
On the twist condition and c-monotone transport plans

Thierry Champion

Institut de Mathématiques de Toulon et du Var, U.F.R. des Sciences et Techniques, Université du Sud

Toulon-Var, Avenue de l’Université, BP 20132, 83957 La Garde cedex, FRANCE

Luigi De Pascale∗

Dipartimento di Matematica Applicata, Universitá di Pisa, Via Buonarroti 1/c, 56127 Pisa, ITALY

Abstract

We consider optimal transport problems in R
d as well as on manifolds for cost functions c

which satisfy a nonsmooth version of the classical Left Twist condition (i.e. the invertibility
of the gradient in the first variable). Under the classical assumption that the initial measure
does not give mass to sets with σ-finite Hd−1 measure, we provide a short and self-contained
proof of the fact that any optimal transport plan as well as any feasible transport plan
satisfying a c-monotonicity assumption is induced by a transport map. We also show that
the usual costs induced by Tonelli Lagrangians satisfy the Nonsmooth Left Twist condition
we propose.
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1. Introduction

Consider the optimal transport problem

(P) inf

{∫

M×N

c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}

where M is a second countable C1 manifold, N is a Polish space, c : M × N → R is a cost
function, µ and ν are Borel probabilities respectively over M and N , and Π(µ, ν) denotes the
set of transport plans from µ to ν, i.e. the set of Borel probabilities γ on M ×N with first
marginal πx

♯ γ equal to µ and second marginal πy
♯ γ equal to ν. In this work, we are interested

in identifying conditions on the cost function c and the measure µ to ensure the existence of

∗Corresponding author
Email addresses: champion@univ-tln.fr (Thierry Champion), depascal@dm.unipi.it (Luigi De

Pascale)

Preprint submitted to Elsevier August 22, 2012



an optimal transport plan γ for (P) which is induced by a transport map, that is for which
there exists a µ-measurable function T :M → N such that γ = (id× T )♯µ.

This problem has been extensively studied in the past twenty years, and one may distin-
guish two main types of sufficient conditions for the existence of an optimal transport plan
for (P) induced by a map, depending on whether or not the cost function c satisfies the
following regularity assumption :

(LT) for all x ∈M , y 7→
∂c

∂x
(x, y) is injective on its domain,

where (LT) stands for “left twist” (we refer to Fathi and Figalli [1] for comments on this
terminology). For example, in the special case where M = N = R

d and c(x, y) = ‖y − x‖p,
with p > 0 and ‖ · ‖ denoting the Euclidian norm, the assumption (LT) holds whenever
p 6= 1 but fails for p = 1. Let us briefly describe the corresponding existence results for
those particular instances of problem (P). First in the regular case where (LT) holds, i.e.
for p 6= 1, one obtains that the unique solution of (P) is indeed induced by a map under the
general hypothesis that µ does not give mass to sets with σ-finite Hd−1 measure, see Brenier
[2] and Rüschendorf and Rachev [3] for the case p = 2 and Caffarelli [4], Gangbo and McCann
[5, 6] and Rüschendorf [7] for the general case p 6= 1. On the other hand the case p = 1,
which corresponds to the relaxation proposed by Kantorovitch [8, 9] for the optimal mass
transport problem originally studied by Monge [10], this existence issue reveals quite involved
and one only obtains that some particular solution of (P) is indeed induced by a map under
the hypothesis that µ is absolutely continuous with respect to the Lebesgue measure Ld, see
Evans and Gangbo [11] with the further assumption that µ and ν have Lipschitz densities
with respect to Ld, and Ambrosio and Pratelli [12], Caffarelli, Feldman and McCann [13],
Caravenna [14], Champion and De Pascale [15, 16], and Trudinger and Wang [17] for the
general case on µ. In that case the problem (P) may have solutions which are not induced by
a transport map even when both measures µ and ν are absolutely continuous with respect to
the Lebesgue measure Ld, or may have no solution induced by a transport map in the case
where µ is not absolutely continuous with respect to the Lebesgue measure Ld (see Ambrosio
and Pratelli [12]).

In the present work we shall concentrate on the regular case where the assumption (LT)
holds. In this framework and under the hypothesis that the admissible plan γ is concentrated
on a c-cyclically monotone set (which amounts to γ being optimal for (P) when the value
is finite, see §4 below), the fact that the plan γ is induced by a transport map has been
proven by many authors under various regularity hypotheses. When M = R

d, this was in
particular obtained by Caffarelli [4], Gangbo and McCann [5, 6] and Rüschendorf [7] in the
case c(x, y) = h(y − x) (see also Villani [18] for a presentation), while the general form for
the cost function c was investigated in Carlier [19], Levin [20] . For the case where (M,d) is
a Riemaniannian manifold, this was studied for the square distance cost c = d2 by Cordero-
Erausquin [21] (in the special case of the flat torus) and McCann [22], and the general case
where c is induced by a Lagrangian was studied by Bernard and Buffoni [23], Fathi and
Figalli [1] and Figalli [24, 25]. While all these works heavily use the fact that the plan γ is
concentrated on a c-cyclically monotone set, our paper is innovative in that it applies to any
plan γ which is supported on a c-monotone set (see section 4 below) : to obtain such a result
we have to strengthen the hypothesis (LT) on the cost function c (see the Nonsmooth Left

2



Twist condition (NLT) in section 2 below) but we prove that the most common cost functions
that satisfy (LT) also satisfy this stronger condition. Surprisingly enough our result holds
true with the same requirement that the initial measure µ shall give zero mass to sets with
σ-finite Hd−1 measure (in fact we slightly weaken this hypothesis). Our approach follows
the method of proof designed by Champion, De Pascale and Juutinen [26] for the study of
the ∞-Wasserstein distance problem and generalized by Champion and De Pascale [16, 27]
to deal with the classical Monge Transportation problem. The main features of our proof
is that it relies on local arguments and make no use of the regularity theory for c-convex
functions; see the discussion following the proof of Theorem 4.3 below.

The paper is organized as follows : in sections §2 and §3 we present the assumptions we
shall make on the cost function c and the initial measure µ respectively. In §3 we also deduce
some regularity property for any admissible plan γ ∈ Π(µ, ν). Section 4 is devoted to our
main result and some comments, and we prove that this result applies to the most usual costs
induced by Lagrangians in section 5.

2. Hypotheses on the cost function

We hereafter describe the common regularity assumptions that we shall impose on the
cost function c, and in particular we introduce our refined version of the left twist condition
(LT) which is the basis of our main result Theorem 4.3. Since our method of proof is local,
we first state those assumptions in U ×N , where U is an open subset of Rd and N is a Polish
space, and we shall then briefly discuss the manifold setting, the specific case of costs induced
by a Tonelli Lagrangian being treated in section §5 below. A more detailed presentation of the
following notions (except for the nonsmooth left twist condition (NLT) below) and related
properties in the context of optimal transportation may be found for example in chapter 10
of Villani [28] or the appendix of Fathi and Figalli [1].

Definition 2.1. The function c : U ×N → R is superdifferentiable in x at (x0, y0) if there
exist p0 ∈ R

d and a function η0 : R+ → R such that

∀x ∈ U, c(x, y0) ≤ c(x0, y0) + p0 · (x− x0) + η0(‖x− x0‖)‖x− x0‖ (1)

with η0(r) → 0 as r → 0, where · denotes the canonical scalar product on R
d. The convex

set of all such vectors p0 is the superdifferential in x of c at (x0, y0) and is denoted by
∇+

x c(x0, y0). The likewise notions of subdifferentiability and subdifferential ∇−
x c(x0, y0) are

obtained by reversing the inequality in (1).

Remark 2.2. Note that a function c is differentiable with respect to x at (x0, y0) if and only
if it is both sub- and superdifferentiable with ∇+c(x0, y0) = ∇−c(x0, y0) = {∇xc(x0, y0)} (we
refer to Proposition 10.7 of Villani [28]).

We shall need the usual following refined notion of local regularity.

Definition 2.3. The function c : U × V → R is locally superdifferentiable in x at (x0, y0)
locally in y if there exists a neighborhood W of (x0, y0) such that c is superdifferentiable in
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x at any (x, y) ∈ W and there exists a continuous function η : R+ → R such that for all
(x, y) ∈ W :

∀x′, ∀p ∈ ∇+
x c(x, y), c(x′, y) ≤ c(x, y) + p · (x′ − x) + η(‖x′ − x‖)‖x′ − x‖

with η(r) → 0 as r → 0. The corresponding notion of local subdifferentiability is defined
likewise.

Notice that in the above local notion of superdifferentiability it is assumed that the
function η involved in (1) does not depend on (x, y) locally around (x0, y0).

Remark 2.4. It is to be noted that when c : U × V → R is locally superdifferentiable (resp.
subdifferentiable) in x at (x0, y0) locally in y, then it is differentiable in x at (x0, y0) whenever
∇+

x c(x0, y0) is reduced to a singleton (see Theorem 10.8(iii) in Villani [28]).

Definition 2.5. A set-valued map F : U×N ⇉ R
d is locally bounded if for any (x, y) ∈ U×N

there exists a neighborhood W of (x, y) and a compact set K such that F (x, y) ⊂ K for all
(x, y) ∈ W .

The following result is a direct consequence of the above definitions, and states that under
mild assumptions the superdifferential (resp. subdifferential) set-valued map has closed values
and closed graph.

Lemma 2.6. Assume c : U × N → R is continuous, locally superdifferentiable in x locally
in y on U × N , and that (x, y) 7→ ∇+

x c(x, y) is locally bounded in U × N . Then whenever
(xn, yn)n≥0 converges to (x∞, y∞) and pn ∈ ∇+

x c(xn, yn) for any n, it holds that (pn)n≥0 is
bounded and any of its cluster points p∞ belongs to ∇+

x c(x∞, y∞). A similar statement holds
for the subdifferential.

As already mentioned, the proof of our main result is based on a local argument, so that
for our purpose all the previous notions may be generalized through local charts to a cost
c : U ×N → R where U is an open set of a C1 manifold M . Indeed, if (V, φ) and (W,ψ) are
two local charts around x0 ∈ U , then c ◦ (φ−1× id) is locally superdifferentiable with respect
to the first variable x locally in y at (φ(x0), y0) if and only if the same holds for c◦ (ψ−1× id)
at (ψ(x0), y0), and in this case one has

∇+
x (c ◦ (φ

−1 × id))(φ(x), y) = tD(ψ ◦ φ−1)
[

∇+
x (c ◦ (ψ

−1 × id))(ψ(x), y)
]

(2)

for any (x, y) ∈ (V ∩ W ) × N : this directly follows from the fact that ψ ◦ φ−1 is a C1

diffeomorphism on φ(V ∩W ). Note that equation (2) uniquely characterizes the following
subset of the cotangent space T ∗

x0
M :

∇+
x
c(x0, y0) = φ∗(∇+

x (c ◦ (φ
−1 × id)(φ(x0), y0)). (3)

Indeed such a subset does not depend on the local coordinate and is, by definition, the
superdifferential of c with respect to x at (x0, y0). The more specific case where M is
endowed with a Riemannian structure is treated in section §5 below.

We finally introduce the refined twist condition.

4



Definition 2.7. Assume c : U ×N → R is superdifferentiable in x on U ×N , we say that c
satisfies the Nonsmooth Left Twist condition whenever it holds

(NLT) for all x ∈ U , the set-valued map y 7→ ∇+
x c(x, y) is injective.

Remark 2.8. We use the same terminology of “Nonsmooth Left Twist condition” when c is
subdifferentiable, with ∇−

x c(x, y) replacing ∇+
x c(x, y) : it indeed follows from Remark 2.2 that

these two conditions coincide with (LT) when c is both sub- and superdifferentiable.

Let us comment briefly on the above definition. First, the conditions (LT) and (NLT)
obviously coincide in the regular case when c is differentiable in x on its domain. This is for
example the case for the usual lp costs c(x, y) = ‖y − x‖p, which do satisfy both conditions
on R

d ×R
d for p positive and p 6= 1. In fact the main reason for introducing this nonsmooth

version of the left twist condition is to address the case of non-regular costs c which do
naturally appear in the case where M is a manifold. In particular, if one considers the case
of a smooth Riemannian manifold (M, g) with corresponding Riemannian metric d, a natural
generalization of the lp-costs are the costs c(x,y) = d(x,y)p and one can not expect in general
that this cost is smooth even when p 6= 1. For example if M is the sphere S

d or the flat
torus T

d endowed with the Riemannian structure induced by R
d+1, then (x,y) 7→ d(x,y)p

is never differentiable in x at (x,y) whenever x and y are antipodal. Nevertheless we shall
see in section §5 below that those particular costs also satisfy (NLT) as particular cases of
costs associated to a Tonelli Lagrangian.

In view of the previous discussion, one may wonder whether (LT) implies (NLT), or at
least if the fact that c satisfies (LT) on U × N implies that it satisfies (NLT) at least on
some part of the non-differentiability points for c. We hereafter provide a counter-example.

Example 2.9. The function c(x, y) = x2 y + |x| satisfies (LT) on R
2 but does not satisfy

(NLT) : one has ∇−
x c(0, ·) = [−1, 1] on R.

3. A property of transport plans

We now discuss the regularity assumption we shall make upon the initial measure µ. As
noted in the introduction, a common hypothesis on µ is to assume that it does not give mass
to sets with Hd−1 σ-finite measure. Following Fathi and Figalli [1], we shall make the slightly
more general assumption that the measure µ does not give mass to countably (d−1)-Lipschitz
sets. We recall the definition below.

Definition 3.1. A set E ⊂ R
d is a (d − 1)-Lipschitz graph if there exists a compact subset

K of Rd−1 and a Lipschitz function f : K → R such that E is the graph of f in R
d equipped

with an adequate orthonormal basis. A set E ⊂ R
d is countably (d− 1)-Lipschitz if it can be

expressed as a countable union of (d− 1)-Lipschitz graphs.

It directly follows from the above definition that a countably (d − 1)-Lipschitz set is of
Hd−1 σ-finite measure : as a consequence if a Borel probability µ on R

d does not give mass
to sets of Hd−1 σ-finite measure then it does not give mass to countably (d − 1)-Lipschitz
sets. In the case where µ is a Borel probability on a second countable C1 manifold M , we
say that it does not give mass to countably (d− 1)-Lipschitz sets if this holds in local charts,
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that is if φ♯µ has this property for any local chart (V, φ). Here again this notion does not
depend on the chosen local chart : if (V, φ) and (W,ψ) are two local charts then ψ ◦ φ−1 is a
C1 diffeomorphism on φ(V ∩W ) so that it preserves the countably (d−1)-Lipschitz property.

As the proof of our main result in the manifold setting relies on a localization argument,
we shall assume that M = R

d in the rest of this section. Our aim here is to prove Lemma
3.4 below, which states that when the initial measure µ does not give mass to countably
(d− 1)-Lipschitz sets then any transport plan Π(µ, ν) is concentrated on a σ-compact subset
of Rd×N whose elements are somehow interior points of its support (see Remark 3.5 below).
We first recall the following definition from Champion, De Pascale and Juutinen [26].

Definition 3.2. Let Γ be a σ-compact subset of Rd ×N , for y ∈ N and r > 0 we define

Γ−1(B (y, r)) := πx(Γ ∩ (Ω×B (y, r))).

where πx : (x, y) 7→ x is the projection on R
d.

In terms of mass transportation, if Γ is a σ-compact subset of the support of a transport
plan γ ∈ Π(µ, ν), and if γ is concentrated on Γ, then Γ−1(B (y, r)) may be interpreted as a
pre-image of B (y, r) by γ (restricted to Γ). Note that the set Γ−1(B (y, r)) is also σ-compact,
and thus is a Borel set.

For x ∈ R
d, ξ ∈ S

d−1 and δ ∈ ]0, 1[ we define the cone

C(x, ξ, δ) :=

{

y 6= x :
y − x

‖y − x‖
· ξ > 1− δ

}

, (4)

and for a subset A of Rd and ε > 0 we set

C(A; ξ, δ, ε) := {x ∈ A : C(x, ξ, δ) ∩ A ∩B(x, ε) = ∅} . (5)

The set C(x, ξ, δ) is a pointed cone with apex x, with direction ξ and angle arccos(1 − δ)
around ξ. Note that when A is closed, the set C(A; ξ, α, ε) is also closed.

The following Lemma of Geometric Measure Theory was shown to us by Tapio Rajala.

Lemma 3.3. Let A be a compact subset of Rd, ξ ∈ S
d−1 and δ ∈ ]0, 1[ , then C(A; ξ, α, ε) is

a countably (d− 1)-Lipschitz set.

Proof. Without loss of generality we assume that ξ = ed is the d-th vector of the canonical
basis of Rd, and we shall denote by x−d the projection of a vector x ∈ R

d onto R
d−1 × {0}.

We fix δ ∈ ]0, 1[ and ε > 0, and for k ∈ Z we set

Bk := C(A; ξ, δ, ε) ∩
(

R
d−1 × [k (1− δ) ε, (k + 1) (1− δ) ε]

)

.

Then Bk is a compact subset of Rd. We also remark that if x and y both belong to Bk then
x /∈ C(y, ξ, α) and y /∈ C(x, ξ, α). Using the definition (4) we thus obtain that if x and y
both belong to Bk then

|yd − xd| ≤ (1− δ)‖y − x‖ ≤ (1− δ)(|yd − xd|+ ‖y−d − x−d‖)
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so that

|yd − xd| ≤
1− δ

δ
‖y−d − x−d‖.

We infer from the last inequality that the compact set Bk is the graph of the Lipschitz
function x−d → xd defined on the projection of Bk onto R

d−1 × {0}, identified with R
d−1.

Since C(A; ξ, α, ε) ⊂
⋃

k∈Z

Bk the proof is complete.

The following result is a finer version of Lemma 5.2 and Proposition 5.4 of Champion,
De Pascale and Juutinen [26], in which the assumption that µ is absolutely continuous with
respect to the Lebesgue measure Ld is weakened thanks to the above Lemma 3.3.

Lemma 3.4. Assume that the Borel probability measure µ on R
d gives zero measure to

countably (d − 1)-Lipschitz sets. Let γ ∈ Π(µ, ν), and Γ be a σ-compact set on which γ
is concentrated. Then there exists a Borel subset R(Γ) of Γ ∩ support(γ) on which γ is
concentrated, and such that for any (x, y) ∈ R(Γ), r > 0, ξ ∈ S

d−1, δ ∈ ]0, 1[ and ε > 0 one
has

x ∈ Γ−1(B (y, r)) \ C(Γ−1(B (y, r)); ξ, δ, ε). (6)

Proof. Let (yn)n be a dense sequence in R
d and (ξn)n be a dense sequence in S

d−1, then
for any (i, j, k) ∈ N

5 we set

Bi,j,k := C

(

Γ−1

(

B

(

yi,
1

j + 1

)

)

⋂

[−j, j]d ; ξk,
1

j + 1
,

1

j + 1

)

.

We remark that if (x, y) ∈ Γ is such that x belongs to C(Γ−1(B (y, r)); ξ, δ, ε) for some
r, ξ, δ, ε then x belongs to ∪i,j,kBi,j,k. We infer from Lemma 3.3 that each compact set Bi,j,k

is countably (d− 1)-Lipschitz so that it has µ-measure 0. Then the Borel set

R(Γ) := Γ
⋂

support(γ)
⋂







R
d \

⋃

i,j,k

Bi,j,k



×N





fulfills the desired property.

Remark 3.5. An element x of πx(R(Γ)) of Lemma 3.4 may be considered to be sort of an
interior point of πx(Γ∩ support(γ)) in the sense that in any direction ξ ∈ S

d−1 one may find
x′ 6= x in πx(Γ ∩ support(γ)) such that ‖x− x′‖ and ‖ξ − (x − x′)/‖x− x′‖ are as small as
desired.

4. c-monotone transport plans are induced by transport maps

In this section we prove the main result of this paper, namely that under mild assumptions
on the initial measure µ and the cost function c it holds that any c-monotone transport plan
is induced by transport map. Let us first recall the notion of c-monotonicity and c-cyclical
monotonicity.
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Definition 4.1. A subset Γ of M ×N is c-monotone whenever for any (x1, y1) and (x2, y2)
in Γ it holds

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1).

The set Γ is c-cyclically monotone if for any N ≥ 2, any permutation σ of {1, . . . , N} and
any N elements (x1, y1), . . . , (xN , yN) of Γ it holds

N
∑

i=1

c(xi, yi) ≤
N
∑

i=1

c(xi, yσ(i)).

When c is continuous and (P) has finite value, it is well known that the fact that the
support of a transport plan γ ∈ Π(µ, ν) is c-cyclically monotone is a necessary and sufficient
condition for its optimality (see e.g. Pratelli [29], Schachermayer and Teichmann [30]). This
is of course not the case for c-monotonicity, as the simple example below shows.

Example 4.2. Let M = N = R
2 and consider the usual squarred Euclidian norm cost

c(x, y) = ‖y− x‖2, then the problem (P) for the probabilities µ = ν =
1

π
L2⌊B(0, 1) obviously

has a unique solution (id × id)♯µ induced by the identity, which is then the only admissible
transport plan supported by a c-cyclically monotone set. On the other hand, if Rπ/2 denotes

the rotation of center 0 and angle
π

2
in R

2 then it is clear that the transport plan (id×Rπ/2)♯µ

is c-monotone and not optimal for (P).

We are now in position to state the main result of this paper.

Theorem 4.3. Let M be a second countable C1 manifold of dimension d and let N be a
Polish space, µ and ν be Borel probabilities respectively over M and N and let the cost c be
continuous and locally superdifferentiable in x locally in y on U ×N , where U is an open set
on which µ is supported. We assume that µ gives zero measure to countably (d− 1)-Lipschitz
sets and that c satisfies (NLT).

If a transport plan γ ∈ Π(µ, ν) is concentrated on σ-compact and c-monotone set Γ, then
γ is concentrated on a Borel graph.

Remark 4.4. Following the line of the proof of Theorem 4.3 below, a similar result holds
whenever c is subdifferentiable instead of superdifferentiable.

Proof (Proof of Theorem 4.3). We first do the proof in the case M = R
d.

From Lemma 3.4 we get that γ is concentrated on a Borel subset R(Γ) of Γ which is
c-monotone and such that (6) holds for any (x, y) ∈ R(Γ), r > 0, ξ ∈ S

d−1, δ ∈ ]0, 1[ and
ε > 0. We prove by contradiction that R(Γ) ∩ U ×N is a graph : assume that (x0, y0) and
(x0, z0) both belong to that set with y0 6= z0. By (NLT) we may assume that there exists
p0 ∈ ∇+

x c(x0, y0)\∇
+
x c(x0, z0), then since the convex set ∇+

x c(x0, z0) is non-empty and closed
(see Lemma 2.6), we infer by the Banach separation Theorem that there exists ξ ∈ S

d−1 and
β > 0 such that

∀q ∈ ∇+
x c(x0, z0), ξ · (q − p0) ≥ β > 0.

8



Now there exists η : Rd → R such that η(r) → 0 as r → 0 and for all (x, z) in a neighborhood
of (x0, z0) and any qx,z ∈ ∇+

x c(x, z) we have

c(x0, z) ≤ c(x, z) + qx,z · (x0 − x) + η(x0 − x)‖x− x0‖

and
c(x, y0) ≤ c(x0, y0) + p0 · (x− x0) + η(x − x0)‖x− x0‖.

We thus obtain

c(x0, z) + c(x, y0) ≤ c(x, z) + c(x0, y0) + ‖x− x0‖

[

x− x0
‖x− x0‖

· (p0 − qx,z) + η(x− x0)

]

.

Since (x, z) 7→ ∇+
x c(x, z) has closed graph (see Lemma 2.6) there exist ε > 0 and r > 0 such

that for all x ∈ B(x0, ε) and z ∈ B(z0, r) one has

∀qx,z ∈ ∇+
x c(x, z), ∃q ∈ ∇+

x c(x0, z0), ‖qx,z − q‖ <
β

4

We may also assume that for such a choice of ε it holds η(x− x0) <
β

4
.

Define ∆ = max{‖q− p0‖ : q ∈ ∇+
x c(x0, z0)} and set δ = [β/(8∆)]2. Since (x0, z0) is such

that (6) holds, we know that there exists (x, z) ∈ Γ such that x ∈ C(x, ξ, δ) ∩ B(x0, ε) and
z ∈ B(z0, r). Then (x, z) satisfy

c(x0, z) + c(x, y0) ≤ c(x, z) + c(x0, y0)−
β

4
‖x− x0‖

which contradicts the fact that (x, z) and are (x0, y0) belong to the c-monotone set Γ.
In the general case where M is a second countable C1 manifold, we consider a C1 atlas

(Ui, φi)i∈N of M and for any i we define the cost c̃i : φi(Ui∩U)×N → R by c̃i = c◦(φ−1
i ⊗id).

For any i we also associate a compact covering family (Ki
j)j of Ui∩U , and then for any i, j we

define the initial measure µ̃i,j = (φi⌊K
i
j)♯µ and the transport plan γ̃i,j := ((φi⌊K

i
j)× id)♯γ.

Then we are in position to apply the first part of the proof to each triple of data (c̃i, µ̃i,j , γ̃i,j),
and then obtain that each γ̃i,j is concentrated on a graph, which yields that γ itself is
concentrated on a graph.

Let us now comment the statement of Theorem 4.3 and its proof. In the more recent
related results for the existence of an optimal transport map for (P) in the literature (see
Fathi and Figalli [1], Figalli [25, 24], Villani [28]), the basic common assumptions on the data
are the following :

(a) the initial measure µ gives zero mass to sets with σ-finite Hd−1 measure;

(b) the cost (x, y) 7→ c(x, y) is lower semicontinuous and locally superdifferentiable in x
locally in y (generally expressed in terms of local semiconcavity, which is equivalent by
Proposition 10.12 in Villani [28]);

(c) the cost function c satisfies the Left Twist condition (LT);
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(d) the transport plan γ is concentrated on a c-cyclically monotone set.

In the statement of Theorem 4.3, hypothesis (a) is replaced by the slightly weakened fact
that µ should give zero measure to countably (d−1)-Lipschitz sets, which is sufficient for our
purpose from Lemma 3.4. Regarding hypothesis (b), in our framework the continuity of c
yields Lemma 2.6, which is necessary to obtain that the superdifferential of c has closed graph;
one may note that continuity of the cost function is in fact a usual feature in this setting,
and holds for example for any cost associated with a Tonelli Lagrangian (see Proposition 5.3
below). Then the main differences between the hypotheses of Theorem 4.3 and the common
assumptions listed above are that (c) is clearly strengthened while hypothesis (d) is quite
weakened, so we shall focus on those two points. As commented after Definition 4.1, under
the hypothesis (d) the plan γ is an optimal solution of problem (P) (or a generalized optimal
plan in the case where the value of (P) is not finite) : as such, its support is included in
the c-subdifferential of a c-convex function ψ, which is heuristically a Kantorovich potential
for problem (P) (that is a solution of its dual problem, when the value of (P) is finite).
Then it remains to obtain that this function ψ is in fact differentiable µ-almost everywhere
to get that the plan γ is concentrated on the graph of Dψ : this last point then relies on
a deep study of the regularity theory for c-convex functions. We refer to Chapter 10 of
Villani [28] for a presentation of this approach and extended bibliographical notes on this
topic. As a consequence, the usual approach to obtain that a plan γ is concentrated on a
graph relies on a dual argument and the regularity theory for c-convex functions. On the
contrary, our approach is essentially primal since we assume that the plan γ is concentrated
on a set which is just c-monotone and thus may be not optimal even when the value of
problem (P) is finite (remind Example 4.2). Therefore we can not use the regularity theory
for c-convex functions, and thus the assumption that c satisfies the Nonsmooth Left Twist
condition (NLT) compensates the weakenning of hypothesis (d) in the statement of Theorem
4.3. As a conclusion, we obtain a result which is more general since it applies to plans that
are not necessarily optimal, but also weaker in the sense that we only obtain that such a
plan γ is concentrated on the graph of a Borel function (e.g. see Proposition 2.1 in Ambrosio
[31]) but we do not get a description of that transport map as a gradient (although one can
find such a description as a partial derivative of an Hamiltonian in the special case where
c(x, y) = ‖y − x‖2 on R

2 in Ghoussoub and Moradifam [32]).

5. On costs induced by a Lagrangian

In this section we prove that the most common Lagrangian costs do satisfy the Nosmooth
Left Twist condition (NLT). We first recall some basic definitions and known facts about
those Lagrangian costs, and refer to Appendix B of Fathi and Figalli [1] and Chapter 10 of
Villani [28] for a more detailed presentation.

In all this section M is assumed to be a connected complete and smooth Riemannian
manifold of dimension d.

Definition 5.1. Given a Lagrangian L : TM → R (i.e. L is continuous and bounded by
below), to every t > 0 one can associate the cost ct on M ×M defined as

ct(x,y) = inf

{∫ t

0

L(ξ(s), ξ̇(s))ds : ξ abs. continuous, ξ(0) = x, ξ(t) = y

}

.
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When it exists, a minimizer ξ of ct(x, y) is called an L-minimal curve.

Some conditions are needed on the Lagrangian L to ensure finite values and some regular-
ity properties for the costs ct. The notions of Tonelli Lagrangian and weak Tonelli Lagrangian
are the most common in the Calculus of Variations, the Dynamical System Theory and in
Optimal Transportation.

Definition 5.2. We say that L : TM → R is a weak Tonelli Lagrangian on M if

(a) L is C1 and L(x, ·) : TxM → R is strictly convex for any x ∈M ;

(b) there exist a complete Riemannian metric g on M and a constant α > −∞ such that

∀(x, v) ∈ TM, L(x, v) ≥ ‖v‖x + α

where ‖ · ‖x is the norm on TxM associated to the Riemannian metric g;

(c) for every compact subset K ⊂M the restriction of L to TKM =
⋃

x∈K

TxM is superlinear

in the fibers, that is for every a ≥ 0, there exists a constant α(a,K) > −∞ such that

∀(x, v) ∈ TKM, L(x, v) ≥ a‖v‖x + α(a,K).

We say that L is a Tonelli Lagrangian if condition (a) is strengthened in

(a’) L is C2 and
∂2L

∂v2
(x, v) is positive definite on TxM for any (x, v) ∈ TM .

The above notions are sufficient to obtain the following result, see Theorems B.6-7-19 of
Fathi and Figalli [1].

Proposition 5.3. Let L be a weak Tonelli Lagrangian and let ct be the associated cost for
some t > 0. Then

1. c is continuous and locally superdifferentiable in x locally in y on M ×M ;

2. For any two points x0 and y0 in M there exists at least a L-minimal curve, every such
curve γ0 is of class C1 and moreover

−
∂L

∂v
(x0, γ̇0(0)) ∈ ∇+

x
c(x0,y0).

We now turn to the main result of this section, namely that under mild assumptions on
the weak Tonelli Lagrangian L it holds that any of the costs ct satisfies (NLT).

Theorem 5.4. Let L : TM → R be a weak Tonelli Lagrangian and let ct be an associated
cost. Assume in addition that L satisfies the following:

(UC) If ζ and ξ are two L-minimal curves with ζ(0) = ξ(0) and ζ̇(0) = ξ̇(0) then ζ(t) = ξ(t).

(CP) If K ⊂ M × M is compact then the set of L-minimal curve {ξ : [0, t] → M :
(ξ(0), ξ(t)) ∈ K} is precompact in C1.

11



Then ct satisfies (NLT)

Proof. Assume that ∇+
x
c(x0,y0) = ∇+

x
c(x0, z0), we aim to show that y0 = z0.

First we prove that

∇+
x
c(x0,y0) = conv

({

−
∂L

∂v
(x0, ξ̇0(0)) : ξ is L-minimal from x0 to y0

})

. (7)

By (2) of Proposition 5.3 we already know that

conv

({

−
∂L

∂v
(x0, ξ̇0(0)) : ξ is L-minimal from x0 to y0

})

⊂ ∇+
x
c(x0,y0).

If equality does not hold in the previous inclusion then there exist p0 ∈ ∇+
x
c(x0,y0) and

w ∈ Tx0
M such that

p0 · w < min

{

−
∂L

∂v
(x0, ξ̇0(0)) · w : ξ is L-minimal from x0 to y0

}

. (8)

Now let Xw be the geodesic such that Xw(0) = x0 and Ẋw(0) = w, and for ε small enough
set xε = Xw(ε) = exp

x0
(εw) and wε = Ẋw(ε), where exp

x0
denotes the exponential mapping

on Tx0
M . Note that Xε

w : t 7→ Xw(ε− t) is also a geodesic and then exp
xε
(−εwε) = x0, and

also that wε → w as ε→ 0 since the geodesic Xw is smooth. If ξε denotes a L-minimal curve
from xε to y0, then it follows from (2) of Proposition 5.3 that

∂L

∂v
(xε, ξ̇ε(0)) · (−εwε) + o(ε) ≤ c(xε,y0)− c(x0,y0) ≤ p0 · εw + o(ε).

Dividing by ε and then passing to the limit, we obtain from the continuity of the Legendre
transform and assumption (CP) that

−
∂L

∂v
(x0, ξ̇0(0)) · w ≤ p0 · w

for some L-minimal curve ξ0 from x0 to y0 : this contradicts (8).
We are now in position to conclude from the following fact : when A ⊂ R

d is compact it
contains the set of extremal points of conv(A) which is non empty by Krein-Milman theorem.
By (CP) the sets

{

−
∂L

∂v
(x0, ξ̇0(0)) : ξ is L-minimal from x0 to y0

}

and
{

−
∂L

∂v
(x0, ξ̇0(0)) : ξ is L-minimal from x0 to z0

}

are compact and by (7) they have same convex hull, so they have nonempty intersection. By

the injectivity of
∂L

∂v
(x0, ·) and by (UC) we conclude that y0 = z0.
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The following two examples show that the most common Lagrangian costs, and in par-
ticular the powers (strictly larger than 1) of the distance on a Riemannian manifold, fall in
the framework of our study.

Example 5.5. If L is a Tonelli Lagrangian then it satisfies the assumptions of Theorem 5.4.
Indeed, property (UC) follows by Lemma B.22 and Proposition B.23 of Fathi and Figalli [1],
while (CP) is a consequence of the classical regularity theory in the Calculus of Variations.
In particular if g is the Riemannian metric over M then the square distance cost ct(x,y) =
t dg(x,y)

2 is associated to the Lagrangian

L(x, v) = g(v, v)

which is a Tonelli Lagrangian.

Example 5.6. As a corollary of the above example, one also obtains that the costs associated
to the Lagrangian

L(x, v) = g(v, v)
p

2

for p > 1 also enter the framework of our study : it follows from Proposition B.24 in Fathi
and Figalli [1]) that the associated cost for such a Lagrangian is of the form ct(x,y) =
tp−1 dg(x,y)

p, and as such it has the same L-minimal curves as the square distance cost, so
that the hypotheses of Theorem 5.4 hold. Note that in the case p ≥ 2 such a Lagrangian is
in fact a Tonelli Lagrangian.

Acknowledgments

The first author wishes to thank the Equipe de Combinatoire et Optimisation (Institut
de Mathématiques de Jussieu, CNRS UMR 7586, Université Pierre et Marie Curie, France)
where part of this work was done.

The research of the second author is part of the project 2008K7Z249 “Trasporto ottimo
di massa, disuguaglianze geometriche e funzionali e applicazioni”, financed by the Italian
Ministry of Research and is partially financed by the “Fondi di ricerca di ateneo” of the
University of Pisa.

Visits of both authors have been partially supported by the Universities of Pisa and
Toulon.

[1] A. Fathi, A. Figalli, Optimal transportation on non-compact manifolds, Israel J. Math.
175 (2010) 1–59. doi:10.1007/s11856-010-0001_5.
URL http://dx.doi.org/10.1007/s11856-010-0001_5

[2] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs,
C. R. Acad. Sci. Paris Sér. I Math. 305 (19) (1987) 805–808.

[3] L. Rüschendorf, S. T. Rachev, A characterization of random variables with minimum L2-
distance, J. Multivariate Anal. 32 (1) (1990) 48–54. doi:10.1016/0047-259X(90)90070-X.
URL http://dx.doi.org/10.1016/0047-259X(90)90070-X

13



[4] L. A. Caffarelli, Allocation maps with general cost functions, in: Partial differential
equations and applications, Vol. 177 of Lecture Notes in Pure and Appl. Math., Dekker,
New York, 1996, pp. 29–35.

[5] W. Gangbo, R. J. McCann, Optimal maps in Monge’s mass transport problem, C. R.
Acad. Sci. Paris Sér. I Math. 321 (12) (1995) 1653–1658.

[6] W. Gangbo, R. J. McCann, The geometry of optimal transportation, Acta Math. 177 (2)
(1996) 113–161. doi:10.1007/BF02392620.
URL http://dx.doi.org/10.1007/BF02392620

[7] L. Rüschendorf, On c-optimal random variables, Statist. Probab. Lett. 27 (3) (1996)
267–270. doi:10.1016/0167-7152(95)00078-X.
URL http://dx.doi.org/10.1016/0167-7152(95)00078-X

[8] L. Kantorovith, On the translocation of masses, C.R. (Dokl.) Acad. Sci. URSS 37 (2)
(1942) 199–201.

[9] L. Kantorovith, On a problem of monge (in russian), Uspekhi Mat. Nauk. 3 (2) (1948)
225–226.

[10] G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie
des Sciences de Paris.

[11] L. C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich
mass transfer problem, Mem. Amer. Math. Soc. 137 (653) (1999) viii+66.

[12] L. Ambrosio, A. Pratelli, Existence and stability results in the L1 theory of optimal trans-
portation, in: Optimal transportation and applications (Martina Franca, 2001), Vol.
1813 of Lecture Notes in Math., Springer, Berlin, 2003, pp. 123–160. doi:10.1007/978-
3-540-44857-0_5.
URL http://dx.doi.org/10.1007/978-3-540-44857-0_5

[13] L. A. Caffarelli, M. Feldman, R. J. McCann, Constructing optimal maps for Monge’s
transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (1) (2002)
1–26 (electronic). doi:10.1090/S0894-0347-01-00376-9.
URL http://dx.doi.org/10.1090/S0894-0347-01-00376-9

[14] L. Caravenna, A proof of Sudakov theorem with strictly convex norms, Math. Z. 268 (1-
2) (2011) 371–407. doi:10.1007/s00209-010-0677-6.
URL http://dx.doi.org/10.1007/s00209-010-0677-6

[15] T. Champion, L. De Pascale, The Monge problem in R
d: variations on a theme, Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (Teoriya Pred-
stavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XX) (2011) 182–200, 309.

[16] T. Champion, L. De Pascale, The Monge problem for strictly convex norms in R
d, J.

Eur. Math. Soc. (JEMS) 12 (6) (2010) 1355–1369. doi:10.4171/JEMS/234.
URL http://dx.doi.org/10.4171/JEMS/234

14



[17] N. S. Trudinger, X.-J. Wang, On the Monge mass transfer problem, Calc. Var. Partial
Differential Equations 13 (1) (2001) 19–31. doi:10.1007/PL00009922.
URL http://dx.doi.org/10.1007/PL00009922

[18] C. Villani, Topics in optimal transportation, Vol. 58 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 2003. doi:10.1007/b12016.
URL http://dx.doi.org/10.1007/b12016

[19] G. Carlier, Duality and existence for a class of mass transportation problems and eco-
nomic applications, in: Advances in mathematical economics. Vol. 5, Vol. 5 of Adv.
Math. Econ., Springer, Tokyo, 2003, pp. 1–21. doi:10.1007/978-4-431-53979-7-1.
URL http://dx.doi.org/10.1007/978-4-431-53979-7-1

[20] V. Levin, Abstract cyclical monotonicity and Monge solutions for the general Monge-
Kantorovich problem, Set-Valued Anal. 7 (1) (1999) 7–32. doi:10.1023/A:1008753021652.
URL http://dx.doi.org/10.1023/A:1008753021652

[21] D. Cordero-Erausquin, Sur le transport de mesures périodiques, C. R. Acad. Sci. Paris
Sér. I Math. 329 (3) (1999) 199–202. doi:10.1016/S0764-4442(00)88593-6.
URL http://dx.doi.org/10.1016/S0764-4442(00)88593-6

[22] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct.
Anal. 11 (3) (2001) 589–608. doi:10.1007/PL00001679.
URL http://dx.doi.org/10.1007/PL00001679

[23] P. Bernard, B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math.
Soc. (JEMS) 9 (1) (2007) 85–121. doi:10.4171/JEMS/74.
URL http://dx.doi.org/10.4171/JEMS/74

[24] A. Figalli, The Monge problem on non-compact manifolds, Rend. Semin. Mat. Univ.
Padova 117 (2007) 147–166.

[25] A. Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM J.
Math. Anal. 39 (1) (2007) 126–137. doi:10.1137/060665555.
URL http://dx.doi.org/10.1137/060665555

[26] T. Champion, L. De Pascale, P. Juutinen, The ∞-Wasserstein distance: local solutions
and existence of optimal transport maps, SIAM J. Math. Anal. 40 (1) (2008) 1–20.
doi:10.1137/07069938X.
URL http://dx.doi.org/10.1137/07069938X

[27] T. Champion, L. De Pascale, The Monge problem in R
d, Duke Math. J. 157 (3) (2011)

551–572. doi:10.1215/00127094-1272939.
URL http://dx.doi.org/10.1215/00127094-1272939

[28] C. Villani, Optimal transport, Vol. 338 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin,
2009, old and new. doi:10.1007/978-3-540-71050-9.
URL http://dx.doi.org/10.1007/978-3-540-71050-9

15



[29] A. Pratelli, On the sufficiency of c-cyclical monotonicity for optimality of transport
plans, Math. Z. 258 (3) (2008) 677–690. doi:10.1007/s00209-007-0191-7.
URL http://dx.doi.org/10.1007/s00209-007-0191-7

[30] W. Schachermayer, J. Teichmann, Characterization of optimal transport plans for
the Monge-Kantorovich problem, Proc. Amer. Math. Soc. 137 (2) (2009) 519–529.
doi:10.1090/S0002-9939-08-09419-7.
URL http://dx.doi.org/10.1090/S0002-9939-08-09419-7

[31] L. Ambrosio, Lecture notes on optimal transport problems, in: Mathematical aspects
of evolving interfaces (Funchal, 2000), Vol. 1812 of Lecture Notes in Math., Springer,
Berlin, 2003, pp. 1–52. doi:10.1007/978-3-540-39189-0-1.
URL http://dx.doi.org/10.1007/978-3-540-39189-0-1

[32] N. Ghoussoub, A. Moradifam, A note on simultaneous preconditioning and symmetriza-
tion of non-symmetric linear systems, Numer. Linear Algebra Appl. 18 (3) (2011) 343–
349. doi:10.1002/nla.730.
URL http://dx.doi.org/10.1002/nla.730

16


