The following results proved in [10] and [11] collect basic geometrical properties
of curvature k-varifolds with boundary.

Theorem 2 Let V = Vb,θ be a k-varifold with boundary ∂V and curvature A,
with Aci

j ∈ L1(Gk(B)).

(1) The following symmetry properties hold:

Aci
j = Aji

c , Aji
j = 0, Aci

j = Πc
hA

hi
j +Πh

jA
ci
h , V − a.e.

(2) Πi
hA

ch
j = Aci

j V -a.e. in such a way that, by setting Hi(x) := Aij
j (x,Π(x)),

one gets Πh
iH

h = 0 V -a.e.; in particular,

H(x) ⊥ Txb μV − a.e.

(3) The projection map x 7→ Π(x) is μV -a.e. approximately differentiable and

(∇bΠc
j(x))

i = Aci
j (x,Π(x))

for μV -a.e. x.
(4) The support of |∂V | is contained in the support of V and |∂V | ⊥ V .
(5) ∂V is tangential to b in the sense that

(Πi
j)#∂

jV = ∂iV

as measures on Gk(B).
(6) V is a varifold with locally bounded first variation and generalized mean

curvature H(x) in the sense of Allard and generalized boundary π#∂V .

Theorem 3 (Rectifiability of the boundary) Let V be a curvature vari-
fold of dimension k with boundary ∂V . There exists an Hk−1-countably rec-
tifiable set C and a function σ ∈ L1(C,Hk−1) such that π#|∂V | = σHk−1C.
Moreover, one hasZ

ϕ(x,Π(x)) d∂V (x,Π) =
Z
C

µ Z
Gk,n

ϕ(x,Π) dτx(Π)
¶
dHk−1(x)

14



for every ϕ ∈ C∞c (Gk(B)), where for Hk−1-a.e. x ∈ C the vector valued measure
τx on Gk,n has the structure

τx =
ixX
i=1

mx
i α

x
i δpxi , (10)

where ix ∈ N, δpxi is the Dirac delta supported by a k-plane pxi of the Grass-
manian Gk,n; moreover, the αx

i ’s are positive integers and the mx
i ’s are unit

vectors in Rn. In addition pxi contains the tangent (k− 1)-space TxC to C at x
and

pxi = Span,
½
TxC,mx

i

¾
.

In the special case of one-dimensional curvature varifolds V with boundary,
the formula (10) reduces to

τx :=
jxX
j=1

αjtjδPj

where δPj is the Dirac delta function supported by a straight line Pj in G1,n, tj
is a unit vector that orients Pj and αj a positive integer. As a consequence,
for the boundary of a curvature 1-varifold one gets

∂V (x, P ) =
∞X
i=1

δxi(x)× τxi (P ) .

Since varifolds in CV p
k (B) have mean curvature H in Lp, as a consequence of

Allard’s compactness result, the theorem below can be stated.

Theorem 4 (Compactness [11]) For 1 < p < ∞, let {V (r)} ⊂ CV p
k (B)

be a sequence of curvature k-varifolds V (r) = Vbr,θr with boundary. The corre-
sponding curvatures and boundaries are indicated by A(r) = {A(r)cij } and ∂V (r),
respectively. Assume that for every open set Ω ⊂⊂ B there exists a constant
c = c(Ω) > 0 such that for every r

μV (r)(Ω) + |∂V (r)|(Gk(Ω)) +
Z
Gk(Ω)

|A(r)|p dV (r) ≤ c(Ω).

Then, there exists a subsequence {V (rs)} of {V (r)} and a k-varifold V = Vb,θ ∈
CV p

k (B), with curvature A and boundary ∂V , such that

V (rs) - V, A(rs) dV (rs) - AdV, ∂V (rs) - ∂V,

in the sense of measures. Moreover, for any convex and l.s.c. function f :
Rn∗ ⊗Rn ⊗Rn∗ → [0,+∞], one getsZ

Gk(B)
f(A) dV ≤ lim inf

s→∞

Z
Gk(B)

f(A(rs)) dV (rs).
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Allard’s regularity results [8] also apply. In fact, if Vb,θ ∈ CV p for some p > n,
then b is locally the graph of a C1,α multivalued function, with α = 1−n/p, far
from boundaries 6 . The remark indicates the broad variety of possible crack
shapes that can be described by varifolds. For sufficiently large p, shapes
involved in traditional analyses can be recovered.

As it shall be explained in the ensuing sections, curvature varifolds are useful
tools to describe cracks in continuous deformable media.

2 Deformations and currents

Matter appears discrete at very low dimensional scales. Its description in terms
of continuum models is a valid approximation at macroscopic and/or meso-
scopic scales. If the representation is at that scales, a body can be considered
as an abstract set whose members — call them the material elements — are
commonly seen as the smallest atomic aggregates bringing peculiar features of
the matter constituting the body under analysis. This definition is extremely
vague. Dimensions of the material elements, numbers of atoms inside them,
nature of the mentioned ‘peculiar features’ remain not specified. In standard
continuum mechanics, however, such a vagueness is accepted. Whatever the
material elements be, in fact, only their placement in space is chosen as de-
scriptor of their morphology. This way, each of them is in a certain sense ‘col-
lapsed’ in a point. So, a minimalistic description of the morphology of a body
is adopted. Only the region B occupied in the ambient space is considered,
leaving out the inner geometry of the molecular shapes and entanglements.

B is considered here an open set in Rn with Lipschitz boundary (concrete
physical dimensions are n = 2 and n = 3). Other configurations are reached
in R̂n (an isomorphic copy of Rn) 7 by means of deformations

u : B −→ R̂n,

which maps B in the current configuration u (B), a set that is presumed to be
always open and endowed with Lipschitz boundary.

By leaving out the possible formation of fracture, standard assumptions are
as follows:

(i) u is a one-to-one, (at least approximately) differentiable map.

6 Approximation results for curvature varifolds without boundaries can be found
in [14].
7 The distinction between the space containing the reference place and the one
where all other configuration are reached has handy nature.
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(ii) u is an orientation-preserving map, i.e. detDu (x) > 0 for x in B.
(iii) For any compactly supported function f on Rn × R̂n, the following in-
equality holds:Z

B
f (x, u (x)) detDu (x) dx ≤

Z
R̂n
sup
x∈B

f (x, z) dz.

The last condition permits along deformations self-contact between distant
portions of the boundary of B, but still prevents self-penetration of the matter.
It is a ‘global’ one-to-one condition proposed in [15]. It amounts toZ

B0
detDu(x) dx ≤ L2(eu( eB0)) ,

for any subbody B0 of B (a condition proposed in [18]). eu denotes Lusin rep-
resentative of u, and eB0 is the intersection of B with the domain of eu.
Possibility of fracture weakens the bijectivity prescribed in (i). In that case, the
map u has to be considered just piecewise one-to-one. Its jump set, in addition,
must be included in the sub-region of B where the material bonds are broken
along a cracking process. Control of the discontintinuities of approximately
differentiable maps can be exerted bymeans of currents defined over the graphs
of such maps. Mention has been made in the introduction. Additional details
are then necessary.

2.1 Graphs as currents

For reader’s convenience, some notions about currents are summarized below.
The material is presented in a bit more general way than the strictly necessary
one: in fact, Rn and RN are involved, rather than only Rn and its isomorphic
copy. Reference is the treatise [16].

Let I(k, n) be the space of multi-indices in (1, . . . , n) of length k. Denote also
by 0 the empty multi-index of length 0. For any α, the complementary multi-
index to α in (1, ..., n) is indicated by ᾱ, ᾱ ∈ I(n − k, n), and σ(α, ᾱ) is the
sign of the permutation from (1, . . . , n) into (α1, . . . , αk, ᾱ1, ..., ᾱn−k).

For (e1, e2, . . . , en) and (�1, �2, . . . , �n) bases inRn andRN , respectively,Λr(Rn×
RN) denotes the vector space of skew-symmetric tensors over Rn ×RN of the
form

ξ =
X

|α|+|β|=r
ξαβeα ∧ �β =

min(r,N)X
max(0,r−n)

ξ(k),

where
ξ(k) =

X
|α|+|β|=r
|β|=k

ξαβeα ∧ �β.
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The decomposition ξ =
P

k ξ(k) does not depend on the choice of the bases.

For any linear map G : Rn → RN , the notation M(G) is used for the simple
n-vector in Λn(Rn×RN) which is tangent to the graph of G and is defined by

M(G) := Λn(Id×G)(e1 ∧ · · · ∧ en) = (e1, G(e1)) ∧ · · · ∧ (en, G(en)).

Expression in coordinates is given by

M(G) =
min(n,N)X

k=0

M(k)(G),

where

M(k)(G) :=M(G)(k) =
X

|α|+|β|=n
|β|=k

σ(α, ᾱ)Mβ
ᾱ (G)eα ∧ �β.

G indicates the N × n matrix in MN×n associated with G and Mβ
ᾱ (G) is the

determinant of the submatrix ofG made of the rows and the columns indexed
by β and ᾱ respectively. It is also convenient to putM0

0 (G) := 1. In the special
case in which n = N = 3, the components of M(G) are 1 and the entries of
G, adjG and detG.

Remind that B is in Rn. Consider u : B → RN an a.e. approximately differ-
entiable map, and its approximate gradient Du. It is well-known that u has
Lusin representative on the subset eB of Lebesgue points of both u and Du,
and that |B \ eB| = 0. Let eu(x) and Deu(x) be the Lebesgue values of u and Du
at x ∈ eB, respectively.
Assume that |M(Du)| ∈ L1(B), where

|M(G)|2 :=
X

|α|+|β|=n
|Mβ

ᾱ (G)|2

is the Euclidean norm of M(G). The graph of u, defined by

Gu :=
½
(x, y) ∈ B ×RN

¯̄̄̄
x ∈ eB, y = eu(x)¾,

is a n-rectifiable subset of B×RN with approximate tangent vector n-space at
(x, eu(x)) generated by the vectors (e1,Deu(x)e1), . . . , (en,Deu(x)en) in Rn×RN

(see [16]). The n-current integration over the graph of u is defined as the linear
functional Gu acting on smooth n-forms ω = ω(x, y) with compact support in
B × RN as
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Gu(ω) : =
Z
B
(Id× eu)#(ω) = Z

B
< (Id× eu)#(ω) , e1 ∧ · · · ∧ en > dx

=
Z
B
< ω(x, eu(x)) , M(Deu(x)) > dx

=
Z
B
< ω(x, u(x)) , M(Du(x)) > dx,

for every ω ∈ Dn(B × RN). Here # indicates pull-back of forms ω and (Id×eu)(x) := (x, eu(x)).
The number

M(Gu) := sup
||ω||∞≤1

Gu(ω)

is called the mass of Gu. The area formula implies

M(Gu) =
Z
B
|M(Du(x))| dx = Hn(Gu),

and

Gu(ω) =
Z

< ω , ξ > dHnxGu ,

where ξ(x) := M(Deu(x))
|M(Deu(x))| , for x ∈ eB, is the unit n-vector orienting the approxi-

mate tangent n−space to Gu at (x, eu(x)). Moreover, Gu has finite mass:

M(Gu) <∞ .

Gu can be seen as a vector valued measure over B × RN . Since the graph
Gu is rectifiable, Gu is an integer rectifiable n−current with multiplicity 1 on
B × RN .

A functional ∂Gu, defined by

∂Gu(ω) := Gu(dω)

on compactly supported smooth (n − 1)−forms ω in B × RN , namely ω ∈
Dn−1(B ×RN), with dω the differential of ω, is called the boundary of Gu.

By Stokes theorem, if u is of class C2, then

∂Gu = 0

onDn−1(B×RN). Such a relation holds also for Sobolev maps u ∈W 1,n(B,RN)
by approximation. In general ∂Gu does not vanish in B×RN . A typical example
is the map u(x) := x

|x| , that belongs to W
1,p(B3(0, 1),R3) for every p < 3. It

is possible to compute that ∂Gu = −δ0 × [[S2 ]] on D2(B3(0, 1)×R3), with δ0
the Dirac delta at 0.
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In the sequel, π will indicate both the orthogonal projection π : Rn×R̂n → Rn

and the natural projections π : Gk(B) → B, confusion being avoided by the
context.

3 Bulk energy

The energy (4), proposed for elastic-brittle bodies, is the sum of bulk energy
with density e (x, u (x) ,Du (x)) and configurational terms. The latter may
vary not only as a consequence of constitutive choices, but also depending on
the dimensions of the ambient space. For example, in two dimensions, line
energy at the tip is not available. Apart from these aspects, the bulk part
of the energy has the same formal expression at all dimensions considered.
So, since we treat different cases having common bulk energy (indicate it by
Eb (u,B)), we find advantageous to fix, once and for all, basic assumptions.
Conservative external bulk actions are considered only, so that

Eb (u,B) :=
Z
B
e (x, u (x) ,Du (x)) dx,

where e(·) is the sum of the elastic energy and the potential of external actions.
By assumption, e = e(x, u, F ) satisfies the common properties listed below:

(H1) e : B× R̂n×M+
n×n → [0,+∞] is continuous, whereM+

n×n is the class of real
(n× n)-matrices F such that detF > 0.

(H2) The map F 7→ e(x, u, F ) is polyconvex, i.e. there exists a function

Pe(x, u, ξ) : B × R̂n × Λn(Rn × R̂n)→ [0,+∞]

which is continuous in (x, u) for every ξ, convex and lower semicontinuous
in ξ for every (x, u), such that

e(x, u, F ) = Pe(x, u,M(F )) ∀F ∈M+
n×n, ∀(x, u) ∈ B × R̂n .

(H3) e = e(x, u, F ) satisfies the growth conditions

e(x, u, F ) ≥ c4 |M(F )|q ∀F ∈M+
n×n, ∀(x, u) ∈ B × R̂n ,

for some c4 > 0 and q > 1.
(H4) For every x ∈ B and F ∈M+

n×n if for some u ∈ R̂n the inequality e(x, u, F ) <
+∞ is satisfied, then detF > 0.

The assumptions (H1) and (H4) are essentially suggested by physical plau-
sibility. The hypothesis (H2) may be regarded as a prescription of material
stability while the growth condition (H3) is dictated by technical needs.
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4 Analysis in two-dimensional ambient space

Attention is focused first on two-dimensional ambient space to focus further
ideas in a simple setting, because only 1−dimensional curvature varifolds with
curvature in Lp, p > 1, need to be involved, and stratified families of varifolds
are here not necessary to describe crack patterns. Varifolds in CV p

1 (B) can
be described as (the integration over) a locally finite union of C1,1−1/p curves
counted with integer multiplicities, and their boundaries are just Dirac mea-
sures concentrated at endpoints and junctions, with their tangential directions
(see [12]).

The situation is summarized in the following definition.

Definition 5 A macroscopic configuration of a two-dimensional body with
possible cracks is a pair composed by a bounded connected open set B ⊂ R2
with Lipschitz boundary and a curvature 1-varifold with boundary V , such that
V = Vb,θ ∈ CV p

1 (B) for some p > 1.

In the previous definition, the gross place occupied by the body and the crack
are treated as distinct objects. The crack is not part of the initial boundary:
it is selected by a measure over B, namely a curvature varifold. The distinc-
tion is made because we do not want to analyze a body with a specific crack,
rather we are considering elastic-brittle bodies which may nucleate fractures,
depending on boundary conditions (loading programs, if you want) and con-
stitutive structures. Along the deformation, when a crack occurs, the crack
faces may loose contact completely or partially. So, as already recalled, the
deformation graph may have non-zero boundary. Then an appropriate class of
admissible deformations has to be defined.

Weak diffeomorphisms have been found to be natural descriptors of deforma-
tions of standard elastic bodies, see [15]. They are orientation-preserving maps.
They allow frictionless contact of parts of the boundary while still prevent self-
penetration of the matter. However, they satisfy a condition of zero boundary
in the sense of currents, which avoids the formation of ‘holes’ of various na-
ture. An extended class of weak diffeomorphisms is then necessary here. To
define it, only the condition of zero boundary current is relaxed. Orientation
preserving maps with graphs admitting currents with non-zero boundaries are
considered. A condition is, however, imposed: the total variation of the con-
sidered boundary currents must be bounded from above by the measure of the
varifold describing the possible crack pattern. In other words, we try to define
deformation that may have discontinuities that are contained in the crack and
may coincide at most with it. The subsequent definition formalizes the idea.

Definition 6 Take B ⊂ R2 and V ∈ CV p
1 (B). An extended weak diffeo-

morphism on B according to V is an a.e. approximately differentiable map
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u : B→ R̂2 such that

(1) |M(Du)| ∈ L1(B), i.e. |Du|,detDu ∈ L1(B);
(2) π#|∂Gu| ≤ π#V ;
(3) detDu(x) > 0 for a.e. x ∈ B;
(4) for every compactly supported smooth function f : B × R̂2 → [0,+∞)Z

B
f(x, u(x)) detDu(x) dx ≤

Z
R̂2
sup
x∈B

f(x, y) dy .

The space of maps satisfying the previous definition is indicated byDif1,1(B, V, R̂2).
Moreover, for q > 1, the class Difq,1(B, V, R̂2) is defined by

Difq,1(B, V, R̂2) :=
½
u ∈ Dif1,1(B, V, R̂2)

¯̄̄̄
|M(Du)| ∈ Lq(B)

¾
.

The maps just defined are reasonable descriptors of non-classical deformations
of bodies allowing the formation of fractures. Condition (2) implies that the
Green formulas hold true in B outside the crack pattern, and prescribes that
the boundary current has finite mass, namelyM(∂Gu) <∞. Therefore, since
Gu is integer rectifiable, conditions (1) and (2) imply that ∂Gu is integer recti-
fiable too. Since by (2) the projection π# |∂Gu| is controlled by π#V , it follows
that π#|∂Gu| is absolutely continuous with respect to Hn−1xb. Condition (2)
implies also that u is a special function with bounded variation, an element
of SBV (B, R̂2) with jump set Ju contained in b. Actually, u belongs to the
class SBV0(B, R̂2), hence its traces u+, u− areH1-approximately differentiable
in the jump set Ju as discussed in [17]. The standard orientation preserving
requirement for the map u is stated in the item (3). Requirement (4) is the
global one-to-one condition discussed in Section 2.

The essential properties of extended weak diffeomorphisms in Definition 6 are
collected in the ensuing closure theorem.

Theorem 7 Let {V (r)} ⊂ CV p
1 (B), with p > 1, be a sequence of curva-

ture varifolds on B with equibounded total variations, i.e. supr μV (r)(B) <
∞, and equibounded total variations of π#|∂V (r)|. Moreover, assume ur ∈
Dif1,1(B, V (r), R̂2). Suppose also that there exist functions u ∈ L1(B, R̂2),
v ∈ L1(B,Λ2(R2 × R̂2)), and a curvature varifold V ∈ CV p

1 (B) such that
ur - u, M(Dur) - v weakly in L1, and V (r) - V as measures. Then
v =M(Du) and, moreover, if detDu > 0 a.e., then u ∈ Dif1,1(B, V, R̂2).

Proof. The hypotheses imply that supr(M(Gur)+M(∂Gur)) <∞. In partic-
ular, the sequence ur is bounded in BV (B, R̂2), so that, by passing eventually
to subsequences, ur → u in L1 and a.e.. Thus v = M(Du) (see [16, Vol. I,
Section 3.3.1]). Moreover, (1), (2), and (4) in Definition 6 hold true by lower
semicontinuity. Thus, if u satisfies (3), it follows that u ∈ Dif1,1(B, V, R̂2).
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4.1 The energy functional

In two-dimensional setting, the energy, indicated here by E(u, V ) for the sake
of conciseness, reads

E(u, V ) : = E(u, V,B)
=
Z
B
e(x, u,Du) dx+ c1

Z
G1(B)

|A|p dV + c2M(V ) + c3M(∂V )
(11)

where the ci’s are positive constants and the hypotheses (H1) (H2), (H3) and
(H4) of Section 3 on the bulk energy density e = e(x, u, F ) are satisfied.

As regards the crack energy term, the p−power |A|p of the curvature can
be replaced by φ(|A|) where φ : R+ → R+ is a convex function satisfying
φ(t) ≥ c5 t

p. After the replacement, the results obtained in the sequel still
hold with unessential modifications.

The term c2M(V ) is the Griffith-like part of the surface energy of the crack.
Non-standard terms are

c1

Z
G1(B)

|A|p dV and c3M (∂V ) ,

where G1(B) is the Grassmanian of straigth lines over B. The nature of the
term involving the (generalized) curvature A has been already discussed. Also,
crucial technical consequences of its presence have been mentioned. The term
c3M(∂V ) takes into account the energy associated with the material bonds in
the microscopic process region around the tip (see [19]).

Two simple examples show that E(u, V ), with non-null varifold V , can be
smaller that the energy E(u, ∅) associated with a null varifold ∅, interpreted
as the energy of a simple elastic body. With the same boundary conditions,
the gap between E(u, V ) and E(u, ∅) is the energy losed in the nucleation of
the crack represented by V .

Example 3 Consider B to be the unit disc B(0, 1) in C. Let u : B(0, 1) ⊂
C→ B(0, R) ⊂ C be the linear dilatation z 7→ Rz, R > 1, and v : B(0, 1)→
B(0, R) be the dilatation with crack at b := ∂B(0, α), 0 ≤ α ≤ 1, precisely

v(z) :=

⎧⎨⎩z if |z| ≤ α

Rz if α < |z| < 1 .

Consider the energy of the two maps as given by

E(u, V ) := 1

2

Z
B(0,1)

|Du|2 dx+ 1
2

Z
B(0,1)

|Du|2
detDu

dx+ c1M(V ) .
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Set V = Vb,2. Since z 7→ Rz is biholomorphic, it follows that

E(u, ∅) = π(R2 + 1) ,

E(v, V ) = π2α2 + π(R2 + 1)(1− α2) + 4c1πα

= π(R2 + 1) + π(α2(1−R2) + 4c1α) ,

so that E(v, V ) < E(u, ∅) if and only if R >
√
1 + 4c1α−1. Therefore in this

case the body admits fractures and the optimal placement for them is at the
boundary, i.e. the solution loses Dirichlet boundary condition. The addition
of the curvature term

R
b |A|pdV augments the dilatation needed for a crack

to be convenient, but the crack is still at the boundary of B(0, 1) since the
curvature term is a decreasing function of α (p > 1).

Example 4 Take 0 < � < 1 and denote by Ω� the ellipsoid

Ω� :=
½
(x, y) ∈ R2

¯̄̄̄
x2

(1 + �2)2
+

y2

(1− �2)2
< 1

¾
.

Let u be a biholomorphic map from Ω� onto B(0, R), R > 0. Consider also the
map v : Ω� \ ([−2�, 2�] × {0}) → B(0, R) \ B(0, �R) defined as the inverse of
the Youkowski map w(z) := z

R
+ �2R

z
. Since both u and v are biholomorphic,

the computation of the energy

E(u, V ) := 1

2

Z
Ω�
|Du|2 dx+ 1

2

Z
u(Ω�)

|Du−1|2 dy + c1M(V )

at (u, ∅) and (v, V ) with V = Vb,2 and b = [−2�, 2�]× {0} furnishes

E(u, ∅) = π(1− �4) + πR2 + 0 ,

E(v, V ) = π(1− �4) + πR2(1− �2) + 8c1� ,

so that E(v, V ) < E(u, ∅) iff R2 > 8c1
π�
. Again, by adding M(∂V ) = 4 to the

energy, it follows that the creation of a crack is energetically convenient when
the dilatation of ratio R is greater than the one foreseen in absence ofM(∂V ).
The essential reason is that the boundary ∂V of the varifold describes the tips
of the crack so that, if a peculiar energetic contribution to the tip is considered,
a sort of energetic threshold to generate a fracture is introduced.

4.2 Ground states: existence theorems

In a purely elastic setting, large deformations are admitted at will (leave a
part extreme deformation here). When the possible formation of cracks is
accounted for, lack of bounds for the Lq-norm of u may occur. For example,
consider a crack dividing B into two connected components. It may happen
that a sequence of deformations may involve the rigid displacement of one of
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the two pieces to infinity, without affecting the energy. Moreover, even if the
body is not disconnected by the crack, it is still possible that the body extends
itself arbitrarily far away. Boundary conditions are essentially irrelevant in
these phenomena, either Dirichlet boundary conditions or mixed ones, with a
zero traction force on a part of ∂B. Technical needs and, in a sense, physical
plausibility suggest constraints to deformations in order to have bounds to the
L∞ norm. In a different setting, the previous requirement has been relaxed in
[20], [21].

As mentioned in the introduction, it may also be convenient to prescribe a
comparison varifold eV ∈ CV p

1 (B) such that all competing varifolds V satisfy
the bound π# eV ≤ π#V . Such a requirement is analogous to the monotonicity
requirement for cracks sequences in time imposed in [2]. The comparison var-
ifold eV can be also null when an initial crack is absent. In the opposite case,eV describes a crack from which the competing cracks may at most extend.

The space

Aq,p,K,Ṽ (B) :=
n
(u, V ) |V ∈ CV p

1 (B) , u ∈ Dif1,1(B, V, R̂2),

kukL∞(B) ≤ K,π#Ṽ ≤ π#V
o
,

with K > 0, is then the natural functional environment for investigating the
existence of minimizers (u, V ) for the energy E .

Previous closure and compactness properties, the ones summarized in Theo-
rems 4, 7, and classical lower semicontinuity theorems (see e.g [16]) imply an
existence result.

Theorem 8 Consider B ⊂ R2, q, p > 1, K > 0, eV ∈ CV p
1 (B). Assume that

there exists an element (u, V ) ∈ A
q,p,K,eV (B) that satisfies prescribed Dirichlet

boundary conditions for u. In these conditions, the energy functional (11)
attains its minimum in the subclass of A

q,p,K,eV (B) of couples (u, V ) with u
satisfying the prescribed boundary conditions.

The constantK is selected at will for purposes of physical plausibility: it is only
necessary for establishing the boundedness of the L∞ norm of u. In contrast,
the constants p and q and the comparison varifold eV have constitutive nature.
The simple description of the boundary measure of one-dimensional curvature
varifolds allows us to state another existence theorem with a different growth
condition for the bulk energy. It includes the functionals in Examples 3 and 4.

Consider the energy functional (11) with bulk energy density e(x, u, F ) satis-
fying (H1), (H2), (H4) of Section 3, and impose a different growth condition,
indicated here by
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(H3-1)
e(x, u, F ) ≥ c4|F |2 ∀F ∈M+

2×2, ∀(x, u) ∈ B × R̂2 ,

for some c4 > 0.

For K > 0 and eV ∈ CV p
1 (B) the class

Aq,p,K,Ṽ (B) :=
n
(u, V ) |V ∈ CV p

1 (B) , p > 1, u ∈ Dif1,1(B, V, R̂2),

Du ∈ L2 (B) , kukL∞(B) ≤ K,π#Ṽ ≤ π#V
o
, (12)

is then the natural functional setting for another existence result.

Theorem 9 Assume that the bulk energy density in (11) satisfies (H1), (H2)
(H4) of Section 3 and (H3-1). Suppose that there is at least one element
(u0, V0) in the class (12) with u0 satisfying given Dirichlet data. Under these
assumption, the functional (11) has a minimizer in the subclass of (12) of
couples (u, V ) with u satisfying the prescribed Dirichlet boundary conditions.

Proof. A path presented in [12] for obtaining an analogous result in a different
setting is followed here. Let (un, Vn) be a minimizing sequence in Ap,eV ,K . By
taking subsequences one can and does suppose that Vn - V as measures, and
also that un - u and Dun - v in L2(B). Moreover ||u||∞ ≤ K. The energy
estimate furnishes also || detDun||L1 ≤ 1

2
||Dun||2L2 ≤ C independently on n.

By using the regularity result for one-dimensional curvature varifolds with
p > 1, it is possible to assume that π#Vn = H1xΓn for every n and π#V =
H1xΓ, where Γn and Γ are closed sets in B with finite H1 measure. By using
Lemma 5.5 in [12], one may affirm that there exists a finite set D such that if
Ω is an open set such that Ω ⊂⊂ B \ (Γ ∪D), then Ω ⊂⊂ B \ Γn for infinitely
many n. Therefore, if Ω is as above, by taking eventually subsequences, one
finds un ∈ W 1,2(Ω) for every n. It then follows that Dun - Du in L2(Ω), i.e.
v = Du a.e. on Ω.

Moreover, from the integrability result presented in [22] (see also [23]), the
sequence {detDun} results equibounded in L logLloc(Ω), hence detDun - w
in L1loc(Ω). Finally, the closure theorem yields w = detDu.

By energy semicontinuity, it then follows that, for every compact set A ⊂⊂ Ω,

E(u, V,A) ≤ lim inf
n→∞

E(un, Vn,A) ≤ lim inf
n→∞

E(un, Vn,B) ,

hence, since Ω ⊂⊂ B \ (Γ ∪D) is arbitrary,

E(u, V,B) = E(u, V,B \ (Γ ∪D)) ≤ lim inf
n→∞

E(un, Vn,B) < +∞ .

(H4) then yields detDu > 0 a.e., hence (u, V ) belongs toA
p,eV ,K and minimizes

the energy in its class.
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4.3 Cracks at the boundary of the body

In the previous scheme, a sequence of varifolds accumulating at the boundary
of B vanishes at the limit.

It is possible to consider a different situation where the propagation of cracks
at the boundary of the body B is taken into account, and a term involving the
crack at the boundary may contribute to the limit energy of minimizing se-
quences. Meaning is rather clear in presence of Dirichlet boundary conditions,
where the limit crack may be seen as a rupture of the kinematic constraint
given by the boundary condition.

A variant of Theorem 8 can be then stated. Let Γ ⊂ ∂B be a piece of the
boundary, where Dirichlet-type data are assigned. Let Ω be an open set such
that B ⊂ Ω and Ω∩∂B = Γ. Consider cracks represented by V ∈ CV p

1 (Ω) such
that π#V = 0 on Ω \ B, and a deformation represented by an extended weak
diffeomorphism u ∈ Difq,1(Ω, V, R̂2) such that u agrees with a given function
u0 on Ω \ B. The setting under examination is then the class

A
q,p,K,eV ,u0 := n

(u, V ) |V ∈ CV p
1 (B) , π#Ṽ ≤ π#V, π#V = 0 on Ω \ B

u ∈ Difq,1(B, V, R̂2), u = u0 on Ω \ B, kukL∞(B) ≤ K
o
.

If q, p > 1, K > 0, and Γ and u0 are sufficiently smooth, the class Aq,p,K,eV ,u0
satisfies closure and compactness properties. As a consequence, a minimizer
of the energy functional (11) exists on A

q,p,K,eV ,u0 , provided that this class is
non-empty.

If 1 < p < 2, the boundary condition u = u0 on Ω \ B can be then enforced
by a strong anchorage prescribing that Gu = Gu0 on (Ω \ B)× R̂2. A related
existence theorem again follows.

5 Analysis in n-dimensional ambient space

Previous results have natural generalizations in n−dimensional ambient space.
Stratified families of varifolds are implicated in the description of crack pattern
geometry. In principle, they can be used also to represent arrangements of
different defects, above all when certainty of nucleation and placement of these
defects are not know a priori.

Definition 10 A stratified family of curvature varifolds with boundary in B
is a family {V(k)}n−1k=1 of curvature k-varifolds with boundary V(k) = Vbk,θk
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in CV pk
k (B), with corresponding boundaries ∂V(k) and curvatures A(k)

ci
j
in

Lpk(Gn−1(B)), for some pk > 1, such that

π#|∂V(k)| ≤ π#V(k−1) ∀ k = 2, . . . , n− 1 . (13)

Condition (13) appears also in [11] and [24].

Definition 11 An extended weak diffeomorphism on B according with
n
V(k)

o
is an a. e. approximately differentiable map u : B→ R̂n such that (1), (3) and
(4) in Definition 6 hold true and, in addition,

(2) π#|∂Gu| ≤
Pn−1

j=1 π#V(j) + π#|∂V(1)|.

The space of maps satisfying Definition 11 is indicated by Dif1,1(B, {V(k)}, R̂n).
Moreover, for q > 1, the class Difq,1(B, {V(k)}, R̂n) is defined by

Difq,1(B, {V(k)}, R̂n) :=
½
u ∈ Dif1,1(B, {V(k)}, R̂n)

¯̄̄̄
|M(Du)| ∈ Lq(B)

¾
.

Condition (2) implies that Green formulas hold true outside the cracks V(k). It
indicates again that the boundary current ∂Gu has finite mass. In particular,
u belongs to the class SBV0(B, R̂n) (see [17]).

The energetic scenario described here involves various aspects of fracturing
phenomena. Consider for example a three-dimensional crystalline body where
cracks may develop. In front of the tip, dislocations and vacancies can appear
(see e.g. [25]). They are line and point defects which accompany the crack-
ing process and are endowed with their own energy. The stratification of the
varifolds is then useful to represent the energetic scenario associated with the
surface of the crack, the tip, and the appearance of low-dimensional defects.
More specifically, when a process zone ‘around’ the crack tip is significant, the
stratification of energies associated with the varifolds can constitute a reason-
able description of the ‘fragmented’ critical events near the tip, i.e. the various
small ruptures determining steps forward in the evolution of the macroscopic
(two-dimensional) crack.

The energy functional E
³
u,
n
V(k)

o
,B
´
is here indicated simply by E

³
u,
n
V(k)

o´
and is given by

E(u, {V(k)}) : =
Z
B
e(x, u,Du) dx+

n−1X
k=1

αk

Z
Gk(B)

|A(k)|pk dV(k)

+
n−1X
k=1

βkM(V(k)) +
n−1X
k=1

γkM(∂V(k)) ,

(14)
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where αk, βk, γk are positive constants. By taking into account (13), it is pos-
sible to select γk = 0 for every k = 2, . . . , n− 1 in (14).

For one-dimensional ‘defects’ (k = 1), the contribution of their possible bend-
ing energy is accounted for through their curvature. This way, line defects
are considered like beams [26]. In the case of linear dislocations, for example,
this is a way to model the defect core (see e.g. [27]). In a coarse grained way,
the line energy along the tip takes into account in a coarse grained way the
intricate mixture of broken and integer materials bonds constituting the crack
tip itself.

The varifold V(1) describes the tip and all linear defects ‘around’ the crack. The
boundary ∂V(1) of V(1) represents ‘corners’ and ‘edges’ along the tip where the
entanglement of atomic bonds may cause concentration of energy — see relevant
remarks in [28] about the possible presence of sparse atomic (or molecular)
bonds near the tip of a crack, in the terminal part of the crack surfaces. ∂V(1)
is also associated with a set of discrete points where possible linear defects
meet the tip.

The tip energy may be interpreted as the indicator of the presence of a local
threshold that is necessary to overcome to allow the crack to grow.

A comparison stratified family of curvature varifolds
n eV(k)o in CV pk

k (B) and
a constant K > 0 are introduced. The analysis of the existence of minimizers
for E

³
u,
n
V(k)

o´
is then limited to the class

A
q,p,K,{eV(k)}(B) :=

½
(u, {V(k)})

¯̄̄̄
V(k) ∈ CV pk

k (B), u ∈ Difq,1(B, {V(k)}, R̂n)

(13) holds, ||u||L∞(B) ≤ K, μeV(k) ≤ μV(k) ∀ k = 1, . . . , n− 1
¾

where q, pk > 1, K > 0 and k = 1, . . . , n− 1.

The previous closure and compactness properties discussed earlier, Theorem 4,
7, condition (13), and the classical lower semicontinuity theorem imply an
existence result.

Theorem 12 Take q, pk > 1, K > 0, eV(k) ∈ CV pk
k (B) for k = 1, . . . , n − 1.

Assume that there exists an element (u, {V(k)}) ∈ Aq,{pk},K,{eV(k)}(B) satisfying
prescribed boundary conditions. In these conditions, the energy functional (14)
attains a minimum in the class A

q,{pk},K,{eV(k)}(B) with the prescribed boundary
conditions.

Remind that the explicit expression of E
³
u,
n
V(k)

o´
reduces to (4) when n = 3.
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When { eV(k)} is not zero, it represents an initial crack pattern from which the
competing cracks may possibly extend only.

Finally, we notice that the condition kukL∞(B) ≤ K can be replaced by
kukLr(B) ≤ K, r ≥ 1, or simply eliminated by adding, however, a term
ε
R
B |u|

r dx to the energy.

6 The first variation: the weak form of configurational balances

The first variation of E
³
u,
n
V(k)

o´
can be calculated. For the sake of simplicity,

we evaluate it in three-dimensional ambient space, so the explicit expression
of the energy considered is (4).

We point out that the evaluation of the first variation is made without con-
sidering additional regularity hypotheses on crack pattern geometry. So, the
weak form of the balance equations, summarized later in Theorem 13, holds for
crack patterns described by generic stratified families of curvature varifolds.
This is a peculiar aspect of our approach.

Geometric regularity is imposed to crack patterns only in the next section,
where we calculate in a special case pointwise balances of configurational ac-
tions on the crack.

When B is three-dimensional, a stratified family of varifolds over it is a couple³
V(2), V(1)

´
of curvature k-varifolds V(k) = Vbk,θk in CV pk

k (B), k = 1, 2, with

boundary ∂V(k) and curvature A(k)
ci
j
in Lpk(Gk(B)), for some pk > 1, such

that π#|∂V(2)| ≤ π#V(1). Less formally, the two varifolds V(2) and V(1) describe
respectively the lateral margins of a two-dimensional crack and its tip, and
possible dislocations in B. Moreover, as mentioned earlier, V(1) may describe
also linear defects far from the crack. For example, in the case of crystalline
bodies, such defects can be not only dislocations, as just recalled above, but
even a linear coalescence of vacancies generating what we can call ‘linear
cracks’.

Denote by Π(k) (x) the orthogonal projection over Txbk, for k = 1, 2. For every
smooth vector field λ ∈ C∞c (B,Rn) and for |�| sufficiently small, consider also
the family of diffeomorphisms

ξ� : B→ B, ξ�(z) := z + � λ(z)

where λ vanishes on all sets ebk supporting the family nṼ(k)o of comparison
curvature varifolds introduced previously. Meaning is as follows: if there is
a pre-existing crack ebk, the variation of B leaves unaltered ebk. Set u�(z) :=
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u(ξ�(z)). Observe that Gu� = ψ�#Gu, where ψ�(x, y) := (η�(x), y) and the
map η� is the inverse of ξ�. For k = 1, 2, set bk,� := η�#bk and θk,�(z) :=
θk(ξ�(z)). Remind that {bk}, k = 1, 2, is the support of the stratified varifoldn
V(k)

o
minimizing E . The deformed varifold of Vbk,θk is then given by V(k)� =

Vbk,�,θk,� ∈ CV pk
k (B). The first variation of the energy functional at a minimizer

(u, {Vbk,θk}) is defined formally by

d

d�
E(u�, {V(k)�}) |�=0 = 0

where only vector fields λ ∈ C∞c (B,Rn) that vanish on all ebk have to be
considered, due to the condition π# eV(k) ≤ π#V(k) on the possibly nonzero
comparison varifolds.

It is expedient to discuss the differentiability of each term of the energy func-
tional (4) separately.

6.1 Variation of the bulk energy

As pointed out in [29] and [30], the differentiability of the bulk energy map
� 7→ R

B e(x, u�,Du�) dx holds under the weak energy estimate

|∂xe(x, u, F )|+ |F T∂Fe(x, u, F )| ≤ ec1 e(x, u, F ) + ec2 (15)

for every (x, u, F ) such that F ∈M+
n×n. It follows that

d

d�

ÃZ
B
e(x, u�,Du�) dx

!
|�=0

= −
Z
B

µ
Pβα(x, u,Du)λαxβ − exα(x, u,Du)λα

¶
dx ,

(16)

where Pβα is the Hamilton—Eshelby tensor

Pβα := eδβα − F i
α eF i

β
e = e(x, u, F ) ,

and λαxβ indicates the partial derivatives of λ
α with respect to the coordinate

xβ, i.e. the α-controvariant β-covariant component of the Jacobian matrix of
λ. Also, eF i

β
and exα are partial derivatives of e with respect to F i

β and xα,

respectively, and δβα is Kronecker symbol.
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6.2 Variation of the two-dimensional curvature term in E
³
u,
n
V(k)

o´

The main task here is to compute the curvature tensor A(2)� of the two dimen-
sional varifold V(2)� := Vb2,�, θ2,� ∈ CV p2

2 (B). In order to simplify the notation,
set p := p2, A(�) := A(2)�, V� := V(2)�, b� := b2,�, θ� := θ2,� and Π(x) := Π(2)(x).

By (5), the equalityZ
G2(B)

|A|p dV =
Z
b
θ(x)|A(x,Π(x))|p dH2(x) (17)

follows. The corresponding energy term on the deformed varifold is given byZ
G2(B)

|A(�)|p dV� =
Z
b�
θ�(z)|A(�)(z,Π(�)(z))|p dH2(z) ,

where Π(�)(z) is the orthogonal projection onto Tzb�. Moreover, by (3) in The-
orem 2

Aci
(�)j(z,Π(�)(z)) =

µ
∇b�Πc

(�)j(z)
¶i

for π#V(�)- a.e. z,

where ∇b� is the gradient along b�. For H2-a.e. z ∈ b� set

A(�)(x) := ∇b�Π(�)(z), z = η�(x) ∈ b� . (18)

Proposition 1 For small � and for H2-a.e. x ∈ b one gets

A(�)(x) = A(x,Π(x)) + �A0(x) +O(�2) ,

where |O(�2)| ≤ c �2 and the constant c = c(||λ||C2) does not depend on x ∈ b.
Moreover, it follows that

A0
ci
j (x) :=

µ
B(x)∇xΠ

c
j(x) +Π(x)LT∇xΠ

c
j(x) +Π(x)∇xB

c
j(x)

¶i
, (19)

where L := ∇λ(x) and B = B(x) is the symmetric 3× 3 matrix

B(x) := 2(Lν · ν) ν ⊗ ν − LTν ⊗ ν − ν ⊗ LTν (20)

where ν = ν(x) is a unit normal to b at x.

Proof. Since Π(�)(z) = Id−ν�(z)⊗ν�(z), the dyad ν�(z)⊗ν�(z) is evaluated
first. As ν = ν(x) is a unit normal to b at x = ξ�(z), and F

T (z)ν is orthogonal
to Tzb�, with F (z) := Dξ�(z), unit normal ν� to b� at z is given by

ν� =
F T (z)ν

|F T (z)ν| .
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Since F T (z)ν(x) = (Id+ �Dλ(z))Tν = ν + � LTν +O(�2), it follows that

(F Tν)⊗ (F Tν) = ν ⊗ ν + � (LTν ⊗ ν + ν ⊗ LTν) +O(�2)

and hence

ν� ⊗ ν� =
F Tν ⊗ F Tν

|F Tν ⊗ F Tν| =
a+ � b+ o(�)

|a+ � b+ o(�)|

where a := ν ⊗ ν and b := (LTν ⊗ ν + ν ⊗ LTν).

By setting Φc
j(�) := (ν�⊗ν�)

c
j, one gets Φ

c
j(�) = Φc

j(0)+Φc
j
0
(0) �+O(�2). Since

|a| = 1, it follows that

Φc
j(0) = acj, Φc

j

0
(0) = bcj − acj b

h
k a

h
k ,

where acj := νcνj and bhk :=
³
LTν ⊗ ν + ν ⊗LTν

´h
k
. A straightforward compu-

tation leads to

bhk a
h
k = ((L

T )hα ν
ανk + νh(LT )kβ ν

β)νhνk

= (νk)2((LT )hα ν
ανh) + (νh)2(νk(LT )kβ ν

β)

= (LTν)h νh + νk(LTν)k

= (LTν · ν) + (ν · LTν) = 2Lν · ν ,

which yields Φc
j
0
(0) = −

³
2 (Lν · ν) acj − bcj

´
, whence

ν�(z)⊗ ν�(z) = ν(x)⊗ ν(x)− �B(x) +O(�2) .

Thus it follows that

Π(�)(z) = Π(x) + �B(x) +O(�2), x = ξ�(z) , (21)

since Π(x) = Id− ν(x)⊗ ν(x).

Let now ef : R3 → R be a smooth map. Define f(z) := ef(x), x = ξ�(z), so that
Dzf(z) = Dx

ef(x)F (z) and ∇zf(z) = F (z)T ∇x
ef(x). Then, for H2-a.e. z ∈ b�

one gets

∇b�f(z) = Π(�)(z)∇zf(z) = Π(�)(z)F (z)
T ∇x

ef(x) ,
where x = ξ�(z).

By applying previous formula to each component Πc
(�)j(z) of Π(�)(z), from (21)
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it follows that

∇b�Π(�)cj(z) =
= (Π(x) + �B(x) +O(�2))(Id+ �LT +O(�2))

· (∇xΠ
c
j(x) + �∇xB

c
j(x) +O(�2))

= Π(x)∇xΠ
c
j(x)

+ �
µ
B(x)∇xΠ

c
j(x) +Π(x)LT∇xΠ

c
j(x) +Π(x)∇xB

c
j(x)

¶
+O(�2) ,

where Π(x)∇xΠ
c
j(x) = ∇bΠc

j(x) and Aci
j (x) = (∇bΠc

j(x))
i. Finally, the esti-

mate on the term O(�2) is obtained by computing the derivatives w.r.t. � in
the formula

(F Tν ⊗ F Tν) = ν ⊗ ν + � (LT
� ν ⊗ ν + ν ⊗ LT

� ν) + �2(LT
� ν ⊗ LT

� ν) ,

where L�(z) := Dλ(z) and z = η�(x). Further details are omitted.

Compute now

d

d�

ÃZ
G2(B)

|A(�)|p dV�
!
|�=0

=
d

d�

ÃZ
b�
θ�(z)|A(�)(z,Π(�)(z))|p dH2(z)

!
|�=0

.

By taking into account the area formula and (18), it follows that

Z
b�
θ�(z) |A(�)(z,Π(�)(z))|p dH2(z) =

Z
b
θ(x) |A(�)(x)|p Jbη�(x) dH2(x) ,

where z = η�(x) and Jbη�(x) is the tangential Jacobian to b of the map η�.
Moreover, Proposition 1 yields

d

d�

ÃZ
b
θ(x) |A(�)(x)|p Jbη�(x) dHn−1

!
=
Z
b

d

d�

Ã
θ(x) |A(�)(x)|p Jbη�(x)

!
dH2

whereas
d

d�
A(�)(x)|�=0 = A0(λ)(x) .

Finally, since η�(x) = x− �λ(x)+o(�), we get Dη�(x) = I− �Dλ(x)+o(�) and
Jbη� = 1− �divbλ+ o(�), where divb is the divergence along b�, so that

d

d�
(Jbη�)|�=0 = −divbλ .
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The conclusion is that the curvature term (17) is differentiable at zero and

d

d�

ÃZ
G2(B)

|A(2)�|p2 dV(2)�
!
|�=0

=
Z
b2\eb2 θ2(x) p2|A(2)|p2−2A(2)cij A0(2)(λ)cij dH2 −

Z
b2\eb2 θ2(x) |A(2)|p2 div,b2λdH2

(22)
where A(2) = A(2)(x,Π(2)(x)), and A0(2)(λ)(x) = A0(λ)(x) is given by (19), with
Π(x) = Π(2)(x).

Remark 1 Let us analyze the dependence of the first variation of the cur-
vature term on the test field λ. First observe that, by (20), B = CL, where
Lh
k = Dkλ

h(x) and

Cck
jh := 2ν

cνjνhνk − δckν
jνh − δjkν

cνh ,

so that Bc
j = Cck

jhDkλ
h.

On the other hand, for a smooth map f

∇xf = Π∇xf + (Id−Π)∇xf = Π∇xf + ν ⊗ ν∇xf = Π∇xf +Dνfν

whereDνf :=
∂
∂ν
f . Thus, by settingAc

j(x) := (A
c1
j (x,Π(x)), . . . , A

cn
j (x,Π(x)))

T ,
one computes

B∇xΠ
c
j = (CL)(A

c
j +DνΠ

c
j ν) ,

ΠLT∇xΠ
c
j = ΠLTAc

j +DνΠ
c
j ΠL

Tν

Π∇xB
c
j = Π∇x(CL)

c
j = Π(∇xCL)

c
j +Π(C∇xL)

c
j .

Therefore, by (19) we obtain

A0
c
j = (CL)A

c
j +DνΠ

c
j (CL)ν +ΠLTAc

j

+DνΠ
c
j ΠL

Tν +Π(∇xCL)
c
j +Π(C∇xL)

c
j .

Remark 2 The tensor Bc
j defined in (20) depends on the gradient of λ and

the unit normal ν. By assuming for a while that b is smooth, in case of normal
variation with a constant amplitude v ∈ R, one gets B(x) = 0. In fact, if
λ(x) = v ν(x), from L(x) = Dλ(x) = vDν(x) and D|ν|2 = 0 one obtains that
Lν · ν = 0 and LTν = 0, so that B = 0. Consequently (19) reduces to

A0
c
j = ΠLT∇xΠ

c
j = ΠLTAc

j +DνΠ
c
j ΠL

Tν = ΠLTAc
j .
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6.3 Variation of the term M(V(2))

Since the mass M(V(2)) is equal to π#V(2)(B), with π#V(2) = θ2H2xb2, the
variational formula

d

d�
M(V(2)�)|�=0 =

d

d�
(η�#π#V(2)(B))|�=0 = −

Z
b2\eb2 θ2(x) divb2λdH2 (23)

holds for every smooth vector field λ ∈ C∞c (B,R3) (see e.g. [13]).

6.4 Variation of the one-dimensional curvature term of E
³
u,
n
V(k)

o´

The computation of the curvature A(1)� of V(1)� is summarized in the following
proposition.

Proposition 2 For H1-a.e. z ∈ b1,� and x = ξ�(z) := z + �λ(z), λ ∈
C∞c (B,R3), set L = L(x) := ∇λ(x) and consider the 3× 3 matrix eB = eB(x)
defined by eB := 2(Lt · t) t⊗ t− Lt⊗ t− t⊗ Lt ,

that is, eBc
j =

eCch
jkL

k
h, where

eCch
jk := 2t

ctjthtk − δckt
jth − δjkt

cth ,

t = t(x) denoting a unit tangent vector to b1 at x. Then the following equality
holds:

A(1)�
ci
j
(z) = A(1)

ci
j
(x)

+ �
µ eB(x)∇xΠ(1)

c
j
(x) +Π(1)(x)L

T∇xΠ(1)
c
j
(x) +Π(1)(x)∇x

eBc
j(x)

¶i
+O(�2),

with |O(�2)| ≤ K�2 uniformly and K depending on the C2 norm of λ.

Proof. Let t� be a unit tangent vector to b1,� at z. Since b1,� has dimension
one, the projection onto Tzb1,� is Π(�)(z) = t�(z)⊗ t�(z). Moreover,

t�(z) =
F (x)t(x)

|F (x)t(x)| , F (x) := Dη�(x) , z = η�(x) .

Trivially, the relation

F (x)t(x) = (Id− �L)t(x) + o(�) with |o(�)| ≤ C�2, C = C(||λ||C2) ,
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holds, so that

Ft⊗ Ft = t⊗ t− � (Lt⊗ t+ t⊗ Lt) +O(�2)

and

Π�(z) = t� ⊗ t� =
Ft⊗ Ft

|Ft⊗ Ft| =:
a+ �b+O(�2)

|a+ �b+O(�2)| ,

where a := t⊗t and b := −(Lt⊗t+t⊗Lt). By setting then Φc
j(�) := (t�⊗t�)cj,

one gets Φc
j(�) = Φc

j(0) + Φc
j
0
(0) �+ o(�), and, since |a| = 1, it follows that

−bhk ahk = (Lh
α t

αtk + thLk
β t

β)thtk

= (tk)2(Lh
α t

αth) + (th)2(tkLk
β t

β)

= (Lt)h th + tk(Lt)k

= (Lt · t) + (t · Lt) = 2(Lt · t)

whence
Φc
j

0
(0) = bcj − acj b

h
k a

h
k = 2(Lt · t)acj − bcj ,

so that
Π(�)(z) = t�(z)⊗ t�(z) = ν ⊗ ν + � eB(x) +O(�2) ,

with |O(�2)| ≤ C�2 uniformly, C being a constant depending on the C2 norm
of λ. The desired assertion then follows, by repeating the argument of Propo-
sition 1.

As a consequence, the map � 7→ R
G1(B) |A(1)�|p1 dV(1)� is differentiable at 0 and

d

d�

ÃZ
G1(B)

|A(1)�|p1 dV(1)�
!
|�=0

=
Z
b1\eb1 θ1(x) p1|A(1)|p1−2A(1)cij A0(1)(λ)cij dH1

−
Z
b1\eb1 θ1(x) |A(1)|p1div,b1λ dH1

(24)

where A(1) = A(1)(x, P (x)) and

A0(1)(λ)
ci

j
=
µ eB(x)∇xΠ(1)

c
j
(x) +Π(1)(x)L

T∇xΠ(1)
c
j
(x) +Π(1)(x)∇x

eBc
j(x)

¶i
.

Since Π(1) = t⊗ t, it follows that

A0(1)(λ)
ci

j
= (( eCL)∇x(t

ctj) + (t⊗ t)LT∇x(t
ctj)

+ (t⊗ t)(∇x
eC : L)cj + (t⊗ t)( eC∇xL)

c
j)
i .

Remark 3 The tensor eBc
j depends on the gradient of λ and on the unit

tangent t to b1. By assuming for a while that b2 and b1 are smooth, in case
of normal variation to b2 of constant amplitude v ∈ R, λ(x) = v ν(x), where
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ν(x) is a unit normal to b2 (see Remark 2), L(x) = ∇λ(x) = v∇ν(x) and
hence (see Proposition 2) eBc

j = (vΩ(n, t))
c
j

where
Ω(n, t) := 2(t ·Dtν)t⊗ t−Dtν ⊗ t− t⊗Dtν .

Then, it follows that

A0(1)(vν)
ci

j
= v (Ω(n, t)∇x(t

ctj)+(t⊗t) (∇ν)T∇x(t
ctj)+(t⊗t)(∇xΩ(n, t)

c
j)
i .

6.5 Variation of the term M(V(1))

Since the massM(V(1)) is equal to
R
b1
θ1 dH1, it follows that

d

d�
M(V(1)�)|�=0 =

d

d�
(η�#

³
H1xθ1

´
(B)) |�=0 = −

Z
b1\eb1 θ1(x) divb1λdH1 . (25)

The variation of the term M(∂V(1)) is equal to zero, π#
¯̄̄
∂V(1)

¯̄̄
being a finite

set.

6.6 Summary

The following theorem summarizes all variations evaluated previously (see
(16), (22), (23), (24), (25)).

Theorem 13 Let (u, {V(k)}) ∈ Aq,pk,K,{eV(k)}(B), V(k) = Vbk,θk, k = 1, 2, be a

local minimizer of 4. Assume that the bulk density energy satisfies (15). At
equilibrium, the couple (u, {V(2), V(1)}) satisfies the balance equationZ

B

µ
exα(x, u,Du)λα − Pβα(x, u,Du)λαxβ

¶
dx

+ α2

Z
b2\eb2 θ2(x) p2|A(2)|p2−2A(2)cij A0(2)(λ)cij dH2

−
Z
b2\eb2 θ2(x) (α2 |A(2)|p2 + β2) div,

b2λdH2

+ α1

Z
b1\eb1 θ1(x) p1|A(1)|p1−2A(1)cij A0(1)(λ)cij dH1

−
Z
b1\eb1 θ1(x) (α1 |A(1)|p1 + β1) div,

b1λdH1 = 0

(26)

for any λ ∈ C∞c (B,Rn) with λ = 0 on the support of π# eV(2) and π# eV(1).
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Equation (26) is the weak balance of configurational actions at the tip for a
stationary crack. It has variational origin so that the dissipative force driving
the crack tip along its evolution is absent. In contrast with standard instances,
the energetics of the crack is treated in a new way. The dependence of the
energy on the curvature of the crack margins and the curvature of the tip
implies the occurrence of new configurational terms.

7 Pointwise balances in a special case

As anticipated in previous section, we discuss pointwise balance equations in
a special case. B is three-dimensional; the body is endowed with a single crack
represented by a smooth surface b2; the tip is indicated by b1. It is assumed
that V(2) = Vb2,θ2 is the curvature varifold, with constant density θ2, of a
smooth 2D-manifold b2 with boundary, parametrized by χ : B+ ⊂ R2 → b2,
where

B+ := {(v1, v2) ∈ R2 | |(v1, v2)| < 1 , v2 > 0} ,
such that χ(Γ) = ∂b2 ∩ B, where

Γ := {(v1, v2) ∈ B+ | v2 = 0}.

The surface b2 is naturally oriented by the normal vector field ν :=
χ,1∧χ,2
|χ,1∧χ,2|

, and

the transplacement field u is presumed to be smooth in B \ b2, with smooth
traces u+ and u− on both the positive and negative sides of b2. Moreover,
V(1) = Vb1,θ1 is the curvature varifold associated with the tip b1, with constant
density θ1. Initial cracks are absent, eb2 = eb1 = ∅. Also, b1 is naturally oriented,
and at x ∈ b1 the vector t = t(x) denotes the oriented unit tangent to b1.
Moreover, m(x) is the inward unit normal to b1 in Txb2, so that t ∧m = ν.

Since b2 is a smooth manifold, |A(2)|2 is twice the norm of the second funda-
mental form. This follows using the second equation in (9) in an orthonormal
frame where ν = (0, 0, 1). Thus, by denoting by k1, k2 the principal curvatures,
and by H and K the scalar mean curvature and the Gauss curvature of b2,
respectively, one gets

|A(2)|2 = 2(k21 + k22) = 4(2H
2 −K)

hence the curvature term of the energy related to the 2-dimensional crack can
be written as Z

|A(2)|p2 dV(2) = 2p2θ2
Z
b2

f(H,K) dH2 (27)

where f(H,K) := (2H2 −K)p2/2.
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For analogous reasons, it is possible to writeZ
|A(1)|p1 d V(1) = 2p1θ1

Z
b1

|k|p1 dH1 , (28)

where k is the curvature of the curve b1.

In order to integrate by parts the first variation of the bulk energy (16), it is
also useful to introduce for every small � a tubular neighborhood C� of radius
� of b1 and the inward unit normal vector field ν∂C� at boundary points in
∂C�. For y ∈ b1, set

D�(y) := C� ∩Nyb1 , ∂D�(y) = ∂C� ∩Nyb1 ,

where Nyb1 is the normal space to b1 at y. Assume also that, for H1-a.e.
y ∈ b1,

Jα(y) := lim
�→0+

Z
∂D�(y)

Pβα(x, u,Du) νβ∂C� dH
1 (29)

exists for α = 1, 2, 3, with J := (J1,J2,J3) ∈ L1(b1,R3), and

lim
�→0

Z
∂C�
Pβα(x, u,Du) νβ∂C� λ

α dH2 =
Z
b1

Jαλα dH1 (30)

for every λ ∈ C∞c (B,R3). The component of the vector J along the normal
m, namely J ·m, is the well-known J-integral.

7.1 Variation of the bulk energy

From (16), with n = 3, it follows that

d

d�

ÃZ
B
e(x, u�, Du�) dx

!
|�=0

=
Z
B

µ
DβPβα(x, u,Du) + exα(x, u,Du)

¶
λα dx−

Z
b2

[[Pβα]] νβ λ
α dH2

− lim
�→0

Z
∂C�
Pβα(x, u,Du) νβ∂C� λ

α dH2

(31)

where [[Pβα]] := Pβα(x, u+,Du+)− Pβα(x, u−,Du−). Of course, the last term in
(31) (see (30)), disappears if u ∈W 2,2(B).

7.2 Variation of the area term M
³
V(2)

´

By using the integration by parts formula (8), with b = b2 and k = 2, for
every λ ∈ C∞c (B,R3), it is possible to compute
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d

d�
M
³
V(2)

´
=

d

d�

³
η�#π#V(2) (B)

´
|�=0 = −θ2

Z
b2

divb2λdH2

= θ2

Z
b2

HαλαdH2 + θ2

Z
b1

mαλαdH1 (32)

whereH = (H1,H2,H3) is the mean curvature vector of b2 andm = (m1,m2,m3)
is the inward unit normal to b1 = ∂b2 ∩ B.

7.3 Normal variations of the surface curvature term

Consider a parametric functional F(b) with smooth integrand f , defined by an
integral over a smooth surface b with boundary parametrized by χ : B+ → b,
namely

F(b) :=
Z
b
f(H,K) dH2 =

Z
B+

f(H,K)
√
g dv1dv2. (33)

By taking into account (27), the first variation of F(b2) can be evaluated.
With λ : B → R3, η� (x) = x + �λ (x), b� = η� (b), we write for the sake of
convenience

F (b�, λ) instead of F (b�) .

Standard notations are listed below:

gαβ := χ,α · χ,β , g := det(gαβ) , (g
αβ) := (gαβ)

−1 ,

ν :=
1
√
g
(χ,1 ∧ χ,2) , bαβ := ν · χ,αβ , b := det(bαβ) ,

H =
1

2
gαβbαβ , K =

b

g
, K bαβ :=

cof,(bαβ)

g
,

where χ,α := χvα =
∂χ

∂vα
and χ,αβ :=

∂2χ

∂vα∂vβ
, and, as usual, the symbol f is

always used for a map f defined on b and the corresponding local representa-
tion f ◦ χ defined on B+ (see also the beginning of Section 7).

Consider first a family of normal variations of b, η�(x) := x + �λ(x), λ(x) =
ϕ(x)ν(x) that in local coordinates reads

χ�(v) := χ(v) + � ϕ(v) ν(v) , v = (v1, v2) ,

where ϕ ∈ C∞(B
+
), ϕ = 0 near ∂B ∩ B+. By denoting by H� and K� the

corresponding curvatures of b� := χ�(B
+), one computes (compare e.g. [31,

p. 84])

δH :=
d

d�
H�|�=0 = (2H

2 −K)ϕ+
1

2
∆ϕ ,

δK :=
d

d�
K�|�=0 = 2HKϕ+¤ϕ ,

δ
√
g

√
g
= −2H ϕ ,
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where

∆ϕ :=
1
√
g
Dα(
√
ggαβDβϕ) , ¤ϕ := 1

√
g
Dα(
√
gKbαβDβϕ) .

It follows that

d

d�
F(b�, ϕ)|�=0 =

Z
B+

½
f,KδK + f,HδH + f

δ
√
g

√
g

¾√
g dv1dv2

=
Z
B+

½
2f,KHKf,H + (2H

2 −K)− 2fH
¾
ϕ
√
g dv1dv2

+
Z
B+

f,K ¤ϕ
√
g dv1dv2 +

1

2

Z
B+

f,H ∆ϕ
√
g dv1dv2 .

By integrating by parts the last two integrals one gets

Z
B+

f,K ¤ϕ
√
g dv1dv2 =

Z
B+
(¤f,K)ϕ

√
g dv1dv2

−
Z
Γ
f,K Kbαβ nαDβϕ

√
g dv1 +

Z
Γ
Dαf,K Kbαβ nβ ϕ

√
g dv1

and

Z
B+

f,H ∆ϕ
√
g dv1dv2 =

Z
B+
(∆f,H)ϕ

√
g dv1dv2

−
Z
Γ
f,H gαβ nαDβϕ

√
g dv1 +

Z
Γ
Dαf,H gαβ nβ ϕ

√
g dv1,

then, finally,

d

d�
F(b�, ϕν)|�=0

=
Z
b

½
¤f,K +

1

2
∆f,H + 2HKf,K + (2H

2 −K)f,H − 2fH
¾
ϕdH2

−
Z
Γ

√
g
½
f,K K bαβ +

1

2
f,H gαβ

¾
nαDβϕdv1

+
Z
Γ

√
g
½
K bαβ Dβ(f,K) +

1

2
gαβ Dβ(f,H)

¾
nα ϕdv1 ,

where n ≡ (0, 1) is the inward unit normal to Γ in R2.

Finally, in the special case f(H,K) = (2H2 −K), compare (27) with p2 = 2,
by putting b = b2 and b1 = ∂b2 ∩ B, and using the identity

Z
Γ

√
g gαβ Dβ H nα ϕdv1 =

Z
b2

∇b2H ·mϕdH1 ,
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the variational formula

d

d�
F(b�, ϕν)|�=0 =

Z
b2

½
2∆H + 4H3 − 4HK

¾
ϕdH2 + 2

Z
b2

∇b2 H ·mϕdH1

−
Z
Γ

√
g (−K bαβ + 2H gαβ)nαDβϕdv1

(34)
follows.

7.4 Tangential variations of the surface curvature term

Consider tangential variations x = x+�λ (x) to b = b2, i.e., λ (x) = ϕ (x) τ (x),
where τ : b → R3 is a tangential vector field to b, ϕ (x) a scalar. In local
coordinates, such variations read

χ�(v) := χ(v) + � ξα(v)χ,α(v) ,

where the vector field ξ := (ξ1, ξ2) ∈ C∞(B
+
,R2), are now discussed for F(b).

The first order term of compactly supported tangential variations is equivalent
to a compactly supported internal variation. Roughly speaking, this is due to
the fact that an infinitesimal tangential variation of b can be decomposed into
the sum of a re-parameterization plus a higher order normal variation, whereas
F(b) is a parametric functional. As a consequence, if ϕ is zero near ∂b, then

d

d�
F(b�, ϕτ) |�=0 = 0 . (35)

Therefore, if ϕ is zero near ∂B, the sole contribution given by tangential vari-
ations has to be a boundary term.

Proposition 3 Let τ : b → R3 be a smooth function such that τ (x) ∈ Txb
for every x ∈ b, and ϕ ∈ C∞c (B,R). Then

d

d�
F(b�, ϕτ) |�=0 = −

Z
b
f (H,K) (τ ·m)ϕdH1, (36)

where m (x) is the inward unit normal to ∂b in Txb at x.

Proof. Due to the invariance property, the treatment can be restricted to
tangential variations of the type

χ := χ+ � ϕχ,1 , ϕ ∈ C∞(B
+
)

where � > 0 is small. Moreover, from the above mentioned properties, the
terms containing the test function ϕ can be neglected, so they do not produce
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boundary terms. Only the terms involving the derivatives of ϕ have to be
computed. To this purpose, denote by Ψ a generic rational function of the
components of χ and of their derivatives.

Explicit computations lead to

χ
,1
= χ,1 + � (ϕ,1 χ,1 + ϕχ,11) , χ

,2
= χ,2 + � (ϕ,2 χ,1 + ϕχ,12) ,

so that, by setting g
αβ
:= χ

,α
· χ

,β
, one gets

g
11
= g11 (1 + 2� ϕ,1) + � ϕΨ+ · · ·

g
22
= g22 + 2� ϕ,2 g12 + � ϕΨ+ · · ·

g
12
= g12 + �

³
ϕ,1 g12 + ϕ,2 g11

´
+ � ϕΨ+ · · ·

where · · · denotes higher order terms. Further computations lead to

g := det(g
αβ
) = g (1 + 2 �Φ) + · · · , where Φ := ϕ,1 + ϕg−1Ψ ,

and
χ
,1
∧ χ

,2
= χ,1 ∧ χ,2 (1 + � ϕ,1) + � ϕΨ+ · · · .

Since g−1/2 = g−1/2 (1− �Φ) + · · · , it follows that

ν := g−1/2(χ
,1
∧ χ

,2
)

= g−1/2 (1− �Φ) (1 + � ϕ,1)χ,1 ∧ χ,2 + � g−3/2 ϕΨ+ · · ·

= ν + � g−3/2 ϕΨ+ · · · .

Moreover, direct exploitation of the derivatives of χ implies

χ
,11
= χ,11 + � (ϕ,11 χ,1 + 2ϕ,1 χ,11) + � ϕΨ+ · · ·

χ
,22
= χ,22 + � (ϕ,22 χ,1 + 2ϕ,2 χ,12) + � ϕΨ+ · · ·

χ
,12
= χ,12 + �

³
ϕ,12 χ,1 + ϕ,1 χ,12 + ϕ,2 χ,11

´
+ � ϕΨ+ · · ·

whence, setting bαβ := ν · χ,αβ, recalling that χ,1 ∧ χ,2 · χ,α ≡ 0 and bαβ =

g−1/2 (χ,1 ∧ χ,2 · χ,αβ), one obtains

b11 = b11 (1 + 2 � ϕ,1) + � ϕ g−1/2Ψ+ · · ·

b22 = b22 + 2 � ϕ,2 b12 + � ϕ g−1/2Ψ+ · · ·

b12 = b12 + � (ϕ,1 b12 + ϕ,2 b11) + � ϕ g−1/2Ψ+ · · ·
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and then
b := det(bαβ) = b (1 + 2 � ϕ,1) + � ϕ g−1Ψ+ · · · .

Therefore, since g−1 = g−1 (1 − 2 �Φ) + · · · , the Gauss curvature K of χ is
given by

K = b g−1 = g−1(1− 2 �Φ)
³
b (1 + 2 � ϕ,1) + � ϕ g−1Ψ

´
+ · · ·

= K + � ϕ g−2Ψ+ · · · .

The ensuing relations hold obviously:

g11 =
1

g
g
22
, g22 =

1

g
g
11
, g12 = −1

g
g
12
.

Consequently, by recalling that Φ = ϕ,1 + ϕg−1Ψ, one gets

g11 = g−1 (1− 2 �Φ)
h
g22 + 2 � ϕ,2 g12 + � ϕΨ

i
+ · · ·

= g−1
³
g22 (1− 2 � ϕ,1) + 2 � ϕ,2 g12

´
+ � g−1 ϕΨ+ · · ·

g22 = g−1 (1− 2�Φ)
h
g11 (1 + 2� ϕ,1) + � ϕΨ

i
+ · · ·

= g−1 g11 + � g−1 ϕΨ+ · · ·

g12 = −g−1 (1− 2�Φ)
h
g12 + �

³
ϕ,1 g12 + ϕ,2 g11

´
+ � ϕΨ

i
+ · · ·

= −g−1
³
g12 (1− � ϕ,1) + � ϕ,2 g11

´
+ � g−1 ϕΨ+ · · · .

Such a result implies

b11 g
11 =

h
b11 (1 + 2 � ϕ,1) + � ϕ g−1/2Ψ

i
×
h
g−1

³
g22 (1− 2 � ϕ,1) + 2 � ϕ,2 g12

´
+ � g−1 ϕΨ

i
+ · · ·

= g−1
h
b11 g22 + 2 � ϕ,2 b11 g12

i
+ � g−3/2 ϕΨ+ · · ·

b22 g
22 =

h
b22 + 2 � ϕ,2 b12 + � ϕ g−1/2Ψ

i h
g−1 g11 + � g−1 ϕΨ

i
+ · · ·

= g−1
h
b22 g11 + 2 � ϕ,2 b12 g11

i
+ � g−3/2 ϕΨ+ · · ·

2 b12 g
12 = 2

h
b12 (1 + � ϕ,1) + � ϕ,2 b11 + � ϕ g−1/2Ψ

i
h
−g−1

³
g12 (1− � ϕ,1) + � ϕ,2 g11

´
+ � g−1 ϕΨ

i
+ · · ·

= −2 g−1
h
b12 g12 + � ϕ,2 (b11 g12 + b12 g11)

i
+ � g−3/2 ϕΨ+ · · · .

Since 2H = g−1 (b11 g22 + b22 g11 − 2 b12 g22), we get

H =
1

2
bαβ g

αβ = H + � g−3/2 ϕΨ+ · · · .
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In conclusion, from the above computations we infer that

δ
√
g =
√
gΦ =

√
g (ϕ,1 + ϕg−1Ψ1) , δK = ϕg−2Ψ2 , δH = g−3/2 ϕΨ3

where the Ψi’s are rational functions of the components of χ and of their
derivatives. Therefore,

d

d�
F(b�, ϕχ,1) |�=0 =

Z
B+

f (H,K)D1ϕ
√
gdx+

Z
B+

L1 (ϕ) dυ
1dυ2,

where ϕ 7−→ L1 (ϕ) is linear. As a consequence, due to the invariance property,
we infer that for every ξ ∈ C∞(B+,R2)

d

d�
F(b�, Vξ)|�=0 =

Z
∂B+

f divξ
√
g +

Z
B+

L(ξ) dv1dv2 ,

where L(ξ) is some linear operator of ξ and Vξ :=
P

α ξ
αχ,α. Then, necessarily,

d

d�
F(b�, Vξ)|�=0 =

Z
∂b
divb(fVξ) dH2 +

Z
b

eL(ξ) dH2.

By choosing Vξ = ϕτ and integrating by parts on the first term, the claim is
proved on account of (35), and the remark thereafter.

7.5 Variation of the term associated with the term of the tip

By using the integration by parts formula (8), with b = b1 and k = 1, and
using that b1 = ∂b2 ∩ B, one obtains for every λ ∈ C∞c (B,R3)

d

d�
M(V(1)�)|�=0 = −θ1

Z
b1

divb1λdH1 = θ1

Z
b1

kαλαdH1, (37)

where k = (k1,k2,k3) is the curvature vector of b1.

7.6 Variations of the tip curvature term

We now compute the first variation of a curvature integral of a space curve C. If
C is a smooth curve immersed in R3, described by a parametric representation
c(t), t ∈ [a, b], ċ(t) 6= 0, the curvature k(t) and the torsion τ(t) with the
representation c(t) are given by

kc :=
|ċ ∧ c̈|
|ċ|3 , c :=

[_c, c̈,
...
c ]

|_c ∧ c̈|2 ,
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where [α1, α2, α3] := (α1 ∧ α2) · α3 is the spatial product of vectors αi ∈ R3.
On account of (28), we restrict to consider curvature integrals of the type

F(C) :=
Z
C
f(k) ds =

Z b

a
f(kc) |ċ| dt ,

where ds = |ċ(t)| dt. Since we have assumed b1 = ∂b2∩B, it suffices to consider
the variational formula

δF(C, φ) := d

d�
F(C�)|�=0 = 0

for an extremal C, where the curve C� is represented by

c�(t) := c(t) + � φ(t), t ∈ [a, b]

and φ : [a, b]→ R2 is a compactly supported smooth vector field.

Consider ζ ∈ C∞c ((a, b)), and the moving frame {t,n,b} along C satisfying
the Frenet’s formulas

ṫ = k n , ṅ = −k t+ τ b , ḃ = −τ n .

Tangential variations φ = ζ t do not furnish equations. By following e.g. [31,
p. 76], normal variations φ = ζ n lead to

d

d�
F(C�, ϕn)|�=0 =

Z
C

½
f 000(k) k̇2 + f 00(k) k̈ + f 0(k) (k2 − τ 2)− k f(k)

¾
ϕdH1,

where k̇ denotes the derivative of k with respect to the arc length parameter.

Finally, binormal variations φ = ζ b lead to

d

d�
F(C�, ϕb)|�=0 =

Z
C

½
2f 00(k) k̇ τ + f 0(k) τ̇

¾
ϕdH1.

In particular, if C is an extremal of f(k) = k2 (compare (28) with p1 = 2), the
formulas

d

d�
F(C�, ϕn)|�=0 =

Z
C
q1 ϕdH1 ,

d

d�
F(C�, ϕb)|�=0 =

Z
C
q2 ϕdH1 ,

hold, where

q1 := (2k̈ + k3 − 2 k τ 2) q2 := (4 k̇ τ + 2 k τ̇) . (38)

Moreover, at any point x ∈ b1 the unit vectors n and b are orthogonal and
belong to the 2-space generated by ν and m. In terms of n and b, the vectors
ν and m can be expressed by

ν = r1n+ r2b, m = r3n+ r4b
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where, of course, r1 = ν · n, etc. In conclusion, one finds

d

d�
F(C�, ϕν)|�=0 =

Z
C
(r1q1 + r2q2)ϕdH1 ,

d

d�
F(C�, ϕm)|�=0 =

Z
C
(r3q1 + r4q2)ϕdH1 .

(39)

7.7 Pointwise balances

For the sake of simplicity, assume that both the exponents p1 and p2 in (4)
are equal to 2. Thus, the energy functional (4) becomesZ

B
e(x, u,Du) dx+ eα2 θ2 Z

b2

(2H2 −K) dH2 + β2 θ2H2(b2)

+ eα1 θ1 Z
b1

k2 dH1 + β1 θ1H1(b1) ,

where eα2 := 4α2 , eα2 := 4α2.
On the basis of (31), balance equations in the bulk are given by

DβPβα(x, u,Du) + exα(x, u,Du) = 0 (40)

for every α = 1, 2, 3.

Balance equations on the 2D-crack b2, corresponding to normal and tangential
variations, respectively, are given by⎧⎨⎩ [[P

β
α]] ν

β να + eα2 θ2{2∆H + 4H3 − 4HK}− 2β2 θ2H = 0 on b2
([[Pβ1 ]] νβ, [[P

β
2 ]] ν

β, [[Pβ3 ]] νβ)⊥Txb2 for every x ∈ b2
(41)

where [[·]] denotes the jump of its argument, that is the difference between the
outer and inner trace to b2. The first equation above corresponds to normal
variations, i.e. λ = −ϕν, and is obtained from (31), (32), and (34) by taking
into account that

H · ν = 2H .

The orthogonality condition given by the second equation above, which cor-
responds to tangential variations, follows from the formula

[[Pβα]] νβ λ
α = 0 on b2

for every vector field λ(x) that is tangent to Txb2 at every point x ∈ b2. It is
obtained from (31), (32), and (35) by using the relation H · λ = 0.
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At the tip, a first balance of configurational actions comes from the tangential
variations to b1. Since t ·m = 0 in (32) and (36), the sole contribution comes
from the term involving the transplacement field, so that, by (30) and (31),
we find Z

b1

Jα tα ϕdH1 = 0 ∀ϕ
i.e.

J · t = 0 on b1 (42)
where J is given in components by (29).

Tangential variations to b2 in the normal direction to b1, i.e. λ = ϕm, yields
from (30), (31), (32), (36), (37), and (39) to

J ·m+ eα2 θ2 (2H2−K) = β2 θ2+ eα1 θ1 (r3 q1+r4 q2)+β1 θ1 k ·m on b1 , (43)

where q1, q2 are given by (38).

Finally, consider variations in the normal direction to b2, i.e. λ = ϕν. From
(30) and (31), (32), (34), (36), (37), and (39), and by taking into account that
m · ν = 0, we findZ

b1

½
−J · ν + 2 eα2 θ2∇b2H ·m+ eα1 θ1 (r1 q1 + r2 q2) + β1 θ1 k · ν

¾
ϕdH1

− eα2 θ2 Z
Γ

√
g (−K bαβ + 2H gαβ)nαDβϕdv1 = 0 . (44)

Therefore, by integrating by parts the last term, where n ≡ (0, 1), and using
the arbitrariness of ϕ, the equation (in coordinates)

|χ,1|
½
−J · ν + 2 eα2 θ2∇b2H ·m+ eα1 θ1 (r1 q1 + r2 q2) + β1 θ1 k · ν

¾
+ eα2 θ2 µ√g (−K b21 + 2H g21)

¶0
= 0 (45)

follows and is equipped with the compatibility condition

−K b22 + 2H g22 = 0 on b1 .

Equation (40) is the standard bulk balance of configurational forces for elastic
bodies. The other balances, namely (41), (42), (43), (44) — or (45) with the
last compatibility condition — are not standard (see, for example, resuilts and
discussions in [5]).
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