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Abstract. Given an open set Ω ⊂ Rm and n > 1, we introduce the new spaces GBnV (Ω) of
Generalized functions of bounded higher variation and GSBnV (Ω) of Generalized special functions
of bounded higher variation that generalize, respectively, the space BnV introduced by Jerrard and
Soner in [43] and the corresponding SBnV space studied by De Lellis in [24]. In this class of
spaces, which allow as in [43] the description of singularities of codimension n, the distributional
jacobian Ju need not have finite mass: roughly speaking, finiteness of mass is not required for the
(m − n)-dimensional part of Ju, but only finiteness of size. In the space GSBnV we are able to
provide compactness of sublevel sets and lower semicontinuity of Mumford-Shah type functionals,
in the same spirit of the codimension 1 theory [5, 6].

1. Introduction

The space BV of functions of bounded variation, consisting of real-valued functions u defined in
a domain of Rm whose distributional derivative Du is a finite Radon measure, may contain dis-
continuous functions and, precisely for this reason, can be used to model a variety of phenomena,
while on the PDE side it plays an important role in the theory of conservation laws [20, 14]. In
more recent times, De Giorgi and the first author introduced the distinguished subspace SBV of
special functions of bounded variation, whose distributional derivative consists of an absolutely
continuous part and a singular part concentrated on a (m − 1)-dimensional set, called (approxi-
mate) discontinuity set Su. See [7] for a full account of the theory, whose applications include the
minimization of the Mumford-Shah functional [52] and variational models in fracture mechanics.
In a vector-valued setting, also the spaces BD and SBD play an important role, in connection with
problems involving linearized elasticity and fracture (see also the recent work by Dal Maso on the
space GSBD [21])

It is well know that |Du| vanishes on H n−1-negligible sets, hence BV and all related spaces
can’t be used to describe singularities of higher codimension. For this reason, having in mind
application to the Ginzburg-Landau theory (where typically singularities, e.g. line vortices in R3

have codimension 2) Jerrard and Soner introduced in [43] the space BnV of functions of bounded
higher variation, where n stands for the codimension: roughly speaking it consists of Sobolev maps
u : Ω → Rn whose distributional Jacobian Ju (well defined, at least as a distribution, under
appropriate integrability assumptions) is representable by a vector-valued measure: in this case the
natural vector space is the space Λm−nRm of (m − n)-vectors. Remarkable extensions of the BV
theory have been discovered in [43], as the counterpart of the coarea formula and of De Giorgi’s
rectifiability theorem for sets of finite perimeter. Even before [43], the distributional jacobian has
been studied in many fundamental works as [46, 13, 38, 55, 51] in connection with variational
problems in nonlinear elasticity (where typically m = n and u represents a deformation map), e.g.
to model cavitation effects.

As a matter of fact, since Ju can be equivalently described as a flat (m−n)-dimensional current,
an important tool in the study of Ju is the well-developed machinery of currents, both in the
Euclidean and in metric spaces, see [31, 34, 9, 57]. The fine structure of the measure Ju has been
investigates in subsequent papers: using precisely tools from the theory of metric currents [9], De
Lellis in [24] characterized Ju in terms of slicing and proved rectifiability of the (measure theoretic)
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support Su of the (m − n)-dimensional part of Ju, while in [26] the second author and De Lellis
characterized the absolutely continuous part of Ju with respect to Lm in terms of the Sobolev
gradient ∇u. Also, in [24] the analog of the space SBV has been introduced, denoted SBnV : it
consists of all functions u ∈ BnV such that Ju = R + T , with ‖R‖ � Lm and ‖T‖ concentrated
on a (m− n)-dimensional set.

The main goal of this paper is to study the compactness properties of SBnV . Even in the
standard SBV theory, a uniform control on the energy of Mumford-Shah typeˆ

(|uh|s + |∇uh|p)dLm + H m−n(Suh)

(with s > 0, p > 1) along a sequence (uh) does not provide a control on Duh. Indeed, only the
H m−1-dimensional measure of Suh does not provide a control on the width of the jump. This
difficulty leads [22] to the space GSBV of generalized special functions of bounded variation, i.e.
the space of all real-valued maps u whose truncates (−N) ∨ u ∧ N are all SBV . Since both the
approximate gradient ∇u and the approximate discontinuity set Su behave well under truncation,
it turns out that also the energy of uNn := (−N) ∨ un ∧ N is uniformly controlled, and now also
|DuNn |; this is the very first step in the proof of the compactness-lower semicontinuity theorem in
GSBV , which shows that the sequence (uh) has limit points with respect to local convergence in
measure, that any limit point u belongs to GSBV , and thatˆ

(|u|s + |∇u|p)dLm ≤ lim inf
h

ˆ
(|uh|s + |∇uh|p)dLm, H m−1(Su) ≤ lim inf

h
H m−1(Suh).

In the higher codimension case, if we look for energies of the formˆ
(|u|s + |∇u|p + |M(∇u)|γ)dLm + H m−n(Su)

(with s−1 + (n− 1)/p < 1, γ > 1) now involving also the minors M(∇u) of ∇u, the same difficulty
exists, but the truncation argument does not work anymore. Indeed, the absence of Su, namely the
absolute continuity of Ju, may be due to very precise cancellation effects that tend to be destroyed
by a left composition, thus causing the appearance of new singular points (see Example 2.5.3 and
the subsequent observation). Also, unlike the codimension 1 theory, no “pointwise” description of
Su is presently available.

For these reasons, when looking for compactness properties in SBnV , we have been led to define
the space GSBnV of generalized special functions of bounded higher variation as the space of
functions u such that Ju is representable in the form R + T , with R absolutely continuous with
respect to Lm and T having finite size in an appropriate sense, made rigorous by the slicing theory
of flat currents (in the same vein, one can also define GBnV , but our main object of investigation
will be GSBnV ). In particular, for u ∈ GSBnV the distribution Ju is not necessarily representable
by a measure. The similarity between GSBV (Ω) and GSBnV (Ω) is not coincidental, and in fact
we prove that in the scalar case n = 1 these two spaces are essentially the same; on the contrary
for n ≥ 2 their properties are substantially different. In order to study the T part of Ju we use the
notion of size of flat current with possibly infinite mass developed, even in metric spaces, in [8], see
also [27] for the case of currents with finite mass.

The paper is organized as follows: after posing the proper definitions in the context of metric
currents we briefly review the space BnV studied in [43, 24, 25]. In section 3 we present the notion
of size of a flat current, we relate it to the concept of distributional jacobian and define our new
space of functions GSBnV . The main result of the paper is presented in section 4, where with the
help of the slicing theorem we will generalize to our setting the compactness theorem of GSBV , as
well as the closure theorem in SBnV due to De Lellis in [24, 25].
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We finally apply the compactness theorem to show the existence of minimizers for a general class
of energies that feature both a volume and a size term. The model problem is a new functional
of Mumford-Shah type that we here introduce, in the spirit of [23]. We analyse its minimization
together with suitable Dirichlet boundary conditions, both in the interior and in the closure of Ω. In
particular we show that minimizers must be nontrivial (i.e.: Su 6= ∅), at least for suitable boundary
data; we also compare our choice of the energy with the classical p-energy of sphere-valued maps,
see [38, 39, 15]. Regarding the problem in Ω the higher codimension of the singular set allows
concentration of the jacobian at the boundary, providing some interesting examples that we briefly
include in subsection 5.3. Similar variational problems in the framework of cartesian currents have
been considered in [47], where the author proves existence of minimizers in the set of maps whose
graph is a normal current: the boundaries of these graphs enjoy a decomposition into vertical parts
of integer dimension, inherited from general properties of integral currents, which relates to the
space BnV , see [48].

In a forthcoming paper [37] we show how the Mumford-Shah energy can be approximated, in
the sense of Γ-convergence, by a family of functionals defined on maps with absolutely continuous
jacobian:

Fε(u, v; Ω) :=

ˆ
Ω

(|u|s + |∇u|p + (v + kε)|M(∇u)|γ)dLm + β

ˆ
Ω
εq−n|∇v|q +

(1− v)n

εn
dLm,

(here β, γ, q, kε are suitable parameters, v : Ω→ [0, 1] is Borel). Following [11, 12, 3, 45] the control
variable v dims the concentration of M(∇u): the price of the transition between 0 and 1 is captured
by the Modica-Mortola term which detects (m− n)-dimensional sets.

We occasionally appeal to the metric theory of currents because the main tool in the definition
of size and in the proof of the rectifiability theorem is the slicing technique, a basic ingredient of the
metric theory. For instance the argument in [8] proving the rectifiability of currents with finite size
uses Lipschitz restrictions and maps of metric bounded variation taking values into an appropriate
space of flat chains with a suitable hybrid metric. However, no significant simplification comes from
the Euclidean theory, except the fact that suffices to consider linear instead of Lipschitz maps.

1.1. Acknowledgements. The authors wish to thank Camillo De Lellis, Nicola Fusco, Bernd
Kirchheim, Domenico Mucci and Emanuele Spadaro for many useful discussions and comments.
This work has been supported by the ERC grant ADG GeMeThNES and by the PRIN08-grant
from MIUR for the project Optimal transport theory, geometric and functional inequalities, and
applications.

2. Distributional Jacobians

We begin by fixing some basic notions about currents and recalling some properties of the distri-
butional jacobian.

2.1. Exterior algebra and projections. Our ambient space will be Rm with the standard basis
e1, . . . , em and its dual e1, . . . , em. For every 1 ≤ k ≤ m we let

Ok =
{
π : Rm → Rk : π ◦ π∗ = Ik

}
be the space of orthogonal projections of rank k. We will also need to fix coordinates according to
some projection π ∈ Ok: we agree that Rm 3 z = (x, y) ∈ Rk × Rm−k are orthogonal coordinates
with positive orientation such that π(z) = x. In particular we let Ax = A∩π−1(x) be the restriction
of any A ⊂ Rm to the fiber π−1(x) and ix = Rm−k → Rm be the isometric injection ix(y) = (x, y).

As customary the symbols ΛkRm and ΛkRm will respectively denote the spaces of k-vectors and
k-covectors in Rm. The contraction operation : ΛqRm × ΛpRm → Λq−pRm between a q-vector ζ
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and a p-covector α, with q ≥ p, is defined as:

〈ζ α, β〉 = 〈ζ, α ∧ β〉 whenever β ∈ Λq−pRm. (1)

If L : Rm → Rn is linear then

MnL := e1 ∧ · · · ∧ em L1 ∧ · · · ∧ Ln ∈ Λm−nRm (2)

represents the collection of determinants of n × n minors of L. In fact, if i : {1, . . . ,m − n} →
{1, . . . ,m} is an increasing selection of indexes, and if i : {1, . . . , n} → {1, . . . ,m} is the comple-
mentary increasing selection, then the ei component of MnL is

〈MnL, e
i〉 = 〈e1 ∧ · · · ∧ em, L1 ∧ · · · ∧ Ln ∧ ei〉 = (−1)σ det([L]i), (3)

where [L]i is the n × n submatrix L`j with j = i(1), . . . , i(n), ` = 1, . . . , n and σ is the sign of the
permutation

(1, . . . ,m) 7→ (i(1), . . . , i(n), i(1), . . . , i(m− n)).

When rk(L) = n, choosing an orthonormal frame (ei) so that ker(L) =< en+1, . . . , em > we have
L = (A,0) and by (3) MnL = det(A)en+1 ∧ · · · ∧ em. In particular MnL is a simple (m−n)-vector.

Recall that the spaces ΛkRm and ΛkRm can be endowed with two different pairs of dual norms.
The first one is called norm, it is denoted by | · | and it comes from the scalar product where the
multivectors

{ei(1) ∧ · · · ∧ ei(k)}i and {ei(1) ∧ · · · ∧ ei(k)}i (4)

indexed by increasing maps i : {1, . . . , k} → {1, . . . ,m} form a pair of dual orthonormal bases. The
second one is called mass, comass for the space of covectors, and it is defined as follows: the comass
of φ ∈ ΛkRm is

‖φ‖ := sup
{
〈φ, v1 ∧ · · · ∧ vk〉 : vi ∈ Rm, |vi| ≤ 1

}
;

and the mass of ξ ∈ ΛkRm is defined, by duality, by

‖ξ‖ := sup
{
〈ξ, φ〉 : ‖φ‖ ≤ 1

}
.

As described in [31, 1.8.1], in general ‖ξ‖ ≤ |ξ| and equality holds if and only if ξ is simple.
Therefore |MnL| = ‖MnL‖. Moreover using the Pitagora’s Theorem for the norm and Binet’s

formula we have the following relation:

sup
π∈Om−n

|MnL dπ| = sup
π∈Om−n

|dπ(MnL)| = sup
π∈Om−n

∣∣∑
i

MnL
i dπ(ei)

∣∣
≤ sup

π∈Om−n

|MnL|
(∑

i

|dπ(ei)|2
) 1

2 = |MnL| sup
π∈Om−n

|det(π ◦ π∗)| = |MnL| (5)

where dπ stands for dπ1 ∧ · · · ∧ dπm−n, and the equality is realized by the orthogonal projection
onto ker(L).

We adopt the convention of choosing the mass and comass norms to measure the length of
k-vectors and k-covectors respectively.

2.2. Currents in Ω ⊂ Rm. We briefly recall the basic definitions and properties of classical cur-
rents in Rm. This theory was introduced by De Rham in [29], along the lines of the previous work
on distributions by Schwartz [53], and the subsequently put forward by Federer and Fleming in
[33]; we refer to [31] for a complete account of it. The classical framework is best for treating the
concepts of distributional jacobian in a subset of Rm; however we will need to use the metric theory
of Ambrosio and Kirchheim [9] to define the concept of size and of concentration measure. We will
clearly outline the interplay between the two approaches.
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We give for granted the concepts of derivative, exterior differentiation, pull-back and support of
a test functions: they can all be defined by expressing the form in the coordinates given by the
frame (4), see [31, 4.1.6].

We begin by defining the space of smooth, compactly supported test forms:

Definition 2.2.1 (Smooth test forms). We let Dk(Ω) be the space of smooth, compactly supported
k-differential forms:

Dk(Ω) =
⋃
KbΩ

Dk
K(Ω), Dk

K(Ω) =
{
ω ∈ C∞(Ω,ΛkRm), spt(ω) ⊂ K

}
. (6)

Each space Dk
K(Ω) is endowed with the topology given by the seminorms

pK,j(ω) = sup{‖Dαω(x)‖, x ∈ K, |α| ≤ j},

and Dk(Ω) is endowed with the finest topology making the inclusions Dk
K(Ω) ↪→ Dk(Ω) are contin-

uous.

This topology is locally convex, translation invariant and Hausdorff; moreover a sequence ωj → ω

in Dk(Ω) if and only if there exists K b Ω such that spt(ωj) ⊂ K and pK,j(ωj − ω)→ 0 for every
j ≥ 0.

Definition 2.2.2 (Classical currents and weak* convergence). A current T is a continuous linear
functional on Dk(Ω). The space of k-currents is denoted by Dk(Ω). We say that a sequence (Th)

weak* converges to T , Th
∗
⇀ T , whenever

Th(ω)→ T (ω) ∀ω ∈ Dk(Ω). (7)

The support of a current is

spt(T ) :=
⋂
{C : T (ω) = 0 ∀ω ∈ Dk(Ω), spt(ω) ∩ C = ∅}.

The boundary operator is the adjoint of exterior differentiation:

∂T (ω) := T (dω);

let also φ : Ω → Rp be a proper Lipschitz map: we let the push-forward of T ∈ Dk(Ω) via Φ by
duality:

(Φ#T )(ω) := T (Φ#ω) ∀ω ∈ Dk(Rp).

According to (1) given T ∈ Dk(Ω) and τ ∈ D`(Ω) with ` ≤ k we set the restriction

(T τ)(η) = T (τ ∧ η) ∀η ∈ Dk−`(Ω).

Definition 2.2.3 (Finite mass and Normal currents). We say that T ∈ Dk(Ω) is a current of finite
mass if there exists a finite Borel measure µ in Ω such that

|T (ω)| ≤
ˆ

Ω
‖ω(x)‖dµ(x) ∀ω ∈ Dk(Ω). (8)

The total variation of T is the minimal µ satisfying (8) and is denoted by ‖T‖, and the mass
M(T ) := ‖T‖(Ω). As customary we let Mk(Ω) be the space of finite mass k-dimensional currents
and Nk(Ω) be the subspace of normal currents:

Nk(Ω) = Mk(Ω) ∩ {T : ∂T ∈Mk−1(Ω)}.
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Therefore every finite mass current can be represented as T =
→
T ∧‖T‖, and admits and extension

to k-forms with bounded Borel coefficients. In particular we can restrict every finite mass current
T to every open set A. We denote

Em = e1 ∧ · · · ∧ em ∧Lm

the top dimensional m-current representing the Lebesgue integration on Rm with the standard
orientation. As explained in [31, 4.1.7, 4.1.18], [9, 3.2], every function f ∈ L1(Ω,Λm−kRm) induces
a k-current of finite mass via the action

(Em f)(ω) =

ˆ
Ω
〈f ∧ ω, e1 ∧ · · · ∧ em〉 dLm ∀ω ∈ Dk(Ω). (9)

Note that fh ⇀ f weakly in L1 entails Em fh
∗
⇀ Em f .

2.3. Flat currents. In order to treat objects with possibly infinite mass, the right subspace of
Dk(Ω) retaining some useful properties such as slicing and restrictions is the space of flat currents.

Definition 2.3.1 (Flat norm and flat currents, [31, 4.1.12]). For every ω ∈ Dk(Ω) we let

F(ω) = max
{

sup
x∈Ω
‖ω(x)‖, sup

x∈Ω
‖dω(x)‖

}
.

The flat norm is defined as

F(T ) = inf{M(T − ∂Y ) + M(Y ) : Y ∈Mk+1(Ω)} (10)

= sup{T (ω) : ω ∈ Dk(Ω), F(ω) ≤ 1}. (11)

The space Fk(Ω) of flat k-dimensional currents in an open subset Ω ⊂ Rm is the F-completion of
Nk(Ω) (see [34] and [31, 4.1.12] for the equivalence of (10) and (11)).

It is straightforward to prove that F is a norm; furthermore if T is flat, so is ∂T and

F(∂T ) ≤ F(T ) ≤M(T ).

Throughout all the paper we will deal with three notions of convergence:

• the convergence w.r.t. the flat norm F defined in (10) above;
• the weak convergence in Lp, 1 ≤ p <∞, denoted by ⇀;
• the weak* convergence of currents (7).

The map (9) f 7→ Em f embeds L1(Ω,Λm−kRm) into Fk(Ω) by [31, 4.1.18], and the three afore-
mentioned topologies are ordered from the strongest to the weakest.

2.4. Slicing. As explained in [31, 4.2] and [8], every T ∈ Fk(Ω) can be sliced via a Lipschitz map
π ∈ Lip(Ω,R`), 1 ≤ ` ≤ k: the result is a collection of currents

〈T, π, x〉 ∈ Fk−`(Ω) uniquely determined up to L ` negligible sets

expressing the action of T against tensor product forms (φ ◦ π)dπ ∧ ψ, for φ ∈ D0(R`) and ψ ∈
Dk−`(Ω):

T
(
(φ ◦ π)dπ ∧ ψ

)
=

ˆ
R`
φ(x)〈T, π, x〉(ψ)dL `(x).

The slices satisfy several properties: amongst them we recall

〈T, π, x〉 is concentrated on π−1(x) for L `-a.e. x ∈ π(Ω), (12)ˆ
π(Ω)

F(〈T, π, x〉) dL `(x) ≤ Lip(π)`F(T ), (13)

and we refer to [31, 4.2.1] and to [9] for a general account in the Euclidean and general metric
settings. We stress the following fact, which is a key tool to extend many properties like restrictions
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and slicing from normal to flat currents, and that will be used later on. Suppose (Th) ⊂ Fk(Ω)
satisfy ∑

h

F(Th+1 − Th) < +∞

and let π ∈ Lip(Ω,R`) fixed. Then

F
(
〈Th, π, x〉 − 〈T, π, x〉

)
→ 0

for L `-almost every x ∈ R`. Recall that for the finite mass current R = ρLm with ρ ∈ L1(Ω,ΛkRm)
Federer’s coarea formula implies that at almost every x ∈ R` it holds:

〈R, π, x〉 = (ρ(x, ·) dπ) H m−` π−1(x). (14)

2.5. Distributional jacobian. We will assume throughout all the paper that m ≥ n are positive
integers and that p and s are positive exponents satisfying

1

s
+
n− 1

p
≤ 1. (15)

The definition of distributional jacobian takes advantage of the divergence structure of jacobians

d(u1du2 ∧ · · · ∧ dun) = du1 ∧ · · · ∧ dun ∀u ∈ C1(Rn,Rn),

which allows to pass the exterior derivative to the test form and hence weakens the minimal regu-
larity assumptions on the map u.

Definition 2.5.1 (Distributional Jacobian). Let u ∈W 1,p(Ω,Rn)∩Ls(Ω,Rn). We denote by j(u)
the (m− n+ 1)-dimensional flat current

〈j(u), ω〉 := (−1)n
ˆ

Ω
u1du2 ∧ · · · ∧ dun ∧ ω ∀ω ∈ Dm−n+1(Ω); (16)

we define the distributional Jacobian of u as the (m− n)-dimensional flat current

Ju := ∂j(u) ∈ Fm−n(Ω). (17)

A few observations are in order: first of all the integrability assumption u ∈ W 1,p ∩ Ls and the
exponent bound (15) ensure that j(u) is a well-defined flat current of finite mass, since it acts on test
forms as the integration against an L1(Ω,Λm−n+1Rm) function: j(u) = (−1)nEm u1du2∧· · ·∧dun.
As a consequence Ju ∈ Fm−n(Ω) as declared in (17). Furthermore for p ≥ mn

m+1 the constraint (15) is

satisfied with the Sobolev exponent p∗ in place of s, hence definition 2.5.1 makes sense for u ∈W 1,p

in this range of summability.

In [16] the authors showed that Ju can be defined in the space W 1− 1
m
,m(Ω), which contains

Ls ∩ W 1,p for every s, p as in (15). This extension exploits the trace space nature of W 1− 1
m
,m,

expressing Ju as a boundary integral in Rm+ .
Finally in the special situation n = 1 the minimal requirement to give meaning to (16) is

u ∈ L1(Ω), and the Jacobian reduces to the distributional derivative Ju = −∂(Em u):〈
Ju,

∑
i

(−1)i−1ωid̂xi
〉

= −
∑
i

ˆ
Ω
u
∂ωi
∂xi

dx =
∑
i

〈Diu, ωi〉. (18)

Regarding the convergence properties of these currents, we note the following:

Proposition 2.5.2. Let uh, u ∈W 1,p(Ω,Rn) ∩ Ls(Ω,Rn) satisfy

• uh → u in Ls(Ω,Rn),
• ∇uh ⇀ ∇u weakly in Lp(Ω,Rn×m).

Then F(Juh − Ju)→ 0.
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Proof. Let us rewrite the difference u1
hdu

2
h ∧ · · · ∧ dunh − u1du2 ∧ · · · ∧ dun in the following way:

u1
hdu

2
h ∧ · · · ∧ dunh − u1du2 ∧ · · · ∧ dun =

= (u1
h − u1)du2

h ∧ · · · ∧ dunh + u1
n∑
k=2

du2
h ∧ duk−1

h ∧ d(ukh − uk) ∧ duk+1 ∧ · · · ∧ dun.

We can actually write each addendum in the last summation as

−(ukh − uk)du2
h ∧ duk−1

h ∧ du1 ∧ duk+1 ∧ · · · ∧ dun + dζkh ,

where we set

ζkh = (−1)k−2u1(ukh − uk)du2
h ∧ · · · ∧ duk−1

h ∧ duk+1 ∧ · · · ∧ dun ∈ L1(Ω,Λn−2Rm). (19)

Notice that we can always assume s ≥ p, hence ζkh ∈ L1. To show (19) it is sufficient to
approximate both u and uh in the strong topology with regular functions and apply the Leibniz rule;
the same approximation shows that dζkh ∈ L1 and hence

´
Ω dζ

k
h ∧ dω = 0 for each ω ∈ Dm−n+1(Ω).

By the calculations above we can estimate

|〈Juh − Ju, ω〉| = |〈j(uh)− j(u), dω〉|

≤ ‖dω‖L∞
n∑
k=1

‖ukh − uk‖Ls‖du1
h‖Lp · · · ‖duk−1

h ‖Lp‖duk+1
h ‖Lp · · · ‖dunh‖Lp

≤ C F(ω)

(
sup
h
‖∇uh‖Lp

)n−1

‖uh − u‖Ls .

Taking the supremum on test functions ω with F(ω) ≤ 1 we immediately obtain the asserted
convergence. �

A natural question is the relation between the summability exponent p and the regularity of the
distribution Ju. There is a main difference between p ≥ n and p < n: if the gradient ∇u has a
sufficiently high summability, then Ju is an absolutely continuous measure. In fact let uh = u ∗ ρh,
where ρh is a standard approximation of the identity: since p ≥ n the continuous embedding
W 1,p ↪→W 1,n

loc implies that uh → u both in W 1,p∩Ls and W 1,n
loc . Taking a test form ψ with compact

support we can use Proposition 2.5.2 to pass to the limit in the integration by parts formula

〈Juh, ψ〉 = (−1)n
ˆ

Ω
u1
hdu

2
h ∧ · · · ∧ dunh ∧ dψ =

ˆ
Ω
du1

h ∧ du2
h ∧ · · · ∧ dunh ∧ ψ,

yielding Ju = Em du1 ∧ · · · ∧ dun.
On the other hand when p < n there are several examples of functions whose jacobian is not in

L1: for instance when m = n the “monopole” function u(x) := x
|x| satisfies Ju = L n(B1)J0K, where

J0K is the Dirac’s mass in the origin. More generally:

Example 2.5.3 (Zero homogeneous functions, m = n, [43, 3.2]). Let γ : Sn−1 → Rn be smooth
and let u(x) := γ( x

|x|). Then

Ju = Area(γ)J0K (20)

where Area(γ) is the signed area enclosed by γ.

Proof. Outside the origin u is smooth and takes values into the (n − 1)-dimensional submanifold
γ(Sn−1), hence spt(Ju) ⊂ {0}. Set t = |x| and y = x

|x| : then dγ =
∑

i
∂u
∂xk

tdyk, so

tn−1du2 ∧ · · · ∧ dun = dγ2 ∧ · · · ∧ dγn ∈ Λn−1TanSn−1.
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Hence the only term of dω surviving in the wedge product is ∂ω
∂t dt. Therefore

(−1)n
ˆ
Rn
u1du2 ∧ · · · ∧ dun ∧ dω = (−1)n

ˆ
Rn

∂ω

∂t
γ1(y)du2 ∧ · · · ∧ dun ∧ dt

= −
ˆ
Rn

∂ω

∂t
u1(y)dt ∧ du2 ∧ · · · ∧ dun

= −
ˆ
∂Bt

(ˆ +∞

0

∂ω

∂t
dt

)
u1(x)du2 ∧ · · · ∧ dun

= −
ˆ
∂B1

(ˆ +∞

0

∂ω

∂t
dt

)
γ1(y)dγ2 ∧ · · · ∧ dγn

= ω(0)

ˆ
Sn−1

γ1(y)dγ2 ∧ · · · ∧ dγn. (21)

Setting Υ(t, y) := tγ(y) the Lipschitz extension to the unit ball B1 ⊂ Rn, by Stokes’ Theorem (21)
equals to

ω(0)

ˆ
∂B1

Υ1(1, y)dΥ2 ∧ · · · ∧ dΥn = ω(0)

ˆ
B1

dΥ1 ∧ · · · ∧ dΥn

= ω(0)

ˆ
B1

det(∇Υ)dx = ω(0)

ˆ
Rn

deg(Υ, w,B1)dw. (22)

It is well known that (22) represents the signed area enclosed by the surface γ(Sn−1). �

This example immediately outlines one of the biggest differences with the scalar case. Consider
as in [43] the “eight-shaped” loop in R2 :

γ(θ) =

{
(cos(2θ)− 1, sin(2θ)) for θ ∈ [0, π],
(1− cos(2θ), sin(2θ)) for θ ∈ [π, 2π].

(23)

and let u be the zero homogeneous extension. γ encloses the union B1(−e1) ∪ B1(e1) with degree
+1 and −1 respectively: in light of (20) Ju = 0. However a left composition with a smooth map
F : R2 → R2 easily destroys the cancellation, causing the appearance of a Dirac’s mass in 0. Hence
the estimate

‖J(F ◦ u)‖ ≤ Lip(F )2‖Ju‖ (24)

doesn’t hold anymore if u is not regular. Note that this phenomenon does not appear for n = 1
and u ∈ BV (Ω), as Vol’pert chain rule provides exactly the estimate (24) (see [7, Theorem 3.96]).

The failure of (24) is related to the validity of a strong coarea formula for jacobians of vector
valued maps, namely equation (1.7) in [43]. The (weak) coarea amounts instead to decompose the
current Ju of a BnV map (see next paragraph for the definition) into the superposition of integral

currents corresponding to the level sets of u: letting uy(x) := u(x)−y
|u(x)−y| , it is proved in [43, Theorem

1.2] that

Ju =
1

L n(B1)

ˆ
Rn
Juy dy

as currents. However, because of some cancellation phenomena like in (23), (24), the strong version
of the coarea formula

‖Ju‖ =
1

L n(B1)

ˆ
Rn
‖Juy‖ dy (25)

might well fail. Once again observe that for n = 1 the equality (25) has been proved by Fleming
and Rishel to holds for every u ∈ BV , see [7, Theorem 3.40]. For a more detailed analysis we refer
to [43, 25, 51, 28].



10 LUIGI AMBROSIO, FRANCESCO GHIRALDIN

For later purposes we report the dipole construction, introduced by Brezis, Coron and Lieb in
[15]: it consists of a map taking values into a sphere which is constant outside a prescribed compact
set, its jacobian is the difference of two Dirac’s masses and satisfies suitable W 1,p estimate. We
write (y, z) ∈ Rn−1 × R and denote by N = (0, 1) ∈ Sn−1 the north pole.

Example 2.5.4 (Dipole, [16, 2.2]). Let n ≥ 2, ν ∈ Z, ρ > 0: there exists a map fν,ρ : Rn → Sn−1

with the following properties:

• fν,ρ ≡ N outside {|y|+ |z| < ρ};
• fν,ρ −N ∈W 1,p(Rn,Rn) for every p < n with estimates

‖∇fν,ρ‖pLp ≤ Cp ν
p

n−1 ρn−p;

• Jfν,ρ = νL n(Bn
1 )
(
J(0,−ρ)K− J(0, ρ)K

)
.

The locality of the dipole construction allows to glue several copies of dipoles to produce inter-
esting examples.

Example 2.5.5 (Finiteness of F(Jg) does not imply finiteness of M(Jg)). We build a map g such
that F(Jg) is finite and Jg has an infinite mass. The construction starts from fν,ρ(·, 0) : Rn−1 →
Sn−1, which is a smooth map equal to N outside Bn−1

ρ and such that deg(fν,ρ(·, 0)) = ν. For
|z| < ρ we extend by fν,ρ(y, z) = fν,ρ(

ρy
ρ−|z| , 0) and we set fν,ρ ≡ N at points |z| ≥ ρ. Choosing a

sequence of positive radii (ρk) we can glue an infinite number of dipoles along the z axis:

g(y, z) = f1,ρk(y, z − zk) for |z − zk| ≤ 2ρk,

where z0 = 0 and zk = 2
∑k

j=0 ρj . The function g belongs to L∞ ∩W 1,p provided
∑

k ρ
n−p
k < ∞:

in this case note that

Jg = L n(B1)
∑
k

J(0, zk − ρk)K− J(0, zk + ρk)K,

hence F(Jg) ≤ 2L n(B1)
∑

k ρk <∞ but M(Jg) = +∞.

More complicated examples, including maps such that Ju is not even a Radon measure, are
presented in [43, 51, 3].

2.6. Functions of bounded n-variation. The space of functions of bounded n-variation has been
introduced by Jerrard and Soner in the fundamental paper [43].

Definition 2.6.1. BnV (Ω,Rn) is the space of functions u ∈W 1,p(Ω,Rn)∩Ls(Ω,Rn) such that Ju
is a current of finite mass.

Notice that in this case the action of Ju can be represented as the integration against a Λm−nRm-
valued Radon measure. Clearly the following statement is an easy improvement of 2.5.2, since every
continuous function with compact support can be uniformly approximated by a Lipschitz function
with the same L∞ bound.

Corollary 2.6.2. Assume the same hypotheses of Proposition 2.5.2. If in addition

(uh) ⊂ BnV (Ω,Rn) and ‖Juh‖(Ω) ≤ C <∞

then u ∈ BnV (Ω,Rn) and Juh
∗
⇀ Ju in the sense of measures.

Furthermore it is a general result on normal currents, contained for example in [31, 4.1.21] and in
[9, Theorem 3.9] for the metric spaces statement, that if T is a normal k-current then ‖T‖ �H k.
In light of the Example 2.6.3 (with a trivial extension in case m > n) ‖Ju‖ � H m−n is the only
possible bound on the Hausdorff dimension of Ju.
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As in the theory of BV functions Ju satisfies a canonical decomposition in three mutually singular
parts according to the dimensions (see [24, 7, 43]):

Ju = ν ·Lm + Jcu+ θ ·H m−n Su (26)

where the decomposition is uniquely determined by these three properties:

• ν = dJu
dLm ∈ L1(Ω,Λm−nRm) is the Radon-Nikodym derivative of Ju with respect to Lm;

• ‖Jcu‖(F ) = 0 whenever H m−n(F ) <∞;

• θ ∈ L1(Ω,Λm−nRm,H m−n) is a H m−n-measurable function and Su ⊂ Ω is σ-finite w.r.t.
H m−n.

The intermediate measure Jcu is known as the Cantor part of Ju.

Example 2.6.3 (Summability exponent p versus dimH spt(Ju), [50, Theorem 5.1]). For every
α ∈ [0, n] there exists a continuous BnV map

uα ∈ C0(Rn,Rn) ∩
⋂
p<n

W 1,p
loc (Rn,Rn)

such that Juα is a nonnegative Cantor measure satisfying

cH α spt(Juα) ≤ Juα ≤ CH α spt(Juα)

for some c, C > 0. In particular spt(Ju) has Hausdorff dimension α.

Hence no bound on p is sufficient to constrain the singularity of Ju. Adding m − n dummy
variables to the domain the same examples show α can range in the interval [m− n,m] regardless
how close p is to n.

It has been proved in [49] and [26] that

ν(x) = Mn∇u(x) = e1 ∧ · · · ∧ em du1(x) ∧ · · · ∧ dun(x) ∈ Λm−nRm (27)

at Lm-almost every point x ∈ Ω. The set Su is unique up to H m−n-negligible sets, and can be
characterized by

Su :=

{
x ∈ Ω : lim sup

ρ↓0

‖Ju‖(Bρ(x))

ρm−n
> 0

}
.

Moreover Su it has been shown in [24] using some general properties of normal and flat currents
that Su is countably H m−n-rectifiable and that for H m−n-a.e. x ∈ Su the multivector θ(x) is

simple and it orients the approximate tangent space Tan(m−n)(Su, x).

Definition 2.6.4. We denote, in analogy with the SBV theory, by SBnV the set of BnV functions
such that Jcu = 0.

The space SBnV enjoys a closure property proved in [24]:

Theorem 2.6.5 (Closure Theorem for SBnV ). Let us consider u, uh ∈ BnV (Ω,Rn) and suppose
that

(a) uh → u strongly in Ls(Ω,Rn) and ∇uh ⇀ ∇u weakly in Lp(Ω,Rn×m),
(b) if we write

Juh = νh ·Lm + θ ·H m−n Suh
then |νh| are equiintegrable in Ω and H m−n(Suh) ≤ C <∞.

Then u ∈ SBnV (Ω,Rn) and

νh ⇀ ν weakly in L1(Ω,Λm−nRm), H m−n(Su) ≤ lim inf
h

H m−n(Suh).
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2.7. Slicing Theorem. We aim to apply the slicing operation to Ju ∈ Fm−n(Ω) in the special
case ` = m − n, thus reducing ourselves to 0-dimensional slices; moreover we want to relate these
slices to the Jacobian of the restriction J(u|π−1(x)). In [24], the author extended a classical result
on restriction of BV functions (see [7, Section 3.11]) to Jacobians:

Theorem 2.7.1 (Slicing). Let u ∈ W 1,p ∩ Ls(Ω,Rn) be a function, and let π ∈ Om−n. Then for
Lm−n-almost every x ∈ Rm−n

〈Ju, π, x〉 = (−1)(m−n)nix#(Jux), (28)

where ux = u ◦ ix. Moreover u ∈ BnV (Ω,Rn) if and only if for every π ∈ Om−n the following two
conditions hold:

(i) ux ∈ BnV (Ωx,Rn) for Lm−n-almost every x ∈ Rm−n,

(ii)

ˆ
π(Ω)
|Jux|(Ωx) dLm−n(x) <∞.

In this case the Distributional Jacobian of the restriction ux is equal (up to sign) to the slice of Ju
at x:

〈Ju, π, x〉 = (−1)(m−n)nix#(Jux), (29)

and this slicing property holds separately for the absolutely continuous part, the Cantor part and
the Jump part of Ju, namely:

• 〈Jau, π, x〉 = (−1)(m−n)nix#(Jaux),

• 〈Jcu, π, x〉 = (−1)(m−n)nix#(Jcux),

• 〈Jsu, π, x〉 = (−1)(m−n)nix#(Jsux).

3. Size of a current and a new class of maps

As anticipated in the abstract, we are interested in broadening the class BnV to include vector
valued maps satisfying a weaker control than the mass bound: this lack of control on M(Ju)
already appears in Theorem 2.6.5 when we require a priori the limit u to be in BnV . We relax
our energy by considering a mixed control of Ju, where we bound part of the current Ju with its
size. In general it is possible to define S(T ) for every flat current T ∈ Fk(Ω), even if T has infinite
mass: this size quantity was introduced in [8], borrowing some ideas already used by Hardt and
Rivière in [40], Almgren [4], Federer [32], and agrees with the classical notion of size for finite mass
currents. For example a polyhedral chain

P =

n∑
i=1

aiJQiK

where ai ∈ R and JQiK are the integration currents over some pairwise disjoint k-polygons Qi, has
mass M(P ) =

∑
i |ai|H k(Qi) and size S(P ) =

∑
i H

k(Qi). The main idea behind the definition
is to detect the support of the 0-dimensional slices of T via some π ∈ Ok and then to optimize the
choice of projection π.

Definition 3.0.2 (Size of a flat current, [8, Definition 3.1]). We say that T ∈ Fk(Ω) has finite size
if there exists a positive Borel measure µ such that

H 0 spt(T ) ≤ µ in the case k = 0,

µT,π :=

ˆ
Rk

H 0 spt〈T, π, x〉 dL k(x) ≤ µ ∀π ∈ Ok in the case k ≥ 1. (30)
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The choice of µ can be optimized by choosing the least upper bound of the family {µT,π} in the
lattice of nonnegative measures:

µT :=
∨
π∈Ok

µT,π =
∨
π∈Ok

ˆ
Rk

H 0 spt〈T, π, x〉 dL k(x). (31)

We set S(T ) := µT (Ω).

It can be proved (see [8]) that for every flat current with finite size there exists unique (up to
null sets) countably H m−n-rectifiable set, denoted set(T ), such that

µT = H m−n set(T ),

so that in particular H m−n(set(T )) = S(T ). A pointwise constructions of set(T ) can also be given
as follows

set(T ) :=

{
x ∈ Ω : lim sup

ρ↓0

µ(Bρ(x))

ρm−n
> 0

}
.

The following result, which we will not use, holds for a fairly general class of metric spaces and
fits naturally in the context of calculus of variations:

Theorem 3.0.3 (Lower semicontinuity of size, [8, Theorem 3.4]). Let (Th) ⊂ Fk(Ω) be a sequence
of currents with equibounded sizes and converging to T in the flat norm:

S(Th) ≤ C <∞, lim
h

F(Th − T ) = 0.

Then T has finite size and
S(T ) ≤ lim inf

h
S(Th). (32)

We remark that the definition of size in the metric space contest of [8] is slightly different, since
supremum (31) was taken among all 1-Lipschitz maps π ∈ Lip1(Ω,Rk). However, when the ambient
space is Euclidean, the rectifiability and lower semicontinuity results obtained there, as well as the
characterization of µT in terms of set(T ) can be readily proved using only the subset of orthogonal
projections.

The space of generalized functions of bounded higher variation is described in terms of the
decomposition (26): we relax the requirement on the addendum of lower dimension and require
only a size bound, retaining the mass bound on the diffuse part. Following the previous definitions
we consider the Sobolev functions u whose jacobian can be split in the sum of two parts, R and T ,
such that:

• R has finite mass and ‖R‖(F ) = 0 whenever H m−n(F ) <∞;

• T is a flat chain of finite size.

In formulas:

Definition 3.0.4 (Special functions of bounded higher variation). The space of generalized func-
tions of bounded higher variation is defined by

GBnV (Ω) =
{
u ∈W 1,p(Ω,Rn) ∩ Ls(Ω,Rn) : Ju = R+ T, M(R) + S(T ) <∞,

‖R‖(F ) = 0∀F : H m−n(F ) <∞
}
. (33)

Analogously, the space of generalized special functions of bounded higher variation is defined by

GSBnV (Ω) =
{
u ∈W 1,p(Ω,Rn) ∩ Ls(Ω,Rn) : Ju = R+ T, M(R) + S(T ) <∞, ‖R‖ � Lm

}
.

(34)

In accordance with the classical BV theory we denote Su := set(Tu).
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This space is clearly meant to mimic the aforementioned SBnV class. In particular, thanks to
the slicing properties of flat currents and the definition of size, the slicing theorem for GSBmV (Ω)
can be stated in the following way:

u ∈ GSBnV (Ω)⇐⇒ ∀π ∈ Om−n


ux ∈ GSBnV (Ωx),

´
π(Ω) M(Rux) + S(Tux) dLm−n(x) <∞.

(35)

In the following propositions we describe some useful properties of the class GSBnV (Ω).

Lemma 3.0.5. If m = n then GSBnV (Ω) = SBnV (Ω).

Proof. The statement relies on the fact that a flat 0-current of finite size coincides with a finite
sum of Dirac masses, and in particular it has finite mass. This property, reminiscent of Schwartz
lemma for distributions, has been proved in [8], Theorem 3.3. Therefore the current

T = Ju−R
has finite mass, hence M(Ju) ≤M(R) + M(T ) <∞ which means u ∈ BnV (Ω). �

Since the Radon-Nikodym decomposition of a measure into the sum of an absolutely continuous
and a singular part is unique, by slicing also R and T are uniquely determined in the decomposition.
Therefore we can write Ju = Ru + Tu, so that Su is a well defined set.

A very well known space of functions implemented in the calculus of variations is GSBV . The
main idea behind this space, introduced in [22] (see also [7, Section 4.5]), is to consider functions
u whose derivative Du loses any kind of local integrability, but nevertheless retains some of the
structure of SBV functions. Setting uN := (−N) ∨ u ∧N for every N > 0 we define

GSBV (Ω) = {u : Ω→ R Borel : uN ∈ SBV (Ω) for all integers N > 0}.
The countable set of truncation given by N ∈ N is enough to provide the existence of an approx-
imate differential ∇∗u and of a countably H m−1-rectifiable singular set S∗u such that for every
N

‖DuN‖ ≤ |∇∗u|χ{|u|≤N}Lm + 2NH m−1 S∗u.

Moreover an analog of the slicing theorem for BV function is available also in GSBV , see [7,
Proposition 4.35].

Proposition 3.0.6 (Comparison between GSB1V and GSBV ). A function u ∈ GSB1V (Ω) if and
only if u ∈ GSBV (Ω), u ∈ L1(Ω), ∇∗u ∈ L1(Ω,Rn) and H m−1(S∗u) <∞.

Proof. With abuse of notation, motivated by (18) we identify for scalar functions the action of
Ju on Dm−1(Ω) with the action of the distributional derivative Du on C∞c (Ω,Rn) (see the map
Dm−1 in [31, 1.5.2]). Consider first the case m = 1. Let u ∈ GSB1V (Ω): writing Ru = ρL 1 and

Tu =
∑S(Tu)

k=1 akJxkK, thanks to (18) we know that for ω ∈ D0(Ω)

〈Du,ω〉 =

ˆ
Ω
ρω dx+

S(Tu)∑
k=1

akω(xk).

This proves that u ∈ SBV (Ω), Su ⊂ set(Tu) and u′(x) = ρ(x) almost everywhere. In particular for
N > 0 fixed

‖DuN‖ ≤ |ρ|L 1 + 2NH m−1 set(Tu). (36)

For m ≥ 2 the slicing Theorem 2.7.1 applied to a coordinate projection onto a hyperspace implies
that almost every slice ux is in GSB1V (Ωx), hence for every N > 0 the estimate (36) holds for ux.
Integrating back we have ‖DuN‖(Ω) <∞, hence u ∈ GSBV (Ω).
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On the other if u ∈ GSBV (Ω)∩L1(Ω) we know that DuN
∗
⇀ Du in the sense of distributions, and

also in the flat norm, since the weak derivative is a distribution of order 1. Moreover ∇uN → ∇∗u
strongly in L1, hence also in the flat norm. Therefore the jump parts also converge to some flat Tu:

DjuN
F→ Tu ∈ Fm−1(Ω).

Recall that for v ∈ BV the jump part of the derivative Dv can be expressed in terms of the
approximate upper and lower limits v± and of the approximate tangent (m − 1)-vector τ in the
following way:

Djv = (v+ − v−)τ H m−1 Sv. (37)

Hence if m = 1 then H 0(sptTu) ≤ limN H 0(SuN ) ≤H 0(S∗u); in the general case can be achieved
using the slicing Theorem 2.7.1 and Proposition [7, 4.35]. �

3.1. Some examples. The following observation shows that when n ≥ 2 it is hopeless to rely on
truncation to get mass bounds for Ju.

Example 3.1.1 (L∞ bound for n ≥ 2). For n ≥ 2 let γk : Sn−1 → Sn−1 be a smooth map with
degree k, and call uk its zero homogeneous extension to Rn. Then ‖uk‖L∞ ≤ 1 but by Example
2.5.3 Ju = kL n(B1)J0K.

On the contrary for n = 1 and u ∈ BV (Ω) the approximate upper and lower limits u± of u
characterize the singular set: Su = {x ∈ Ω : u+(x) > u−(x)}. Equation (37) implies that an L∞

bound on u together with a size bound H m−1(Su) <∞ gives a mass bound on Du.
We now adapt the construction in 2.5.5, building a map whose jacobian has infinite mass but

finite size:

Example 3.1.2 (S(Ju) < ∞ but M(Ju) = ∞). Set m = n + 1 and let us write (x, y, z) the
coordinates of R× Rn−1 × R. Besides ν ∈ Z and ρ > 0 fix an extra parameter R ≥ ρ. We extend
the function fν,ρ(y, z) of Example 2.5.4 to Rn+1 by

hν,ρ,R(x, y, z) =

{
fν,ρ

(
Ry

R−|x| ,
Rz

R−|x|

)
for |x| < R,

N for |x| ≥ R.

Clearly hν,ρ,R 6= N in the set {|x|/R+ |y|/ρ+ |z|/ρ < 1}; by simmetry we can do the computations
in {x < 0}. Let us estimate the partial derivatives:∣∣∣∂hν,ρ,R∂x (x, y, z)

∣∣∣ ≤ R(|y|+|z|)
(R+x)2

|∇fν,ρ|
(

Ry
x+R ,

Rz
x+R

)
≤ ρ

x+R |∇fν,ρ|
(

Ry
x+R ,

Rz
x+R

)
,

|∇y,zhν,ρ,R| ≤ R
x+R |∇fν,ρ|

(
Ry
x+R ,

Rz
x+R

)
.

Since ρ ≤ R
ˆ
Rn+1

|∇hν,ρ,R|p dxdydz ≤ 2(n+ 1)

ˆ 0

−R

ˆ
{|y|/ρ+|z|/ρ<(x+R)/R}

(
R

x+R

)p
|∇fν,ρ|p

(
Ry
x+R ,

Rz
x+R

)
dydz dx

≤ 2(n+ 1)

ˆ R

0

(
R
x

)p−n ˆ
{|y|+|z|<ρ}

|∇fν,ρ(y, z)|p dydz dx

≤ Cp ν
p

n−1 ρn−pR. (38)
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Moreover Jhν,ρ,R is the integral cycle ν · ζ#J[0, 1]K, where ζ : [0, 1] → Rn+1 is the following closed
curve:

ζ(t) =


(4Rt−R, 0,−4ρt) for t ∈ [0, 1

4 ],
(4Rt−R, 0, 4ρt− 2ρ) for t ∈ [1

4 ,
1
2 ],

(3R− 4Rt, 0, 4ρt− 2ρ) for t ∈ [1
2 ,

3
4 ],

(3R− 4Rt, 0, 4ρ− 4ρt) for t ∈ [3
4 , 1].

Since Lip(ζ) ≤ CR we have M(Jhν,ρ,R) ≤ CνR and S(Jhν,ρ,R) ≤ CR. Like in 2.5.4 we glue infinite
copies of hνk,ρk,Rk along the z axis and obtain a map g: the Sobolev norm of g can be estimated
by (38):

‖∇g‖pLp ≤ C
∑
k

ν
p

n−1

k ρn−pk Rk

and

M(Jg) ≤ C
∑

k νkRk,

S(Jg) ≤ C
∑

k Rk.

Choosing νk = k, Rk = 1
k2

and ρk = e−k we obtain a Sn−1-valued W 1,p function constant outside
a compact set and whose Jacobian has infinite mass but finite size.

3.2. Ju and approximate differentiability. We now extend to GSBnV the pointwise charac-
terization of the absolutely continuous part of Ju.

Proposition 3.2.1 (Det = det in the GSBnV class). Let u ∈ GSBnV (Ω) and write Ju = R + T
as in Definition 3.0.4. Let ∇u be the approximate differential of u. Then

dR

dLm
= Mn∇u Lm-almost everywhere in Ω. (39)

Proof. For the ease of notation let ν := dR
dLm . Fix a projection π ∈ Om−n and let us write the

coordinates z = (x, y) accordingly. For a fixed x ∈ Rm−n we note that the injection ix and the
complementary projection π⊥

π−1(x)
are one the inverse of the other. Recall the slicing Theorem

for general Sobolev functions gives

〈Ju, π, x〉 = (−1)(m−n)nix#(Jux). (40)

Taking Lemma 3.0.5 into account, for almost every x ∈ Rm−n it holds ux ∈ BnV (Ωx) and
M(〈R, π, x〉)) + S(〈T, π, x〉) <∞, hence (14) gives

〈Ju, π, x〉 = ν(x, ·) dπH n π−1(x) + 〈T, π, x〉. (41)

Pushing forward (41) via π⊥ by (40) it follows that (−1)(m−n)nJux = ν(x, ·) dπL n + T̃ x, with

T̃ x = π⊥#〈T, π, x〉. But the finiteness of the size of 〈T, π, x〉 implies that T̃ x is a sum of S(〈T, π, x〉)
Dirac masses. In particular by equation (27) in the case m = n we know that

(−1)(m−n)nν(x, ·) dπ = det∇yu(x, ·).

Using (3) we obtain ν(x, ·) dπ = Mn∇u(x, ·) dπ for almost every x. We recover the equality (39)
by taking orthogonal projections π onto every (m− n)-dimensional coordinate subspace. �

It will be useful to extend the result of Proposition 3.2.1 to the lower order determinants: let
u ∈ GSBnV (Ω) and w ∈ Lip(Ω,Rn). We denote by Γ(u,w) the sum of the jacobians of the
functions obtained by replacing at least one component of u with the respective component of w,
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but not all of them. More precisely for every I ⊂ {1, . . . , n} such that 0 < |I| < n we construct the
function uI whose components are

ukI =

{
uk if k 6∈ I,
wk if k ∈ I.

Then we let Γ(u,w) =
∑

0<|I|<n JuI . By the multilinearity of jacobians, it is easy to check that if

u is Lipschitz the identity

J(u+ w) = Ju+ Γ(u,w) + Jw (42)

holds pointwise Lm-a.e. in Ω.

Corollary 3.2.2. Let Ω ⊂ Rm, w ∈ Lip(Ω,Rn) and u ∈ GSBnV (Ω). Then, in the sense of
distributions, it holds

J(u+ w) = Ju+ Γ(u,w) + Jw. (43)

Proof. The proof uses the following observation: if uh → u in Ls and ∇uh ⇀ ∇u in Lp, then by
Reshetnyak’s Theorem and the inequality p > n − 1 every minor of ∇u of order k < n is weakly

continuous in L
p
k . It follows that Γ(uh, w) → Γ(u,w), so that we can pass to the limit in (42) to

obtain (43). �

4. Compactness

Theorem 4.0.3 (Compactness for the class GSBnV ). Let s > 0, p > 1 be exponents with 1
s+ n−1

p ≤
1 and let Ψ : [0,∞)→ [0,∞) be a convex increasing function satisfying lim

t→∞
Ψ(t)/t =∞.

Let (uh) ⊂ GSBnV (Ω) be such that uh → u in Ls(Ω,Rn) and ∇uh ⇀ ∇u weakly in Lp(Ω,Rn×m).
Suppose that Juh = Ruh + Tuh fulfil

K := sup
h

ˆ
Ω

Ψ

(∣∣ dRuh
dLm

∣∣) dLm + S(Tuh) <∞. (44)

Then u ∈ GSBnV (Ω) and, writing Ju = Ru + Tu,

dRuh
dLm

⇀
dRu
dLm

weakly in L1(Ω,Λm−nRm), (45)

S(Tu) ≤ lim inf
h

S(Tuh). (46)

Proof. Without loss of generality we can assume Ψ to have at most a polynomial growth at infinity,
for otherwise it is sufficient to take Ψ̃(t) := min{Ψ(t), t2}. In particular we will use the inequality

Ψ(2t) ≤ CΨ(t) ∀t > 0 (47)

(this inequality is known as ∆2 condition in the literature, see for instance [2, 8.6]). We shorten
Th, Rh in place of Tuh and Ruh respectively and denote by ρh = Mn∇uh the densities of Rh with
respect to Lm. We know from Proposition 2.5.2 that Juh → Ju in the flat norm. Possibly
extracting a subsequence we can assume with no loss of generality that:

(a) the limit limh S(Th) exists,
(b) ρh ⇀ ρ weakly in L1(Ω,Λm−nRm),
(c) (uh) rapidly converges to u in Ls: as a consequence of Proposition 2.5.2 we have also∑

h

F(Juh − Ju) <∞. (48)
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Indeed, if we prove the result under these additional assumptions, then we can use the weak
compactness of ρh in L1 provided by the Dunford-Pettis Theorem, and the fact that any subsequence
admits a further subsequence satisfying (a), (b), (c) to obtain the general statement.

We shall let R := ρLm be the limit current: since the flat and weak convergences in (b) and
(c) are stronger than the weak* convergence for currents, putting them together we obtain a flat
current T := Ju−R such that

Th
∗
⇀ T. (49)

The proof is divided in three steps: we first address the special case m = n, then we use this case
and the slicing Theorem (35) to show the lower semicontinuity of size in the second step. The main
difficulty is in the third step, where we prove (45), because weak convergence behaves badly under
the slicing operation.
Step 1: m = n. We can apply a very particular case of Blaschke’s compactness Theorem [10,
4.4.15] to the sets spt(Th), which have equibounded cardinality, to obtain a finite set N ⊂ Ω and
a subsequence (Th′) such that spt(Th′) −→ N in the sense of Hausdorff convergence. By (49) we
immediately obtain that spt(T ) ⊂ N ∩Ω, hence S(T ) <∞ and u ∈ GSBnV (Ω). In addition, since
any point in sptT is the limit of points in sptTh′ it follows that

S(T ) ≤ lim inf
h′

S(Th′) = lim
h

S(Th).

Finally, since Ju = R+ T it must be T = Tu, which yields (46), and R = Ru, which together with
(b) yields (45).
Step 2: m ≥ n. Let us fix A ⊂ Ω open, π ∈ Om−n and ε ∈ (0, 1): the bound (44), (14) and
Fatou’s lemma imply that

+∞ > K ≥ lim inf
h

{
µTh(A) + ε

ˆ
A

Ψ(|ρh|)dLm

}
(50)

≥ lim inf
h

{
µTh,π(A) + ε

ˆ
A

Ψ(|ρh dπ|)dLm

}
(51)

=

ˆ
Rm−n

lim inf
h

[
H 0(Ax ∩ spt(〈Th, π, x〉)) + ε

ˆ
Ax

Ψ(|ρh dπ|)dy
]
dx

=

ˆ
Rm−n

lim inf
h

[
H 0(Ax ∩ spt(Tuxh)) + ε

ˆ
Ax

Ψ(|ρxh|)dy
]
dx, (52)

with ρxh := M∇uh(x, ·) dπ. By (50) we can choose for almost every x ∈ Rm−n a subsequence
h′ = h′(x,A), possibly depending on x and on the set A, realizing the finite lower limit:

lim inf
h

H 0(Ax ∩ spt(Tuxh)) + ε

ˆ
Ax

Ψ(|ρxh|)dy.

Recall that thanks to (c) Juxh
F→ Jux for almost every x. We can therefore apply step 1 to the

sequence uxh ∈ GSBnV (Ωx), which converges rapidly to ux, to conclude that ux ∈ GSBnV (Ωx) and
that

H 0(Ax ∩ spt(Tux)) ≤ lim inf
h′

H 0(Ax ∩ spt(Tux
h′

))

≤ lim inf
h′

H 0(Ax ∩ spt(Tux
h′

)) + ε

ˆ
Ax

Ψ(|ρxh′ |)dy

= lim inf
h

H 0(Ax ∩ spt(Tuxh)) + ε

ˆ
Ax

Ψ(|ρxh|)dy. (53)
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Integrating in x and applying (51) as well as the monotonicity of Ψ we entail

µT,π(A) ≤ lim inf
h

{
µTh,π(A) + ε

ˆ
A

Ψ(|ρh|)dLm

}
=: ηε(A). (54)

The map A 7→ ηε(A) is a finitely superadditive set-function, with ηε(Ω) ≤ lim infh S(Tuh) + Kε.
Therefore if B1, . . . , BN are pairwise disjoint Borel sets and Ki ⊂ Bi are compact, we can find
pairwise disjoint open sets Ai containing Ki and apply the superadditivity to get

N∑
i=1

µT,πi(Ki) ≤
N∑
i=1

ηε(Ai) ≤ ηε(Ω).

Since Ki are arbitrary, the same inequality holds with Bi in place of Ki; since also Bi, πi and N are
arbitrary, it follows that µT is a finite Borel measure and µT (Ω) ≤ ηε(Ω). Hence u ∈ GSBnV (Ω)
because Ju = R+ T , S(T ) <∞ and R is an absolutely continuous measure. Letting ε ↓ 0 we also
prove (46). For later purposes we notice that we proved

µTu(A) ≤ lim inf
h

µTuh (A). (55)

Step 3: proof of (45). In order to prove (45), since the space Λm−nRm is finite dimensional, we
will prove that

ρh dπ ⇀ Mn∇u dπ weakly in L1(Ω,Λm−nRm) (56)

for every orthogonal projection π onto a coordinate subspace. We fix an open A ⊂ Ω and a ∈ R.
From now on w : A→ Rn will be an affine map such that

∇xw = 0, det(∇yw) = a.

Let us compute J(uh + w): thanks to Corollary 3.2.2 we get

J(uh + w) = Juh + Γ(uh, w) + aEm dπ.

We are now ready to prove the last part of the Theorem. We argue as in step 2, but this time we
change the form of the energy and we analyse the convergence of a perturbed sequence of maps.
First of all we note that the sequenceˆ

A
Ψ
(∣∣ρh dπ + a

∣∣) dLm + εµTh,π(A) + ε

ˆ
A
|∇uh|pdLm (57)

is still bounded from above, because |α+β|p ≤ 2p−1(|α|p+ |β|p), (47) and the convexity of Ψ imply
thatˆ

A
Ψ
(∣∣ρh dπ + a

∣∣) dLm ≤ C

2

ˆ
A

Ψ
(∣∣ρh∣∣) dLm +

C

2
Ψ(|a|)Lm(A) ≤ C

2

(
K + Ψ(|a|)Lm(A)

)
.

We consider the sequence (uh +w) ⊂ GSBnV (A) and the perturbed energy (57): arguing as in the
chain of inequalities (50)-(52) for almost every x we can find a suitable subsequence h′ = h′(x,A)
realizing the finite lower limit of the sliced energiesˆ

Ax
Ψ
(∣∣ρxh + a

∣∣) dy + εH 0(Ax ∩ spt(Tuxh)) + ε

ˆ
Ax
|∇uxh|pdy. (58)

Since Ψ is superlinear at infinity, up to subsequences the densities ρxh′ + a weakly converge to some
function rx in L1(Ax): in particular the associated currents weak* converge

(ρxh′ + a)En Ax
∗
⇀ rxEn Ax. (59)

Thanks to the fast convergence (c) we also know that ux → u in Ls(Ax); moreover the boundedness
of the Dirichlet term in (58) implies also that ∇yuxh′ ⇀ ∇ux in Lp(Ax,Rn), hence by step 2 we get

ux ∈ GSBnV (Ax) and Tux
h′
∗
⇀ Tux .
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The weak convergence of the gradients in Lp also allows to use the continuity property of Γ(·, wx)
along the sequence of restrictions (uxh′) and deduce that

(ρxh′ + a)En Ax = J(uxh′ + wx)− Γ(uxh′ , w
x)− Tux

h′
∗
⇀ J(ux + wx)− Γ(ux, wx)− Tux

in the sense of distributions. By Corollary 3.2.2 and Proposition 3.2.1 we are able to identify the
weak limit in (59)

rx = det∇yux + a = Mn∇u(x, ·) dπ + a. (60)

We fix a a convex increasing function with superlinear growth ϕ satisfying

lim
t→+∞

Ψ(t)

ϕ(t)
= +∞. (61)

Using the previous convergence (59), (60) on almost every slice and integrating with respect to x
we deduce by the convexity of ϕ thatˆ

A
ϕ
(∣∣Mn∇u dπ + a

∣∣) dLm ≤ lim inf
h

ˆ
A
ϕ(|ρh dπ + a|)dLm + εµTh,π(A) + ε

ˆ
A
|∇uh|pdLm.

Adding this inequality on a finite number of disjoint open subsets Aj , with arbitrary choices of
ai ∈ R, we obtainˆ

Ω
ϕ
(∣∣Mn∇u dπ + ξ

∣∣) dLm ≤ lim inf
h

ˆ
Ω
ϕ(|ρh dπ + ξ|)dLm + εS(Th) + ε

ˆ
Ω
|∇uh|pdLm,

where ξ :=
∑

j ajχAj . Letting ε ↓ 0 we can disregard the size and Dirichlet terms in the last
inequality to get ˆ

Ω
ϕ
(∣∣Mn∇u dπ + ξ

∣∣) dLm ≤ lim inf
h

ˆ
Ω
ϕ(|ρh dπ + ξ|)dLm. (62)

Taking ϕn(t) := ϕ(t)
n ∨ t, we have that ϕn are still convex, increasing, superlinear at infinity and

satisfy (61), therefore (62) is applicable with ϕ = ϕn. Given δ > 0 fix Cδ such that ϕ1(t) ≤ δΨ(t)
for t > Cδ; we also let Ωh,δ =

{
|ρh dπ+ξ| > Cδ

}
. By applying (62) with ϕ = ϕn we have thereforeˆ

Ω

∣∣Mn∇u dπ + ξ
∣∣dLm ≤

ˆ
Ω
ϕn
(∣∣Mn∇u dπ + ξ

∣∣) dLm ≤ lim inf
h

ˆ
Ω
ϕn(|ρh dπ + ξ|)dLm

≤ lim inf
h

ˆ
Ω

∣∣ρh dπ + ξ
∣∣+ lim sup

h

ˆ
Ωh,δ

ϕ1

(∣∣ρh dπ + ξ
∣∣)+ sup

0≤t≤Cδ
{ϕn(t)− t}Lm(Ωc

h,δ)

≤ lim inf
h

ˆ
Ω

∣∣ρh dπ + ξ
∣∣+ lim sup

h
δ

ˆ
Ωh,δ

Ψ
(∣∣ρh dπ + ξ

∣∣)+ sup
0≤t≤Cδ

{ϕn(t)− t}Lm(Ω).

Letting n → ∞ the third term vanishes because ϕn(t) ↓ t uniformly on compact sets. Eventually,
sending δ ↓ 0 we obtain ˆ

Ω

∣∣Mn∇u dπ + ξ
∣∣ ≤ lim inf

h

ˆ
Ω

∣∣ρh dπ + ξ
∣∣. (63)

Inequality (63) is actually valid for every ξ ∈ L1(Ω) by approximation, since the set of functions
of type

∑
j ajχAj is dense in L1. We therefore address the last point (56) thanks to Lemma 4.0.4

below: the weak limit ρ must be the equal to Mn∇u, the density of Ru with respect to Lm. �

Lemma 4.0.4. Let (zh) ⊂ L1(Ω) be a weakly compact sequence and suppose that, for some z ∈
L1(Ω), it holds ˆ

Ω
|z + ξ| dLm ≤ lim inf

h

ˆ
Ω
|zh + ξ| dLm ∀ξ ∈ L1(Ω).

Then zh ⇀ z weakly in L1(Ω).
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We refer to [5] for the proof.

5. Applications

We now present an application of Theorem 4.0.3 to a minimization problem. The choice of our La-
grangian is motivated by the introduction of a new functional of the calculus of variation, presented
in 5.2, aiming to generalize the classical Mumford-Shah energy [52, 23, 7] to vector valued maps
with singular set of codimension at least 2. The discussion in the introduction already mentioned
the central role of the distributional jacobian in relation to low dimensional singularities: in this
model we replace the singularities of the derivative by the singularities of the jacobian and we
measure them with the size functional of section 3.

5.1. Existence result for general Lagrangians. We fix an open, regular and bounded subset
Ω of Rm. For approximately differentiable maps u : Ω → Rn we let M∇u be the vector of all
minors of k × k submatrices of ∇u, with k ranging from 1 to n and we let κ =

∑n
k=1

(
m
k

)(
n
k

)
be its

dimension. Given w ∈ Rκ we let w` the variables relative to the `× ` minors. We also denote Lm

the σ-algebra of Lebesgue measurable subsets of Rm and B(Rn+κ) the σ-algebra of Borel subsets
of Rn+κ. For the bulk part of the energy it is natural to treat polyconvex Lagrangians: the lower
semicontinuity properties of such energies with respect to the weak W 1,p convergence for p < n has
been thoroughly studied, see [18, 36, 35, 44].

Theorem 5.1.1 (Existence of minimizers for polyconvex Lagrangians). Assume r, p satisfy r <∞,
1
r + n−1

p < 1 and let c > 0 be a positive constant. Let f : Ω×Rn×Rκ → [0,+∞) satisfy the following

hypotheses:

(a) f is Lm ×B(Rn+κ)-measurable;
(b) for Lm-a.e. x ∈ Ω, (u,w) 7→ f(x, u, w) is lower semicontinuous;
(c) for Lm-a.e. x ∈ Ω, w 7→ f(x, u, w) is convex in Rκ for every u ∈ Rn;
(d) f(x, u, w) ≥ c

(
|u|r + |w1|p + Ψ(|wn|)

)
for some function Ψ satisfying the hypotheses of

Theorem 4.0.3.

Let also g : Ω→ [c,+∞) be a lower semicontinuous function.

Then, for every u0 ∈W 1− 1
p
,p

(∂Ω,Rn) there exists a solution to the problem

min
u∈GSBnV (Ω), u=u0 on ∂Ω

{ˆ
Ω
f
(
x, u(x),M∇u(x)

)
dx+

ˆ
Ω∩Su

g(x) dH m−n(x)

}
. (P)

Proof. Suppose the energy (P) is finite for some function in GSBnV (Ω) with trace u0, otherwise
there is nothing to prove. Pick a minimizing sequence (uh): by the growth assumption (d) there
exist u ∈ Lr ∩W 1,p and a subsequence (not relabeled) such that

uh → u in L1 (64)

and∇uh ⇀ ∇u in Lp. Since 1
r+n−1

p < 1 we can choose s < r such that 1
s+n−1

p ≤ 1: by Chebycheff’s

inequality we know that uh → u in Ls. Moreover we know that the absolutely continuous parts of
Juh satisfy ˆ

Ω
Ψ
(∣∣Mn∇uh

∣∣) dx ≤ C,
and that by the lower bound g ≥ c we also have:

sup
h

H m−n(Suh ∩ Ω) <∞.

Hence by the compactness Theorem 4.0.3, together with the classical Reshetnyak’s Theorem for
the minors of order less than n, we know that

M∇uh ⇀M∇u weakly in L1. (65)
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By (64) and (65) the lower semicontinuity result of Ioffe [41, 42] (see also [7, Theorem 5.8]) implies

lim inf
h

ˆ
Ω
f
(
x, uh(x),M∇uh(x)

)
dx ≥

ˆ
Ω
f
(
x, u(x),M∇u(x)

)
dx.

Finally, g being lower semicontinuous, the superlevel sets {g > t} are open, hence

lim inf
h

ˆ
Ω∩Suh

g(x) dH m−n(x) = lim inf
h

ˆ +∞

0
H m−n(Suh ∩ {g > t}) dt

≥
ˆ +∞

0
lim inf

h
H m−n(Suh ∩ {g > t}) dt

≥
ˆ +∞

0
H m−n(Su ∩ {g > t}) dt

=

ˆ
Ω∩Su

g(x) dH m−n(x),

because the size is lower semicontinuous on open sets, see (55). �

Recall that by the Sobolev embedding we can drop the growth condition on u provided p > mn
m+1 .

Notice also that we can formulate problem (P) and the corresponding boundary value condition in
a slightly different way, in order to include in the energy the possible appearance of singularities
at the boundary. Let U c Ω be a bounded open subset of Rm: we formulate the minimization
problem in the following way:

min
u∈GSBnV (U), u=u0 in U\Ω

{ˆ
U
f
(
x, u(x),M∇u(x)

)
dx+

ˆ
U∩Su

g(x) dH m−n(x)

}
(P’)

Every competitor being equal to u0 in U \ Ω, problem (P’) accounts for variations of Ju in the
closure Ω. Moreover Theorem 5.1.1 readily applies to this case, as the condition u = u0 in U \Ω is
closed for the strong L1 convergence. To explicit the dependence on the energy on the datum u0

and on the domain U we adopt in the sequel the notation

F (u,Ω;u0, U)

for the energy in (P’).

5.2. A Mumford-Shah functional of codimension higher than one. As anticipated in the
beginning of the section the study of general functionals of the form (P) was modeled on the
Mumford-Shah type functional

MS(u,Ω) :=

ˆ
Ω
|u|r + |∇u|p + |Mn∇u|γ dx+ H m−n(Su ∩ Ω) (66)

defined on GSBnV (Ω), with r, p satisfying (15), γ > 1, together with suitable boundary data.
Theorem 5.1.1 shows the existence of minimizers of (66) for both Dirichlet problems (P) and (P’):
it is however desirable that at least for some boundary datum u0 the minimizer presents some
singularity. In the next proposition we show that this is the case:

Proposition 5.2.1 (Nontrivial minimizers forMS, formulation (P’)). Let m = n and u0 : B2 → Rn
be the identity: u0(x) = x. Then for ε sufficiently small every minimizer u ∈ GSBnV (B2) of

MSε(u,B1;x,B2) :=

ˆ
B2

ε
(
|u|r + |∇u|p

)
+ | det∇u|γ dx+ εH 0(Su ∩B2)

such that u(x) = x in B2 \B1 must satisfy

Su ∩B1 6= ∅.
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Proof. We show that for every competitor v with ‖Jv‖ � L n and for ε small enough it holds:

MSε(v,B1;x,B2) > MSε(w,B1;x,B2),

where

w(x) =

{ x
|x| in B1,

x in B2 \B1.

For the rest of the proof c will denote a generic positive constant we do not keep track of. Let us
compute the energy of x

|x| : the Dirichlet and Lr parts are simply constants. Moreover

det∇w = χB2\B1
and Sw = {0}.

Hence MSε(w,B1;x,B2) = cε+ L n(B2 \B1). On the contrary for almost every radius ρ it holds:ˆ
Bρ

det∇v dx =

ˆ
∂Bρ

v1dv2 ∧ · · · ∧ dvn

(see [26, Lemma 2.1] for a simple proof of this fact). Since u(x) = x outside B1 for almost every
ρ ∈ (1, 2) we have

´
Bρ

det∇v dx = L n(Bρ), hence by Jensen’s inequality
ˆ
Bρ

| det∇v|γ dx ≥ L n(Bρ).

Summing up:

MSε(v,B1;x,B2) ≥
ˆ
Bρ

|det∇v|γ dx ≥ L n(Bρ) > cε+ L n(B2 \B1) = MSε(w,B1;x,B2)

choosing first ρ sufficiently close to 2 and then ε sufficiently small. Therefore the minimizer u must
have a nonempty singular set Su, and since u is linear in the open set B2 \B1, the singularity must
be in B1. �

It is easy to generalize the same proposition to the case m ≥ n, by simply taking the trivial
extension in the extra variables and showing that every minimizer has a nontrivial singular set. In
analogy with [39], we expect however the singularities to appear in the interior.

The argument in Proposition 5.2.1 essentially exploits the presence of the jacobian term: this is
not coincidental, as the next proposition shows. Recall that the sum of a GSBnV function and a
C1 function is again in GSBnV .

Proposition 5.2.2. Every local minimizer of

u ∈ GSBnV (Ω) 7→
ˆ

Ω
|∇u|p dx+ H m−n(Su ∩ Ω)

is locally of class C1,α in Ω.

Proof. It is sufficient to perform an outer variation of the minimizer u along a φ ∈ C1
c (Ω,Rn) map:

ε 7→ u+ εφ and apply Corollary 3.2.2 to obtain that

Su+εφ = Su.

Hence the size term is constant and u satisfies:ˆ
Ω
|∇u|p−2∇u∇φdx = 0 ∀φ ∈ C1

c (Ω,Rn).

Therefore u is a p-harmonic W 1,p function, hence u ∈ C1,α
loc by [56, 30]. �
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5.3. Traces. In the spirit of solving (P’), the nonuniqueness Example 5.3.1 below raises the problem
of the dependence of the energy on the extension u0 : U \ Ω → Rn to a given Sobolev trace u

∂Ω
.

The example was communicated to us by C. De Lellis, see also Examples 1 and 2 in Section 3.2.5
of [38], and the discussion on weak and strong anchorage condition therein. It shows that if we
want to detect the presence of singularities of Ju at the boundary of Ω, the Sobolev trace is not
sufficient to characterize it.

Example 5.3.1 (Singularity at the boundary). Let u : R2 → S1 be defined by

u(x, y) =

(
y2 − (x− 1)2

(x− 1)2 + y2
,

2(1− x)y

(x− 1)2 + y2

)
. (67)

This map represents the normal unit vectorfield of the family of circles centered on the real axis
and tangent to S1 in the point (1, 0). If θ is the angle that the vector (x−1, y) makes with the real
axis, we can write u(x, y) = (− cos(2θ),− sin(2θ)), hence by Example (2.5.3) Ju = 2πJ(1, 0)K. Note
that u is the identity map when restricted to S1. Nonetheless we can construct another map ũ

ũ(x, y) =

{
u(x, y) for |x| < 1,(

x√
x2+y2

, y√
x2+y2

)
for |x| ≥ 1. (68)

In this case, by Example 2.5.3, Jũ = πJ(1, 0)K. Hence u
B1

admits two different Sobolev extensions

u and ũ sharing the same trace at the boundary but whose jacobians are different in Ω: the trace
of a Sobolev function does not characterize the jacobian Jv ∂Ω of all the possible extensions v.

It is interesting to know when part of the distributional jacobian can be represented as a boundary
integral. Recall that the slicing Theorem 2.7.1 already provides an answer to this question, because
if u : Ω→ Rn then ∂(j(u) {π > t}) = Ju {π > t}+ 〈j(u), π, t〉, where π is the distance from ∂Ω.
However, as Example 5.3.1 shows, this statement holds only for L 1-a.e. t. The following proposition
improves the general result by slicing, under additional hypotheses on the summability of u and of
its trace. This result is already present in the literature, see [38, Vol. I, p. 274] and [3, Lemma 6.1]:
we report the proof for the reader’s convenience. Denote for simplicity g(u) := u1du2 ∧ · · · ∧ dun.

Proposition 5.3.2 (Stokes’ Theorem). If u ∈W 1,n(Ω,Rn) and u
∂Ω
∈W 1,n−1(∂Ω,Rn)∩L∞(∂Ω,Rn)

then Stokes’ theorem holds:
∂(j(u) Ω) = Ju Ω + 〈j(u), ∂Ω〉

with the representation

〈j(u), ∂Ω〉(ω) =

ˆ
∂Ω
〈g(u), τ∂Ω〉ω dH n−1

where τ∂Ω orients ∂Ω as the boundary of Ω. In particular 〈j(u), ∂Ω〉 depends only on the trace u
∂Ω

.

Proof. Suppose for simplicity that Ω = Rn+ = Rn ∩ {xn > 0}, spt(u) ⊂ B1 and let φ : Rn−1 → R be
a positive convolution kernel with compact support in Rn−1. Set

uε(x
′, xn) =

1

εn−1

ˆ
Rn−1

u(x′ − y′, xn)φ

(
x′ − y′

ε

)
dy′ :

since the convolution in the x′ variables commutes with the trace operator we still have uε Rn−1
(x′) =

uε(x
′, 0); moreover uε(·, 0) ∈ C1(Rn−1,Rn) and the following estimates hold:

‖uε‖W 1,n(Rn+,Rn) ≤ ‖u‖W 1,n(Rn+,Rn), ‖uε(·, 0)‖W 1,n−1(Rn−1,Rn) ≤ ‖u(·, 0)‖W 1,n−1(Rn−1,Rn) (69)

and since the translations are strongly continuous in Lp,

‖uε − u‖W 1,n(Rn+,Rn) + ‖uε(·, 0)− u(·, 0)‖W 1,n−1(Rn−1,Rn) → 0. (70)
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We claim that Stokes’ Theorem holds for uε: for every ω ∈ D0(Rn)

∂(j(uε) Rn+)(ω) =

ˆ
Rn+
ω det∇uε dx+

ˆ
Rn−1×{0}

ωg(uε(·, 0)). (71)

In fact extending uε(x
′, xn) := uε(x

′, 0) for xn ∈ [−1, 0] and then convolving with a smooth kernel
ρδ supported in Bδ(0) we obtain a smooth uε,δ ∈ C∞(Rn,Rn) such that spt(uε,δ) ⊂ B2 × [−2, 2],

uε,δ(x
′, xn)→ uε(x

′, 0) in C1
loc(Rn−,Rn),

uε,δ → uε in W 1,n
loc (Rn−1 × (−1,+∞),Rn). (72)

More precisely it holds: uε,δ(x
′,−δ)→ uε(x

′, 0) in C1(Rn−1,Rn). Hence

∂(j(uε,δ) {xn > −δ})(ω) =

ˆ
{xn>−δ}

ω det∇uε,δ dx+

ˆ
Rn−1×{−δ}

ωg(uε,δ(·,−δ)) :

letting δ ↓ 0 the left hand side converges to ∂(j(uε) Rn+)(ω) by (72). The boundary term in right
hand side tends to ˆ

Rn−1×{0}
ω(·, 0)g(uε(·, 0))

because the convergence is C1 and ω is smooth. Regarding the volume integral we can estimate

|∇uε,δ(x)| = |(ρδ ∗ ∇uε)(x)| ≤ ‖uε(·, 0)‖C1 +

 
Bδ(x)∩{yn>0}

|∇uε(y)| dy

hence∣∣∣∣∣
ˆ
{|xn|<δ}

ω det∇uε,δ dx

∣∣∣∣∣ ≤ ‖ω‖C0

ˆ
{|xn|<δ}

|∇uε,δ|n dx

≤ cn‖ω‖C0

(
‖uε(·, 0)‖nC1δ +

ˆ
{|xn|<δ}

 
Bδ(x)∩{yn>0}

|∇uε(y)|n dy dx

)

≤ cn‖ω‖C0

(
‖uε(·, 0)‖nC1δ +

ˆ
{0<xn<2δ}

|∇uε(x)|n dx

)
→ 0.

Clearly
´
{xn>δ} ω det∇uε,δ dx→

´
{xn>0} ω det∇uε dx, therefore (71) is true.

We now want to pass to the limit for ε ↓ 0 in (71). The left hand side goes to ∂(j(u) Rn+)(ω)
because of (70); similarly for the volume term. Regarding the boundary term the convergence of
the minors on the slice needs to be improved. The estimates (69) and the classical result [19] gives
a uniform bound of the Hardy norm [54, Chapter IV] of the minors of order n− 1:

‖du2
ε(·, 0) ∧ · · · ∧ dunε (·, 0)‖H1(Rn−1,Rn) ≤ ‖u(·, 0)‖n−1

W 1,n−1(Rn−1,Rn)
.

We already know from Reshetnyak’s Theorem that du2
ε(·, 0)∧· · ·∧dunε (·, 0)

∗
⇀ du2(·, 0)∧· · ·∧dun(·, 0)

in the sense of distributions; moreover smooth functions are dense in VMO(Rn−1,Rn) and VMO∗ =
H1, so

du2
ε(·, 0) ∧ · · · ∧ dunε (·, 0)

∗
⇀ du2(·, 0) ∧ · · · ∧ dun(·, 0) in σ(H1, V MO).

Finally the trace uε(·, 0) belongs to

W 1− 1
n
,n(Rn−1,Rn) ⊂ VMO(Rn−1,Rn)
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(see [1, Theorem 7.58], [17, Example 2] for the inclusions). Hence ‖uε(·, 0) − u(·, 0)‖VMO → 0
strongly and we can pass to the limit in (71)ˆ

Rn−1

ωg(uε(·, 0))→
ˆ
Rn−1

ωg(u(·, 0)).

By (70) also the left hand side of (71) converges to
´
Rn+
ω det∇u dx. �

In the example above the smooth extension ũ is certainly preferable to u, where an “extra”
singularity comes from the outside. A partial answer to this problem can be given if we assume a
better differentiability of the outer extension, up to ∂Ω:

Proposition 5.3.3 (See [38, Vol. I, p.266]). Let v, w ∈ Ls ∩ W 1,p(U,Rn) satisfy the following
conditions:

• v
Ω

= w
Ω

;

• v
U\Ω

, w
U\Ω
∈W 1,n(U \ Ω,Rn);

• v
∂Ω

= w
∂Ω
∈W 1,n−1(∂Ω,Rn).

Then:
Jv − Jw =

(
det∇v − det∇w

)
En (U \ Ω).

Proof. We can write

Jv = ∂j(v) = ∂(j(v) Ω) + ∂(j(v) (U \ Ω)) = ∂(j(v) Ω) + Jv (U \ Ω)− 〈j(v), ∂Ω〉. (73)

Subtracting the analogous expression for Jw we obtain

Jv − Jw = (Jv − Jw) (U \ Ω)− 〈j(v)− j(w), ∂Ω〉 =
(

det∇v − det∇w
)
En (U \ Ω)

because Proposition 5.3.2 applied to the open set U \ Ω implies that v
∂Ω

= w
∂Ω

, hence 〈g(v) −
g(w), τ ∂Ω〉 = 0. �

Therefore, if we aim at formulating problem (P’) in a local way, that is depending only on the
values of u in Ω, at least when the trace is sufficiently “nice”, we can proceed as follows. If u

∂Ω

belongs to W 1,n−1 and admits a W 1,n extensions outside Ω, we can conventionally agree to pick one
of such extensions to U \Ω: the result of Proposition 5.3.3 implies that the jacobian in Ω of every
competitor does not depend on the particular choice we made. Note however that the smoothness
of the trace does not imply membership of the extension to GSBnV (U). In fact, it is sufficient to
place the infinite dipoles of the function g in Example 2.5.4 so that the singularities lie on ∂B1 and
do not overlap. The constant extension outside the ball provides a map whose jacobian has both
infinite mass and size.

In conclusion, in order to solve Problem (P’) it seems necessary to impose membership of the
competitors to GSBnV (U), while for a fairly broad class of boundary data the energy in Ω shall
not depend on the particular extension.
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[35] I. Fonseca, G. Leoni, and J. Malý. Weak continuity and lower semicontinuity results for determinants. Arch.

Ration. Mech. Anal., 178(3):411–448, 2005.
[36] N. Fusco and J. E. Hutchinson. A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta

Math., 87(1):35–50, 1995.



28 LUIGI AMBROSIO, FRANCESCO GHIRALDIN

[37] F. Ghiraldin. Forthcoming.
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10(6):657–696, 1993.
[51] S. Müller and S. J. Spector. An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational

Mech. Anal., 131(1):1–66, 1995.
[52] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational

problems. Comm. Pure Appl. Math., 42(5):577–685, 1989.
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