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Abstract We extend Beckmann’s spatial model of social interactions to the
case of a two-dimensional spatial economy with a large class of utility func-
tions, accessing costs, and space-dependent amenities. We show that spatial
equilibria derive from a potential functional. By proving the existence of a
minimiser of the functional, we obtain that of spatial equilibrium. Under mild
conditions on the primitives of the economy, the functional is shown to satisfy
displacement convexity, a concept used in the theory of optimal transportation.
This provides a variational characterisation of spatial equilibria. Moreover, the
strict displacement convexity of the functional ensures the uniqueness of equi-
librium. Also, the spatial symmetry of equilibrium is derived from that of the
primitives of the economy. Several examples illustrate the scope of our results.
In particular, the emergence of multiple of equilibria in the circular economy
is interpreted as a lack of convexity of the problem.
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1. INTRODUCTION

Since Marshall [1920], it is known that both market and non-market forces play
an important role in shaping the distribution of economic activities across space.
The new economic geography literature has reemphasised the role of localised
pecuniary externalities mediated by the market in a general equilibrium frame-
work, see Krugman [1991]. Social interactions through face-to-face contacts also
contribute to the gathering of individuals in villages, agglomerations, or cities,
see Glaeser and Scheinkman [2003]. In Beckmann [1976], the urban structure re-
sults from the interplay between a spatial communication externality and the land
market.

When studying the role of agglomeration forces on the urban structure, the
existing literature traditionally relies on specific functional forms regarding utility
functions or transportation costs. New economic geography models make a wide
use of CES or quadratic preferences over manufacturing varieties and of icerberg
transport costs, see Fujita et al. [1999] and Ottaviano et al. [2002]. In Beckmann’s
spatial model of social interactions, the preference for land is logarithmic and the
cost of accessing agents is linear, see Fujita and Thisse [2002].

More recently, some efforts have been made to build models allowing for more
general preferences over goods, with internal or external increasing returns to scale.
For instance, some works have extended the CES preferences traditionally used in
general equilibrium models of monopolistic competition to the case of preferences
with variable elasticity of substitution, see Behrens and Murata [2007], and more
generally, Zhelobodko et al. [2012]. Also, in a multi-district model with external in-
creasing returns in the spirit of Fujita and Ogawa [1982], Lucas and Rossi-Hansberg
[2002] have proved the existence of a symmetric spatial equilibrium from standard
neoclassical assumptions on preferences and technology. Despite these various ef-
forts in extending models addressing agglomeration forces mediated by the market
mechanism, little progress has been made to extend further spatial models where
agglomeration externalities are driven by non-market forces. The aim of this paper
is to fill up this gap by addressing the existence and uniqueness of equilibrium for
general spatial economies involving social interactions.

Our main results are the following. We generalise Beckmann’s spatial model of
social interactions to the case of a two-dimensional spatial economy with a large
class of preferences for land, accessing costs, and space-dependent amenities. We
prove the existence and the uniqueness of spatial equilibrium. So as to get our
results, we start our analysis by providing conditions under which spatial equilib-
ria derive from a potential. Stated differently, we build a functional of which the
critical points correspond to the spatial equilibria of the economy. In this context,
the conditions ensuring the existence of a minimiser of the functional also ensure
the existence of a spatial equilibrium of the economy. As the functional is not
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convex in the usual sense, we introduce another notion of convexity, referred to as
displacement convexity, a concept widely used in the theory of optimal transporta-
tion. Under mild conditions on the primitives of the economy, the functional is
shown to be displacement convex, and we obtain an equivalence between the min-
imisers of the functional and the spatial equilibria of the economy. This provides
a variational characterisation of spatial equilibrium. Moreover, if the functional
displays strict displacement convexity, we get the uniqueness of minimiser, and
hence that of spatial equilibrium. Also, the spatial symmetry of equilibrium is
derived from that of the primitives of the economy. We present several examples
with the purpose of illustrating the scope of our existence and uniqueness results.
In particular, one- and two-dimensional geographical spaces, linear and quadratic
accessing costs, and linear and power residence costs are examined. Finally, the
circular spatial economy is revisited so as to illustrate the role of non-convexities
in explaining the emergence of multiple equilibria. A direct method allows us to
derive all the spatial equilibria arising along the circle. The analysis completes the
work initiated by Mossay and Picard [2011].

The remainder of the paper is organised as follows. Section 2 presents the eco-
nomic environment and generalises Beckmann’s spatial model of social interactions.
In Section 3, we prove the existence of a spatial equilibrium. Section 4 is devoted
to the variational characterisation and the uniqueness of equilibrium, as well as its
spatial symmetry properties. In Section 5, we present several examples of spatial
economies so as to illustrate the scope of our results. Section 6 is devoted to the
analysis of the circular economy. Section 7 summarises the main results of the
paper and concludes.

2. SPATIAL MODEL

In this Section we present the economic environment. We consider a closed spatial
economy E extending along a one- or two-dimensional geographical space K ⊂ Rd,
d = 1, 2, hosting a unit-mass of agents distributed according to the spatial density
λ ∈ M(K) =

{
λ ∈ L1(K) : λ ≥ 0,

∫
K λ = 1

}
, the set of non-negative, Lebesgue

measurable and integrable functions with a unit norm. Agents meet each other so
as to benefit from social contacts. The social utility S(x) that an agent in location
x ∈ K derives from interacting with other agents is given by

(2.1) S(x) = B −W ∗ λ (x)

where the constant B denotes the total benefit from interacting with other agents,
W : Rd → R ∪ {+∞} the cost function of accessing to them, and W ∗ λ (x) the
convolution of W with λ,

∫
KW (x−y)λ(y) dy, representing the accessing cost from

location x. To ensure that social interactions are global, B is assumed to be large
enough, B > maxxW ∗ λ (x).
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As agents in location x ∈ K also consume a composite good z and some land
space s, their utility U is given by

U(s, z, x) = z + u(s) + S(x) +A(x)

where S is the social utility defined in Expression (2.1), u : R+ → R ∪ {−∞} the
utility of land consumption, and A : Rd → R ∪ {−∞} the spatial distribution of
amenities. The budget constraint faced by agents is

z +R(x) s = Y

where Y is the income of agents (e.g., the endowment of the composite good) and
R(x) the land rent in location x.

As is usual in the urban economics literature, we assume the presence of an
absentee landlord who collects the rent paid by agents. Also, we assume that land
has no alternate use other than residence. The agent’s bid rent function in location
x is defined as the maximum rent he is willing to pay for residing in that location,

ψ(x, Ū) = max
s,z

Y − z
s

such that U(s, z, x) = Ū .

Assumption 1 (Utility of land consumption) The utility of land consumption
u ∈ C2(R+) is concave and increasing.

Lemma 1 (Spatial indirect utility function) Under Assumption 1, the spatial
indirect utility function Uλ is given by

(2.2) Uλ(x) = Y − v(λ(x)) + S(x) +A(x)

where the residence cost v defined by

v(λ) =
1

λ
u′
(

1

λ

)
− u

(
1

λ

)
is an increasing function of λ.

Proof: Let λ be some fixed spatial distribution of agents. The bid-rent ψ(x, Ū)
can be rewritten as maxs(Y +u(s)+S(x)+A(x)−Ū)/s. Let ŝ(x, Ū) denote the bid-
maximising consumption of land. The corresponding first-order condition can be
written as Ū = Y +u(ŝ)−u′(ŝ)ŝ+S(x)+A(x). By using the land market equilibrium
condition (λ(x) = 1/ŝ) and defining the residence cost v(λ) = (1/λ)u′(1/λ) −
u(1/λ), the utility obtained by agents in x is then Y −v(λ(x))+S(x)+A(x) given
the spatial density λ. This defines the spatial indirect utility Uλ(x) in location x.
Finally, we have v′(λ) = −(1/λ3)u′′(λ)≥0 as u is assumed to be concave. Q.E.D.
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For a fixed spatial distribution λ, the spatial indirect utility Uλ(x) corresponds
to the utility derived by agents located at x when the land market is in equilibrium.
Its Expression (2.2) involves three non-constant terms: the residence cost v(λ), the
accessing cost W ∗ λ, and the space-dependent amenities A.

In this context, we define a spatial equilibrium of the economy E as follows.

Definition 1 (Spatial equilibrium) A spatial distribution of agents λ ∈ M(K)
constitutes a spatial equilibrium of the economy E if there exists Ū such that

(2.3)

{
Uλ(x) ≤ Ū for almost every x ∈ K,

Uλ(x) = Ū for almost every x ∈ K such that λ(x) > 0.

3. EXISTENCE OF EQUILIBRIUM

In this Section, we relate the search for spatial equilibrium to the optimisation
of a functional. Consider some spatial distribution λ ∈M(K) and let V be defined
by V (λ) = −λ u(1/λ) + V̄ , where V̄ = lims→∞ u(s)/s is finite and positive under
Assumption 1.1 We construct the functional F :M(K)→ R ∪ {+∞} as follows

(3.1) F [λ] = V[λ] +W[λ] +A[λ]

where the terms V, A and W are defined respectively by2

V[λ] =

∫
K
V [λ(x)] dx , A[λ] = −

∫
K
A(x)λ(x) dx

and W[λ] =
1

2

∫∫
K×K

W (x − y)λ(x)λ(y) dx dy

Assumption 2 (Spatial symmetry)
(i) The geographical space K is symmetric: for all x ∈ K,−x ∈ K,
(ii) The accessing cost W is even: W (z) = W (−z), for all z.

We now consider the minimisation of F on M(K).

Lemma 2 (Sufficient condition for equilibrium) Under Assumptions 1 and 2, if
the spatial distribution of agents λ minimises the potential functional F in the set
M(K), then it is a spatial equilibrium of the economy E.

1It can easily be checked that the derivative of V (λ) corresponds to the residence cost v(λ).
2In the mathematics literature, these three integrals are referred to as the internal, the potential,

and the interaction energies, see e.g., Villani [2003].
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The proof argument relies on the fact that the spatial indirect utility function
Uλ can be seen as a differential of F in the following sense. For any admissible
spatial densities (λ, λ̃) in M(K), we have

lim
ε→0+

F [λ+ ε(λ̃− λ)]−F [λ]

ε
= −

∫
K
Uλ(x)(λ̃(x)− λ(x)) dx.

As λ is a minimiser of F , the above limit is non negative∫
K
Uλ(x)(λ̃(x)− λ(x)) dx ≤ 0.

As this inequality holds for any arbitrary admissible density λ̃, the spatial indirect
utility Uλ(x) achieves its maximum value Ū on the support of λ. A detailed proof
of Lemma 2 is provided in Appendix A.1.

Lemma 2 relates the concept of spatial equilibrium of the economy E to the
notion of minimiser of the potential functional F . As in the theory of potential
games (e.g., Monderer and Shapley [1996]), where maxima of the potential are
Nash equilibria of the game, a minimizer of F is a spatial equilibrium of E . The
spatial equilibrium problem described by 2.3 can actually be regarded as a non-
cooperative, non-atomic, anonymous game G with a continuum of players where
each agent makes a location decision in K. The payoff of choosing location x is
given by the indirect utility Uλ(x). Because of anonymity, the player’s payoff de-
pends on her action and the distribution of actions of other agents only. In the
game theory literature on social interactions, the residence cost v(λ(x)) is referred
to as a congestion term and W ∗ λ (x) to an interaction term, see LeBreton and
Weber [2011]. It is now apparent that the functional F is a potential of the lo-
cation game G meaning that a minimizer of F is a Nash equilibrium of G which
constitutes a spatial equilibrium of E . Given this, it is no surprise that our proof
strategy follows that adopted in the literature on potential games (see also Dubey
et al. [2006] or Jensen [2010]) by first constructing an appropriate potential and
then showing that the first-order condition of the minimization problem leads to a
sufficient condition for equilibrium. As is the case in potential games, there might
well exist spatial equilibria which do not minimize the potential. Moreover, should
the potential admit several local minimizers, each of them would constitute a spa-
tial equilibrium of the economy E . Unlike in the literature on potential games
cited earlier, the location game G involves a continuum of players, which makes
the potential a functional.

Note that the global cost associated with F does not correspond to the aggregate
cost of the spatial economy E . Though the integral A is the spatial aggregate of
amenities, the integral W corresponds only to half the aggregate of the accessing
cost W ∗λ. As a consequence, the spatial equilibria of the economy E are not likely
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to minimise the total aggregate cost. This is hardly surprising given the presence
of the spatial communication externality.

Given Lemma 2, a preliminary step for proving the existence of a spatial equi-
librium is to address the existence of a minimiser of F .

Assumption 3
(i) The utility of land consumption u satisfies lims→0+ u(s) = −∞,
(ii) The residence cost v satisfies limλ→0 v(λ) = 0,
(iii) The accessing cost W is continuous and bounded from below,
(iv) The distribution of amenities A is continuous on K and bounded from above,
(v) If K is unbounded, either lim|x|→∞A(x) = −∞ or A is constant and
lim|z|→∞W (z) = +∞.

The hyperbolic utility u(s) = −β/(2s), β > 0, used in Mossay and Picard [2011]
is an example satisfying Assumption 3 (i-ii).

Lemma 3 (Existence of a minimiser) Under Assumptions 1 and 3, the potential
functional F admits a minimiser in M(K).

Proof: The proof consists in checking the lower semi-continuity of F with re-
spect to the weak convergence in M(K) and showing that we can extract from
a minimizing sequence of F a subsequence which converges weakly to some ele-
ment in M(K). This procedure is known as the direct method in the calculus of
variations, see e.g., Dacorogna [2007]. See the details of the proof in Appendix B.
Q.E.D.

The result on the equilibrium existence is summarised in the following Theorem.

Theorem 1 (Existence of equilibrium) Under Assumptions 1, 2 and 3, the spatial
economy E admits a spatial equilibrium.

Proof: This is an immediate consequence of Lemmas 2 and 3. Q.E.D.

As is standard in the theory of potential games, the convexity of the potential
functional F would ensure the critical points of F to be minimisers of F , and there-
fore spatial equilibria of E . In addition, if the potential functional F were strictly
convex, it would not admit more than one minimiser. Unfortunately though, the
potential functional F fails to be convex because of the bi-linear form of the aggre-
gate accessing cost W which reflects the spatial externality associated with social
interactions between agents located at different locations. The purpose of next
section is to introduce another notion of convexity used in the theory of optimal
transportation which will allow us to deal with this issue.
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4. VARIATIONAL CHARACTERISATION AND UNIQUENESS OF EQUILIBRIUM

In this Section, in order to overcome the lack of standard convexity of the poten-
tial F , we rely on a notion of convexity used for functionals defined over probability
measures, referred to as displacement convexity. This concept has its origin in the
theory of optimal transportation. We show that the functional F is displacement
convex under mild assumptions on the primitives of the spatial economy E (i.e., the
geographical space K, the utility function u, the accessing cost W , and the space-
dependent amenities A). This allows us to show an equivalence result between
the critical points and the minimisers of F for a large class of spatial economies,
thereby providing a variational characterisation of the spatial equilibria of E . More-
over, if F is strictly displacement convex, the uniqueness of minimiser is ensured,
and therefore that of equilibrium as well. Furthermore, the spatial symmetry of
equilibrium is derived from the geometry of the spatial domain K, and the spatial
properties of the accessing cost W and of the space-dependent amenities A.

In the sequel, we assume that K = Ω where Ω is some open convex subset of R2.3

We first introduce some basic concepts of the theory of optimal transportation. For
a detailed exposition of this subject, we refer the interested reader to Villani [2003],
Ambrosio et al. [2005], Villani [2009], or Rachev and Rüschendorf [1998]. Let λ0
and λ1 be two spatial densities in M(K) and T a measurable map K → K. The
map T is said to transport the spatial density λ0 onto λ1 if, for any measurable
set B ⊂ K, we have ∫

B
λ1(x) dx =

∫
T−1(B)

λ0(x) dx.

This relation may also be expressed in terms of test functions in the following way

(4.1)

∫
K
ζ(y)λ1(y) dy =

∫
K
ζ[T (x)]λ0(x) dx, ∀ζ : K → K Lebesgue measurable

The condition expressing that the map T transports λ0 onto λ1 is denoted by
T#λ0 = λ1, and T is referred to as the transport map between λ0 and λ1.

Transport maps can be used to define distances between probability measures.
As we focus our analysis on spatial densities in M(K), the Monge-Kantorovich
distance w2 between λ0 and λ1 is defined by4

3When Ω is unbounded, we restrict M(K) to spatial densities λ with a finite second moment
m2 =

∫
K |y|

2λ(y) dy < +∞, so that the Monge-Kantorovich distance w2 defined later in this
Section remains finite-valued.

4In the mathematics literature, the Monge-Kantorovich distance is often referred to as the
Wasserstein distance. Note that the above expression can be extended to any possible probability
measure on K, though it needs to be modified in the case of atomic measures. Anyway, this
latter case does not arise here as we are dealing with spatial densities, that is non-atomic and
non-singular measures.
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w2(λ0, λ1) =

√
inf

T : λ1=T#λ0

∫
K
|x− T (x)|2λ0(x) dx .

We will apply the result of Brenier [1991], stating that there is a unique optimal
map T from λ0 onto λ1, which can be written as T = ∇ϕ for some convex function
ϕ.

For any two spatial densities λ0 and λ1, we consider the optimal transport map
T transporting λ0 onto λ1 and consider the curve of spatial densities {λt}

λt = [(1− t)Id+ tT ]#λ0 for ∈ [0, 1]

where Id is the identity operator. Note that λt|t=0 = λ0 and λt|t=1 = λ1.
The curve {λt}t∈[0,1] describes the gradual displacement of λ0 toward λ1. It

actually corresponds to the unique constant-speed geodesic connecting λ0 to λ1
under the metric w2. For any (t, s) ∈ [0, 1]2, we have

w2(λt, λs) = |t− s|w2(λ0, λ1) .

Convexity in the spaceM(K) endowed with the metric w2 has been studied first
by McCann and is referred to as displacement convexity (or geodesic convexity),
see McCann [1997].

Definition 2 (Displacement convexity) The functional F is said to be displace-
ment convex (or geodesically convex ) in M(K), if t 7→ F [λt] is convex, i.e. for all
λ0 and λ1 in M(K),

F [λt] ≤ (1− t)F [λ0] + tF [λ1] for t ∈ [0, 1]

When the above inequality is strict for t ∈ (0, 1) and λ0 6= λ1, the functional
F is said to be strictly displacement convex. When the inequality is strict for all
t ∈ (0, 1) with λ0 and λ1 not being translates of each other, the functional F is
said to be strictly displacement convex up to translation.

McCann [1997] provided assumptions ensuring the displacement convexity of
the functional F defined in Expression (3.1). We now state those conditions in
terms of the primitives of the economy.

Assumption 4 (Displacement convexity)
Let K = Ω where Ω is an open convex subset of Rd, d = 1, 2,
(i) The utility of land consumption u(s) is concave and increasing. Moreover, when
d = 2, u(s2) is also concave,
(ii) The accessing cost W is convex,
(iii) The spatial distribution of amenities A is concave.
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Both the logarithmic and the hyperbolic utility functions (u(s) = β(log(s) + 1)
and u(s) = −β/(2s), β > 0) used in Beckmann [1976] and Mossay and Picard
[2011] satisfy Assumption 4 (i).

The proof of the displacement convexity property of F can be found in Ambro-
sio et al. [2005], McCann [1997], Villani [2003]. In order to provide an intuition of
this convexity notion, we compare it to the usual convexity concept.
First, we provide a graphical illustration of the two notions. While the usual con-
vexity requires F [λt] ≤ (1 − t)F [λ0] + tF [λ1], for λt = (1 − t)λ0 + tλ1, with
0 < t < 1, the displacement convexity requires F [λt] ≤ (1 − t)F [λ0] + tF [λ1],
for λt = Tt#λ0 = [(1 − t)Id + tT ]#λ0, with 0 < t < 1. This means that the
usual convexity requires evaluating F at some intermediary density λt which is a
weighted average of λ0 andλ1, while the displacement convexity requires evaluating
F at some intermediary density λt along the transport path from λ0 to λ1. The
weighted average λvt (resp. the transported density λht ) corresponds to some verti-
cal interpolation (resp. some horizontal interpolation) of λ0 and λ1. See Figure 1
where the transport from λ0 to λ1 corresponds to a translation and Figure 2 where
the transport involves some deformation of the density.

λ0

λv1/2

λ1

λ0 λh1/2 λ1

Figure 1.— While the upper panel illustrates the vertical interpolant λv1/2 of
λ0 and λ1 which is used to evaluate the standard convexity of F , the lower panel
represents the horizontal interpolant λh1/2 which used to evaluate the displacement
convexity of F .

Second, we proceed formally and determine the convexity of each term of F .

Because −A(λ) is linear, it is convex in the usual sense. We now show that
the concavity of A(x) ensures the displacement convexity of −A. By applying the
transport map Tt transporting λ0 onto λt (relation (4.1)), we get
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λ0 λh1/2 λ1

Figure 2.— The horizontal interpolant λh1/2 incurs some deformation during
its transport from λ0 to λ1

A(λt) =

∫
K
A(x)λt(x) dx =

∫
K
A(Tt(x))λ0(x) dx

=

∫
K
A((1− t)x+ tT (x))λ0(x) dx

When A(x) is concave, we then get

A(λt) ≥
∫
K

[(1− t)A(x) + tA(T (x))]λ0(x) dx

= (1− t)
∫
K
A(x)λ0(x) dx+ t

∫
K
A(T (x))λ0(x) dx

= (1− t)
∫
K
A(x)λ0(x) dx+ t

∫
K
A(x)λ1(x) dx

= A(λ0) +A(λ1)

which means that −A(λ) is displacement convex. Note that the strict displacement
convexity of A obtains if A(x) is strictly concave.

ThoughW(λ) is quadratic in λ, it generally fails to be convex in the usual sense.
For instance, when W (z) = |z|2, we have

W(λ) =

∫∫
K2

|x− y|2λ(x)λ(y) dxdy = 2

∫
K
|x|2λ(x)dx− 2

∫∫
K2

x · yλ(x)λ(y) dxdy

= 2

∫
K
|x|2λ(x)dx− 2

(∫
K
xλ(x) dx

)2

which shows that W(λ) turns out to be concave in λ. Despite this lack of usual
convexity, it turns out that W is displacement convex. By applying the transport
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map Tt transporting λ0 onto λt, we get

W(λ) =

∫∫
K2

W (x− y)λt(x)λt(y) dx dy

=

∫∫
K2

W (Tt(x)− Tt(y))λ0(x)λ0(y) dx dy

=

∫∫
K2

W ((1− t)x+ tT (x)− (1− t)y − tT (y))λ0(x)λ0(y) dx dy

Then by applying the convexity of W (x) to the pair of points x−y and T (x)−T (y),
we have

W(λ) ≤ (1− t)
∫∫
K2

W (x− y)λ0(x)λ0(y) dx dy + t

∫∫
K2

W (T (x)− T (y))λ0(x)λ0(y) dx dy

= (1− t)
∫∫
K2

W (x− y)λ0(x)λ0(y) dx dy + t

∫∫
K2

W (x− y)λ1(x)λ1(y) dx dy

= (1− t)W(λ0) + tW(λ1)

which shows that W(λ) is displacement convex.

As V (λ) is convex, V(λ) is convex in the usual sense. Under Assumption 4 (i), it
turns out to be also displacement convex. For the sake of clarity, we first present
the argument in the one-dimensional case d = 1. Still, it relies on optimal transport
theory, which makes the exposition less tranparent than for the two previous terms.

By the definition of V (λ), V (0) = limλ→0+ V (λ) = limλ→0+ −λu(1/λ)+V̄ = 0 as
u(s) is concave and increasing. This condition is required to ensure the summability
of V (λ) when K is unbounded. Because T is the gradient of some convex function,
Tt is non-decreasing. By the Monge-Ampère equation (λt(Tt(x))T ′t(x) = λ0(x),
see (A.3)) and by a change of variables, we get∫
K
V (λt(y)) dy =

∫
K
−λt(y)u(

1

λt(y)
) dy =

∫
K
−λ0(x)

T ′t(x)
u(
T ′t(x)

λ0(x)
)T ′t(x) dx =

∫
K

[−λ0(x)u(
T ′t(x)

λ0(x)
)] dx

As u is concave and increasing and T ′t = (1− t) + tT ′ is linear in t, the integrand
is convex in t. So is t 7→

∫
K V (λt(y)) dy, which shows the displacement convexity

of V(λ).

We now comment on the general condition ensuring the displacement convex-
ity of V(λ) provided by McCann [1997] which requires that the function λ 7→
λdV (λ−d) is convex and non-increasing on (0,+∞). Here, this function is given by
λdV (λ−d) = −u(λd) + V̄ λd. The convexity of λdV (λ−d) is guaranteed as soon as
u(λd) is concave, which is part of Assumption 4 (i). Regarding the monotonicity
of λdV (λ−d), it is enough to prove that s 7→ −u(s) + V̄ s is decreasing. This is
indeed the case as u′(s) ≥ V̄ given that u is concave and V̄ = lims→+∞ u(s)/s =
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lims→+∞ u
′(s). Notice that when d = 1, McCann [1997]’s condition coincides with

u being concave and increasing. However, when d = 2, the concavity of u is no
longer sufficient to have λ 7→ λ2V (λ)−2 = −u(λ2)+ V̄ λ2 convex. This is the reason
why Assumption 4 (i) is more restrictive in that case. Moreover, the behavior of
the determinant of the Jacobian matrix associated with the change of variables
has to be dealt with when checking the displacement convexity.

Theorem 2 (Variational characterisation) Under Assumptions 2 and 4, the spa-
tial distribution of agents λ is a spatial equilibrium of the economy E if and only
if it is a minimiser of F in the set M(K).

Proof: The sufficient condition for spatial equilibrium was proved in Lemma 2
by using Assumption 1, which is now part of Assumption 4 (i) , and Assumption 2.
The necessary proof consists in studying the Euler-Lagrange equation associated
with the minimisation of F . Under Assumption 4, the functional F is displacement
convex. The proof makes use of displacement convexity and of optimal transporta-
tion arguments. See the details of the proof in Appendix A.2. Q.E.D.

To ensure the uniqueness of minimiser of functional F , McCann [1997] also pro-
vided criteria so as to obtain the strict displacement convexity of F . In particular,
under Assumption 4, if W is strictly convex or if A is strictly concave, then the
functional F is strictly displacement convex.

Theorem 3 (Uniqueness of spatial equilibrium) Under Assumption 4, if A is
strictly concave (resp. if the accessing cost W is strictly convex or the function
u(sd) strictly concave), then any spatial equilibrium λ of the economy E is unique
(resp. unique up to translation).

Proof: By applying the criteria of McCann [1997], Assumption 4 and the strict
concavity of A (resp. the strict convexity ofW or the strict concavity of the function
u(sd)) ensure the strict displacement convexity of functional F . Let λ0 and λ1 be
two distinct minimisers of F and consider the optimal transport map T from λ0
onto λ1. By applying the strict displacement convexity in λ1/2 = (12(Id+ T ))#λ0,

we obtain F [λ1/2] <
1
2(F [λ0] + F [λ1]), which is in contradiction with λ0 and

λ1 being minimisers of F . This proves the uniqueness of minimiser, and hence
that of equilibrium by the variational characterisation provided in Theorem 2. As
the accessing cost W is invariant under translation, the uniqueness holds up to
translation if only W is strictly convex or the function u(sd) is strictly concave.
Q.E.D.

We now turn to the spatial properties of the spatial equilibrium.
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Definition 3 A spatial density λ is said to be even (resp. radially symmetric) if
λ(x) = λ(−x) for all x ∈ K (resp. λ(x) = λ(y) for all x, y ∈ K such that |x| = |y|).

Assumption 5 (Even symmetry) Let the geographical space K be symmetric: for
all x ∈ K,−x ∈ K. The accessing cost W and the spatial distribution of amenities
A are even: W (x) = W (−x) and A(x) = A(−x), for all x.

Assumption 6 (Radial symmetry) Let K be R2 or a centred ball in R2. The
accessing cost W and the spatial distribution of amenities A are radially symmetric:
A(x) = A(y) and W (x) = W (y), for all x, y such that |x| = |y|.

Theorem 4 (Spatial symmetry of equilibria) Suppose that the Assumptions of
Theorem 3 hold (i.e., Assumption 4 holds and either A is strictly concave, or
W is strictly convex, or the function u(sd) is strictly concave). Then, under As-
sumption 5 (resp. Assumption 6), any spatial equilibrium λ is even (resp. radially
symmetric).

Proof: The variational characterization provided in Theorem 2 allows us to fo-
cus our analysis on the symmetry of minimizers of F . By Theorem 3, any minimizer
λ of F is unique, eventually up to translation. In this latter case, without loss of
generality, we fix the barycenter of the spatial distribution λ as being the origin.
When A and W are even, define λ̃ by λ̃(x) = λ(−x). Obviously, F [λ̃] = F [λ] mean-
ing that λ̃ is also a minimizer. The uniqueness of minimizer implies that λ̃ = λ
meaning that λ is even.

When A and W are radially symmetric, define λ̃ by λ̃(x) = λ(Rx), where R is any
arbitrary rotation. Then F [λ̃] = F [λ] meaning again that λ̃ is also a minimizer. By
the uniqueness of equilibrium, λ(x) = λ(Rx) for any arbitrary rotation R meaning
that the spatial equilibrium is radially symmetric.

Q.E.D.

The existing literature on spatial equilibria systematically restricts the analysis
to equilibria with certain symmetric properties (e.g., while Lucas [2001] and Lu-
cas and Rossi-Hansberg [2002] focus their study on radially symmetric equilibria,
Fujita and Ogawa [1982] and Berliant et al. [2002] restrict their work to even equi-
libria). In contrast, Theorem 4 derives the spatial symmetry properties of equilibria
from that of the primitives of the economy, thereby providing an approach to char-
acterize properties of equilibria. Under the stated assumptions, Theorem 4 shows
that no asymmetric equilibrium exists.

5. EXAMPLES

In this Section, several examples illustrate the scope of the existence and unique-
ness results obtained in the previous Sections. These examples extend existing
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models of the literature into many aspects: the dimension or the shape of the
geographical space, and the class of utility functions or accessing costs.

In the sequel, we make use of the following Proposition which restates the spatial
equilibrium condition (2.3) in a useful manner.

Proposition 1 Suppose that the utility of land consumption u(s) is strictly con-
cave and increasing and that the residence cost v is such that limλ→0 v(λ) = 0.
Then the spatial distribution of agents λ is a spatial equilibrium of the economy E
if and only if the residence cost v corresponds to

(5.1) v(λ) = (Y − Ū + S(x) +A(x))+

where (.)+ = Max (., 0)

Proof: As u(s) is strictly concave, the proof of Lemma 1 ensures that the res-
idence cost v is strictly increasing. Moreover, as limλ→0 v(λ) = 0, we have v(λ >
0) > 0. First, suppose the residence cost v satisfies v(λ) = (Y − Ū+S(x)+A(x))+.
We have{
v(λ(x)) ≥ Y − Ū + S(x) +A(x) for almost every x ∈ K,

v(λ(x)) = Y − Ū + S(x) +A(x) for almost every x ∈ K such that λ(x) > 0,

and the spatial density λ constitutes a spatial equilibrium of the economy E .

Conversely, by using the spatial equilibrium condition (2.3) along with the ex-
pression of the spatial indirect utility (2.2), we have v(λ(x)) = Y − Ū + S(x) +
A(x) > 0 when λ(x) > 0, while v(0) = 0 ≥ Y − Ū + S(x) + A(x). This can be
summarised by v(λ) = (Y − Ū + S(x) +A(x))+. Q.E.D.

The above Assumption regarding the residence cost, limλ→0 v(λ) = 0, is satisfied
by the hyperbolic utility function used in Mossay and Picard [2011], and by power
residence costs given by v(λ) = βλγ , with β and γ > 0, see the Examples 5.2
and 5.6 for an illustration. More generally, when the residence cost v is bounded
in λ = 0 (i.e., limλ→0 v(λ) = C ∈ R), Expression (5.1) should be replaced by
v(λ) = max(Y − Ū + S(x) + A(x)), C). Last, in the case where v is unbounded
from below in λ = 0 (i.e., limλ→0 v(λ) = −∞), Expression (5.1) becomes v(λ) =
Y − Ū + S(x) +A(x). This last case corresponds to Beckmann’s example, v(λ) =
β log λ, β > 0, which is analyzed in Example 5.3.

A useful regularity result is provided by making use of Proposition 1.

Corollary 1 Suppose that Assumption 3 holds with the utility of land consump-
tion u(s) being strictly concave and increasing. Then any spatial equilibrium λ is
a continuous function of x.
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Proof: As in the proof of Proposition 1, the residence cost v is continuous and
strictly increasing. Relation (5.1) can then be inverted

(5.2) λ = v−1((Y − Ū +A(x) + S(x))+).

So as to show the continuity of λ, we have to prove that of A(x) + S(x). As A is
continuous by Assumption 3 (iv), we are left to prove the continuity of (W ∗λ)(x) =∫
KW (x− y)λ(y)dy by using that of W . We consider several possible cases.
When K is bounded, it may be contained in some ball BR. We need to control

the behavior of W (x − y), where x, y ∈ K. This requires to look at the behav-
ior of W on B2R, and indeed W is uniformly continuous on B2R. Let ε > 0
and δ > 0 such that |z − z′| < δ, the uniform continuity of W means that
|W (z)−W (z′)| ≤ ε. Then consider |x−x′| ≤ δ, we have |W ∗ λ(x)−W ∗ λ(x′)| =∣∣∫
K(W (x− y)−W (x′ − y))λ(y)dy

∣∣ ≤ ε, which ensures the continuity of W ∗ λ,
and therefore that of λ.

When K is unbounded, we show that λ has compact support under Assumption
3 (v). First, if lim|x|→∞A(x) = −∞, we have lim|x|→∞A(x) − (W ∗ λ)(x) = −∞
as W is bounded from below. Relation (5.2) then implies that λ has a compact
support, which may be contained in some ball BR. As above, the uniform continuity
of W on B2R implies the continuity of W ∗ λ. Second, if lim|z|→∞W (z) = +∞,
a similar argument applies. Consider a sequence {xn} such that |xn| → ∞. The
sequence of functions y 7→W (xn − y) converges pointwise to +∞ and is bounded
from below. By applying Fatou’s lemma, we get lim infn→∞

∫
KW (xn−y)λ(y)dy ≥∫

K limn→∞W (xn−y)λ(y)dy = +∞. This shows that lim|x|→∞A(x)−(W ∗λ)(x) =
−∞ as A is bounded from above. Again, λ has compact support which implies the
continuity of W ∗ λ.

Q.E.D.

5.1. Linear accessing and residence costs

This case has been studied by Mossay and Picard [2011]. The economy extends
along the real line K ≡ R. The utility of land consumption is hyperbolic, the ac-
cessing cost linear and there are no amenities. Their corresponding expressions are
respectively given by u(s) = −β/(2s),W (x) = τ |x|, with β, τ > 0. The residence
cost is then linear v(λ) = βλ.

As Assumption 3 is satisfied, a spatial equilibrium exists by Theorem 1. Also,
as u(s) is strictly concave and increasing, the strict displacement convexity of
functional F is ensured. As a consequence, Theorem 3 provides the uniqueness of
equilibrium up to translation. By Proposition 1, we get the following equilibrium
spatial distribution

λ(x) =
1

β

(
Y +B − Ū −W ∗ λ (x)

)
+
.
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By inspection of the above expression, as both W and x 7→ x+ are Lipschitz
continuous, so is the spatial density λ. Moreover, given that (W∗λ)′′ = W ′′∗λ, the
convexity of the accessing cost W implies that of function W ∗ λ. In particular,
the lower level set of W ∗ λ, {x : W ∗ λ < c}, is an interval meaning that the
spatial density λ will be positive on some interval and vanish everywhere else.
Along this interval, the equilibrium spatial distribution is unimodal and concave
as it corresponds to the positive part of a concave function.

For an analytical expression of the spatial equilibrium, see Mossay and Picard
[2011].

5.2. A two-dimensional model

We extend the previous example into several aspects by considering a two-
dimensional geographical space, a residence cost given by a power function, and a
general accessing cost. The economy E extends along K = R2. The residence cost
is given by v(λ) = βλγ , with β, γ > 0. The accessing cost W is Lipschitz con-
tinuous, strictly convex, and radially symmetric with lim|x|→∞W (x) = +∞ (e.g.,
W (x) = τ |x|2 with τ > 0).

Assumption 3 is satisfied so that a spatial equilibrium exists. As the accessing
cost W is strictly convex, the strict displacement convexity of F ensures that the
equilibrium is unique up to translation by Theorem 3.

Moreover, Theorem 4 proves that the equilibrium is radially symmetric around
its barycentre. By Proposition 1, we have

(5.3) λ(x)γ =
1

β

(
Y +B − Ū −W ∗ λ (x)

)
+
.

From Corollary 1, the equilibrium λ is a continuous function with compact support.
Moreover, as in the previous example, the convexity of the accessing cost W implies
that of function W ∗ λ. As the support of λ is bounded, it corresponds to a ball
given the radial symmetry of λ.

We now derive some further regularity of the spatial equilibrium. Since the ac-
cessing cost W is convex, it is Lipschitz continuous on bounded sets. From the
proof of Corollary 1, the Lipschitz continuity is inherited by λ∗W and by the spa-
tial density λ. As a consequence, the term ∇(λ ∗W ) = ∇λ ∗W corresponds to the
convolution of a bounded function with a Lipschitz continuous function. Hence, it
is Lipschitz continuous as well. This means that the function λ ∗W ∈ C1,1 (i.e.,
it is differentiable at every point and its gradient is Lipschitz continuous), so that
the spatial density λ is globally Lipschitz continuous on K and C1,1 on the ball
{x : λ(x) > 0}.

Finally, when the accessing cost is quadratic, W (x) = τ |x|2/2, the equilibrium
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spatial density can be written as

λ(x) =
1

β1/γ

(
C − τ

2
|x− x0|2

)1/γ
+

with C = Y + B − U + τ(x20/2 −m2/2) where the barycentre x0 and the second
moment m2 of the spatial distribution λ are given by x0 =

∫
K yλ(y) dy and m2 =∫

K |y|
2λ(y) dy respectively. The result is obtained by plugging the expression of

function W ∗ λ

τ

∫
K
|x− y|2λ(y) dy = τ [|x|2

∫
K
λ(y) dy − 2x ·

∫
K
yλ(y) dy +

∫
K
|y|2λ(y) dy]

= τ [|x− x0|2 − x20 +m2] .

into Relation (5.3).

5.3. A two-dimensional Beckmann model

The model of Beckmann [1976], revisited by Fujita and Thisse [2002], is extended
to the case of a two-dimensional spatial domain K = R2. The logarithmic utility of
land consumption is u(s) = β(log(s)+1), β > 0 and the accessing cost is quadratic,
W (x) = τ |x|2/2, τ > 0. The resulting residence cost is given by v(λ) = β log λ and
the corresponding function V is given by

V (λ) =

{
β(λ log λ− λ) if λ > 0,

0 if λ = 0.

As u(s2) is strictly concave and increasing and the accessing cost W is strictly
convex and radially symmetric, the strict displacement convexity of F ensures the
uniqueness of equilibrium up to translation as well as its radial symmetry by The-
orems 3 and 4. Contrary to the other examples presented in this Section, Assump-
tion 3 does not hold here. This because as limλ→0 V

′(λ) = −∞, Assumption 3 (ii)
is violated, which means that V[λ] is not bounded from below anymore. Anyway,
as we are able to determine the analytical expression of the spatial equilibrium,
existence is shown by construction.

The spatial equilibrium condition (2.3) can be written as{
−β log(λ(x))−W ∗ λ (x)) ≤ U − Y −B for almost every x,

−β log(λ(x))−W ∗ λ (x)) = U − Y −B for almost every x such that λ(x) > 0.

Note that here, the equilibrium condition cannot be written as Relation (5.1) given
that v(0) 6= 0. By inspection of the above equilibrium conditions, there is no point
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x for which λ(x) = 0. Otherwise, the first equilibrium condition would imply
U = +∞ and the second one would not be satisfied. Hence, we can write

(5.4) β log(λ(x)) = Y +B − U −W ∗ λ (x)

which leads to

λ(x) = e[Y+B−U−W∗λ (x)]/β > 0.

By determining the function W ∗λ as done in Example 5.2, we get the following
expression

λ(x) = Ce
− τ

2β
|x−x0|2

where C = e[Y+B−U+τ(x20−m2)/2]/β, and the barycenter x0 and the second mo-
ment m2 of the spatial density λ are given respectively by x0 =

∫
K yλ(y) dy and

m2 =
∫
K |y|

2λ(y) dy. The solution is translation-invariant and the constant C is
determined by using the total population constraint (

∫
λ(x) dx = 1) so that

λ(x) =
τ

2πβ
e
− τ

2β
|x−x0|2

5.4. A city centre model

The economy extends along K = R2 and amenities decrease with distance from
the city centre x = 0, A(x) = −α|x|2/2, α > 0. The residence cost is given by
v(λ) = βλ, β > 0, and the accessing cost is quadratic, W (x) = τ |x|2/2, τ > 0.

Assumption 3 holds so that a spatial equilibrium exists. As the spatial distribution
of amenities A is strictly concave, the strict displacement convexity of F ensures
the uniqueness of equilibrium. Moreover, the radial symmetry of A and W ensures
that of equilibrium by Theorem 4. By Proposition 1 and the expression of function
W ∗ λ, the equilibrium spatial distribution corresponds to the following truncated
regular paraboloid centred in the city centre x = 0

λ(x) =
1

β

(
Y +B − U − τ m2

2
− (τ + α)

|x|2

2

)
+

.

where the second momentm2 of the spatial density λ is given bym2 =
∫
K |y|

2λ(y) dy.

5.5. A linear city model

The economy extends along K = R2. We consider a linear city where amenities
are distributed along a road and decrease with distance from the road. The res-
idence cost is given by v(λ) = βλ, β > 0, and the accessing cost is quadratic,
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W (x) = τ |x|2/2, τ > 0. Amenities are given by A(x) = −α|x · e|2/2, with α > 0
and e = (1, 0). The larger the distance to the road e⊥ = {x ∈ R2 : x · e = 0}, the
lower the amenities.

Assumption 3 holds, so that a spatial equilibrium exists. As the accessing cost
W is strictly convex, the uniqueness of equilibrium is ensured up to translation
parallel to e⊥.

By Proposition 1 and the computation of W ∗ λ, we get the following spatial
equilibrium density

λ(x) =
1

β

(
Y +B − U + τ

x20
2
− τ m2

2
− τ (x− x0)2

2
− α |x · e|

2

2

)
+

.

where the barycenter x0 and the second moment m2 of the spatial distribution λ
are given respectively by x0 =

∫
K yλ(y) dy and m2 =

∫
K |y|

2λ(y) dy.
As the support of the equilibrium is an ellipse with a transverse axis correspond-

ing to the road e⊥ and a conjugate axis orthogonal to the road e⊥, the equilibrium
distribution corresponds to a truncated elliptic paraboloid.

5.6. A seashore model

We consider half a space in R2 representing a seashore. The economy extends
along the convex domain K = {x ∈ R2 : x · e ≥ 0}, with (0, 0) 6= e ∈ R2. The
residence cost is v(λ) = βλγ , with β, γ > 0 and the accessing cost is quadratic
W (x) = τ |x|2/2. The spatial distribution of amenities is given by A : x 7→ −x · e
so that -A stands for the distance from the boundary of K, that is the hyperplane
e⊥ = {x : x · e = 0}.

Assumption 3 is satisfied, so that a spatial equilibrium exists. The strict convexity
of the accessing cost W ensures the uniqueness of equilibrium up to translation.

By Proposition 1 and the computation of W ∗ λ, the equilibrium spatial distri-
bution corresponds to the following truncated paraboloid centred in y0 = x0 − e

λ(x)γ =
1

β

(
Y +B − U − τ |x− x0|

2

2
− τx · e+ τ

x20
2
− τ m2

2

)
+

=
1

β

(
C − τ |x− (x0 − e)|2

2

)
+

,

where C = Y + B − U + τ [e2/2 + x0 · e + x20/2 − m2/2], and the barycenter
x0 and the second moment m2 of the spatial density λ are given respectively by
x0 =

∫
K yλ(y) dy and m2 =

∫
K |y|

2λ(y) dy.
We still need to determine the admissible translations. The support of the spatial

density λ corresponds to the intersection of a ball centred in y0 and the spatial
domain K. Since the spatial density λ is unique up to translation, the shape of
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the support of any possible spatial equilibrium must be unique. In particular, this
shape depends on the distance from y0 to the boundary e⊥ (see balls B1 and B2

in Figure 3), unless y0 would be so far from that boundary that the ball would not
intersect it. In this latter case, the support would be an entire ball (such as ball B3

in Figure 3). However, this latter scenario cannot arise because if the support of
λ were an entire ball, then x0 would correspond to y0, which is not possible. This
means that the support of all possible spatial equilibria intersects the boundary
e⊥ and that the distance from y0 to that boundary is constant, that is, the same
for all spatial equilibria.

•
y0
•
x0

B1

•
y0

•
x0

B2

B3

•
y0 = x0

e

Figure 3.— Examples of equilibrium supports for the seashore model. Ball B1

and B2 are located at different distances from the boundary e⊥. Ball B3 is not
admissible as y0 = x0.

6. A CIRCULAR ECONOMY: A NON-CONVEX EXAMPLE

In this Section, we revisit the model by Mossay and Picard [2011] along the unit
circle K = C = [0, 2π]. In the light of Assumption 4 and Theorem 3, the emergence
of multiple spatial equilibria can be explained by a lack of convexity of the spatial
domain. As the problem along the circle is not convex, Theorem 3 does not apply.
This is the reason why the model exhibits multiple equilibria along the circle while
it admits a unique spatial equilibrium along the real line, see Example 5.1.

Studying spatial economies extending along a circle has a long tradition in eco-
nomics, ranging from the circular Hotelling model in the industrial economics lit-
erature to the more recent racetrack economy in the New Economic Geography
literature. Here, we show that the circular model of spatial interactions cannot be
interpreted as a simple variant of the corresponding model along the real line. As
the spatial equilibria arising along the circle may involve disconnected cities, we
find it useful to introduce the following Definition.

Definition 4 (City, city-centre and multiple cities) Let λ be a spatial density
of agents. A city is defined as a connected component of the support of λ, and a
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city-centre (or centre) of a city as any point x which is a strict local maximum
of λ. The spatial economy is said to be a multiple-city economy if it consists of
several disjoint cities.

Following Mossay and Picard [2011], we consider an hyperbolic utility function,
u(s) = −β/(2s) where β denotes the preference for land, and a linear accessing
cost W (x) equal to τx, for x ∈ [0, π], and to τ(2π − x), for x ∈ [π, 2π], where τ is
the accessing cost.

Mossay and Picard used a constructive method to solve the model, making con-
jectures about candidates for equilibrium and, only then, determining which of
these candidates do actually satisfy the equilibrium condition (2.3). In contrast
to their approach, we propose a direct method which allows to determine all the
spatial equilibria of the economy as solutions to a differential equation.

By spatial periodicity, we impose that λ(x+2π) = λ(x). Also, the point opposite
to x along C is denoted by x̄. By Proposition 1, as the residence cost is given by
v(λ) = βλ, any spatial equilibrium λ satisfies

λ(x) =
1

β

(
Y +B − U −W ∗ λ (x)

)
+
.

We make the following change of functions by defining the auxiliary function φ

(6.1) φ(x) =
1

τ
W ∗ λ (x)− π

2
.

This allows to rewrite the spatial distribution λ as

(6.2) λ(x) =
1

2

(
C − δ2φ(x)

)
+

where δ2 = 2τ/β and C = 2[Y +B − U − τπ/2]/β.

We now derive an equation for function φ.

Proposition 2 (Differential equation for φ) If λ is a spatial equilibrium along
the spatial domain C, then the function φ defined in Expression (6.1) belongs to
C2(C) and satisfies the following ordinary differential equation

(6.3) φ′′ = (C − δ2φ)+ − (C + δ2φ)+

with the periodic condition

(6.4) φ(x) = −φ(x± π), ∀x ∈ [0, π)
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Proof: By using relation (6.1), function φ can be rewritten as

φ(x) =

∫ x

x−π
(x− y)λ(y) dy +

∫ x+π

x
(2π − x+ y)λ(y) dy − π .

By inspection of this expression, φ is differentiable. Its derivative is given by

φ′(x) =

∫ x

x−π
λ(y) dy −

∫ x+π

x
λ(y) dy.

As φ is differentiable and thus continuous, λ is also continuous given Relation (6.2).
The fundamental theorem of calculus allows to differentiate φ′

φ′′(x) = λ(x)− λ(x− π)− λ(x+ π) + λ(x) = 2[λ(x)− λ(x̄)] .

This implies that φ ∈ C2(C). By using Relation (6.2), we get φ′′(x) = (C −
δ2φ(x))+ − (C − δ2φ(x̄))+. We also have

φ(x) + φ(x) = [W ∗ λ (x) + 1/τW ∗ λ (x)]/τ − π = 0

given the relation W ∗ λ (x) +W ∗ λ (x) = τπ and the total population constraint∫
C λ(y) dy = 1. Finally, we get φ′′(x) = (C − δ2φ(x))+ − (C + δ2φ(x))+. Q.E.D.

Our resolution method consists in determining the solutions φ to Equation (6.3)
with the periodic condition (6.4). Only then, the spatial equilibria λ will be ob-
tained by Relation (6.2). Mossay and Picard identified spatial equilibria involving
cities distributed according to a cosine function given by cos(δx). In what follows,
these equilibria are referred to as one-frequency (δ) equilibria, as opposed to other
solutions derived in this paper involving two frequencies (δ and

√
2δ). All the de-

tails of the resolution are provided in Appendix C. We summarize them in the
following Proposition.

Proposition 3 (Spatial equilibria along the circle) The spatial equilibria arising
in the circular economy C can be described as follows. Of course, the uniform
spatial distribution is always an equilibrium. If

√
2δ happens to be an odd number,

there exists a spatial equilibrium with full support exhibiting
√

2δ centres, see the
illustration in Figure 4. When

√
2δ is not an odd number, for any odd number J

such that J ≤ δ (resp. such that δ < J ≤
√

2δ), there is a one-frequency (resp.
two-frequency) spatial equilibrium with J identical and evenly spaced cities, see the
illustration in Figure 5 (resp. Figure 6).

Our direct resolution method has allowed us to determine all the spatial equilibria
of the circular economy. This completes the analysis initiated by Mossay and Picard
and reemphasizes the emergence of multiple equilibria, which has been interpreted
here as a lack of convexity arising in the circular model.
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Figure 4.— Spatial equilibria with full support involving an odd number of centres.
In the left panel, the spatial economy displays one centre for δ =

√
2/2. In the right panel,

the spatial economy displays three centres for δ = 3
√

2/2.

Figure 5.— One-frequency spatial equilibria involving an odd number of cities.
In the left panel, the spatial economy displays J = 1 city for δ = 3. In the right
panel, the spatial economy displays J = 3 cities for δ = 4.

7. CONCLUSION

We have studied a spatial model of social interactions for a large class of pref-
erences for land, accessing costs and space-dependent amenities in a one- or two-
dimensional spatial domain. By showing that spatial equilibria derive from a po-
tential and by providing their variational characterisation, we have proved their
existence and uniqueness under mild conditions on the primitives of the economy.
Various examples drawn from the existing literature as well as some new ones have
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Figure 6.— Two-frequency spatial equilibria involving an odd number of cities.
In the left panel, for δ = 3/4, the equilibrium displays J = 1 city where the
frequency is

√
2δ for the portion of the curve above the line and δ for the portion

of the curve below that line. In the right panel, for δ = 2.8, the equilibrium displays
J = 3 cities.

been used to illustrate the scope of our results. In particular, the role of strict
displacement convexity has been shown to be crucial for the uniqueness of equi-
librium. Moreover, the emergence of multiple equilibria arising along the circular
economy has been explained by a lack of convexity of the problem.

Several extensions are of interest for future research. Here are some suggestions.
First, considering heterogeneous populations of agents should allow to study intra-
and inter-group social interactions, and therefore to tackle spatial segregation and
integration issues. Second, the extension of the model along a sphere seems natural.
However, dealing with spatial symmetries in our economic environment is far from
obvious. Third, a further analysis of the multiple equilibria arising along a circle
could study whether some dynamics induced by the spatial mobility of agents could
be used as a device to select equilibria.

APPENDIX A: VARIATIONAL CHARACTERISATION

A.1. Proof of Lemma 2

Let λ be a minimizer F onM(K). We consider some admissible spatial density λ̃ ∈M(K) and

a family of perturbations λε = (1− ε)λ+ ελ̃, indexed by 0 ≤ ε ≤ 1.

Given that λ minimises F , we have

(A.1) 0 ≤ d

dε
F [λε]|ε=0 =

d

dε
V[λε]|ε=0 +

d

dε
A[λε]|ε=0 +

d

dε
W[λε]|ε=0
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As V ′ = v, the first derivative in Relation (A.1) is given by

d

dε
V[λε]|ε=0 =

∫
K
V ′(λ(x))

d

dε
λε(x) dx|ε=0 =

∫
K
v(λ(x))[λ̃(x)− λ(x)] dx .

The second derivative in Relation (A.1) can be written as

d

dε
A[λε]|ε=0 = −

∫
K
A(x)(λ̃(x)− λ(x)) dx.

Under Assumption 2, the accessing cost W is even, so that the third derivative in Relation (A.1)
leads to

d

dε
W[λε]|ε=0 =

1

2

∫∫
K×K

W (x− y)
(
λ(x)[λ̃(y)− λ(y)] + [λ̃(x)− λ(x)]λ(y)

)
dx dy

=

∫∫
K×K

W (x− y)λ(y)[λ̃(x)− λ(x)] dx dy

=

∫
K
W∗λ(x)(λ̃(x)− λ(x)) dx .

By plugging the expressions of these three derivatives into Relation (A.1), we obtain∫
K

[A(x)− v(λ(x))−W ∗λ(x)] λ̃(x) dx ≤
∫
K

[A(x)− v(λ(x))−W ∗λ(x)]λ(x) dx .

Given the expression of the indirect utility function Uλ(x) as given by Lemma 1, we get∫
K
Uλ(x)(λ̃(x)− λ(x)) dx ≤ 0

As this inequality holds for any admissible density λ̃, the spatial density λ is concentrated on
the set where the indirect utility function Uλ(x) reaches its maximum value Ū . Stated differently,
Uλ(x) achieves its maximum value Ū on the support of λ. Hence, λ is a spatial equilibrium of the
economy E .

A.2. Necessity Proof of Theorem 2

Under Assumption 4, the functional F is displacement convex. Let λ be a spatial equilibrium
of the economy E , λ̃ some admissible spatial density, and T the optimal transport map from λ
onto λ̃. For the moment, we assume that T is C1. The changes corresponding to the case T /∈ C1

will be discussed at the end of the proof. We define the maps Tε := (1− ε)Id+ εT and consider
the family of perturbations λε = Tε#λ, indexed by 0 ≤ ε ≤ 1.5

As the curves {ε 7→ λε}ε∈[0,1] are geodesics inM(K) and F is displacement convex (i.e. geodesi-
cally convex), the function ε 7→ F [λε] is convex. In what follows, we show that the derivative of
that function is positive in ε = 0. This will prove that F [λ̃] ≥ F [λ].

First we derive the equation for the perturbation λε. By Expression (4.1), as the map Tε
transports λ onto λε, we have∫

K
ζ(y)λε(y) dy =

∫
K
ζ[Tε(x)]λ(x) dx ∀ζ : K → K .

5Note that we rely on a family of perturbations which is distinct from that of an additive type
(1 − ε)λ + ελ̃ used in the sufficiency part (Lemma 2), see Appendix A.1. These two different
types of perturbations are equally used in the theory of optimal transportation, see for instance
Santambrogio [2012].



EQUILIBRIUM FOR A SPATIAL MODEL OF SOCIAL INTERACTIONS 27

By performing the change of variable y = Tε(x) in the left-hand side term, we obtain∫
K
ζ(Tε(x))λε(Tε(x))|JTε(x)| dx =

∫
K
ζ[Tε(x)]λ(x) dx ∀ζ : K → K ,

where |JTε | denotes the determinant of the Jacobian matrix related to the map Tε

(A.2) |JTε | = det ((1− ε)I + εJT ) = det (I + ε(JT − I))

and JT denotes the Jacobian matrix of map T . By equating the expressions of the two integrands
appearing in the above relation, we obtain the following equation6

(A.3) λε(Tε(x)) =
λ(x)

|JTε(x)| or equivalently λε(y) =
λ(T−1

ε (y))

|JTε(T−1
ε (y))|

.

Let us now evaluate the derivative of F in ε = 0

(A.4)
d

dε
F [λε]|ε=0 =

d

dε
V[λε]|ε=0 +

d

dε
A[λε]|ε=0 +

d

dε
W[λε]|ε=0 .

By Equation (A.3), the first derivative in Relation (A.4) can be rewritten as∫
K
V (λε(x)) dx =

∫
K
V

(
λ(T−1

ε (x))

|JTε(T−1
ε (x)|

)
dx .

By performing the change of variable y = T−1
ε (x), we obtain∫

K
V

(
λ(T−1

ε (x))

|JTε(T−1
ε (x)|

)
dx =

∫
K
V

(
λ(y)

|JTε(y)|

)
|JTε(y)| dy .

So as to differentiate this expression, we need to compute the derivative of the Jacobian term JTε .
As det(I +H) = 1 + tr(H) + o(‖H‖), using the Jacobian determinant (A.2) leads to

|JTε | = 1 + ε tr(JT − I) + o(ε) = 1 + ε((div T )− d) + o(ε) ,

where div T denotes the divergence of T , that is the trace of the Jacobian matrix JT . As a
consequence,

d

dε
|JTε ||ε=0 = (div T )− d and

d

dε

1

|JTε | |ε=0

= − 1

|JTε |2
d

dε
|JTε ||ε=0 = −(div T ) + d.

Hence, by integration by parts, the first derivative in Relation (A.4) can be written as

d

dε

∫
K
V (λε(x)) dx|ε=0 =

d

dε

∫
K
V

(
λ(y)

|JTε(y)|

)
|JTε(y)| dy|ε=0

= −
∫
K
λ(y)((div T )(y)− d)V ′(λ(y)) dy

+

∫
K
V (λ(y))((div T )(y)− d) dy

=

∫
K

[
V (λ(y))− λV ′(λ(y))

]
((div T )(y)− d) dy

= −
∫
K
∇
[
V (λ(y))− λV ′(λ(y))

]
· (T (y)− y) dy

+

∫
∂K

[
V (λ(y))− λ(y)V ′(λ(y))

]
(T (y)− y) · ndσ ,

6In the mathematics literature, the condition relating the density of the transported density to
the Jacobian determinant of the transport map is referred to as the Monge-Ampère equation.
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where n is the normal outward vector. By convexity of K, (T (y)− y) · n ≤ 0. Also, by convexity
of V and V (0) = 0, V (λ(x)) − λV ′(λ(x)) is negative. Thus, the boundary integral is positive.
Moreover, ∇ [V (λ)− λV ′(λ)] = V ′(λ)∇λ − V ′(λ)∇λ − V ′′(λ)λ∇λ = −λ∇(V ′(λ)) = λ∇(v(λ)).
This allows to write

d

dε

∫
K
V (λε(x)) dx|ε=0 ≥

∫
K
λ(y)∇[v(λ(y))] · (T (y)− y) dy

By the push-forward Definition (4.1), the second derivative in Relation (A.4) can be written as

− d

dε

∫
K
A(x)λε(x) dx|ε=0 =−

∫
K
A(Tε(x))λ(x) dx|ε=0

=−
∫
K
∇A(x) · (T (x)− x)λ(x) dx .

Similarly, the last derivative in Relation (A.4) is given by

d

dε
W[λε]|ε=0 =

d

dε

1

2

∫∫
K2

W (Tε(x)− Tε(y))λ(x)λ(y)) dx dy|ε=0

=
1

2

∫∫
K2

∇W (x− y) · [(T (x)− x)− (T (y)− y)]λ(x)λ(y) dx dy

=

∫∫
K2

∇W (x− y) · (T (x)− x)λ(x)λ(y) dx dy

=

∫
K
∇W∗λ(x) · (T (x)− x)λ(x) dx .

Thus, by summing up the expressions of the three derivatives in Relation (A.4), we obtain

d

dε
F [λε]|ε=0 ≥ −

∫
K
∇ [v(λ(x))−A(x) +W ∗λ(x)] · λ(x)(T (x)− x) dx = 0

This integral vanishes because v(λ)−A+W ∗λ is constant on the set where λ(x) > 0 for almost
every x ∈ K. Thus, the derivative of F at ε = 0 is positive and the spatial equilibrium λ is a
minimiser of F .

We now comment on the case where the optimal transport map T is not C1. This may often
arise depending on the spatial density λ. The main issue lies in the distinction between the
divergence div(T − Id), which appears when computing the first derivative in Relation (A.4) (it is
computed pointwise), and the divergence that we need to perform the integration by parts, which
corresponds to the divergence in the distributional sense. For non-regular maps, these two notions
may differ. However here, the formal computations to be made in the case T /∈ C1 can be rigorously
justified in the framework of non-smooth analysis, see [Villani, 2003, Theorem 5.30]. As T is the
gradient of a convex function ϕ, we have (div T ) = ∆Aϕ almost everywhere, where ∆Aϕ denotes
the Alexandroff Laplacian of ϕ, which is also the absolutely continuous part of the distributional
Laplacian ∆ϕ. By convexity, ∆ϕ is a positive measure and ∆Aϕ ≤ ∆ϕ. This shows that the
pointwise divergence (div T ) is smaller than the distributional divergence divdistT . This implies
that the first derivative in Relation (A.4) is smaller than

∫
K [V (λ)− λV ′(λ)]∇dist · (T − Id) dx.

This then leads to the same result as that obtained when assuming T ∈ C1.

APPENDIX B: EXISTENCE OF A MINIMIZER

First, F is shown to be bounded from below by checking that each term of F is so. By As-
sumption 3 (iii)-(iv), A is bounded from above and W from below, so that we have A[λ] ≥
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∫
K(− supA)λ(x) dx = − supA and W[λ] ≥ (

∫∫
K×K inf Wλ(x)λ(y) dxdy)/2 = (inf W )/2. Regard-

ing the term V[λ], we show that V (λ) ≥ 0. By the definition of V (λ), V (0) = limλ→0+ V (λ) =
limλ→0+ −λu(1/λ)+V̄ = 0 as u(s) is concave and increasing. Also, by Assumption 3 (ii), v(0) = 0,
which gives V ′(0) = v(0) = 0. Moreover, V ′′(λ) = v′(λ) > 0 by Lemma 1. As we have shown that
V is convex with V (0) = V ′(0) = 0, it is increasing and positive, and therefore V(λ) ≥ 0.

This means that inf F is finite and there exists a minimizing sequence in M(K), {λn}, n =
1, 2, ..., such that F(λn)→ infλ∈M(K) F .

Second, we apply the Theorems of Dunford-Pettis and Prokhorov7 to show that we can extract
from the minimizing sequence {λn} a subsequence, still denoted by {λn} for notational conve-
nience, converging weakly to some element λ ∈M(K), that is limn→∞

∫
K φ(x)[λn(x)−λ(x)]dx =

0, ∀φ ∈ B(K), the set of bounded functions φ over K.

We now check the boundeness and the equi-integrability of λn so as to apply the Theorem of
Dunford-Pettis as well as the tightness condition of the sequence to use Prokhorov’s Theorem.
The sequence λn is bounded in L1(K) given its unit norm. Given that there exists some constant
C with

∫
V (λ(x))dx ≤ C and that V is superlinear (limλ→∞ V (λ)/λ = − lims→0+ u(s) = +∞

by Assumption 3 (i)), λn is also equi-integrable (i.e., for every ε > 0, there is δ > 0 such that for
all sets S ⊂ K with a measure µ(S) smaller than δ, we have

∫
S
λn(x) dx < ε, for every n). On

the other hand, the tightness of λn requires that for every ε > 0 there is a compact set K ⊂ K
such that

∫
K\K λn(x)dx < ε for every n. This last condition is satisfied under Assumption 3

(v) on A and W . When lim|x|→∞−A(x) = +∞, given that there is some constant C such that∫
K−A(x)λn(x)dx ≤ C, λn cannot concentrate too much on points outside some large compact set

K = B(0, R). Otherwise, by choosing the radius R such that −A(x) > C′/ε = (C−supK A)/ε, for
any |x| ≥ R, the integral

∫
K\K −A(x)λn(x) dx could be made larger than C′, and we would have∫

K−A(x)λn(x) dx =
∫
K
−A(x)λn(x) dx +

∫
K\K −A(x)λn(x)dx ≥ supK A+C′ = C. On the other

hand, when A is constant and lim|z|→∞W (z) = +∞, the functional F is translation-invariant, i.e
replacing some density λ(x) by λ(x−h) leaves the value of each term of F unchanged. Therefore,
one can choose a minimizing sequence λn such that the barycenter of λn corresponds to the origin,
e.g.

∫
xλn(x) dx = 0. Then an argument similar to that applied earlier can be used. Given that

there is some constant C such that
∫∫
K×KW (x − y)λ(x)λ(y) dxdy ≤ C, it is not possible for

the density λ to concentrate too much on points outside some large compact set K = B(0, R).
Otherwise by choosing R large enough, the integral

∫∫
K×KW (x− y)λ(x)λ(y) dx dy could exceed

C.

Third, F is shown to be lower-semicontinuous (lsc) with respect to the weak convergence.
For this, we construct functionals Fk = Ak +Wk + Vk, k ∈ N, such that supkAk[λ] = A[λ],
supkWk[λ] =W[λ], and supk Vk[λ] = V[λ]. Then showing that Ak, Wk, and Vk are lsc for any k,
will ensure that F = supk Fk is also lsc.

We construct Ak[λ] =
∫
Ak(x)λ(x)dx, with Ak(x) = min{−A(x), k} being an increasing

sequence. For fixed λ, we have limk→∞Ak[λ] =
∫
−A(x)λ(x)dx = A[λ] by Lebesgue mono-

tone convergence Theorem, and therefore supkAk[λ] = A[λ]. Indeed, Ak is continuous since∫
Ak(x)λn(x)dx→

∫
Ak(x)λ(x)dx as λn ⇀ λ given that Ak is bounded (from below as −A is so

by Assumption 3 (iv), and from above by k by construction).

Similarly, we construct Wk =
∫∫
K×KWk(x − y)λ(x)λ(y) dxdy, with Wk(z) = min{W (z), k}

so that supkWk = limk→∞Wk[λ] = W[λ]. Notice that λn ⇀ λ implies that the sequence
λn(x)λn(y) ∈M(K×K) ⇀ λ(x)λ(y) inM(K×K) in duality with bounded functions over K×K.
ThenWk is continuous since

∫∫
K×KWk(x−y)λn(x)λn(y) dxdy →

∫∫
K×KWk(x−y)λ(x)λ(x) dxdy

as λn(x)λn(y) ⇀ λ(x)λ(y) given that Wk is bounded (from below as W is so by Assumption 3

7For a general exposition of the Theorems of Dunford-Pettis and Prokhorov, see for instance
Attouch et al. [2005]



30 A. BLANCHET, P. MOSSAY & F. SANTAMBROGIO

(iii), and from above by k by construction).
Regarding V(λ), we construct Vk[λ] =

∫
K Vk(λ(x) dx, k ∈ N, in the following way. Vk(t) is a

Lipschitz convex function corresponding to the graph of V (t) until t = k and to the line tangent
to V at k for t > k,

Vk(t) =

{
V (k) + V ′(k)(t− k) for t > k,

V (t) for t ≤ k.

Given the convexity of Vk, we have Vk(λn(x)) ≥ Vk(λ) + (λn(x) − λ(x))(V k)′(λ(x)). Hence,
Vk[λn] ≥ Vk[λ]+

∫
(λn(x)−λ(x))(Vk)′(λ(x)) dx. As (V k)′ is a bounded function, limn→∞

∫
(λn(x)−

λ(x))(Vk)′(λ(x)) dx = 0 as λn ⇀ λ. Therefore lim infn→∞ Vk[λn] ≥ Vk[λ].
Finally, collecting the above results leads to inf F ≤ F(λ) ≤ lim infn→∞ F(λn) ≤ inf F , which

means that λ is a minimizer of F in M(K).

APPENDIX C: SPATIAL EQUILIBRIA OF THE CIRCULAR SPATIAL ECONOMY

In this Appendix, the explicit solutions φ to the differential equation (6.3) with the periodic
condition (6.4) are determined. Then, the spatial equilibria λ are obtained by using Relation (6.2).
For notational convenience, we will denote the maximum value of φ along C by Φ. Without loss
of generality, we will assume that this maximum value Φ is attained in x = 0. It is convenient to
rewrite the problem (6.3)- (6.4) as φ′′ = f(φ), with φ(0) = Φ and φ′(0) = 0, where the function
f is defined by

(C.1) f(t) = (C − δ2t)+ − (C + δ2t)+.

We distinguish three families of solutions: one-frequency equilibria (C ≤ 0), two-frequency
equilibria (C > 0 and Φ > C/δ2), and equilibria with full support (C > 0 and Φ ≤ C/δ2). Note
that unlike parameters β and τ , the values of C and Φ have to be determined in equilibrium.

C.1. Case 1: C ≤ 0 (One-frequency spatial equilibria)

When C ≤ 0, the function f defined in Expression (C.1) can be rewritten as

f(t) =


C − δ2t if t <

C

δ2
,

0 if
C

δ2
≤ t ≤ −C

δ2
,

−C − δ2t if t > −C
δ2

.

The graph of f is illustrated in Figure 7.
First of all, the case Φ ≤ −C/δ2 can be discarded for the following reason. As the function

f vanishes in [C/δ2,−C/δ2], the solution to Equation (6.3) is linear. Hence, no linear periodic
function φ with φ(x) + φ(x̄) = 0 can be expected, except φ = 0. However, in this latter case,
λ = C+/2 = 0 since C < 0, which is not an equilibrium as the total population constraint cannot
be satisfied.

We now consider the case Φ > |C|/δ2. In the neighbourhood of x = 0, we have to solve
the Cauchy problem associated to the following second order linear differential equation φ′′ =
−C − δ2φ, with φ(0) = Φ and φ′(0) = 0. This equation has the following unique solution

φ1 : x 7→
(

Φ +
C

δ2

)
cos(δx)− C

δ2
.
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Figure 7.— Graph of f in the case C ≤ 0.

This expression is valid as long as φ1(x) > −C/δ2. Let a be the first value of x for which
φ1(x) = −C/δ2, so that φ1(x) > −C/δ2 in the interval (−a, a). Note that this interval is symmetric
as φ1 is even. It follows that a = π/(2δ). In the neighbourhood at the right of x = a, we
have to solve the equation φ′′ = 0 with φ(a) = −C/δ2. By Proposition 2, φ is regular so that
φ′(a) = φ′1(a) = −δ(Φ + C/δ2). The solution to the differential equation at the right of x = a is
given by

φ2 : x 7→ −δ
(

Φ +
C

δ2

)
x+

π

2

(
Φ +

C

δ2

)
− C

δ2
.

This expression is valid in (a, a+ 2b) where a+ b denotes the first zero of φ2, i.e.

(C.2) a+ b =
|C|

δ(δ2Φ + C)
+

π

2δ
.

The construction of solution φ can be extended to obtain a solution of period T = (4a+ 4b)

(C.3) φ(x) =



φ1(x) =

(
Φ +

C

δ2

)
cos(δx)− C

δ2
if −a ≤ x ≤ a,

φ2(x) = −δ
(

Φ +
C

δ2

)
x+

π

2

(
Φ +

C

δ2

)
− C

δ2
if a ≤ x ≤ a+ 2b,

−φ1(x− 2a− 2b) if a+ 2b ≤ x ≤ 3a+ 2b,

−φ2(x− 2a− 2b) if 3a+ 2b ≤ x ≤ 3a+ 4b.

The period T of function φ has to satisfy the periodic condition (6.4), which can be written as
(2j + 1)(4a+ 4b) = 2π, for j ∈ N. We still need to determine the admissible values of period T

T = 4(a+ b) =
2π

δ
+

4|C|
δ(δ2Φ + C)

.

By inspection of the above expression, when C 6= 0, the period T is a monotone function of the
ratio Φ/C. As Φ/|C| > 1/δ2, the admissible values of period T are the interval (2π/δ,+∞). Hence,
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for a given value of δ and for any j ∈ N such that 2π/(2j+ 1) > 2π/δ ⇔ 2j+ 1 < δ, a unique
value of Φ/C can be determined so that the above solution φ is of period T = 2π/(2j + 1). The
values of C and Φ are determined by imposing the total population constraint

1 = (2j + 1)

∫ 3a+2b

a+2b

(
δ2Φ + C

)
cos(δ(x− 2a− 2b)) dx

= (2j + 1)
(
δ2Φ + C

) ∫ a

−a
cos(δx) dx = 2(2j + 1)

(
δΦ +

C

δ

)
.

which leads to δ2Φ +C = δ/(2(2j + 1)). The positive part of the equilibrium spatial distribution
λ in the interval (−a, 3a+ 4b) is obtained by using Relation (6.2)

λ(x) =
δ

2(2j + 1)
cos(δ(x− 2a− 2b)) if a+ 2b ≤ x ≤ 3a+ 2b

Note that by using Expression (C.2), the values of Φ and Ū can also be obtained. The solution φ
is illustrated in Figure 8. The corresponding spatial equilibrium λ is represented in Figure 5.

Figure 8.— Solution φ for C = −1 and δ = 3 in the left panel and for C = −1
and δ = 4 in the right panel. The horizontal lines correspond to the values ±C/δ2.

C.2. Case 2: C > 0

When C > 0, the function f defined in Expression (C.1) can be rewritten as

f(t) =


C − δ2t if t < −C

δ2
,

−2δ2t if −C
δ2
≤ t ≤ C

δ2
,

−C − δ2t if t >
C

δ2
.

The graph of f is illustrated in Figure 9.
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Figure 9.— Graph of f in the case C > 0.

C.2.1. Case 2.1: Φ ≤ C/δ2 (Spatial equilibria with full support)

In this case, we have to solve the following differential equation φ′′(x) = −2δ2φ, with φ(0) = Φ
and φ′(0) = 0. The unique solution to this equation is given by φ(x) = Φ cos(

√
2δx). The periodic

condition φ(x) = −φ(x̄) leads to two cases, either Φ = 0 or cos(
√

2δx) = − cos(
√

2δ(x + π)).
When Φ = 0, φ = 0, and λ = C/2. By using the total population constraint, we get the uniform
spatial equilibrium λ = 1/(2π). The other case corresponds to

√
2δ being an odd number J ,

that is
√

2δ = J = (2j + 1) for some j ∈ N. By making use of Relation (6.2) and of the total
population constraint, the spatial distribution λ is then given by λ(x) = 1/(2π)−m cos(

√
2δx)),

∀m ∈ [−1/(2π), 1/(2π)]. Examples of such equilibria are drawn in Figure 4.

C.2.2. Case 2.2: Φ > C/δ2 (Two-frequency spatial equilibria)

In the neighbourhood of x = 0, we have to solve the following second order linear differential
equation φ′′ = −C − δ2φ with φ(0) = Φ and φ′(0) = 0. The unique solution to the equation is
given by φ1(x) = (Φ +C/δ2) cos(δx)−C/δ2. This expression is valid for any x ∈ (−a, a) where a
is the first value of x for which φ1(a) = C/δ2, that is a = (1/δ) arccos

[
2C/(δ2Φ + C)

]
. In x = a,

the function φ1 satisfies

φ1(a) =
C

δ2
and φ′1(a) = −δ

(
Φ +

C

δ2

)
sin(δa) = −1

δ

√
(δ2Φ + C)2 − 4C2.

Since the solution φ is C1, at the right of x = a, we have to solve the following second order linear
differential equation φ′′ = −2δ2φ with φ(a) = φ1(a) and φ′(a) = φ′1(a) < 0. There is a unique
solution φ2 to this equation in the interval (a, a+b) where a+b is the first root of φ2. The solution
φ2 is given by

φ2(x) =
C

δ2
cos(
√

2δ(x− a))− 1

δ2
√

2

√
(δ2Φ + C)2 − 4C2 sin(

√
2δ(x− a)).

This expression of φ2 remains valid in the interval (a + b, a + 2b). So, we have constructed a
solution φ of period T = (4a+ 4b) with (2j + 1)(2a+ 2b) = π
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φ(x) =



φ1(x) if −a ≤ x ≤ a,

φ2(x) if a ≤ x ≤ a+ 2b,

−φ1(x− 2a− 2b) if a+ 2b ≤ x ≤ 3a+ 2b,

−φ2(x− 2a− 2b) if 3a+ 2b ≤ x ≤ 3a+ 4b.

We now need to determine the value of b by imposing that φ2(a+ b) = 0, that is

C

δ2
cos(
√

2δb)− 1

δ2
√

2

√
(δ2Φ + C)2 − 4C2 sin(

√
2δb) = 0,

which leads to

b =
1

δ
√

2
arctan

(
C
√

2√
(δ2Φ + C)2 − 4C2

)
.

Thus, the period T of solution φ can be written as

T = 4(a+ b) = 4
1

δ
arccos

(
2α

δ2Φ + C

)
+ 4

1

δ
√

2
arctan

(
C
√

2√
(δ2Φ + C)2 − 4C2

)
.

We still need to determine C and Φ in equilibrium. Let us define r = (δ2Φ +C)/C = 1 + δ2Φ/C.
For Φ ≥ C/δ2, the value of r ranges from 2 to +∞. We now study the monotonicity of the
following function

r 7→ arccos

(
2

r

)
+

1√
2

arctan

( √
2√

r2 − 4

)
, r ∈ [2,+∞[.

By computing the derivative of the above function, it can readily be checked that the above
function is strictly decreasing. The image of this function on [2,+∞) is given by [π/(2

√
2), π/2[.

This means that, for a given value of δ, any period T ∈ [
√

2π/δ, 2π/δ[ may be obtained for a
unique value of the ratio Φ/C ≥ 1/δ2. In particular, given the value of δ and any j ∈ N satisfying

2π

2j + 1
∈
[√

2π

δ
,

2π

δ

[
⇔ δ < 2j + 1 ≤

√
2δ,

we can determine a unique value of Φ/C such that the solution φ that we have constructed above
is of period T = 2π/(2j + 1). Note that the limit case 2j + 1 =

√
2δ actually corresponds to the

case (C.2.1) where Φ = C/δ2.
There is still one degree of freedom left as only the ratio Φ/C has been determined. The values

of C and Φ can be determined by using the total population constraint. The spatial equilibrium
λ is obtained from the solution φ by using Relation (6.2). If both C and Φ are multiplied by some
constant K, so will be the spatial density λ. This allows to tune the values of C and Φ so as
to get the total population of agents equal to 1. The solution φ is illustrated in Figure 10. The
corresponding spatial equilibrium λ is represented in Figure 6.
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