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Abstract. We characterize p−harmonic functions in the Heisenberg group
in terms of an asymptotic mean value property, where 1 < p <∞, following
the scheme described in [MPR] for the Euclidean case. The new tool that
allows us to consider the subelliptic case is a geometric lemma, Lemma 3.2
below, that relates the directions of the points of maxima and minima of
a function on a small subelliptic ball with the unit horizontal gradient of
that function.

1. Introduction

In this paper we study p−harmonic functions in the Heisenberg group in
terms of an asymptotic mean value property. The corresponding characteriza-
tion of the p-harmonic functions in terms of an asymptotic mean value property
in the Euclidean sense was obtained in [MPR]. More precisely in [MPR], the
authors show that if u is a continuous function in a domain Ω ⊂ Rn and
p ∈ (1,∞], then the asymptotic expansion

u(x) =
p− 2

2(p+ n)

{
max
Bε(x)

u+ min
Bε(x)

u

}
+

2 + n

p+ n

∫
Bε(x)

u(y) dy + o(ε2),

holds as ε→ 0 for all x ∈ Ω in the viscosity sense if and only if u is a viscosity
solution of the p-Laplace equation

div
(
|∇u(x)|p−2∇u(x)

)
= 0.

Here Bε(x) is the Euclidean ball centered in x with radius ε.
We want to extend this characterization to functions defined on the Heisen-

berg group Hn. In Section 2 we present an overview of the Heisenberg group,
where the geometry and analysis are different than in Euclidean space. For
this introduction we anticipate a few definitions from Section 2 and refer the
reader to this section for full details. For p ∈ (1,∞) the (subelliptic) p-Laplace
operator in the Heisenberg group is

∆p,Hnu = divHn
(
|∇Hnu|p−2∇Hnu

)
.
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Here ∇Hn and divHn are respectively the intrinsic gradient and the intrinsic
divergence in the Heisenberg group. From now on we will denote by B(P, ε)
the intrinsic ball of radius ε with respect to the gauge distance, centered at
the point P ∈ Hn.

We point out that for p = 2, ∆2,Hnu = ∆Hnu is the real part of the Kohn-
Laplace operator, a linear degenerate second order elliptic operator whose
lowest eigenvalue is always zero. In particular, to give an idea of the structure
of this linear operator corresponding to the case p = 2 and n = 1 we set

∆Hu(P ) = divH(M(P )∇u(P )) = Trace(M(P )D2u(P )),

where the 3× 3 matrix M(P ) for P = (x, y, t) ∈ H is given by

M(P ) =

 1, 0, 2y
0, 1, −2x
2y, −2x, 4(x2 + y2)

 .
Observe that we always have

min

{
λ : λ is an eigenvalue of M(P )

}
= 0.

For p = 1 we get a subelliptic version of the mean curvature operator

∆1,Hnu(P ) = divHn

(
∇Hnu(P )

|∇Hnu(P )|

)
.

See the monograph [CDPT] for the intrinsic mean curvature operator in the
Heisenberg setting. See also [CC] and [FLM] for some recent results on the
the flow by mean curvature in the subelliptic setting.

Our main result is the following:

Theorem 1.1. Let 1 < p < ∞ and let u be a continuous function defined in
a domain Ω ⊂ Hn. The asymptotic expansion

u(P ) =
α

2

(
min
B(P,ε)

u+ max
B(P,ε)

u

)
+ β

∫
B(P,ε)

u(x, y, t) + o(ε2), (1.1)

holds as ε→ 0 for every P ∈ Ω in the viscosity sense if and only if

∆p,Hnu = 0

in Ω in the viscosity sense, where

α =
2(p− 2)C(n)

2(p− 2)C(n) + 1
, β =

1

2(p− 2)C(n) + 1
, and C(n) =

1

2(n+ 1)

∫ 1

0
(1− s2)

n+1
2 dt∫ 1

0
(1− s2)

n
2 dt

.

We remark that α + β = 1 and that

C(n) =
Γ
(
n+3

2

)2
(2n+ 1)Γ

(
n
2

+ 1
)

Γ
(
n
2

+ 2
) .

The key tool in the proof of Theorem 1.1 is Lemma 3.2 in Section 3. Roughly
speaking, in Lemma 3.2 we prove that if P0 = (x0, y0, t0) ∈ Hn is not charac-
teristic for the level set {u = u(P0)}, then the extrema of the function u in the
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intrinsic ball of radius ε and center P0 are attained at points (xε, yε, tε) that
satisfy

lim
ε→0

(
xε − x0

ε
,
yε − y0

ε
,
|tε − t0|
ε3

)
=

(
±
(
∇Hnu(P0)

|∇Hnu(P0)|

)
,
1

2
|p(P0)|

)
,

where p is the imaginary curvature of the level surface {u = u(P0)} at P0

introduced in [AF1] and [AF2] and given by

p(P0) = − [X, Y ](P0)

|∇Hnu(P0)|
.

We recall now the definition of viscosity solution in the Heisenberg group
taken from [Bi].

Observe that if u is smooth then

−∆p,Hnu = −|∇Hnu|p−2 ((p− 2)∆∞,Hnu+ ∆Hnu) ,

where we have used

∆∞,Hnu = 〈D2,∗
Hnu

∇Hnu

|∇Hnu|
,
∇Hnu

|∇Hnu|
〉. (1.2)

Definition 1.2. Fix a value of p ∈ (1,∞) and consider the p-Laplace equation

− divHn(|∇Hnu|p−2∇Hnu) = 0. (1.3)

(i) A lower semi-continuous function u is a viscosity supersolution of (1.3)
if for every φ ∈ C2(Ω) such that u−φ has a strict minimum at P0 ∈ Ω,
and ∇Hnφ(P0) 6= 0 we have

−(p− 2)∆∞,Hnφ(P0)−∆Hnφ(P0) ≥ 0.

(ii) A lower semi-continuous function u is a viscosity subsolution of (1.3) if
for every φ ∈ C2(Ω) such that u− φ has a strict maximum in P0 ∈ Ω,
and ∇Hnφ(P0) 6= 0, we have

−(p− 2)∆∞,Hnφ(P0)−∆Hnφ(P0) ≤ 0.

(iii) A continuous function u is a viscosity solution of of (1.3) if it is both a
viscosity supersolution and a viscosity subsolution.

As shown in [JLM] for the Euclidean case and in [Bi] for the subelliptic
case, it suffices to consider smooth functions whose horizontal gradient does
not vanish. In addition in those papers it is shown that the notions of viscosity
and weak solutions agree for homogeneous equation −∆p,Hnu = 0.

Next we state carefully what we mean when we say that the asymptotic
expansion (1.1) holds in the viscosity sense. Recall the familiar definition of
“little o”for a real valued function h defined in a neighborhood of the origin.
We write

h(x) = o(x2) as x→ 0+

for

lim
x→0+

h(x)

x2
= 0.

Definition 1.3. Let h be a real valued function defined in a neighborhood of
zero. We say that

h(x) ≤ o(x2) as x→ 0+

if any of the three equivalent conditions is satisfied:
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a) lim sup
x→0+

h(x)

x2
≤ 0,

b) there exists a nonnegative function g(x) ≥ 0 such that

h(x) + g(x) = o(x2) as x→ 0+,

or

c) lim
x→0+

h+(x)

x2
≤ 0,

A similar definition is given for

h(x) ≥ o(x2) as x→ 0+.

by reversing the inequalities in a) and c), requiring that g(x) ≤ 0 in b) and
replacing h+ by h− in c).

Definition 1.4. A continuous function defined in a neighborhood of a point
P ∈ Hn satisfies

u(P ) =
α

2

(
min
B(P,ε)

u+ max
B(P,ε)

u

)
+ β

∫
B(P,ε)

+o(ε2), (1.4)

as ε→ 0 in viscosity sense, if

(i) for every continuous function φ defined in a neighborhood of a point P
such that u− φ has a strict minimum at P with u(P ) = φ(P ) we have

−φ(P ) +
α

2

(
min
B(P,ε)

φ+ max
B(P,ε)

φ

)
+ β

∫
B(P,ε)

φ ≤ o(ε2),

as ε→ 0, and
(ii) for every continuous function φ defined in a neighborhood of a point P

such that u− φ has a strict maximum at P with u(P ) = φ(P ) then

φ(P )− α

2

(
min
B(P,ε)

φ+ max
B(P,ε)

φ

)
+ β

∫
B(P,ε)

φ ≥ o(ε2).

as ε→ 0.

For the case p =∞ we could consider the 1-homogeneous infinity-Laplacian
1.2, but there remain some technical difficulties. We certainly conjecture that
the statement of Theorem 1.1 holds in this case.

2. Heisenberg group Preliminaries

For n ≥ 1 we denote by Hn the set R2n+1 endowed with the non-commutative
product law given by

(x1, y1, t1) ? (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 2(x2 · y1 − x1 · y2)),

where we have denote points in R2n+1 as P = (x, y, t) with x, y ∈ Rn and t ∈ R
and x ·y denote the usual inner product in Rn. The pair Hn ≡ (R2n+1, ?) is the
Heisenberg group of order n. From now we will denote the group operation ·
instead of ? when there is no risk of confusion.
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Given P = (x, y, t) ∈ Hn we write Xi = (ei, 0, 2yi) and Yi = (0, ei,−2xi) for
i = 1, . . . , n, where {ei}1≤i≤n is the canonical basis in Rn. We identify these
vectors with the vector fields

Xi = ∂xi + 2yi∂t

Yi = ∂yi − 2xi∂t.

The commutator between the vector fields Xi and Yj is 0 except when the
indexes are the same i = j, in which case we have

[Xi, Yi] = −4∂t.

The intrinsic (or horizontal) gradient of a smooth function u at the point P
is given by

∇Hnu(P ) =
n∑
i=1

(Xiu(P )Xi(P ) + Yiu(P )Yi(P )).

The horizontal tangent space at the point P is the 2n-dimensional space

span{X1, . . . , Xn, Yi, . . . , Yn}.
We build a metric in the horizontal tangent space by declaring that the set
of vectors {X1, . . . , Xn, Yi, . . . , Yn} is an orthonormal basis. Thus for ev-
ery pair of horizontal vectors U =

∑n
j=1(α1,jXj(P ) + β1,jYj(P )) and V =∑n

j=1(α2,jXj(P ) + β2,jYj(P )) we have the natural inner product

〈U, V 〉 =
n∑
i=1

α1,jα2,j + β1,jβ2,j.

In particular we get the corresponding norm

|U | =

√√√√ n∑
i=1

(
α2

1,j + β2
1,j

)
.

The norm of the intrinsic gradient of the smooth function u in P is then given
by

|∇Hnu(P )| =

√√√√ n∑
i=1

(Xiu(P ))2 + (Yiu(P ))2

If ∇Hnu(P ) = 0 then we say that the point P is characteristic for the surface
{u = u(P )}. For every point P that is not characteristic the intrinsic normal
to the surface {u = u(P )} is defined, up to orientation, by the unit horizontal
normal vector

ν(P ) =
∇Hnu(P )

|∇Hnu(P )|
·

A semigroup of anisotropic dilations that are group homomorphism is defined
as follows: for every r > 0 and P ∈ Hn let

δr(P ) = (rx, ry, r2t).

A smooth gauge that is homogeneous with respect to the anisotropic dilations
δr is given by

‖(x, y, t)‖ = 4
√

(| x |2 + | y |2)2 + t2.
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We then have ‖δr(P )‖ = r‖P‖. We use this property to define the gauge ball
of radius r centered in 0 iby

B(0, r) = {P ∈ Hn : ‖P‖ < r}.

The Haar measure in Hn turns out to be the Lebesgue measure in R2n+1.
Moreover we have

| δλ(B(0, 1)) |= λ2n+2 | B(0, 1) | .

For these properties and much more see the book [CDPT].
The symmetrized horizontal Hessian matrix of the smooth function u at the

point P is the following 2n× 2n matrix:

D2∗
Hnu(P ) =

1

2

(
D2

Hnu(P ) +
(
D2

Hnu(P )
)t
.
)

The (i, j)-entry of D2
Hnu is given by

(1) XiuXju for 1 ≤ i, j,≤ n,
(2) XiuYj−nu for 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n,
(3) Xi−nuYju for n+ 1 ≤ i ≤ 2n, 1 ≤ j ≤ n, and
(4) Xi−nuYj−nu for n+ 1 ≤ i ≤ 2n, n+ 1 ≤ j ≤ 2n.

Next, we briefly review the Taylor Formula adapted to our framework. Let
u be a smooth function defined in Ω, an open neighborhood of 0 . Let ε0 be
a positive small number such that for ‖P‖ ≤ ε0 and for 0 ≤ s ≤ 1 the points
δs(P ) ∈ Ω. In this way the function

g(s) = u(δs(P )) = u(sx, sy, s2t)

is well defined for every s ∈ [0, 1]. By the classical Taylor’s formula centered
in 0, we get

g(s) = g(0) + g′(0)s+
1

2
g′′(0)s2 + o(s2),

as s→ 0+. Computing derivatives we get

g′(s) = 〈∇Hnu(δs(P ))), (x, y)〉+ 2st∂tu(δs(P )), (2.1)

and

g′′(s) = 〈D2∗
Hnu(δs(P ))(x, y), (x, y)〉

+2st(∂tXiu(δs(P )) + ∂tYiu(δs(P ))

+2t∂tu(δs(P )) + 4s2t∂ttu(δs(P )).

(2.2)

Therefore we get the expansion

u(δs(P )) = u(0)+〈∇Hnu(0), (sx, sy)〉+2s2t∂tu(0)+
1

2
〈D2∗

Hnu(0)(sx, sy), (sx, sy)〉+o(s2).

Writing Q = δs(P ), noting that ‖Q‖ = s‖P‖, that Q = (sx, sy, s2t) and
relabeling we get the horizontal Taylor expansion valid for P near zero

u(P ) =u(0) + 〈∇Hnu(0), (x, y)〉+ 2 t ∂tu(0))

+
1

2

(
〈D2∗

Hnu(0)(x, y), (x, y)〉+ o(‖(x, y, t)‖2
)
.

(2.3)
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3. Key tools for the proof

Lemma 3.1. Let u be a smooth function. If ∇Hnu(0) 6= 0, then there exists
ε0 > 0 such that for every ε ∈ (0, ε0) there exist points Pε,m, Pε,M ∈ ∂B(0, ε)
such that

max
B(0,ε)

u = u(Pε,M)

and
min
B(0,ε)

u = u(Pε,m).

Proof. Let us consider the case of the maximum, the case of the minimum
being analogous. Let us proceed by contradiction. Assume that a sequence of
positive numbers {εj}j∈N ⊂ R+ and a sequence of points {Pj}j∈N ⊂ B(0, εj)
such that εj → 0, as j → +∞ and

max
B(0,εj)

u = u(Pj).

Then for every j ∈ N, we have that ∇u(Pj) = 0 because Pj is in the interior
of B(0, εj). Hence we get a contradiction with the fact that by continuity of
∇u gives ∇u(0) = 0, which implies ∇Hnu(0) = 0. �

Lemma 3.2. For small ε > 0, consider points Pε,M and Pε,m in ∂B(0, ε) such
that

max
B(0,ε)

u = u(Pε,M) and min
B(0,ε)

u = u(Pε,m).

Whenever ∇Hnu(0) 6= 0 we have

lim
ε→0

(xM,ε, yM,ε)

ε
=
∇Hnu(0)

| ∇Hnu(0) |
and

lim
ε→0

(xm,ε, ym,ε)

ε
= − ∇Hnu(0)

| ∇Hnu(0) |
,

where Pε = (xε, yε, tε) ∈ Hn. Moreover, we also have

lim
ε→0

| tε |
ε3

=
2 | ut(0) |
| ∇Hnu(0) |

Proof of Lemma 3.2. We consider the case of the maximum by using the method
of Lagrange multipliers. There exists λε ∈ R such that

uxj(PM,ε) = 4λε xε,j(|xε|2 + |yε|2)
uyj(PM,ε) = 4λε yε,j(|xε|2 + |yε|2)
ut(PM,ε) = 2λε tε

(|xε|2 + |yε|2)2 + γ t2ε = ε4

(3.1)

Thus we get

Xju(PM,ε) = 4λε xε,j(|xε|2 + |yε|2) + 4λε yε,j γ tε

= 4λε
(
xε,j(|xε|2 + |yε|2) + yε,j tε

)
and

Yju(PM,ε) = 4λε yε,j(|xε|2 + |yε|2)− 4λε xε,j γ tε

= 4λε
(
yε,j(|xε|2 + |yε|2)− xε,j tε

)
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To simplify the notation write ρε = |xε|2 + |yε|2, xj = xε,j, yj = yε,j and ρε = ρ.
Since the calculation is the same for every j = 1 . . . n, it suffices to solve the
following system 

Xu = 4λε(ξρ
2 + ηt)

Y u = 4λε(ηρ
2 − ξt)

ut = 2λεt
ρ4 + γt2 = ε4,

(3.2)

where ξ = xj and η = yj. Hence, it follows that if ut(Pε,j) 6= 0 we have

ξρ2 + ηt =
tXu

2ut

−ξt+ ηρ2 =
t Y u

2ut

λε =
ut
2t

ρ4 + γt2 = ε4.

(3.3)

As a consequence solving for ξ and η, squaring and adding we get

ρ2 =
t2

4ε4
| ∇Hnu |2

u2
t

. (3.4)

Thus, we obtain:

| t |= 2 ρ ε2
| ut |
| ∇Hnu |

. (3.5)

ξ = sgn(t)
ρ3

ε2
Xu

| ∇Hnu |
− sgn(t)

2ρ2 | ut | Y u
| ∇Hnu |

(3.6)

η = sgn(t)
ρ3

ε2
Y u

| ∇Hnu |
+ sgn(t)

2ρ2 | ut | Xu
| ∇Hnu |

. (3.7)

Squaring and summing one more time and keeping in mind that

(
Xu

| ∇Hnu |
)2 + (

Y u

| ∇Hnu |
)2 = 1

we get

ρ2 =
ρ6

ε4
+ 4ρ4u2

t ,

which implies
ρ4

ε4
+ 4ρ2u2

t = 1.

We deduce that ρ ∼ ε whenever ε → 0, since ut(0) is bounded. As a conse-
quence it follows from (3.6) and (3.7) that

ξ

ε
→ ± Xu

| ∇Hnu |
and

η

ε
→ ± Y u

| ∇Hnu |
.

On the other hand recalling (3.5) and the fact that ρ ∼ ε, as ε→ 0, we get
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lim
ε→0

|t|
ε3

=
2|ut(0)|
|∇Hnu(0)|

.

If there is a sequence of point {Pεj}j∈N such that ut(Pεj) = 0, then either
tεj = 0, or λεj = 0. In the first case we get that ρ4 = ε4, so that ρ = ε. Thus
we get

Xu(Pεj) = 4λεj ξε
2

and

Y u(Pεj) = 4λεj ηε
2.

As a consequence, squaring and summing once again, we get

|∇Hnu(Pεj)|2 = 16λ2
εj
ε4ρ2.

So that since |∇Hnu(0)| 6= 0, this implies

λ2
εj
ε4ρ2 ∼ λ2

εj
ε6 → |∇Hnu(0)|2

16
,

that is

|λεj | ε3 →
|∇Hnu(0)|

4
.

As a consequence, as εj → 0 we get

Xu(Pεj) = 4λεj
ξ

ε
ε3 ∼ ±|∇Hnu(0)|ξ

ε

Y u(Pεj) = 4λεj
η

ε
ε3 ∼ ±|∇Hnu(0)|η

ε
,

that is
ξ

ε
→ ± Xu(0)

|∇Hnu(0)|
and

η

ε
→ ± Y u(0)

|∇Hnu(0)|
.

In the case that there exists a sequence of points {Pεj}j∈N such that such that
λεj = 0, then we would get

Xu(Pεj) = 0 and Y u(Pεj) = 0,

getting a contradiction with the assumption that ∇Hnu(0) 6= 0.
We just need to justify the sign of the limit. Using the Taylor’s formula in

the Heisenberg group we get:

u(Pε,M) =u(0) + 〈∇Hnu(0), (xε,M , yε,M)〉

+
1

2

(
〈D2∗

Hnu(0)(xε,M , yε,M), (xε,M , yε,M)〉+ 2t∂tu(0)) + o(ε2
)

Hence, dividing by ε > 0 we get

0 ≤ u(Pε,M)− u(0)

ε
= 〈∇Hnu(0), (

xε,M
ε
,
yε,M
ε

)〉

+
1

2

(
〈D2∗

Hnu(0)(
xε,M
ε
,
yε,M
ε

), (xε,M , yε,M)〉+ 2
tε
ε
∂tu(0)) + o(ε)

)
.
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Letting ε→ 0 we get

0 ≤ 〈∇Hnu(0), lim
ε→0

(
xε,M
ε
,
yε,M
ε

)〉,

which implies

lim
ε→0

(xε,M
ε
,
yε,M
ε

)
=
∇Hnu(0)

|∇n
Hu(0)|

.

�

Lemma 3.3. Let u be a smooth function defined in a open subset of the Heisen-
berg group. Then∫

B(P,ε)

u(x, y, t) = u(P ) + C(n)∆Hnu(P )ε2 + o(ε2),

as ε→ 0, where

C(n) =
1

2(n+ 1)

∫ 1

0
(1− s2)

n+1
2 ds∫ 1

0
(1− s2)

n
2 ds

Proof. Without loss of generality we set P = 0. We average the Taylor expan-
sion 2.3 to get∫
B(0,ε)

u(x, y, t) =u(0) +

∫
B(0,ε

〈∇Hnu(0), (x, y)〉

+
1

2

∫
B(0,ε

〈D2∗
Hnu(0)(x, y), (x, y)〉+

∫
B(0,ε

2t∂tu(0)) + o(‖(x, y, t)‖2

= u(0) +
1

2

∫
B(0,ε)

〈D2∗
Hnu(0)(x, y), (x, y)〉+

∫
B(0,ε)

o(‖(x, y, t)‖2

= u(0) + C(n)∆Hnu(P )ε2 + o(ε2).
(3.8)

Indeed we have that the linear terms vanish∫
B(0,ε)

〈∇Hnu(0), (x, y)〉 dxdydt =

∫ ε2

−ε2

∫
S(ε,t)

〈∇Hnu(0), (x, y)〉dxdydt = 0,

where we have set S(ε, t) = {(x, y) : |x|2 + |y|2 < 4
√
ε4 − t2}. Proceeding analo-

gously for the second order terms we get∫
B(0,ε)

〈D2∗
Hnu(0)(x, y),(x, y)〉 dxdydt =

=

∫ ε2

−ε2

∫
S(ε,t)

〈D2∗
Hnu(0)(x, y), (x, y)〉 dxdydt

=
∑
i=1

(
X2
i u(0) + Y 2

i u(0)
) ∫ ε2

−ε2

∫
S(ε,t)

(x2
i + y2

i ) dxdydt

=
1

(n+ 1)

∫ 1

0
(1− s2)

n+1
2 ds∫ 1

0
(1− s2)

n
2 ds

|B(0, ε)|∆Hnu(0) ε2

(3.9)
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since∫ ε2

−ε2

∫
S(ε,t)

(x2
i + y2

i ) dxdydt =
1

n

∫ ε2

−ε2

∫
S(x,t)

(|x|2 + |y|2) dxdydt

=
ω(2n)

n

∫ ε2

−ε2

∫ 4√ε4−t2

0

ρ2ρ2n−1dρdt

=
ω(2n)

n(n+ 1)

∫ ε2

0

(ε4 − t2)
n+1

2 dt

=
ω(2n)

n(n+ 1)

(∫ 1

0

(1− s2)
n+1

2 dt

)
ε2n+4

=
1

(n+ 1)

∫ 1

0
(1− s2)

n+1
2 dt∫ 1

0
(1− s2)

n
2 dt

|B(0, ε)| ε2

(3.10)

where we have denoted by ω(n) the Euclidean surface area of they unit sphere

∂B(0, 1) in R2n, and have used the formula |B(0, ε)| = ε2n+2 ω(2n)
n

∫ 1

0
(1−t2)n2 dt

for the Lebesgue measure in R2n+1 of the gauge ball of radious ε. �

4. Proof of Theorem 1.1

The first step in the proof of Theorem 1.1 is the following expansion valid
for smooth functions.

Let P ∈ Ω be a point and φ be a C2-function defined in a neighborhood of
P. We denote by Pε,M ∈ B(P, ε) and Pε,m ∈ B(P, ε) the points of maxima and
minima

φ(Pε,M) = max
B(P,ε)

φ, and φ(Pε,m) = min
B(P,ε)

φ.

Lemma 4.1. Let p ∈ (1,+∞)and φ be a C2-function in a domain Ω ⊂ Hn.
Let C(n), α, β be given in the statement of Theorem 1.1. Consider the vectors

(hε, lε) =

(
xε,M − x

ε
,
yε,M − y

ε

)
.

The following expansions hold near every P ∈ Ω,

β C(n)ε2
[
∆Hnφ(P )+(p− 2)〈D2,∗

Hnφ(P )(hε, lε), (hε, lε)〉
]
≥

β

∫
B(P,ε)

φ(x, y, t) +
α

2

(
min
B(P,ε)

φ+ max
B(P,ε)

φ

)
− φ(P ) + o(ε2),

as ε→ 0 and

β C(n)ε2
[
∆Hnφ(P )+(p− 2)〈D2,∗

Hnφ(P )(hε, lε), (hε, lε)〉
]
≤

β

∫
B(P,ε)

φ(x, y, t) +
α

2

(
min
B(P,ε)

φ+ max
B(P,ε)

φ

)
− φ(P ) + o(ε2),

ε→ 0.
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Proof. We can assume without any restriction that P = 0 (x = 0, y = 0, and
t = 0) just moving P to the origin by a left translation of the group.The Taylor
formula in the Heisenberg group gives

φ(Pε,M) = φ(0)+〈∇Hnφ(0), (xε,M , yε,M)〉+
1

2
〈D2,∗

Hnφ(0)(xε,M , yε,M), (xε,M , yε,M)〉

+2tε,M ∂tφ(0) + o(ε2).

and

φ(−Pε,M) = φ(0)−〈∇Hnφ(0), (xε,M , yε,M)〉+
1

2
〈D2,∗

Hnφ(0)(xε,M , yε,M), (xε,M , yε,M)〉

−2tε,M ∂tφ(0) + o(ε2).

Adding the last two inequalities we get

φ(Pε,M) + φ(−Pε,M) =2φ(0) + 〈D2∗
Hnφ(0)(xε,M , yε,M), (xε,M , yε,M)〉+ o(ε2).

Using the definition of Pε,M if follows that

max
B(0,ε)

φ+ min
B(0,ε)

φ ≤ max
B(0,ε)

φ+ φ(−Pε,M)

= φ(0) + 〈D2∗
Hnφ(0)(xε,M , yε,M), (xε,M , yε,M)〉+ o(ε2),

(4.1)

which implies the inequality

φ(0) +
1

2
〈D2∗

Hnφ(0)(xε,M , yε,M), (xε,M , yε,M)〉 ≥ 1

2

(
max
B(0,ε)

φ+ min
B(0,ε)

φ

)
+ o(ε2).

(4.2)

Multiplying this relation by α, the expansion in Lemma 3.3 by β, adding and
using the fact that α + β = 1 we obtain

φ(0)+C(n) β∆Hnφ(0)ε2 +
α

2
〈D2∗

Hnφ(0)(xε,M , yε,M), (xε,M , yε,M)〉

≥ β

∫
B(0,ε)

φ(x, y, t) +
α

2

(
min
B(0,ε)

φ+ max
B(0,ε)

φ

)
+ o(ε2).

as we wanted to show in the case α > 0.
We determine α and β in such a way that

α

2C(n)β
= p− 2,

Thus together the requirement α + β = 1 we get

1− β
2C(n)β

= p− 2,

giving

α =
2(p− 2)C(n)

2(p− 2)C(n) + 1
and β =

1

2(p− 2)C(n) + 1
.
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We can now write

ε2C(n)

2(p− 2)C(n) + 1

(
∆Hnφ(0) + (p− 2)〈D2∗

Hnφ(0)(
xε,M
ε
,
yε,M
ε

), (
xε,M
ε
,
yε,M
ε

)〉
)

+ o(ε2)

≥

(
1

2(p− 2)C(n) + 1

∫
B(0,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(0,ε)

φ+ max
B(0,ε)

φ

]
− φ(0)

)
.

This computation works for α ≥ 0; that is for every p ≥ 2 When α < 0 the
procedure is the same but the sign of the inequality is reversed, that is

ε2C(n)

2(p− 2)C(n) + 1

(
∆Hnφ(0) + (p− 2)〈D2∗

Hnφ(0)(
xε,M
ε
,
yε,M
ε

), (
xε,M
ε
,
yε,M
ε

)〉
)

+ o(ε2)

≤

(
1

2(p− 2)C(n) + 1

∫
B(0,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(0,ε)

φ+ max
B(0,ε)

φ

]
− φ(0)

)
.

and p ∈ (1, 2). Arguing with the inequality coming from the minimum we get

φ(0) +
1

2
〈D2∗

Hnφ(0)(xε,m, yε,m), (xε,m, yε,m)〉+ o(ε2) ≤ 1

2

(
min
B(0,ε)

φ+ max
B(0,ε)

φ

)
.

and

ε2C(n)

2(p− 2)C(n) + 1

(
∆Hnφ(0) + (p− 2)〈D2∗

Hnφ(0)(xε,m, yε,m), (xε,m, yε,m)〉
)

+ o(ε2)

≤

(
1

2(p− 2)C(n) + 1

∫
B(0,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(0,ε)

φ+ max
B(0,ε)

φ

]
− φ(0)

)
,

for p ≥ 2 and

ε2C(n)

2(p− 2)C(n) + 1

(
∆Hnφ(0) + (p− 2)〈D2∗

Hnφ(0)
(xε,m, yε,m)

ε
,
(xε,m, yε,m)

ε
〉
)

+ o(ε2)

≥

(
1

2(p− 2)C(n) + 1

∫
B(0,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(0,ε)

φ+ max
B(0,ε)

φ

]
− φ(0)

)
,

(4.3)

for p ∈ (1, 2).
�

Proof of Theorem 1.1. Suppose that u satisfies the asymptotic expansion in
the viscosity sense as in Definition 1.4. Let φ be a smooth function such that
u − φ has a strict maximum at P and ∇Hnφ(P ) 6= 0. Then it follows, by
condition (ii) in Definition 1.4,

1

2(p− 2)C(n) + 1

∫
B(P,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(P,ε)

φ+ max
B(P,ε)

φ

]
− φ(P ) ≥ 0,

and recalling 4.3 we conclude that

ε2C(n)

2(p− 2)C(n) + 1

(
∆Hnφ(P ) + (p− 2)〈D2∗

Hnφ(P )
(xε,m, yε,m)

ε
,
(xε,m, yε,m)

ε
〉
)
≥ o(ε2).

Dividing by ε2, using Lemma 3.2 and letting ε→ 0 we get



14 F. FERRARI, Q. LIU, AND J. MANFREDI

∆Hnφ(P ) + (p− 2)〈D2∗
Hnφ(P )

∇Hnφ(P )

| ∇Hnφ(P ) |
,
∇Hnφ(P )

| ∇Hnφ(P ) |
〉 ≥ 0,

that is u is a viscosity subsolution of ∆Hn,pu = 0.
Let us prove the converse implication. Assume that u is a viscosity solution.

In particular u is a supersolution so that for every C2 test function φ such that
u− φ is a strict minimum at the point P ∈ Ω with ∇Hnφ(P ) 6= 0 we have

−(p− 2)∆Hn∞φ(P )−∆Hnφ(P ) ≥ 0.

Recalling inequality (4.3)

0 ≥ ε2C(n)

2(p− 2)C(n) + 1

(
∆Hnφ(P ) + (p− 2)〈D2∗

Hnφ(P )
(xε,m, yε,m)

ε
,
(xε,m, yε,m)

ε
〉
)

≥

(
1

2(p− 2)C(n) + 1

∫
B(0,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(P,ε)

φ+ max
B(P,ε)

φ

]
− φ(P )

)
+ o(ε2),

and keeping in mind that

lim
ε→0

(
xε,m
ε
,
yε,m
ε

) = − ∇Hnφ(P )

| ∇Hnφ(P ) |
,

we get

1

2(p− 2)C(n) + 1

∫
B(P,ε)

φ+
(p− 2)C(n)

2(p− 2)C(n) + 1

[
min
B(P,ε)

φ+ max
B(P,ε)

φ

]
−φ(P )+o(ε2) ≤ 0,

which is condition (i) in the Definition 1.4. An analogous computation gives
the proof of condition (ii).

�
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