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Abstract
This text is an expanded version of the lectures given by the first author in the 2009 CIME summer

school of Cetraro. It provides a quick and reasonably account of the classical theory of optimal mass
transportation and of its more recent developments, including the metric theory of gradient flows,
geometric and functional inequalities related to optimal transportation, the first and second order
differential calculus in the Wasserstein space and the synthetic theory of metric measure spaces with
Ricci curvature bounded from below.
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Introduction

The opportunity to write down these notes on Optimal Transport has been the CIME course in Cetraro
given by the first author in 2009. Later on the second author joined to the project, and the initial set of
notes has been enriched and made more detailed, in particular in connection with the differentiable
structure of the Wasserstein space, the synthetic curvature bounds and their analytic implications.
Some of the results presented here have not yet appeared in a book form, with the exception of [44].

It is clear that this subject is expanding so quickly that it is impossible to give an account of all
developments of the theory in a few hours, or a few pages. A more modest approach is to give a
quick mention of the many aspects of the theory, stimulatingthe reader’s curiosity and leaving to
more detailed treatises as [6] (mostly focused on the theoryof gradient flows) and the monumental
book [80] (for a -much - broader overview on optimal transport).

In Chapter 1 we introduce the optimal transport problem and its formulations in terms of trans-
port maps and transport plans. Then we introduce basic toolsof the theory, namely the duality
formula, thec-monotonicity and discuss the problem of existence of optimal maps in the model case
cost=distance2.

In Chapter 2 we introduce the Wasserstein distanceW2 on the setP2(X) of probability measures
with finite quadratic moments andX is a generic Polish space. This distance naturally arises when
considering the optimal transport problem with quadratic cost. The connections between geodesics
in P2(X) and geodesics inX and between the time evolution of Kantorovich potentials and the
Hopf-Lax semigroup are discussed in detail. Also, when looking at geodesics in this space, and in
particular when the underlying metric spaceX is a Riemannian manifoldM , one is naturally lead to
the so-called time-dependent optimal transport problem, where geodesics are singled out by an action
minimization principle. This is the so-called Benamou-Brenier formula, which is the first step in the
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interpretation ofP2(M) as an infinite-dimensional Riemannian manifold, withW2 as Riemannian
distance. We then further exploit this viewpoint followingOtto’s seminal work [67].

In Chapter 3 we make a quite detailed introduction to the theory of gradient flows, borrowing
almost all material from [6]. First we present the classicaltheory, forλ-convex functionals in Hilbert
spaces. Then we present some equivalent formulations that involve only the distance, and therefore
are applicable (at least in principle) to general metric space. They involve the derivative of the
distance from a point (the (EVI) formulation) or the rate of dissipation of the energy (the (EDE)
and (EDI) formulations). For all these formulations there is a corresponding discrete version of
the gradient flow formulation given by the implicit Euler scheme. We will then show that there is
convergence of the scheme to the continuous solution as the time discretization parameter tends to
0. The (EVI) formulation is the stronger one, in terms of uniqueness, contraction and regularizing
effects. On the other hand this formulation depends on a compatibility condition between energy
and distance; this condition is fulfilled in Non Positively Curved spaces in the sense of Alexandrov
if the energy is convex along geodesics. Luckily enough, thecompatibility condition holds even for
some important model functionals inP2(R

n) (sum of the so-called internal, potential and interaction
energies), even though the space is Positively Curved in thesense of Alexandrov.

In Chapter 4 we illustrate the power of optimal transportation techniques in the proof of some
classical functional/geometric inequalities: the Brunn-Minkowski inequality, the isoperimetric in-
equality and the Sobolev inequality. Recent works in this area have also shown the possibility to
prove by optimal transportation methods optimal effectiveversions of these inequalities: for instance
we can quantify the closedness ofE to a ball with the same volume in terms of the vicinity of the
isoperimetric ratio ofE to the optimal one.

Chapter 5 is devoted to the presentation of three recent variants of the optimal transport problem,
which lead to different notions of Wasserstein distance: the first one deals with variational problems
giving rise to branched transportation structures, with a ‘Y shaped path’ opposed to the ‘V shaped
one’ typical of the mass splitting occurring in standard optimal transport problems. The second one
involves modification in the action functional on curves arising in the Benamou-Brenier formula:
this leads to many different optimal transportation distances, maybe more difficult to describe from
the Lagrangian viepoint, but still with quite useful implications in evolution PDE’s and functional
inequalities. The last one deals with transportation distance between measures with unequal mass, a
variant useful in the modeling problems with Dirichlet boundary conditions.

Chapter 6 deals with a more detailed analysis of the differentiable structure ofP2(R
d): besides

the analytic tangent space arising from the Benamou-Brenier formula, also the “geometric” tangent
space, based on constant speed geodesics emanating from a given base point, is introduced. We
also present Otto’s viewpoint on the duality between Wasserstein space and Arnold’s manifolds of
measure-preserving diffeomorphisms. A large part of the chapter is also devoted to the second order
differentiable properties, involving curvature. The notions of parallel transport along (sufficiently
regular) geodesics and Levi-Civita connection in the Wasserstein space are discussed in detail.

Finally, Chapter 7 is devoted to an introduction to the synthetic notions of Ricci lower bounds
for metric measure spaces introduced by Lott & Villani and Sturm in recent papers. This notion is
based on suitable convexity properties of a dimension-dependent internal energy along Wasserstein
geodesics. Synthetic Ricci bounds are completely consistent with the smooth Riemannian case and
stable under measured-Gromov-Hausdorff limits. For this reason these bounds, and their analytic
implications, are a useful tool in the description of measured-GH-limits of Riemannian manifolds.

Acknowledgement.Work partially supported by a MIUR PRIN2008 grant.
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1 The optimal transport problem

1.1 Monge and Kantorovich formulations of the optimal transport problem

Given a Polish space(X, d) (i.e. a complete and separable metric space), we will denoteby P(X)
the set of Borel probability measures onX . By supportsupp(µ) of a measureµ ∈ P(X) we intend
the smallest closed set on whichµ is concentrated.

If X,Y are two Polish spaces,T : X → Y is a Borel map, andµ ∈ P(X) a measure, the
measureT#µ ∈ P(Y ), called thepush forward ofµ throughT is defined by

T#µ(E) = µ(T−1(E)), ∀E ⊂ Y, Borel.

The push forward is characterized by the fact that
∫
fdT#µ =

∫
f ◦ Tdµ,

for every Borel functionf : Y → R ∪ {±∞}, where the above identity has to be understood in the
following sense: one of the integrals exists (possibly attaining the value±∞) if and only if the other
one exists, and in this case the values are equal.

Now fix a Borelcost functionc : X × Y → R ∪ {+∞}. The Monge version of the transport
problem is the following:

Problem 1.1 (Monge’s optimal transport problem) Letµ ∈ P(X), ν ∈ P(Y ). Minimize

T 7→
∫

X

c
(
x, T (x)

)
dµ(x)

among alltransport mapsT fromµ to ν, i.e. all mapsT such thatT#µ = ν. �

Regardless of the choice of the cost functionc, Monge’s problem can be ill-posed because:

• no admissibleT exists (for instance ifµ is a Dirac delta andν is not).

• the constraintT#µ = ν is not weakly sequentially closed, w.r.t. any reasonable weak topology.

As an example of the second phenomenon, one can consider the sequencefn(x) := f(nx),
wheref : R → R is 1-periodic and equal to1 on [0, 1/2) and to−1 on [1/2, 1), and the measures
µ := L|[0,1] andν := (δ−1 + δ1)/2. It is immediate to check that(fn)#µ = ν for everyn ∈ N, and

yet (fn) weakly converges to the null functionf ≡ 0 which satisfiesf#µ = δ0 6= ν.

A way to overcome these difficulties is due to Kantorovich, who proposed the following way to
relax the problem:

Problem 1.2 (Kantorovich’s formulation of optimal transportation) We minimize

γ 7→
∫

X×Y

c(x, y) dγ(x, y)

in the setAdm(µ, ν) of all transport plansγ ∈ P(X×Y ) fromµ to ν, i.e. the set of Borel Probability
measures onX × Y such that

γ(A× Y ) = µ(A) ∀A ∈ B(X), γ(X ×B) = ν(B) ∀B ∈ B(Y ).

Equivalently:πX#γ = µ, πY#γ = ν, whereπX , πY are the natural projections fromX × Y ontoX
andY respectively. �
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Transport plans can be thought of as “multivalued” transport maps:γ =
∫
γx dµ(x), with γx ∈

P({x} × Y ). Another way to look at transport plans is to observe that forγ ∈ Adm(µ, ν), the value
of γ(A×B) is the amount of mass initially inA which is sent into the setB.

There are several advantages in the Kantorovich formulation of the transport problem:

• Adm(µ, ν) is always not empty (it containsµ× ν),

• the setAdm(µ, ν) is convex and compact w.r.t. the narrow topology inP(X × Y ) (see below
for the definition of narrow topology and Theorem 1.5), andγ 7→

∫
c dγ is linear,

• minima always exist under mild assumptions onc (Theorem 1.5),

• transport plans “include” transport maps, sinceT#µ = ν implies thatγ := (Id × T )#µ
belongs toAdm(µ, ν).

In order to prove existence of minimizers of Kantorovich’s problem we recall some basic notions
concerning analysis over a Polish space. We say that a sequence(µn) ⊂ P(X) narrowly converges
to µ provided ∫

ϕdµn 7→
∫
ϕdµ, ∀ϕ ∈ Cb(X),

Cb(X) being the space of continuous and bounded functions onX . It can be shown that the topology
of narrow convergence is metrizable. A setK ⊂ P(X) is calledtight provided for everyε > 0 there
exists a compact setKε ⊂ X such that

µ(X \Kε) ≤ ε, ∀µ ∈ K.

It holds the following important result.

Theorem 1.3 (Prokhorov) Let (X, d) be a Polish space. Then a familyK ⊂ P(X) is relatively
compact w.r.t. the narrow topology if and only if it is tight.

Notice that ifK contains only one measure, one recovers Ulam’s theorem: anyBorel probability
measure on a Polish space is concentrated on aσ-compact set.

Remark 1.4 The inequality

γ(X × Y \K1 ×K2) ≤ µ(X \K1) + ν(Y \K2), (1.1)

valid for anyγ ∈ Adm(µ, ν), shows that ifK1 ⊂ P(X) andK2 ⊂ P(Y ) are tight, then so is the set
{
γ ∈ P(X × Y ) : πX#γ ∈ K1, π

Y
#γ ∈ K2

}

�

Existence of minimizers for Kantorovich’s formulation of the transport problem now comes from a
standard lower-semicontinuity and compactness argument:

Theorem 1.5 Assume thatc is lower semicontinuous and bounded from below. Then there exists a
minimizer for Problem 1.2.

Proof
CompactnessRemark 1.4 and Ulam’s theorem show that the setAdm(µ, ν) is tight in P(X × Y ),
and hence relatively compact by Prokhorov theorem.
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To get the narrow compactness, pick a sequence(γn) ⊂ Adm(µ, ν) and assume thatγn → γ

narrowly: we want to prove thatγ ∈ Adm(µ, ν) as well. Letϕ be any function inCb(X) and notice
that(x, y) 7→ ϕ(x) is continuous and bounded inX × Y , hence we have
∫
ϕdπX#γ =

∫
ϕ(x) dγ(x, y) = lim

n→∞

∫
ϕ(x) dγn(x, y) = lim

n→∞

∫
ϕdπX#γn =

∫
ϕdµ,

so that by the arbitrariness ofϕ ∈ Cb(X) we getπX#γ = µ. Similarly we can proveπY#γ = ν,
which givesγ ∈ Adm(µ, ν) as desired.
Lower semicontinuity. We claim that the functionalγ 7→

∫
c dγ is l.s.c. with respect to narrow

convergence. This is true because our assumptions onc guarantee that there exists an increasing
sequence of functionscn : X × Y → R continuous an bounded such thatc(x, y) = supn cn(x, y),
so that by monotone convergence it holds

∫
c dγ = sup

n

∫
cn dγ.

Since by constructionγ 7→
∫
cn dγ is narrowly continuous, the proof is complete. �

We will denote byOpt(µ, ν) the set ofoptimal plansfromµ to ν for the Kantorovich formulation
of the transport problem, i.e. the set of minimizers of Problem 1.2. More generally, we will say that
a plan is optimal, if it is optimal between its own marginals.Observe that with the notationOpt(µ, ν)
we are losing the reference to the cost functionc, which of course affects the set itself, but the context
will always clarify the cost we are referring to.

Once existence of optimal plans is proved, a number of natural questions arise:

• are optimal plans unique?

• is there a simple way to check whether a given plan is optimal or not?

• do optimal plans have any natural regularity property? In particular, are they induced by maps?

• how far is the minimum of Problem 1.2 from the infimum of Problem 1.1?

This latter question is important to understand whether we can really consider Problem 1.2 the re-
laxation of Problem 1.1 or not. It is possible to prove that ifc is continuous andµ is non atomic,
then

inf (Monge)= min (Kantorovich), (1.2)

so that transporting with plans can’t be strictly cheaper than transporting with maps. We won’t detail
the proof of this fact.

1.2 Necessary and sufficient optimality conditions

To understand the structure of optimal plans, probably the best thing to do is to start with an example.
LetX = Y = R

d andc(x, y) := |x− y|2/2. Also, assume thatµ, ν ∈ P(Rd) are supported on
finite sets. Then it is immediate to verify that a planγ ∈ Adm(µ, ν) is optimal if and only if it holds

N∑

i=1

|xi − yi|2
2

≤
N∑

i=1

|xi − yσ(i)|2
2

,

for anyN ∈ N, (xi, yi) ∈ supp(γ) andσ permutation of the set{1, . . . , N}. Expanding the squares
we get

N∑

i=1

〈xi, yi〉 ≥
N∑

i=1

〈
xi, yσ(i)

〉
,
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which by definition means that the support ofγ is cyclically monotone. Let us recall the following
theorem:

Theorem 1.6 (Rockafellar) A setΓ ⊂ R
d × R

d is cyclically monotone if and only if there exists a
convex and lower semicontinuous functionϕ : Rd → R∪{+∞} such thatΓ is included in the graph
of the subdifferential ofϕ.

We skip the proof of this theorem, because later on we will prove a much more general version.
What we want to point out here is that under the above assumptions onµ andν we have that the
following three things are equivalent:

• γ ∈ Adm(µ, ν) is optimal,

• supp(γ) is cyclically monotone,

• there exists a convex and lower semicontinuous functionϕ such thatγ is concentrated on the
graph of the subdifferential ofϕ.

The good news is that the equivalence between these three statements holds in a much more
general context (more general underlying spaces, cost functions, measures). Key concepts that are
needed in the analysis, are the generalizations of the concepts of cyclical monotonicity, convexity
and subdifferential which fit with a general cost functionc.

The definitions below make sense for a general Borel and real valued cost.

Definition 1.7 (c-cyclical monotonicity) We say thatΓ ⊂ X × Y is c-cyclically monotoneif
(xi, yi) ∈ Γ, 1 ≤ i ≤ N , implies

N∑

i=1

c(xi, yi) ≤
N∑

i=1

c(xi, yσ(i)) for all permutationsσ of {1, . . . , N}.

Definition 1.8 (c-transforms) Let ψ : Y → R ∪ {±∞} be any function. Itsc+-transformψc+ :
X → R ∪ {−∞} is defined as

ψc+(x) := inf
y∈Y

c(x, y)− ψ(y).

Similarly, givenϕ : X → R∪{±∞}, its c+-transform is the functionϕc+ : Y → R∪{±∞} defined
by

ϕc+(y) := inf
x∈X

c(x, y)− ϕ(x).

Thec−-transformψc− : X → R ∪ {+∞} of a functionψ onY is given by

ψc−(x) := sup
y∈Y

−c(x, y)− ψ(y),

and analogously forc−-transforms of functionsϕ onX .

Definition 1.9 (c-concavity andc-convexity) We say thatϕ : X → R∪{−∞} is c-concave if there
existsψ : Y → R ∪ {−∞} such thatϕ = ψc+ . Similarly,ψ : Y → R ∪ {−∞} is c-concave if there
existsϕ : Y → R ∪ {−∞} such thatψ = ϕc+ .

Symmetrically,ϕ : X → R ∪ {+∞} is c-convex if there existsψ : Y → R ∪ {+∞} such that
ϕ = ψc− , andψ : Y → R ∪ {+∞} is c-convex if there existsϕ : Y → R ∪ {+∞} such that
ψ = ϕc− .
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Observe thatϕ : X → R ∪ {−∞} is c-concave if and only ifϕc+c+ = ϕ. This is a consequence
of the fact that for any functionψ : Y → R ∪ {±∞} it holdsψc+ = ψc+c+c+ , indeed

ψc+c+c+(x) = inf
ỹ∈Y

sup
x̃∈X

inf
y∈Y

c(x, ỹ)− c(x̃, ỹ) + c(x̃, y)− ψ(y),

and choosing̃x = x we getψc+c+c+ ≥ ψc+ , while choosingy = ỹ we getψc+c+c+ ≤ ψc+ .
Similarly for functions onY and for thec-convexity.

Definition 1.10 (c-superdifferential and c-subdifferential) Let ϕ : X → R ∪ {−∞} be a c-
concave function. Thec-superdifferential∂c+ϕ ⊂ X × Y is defined as

∂c+ϕ :=
{
(x, y) ∈ X × Y : ϕ(x) + ϕc+(y) = c(x, y)

}
.

Thec-superdifferential∂c+ϕ(x) at x ∈ X is the set ofy ∈ Y such that(x, y) ∈ ∂c+ϕ. A symmetric
definition is given forc-concave functionsψ : Y → R ∪ {−∞}.

The definition ofc-subdifferential∂c− of a c-convex functionϕ : X → {+∞} is analogous:

∂c−ϕ :=
{
(x, y) ∈ X × Y : ϕ(x) + ϕc−(y) = −c(x, y)

}
.

Analogous definitions hold forc-concave andc-convex functions onY .

Remark 1.11 (The base case:c(x, y) = −〈x, y〉) LetX = Y = R
d andc(x, y) = −〈x, y〉. Then

a direct application of the definitions show that:

• a set isc-cyclically monotone if and only if it is cyclically monotone

• a function isc-convex (resp.c-concave) if and only if it is convex and lower semicontinuous
(resp. concave and upper semicontinuous),

• thec-subdifferential of thec-convex (resp.c-superdifferential of thec-concave) function is the
classical subdifferential (resp. superdifferential),

• thec− transform is the Legendre transform.

Thus in this situation these new definitions become the classical basic definitions of convex analysis.
�

Remark 1.12 (For most applicationsc-concavity is sufficient) There are several trivial relations
betweenc-convexity,c-concavity and related notions. For instance,ϕ is c-concave if and only if
−ϕ is c-convex,−ϕc+ = (−ϕ)c− and∂c+ϕ = ∂c−(−ϕ). Therefore, roughly said, every statement
concerningc-concave functions can be restated in a statement forc-convex ones. Thus, choosing to
work with c-concave orc-convex functions is actually a matter of taste.

Our choice is to work withc-concave functions. Thus all the statements from now on willdeal
only with these functions. There is only one, important, part of the theory where the distinction
betweenc-concavity andc-convexity is useful: in the study of geodesics in the Wasserstein space
(see Section 2.2, and in particular Theorem 2.18 and its consequence Corollary 2.24).

We also point out that the notation used here is different from the one in [80], where a less
symmetric notion (but better fitting the study of geodesics)of c-concavity andc-convexity has been
preferred. �

An equivalent characterization of thec-superdifferential is the following:y ∈ ∂c+ϕ(x) if and
only if it holds

ϕ(x) = c(x, y)− ϕc+(y),

ϕ(z) ≤ c(z, y)− ϕc+(y), ∀z ∈ X,
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or equivalently if
ϕ(x) − c(x, y) ≥ ϕ(z)− c(z, y), ∀z ∈ X. (1.3)

A direct consequence of the definition is that thec-superdifferential of ac-concave function is
always ac-cyclically monotone set, indeed if(xi, yi) ∈ ∂c+ϕ it holds

∑

i

c(xi, yi) =
∑

i

ϕ(xi) + ϕc(yi) =
∑

i

ϕ(xi) + ϕc(yσ(i)) ≤
∑

i

c(xi, yσ(i)),

for any permutationσ of the indexes.
What is important to know is that actually under mild assumptions onc, everyc-cyclically mono-

tone set can be obtained as thec-superdifferential of ac-concave function. This result is part of the
following important theorem:

Theorem 1.13 (Fundamental theorem of optimal transport) Assume thatc : X × Y → R is
continuous and bounded from below and letµ ∈ P(X), ν ∈ P(Y ) be such that

c(x, y) ≤ a(x) + b(y), (1.4)

for somea ∈ L1(µ), b ∈ L1(ν). Also, letγ ∈ Adm(µ, ν). Then the following three are equivalent:

i) the planγ is optimal,

ii) the setsupp(γ) is c-cyclically monotone,

iii) there exists ac-concave functionϕ such thatmax{ϕ, 0} ∈ L1(µ) andsupp(γ) ⊂ ∂c+ϕ.

Proof Observe that the inequality (1.4) together with
∫
c(x, y)dγ̃(x, y) ≤

∫
a(x)+b(y)dγ̃(x, y) =

∫
a(x)dµ(x)+

∫
b(y)dν(y) <∞, ∀γ̃ ∈ Adm(µ, ν)

implies that for any admissible plañγ ∈ Adm(µ, ν) the functionmax{c, 0} is integrable. This,
together with the bound from below onc gives thatc ∈ L1(γ̃) for any admissible plañγ.

(i) ⇒ (ii) We argue by contradiction: assume that the support ofγ is notc-cyclically monotone.
Thus we can findN ∈ N, {(xi, yi)}1≤i≤N ⊂ supp(γ) and some permutationσ of {1, . . . , N} such
that

N∑

i=1

c(xi, yi) >
N∑

i=1

c(xi, yσ(i)).

By continuity we can find neighborhoodsUi ∋ xi, Vi ∋ yi with

N∑

i=1

c(ui, vσ(i))− c(ui, vi) < 0 ∀(ui, vi) ∈ Ui × Vi, 1 ≤ i ≤ N.

Our goal is to build a “variation”̃γ = γ + η of γ in such a way that minimality ofγ is violated.
To this aim, we need asignedmeasureη with:

(A) η− ≤ γ (so thatγ̃ is nonnegative);

(B) null first and second marginal (so thatγ̃ ∈ Adm(µ, ν));

(C)
∫
c dη < 0 (so thatγ is not optimal).

9



Let Ω := ΠNi=1Ui × Vi andP ∈ P(Ω) be defined as the product of the measures1
mi

γ|Ui×Vi
,

wheremi := γ(Ui × Vi). Denote byπUi , πVi the natural projections ofΩ toUi andVi respectively
and define

η :=
minimi

N

N∑

i=i

(πUi , πVσ(i))#P− (πUi , πV(i))#P.

It is immediate to verify thatη fulfills (A), (B), (C) above, so that the thesis is proven.
(ii) ⇒ (iii) We need to prove that ifΓ ⊂ X × Y is ac-cyclically monotone set, then there exists

a c-concave functionϕ such that∂cϕ ⊃ Γ andmax{ϕ, 0} ∈ L1(µ). Fix (x, y) ∈ Γ and observe
that, since we wantϕ to bec-concave with thec-superdifferential that containsΓ, for any choice of
(xi, yi) ∈ Γ, i = 1, . . . , N , we need to have

ϕ(x) ≤ c(x, y1)− ϕc+(y1) = c(x, y1)− c(x1, y1) + ϕ(x1)

≤
(
c(x, y1)− c(x1, y1)

)
+ c(x1, y2)− ϕc+(y2)

=
(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2)− c(x2, y2)

)
+ ϕ(x2)

≤ · · ·
≤
(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2)− c(x2, y2)

)
+ · · ·+

(
c(xN , y)− c(x, y)

)
+ ϕ(x).

It is therefore natural to defineϕ as the infimum of the above expression as{(xi, yi)}i=1,...,N vary
among allN -ples inΓ andN varies inN. Also, since we are free to add a constant toϕ, we can
neglect the addendumϕ(x) and define:

ϕ(x) := inf
(
c(x, y1)− c(x1, y1)

)
+
(
c(x1, y2)− c(x2, y2)

)
+ · · ·+

(
c(xN , y)− c(x, y)

)
,

the infimum being taken onN ≥ 1 integer and(xi, yi) ∈ Γ, i = 1, . . . , N . ChoosingN = 1 and
(x1, y1) = (x, y) we getϕ(x) ≤ 0. Conversely, from thec-cyclical monotonicity ofΓ we have
ϕ(x) ≥ 0. Thusϕ(x) = 0.

Also, it is clear from the definition thatϕ is c-concave. Choosing againN = 1 and(x1, y1) =
(x, y), using (1.3) we get

ϕ(x) ≤ c(x, y)− c(x, y) < a(x) + b(y)− c(x, y),

which, together with the fact thata ∈ L1(µ), yieldsmax{ϕ, 0} ∈ L1(µ). Thus, we need only to
prove that∂c+ϕ containsΓ. To this aim, choose(x̃, ỹ) ∈ Γ, let (x1, y1) = (x̃, ỹ) and observe that by
definition ofϕ(x) we have

ϕ(x) ≤ c(x, ỹ)− c(x̃, ỹ) + inf
(
c(x̃, y2)− c(x2, y2)

)
+ · · ·+

(
c(xN , y)− c(x, y)

)

= c(x, ỹ)− c(x̃, ỹ) + ϕ(x̃).

By the characterization (1.3), this inequality shows that(x̃, ỹ) ∈ ∂c+ϕ, as desired.
(iii) ⇒ (i). Let γ̃ ∈ Adm(µ, ν) be any transport plan. We need to prove that

∫
cdγ ≤

∫
cdγ̃.

Recall that we have

ϕ(x) + ϕc+(y) = c(x, y), ∀(x, y) ∈ supp(γ)

ϕ(x) + ϕc+(y) ≤ c(x, y), ∀x ∈ X, y ∈ Y,

10



and therefore
∫
c(x, y)dγ(x, y) =

∫
ϕ(x) + ϕc+(y)dγ(x, y) =

∫
ϕ(x)dµ(x) +

∫
ϕc+(y)dν(y)

=

∫
ϕ(x) + ϕc+(y)dγ̃(x, y) ≤

∫
c(x, y)dγ̃(x, y).

�

Remark 1.14 Condition (1.4) is natural in some, but not all, problems. For instance problems with
constraints or in Wiener spaces (infinite-dimensional Gaussian spaces) include+∞-valued costs,
with a “large” set of points where the cost is not finite. We won’t discuss these topics. �

An important consequence of the previous theorem is that being optimal is a property that depends
only on the support of the planγ, and not on how the mass is distributed in the support itself:if γ
is an optimal plan (between its own marginals) andγ̃ is such thatsupp(γ̃) ⊂ supp(γ), thenγ̃ is
optimal as well (between its own marginals, of course). We will see in Proposition 2.5 that one of
the important consequences of this fact is thestability of optimality.

Analogous arguments works for maps. Indeed assume thatT : X → Y is a map such that
T (x) ∈ ∂c+ϕ(x) for somec-concave functionϕ for all x. Then, for everyµ ∈ P(X) such that
condition (1.4) is satisfied forν = T#µ, the mapT is optimal betweenµ andT#µ. Therefore it
makes sense to say thatT is an optimal map, without explicit mention to the referencemeasures.

Remark 1.15 From Theorem 1.13 we know that givenµ ∈ P(X), ν ∈ P(Y ) satisfying the
assumption of the theorem, for every optimal planγ there exists ac-concave functionϕ such that
supp(γ) ⊂ ∂c+ϕ. Actually, a stronger statement holds, namely: ifsupp(γ) ⊂ ∂c+ϕ for some
optimalγ, thensupp(γ ′) ⊂ ∂c+ϕ for everyoptimal planγ ′. Indeed arguing as in the proof of 1.13
one can see thatmax{ϕ, 0} ∈ L1(µ) impliesmax{ϕc+ , 0} ∈ L1(ν) and thus it holds
∫
ϕdµ+

∫
ϕc+dν =

∫
ϕ(x) + ϕc+(y)dγ ′(x, y) ≤

∫
c(x, y)dγ ′(x, y) =

∫
c(x, y)dγ(x, y)

(
supp(γ) ⊂ ∂c+ϕ

)
=

∫
ϕ(x) + ϕc+(y)dγ(x, y) =

∫
ϕdµ+

∫
ϕc+dν.

Thus the inequality must be an equality, which is true if and only if for γ ′-a.e.(x, y) it holds(x, y) ∈
∂c+ϕ, hence, by the continuity ofc, we concludesupp(γ′) ⊂ ∂c+ϕ. �

1.3 The dual problem

The transport problem in the Kantorovich formulation is theproblem of minimizing the linear func-
tional γ 7→

∫
cdγ with the affine constraintsπX#γ = µ, πY#γ = ν andγ ≥ 0. It is well known

that problems of this kind admit a natural dual problem, where we maximize a linear functional with
affine constraints. In our case the dual problem is:

Problem 1.16 (Dual problem) Letµ ∈ P(X), ν ∈ P(Y ). Maximize the value of
∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y),

among all functionsϕ ∈ L1(µ), ψ ∈ L1(ν) such that

ϕ(x) + ψ(y) ≤ c(x, y), ∀x ∈ X, y ∈ Y. (1.5)

�

11



The relation between the transport problem and the dual one consists in the fact that

inf
γ∈Adm(µ,ν)

∫
c(x, y)dγ(x, y) = sup

ϕ,ψ

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y),

where the supremum is taken among allϕ, ψ as in the definition of the problem.
Although the fact that equality holds is an easy consequenceof Theorem 1.13 of the previous

section (takingψ = ϕc+ , as we will see), we prefer to start with an heuristic argument which shows
“why” duality works. The calculations we are going to do are very common in linear programming
and are based on themin-max principle. Observe how the constraintγ ∈ Adm(µ, ν) “becomes” the
functional to maximize in the dual problem and the functional to minimize

∫
cdγ “becomes” the

constraint in the dual problem.
Start observing that

inf
γ∈Adm(µ,ν)

∫
c(x, y)dγ(x, y) = inf

γ∈M+(X×Y )

∫
c(x, y)dγ + χ(γ), (1.6)

whereχ(γ) is equal to 0 ifγ ∈ Adm(µ, ν) and+∞ if γ /∈ Adm(µ, ν), andM+(X × Y ) is the set
of non negative Borel measures onX × Y . We claim that the functionχ may be written as

χ(γ) = sup
ϕ,ψ

{∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y)−

∫
ϕ(x) + ψ(y)dγ(x, y)

}
,

where the supremum is taken among all(ϕ, ψ) ∈ Cb(X) × Cb(Y ). Indeed, ifγ ∈ Adm(µ, ν) then
χ(γ) = 0, while if γ /∈ Adm(µ, ν) we can find(ϕ, ψ) ∈ Cb(X)×Cb(Y ) such that the value between
the brackets is different from 0, thus by multiplying(ϕ, ψ) by appropriate real numbers we have that
the supremum is+∞. Thus from (1.6) we have

inf
γ∈Adm(µ,ν)

∫
c(x, y)dγ(x, y)

= inf
γ∈M+(X×Y )

sup
ϕ,ψ

{∫
c(x, y)dγ(x, y) +

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y) −

∫
ϕ(x) + ψ(y)dγ(x, y)

}
.

Call the expression between bracketsF (γ, ϕ, ψ). Sinceγ 7→ F (γ, ϕ, ψ) is convex (actually linear)
and(ϕ, ψ) 7→ F (γ, ϕ, ψ) is concave (actually linear), the min-max principle holds and we have

inf
γ∈Adm(µ,ν)

sup
ϕ,ψ

F (γ, ϕ, ψ) = sup
ϕ,ψ

inf
γ∈M+(X×Y )

F (γ, ϕ, ψ).

Thus we have

inf
γ∈Adm(µ,ν)

∫
c(x, y)dγ(x, y)

= sup
ϕ,ψ

inf
γ∈M+(X×Y )

{∫
c(x, y)dγ(x, y) +

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y) −

∫
ϕ(x) + ψ(y)dγ(x, y)

}

= sup
ϕ,ψ

{∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y) + inf

γ∈M+(X×Y )

[∫
c(x, y)− ϕ(x) − ψ(y)dγ(x, y)

]}
.

Now observe the quantity

inf
γ∈M+(X×Y )

[∫
c(x, y)− ϕ(x) − ψ(y)dγ(x, y)

]
.
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If ϕ(x) + ψ(y) ≤ c(x, y) for any (x, y), then the integrand is non-negative and the infimum is 0
(achieved whenγ is the null-measure). Conversely, ifϕ(x) + ψ(y) > c(x, y) for some(x, y) ∈
X × Y , then chooseγ := nδ(x,y) with n large to get that the infimum is−∞.

Thus, we proved that

inf
γ∈Adm(µ,ν)

∫
c(x, y)dγ(x, y) = sup

ϕ,ψ

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y),

where the supremum is taken among continuous and bounded functions(ϕ, ψ) satisfying (1.5).
We now give the rigorous statement and a proof independent ofthe min-max principle.

Theorem 1.17 (Duality) Let µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R a continuous and
bounded from below cost function. Assume that(1.4) holds. Then the minimum of the Kantorovich
problem 1.2 is equal to the supremum of the dual problem 1.16.
Furthermore, the supremum of the dual problem is attained, and the maximizing couple(ϕ, ψ) is of
the form(ϕ, ϕc+) for somec-concave functionϕ.

Proof Let γ ∈ Adm(µ, ν) and observe that for any couple of functionsϕ ∈ L1(µ) andψ ∈ L1(ν)
satisfying (1.5) it holds

∫
c(x, y)dγ(x, y) ≥

∫
ϕ(x) + ψ(y)dγ(x, y) =

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y).

This shows that the minimum of the Kantorovich problem is≥ than the supremum of the dual prob-
lem.

To prove the converse inequality pickγ ∈ Opt(µ, ν) and use Theorem 1.13 to find ac-concave
functionϕ such thatsupp(γ) ⊂ ∂c+ϕ, max{ϕ, 0} ∈ L1(µ) andmax{ϕc+ , 0} ∈ L1(ν). Then, as in
the proof of(iii) ⇒ (i) of Theorem 1.13, we have

∫
c(x, y) dγ(x, y) =

∫
ϕ(x) + ϕc+(y) dγ(x, y) =

∫
ϕ(x) dµ(x) +

∫
ϕc+(y) dν(y),

and
∫
c dγ ∈ R. Thusϕ ∈ L1(µ) andϕc+ ∈ L1(ν), which shows that(ϕ, ϕc+) is an admissible

couple in the dual problem and gives the thesis. �

Remark 1.18 Notice that a statement stronger than the one of Remark 1.15 holds, namely: under the
assumptions of Theorems 1.13 and 1.17, for anyc-concave couple of functions(ϕ, ϕc+) maximizing
the dual problem and any optimal planγ it holds

supp(γ) ⊂ ∂c+ϕ.

Indeed we already know that for somec-concaveϕ we haveϕ ∈ L1(µ), ϕc+ ∈ L1(ν) and

supp(γ) ⊂ ∂c+ϕ,

for any optimalγ. Now pick another maximizing couple(ϕ̃, ψ̃) for the dual problem 1.16 and notice
that ϕ̃(x) + ψ̃(y) ≤ c(x, y) for anyx, y implies ψ̃ ≤ ϕ̃c+ , and therefore(ϕ̃, ϕ̃c+) is a maximizing
couple as well. The fact that̃ϕc+ ∈ L1(ν) follows as in the proof of Theorem 1.17. Conclude
noticing that for any optimal planγ it holds

∫
ϕ̃dµ+

∫
ϕ̃c+dν =

∫
ϕdµ+

∫
ϕc+dν =

∫
ϕ(x) + ϕc+(y)dγ(x, y)

=

∫
c(x, y)dγ ≥

∫
ϕ̃dµ+

∫
ϕ̃c+dν,

so that the inequality must be an equality. �
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Definition 1.19 (Kantorovich potential) A c-concave functionϕ such that(ϕ, ϕc+) is a maximizing
pair for the dual problem 1.16 is called ac-concave Kantorovich potential, or simply Kantorovich
potential, for the coupleµ, ν. A c-convex functionϕ is calledc-convex Kantorovich potential if−ϕ
is a c-concave Kantorovich potential.

Observe thatc-concave Kantorovich potentials are related to the transport problem in the follow-
ing two different (but clearly related) ways:

• asc-concave functions whose superdifferential contains the support of optimal plans, accord-
ing to Theorem 1.13,

• as maximizing functions, together with theirc+-tranforms, in the dual problem.

1.4 Existence of optimal maps

The problem of existence of optimal transport maps consistsin looking for optimal planγ which are
induced by a mapT : X → Y , i.e. plansγ which are equal to(Id, T )#µ, for µ := πX#γ and some
measurable mapT . As we discussed in the first section, in general this problemhas no answer, as it
may very well be the case when, for givenµ ∈ P(X), ν ∈ P(Y ), there is no transport map at all
fromµ to ν. Still, since we know that (1.2) holds whenµ has no atom, it is possible that under some
additional assumptions on the starting measureµ and on the cost functionc, optimal transport maps
exist.

To formulate the question differently: givenµ, ν and the cost functionc, is that true that at least
one optimal planγ is induced by a map?

Let us start observing that thanks to Theorem 1.13, the answer to this question relies in a natural
way on the analysis of the properties ofc-monotone sets, to see how far are they from being graphs.
Indeed:

Lemma 1.20 Let γ ∈ Adm(µ, ν). Thenγ is induced by a map if and only if there exists aγ-
measurable setΓ ⊂ X × Y whereγ is concentrated, such that forµ-a.e. x there exists only one
y = T (x) ∈ Y such that(x, y) ∈ Γ. In this caseγ is induced by the mapT .

Proof The if part is obvious. For theonly if, let Γ be as in the statement of the lemma. Possibly
removing fromΓ a productN×Y , withN µ-negligible, we can assume thatΓ is a graph, and denote
by T the corresponding map. By the inner regularity of measures,it is easily seen that we can also
assumeΓ = ∪nΓn to beσ-compact. Under this assumption the domain ofT (i.e. the projection ofΓ
onX) is σ-compact, hence Borel, and the restriction ofT to the compact setπX(Γn) is continuous.
It follows thatT is a Borel map. Sincey = T (x) γ-a.e. inX × Y we conclude that

∫
φ(x, y) dγ(x, y) =

∫
φ(x, T (x))dγ(x, y) =

∫
φ(x, T (x))dµ(x),

so thatγ = (Id× T )#µ. �

Thus the point is the following. We know by Theorem 1.13 that optimal plans are concentrated
on c-cyclically monotone sets, still from Theorem 1.13 we know thatc-cyclically monotone sets are
obtained by taking thec-superdifferential of ac-concave function. Hence from the lemma above
what we need to understand is “how often” thec-superdifferential of ac-concave function is single
valued.

There is no general answer to this question, but many particular cases can be studied. Here we
focus on two special and very important situations:
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• X = Y = R
d andc(x, y) = |x− y|2/2,

• X = Y = M , whereM is a Riemannian manifold, andc(x, y) = d2(x, y)/2, d being the
Riemannian distance.

Let us start with the caseX = Y = R
d andc(x, y) = |x − y|2/2. In this case there is a simple

characterization ofc-concavity andc-superdifferential:

Proposition 1.21 Let ϕ : Rd → R ∪ {−∞}. Thenϕ is c-concave if and only ifx 7→ ϕ(x) :=
|x|2/2 − ϕ(x) is convex and lower semicontinuous. In this casey ∈ ∂c+ϕ(x) if and only if y ∈
∂−ϕ(x).

Proof Observe that

ϕ(x) = inf
y

|x− y|2
2

− ψ(y) ⇔ ϕ(x) = inf
y

|x|2
2

+ 〈x,−y〉+ |y|2
2

− ψ(y)

⇔ ϕ(x) − |x|2
2

= inf
y
〈x,−y〉+

( |y|2
2

− ψ(y)

)

⇔ ϕ(x) = sup
y

〈x, y〉 −
( |y|2

2
− ψ(y)

)
,

which proves the first claim. For the second observe that

y ∈ ∂c+ϕ(x) ⇔
{
ϕ(x) = |x− y|2/2− ϕc+(y),
ϕ(z) ≤ |z − y|2/2− ϕc+(y), ∀z ∈ R

d

⇔
{
ϕ(x) − |x|2/2 = 〈x,−y〉+ |y|2/2− ϕc+(y),
ϕ(z)− |z|2/2 ≤ 〈z,−y〉+ |y|2/2− ϕc+(y), ∀z ∈ R

d

⇔ ϕ(z)− |z|2/2 ≤ ϕ(x) − |x|2/2 + 〈z − x,−y〉 ∀z ∈ R
d

⇔ −y ∈ ∂+(ϕ− | · |2/2)(x)
⇔ y ∈ ∂−ϕ(x)

�

Therefore in this situation being concentrated on thec-superdifferential of ac-concave map means
being concentrated on the (graph of) the subdifferential ofa convex function.

Remark 1.22 (Perturbations of the identity via smooth gradients are optimal) An immediate
consequence of the above proposition is the fact that ifψ ∈ C∞

c (Rd), then there existsε > 0
such thatId + ε∇ψ is an optimal map for any|ε| ≤ ε. Indeed, it is sufficient to takeε such that
−Id ≤ ε∇2ψ ≤ Id. With this choice, the mapx 7→ |x|2/2 + εψ(x) is convex for any|ε| ≤ ε, and
thus its gradient is an optimal map. �

Proposition 1.21 reduced the problem of understanding whenthere exists optimal maps reduces to the
problem of convex analysis of understanding how the set of non differentiability points of a convex
function is made. This latter problem has a known answer; in order to state it, we need the following
definition:

Definition 1.23 (c− c hypersurfaces) A setE ⊂ R
d is calledc − c hypersurface1 if, in a suitable

system of coordinates, it is the graph of the difference of two real valued convex functions, i.e. if there
exists convex functionsf, g : Rd−1 → R such that

E =
{
(y, t) ∈ R

d : y ∈ R
d−1, t ∈ R, t = f(y)− g(y)

}
.

1herec− c stands for ‘convex minus convex’ and has nothing to do with the c we used to indicate the cost function
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Then it holds the following theorem, which we state without proof:

Theorem 1.24 (Structure of sets of non differentiability ofconvex functions) LetA ⊂ R
d. Then

there exists a convex functionϕ : R
d → R such thatA is contained in the set of points of non

differentiability ofϕ if and only ifA can be covered by countably manyc− c hypersurfaces.

We give the following definition:

Definition 1.25 (Regular measures onRd) A measureµ ∈ P(Rd) is called regular provided
µ(E) = 0 for anyc− c hypersurfaceE ⊂ R

d.

Observe that absolutely continuous measures and measures which give 0 mass to Lipschitz hy-
persurfaces are automatically regular (because convex functions are locally Lipschitz, thus ac − c
hypersurface is a locally Lipschitz hypersurface).

Now we can state the result concerning existence and uniqueness of optimal maps:

Theorem 1.26 (Brenier) Letµ ∈ P(Rd) be such that
∫
|x|2dµ(x) is finite. Then the following are

equivalent:

i) for everyν ∈ P(Rd) with
∫
|x|2dν(x) < ∞ there exists only one transport plan fromµ to ν

and this plan is induced by a mapT ,

ii) µ is regular.

If either (i) or (ii) hold, the optimal mapT can be recovered by taking the gradient of a convex
function.

Proof
(ii) ⇒ (i) and the last statement. Takea(x) = b(x) = |x|2 in the statement of Theorem 1.13. Then
our assumptions onµ, ν guarantees that the bound (1.4) holds. Thus the conclusionsof Theorems
1.13 and 1.17 are true as well. Using Remark 1.18 we know that for anyc-concave Kantorovich po-
tentialϕ and any optimal planγ ∈ Opt(µ, ν) it holdssupp(γ) ⊂ ∂c+ϕ. Now from Proposition 1.21
we know thatϕ := | · |2/2 − ϕ is convex and that∂cϕ = ∂−ϕ. Here we use our assumption on
µ: sinceϕ is convex, we know that the setE of points of non differentiability ofϕ is µ-negligible.
Therefore the map∇ϕ : Rd → R

d is well definedµ-a.e. and every optimal plan must be concen-
trated on its graph. Hence the optimal plan is unique and induced by the gradient of the convex
functionϕ.
(ii) ⇒ (i). We argue by contradiction and assume that there is some convex functionϕ : Rd → R

such that the setE of points of non differentiability ofϕ has positiveµmeasure. Possibly modifying
ϕ outside a compact set, we can assume that it has linear growthat infinity. Now define the two
maps:

T (x) := the element of smallest norm in∂−ϕ(x),

S(x) := the element of biggest norm in∂−ϕ(x),

and the plan

γ :=
1

2

(
(Id, T )#µ+ (Id, S)#µ

)
.

The fact thatϕ has linear growth, implies thatν := πY#γ has compact support. Thus in particular∫
|x|2dν(x) < ∞. The contradiction comes from the fact thatγ ∈ Adm(µ, ν) is c-cyclically mono-

tone (because of Proposition 1.21), and thus optimal. However, it is not induced by a map, because
T 6= S on a set of positiveµ measure (Lemma 1.20). �
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The question ofregularity of the optimal map is very delicate. In general it is only of bounded
variation (BV in short), since monotone maps always have this regularity property, and disconti-
nuities can occur: just think to the case in which the supportof the starting measure is connected,
while the one of the arrival measure is not. It turns out that connectedness is not sufficient to prevent
discontinuities, and that if we want some regularity, we have to impose a convexity restriction on
supp ν. The following result holds:

Theorem 1.27 (Regularity theorem) AssumeΩ1,Ω2 ⊂ R
d are two bounded and connected open

sets,µ = ρLd|Ω1
, ν = ηLd|Ω2

with 0 < c ≤ ρ, η ≤ C for somec, C ∈ R. Assume also thatΩ2

is convex. Then the optimal transport mapT belongs toC0,α(Ω1) for someα < 1. In addition, the
following implication holds:

ρ ∈ C0,α(Ω1), η ∈ C0,α(Ω2) =⇒ T ∈ C1,α(Ω1).

The convexity assumption onΩ2 is needed to show that the convex functionϕ whose gradient
provides the optimal mapT is aviscositysolution of the Monge-Ampere equation

ρ1(x) = ρ2(∇ϕ(x)) det(∇2ϕ(x)),

and then the regularity theory for Monge-Ampere, developedby Caffarelli and Urbas, applies.
As an application of Theorem 1.26 we discuss the question ofpolar factorizationof vector fields

onRd. LetΩ ⊂ R
d be a bounded domain, denote byµΩ the normalized Lebesgue measure onΩ and

consider the space
S(Ω) := {Borel maps : Ω → Ω : s#µΩ = µΩ} .

The following result provides a (nonlinear) projection on the (nonconvex) spaceS(Ω).

Proposition 1.28 (Polar factorization) Let S ∈ L2(µΩ;R
n) be such thatν := S#µ is regular

(Definition 1.25). Then there exist uniques ∈ S(Ω) and∇ϕ, withϕ convex, such thatS = (∇ϕ)◦s.
Also,s is the unique minimizer of ∫

|S − s̃|2dµ,

among alls̃ ∈ S(Ω).

Proof By assumption, we know that bothµΩ andν are regular measures with finite second moment.
We claim that

inf
s̃∈S(Ω)

∫
|S − s̃|2dµ = min

γ∈Adm(µ,ν)

∫
|x− y|2dγ(x, y). (1.7)

To see why, associate to eachs̃ ∈ S(Ω) the planγ s̃ := (s̃, S)#µ which clearly belongs to
Adm(µΩ, ν). This gives inequality≥. Now let γ be the unique optimal plan and apply Theorem
1.26 twice to get that

γ = (Id,∇ϕ)#µΩ = (∇ϕ̃, Id)#ν,
for appropriate convex functionsϕ, ϕ̃, which therefore satisfy∇ϕ ◦ ∇ϕ̃ = Id µ-a.e.. Defines :=
∇ϕ̃ ◦ S. Thens#µΩ = µΩ and thuss ∈ S(Ω). Also,S = ∇ϕ ◦ s which proves the existence of the
polar factorization. The identity

∫
|x− y|2dγs(x, y) =

∫
|s− S|2dµΩ =

∫
|∇ϕ̃ ◦ S − S|2dµΩ =

∫
|∇ϕ̃− Id|2dν

= min
γ∈Adm(µ,ν)

∫
|x− y|2dγ(x, y),
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shows inequality≤ in (1.7) and the uniqueness of the optimal plan ensures thats is the unique
minimizer.

To conclude we need to show uniqueness of the polar factorization. Assume thatS = (∇ϕ)◦s is
another factorization and notice that∇ϕ#µΩ = (∇ϕ ◦ s)#µΩ = ν. Thus the map∇ϕ is a transport
map fromµΩ to ν and is the gradient of a convex function. By Proposition 1.21and Theorem 1.13
we deduce that∇ϕ is the optimal map. Hence∇ϕ = ∇ϕ and the proof is achieved. �

Remark 1.29 (Polar factorization vs Helmholtz decomposition) The classical Helmoltz decom-
position of vector fields can be seen as a linearized version of the polar factorization result, which
therefore can be though as a generalization of the former.

To see why, assume thatΩ and all the objects considered are smooth (the arguments hereafter
are just formal). Letu : Ω → R

d be a vector field and apply the polar factorization to the map
Sε := Id + εu with |ε| small. Then we haveSε = (∇ϕε) ◦ sε and both∇ϕε and sε will be
perturbation of the identity, so that

∇ϕε = Id+ εv + o(ε),

sε = Id+ εw + o(ε).

The question now is: which information is carried onv, w from the properties of the polar factoriza-
tion? At the level ofv, from the fact that∇× (∇ϕε) = 0 we deduce∇× v = 0, which means thatv
is the gradient of some functionp. On the other hand, the fact thatsε is measure preserving implies
thatw satisfies∇ · (wχΩ) = 0 in the sense of distributions: indeed for any smoothf : Rd → R it
holds

0 =
d

dε |ε=0

∫
f d(sε)#µΩ =

d

dε |ε=0

∫
f ◦ sε dµΩ =

∫
∇f · w dµΩ.

Then from the identity(∇ϕε) ◦ sε = Id+ ε(∇p+ w) + o(ε) we can conclude that

u = ∇p+ w.

�

We now turn to the caseX = Y = M , with M smooth Riemannian manifold, andc(x, y) =
d2(x, y)/2, d being the Riemannian distance onM . For simplicity, we will assume thatM is compact
and with no boundary, but everything holds in more general situations.

The underlying ideas of the foregoing discussion are very similar to the ones of the caseX =
Y = R

d, the main difference being that there is no more the correspondence given by Proposition
1.21 betweenc-concave functions and convex functions, as in the Euclidean case. Recall however
that the concepts of semiconvexity (i.e. second derivatives bounded from below) and semiconcavity
make sense also on manifolds, since these properties can be read locally and changes of coordinates
are smooth.

In the next proposition we will use the fact that on a compact and smooth Riemannian manifold,
the functionsx 7→ d2(x, y) are uniformly Lipschitz and uniformly semiconcave iny ∈ M (i.e. the
second derivative along a unit speed geodesic is bounded above by a universal constant depending
only onM , see e.g. the third appendix of Chapter 10 of [80] for the simple proof).

Proposition 1.30 Let M be a smooth, compact Riemannian manifold without boundary.Let ϕ :
M → R ∪ {−∞} be a c-concave function not identically equal to−∞. Thenϕ is Lipschitz,
semiconcave and real valued. Also, assume thaty ∈ ∂c+ϕ(x). Thenexp−1

x (y) ⊂ −∂+ϕ(x).
Conversely, ifϕ is differentiable atx, thenexpx(−∇ϕ(x)) ∈ ∂c+ϕ(x).
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Proof The fact thatϕ is real valued follows from the fact that the cost functiond2(x, y)/2 is uni-
formly bounded inx, y ∈ M . Smoothness and compactness ensure that the functionsd2(·, y)/2
are uniformly Lipschitz and uniformly semiconcave iny ∈ M , this gives thatϕ is Lipschitz and
semiconcave.

Now pick y ∈ ∂c+ϕ(x) andv ∈ exp−1
x (y). Recall that−v belongs to the superdifferential of

d2(·, y)/2 atx, i.e.
d2(z, y)

2
≤ d2(x, y)

2
−
〈
v, exp−1

x (z)
〉
+ o(d(x, z)).

Thus fromy ∈ ∂c+ϕ(x) we have

ϕ(z)− ϕ(x)
(1.3)
≤ d2(z, y)

2
− d2(x, y)

2
≤
〈
−v, exp−1

x (z)
〉
+ o(d(x, z)),

that is−v ∈ ∂+ϕ(x).
To prove the converse implication, it is enough to show that thec-superdifferential ofϕ at x is

non empty. To prove this, use thec-concavity ofϕ to find a sequence(yn) ⊂M such that

ϕ(x) = lim
n→∞

d2(x, yn)

2
− ϕc+(yn),

ϕ(z) ≤ d2(z, yn)

2
− ϕc+(yn), ∀z ∈M, n ∈ N.

By compactness we can extract a subsequence converging to somey ∈M . Then from the continuity
of d2(z, ·)/2 andϕc+(·) it is immediate to verify thaty ∈ ∂c+ϕ(x). �

Remark 1.31 The converse implication in the previous proposition isfalseif one doesn’t assumeϕ
to be differentiable atx: i.e., it isnot true in general thatexpx(−∂+ϕ(x)) ⊂ ∂c+ϕ(x). �

From this proposition, and following the same ideas used in the Euclidean case, we give the
following definition:

Definition 1.32 (Regular measures inP(M)) We say thatµ ∈ P(M) is regular provided it van-
ishes on the set of points of non differentiability ofψ for any semiconvex functionψ :M → R.

The set of points of non differentiability of a semiconvex function onM can be described as in
the Euclidean case by using local coordinates. For most applications it is sufficient to keep in mind
that absolutely continuous measures (w.r.t. the volume measure) and even measures vanishing on
Lipschitz hypersurfaces are regular.

By Proposition 1.30, we can derive a result about existence and characterization of optimal trans-
port maps in manifolds which closely resembles Theorem 1.26:

Theorem 1.33 (McCann) Let M be a smooth, compact Riemannian manifold without boundary
andµ ∈ P(M). Then the following are equivalent:

i) for everyν ∈ P(M) there exists only one transport plan fromµ to ν and this plan is induced
by a mapT ,

ii) µ is regular.

If either (i) or (ii) hold, the optimal mapT can be written asx 7→ expx(−∇ϕ(x)) for somec-
concave functionϕ : M → R.

19



Proof
(ii) ⇒ (i) and the last statement. Pickν ∈ P(M) and observe that, sinced2(·, ·)/2 is uniformly
bounded, condition (1.4) surely holds. Thus from Theorem 1.13 and Remark 1.15 we get that any
optimal planγ ∈ Opt(µ, ν) must be concentrated on thec-superdifferential of ac-concave function
ϕ. By Proposition 1.30 we know thatϕ is semiconcave, and thus differentiableµ-a.e. by our as-
sumption onµ. Thereforex 7→ T (x) := expx(−∇ϕ(x)) is well definedµ-a.e. and its graph must
be of full γ-measure for anyγ ∈ Opt(µ, ν). This means thatγ is unique and induced byT .
(i) ⇒ (ii). Argue by contradiction and assume that there exists a semiconcave functionf whose
set of points of non differentiability has positiveµ measure. Use Lemma 1.34 below to findε > 0
such thatϕ := εf is c-concave and satisfies:v ∈ ∂+ϕ(x) if and onlyexpx(−v) ∈ ∂c+ϕ(x). Then
conclude the proof as in Theorem 1.26. �

Lemma 1.34 LetM be a smooth, compact Riemannian manifold without boundary andϕ :M → R

semiconcave. Then forε > 0 sufficiently small the functionεϕ is c-concave and it holdsv ∈
∂+(εϕ)(x) if and onlyexpx(−v) ∈ ∂c+(εϕ)(x).

Proof We start with the following claim: there existsε > 0 such that for everyx0 ∈ M and every
v ∈ ∂+ϕ(x0) the function

x 7→ εϕ(x)− d2(x, expx0
(−εv))

2

has a global maximum atx = x0.
Use the smoothness and compactness ofM to findr > 0 such thatd2(·, ·)/2 : {(x, y) : d(x, y) <

r} → R is C∞ and satisfies∇2d2(·, y)/2 ≥ cId, for everyy ∈ M , with c > 0 independent ony.
Now observe that sinceϕ is semiconcave and real valued, it is Lipschitz. Thus, forε0 > 0 sufficiently
small it holdsε0|v| < r/3 for anyv ∈ ∂+ϕ(x) and anyx ∈ M . Also, sinceϕ is bounded, possibly
decreasing the value ofε0 we can assume that

ε0|ϕ(x)| ≤
r2

12
.

Fix x0 ∈ M , v ∈ ∂+ϕ(x0) and lety0 := expx0
(−ε0v). We claim that forε0 chosen as above,

the maximum ofε0ϕ − d2(·, y0)/2, cannot lie outsideBr(x0). Indeed, ifd(x, x0) ≥ r we have
d(x, y0) > 2r/3 and thus:

ε0ϕ(x)−
d2(x, y0)

2
<
r2

12
− 2r2

9
= − r2

12
− r2

18
≤ ε0ϕ(x0)−

d2(x0, y0)

2
.

Thus the maximum must lie inBr(x0). Recall that in this ball, the functiond2(·, y0) is C∞ and
satisfies∇2(d2(·, y0)/2) ≥ cId, thus it holds

∇2

(
ε0ϕ(·)−

d2(·, y0)
2

)
≤ (ε0λ− c)Id,

whereλ ∈ R is such that∇2ϕ ≤ λId on the whole ofM . Thus decreasing if necessary the value of
ε0 we can assume that

∇2

(
ε0ϕ(·) −

d2(·, y0)
2

)
< 0 onBr(x0),

which implies thatε0ϕ(·) − d2(·, y0)/2 admits a unique pointx ∈ Br(x0) such that0 ∈
∂+(ϕ − d2(·, y0)/2)(x), which therefore is the unique maximum. Since∇1

2d
2(·, y0)(x0) = ε0v ∈

∂+(ε0ϕ)(x0), we conclude thatx0 is the unique global maximum, as claimed.
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Now define the functionψ : M → R ∪ {−∞} by

ψ(y) := inf
x∈M

d2(x, y)

2
− ε0ϕ(x),

if y = expx(−ε0v) for somex ∈ M , v ∈ ∂+ϕ(x), andψ(y) := −∞ otherwise. By definition we
have

ε0ϕ(x) ≤
d2(x, y)

2
− ψ(y), ∀x, y ∈M,

and the claim proved ensures that ify0 = expx0
(−ε0v0) for x0 ∈ M , v0 ∈ ∂+ϕ(x0) the inf in the

definition ofψ(y0) is realized atx = x0 and thus

ε0ϕ(x0) =
d2(x0, y0)

2
− ψ(y0).

Henceε0ϕ = ψc+ and therefore isc-concave. Along the same lines one can easily see that for
y ∈ expx(−ε0∂+ϕ(x)) it holds

ε0ϕ(x) =
d2(x, y)

2
− (ε0ϕ)

c+(y),

i.e. y ∈ ∂c+(ε0ϕ)(x0). Thus we have∂c+(ε0ϕ) ⊃ exp(−∂+(εϕ)). Since the other inclusion has
been proved in Proposition 1.30 the proof is finished. �

Remark 1.35 With the same notation of Theorem 1.33, recall that we know that thec-concave func-
tion ϕ whosec-superdifferential contains the graph of any optimal plan fromµ to ν is differentiable
µ-a.e. (for regularµ). Fix x0 such that∇ϕ(x0) exists, lety0 := expx0

(−∇ϕ(x0)) ∈ ∂c+ϕ(x0) and
observe that from

d2(x, y0)

2
− d2(x0, y0)

2
≥ ϕ(x)− ϕ(x0),

we deduce that∇ϕ(x0) belongs to thesubdifferential of d2(·, y0)/2 at x0. Since we know that
d2(·, y0)/2 always have non empty superdifferential, we deduce that it must be differentiable atx0.
In particular,there exists only one geodesic connectingx0 to y0. Therefore ifµ is regular, not only
there exists a unique optimal transport mapT , but also forµ-a.e. x there is only one geodesic
connectingx to T (x). �

The question of regularity of optimal maps on manifolds is much more delicate than the cor-
responding question onRd, even if one wants to get only the continuity. We won’t enter into the
details of the theory, we just give an example showing the difficulty that can arise in a curved setting.
The example will show a smooth compact manifold, and two measures absolutely continuous with
positive and smooth densities, such that the optimal transport map is discontinuous. We remark that
similar behaviors occur as soon asM has one point and one sectional curvature at that point which
is strictly negative. Also, even if one assumes that the manifold has non negative sectional curvature
everywhere, this is not enough to guarantee continuity of the optimal map: what comes into play in
this setting is the Ma-Trudinger-Wang tensor, an object which we will not study.

Example 1.36 LetM ⊂ R
3 be a smooth surface which has the following properties:

• M is symmetric w.r.t. thex axis and they axis,

• M crosses the line(x, y) = (0, 0) at two points, namelyO,O′.
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• the curvature ofM atO is negative.

These assumptions ensure that we can finda, b > 0 such that for someza, zb the points

A := (a, 0, za),

A′ := (−a, 0, za),
B := (0, b, zb),

B′ := (0,−b, zb),

belong toM and
d2(A,B) > d2(A,O) + d2(O,B),

d being the intrinsic distance onM . By continuity and symmetry, we can findε > 0 such that

d2(x, y) > d2(x,O) + d2(O, y), ∀x ∈ Bε(A) ∪Bε(A′), y ∈ Bε(B) ∪Bε(B′). (1.8)

Now let f (resp. g) be a smooth probability density everywhere positive and symmetric w.r.t. the
x, y axes such that

∫
Bε(A)∪Bε(A′) f dvol >

1
2 (resp.

∫
Bε(B)∪Bε(B′) g dvol >

1
2 ), and letT (resp.T ′)

be the optimal transport map fromfvol to gvol (resp. fromgvol to fvol).
We claim that eitherT or T ′ is discontinuous and argue by contradiction. Suppose that both

are continuous and observe that by the symmetry of the optimal transport problem it must hold
T ′(x) = T−1(x) for any x ∈ M . Again by the symmetry ofM , f, g, the pointT (O) must be
invariant under the symmetries around thex andy axes. Thus it is eitherT (O) = O or T (O) = O′,
and similarly,T ′(O′) ∈ {O,O′}.

We claim that it must holdT (O) = O. Indeed otherwise eitherT (O) = O′ andT (O′) = O, or
T (O) = O′ andT (O′) = O′. In the first case the two couples(O,O′) and(O′, O) belong to the
support of the optimal plan, and thus by cyclical monotonicity it holds

d2(O,O′) + d2(O′, O) ≤ d2(O,O) + d2(O′, O′) = 0,

which is absurdum.
In the second case we haveT ′(x) 6= O for all x ∈ M , which, by continuity and compactness

impliesd(T ′(M), O) > 0. This contradicts the fact thatf is positive everywhere andT ′
#(gvol) =

fvol.
Thus it holdsT (O) = O. Now observe that by construction there must be some mass transfer

fromBε(A) ∪Bε(A′) toBε(B) ∪Bε(B′), i.e. we can findx ∈ Bε(A) ∪Bε(A′) andy ∈ Bε(B) ∪
Bε(B

′) such that(x, y) is in the support of the optimal plan. Since(O,O) is the support of the
optimal plan as well, by cyclical monotonicity it must hold

d2(x, y) + d2(O,O) ≤ d2(x,O) + d2(O, y),

which contradicts (1.8). �

1.5 Bibliographical notes

G. Monge’s original formulation of the transport problem ([66]) was concerned with the caseX =
Y = R

d andc(x, y) = |x− y|, and L. V. Kantorovich’s formulation appeared first in [49].
The equality (1.2), saying that the infimum of the Monge problem equals the minimum of Kan-

torovich one, has been proved by W. Gangbo (Appendix A of [41]) and the first author (Theorem 2.1
in [4]) in particular cases, and then generalized by A. Pratelli [68].
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In [50] L. V. Kantorovich introduced the dual problem, and later L. V. Kantorovich and G. S.
Rubinstein [51] further investigated this duality for the casec(x, y) = d(x, y). The fact that the
study of the dual problem can lead to important informationsfor the transport problem has been
investigated by several authors, among others M. Knott and C. S. Smith [52] and S. T. Rachev and L.
Rüschendorf [69], [71].

The notions of cyclical monotonicity and its relation with subdifferential of convex function
have been developed by Rockafellar in [70]. The generalization to c-cyclical monotonicity and toc-
sub/super differential ofc-convex/concave functions has been studied, among others,by Rüschendorf
[71].

The characterization of the set of non differentiability ofconvex functions is due to Zajíček ([83],
see also the paper by G. Alberti [2] and the one by G. Alberti and the first author [3])

Theorem 1.26 on existence of optimal maps inR
d for the cost=distance-squared is the celebrated

result of Y. Brenier, who also observed that it implies the polar factorization result 1.28 ([18], [19]).
Brenier’s ideas have been generalized in many directions. One of the most notable one is R. Mc-
Cann’s theorem 1.33 concerning optimal maps in Riemannian manifolds for the case cost=squared
distance ([64]). R. McCann also noticed that the original hypothesis in Brenier’s theorem, which was
µ ≪ Ld, can be relaxed into ‘µ gives 0 mass to Lipschitz hypersurfaces’. In [42] W. Gangbo and
R. McCann pointed out that to get existence of optimal maps inR

d with c(x, y) = |x − y|2/2 it is
sufficient to ask to the measureµ to be regular in the sense of the Definition 1.25. The sharp version
of Brenier’s and McCann’s theorems presented here, where the necessity of the regularity ofµ is also
proved, comes from a paper of the second author of these notes([46]).

Other extensions of Brenier’s result are:

• Infinite-dimensional Hilbert spaces (the authors and Savaré - [6])

• cost functions induced by Lagrangians, Bernard-Buffoni [13], namely

c(x, y) := inf

{∫ 1

0

L(t, γ(t), γ̇(t)) dt : γ(0) = x, γ(1) = y

}
;

• Carnot groups and sub-Riemannian manifolds,c = d2CC/2: the first author and S. Rigot ([10]),
A. Figalli and L. Rifford ([39]);

• cost functions induced by sub-Riemannian Lagrangians A. Agrachev and P. Lee ([1]).

• Wiener spaces(E,H, γ), D. Feyel- A. S. Üstünel ([36]).
HereE is a Banach space,γ ∈ P(E) is Gaussian andH is its Cameron- Martin space, namely

H := {h ∈ E : (τh)♯γ ≪ γ} .

In this case

c(x, y) :=





|x− y|2H
2

if x− y ∈ H;

+∞ otherwise.

The issue of regularity of optimal maps would nowadays require a lecture note in its own. A
rough statement that one should have in mind is that it is rareto have regular (even just continuous)
optimal transport maps. The key Theorem 1.27 is due to L. Caffarelli ([22], [21], [23]).

Example 1.36 is due to G. Loeper ([55]). For the general case of cost=squared distance on a com-
pact Riemannian manifold, it turns out that continuity of optimal maps between two measures with
smooth and strictly positive density is strictly related tothe positivity of the so-called Ma-Trudinger-
Wang tensor ([59]), an object defined taking fourth order derivatives of the distance function. The
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understanding of the structure of this tensor has been a veryactive research area in the last years, with
contributions coming from X.-N. Ma, N. Trudinger, X.-J. Wang, C. Villani, P. Delanoe, R. McCann,
A. Figalli, L. Rifford, H.-Y. Kim and others.

A topic which we didn’t discuss at all is the original formulation of the transport problem of
Monge: the casec(x, y) := |x− y| onRd. The situation in this case is much more complicated than
the one withc(x, y) = |x − y|2/2 as it is typically not true that optimal plans are unique, or that
optimal plans are induced by maps. For example consider onR any two probability measuresµ, ν
such thatµ is concentrated on the negative numbers andν on the positive ones. Then one can see
that any admissible plan between them is optimal for the costc(x, y) = |x− y|.

Still, even in this case there is existence of optimal maps, but in order to find them one has to
use a sort of selection principle. A successful strategy - which has later been applied to a number of
different situation - has been proposed by V. N. Sudakov in [77], who used a disintegration principle
to reduce thed-dimensional problem to a problem onR. The original argument by V. N. Sudakov was
flawed and has been fixed by the first author in [4] in the case of the Euclidean distance. Meanwhile,
different proofs of existence of optimal maps have been proposed by L. C.Evans- W. Gangbo ([34]),
Trudinger and Wang [78], and L. Caffarelli, M. Feldman and R.McCann [24].

Later, existence of optimal maps for the casec(x, y) := ‖x− y‖, ‖ · ‖ being any norm has been
established, at increasing levels of generality, in [9], [28], [27] (containing the most general result,
for any norm) and [25].

2 The Wasserstein distanceW2

The aim of this chapter is to describe the properties of the Wasserstein distanceW2 on the space
of Borel Probability measures on a given metric space(X, d). This amounts to study the transport
problem with cost functionc(x, y) = d2(x, y).

An important characteristic of the Wasserstein distance isthat it inherits many interesting geo-
metric properties of the base space(X, d). For this reason we split the foregoing discussion into three
sections on which we deal with the cases in whichX is: a general Polish space, a geodesic space and
a Riemannian manifold.

A word on the notation: when considering product spaces likeXn, with πi : Xn → X we intend
the natural projection onto thei-th coordinate,i = 1, . . . , n. Thus, for instance, forµ, ν ∈ P(X)
andγ ∈ Adm(µ, ν) we haveπ1

#γ = µ andπ2
#γ = ν. Similarly, withπi,j : Xn → X2 we intend the

projection onto thei-th andj-th coordinates. And similarly for multiple projections.

2.1 X Polish space

Let (X, d) be a complete and separable metric space.
The distanceW2 is defined as

W2(µ, ν) :=

√
inf

γ∈Adm(µ,ν)

∫
d2(x, y)dγ(x, y)

=

√∫
d2(x, y)dγ(x, y), ∀γ ∈ Opt(µ, ν).

The natural space to endow with the Wasserstein distanceW2 is the spaceP2(X) of Borel
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Probability measures with finite second moment:

P2(X) :=
{
µ ∈ P(X) :

∫
d2(x, x0)dµ(x) <∞ for some, and thus any,x0 ∈ X

}
.

Notice that if eitherµ or ν is a Dirac delta, sayν = δx0 , then there exists only one planγ in
Adm(µ, ν): the planµ× δx0 , which therefore is optimal. In particular it holds

∫
d2(x, x0)dµ(x) =W 2

2 (µ, δx0),

that is: the second moment is nothing but the squared Wasserstein distance from the corresponding
Dirac mass.

We start proving thatW2 is actually a distance onP2(X). In order to prove the triangle inequal-
ity, we will use the following lemma, which has its own interest:

Lemma 2.1 (Gluing) LetX, Y, Z be three Polish spaces and letγ1 ∈ P(X×Y ), γ2 ∈ P(Y ×Z)
be such thatπY#γ1 = πY#γ2. Then there exists a measureγ ∈ P(X × Y × Z) such that

πX,Y# γ = γ1,

πY,Z# γ = γ2.

Proof Let µ := πY#γ1 = πY#γ2 and use the disintegration theorem to writedγ1(x, y) =

dµ(y)dγ1
y(x) anddγ2(y, z) = dµ(y)dγ2

y(z). Conclude definingγ by

dγ(x, y, z) := dµ(y)d(γ1
y × γ2

y)(x, z).

�

Theorem 2.2 (W2 is a distance)W2 is a distance onP2(X).

Proof It is obvious thatW2(µ, µ) = 0 and thatW2(µ, ν) = W2(ν, µ). To prove thatW2(µ, ν) = 0
impliesµ = ν just pick an optimal planγ ∈ Opt(µ, ν) and observe that

∫
d2(x, y)dγ(x, y) = 0

implies thatγ is concentrated on the diagonal ofX ×X , which means that the two mapsπ1 andπ2

coincideγ-a.e., and thereforeπ1
#γ = π2

#γ.
For the triangle inequality, we use the gluing lemma to “compose” two optimal plans. Let

µ1, µ2, µ3 ∈ P2(X) and letγ2
1 ∈ Opt(µ1, µ2), γ3

2 ∈ Opt(µ2, µ3). By the gluing lemma we
know that there existsγ ∈ P2(X

3) such that

π1,2
# γ = γ2

1,

π2,3
# γ = γ3

2.

Sinceπ1
#γ = µ1 andπ3

#γ = µ3, we haveπ1,3
# γ ∈ Adm(µ1, µ3) and therefore from the triangle
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inequality inL2(γ) it holds

W2(µ1, µ3) ≤
√∫

d2(x1, x3)dπ
1,3
# γ(x1, x3) =

√∫
d2(x1, x3)dγ(x1, x2, x3)

≤
√∫ (

d(x1, x2) + d(x2, x3)
)2
dγ(x1, x2, x3)

≤
√∫

d2(x1, x2)dγ(x1, x2, x3) +

√∫
d2(x2, x3)dγ(x1, x2, x3)

=

√∫
d2(x1, x2)dγ2

1(x1, x2) +

√∫
d2(x2, x3)dγ3

2(x2, x3) =W2(µ1, µ2) +W2(µ2, µ3).

Finally, we need to prove thatW2 is real valued. Here we use the fact that we restricted the analysis
to the spaceP2(X): from the triangle inequality we have

W2(µ, ν) ≤W2(µ, δx0) +W2(ν, δx0) =

√∫
d2(x, x0)dµ(x) +

√∫
d2(x, x0)dν(x) <∞.

�

A trivial, yet very useful inequality is:

W 2
2 (f#µ, g#µ) ≤

∫
d2Y (f(x), g(x))dµ(x), (2.1)

valid for any couple of metric spacesX,Y , anyµ ∈ P(X) and any couple of Borel mapsf, g :
X → Y . This inequality follows from the fact that(f, g)#µ is an admissible plan for the measures
f#µ, g#µ, and its cost is given by the right hand side of (2.1).

Observe that there is a natural isometric immersion of(X, d) into (P2(X),W2), namely the map
x 7→ δx.

Now we want to study the topological properties of(P2(X),W2). To this aim, we introduce the
notion of2-uniform integrability: K ⊂ P2(X) is 2-uniformly integrable provided for anyε > 0 and
x0 ∈ X there existsRε > 0 such that

sup
µ∈K

∫

X\BRε (x0)

d2(x, x0)dµ ≤ ε.

Remark 2.3 Let (X, dX), (Y, dY ) be Polish and endowX × Y with the product distance
d2
(
(x1, y1), (x2, y2)

)
:= d2X(x1, x2) + d2Y (y1, y2). Then the inequality

∫

(BR(x0)×BR(y0))c

d2X(x, x0)dγ(x, y) =

∫

(BR(x0))c×Y

d2X(x, x0)dγ(x, y) +

∫

BR(x0)×(BR(y0))c

d2X(x, x0)dγ(x, y)

≤
∫

(BR(x0))c

d2X(x, x0)dµ(x) +

∫

X×(BR(y0))c

R2dγ(x, y)

≤
∫

(BR(x0))c

d2X(x, x0)dµ(x) +

∫

(BR(y0))c

d2Y (y, y0)dν(y),
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valid for any γ ∈ Adm(µ, ν) and the analogous one with the integral ofd2Y (y, y0) in place of
d2X(x, x0), show that ifK1 ⊂ P2(X) andK2 ⊂ P2(Y ) are 2-uniformly integrable, so is the
set {

γ ∈ P(X × Y ) : πX#γ ∈ K1, π
Y
#γ ∈ K2

}
.

�

We say that a functionf : X → R has quadratic growth provided

|f(x)| ≤ a(d2(x, x0) + 1), (2.2)

for somea ∈ R andx0 ∈ X . It is immediate to check that iff has quadratic growth andµ ∈ P2(X),
thenf ∈ L1(X,µ).

The concept of 2-uniform integrability (in conjunction with tightness) in relation with conver-
gence of integral of functions with quadratic growth, playsa role similar to the one played by tight-
ness in relation with convergence of integral of bounded functions, as shown in the next proposition.

Proposition 2.4 Let (µn) ⊂ P2(X) be a sequence narrowly converging to someµ. Then the fol-
lowing 3 properties are equivalent

i) (µn) is 2-uniformly integrable,

ii)
∫
fdµn →

∫
fdµ for any continuousf with quadratic growth,

iii)
∫
d2(·, x0)dµn →

∫
d2(·, x0)dµ for somex0 ∈ X .

Proof
(i) ⇒ (ii). It is not restrictive to assumef ≥ 0. Since any suchf can be written as supremum of a
family of continuous and bounded functions, it clearly holds

∫
fdµ ≤ lim inf

n→∞

∫
fdµn.

Thus we only have to prove the limsup inequality. Fixε > 0, x0 ∈ X and findRε > 1 such that∫
X\BRε (x0)

d2(·, x0)dµn ≤ ε for everyn. Now letχ be a function with bounded support, values in

[0, 1] and identically 1 onBRε and notice that for everyn ∈ N it holds
∫
fdµn =

∫
fχdµn +

∫
f(1− χ)dµn ≤

∫
fχdµn +

∫

X\BRε

fdµn ≤
∫
fχdµn + 2aε,

a being given by (2.2). Sincefχ is continuous and bounded we have
∫
fχdµn →

∫
fχdµ and

therefore

lim
n→∞

∫
fdµn ≤

∫
fχdµ+ 2aε ≤

∫
fdµ+ 2aε.

Sinceε > 0 was arbitrary, this part of the statement is proved.
(ii) ⇒ (iii). Obvious.
(iii) ⇒ (i). Argue by contradiction and assume that there existε > 0 and x̃0 ∈ X such that for
everyR > 0 it holdssupn∈N

∫
X\BR(x̃0)

d2(·, x̃0)dµn > ε. Then it is easy to see that it holds

lim
n→∞

∫

X\BR(x0)

d2(·, x0)dµn > ε. (2.3)
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For everyR > 0 let χR be a continuous cutoff function with values in[0, 1] supported onBR(x0)
and identically 1 onBR/2(x0). Sinced2(·, x0)χR is continuous and bounded, we have

∫
d2(·, x0)χRdµ = lim

n→∞

∫
d2(·, x0)χRdµn

= lim
n→∞

(∫
d2(·, x0)dµn −

∫
d2(·, x0)(1− χR)dµn

)

=

∫
d2(·, x0)dµ+ lim

n→∞
−
∫
d2(·, x0)(1 − χR)dµn

≤
∫
d2(·, x0)dµ+ lim

n→∞
−
∫

X\BR(x0)

d2(·, x0)dµn

=

∫
d2(·, x0)dµ− lim

n→∞

∫

X\BR(x0)

d2(·, x0)dµn

≤
∫
d2(·, x0)dµ− ε,

having used (2.3) in the last step. Since
∫
d2(·, x0)dµ = sup

R

∫
d2(·, x0)χRdµ ≤

∫
d2(·, x0)dµ− ε,

we got a contradiction. �

Proposition 2.5 (Stability of optimality) The distanceW2 is lower semicontinuous w.r.t. narrow
convergence of measures. Furthermore, if(γn) ⊂ P2(X

2) is a sequence of optimal plans which
narrowly converges toγ ∈ P2(X

2), thenγ is optimal as well.

Proof Let (µn), (νn) ⊂ P2(X) be two sequences of measures narrowly converging toµ, ν ∈
P2(X) respectively. Pickγn ∈ Opt(µn, νn) and use Remark 1.4 and Prokhorov theorem to get that
(γn) admits a subsequence, not relabeled, narrowly converging to someγ ∈ P(X2). It is clear that
π1
#γ = µ andπ2

#γ = ν, thus it holds

W 2
2 (µ, ν) ≤

∫
d2(x, y)dγ(x, y) ≤ lim

n→∞

∫
d2(x, y)dγn(x, y) = lim

n→∞
W 2

2 (µn, νn).

Now we pass to the second part of the statement, that is: we need to prove that with the same
notation just used it holdsγ ∈ Opt(µ, ν). Choosea(x) = b(x) = d2(x, x0) for somex0 ∈ X in
the bound (1.4) and observe that sinceµ, ν ∈ P2(X) Theorem 1.13 applies, and thus optimality is
equivalent toc-cyclical monotonicity of the support. The same for the plansγn. FixN ∈ N and pick
(xi, yi) ∈ supp(γ), i = 1, . . . , N . From the fact that(γn) narrowly converges toγ it is not hard to
infer the existence of(xin, y

i
n) ∈ supp(γn) such that

lim
n→∞

(
d(xin, x

i) + d(yin, y
i)
)
= 0, ∀i = 1, . . . , N.

Thus the conclusion follows from thec-cyclical monotonicity ofsupp(γn) and the continuity of the
cost function. �

Now we are going to prove that(P2(X),W2) is a Polish space. In order to enable some construc-
tions, we will use (a version of) Kolmogorov’s theorem, which we recall without proof (see e.g. [31]
§51).
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Theorem 2.6 (Kolmogorov) LetX be a Polish space andµn ∈ P(Xn), n ∈ N, be a sequence of
measures such that

π1,...,n−1
# µn = µn−1, ∀n ≥ 2.

Then there exists a measureµ ∈ XN such that

π1,...,n
# µ = µn, ∀n ∈ N.

Theorem 2.7 (Basic properties of the space(P2(X),W2)) Let(X, d) be complete and separable.
Then

W2(µn, µ) → 0 ⇔





µn → µ narrowly∫
d2(·, x0)dµn →

∫
d2(·, x0)dµ for somex0 ∈ X.

(2.4)

Furthermore, the space(P2(X),W2) is complete and separable. Finally,K ⊂ P2(X) is relatively
compact w.r.t. the topology induced byW2 if and only if it is tight and 2-uniformly integrable.

Proof We start showing implication⇒ in (2.4). Thus assume thatW2(µn, µ) → 0. Then
∣∣∣∣∣

√∫
d2(·, x0)dµn −

√∫
d2(·, x0)dµ

∣∣∣∣∣ = |W2(µn, δx0)−W2(µ, δx0)| ≤W2(µn, µ) → 0.

To prove narrow convergence, for everyn ∈ N chooseγn ∈ Opt(µ, µn) and2 use repeatedly the
gluing lemma to find, for everyn ∈ N, a measureαn ∈ P(X ×Xn) such that

π0,n
# αn = γn,

π0,1,...,n−1
# αn = αn−1.

Then by Kolmogorov’s theorem we know that there exists a measureα ∈ P(X ×XN) such that

π0,1,...,n
# α = αn, ∀n ∈ N.

By construction we have

‖d(π0, πn)‖L2(X×XN,α) = ‖d(π0, πn)‖L2(X2,γn)
=W2(µ, µn) → 0.

Thus up to passing to a subsequence, not relabeled, we can assume thatπn(x) → π0(x) for α-almost
anyx ∈ X ×XN. Now pickf ∈ Cb(X) and use the dominated convergence theorem to get

lim
n→∞

∫
fdµn = lim

n→∞

∫
f ◦ πndα =

∫
f ◦ π0dα =

∫
fdµ.

2if closed balls inX are compact, the proof greatly simplifies. Indeed in this case the inequalityR2µ(X \ BR(x0)) ≤
∫

d2(·, x0)dµ and the uniform bound on the second moments yields that the sequencen 7→ µn is tight. Thus to prove narrow
convergence it is sufficient to check that

∫

fdµn →
∫

fdµ for everyf ∈ Cc(X). Since Lipschitz functions are dense in
Cc(X) w.r.t. uniform convergence, it is sufficient to check the convergence of the integral only for Lipschitzf ’s. This follows
from the inequality

∣

∣

∣

∣

∫

fdµ−

∫

fdµn

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

f(x)− f(y)dγ
n
(x, y)

∣

∣

∣

∣

≤

∫

|f(x)− f(y)|dγ
n
(x, y)

≤ Lip(f)

∫

d(x, y)dγ
n
(x, y) ≤ Lip(f)

√

∫

d2(x, y)dγ
n
(x, y) = Lip(f)W2(µ, µn).
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Since the argument does not depend on the subsequence chosen, the claim is proved.
We pass to the converse implication in (2.4). Pickγn ∈ Opt(µ, µn) and use Remark 1.4 to

get that the sequence(γn) is tight, hence, up to passing to a subsequence, we can assumethat it
narrowly converges to someγ. By Proposition 2.5 we know thatγ ∈ Opt(µ, µ), which forces∫
d2(x, y)dγ(x, y) = 0. By Proposition 2.4 and our assumption on(µn), µ we know that(µn) is

2-uniformly integrable, thus by Remark 2.3 again we know that (γn) is 2-uniformly integrable as
well. Since the map(x, y) 7→ d2(x, y) has quadratic growth inX2 it holds

lim
n→∞

W 2
2 (µn, µ) = lim

n→∞

∫
d2(x, y)dγn(x, y) =

∫
d2(x, y)dγ(x, y) = 0.

Now we prove that(P2(X),W2) is complete. Pick a Cauchy sequence(µn) and assume3, with-
out loss of generality, that

∑
nW2(µn, µn+1) < ∞. For everyn ∈ N chooseγn ∈ Opt(µn, µn+1)

and use repeatedly the gluing lemma to find, for everyn ∈ N, a measureβn ∈ P2(X
n) such that

πn,n+1
# βn = γn,

π1,...,n−1
# βn = αn−1

By Kolmogorov’s theorem we get the existence of a measureβ ∈ P(XN) such thatπ1,...,n
# β = βn

for everyn ∈ N. The inequality

∞∑

n=1

‖d(πi, πi+1)‖L2(XN,β) =

∞∑

n=1

‖d(πi, πi+1)‖L2(X2,γi)
=

∞∑

n=1

W2(µi, µi+1) <∞,

shows thatn 7→ πn : XN → X is a Cauchy sequence inL2(β, X), i.e. the space of mapsf :
XN → X such that

∫
d2(f(y), x0)dβ(y) < ∞ for some, and thus every,x0 ∈ X endowed with

the distancẽd(f, g) :=
√∫

d2(f(y), g(y))dβ(y). SinceX is complete,L2(β, X) is complete as

well, and therefore there exists a limit mapπ∞ of the Cauchy sequence(πn). Defineµ := π∞
# β and

notice that by (2.1) we have

W 2
2 (µ, µn) ≤

∫
d2(π∞, πn)dβ → 0,

so thatµ is the limit of the Cauchy sequence(µn) in (P2(X),W2). The fact that(P2(X),W2) is
separable follows from (2.4) by considering the set of finiteconvex combinations of Dirac masses
centered at points in a dense countable set inX with rational coefficients. The last claim now follows.

�

Remark 2.8 (On compactness properties ofP2(X)) An immediate consequence of the above
theorem is the fact that ifX is compact, then(P2(X),W2) is compact as well: indeed, in this
case the equivalence (2.4) tells that convergence inP2(X) is equivalent to weak convergence.

It is also interesting to notice that ifX is unbounded, thenP2(X) is not locally compact. Actu-
ally, for any measureµ ∈ P2(X) and anyr > 0, the closed ball of radiusr aroundµ is not compact.
To see this, fixx ∈ X and find a sequence(xn) ⊂ X such thatd(xn, x) → ∞. Now define the

3again, if closed balls inX are compact the argument simplifies. Indeed from the uniformbound on the second moments
and the inequalityR2µ(X \ BR(x0)) ≤

∫

X\BR(x0)
d2(·, x0)dµ we get the tightness of the sequence. Hence up to pass to a

subsequence we can assume that(µn) narrowly converges to a limit measureµ, and then using the lower semicontinuity ofW2

w.r.t. narrow convergence we can concludelimn W2(µ, µn) ≤ limn lim
m
W2(µm, µn) = 0

30



measuresµn := (1− εn)µ+ εnδxn , whereεn is chosen such thatεnd2(x, xn) = r2. To bound from
aboveW 2

2 (µ, µn), leave fixed(1− εn)µ, moveεnµ to x and then moveεnδx into εnδxn , this gives

W 2
2 (µ, µn) ≤ εn

(∫
d2(x, x)dµ(x) + d2(xn, x)

)
,

so thatlimW2(µ, µn) ≤ r. Conclude observing that

lim
n→∞

∫
d2(x, x)dµn = lim

n→∞
(1− εn)

∫
d2(x, x)dµ+ εnd

2(xn, x) =

∫
d2(x, x)dµ+ r2,

thus the second moments do not converge. Since clearly(µn) weakly converges toµ, we proved that
there is no local compactness. �

2.2 X geodesic space

In this section we prove that if the base space(X, d) is geodesic, then the same is true also for
(P2(X),W2) and we will analyze the properties of this latter space.

Let us recall that a curveγ : [0, 1] → X is calledconstant speed geodesicprovided

d
(
γt, γs

)
= |t− s|d

(
γ0, γ1

)
, ∀t, s ∈ [0, 1], (2.5)

or equivalently if≤ always holds.

Definition 2.9 (Geodesic space)A metric space(X, d) is called geodesicif for everyx, y ∈ X
there exists a constant speed geodesic connecting them, i.e. a constant speed geodesic such that
γ0 = x andγ1 = y.

Before entering into the details, let us describe an important example. Recall thatX ∋ x 7→ δx ∈
P2(X) is an isometry. Therefore ift 7→ γt is a constant speed geodesic onX connectingx to y, the
curvet 7→ δγt is a constant speed geodesic onP2(X) which connectsδx to δy. The important thing
to notice here is that the natural way to interpolate betweenδx andδy is given by this - so called -
displacement interpolation. Conversely, observe that the classical linear interpolation

t 7→ µt := (1− t)δx + tδy,

produces a curve which has infinite length as soon asx 6= y (becauseW2(µt, µs) =√
|t− s|d(x, y)), and thus is unnatural in this setting.
We will denote byGeod(X) the metric space of all constant speed geodesics onX endowed with

the sup norm. With some work it is possible to show thatGeod(X) is complete and separable as
soon asX is (we omit the details). Theevaluation mapset : Geod(X) → X are defined for every
t ∈ [0, 1] by

et(γ) := γt. (2.6)

Theorem 2.10 Let (X, d) be Polish and geodesic. Then(P2(X),W2) is geodesic as well. Further-
more, the following two are equivalent:

i) t 7→ µt ∈ P2(X) is a constant speed geodesic,

ii) There exists a measureµ ∈ P2(Geod(X)) such that(e0, e1)#µ ∈ Opt(µ0, µ1) and

µt = (et)#µ. (2.7)
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Proof Chooseµ0, µ1 ∈ P2(X) and find an optimal planγ ∈ Opt(µ, ν). By Lemma 2.11 be-
low and classical measurable selection theorems we know that there exists a Borel mapGeodSel :
X2 → Geod(X) such that for anyx, y ∈ X the curveGeodSel(x, y) is a constant speed geodesic
connectingx to y. Define the Borel probability measureµ ∈ P(Geod(X)) by

µ := GeodSel#γ,

and the measuresµt ∈ P(X) by µt := (et)#µ.
We claim thatt 7→ µt is a constant speed geodesic connectingµ0 toµ1. Consider indeed the map

(e0, e1) : Geod(X) → X2 and observe that from(e0, e1)
(
GeodSel(x, y)

)
= (x, y) we get

(e0, e1)#µ = γ. (2.8)

In particular,µ0 = (e0)#µ = π1
#γ = µ0, and similarlyµ1 = µ1, so that the curvet 7→ µt connects

µ0 to µ1. The facts that the measuresµt have finite second moments and(µt) is a constant speed
geodesic follow from

W 2
2 (µt, µs)

(2.7),(2.1)
≤

∫
d2(et(γ), es(γ))dµ(γ)

(2.5)
= (t− s)2

∫
d2(e0(γ), e1(γ))dµ(γ)

(2.8)
= (t− s)2

∫
d2(x, y)dγ(x, y) = (t− s)2W 2

2 (µ
0, µ1).

The fact that(ii) implies (i) follows from the same kind of argument just used. So, we turn to
(i) ⇒ (ii). Forn ≥ 0 we use iteratively the gluing Lemma 2.1 and the Borel mapGeodSel to build
a measureµn ∈ P(C([0, 1], X)) such that

(
ei/2n , e(i+1)/2n

)
#
µn ∈ Opt(µi/2n , µ(i+1)/2n), ∀i = 0, . . . , 2n − 1,

andµn-a.e.γ is a geodesic in the intervals[i/2n, (i+ 1)/2n], i = 0, . . . , 2n − 1. Fix n and observe
that for any0 ≤ j < k ≤ 2n it holds

∥∥d
(
ej/2n , ek/2n

)∥∥
L2(µn)

≤
∥∥∥∥
k−1∑

i=j

d
(
ei/2n , e(i+1)/2n

)∥∥∥∥
L2(µn)

≤
k−1∑

i=j

∥∥d
(
ei/2n , e(i+1)/2n

)∥∥
L2(µn)

=

k−1∑

i=j

W2(µi/2n , µ(i+1)/2n) =W2(µj/2n , µk/2n).

(2.9)

Therefore it holds
(
ej/2n , ek/2n

)
#
µn ∈ Opt(µj/2n , µk/2n), ∀j, k ∈ {0, . . . , 2n}.

Also, since the inequalities in (2.9) are equalities, it is not hard to see that forµn-a.e. γ the points
γi/2n , i = 0, . . . , 2n, must lie along a geodesic and satisfyd(γi/2n , γ(i+1)/2n) = d(γ0, γ1)/2

n,
i = 0, . . . , 2n − 1. Henceµn-a.e. γ is a constant speed geodesic and thusµn ∈ P(Geod(X)).
Now suppose for a moment that(µn) narrowly converges - up to pass to a subsequence - to some
µ ∈ P(Geod(X)). Then the continuity of the evaluation mapset yields that for anyt ∈ [0, 1] the
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sequencen 7→ (et)#µ
n narrowly converges to(et)#µ and this, together with the uniform bound

(2.9), easily implies thatµ satisfies (2.7).
Thus to conclude it is sufficient to show that some subsequence of (µn) has a narrow limit4. We

will prove this by showing thatµn ∈ P2(Geod(X)) for everyn ∈ N and that some subsequence is a
Cauchy sequence in(P2(Geod(X)),W2), W2 being the Wasserstein distance built overGeod(X)
endowed with thesup distance, so that by Theorem 2.7 we conclude.

We know by Remark 1.4, Remark 2.3 and Theorem 2.7 that for every n ∈ N the set of plans
α ∈ P2(X

2n+1) such thatπi#α = µi/2n for i = 0, . . . , 2n, is compact inP2(X
2n+1). Therefore

a diagonal argument tells that possibly passing to a subsequence, not relabeled, we may assume that
for everyn ∈ N the sequence

m 7→
2n∏

i=0

(ei/2n)#µ
m

converges to some plan w.r.t. the distanceW2 onX2n+1.
Now fix n ∈ N and notice that fort ∈ [i/2n, (i+ 1)/2n] andγ, γ̃ ∈ Geod(X) it holds

d
(
γt, γ̃t

)
≤ d
(
γi/2n , γ̃(i+1)/2n

)
+

1

2n

(
d(γ0, γ1) + d(γ̃0, γ̃1)

)
,

and therefore squaring and then taking thesup overt ∈ [0, 1] we get

sup
t∈[0,1]

d2(γt, γ̃t) ≤ 2

2n−1∑

i=0

d2
(
γi/2n , γ̃(i+1)/2n

)
+

1

2n−2

(
d2(γ0, γ1) + d2(γ̃0, γ̃1)

)
. (2.10)

Choosingγ̃ to be a constant geodesic and using (2.9), we get thatµm ∈ P2(Geod(X)) for every
m ∈ N. Now, for any givenν, ν̃ ∈ P(Geod(X)), by a gluing argument (Lemma 2.12 below with
ν, ν̃ in place ofν, ν̃, Y = Geod(X), Z = X2n+1) we can find a planβ ∈ P([Geod(X)]2) such
that

π1
#β = ν,

π2
#β = ν̃,

((
e0, . . . , ei/2n , . . . , e1

)
◦ π1,

(
e0, . . . , ei/2n , . . . , e1

)
◦ π2

)

#

β ∈ Opt(

2n∏

i=0

(ei/2n)#ν,

2n∏

i=0

(ei/2n)#ν̃),

where optimality between
∏2n

i=0(ei/2n)#ν and
∏2n

i=0(ei/2n)#ν̃ is meant w.r.t. the Wasserstein dis-
tance onP2(X

2n+1). Usingβ to bound from aboveW2(ν, ν̃) and using (2.10) we get that for
every couple of measuresν, ν̃ ∈ P2(Geod(X)) it holds

W
2
2(ν, ν̃) ≤ 2W 2

2

( 2n∏

i=0

(ei/2n)#ν,

2n∏

i=0

(ei/2n)#ν̃
)

+
1

2n−2

(∫
d2(γ0, γ1)dν(γ) +

∫
d2(γ̃0, γ̃1)dν(γ̃)

)

4as for Theorem 2.7 everything is simpler if closed balls inX are compact. Indeed, observe that a geodesic connecting two
points inBR(x0) lies entirely on the compact setB2R(x0), and that the set of geodesics lying on a given compact set is itself
compact inGeod(X), so that the tightness of(µn) follows directly from the one of{µ0, µ1}.
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Pluggingν = µm, ν̃ = µm
′

and recalling thatW2

(∏2n

i=0(ei/2n)#µ
m,
∏2n

i=0(ei/2n)#µ
m′
)
→ 0 as

m, m′ → +∞ for everyn ∈ N we get that

lim
m,m′→∞

W
2
2(µ

m,µm
′

) ≤ 1

2n−2

(∫
d2(γ0, γ1)dµ

m(γ) +

∫
d2(γ̃0, γ̃1)dµ

m′

(γ̃)

)

=
1

2n−3
W 2

2 (µ0, µ1).

Lettingn→ ∞ we get that(µm) ⊂ P2(Geod(X)) is a Cauchy sequence and the conclusion.�

Lemma 2.11 The multivalued map fromG : X2 → Geod(X) which associates to each pair(x, y)
the setG(x, y) of constant speed geodesics connectingx to y has closed graph.

Proof Straightforward. �

Lemma 2.12 (A variant of gluing) LetY, Z be Polish spaces,ν, ν̃ ∈ P(Y ) andf, g : Y → Z be
two Borel maps. Letγ ∈ Adm(f#ν, g#ν̃). Then there exists a planβ ∈ P(Y 2) such that

π1
#β = ν,

π2
#β = ν̃,

(f ◦ π1, g ◦ π2)#β = γ.

Proof Let {νz}, {ν̃z̃} be the disintegrations ofν, ν̃ w.r.t. f, g respectively. Then define

β :=

∫

Z2

νz × ν̃z̃ dγ(z, z̃).

�

Remark 2.13 (The Hilbert case) If X is an Hilbert space, then for everyx, y ∈ X there exists only
one constant speed geodesic connecting them: the curvet 7→ (1−t)x+ty. Thus Theorem 2.10 reads
as: t 7→ µt is a constant speed geodesic if and only if there exists an optimal planγ ∈ Opt(µ0, µ1)
such that

µt =
(
(1− t)π1 + tπ2

)
#
γ.

If γ is induced by a mapT , the formula further simplifies to

µt =
(
(1− t)Id+ tT

)
#
µ0. (2.11)

�

Remark 2.14 A slight modification of the arguments presented in the second part of the proof of
Theorem 2.10 shows that if(X, d) is Polish and(P2(X),W2) is geodesic, then(X, d) is geodesic
as well. Indeed, givenx, y ∈ X and a geodesic(µt) connectingδx to δy, we can build a measure
µ ∈ P(Geod(X)) satisfying (2.7). Then everyγ ∈ supp(µ) is a geodesic connectingx to y. �

Definition 2.15 (Non branching spaces)A geodesic space(X, d) is said non branching if for any
t ∈ (0, 1) a constant speed geodesicγ is uniquely determined by its initial pointγ0 and by the point
γt. In other words,(X, d) is non branching if the map

Geod(X) ∋ γ 7→ (γ0, γt) ∈ X2,

is injective for anyt ∈ (0, 1).
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Non-branching spaces are interesting from the optimal transport point of view, because for such
spaces the behavior of geodesics inP2(X) is particularly nice: optimal transport plan from inter-
mediate measures to other measures along the geodesic are unique and induced by maps (it is quite
surprising that such a statement is true in this generality -compare the assumption of the proposition
below with the ones of Theorems 1.26, 1.33). Examples of non-branching spaces are Riemannian
manifolds, Banach spaces with strictly convex norms and Alexandrov spaces with curvature bounded
below. Examples of branching spaces are Banach spaces with non strictly convex norms.

Proposition 2.16 (Non branching and interior regularity) Let (X, d) be a Polish, geodesic, non
branching space. Then(P2(X),W2) is non branching as well. Furthermore, if(µt) ⊂ P2(X) is a
constant speed geodesic, then for everyt ∈ (0, 1) there exists only one optimal plan inOpt(µ0, µt)
and this plan is induced by a map fromµt. Finally, the measureµ ∈ P(Geod(X)) associated to
(µt) via (2.7) is unique.

Proof Let (µt) ⊂ P2(X) be a constant speed geodesic and fixt0 ∈ (0, 1). Pickγ1 ∈ Opt(µ0, µt0)
andγ2 ∈ Opt(µt0 , µ1). We want to prove that bothγ1 andγ2 are induced by maps fromµt0 . To
this aim use the gluing lemma to find a 3-planα ∈ P2(X

3) such that

π1,2
# α = γ1,

π2,3
# α = γ2,

and observe that since(µt) is a geodesic it holds

‖d(π1, π3)‖L2(α) ≤ ‖d(π1, π2) + d(π2, π3)‖L2(α) ≤ ‖d(π1, π2)‖L2(α) + ‖d(π2, π3)‖L2(α)

= ‖d(π1, π2)‖L2(γ1) + ‖d(π1, π2)‖L2(γ2) =W2(µ0, µt0) +W2(µt0 , µ1)

=W2(µ0, µ1),

so that(π1, π3)#α ∈ Opt(µ0, µ1). Also, since the first inequality is actually an equality, we
have thatd(x, y) + d(y, z) = d(x, z) for α-a.e. (x, y, z), which means thatx, y, z lie along a
geodesic. Furthermore, since the second inequality is an equality, the functions(x, y, z) 7→ d(x, y)
and(x, y, z) 7→ d(y, z) are each a positive multiple of the other insupp(α). It is then immediate to
verify that for every(x, y, z) ∈ supp(α) it holds

d(x, y) = (1− t0)d(x, z),

d(y, z) = t0d(x, z).

We now claim that for(x, y, z), (x′, y′, z′) ∈ supp(α) it holds(x, y, z) = (x′, y′, z′) if and only if
y = y′. Indeed, pick(x, y, z), (x′, y, z′) ∈ supp(α) and assume, for instance, thatz 6= z′. Since
(π1, π3)#α is an optimal plan, by the cyclical monotonicity of its support we know that

d2(x, z) + d2(x′, z′) ≤ d2(x, z′) + d2(x′, z) ≤
(
d(x, y) + d(y, z′)

)2
+
(
d(x′, y) + d(y, z)

)2

=
(
(1− t0)d(x, z) + t0d(x

′, z′)
)2

+
(
(1 − t0)d(x

′, z′) + t0d(x, z)
)2
,

which, after some manipulation, givesd(x, z) = d(x′, z′) =: D. Again from the cyclical mono-
tonicity of the support we have2D2 ≤ d2(x, z′)+d2(x′, z), thus eitherd(x′, z) or d(x, z′) is≥ than
D. Sayd(x, z′) ≥ D, so that it holds

D ≤ d(x, z′) ≤ d(x, y) + d(y, z′) = (1− t0)D + t0D = D,

which means that the triple of points(x, y, z′) lies along a geodesic. Since(x, y, z) lies on a geodesic
as well, by the non-branching hypothesis we get a contradiction.
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Thus the mapsupp(α) ∋ (x, y, z) 7→ y is injective. This means that there exists two maps
f, g : X → X such that(x, y, z) ∈ supp(α) if and only if x = f(y) andz = g(y). This is the same
as to say thatγ1 is induced byf andγ2 is induced byg.

To summarize, we proved that givent0 ∈ (0, 1), every optimal planγ ∈ Opt(µ0, µt0) is induced
by a map fromµt0 . Now we claim that the optimal plan is actually unique. Indeed, if there are two
of them induced by two different maps, sayf andf ′, then the plan

1

2

(
(f, Id)#µµt0

+ (f ′, Id)#µµt0

)
,

would be optimal and not induced by a map.
It remains to prove thatP2(X) is non branching. Chooseµ ∈ P2(Geod(X)) such that (2.7)

holds, fixt0 ∈ (0, 1) and letγ be the unique optimal plan inOpt(µ0, µt0). The thesis will be proved
if we show thatµ depends only onγ. Observe that from Theorem 2.10 and its proof we know that

(e0, et0)#µ ∈ Opt(µ0, µt0),

and thus(e0, et0)#µ = γ. By the non-branching hypothesis we know that(e0, et0) : Geod(X) →
X2 is injective. Thus it it invertible on its image: lettingF the inverse map, we get

µ = F#γ,

and the thesis is proved. �

Theorem 2.10 tells us not only that geodesics exists, but provides also a natural way to “interpo-
late” optimal plans: once we have the measureµ ∈ P(Geod(X)) satisfying (2.7), an optimal plan
from µt to µs is simply given by(et, es)#µ. Now, we know that the transport problem has a natural
dual problem, which is solved by the Kantorovich potential.It is then natural to ask how to inter-
polate potentials. In other words, if(ϕ, ϕc+) arec−conjugate Kantorovich potentials for(µ0, µ1),
is there a simple way to find out a couple of Kantorovich potentials associated to the coupleµt, µs?
The answer is yes, and it is given - shortly said - by the solution of an Hamilton-Jacobi equation. To
see this, we first define theHopf-Laxevolution semigroupHs

t (which inR
d produces the viscosity

solution of the Hamilton-Jacobi equation) via the following formula:

Hs
t (ψ)(x) :=





inf
y∈X

d2(x, y)

s− t
+ ψ(y), if t < s,

ψ(x), if t = s,

sup
y∈X

−d
2(x, y)

s− t
+ ψ(y), if t > s,

(2.12)

To fully appreciate the mechanisms behind the theory, it is better to introduce therescaled costsct,s

defined by

ct,s(x, y) :=
d2(x, y)

s− t
, ∀t < s, x, y ∈ X.

Observe that fort < r < s

ct,r(x, y) + cr,s(y, z) ≥ ct,s(x, z), ∀x, y, z ∈ X,

and equality holds if and only if there is a constant speed geodesicγ : [t, s] → X such thatx =
γt, y = γr, z = γs. The notions ofct,s+ andct,s− transforms, convexity/concavity and sub/super-
differential are defined as in Section 1.2, Definitions 1.8, 1.9 and 1.10.

The basic properties of the Hopf-Lax formula are collected in the following proposition:
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Proposition 2.17 (Basic properties of the Hopf-Lax formula) We have the following three prop-
erties:

(i) For any t, s ∈ [0, 1] the mapHs
t is order preserving, that isφ ≤ ψ ⇒ Hs

t (φ) ≤ Hs
t (ψ).

(ii) For any t < s ∈ [0, 1] it holds

Ht
s

(
Hs
t (φ)

)
= φc

t,s
− ct,s− ≤ φ,

Hs
t

(
Ht
s(φ)

)
= φc

t,s
+ ct,s+ ≥ φ,

(iii) For any t, s ∈ [0, 1] it holds
Hs
t ◦Ht

s ◦Hs
t = Hs

t .

Proof The order preserving property is a straightforward consequence of the definition. To prove
property(ii) observe that

Ht
s

(
Hs
t (φ)

)
(x) = sup

y
inf
x′

(
φ(x′) + ct,s(x′, y)− ct,s(x, y)

)
,

which gives the equalityHt
s

(
Hs
t (φ)

)
= φc

t,s
− ct,s− : in particular, choosingx′ = x we get the claim

(the proof of the other equation is similar). For the last property assumet < s (the other case is
similar) and observe that by(i) we have

Hs
t ◦Ht

s︸ ︷︷ ︸
≥Id

◦Hs
t ≥ Hs

t

and
Hs
t ◦Ht

s ◦Hs
t︸ ︷︷ ︸

≤Id

≤ Hs
t .

�

The fact that Kantorovich potentials evolve according to the Hopf-Lax formula is expressed in
the following theorem. We remark that in the statement belowone must deal at the same time with
c-concave andc-convex potentials.

Theorem 2.18 (Interpolation of potentials) Let(X, d) be a Polish geodesic space,(µt) ⊂ P2(X)
a constant speed geodesic in(P2(X),W2) andϕ a c = c0,1-convexKantorovich potential for the
couple(µ0, µ1). Then the functionϕs := Hs

0(ϕ) is a ct,s-concaveKantorovich potential for the
couple(µs, µt), for anyt < s.

Similarly, if φ is a c-concaveKantorovich potential for(µ1, µ0), thenHt
1(φ) is a ct,s-convex

Kantorovich potential for(µt, µs) for anyt < s.

Observe that that fort = 0, s = 1 the theorem reduces to the fact thatH1
0 (ϕ) = (−ϕ)c+ is a c-

concave Kantorovich potential forµ1, µ0, a fact that was already clear by the symmetry of the dual
problem discussed in Section 1.3.

Proof
We will prove only the first part of the statement, as the second is analogous.
Step 1. We prove thatHs

0 (ψ) is act,s-concave function for anyt < s and anyψ : X → R∪ {+∞}.
This is a consequence of the equality

c0,s(x, y) = inf
z∈X

c0,t(z, y) + ct,s(x, z),
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from which it follows

Hs
0(ψ)(x) = inf

y∈X
c0,s(x, y) + ψ(y) = inf

z∈X
ct,s(x, z) +

(
inf
y∈X

c0,t(z, y) + ψ(y)

)
.

Step 2. Letµ ∈ P(Geod(X)) be a measure associated to the geodesic(µt) via equation (2.7). We
claim that for everyγ ∈ supp(µ) ands ∈ (0, 1] it holds

ϕs(γs) = ϕ(γ0) + c0,s(γ0, γs). (2.13)

Indeed the inequality≤ comes directly from the definition by takingx = γ0. To prove the opposite
one, observe that since(e0, e1)#µ ∈ Opt(µ0, µ1) andϕ is a c-convex Kantorovich potential for
µ0, µ1, we have from Theorem 1.13 that

ϕc−(γ1) = −c0,1(γ0, γ1)− ϕ(γ0),

thus

ϕ(x) = sup
y∈X

−c0,1(x, y)− ϕc−(y) ≥ −c0,1(x, γ1)− ϕc−(γ1)

= −c0,1(x, γ1) + c0,1(γ0, γ1) + ϕ(γ0).

Plugging this inequality in the definition ofϕs we get

ϕs(γs) = inf
x∈X

c0,s(x, γs) + ϕ(x)

≥ inf
x∈X

c0,s(x, γs)− c0,1(x, γ1) + c0,1(γ0, γ1) + ϕ(γ0)

≥ −cs,1(γs, γ1) + c0,1(γ0, γ1)− ϕ(γ0) = c0,s(γ0, γs) + ϕ(γ0).

Step 3. We know that an optimal transport plan fromµt toµs is given by(et, es)#µ, thus to conclude
the proof we need to show that

ϕs(γs) + (ϕs)
ct,s+ (γt) = ct,s(γt, γs), ∀γ ∈ supp(µ),

where(ϕs)
ct,s+ is thect,s-conjugate of thect,s-concave functionϕs. The inequality≤ follows from

the definition ofct,s-conjugate. To prove opposite inequality start observing that

ϕs(y) = inf
x∈X

c0,s(x, y) + ϕ(y) ≤ c0,s(γ0, y) + ϕ(γ0)

≤ c0,t(γ0, γt) + ct,s(γt, y) + ϕ(γ0),

and conclude by

ϕ
ct,s+
s (γt) = inf

y∈X
ct,s(γt, y)− ϕs(y) ≥ −c0,t(γ0, γt)− ϕ(γ0)

= −c0,s(γ0, γs) + ct,s(γt, γs)− ϕ(γ0)

(2.13)
= ct,s(γt, γs)− ϕs(γs).

�
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We conclude the section studying some curvature propertiesof (P2(X),W2). We will focus
on spacespositively/non positively curvedin the sense of Alexandrov, which are the non smooth
analogous of Riemannian manifolds having sectional curvature bounded from below/above by 0.

Definition 2.19 (PC and NPC spaces)A geodesic space(X, d) is said to be positively curved (PC)
in the sense of Alexandrov if for every constant speed geodesic γ : [0, 1] → X and everyz ∈ X the
following concavity inequality holds:

d2
(
γt, z

)
≥ (1− t)d2

(
γ0, z

)
+ td2

(
γ1, z

)
− t(1− t)d2

(
γ0, γ1

)
. (2.14)

Similarly,X is said to be non positively curved (NPC) in the sense of Alexandrov if the converse
inequality always holds.

Observe that in an Hilbert space equality holds in (2.14).
The result here is that(P2(X),W2) is PC if (X, d) is, while in general it is not NPC ifX is.

Theorem 2.20 ((P2(X),W2) is PC if (X, d) is) Assume that(X, d) is positively curved. Then
(P2(X),W2) is positively curved as well.

Proof Let (µt) be a constant speed geodesic inP2(X) andν ∈ P2(X). Letµ ∈ P2(Geod(X))
be a measure such that

µt = (et)#µ, ∀t ∈ [0, 1],

as in Theorem 2.10. Fixt0 ∈ [0, 1] and chooseγ ∈ Opt(µt0 , ν). Using a gluing argument (we omit
the details) it is possible to show the existence a measureα ∈ P(Geod(X)×X) such that

π
Geod(X)
# α = µ,

(
et0 , π

X
)
#
α = γ,

(2.15)

whereπGeod(X)(γ, x) := γ ∈ Geod(X), πX(γ, x) := x ∈ X andet0(γ, x) := γt0 ∈ X . Thenα
satisfies also

(
e0, π

X
)
#
α ∈ Adm(µ0, ν)

(
e1, π

X
)
#
α ∈ Adm(µ1, ν),

(2.16)

and therefore it holds

W 2
2 (µt0 , ν) =

∫
d2(et0(γ), x)dα(γ, x)

(2.14)
≥
∫
(1− t0)d

2
(
γ0, z

)
+ t0d

2
(
γ1, z

)
− t0(1− t0)d

2
(
γ0, γ1

)
dα(γ, x)

(2.15)
= (1− t0)

∫
d2
(
γ0, z

)
dα(γ, x) + t0

∫
d2
(
γ1, z

)
dα(γ, x)

− t0(1 − t0)

∫
d2
(
γ0, γ1

)
dµ(γ)

(2.16)
≥ (1− t0)W

2
2 (µ0, ν) + t0W

2
2 (µ1, ν)− t0(1− t0)W

2
2 (µ0, µ1),

and by the arbitrariness oft0 we conclude. �
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Example 2.21 ((P2(X),W2) may be not NPC if (X, d) is) Let X = R
2 with the Euclidean dis-

tance. We will prove that(P2(R
2),W2) is not NPC. Define

µ0 :=
1

2
(δ(1,1) + δ(5,3)), µ1 :=

1

2
(δ(−1,1) + δ(−5,3)), ν :=

1

2
(δ(0,0) + δ(0,−4)),

then explicit computations show thatW 2
2 (µ0, µ1) = 40 andW 2

2 (µ0, ν) = 30 = W 2
2 (µ1, ν). The

unique constant speed geodesic(µt) fromµ0 to µ1 is given by

µt =
1

2

(
δ(1−6t,1+2t) + δ(5−6t,3−2t)

)
,

and simple computations show that

40 =W 2
2 (µ1/2, ν) >

30

2
+

30

2
− 40

4
.

�

2.3 X Riemannian manifold

In this sectionX will always be a compact, smooth Riemannian manifoldM without boundary,
endowed with the Riemannian distanced.

We study two aspects: the first one is the analysis of some important consequences of Theorem
2.18 about the structure of geodesics inP2(M), the second one is the introduction of the so called
weak Riemannian structureof (P2(M),W2).

Notice that sinceM is compact,P2(M) = P(M). Yet, we stick to the notationP2(M)
because all the statements we make in this section are true also for non compact manifolds (although,
for simplicity, we prove them only in the compact case).

2.3.1 Regularity of interpolated potentials and consequences

We start observing how Theorem 2.10 specializes to the case of Riemannian manifolds:

Corollary 2.22 (Geodesics in(P2(M),W2)) Let (µt) ⊂ P2(M). Then the following two things
are equivalent:

i) (µt) is a geodesic in(P2(M),W2),

ii) there exists a planγ ∈ P(TM) (TM being the tangent bundle ofM ) such that
∫

|v|2dγ(x, v) =W 2
2 (µ0, µ1),

(
Exp(t)

)
#
γ = µt,

(2.17)

Exp(t) : TM →M being defined by(x, v) 7→ expx(tv).

Also, for anyµ, ν ∈ P2(M) such thatµ is a regular measure (Definition 1.32), the geodesic con-
nectingµ to ν is unique.

Notice that we cannot substitute the first equation in (2.17)with (πM , exp)#γ ∈ Opt(µ0, µ1), be-
cause this latter condition is strictly weaker (it may be that the curvet 7→ expx(tv) is not a globally
minimizing geodesic fromx to expx(v) for some(x, v) ∈ suppγ).
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Proof The implication(i) ⇒ (ii) follows directly from Theorem 2.10 by taking into account the
fact thatt 7→ γt is a constant speed geodesic onM implies that for some(x, v ∈ TM) it holds
γt = expx(tv) and in this cased(γ0, γ1) = |v|.

For the converse implication, just observe that from the second equation in (2.17) we have

W 2
2 (µt, µs) ≤

∫
d2
(
expx(tv), expx(sv)

)
dγ(x, v) ≤ (t−s)2

∫
|v|2dγ(x, v) = (t−s)2W 2

2 (µ0, µ1),

having used the first equation in (2.17) in the last step.
To prove the last claim just recall that by Remark 1.35 we knowthat forµ-a.e. x there exists

a unique geodesic connectingx to T (x), T being the optimal transport map. Hence the conclusion
follows from (ii) of Theorem 2.10. �

Now we discuss the regularity properties of Kantorovich potentials which follows from Theorem
2.18.

Corollary 2.23 (Regularity properties of the interpolatedpotentials) Let ψ be a c−convex po-
tential for (µ0, µ1) and letϕ := H1

0 (ψ). Defineψt := Ht
0(ψ), ϕt := Ht

1(ϕ) and choose a geodesic
(µt) fromµ0 to µ1. Then for everyt ∈ (0, 1) it holds:

i) ψt ≥ ϕt and both the functions are real valued,

ii) ψt = ϕt on supp(µt),

iii) ψt andϕt are differentiable in the support ofµt and on this set their gradients coincide.

Proof For (i) we have

ϕt = Ht
1(ϕ) = (Ht

1 ◦H1
0 )(ψ) = (Ht

1 ◦H1
t︸ ︷︷ ︸

≤Id

◦Ht
0)ψ ≤ Ht

0(ψ) = ψt.

Now observe that by definition,ψt(x) < +∞ andϕt(x) > −∞ for everyx ∈M , thus it holds

+∞ > ψt(x) ≥ ϕt(x) > −∞, ∀x ∈M.

To prove(ii), let µ be the unique plan associated to the geodesic(µt) via (2.7) (recall Proposi-
tion 2.16 for uniqueness) and pickγ ∈ supp(µ). Recall that it holds

ψt(γt) = c0,t(γ0, γt) + ψ(γ0),

ϕt(γt) = ct,1(γt, γ1) + ϕ(γ1).

Thus fromϕ(γ1) = c0,1(γ0, γ1) + ψ(γ0) we get thatψt(γt) = ϕt(γt). Sinceµt = (et)#µ, the
compactness ofM givessupp(µt) = {γt}γ∈supp(µ), so that(ii) follows.

Now we turn to(iii). With the same choice oft 7→ γt as above, recall that it holds

ψt(γt) = c0,t(γ0, γt) + ψ(γ0)

ψt(x) ≤ c0,t(γ0, x) + ψ(γ0), ∀x ∈M,

and that the functionx 7→ c0,t(γ0, x)+ψ(γ0) is superdifferentiable atx = γt. Thus the functionx 7→
ψt is superdifferentiable atx = γt. Similarly,ϕt is subdifferentiable atγt. Choosev1 ∈ ∂+ψt(γt),
v2 ∈ ∂−ϕt(γt) and observe that

ψt(γt)+
〈
v1, exp

−1
γt (x)

〉
+o(D(x, γt)) ≥ ψt(x) ≥ ϕt(x) ≥ ϕt(γt)+

〈
v2, exp

−1
γt (x)

〉
+o(D(x, γt)),

which givesv1 = v2 and the thesis. �
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Corollary 2.24 (The intermediate transport maps are locally Lipschitz) Let (µt) ⊂ P2(M) a
constant speed geodesic in(P2(M),W2). Then for everyt ∈ (0, 1) ands ∈ [0, 1] there exists only
one optimal transport plan fromµt to µs, this transport plan is induced by a map, and this map is
locally Lipschitz.

Note: clearly in a compact setting being locally Lipschitz means being Lipschitz. We wrote ‘locally’
because this is the regularity of transport maps in the non compact situation.

Proof Fix t ∈ (0, 1) and, without loss of generality, lets = 1. The fact that the optimal plan from
is unique and induced by a map is known by Proposition 2.16. Now let v be the vector field defined
on supp(µt) by v(x) = ∇ϕt = ∇ψt (we are using part(iii) of the above corollary, with the same
notation). The fact thatψt is a c0,t-concave potential for the coupleµt, µ0 tells that the optimal

transport mapT satisfiesT (x) ∈ ∂c
0,t
+ φt(x) for µt-a.e.x. Using Theorem 1.33, the fact thatψt is

differentiable insupp(µt) and taking into account the scaling properties of the cost, we get thatT
may be written asT (x) = expx−v(x). Since the exponential map isC∞, the fact thatT is Lipschitz
will follow if we show that the vector fieldv on supp(µt) is, when read in charts, Lipschitz.

Thus, passing to local coordinates and recalling thatd2(·, y) is uniformly semiconcave, the sit-
uation is the following. We have a semiconcave functionf : Rd → R and a semiconvex function
g : Rd → R such thatf ≥ g onR

d, f = g on a certain closed setK and we have to prove that the
vector fieldu : K → R

d defined byu(x) = ∇f(x) = ∇g(x) is Lipschitz. Up to rescaling we may
assume thatf andg are such thatf − | · |2 is concave andg + | · |2 is convex. Then for everyx ∈ K
andy ∈ R

d we have

〈u(x), y − x〉 − |x− y|2 ≤ g(y)− g(x) ≤ f(y)− f(x) ≤ 〈u(x), y − x〉+ |y − x|2,

and thus for everyx ∈ K, y ∈ R
d it holds

|f(y)− f(x)− 〈u(x), y − x〉 | ≤ |x− y|2.

Pickingx1, x2 ∈ K andy ∈ R
d we have

f(x2)− f(x1)− 〈u(x1), x2 − x1〉 ≤ |x1 − x2|2,
f(x2 + y)− f(x2)− 〈u(x2), y〉 ≤ |y|2,

−f(x2 + y) + f(x1) + 〈u(x1), x2 + y − x1〉 ≤ |x2 + y − x1|2.

Adding up we get

〈u(x1)− u(x2), y〉 ≤ |x1 − x2|2 + |y|2 + |x2 + y − x1|2 ≤ 3(|x1 − x2|2 + |y|2).

Eventually, choosingy = (u(x1)− u(x2))/6 we obtain

|u(x1)− u(x2)|2 ≤ 36|x1 − x2|2.

�

It is worth stressing the fact that the regularity property ensured by the previous corollary holds
without any assumption on the measuresµ0, µ1.

Remark 2.25 (A (much) simpler proof in the Euclidean case)The fact that intermediate trans-
port maps are Lipschitz can be proved, in the Euclidean case,via the theory of monotone op-
erators. Indeed ifG : R

d → R
d is a - possibly multivalued - monotone map (i.e. satisfies

〈y1 − y2, x1 − x2〉 ≥ 0 for every x1, x2 ∈ R
d, yi ∈ G(xi), i = 1, 2), then the operator

42



((1− t)Id+ tG)−1 is single valued, Lipschitz, with Lipschitz constant bounded above by1/(1− t).
To prove this, pickx1, x2 ∈ R

d, y1 ∈ G(x1), y2 ∈ G(x2) and observe that

|(1 − t)x1 + ty1 − (1− t)x2 + ty2|2

= (1 − t)2|x1 − x2|2 + t2|y1 − y2|2 + 2t(1− t) 〈x1 − x2, y1 − y2〉 ≥ (1− t)2|x1 − x2|2,

which is our claim.
Now pick µ0, µ1 ∈ P2(R

d), an optimal planγ ∈ Opt(µ0, µ1) and consider the geodesict 7→
µt := ((1 − t)π1 + tπ2)#γ (recall Remark 2.13). From Theorem 1.26 we know that there exists a
convex functionϕ such thatsupp(γ) ⊂ ∂−ϕ. Also, we know that the unique optimal plan fromµ0

to µt is given by the formula (
π1, (1− t)π1 + tπ2

)
#
γ,

which is therefore supported in the graph of(1− t)Id+ t∂−ϕ. Since the subdifferential of a convex
function is a monotone operator, the thesis follows from theprevious claim.

Considering the case in whichµ1 is a delta andµ0 is not, we can easily see that the bound
(1 − t)−1 on the Lipschitz constant of the optimal transport map fromµt to µ0 is sharp. �

An important consequence of Corollary 2.24 is the followingproposition:

Proposition 2.26 (Geodesic convexity of the set of absolutely continuous measures)LetM be a
Riemannian manifold,(µt) ⊂ P2(M) a geodesic and assume thatµ0 is absolutely continuous w.r.t.
the volume measure (resp. gives 0 mass to Lipschitz hypersurfaces of codimension 1). Thenµt is
absolutely continuous w.r.t. the volume measure (resp. gives 0 mass to Lipschitz hypersurfaces of
codimension 1) for everyt < 1. In particular, the set of absolutely continuous measures is geodesi-
cally convex (and the same for measures giving 0 mass to Lipschitz hypersurfaces of codimension
1).

Proof Assume thatµ0 is absolutely continuous, letA ⊂ M be of 0 volume measure,t ∈ (0, 1)
and letTt be the optimal transport map fromµt to µ0. Then for every Borel setA ⊂ M it holds
T−1
t (Tt(A)) ⊃ A and thus

µt(A) ≤ µt(T
−1
t (Tt(A))) = µ0(Tt(A)).

The claims follow from the fact thatTt is locally Lipschitz. �

Remark 2.27 (The set of regular measures isnot geodesically convex)It is natural to ask
whether the same conclusion of the previous proposition holds for the set of regular measures
(Definitions 1.25 and 1.32). The answer isnot: there are examples of regular measuresµ0, µ1 in
P2(R

2) such that the middle point of the geodesic connecting them isnot regular. �

2.3.2 The weak Riemannian structure of(P2(M),W2)

In order to introduce the weak differentiable structure of(P2(X),W2), we start with some heuristic
considerations. LetX = R

d and(µt) be a constant speed geodesic onP2(R
d) induced by some

optimal mapT , i.e.:
µt =

(
(1− t)Id+ tT

)
#
µ0.

Then a simple calculation shows that(µt) satisfies the continuity equation

d

dt
µt +∇ · (vtµt) = 0,
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with vt := (T − Id) ◦ ((1 − t)Id + tT )−1 for everyt, in the sense of distributions. Indeed for
φ ∈ C∞

c (Rd) it holds

d

dt

∫
φdµt =

d

dt

∫
φ
(
(1−t)Id+tT

)
dµ0 =

∫
〈∇φ

(
(1−t)Id+tT

)
, T−Id〉 dµ0 =

∫
〈∇φ, vt〉dµt.

Now, the continuity equation describes the link between themotion of the continuumµt and the
instantaneous velocityvt : Rd → R

d of every “atom” ofµt. It is therefore natural to think at the
vector fieldvt as the infinitesimal variation of the continuumµt.

From this perspective, one might expect that the set of “smooth” curves onP2(R
d) (and more

generally onP2(M)) is somehow linked to the set of solutions of the continuity equation. This is
actually the case, as we are going to discuss now.

In order to state the rigorous result, we need to recall the definition of absolutely continuous curve
on a metric space.

Definition 2.28 (Absolutely continuous curve)Let (Y, d̃) be a metric space and let[0, 1] ∋ t 7→
yt ∈ Y be a curve. Then(yt) is said absolutely continuous if there exists a functionf ∈ L1(0, 1)
such that

d̃(yt, ys) ≤
∫ s

t

f(r)dr, ∀t < s ∈ [0, 1]. (2.18)

We recall that if(yt) is absolutely continuous, then for a.e.t the metric derivative|ẏt| exists,
given by

|ẏt| := lim
h→0

d̃(yt+h, yt)

|h| , (2.19)

and that|ẏt| ∈ L1(0, 1) and is the smallestL1 function (up to negligible sets) for which inequality
(2.18) is satisfied (see e.g. Theorem 1.1.2 of [6] for the simple proof).

The link between absolutely continuous curves inP2(M) and the continuity equation is given
by the following theorem:

Theorem 2.29 (Characterization of absolutely continuous curves in (P2(M),W2)) LetM be a
smooth complete Riemannian manifold without boundary. Then the following holds.
(A) For every absolutely continuous curve(µt) ⊂ P2(M) there exists a Borel family of vector fields
vt onM such that‖vt‖L2(µt) ≤ |µ̇t| for a.e.t and the continuity equation

d

dt
µt +∇ · (vtµt) = 0, (2.20)

holds in the sense of distributions.
(B) If (µt, vt) satisfies the continuity equation(2.20) in the sense of distributions and∫ 1

0
‖vt‖L2(µt)dt < ∞, then up to redefiningt 7→ µt on a negligible set of times,(µt) is an ab-

solutely continuous curve onP2(M) and|µ̇t| ≤ ‖vt‖L2(µt) for a.e.t ∈ [0, 1].

Note that we are not assuming any kind of regularity on theµt’s.
We postpone the (sketch of the) proof of this theorem to the end of the section, for the moment

we analyze its consequences in terms of the geometry ofP2(M).
The first important consequence is that the Wasserstein distance, which was defined via the

‘static’ optimal transport problem, can be recovered via the following ‘dynamic’ Riemannian-like
formula:
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Proposition 2.30 (Benamou-Brenier formula) Letµ0, µ1 ∈ P2(M). Then it holds

W2(µ
0, µ1) = inf

{∫ 1

0

‖vt‖µtdt

}
, (2.21)

where the infimum is taken among all weakly continuous distributional solutions of the continuity
equation(µt, vt) such thatµ0 = µ0 andµ1 = µ1.

Proof We start with inequality≤. Let (µt, vt) be a solution of the continuity equation. Then if∫ 1

0 ‖vt‖L2(µt) = +∞ there is nothing to prove. Otherwise we may apply partB of Theorem 2.29 to
get that(µt) is an absolutely continuous curve onP2(M). The conclusion follows from

W2(µ
0, µ1) ≤

∫ 1

0

|µ̇t|dt ≤
∫ 1

0

‖vt‖L2(µt)dt,

where in the last step we used part (B) of Theorem 2.29 again.
To prove the converse inequality it is enough to consider a constant speed geodesic(µt) connect-

ing µ0 to µ1 and apply part (A) of Theorem 2.29 to get the existence of vector fieldsvt such that the
continuity equation is satisfied and‖vt‖L2(µt) ≤ |µ̇t| = W2(µ

0, µ1) for a.e. t ∈ [0, 1]. Then we
have

W2(µ
0, µ1) ≥

∫ 1

0

‖vt‖L2(µt)dt,

as desired. �

This proposition strongly suggests that the scalar productin L2(µ) should be considered as the
metric tensor onP2(M) at µ. Now observe that given an absolutely continuous curve(µt) ⊂
P2(M) in general there is no unique choice of vector field(vt) such that the continuity equation
(2.20) is satisfied. Indeed, if (2.20) holds andwt is a Borel family of vector fields such that∇ ·
(wtµt) = 0 for a.e.t, then the continuity equation is satisfied also with the vector fields(vt +wt). It
is then natural to ask whether there is some natural selection principle to associate uniquely a family
of vector fields(vt) to a given absolutely continuous curve. There are two possible approaches:
Algebraic approach. The fact that for distributional solutions of the continuity equation the vector
field vt acts only on gradients of smooth functions suggests that thevt’s should be taken in the set of
gradients as well, or, more rigorously,vt should belong to

{
∇ϕ : ϕ ∈ C∞

c (M)
}L2(µt)

(2.22)

for a.e.t ∈ [0, 1].
Variational approach. The fact that the continuity equation is linear invt and theL2 norm is
strictly convex, implies that there exists a unique, up to negligible sets in time, family of vector fields
vt ∈ L2(µt), t ∈ [0, 1], with minimal norm for a.e.t, among the vector fields compatible with the
curve(µt) via the continuity equation. In other words, for any other vector field(ṽt) compatible with
the curve(µt) in the sense that (2.20) is satisfied, it holds‖ṽt‖L2(µt) ≥ ‖vt‖L2(µt) for a.e. t. It is
immediate to verify thatvt is of minimal norm if and only if it belongs to the set

{
v ∈ L2(µt) :

∫
〈v, w〉 dµt = 0, ∀w ∈ L2(µt) s.t. ∇ · (wµt) = 0

}
. (2.23)

The important point here is that the sets defined by (2.22) and(2.23) are the same, as it is easy to
check. Therefore it is natural to give the following
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Definition 2.31 (The tangent space)Letµ ∈ P2(M). Then the tangent spaceTanµ(P2(M)) at
P2(M) in µ is defined as

Tanµ(P2(M)) :=
{
∇ϕ : ϕ ∈ C∞

c (M)
}L2(µ)

=
{
v ∈ L2(µ) :

∫
〈v, w〉 dµ = 0, ∀w ∈ L2(µ) s.t. ∇ · (wµ) = 0

}

Thus we now have a definition of tangent space for everyµ ∈ P2(M) and this tangent space is natu-
rally endowed with a scalar product: the one ofL2(µ). This fact, Theorem 2.29 and Proposition 2.30
are the bases of the so-called weak Riemannian structure of(P2(M),W2).

We now state, without proof, some other properties of(P2(M),W2) which resemble those of a
Riemannian manifold. For simplicity, we will deal with the caseM = R

d only and we will assume
that the measures we are dealing with are regular (Definition1.25), but analogous statements hold
for general manifolds and general measures.

In the next three propositions(µt) is an absolutely continuous curve inP2(R
d) such thatµt is

regular for everyt. Also (vt) is the unique, up to a negligible set of times, family of vector fields
such that the continuity equation holds andvt ∈ Tanµt(P2(R

d)) for a.e.t.

Proposition 2.32 (vt can be recovered by infinitesimal displacement)Let(µt) and(vt) as above.
Also, letT st be the optimal transport map fromµt toµs (which exists and is unique by Theorem 1.26,
due to our assumptions onµt). Then for a.e.t ∈ [0, 1] it holds

vt = lim
s→t

T st − Id

s− t
,

the limit being understood inL2(µt).

Proposition 2.33 (“Displacement tangency”)Let (µt) and(vt) as above. Then for a.e.t ∈ [0, 1]
it holds

lim
h→0

W2

(
µt+h, (Id+ hvt)#µt

)

h
= 0. (2.24)

Proposition 2.34 (Derivative of the squared distance)Let (µt) and (vt) as above andν ∈
P2(R

d). Then for a.e.t ∈ [0, 1] it holds

d

dt
W 2

2 (µt, ν) = −2

∫
〈vt, Tt − Id〉 dµt,

whereTt is the unique optimal transport map fromµt to ν (which exists and is unique by Theo-
rem 1.26, due to our assumptions onµt).

We conclude the section with a sketch of the proof of Theorem 2.29.

Sketch of the Proof of Theorem2.29
Reduction to the Euclidean caseSuppose we already know the result for the caseR

d and we
want to prove it for a compact and smooth manifoldM . Use the Nash embedding theorem to get
the existence of a smooth mapi : M → R

D whose differential provides an isometry ofTxM
and its image for anyx ∈ M . Now notice that the inequality|i(x) − i(y)| ≤ d(x, y) valid for
anyx, y ∈ M ensures thatW2(i#µ, i#ν) ≤ W2(µ, ν) for anyµ, ν ∈ P2(M). Hence given an
absolutely continuous curve(µt) ⊂ P2(M), the curve(i#µt) ⊂ P2(R

D) is absolutely continuous
as well, and there exists a family vector fieldsvt such that (2.20) is fulfilled withi#µt in place ofµt

46



and‖vt‖L2(i#µt) ≤ | ˙i#µt| ≤ |µ̇t| for a.e.t. Testing the continuity equation with functions constant
on i(M) we get that for a.e.t the vector fieldvt is tangent toi(M) for i#µt-a.e. point. Thus thevt’s
are the (isometric) image of vector fields onM and part(A) is proved.

Viceversa, let(µt) ⊂ P2(M) be a curve and thevt’s vector fields inM such that∫ 1

0 ‖vt‖L2(µt)dt < ∞ and assume that they satisfy the continuity equation. Then the measures
µ̃t := i#µt and the vector fields̃vt := di(vt) satisfy the continuity equation onRD. Therefore(µ̃t)
is an absolutely continuous curve and it holds| ˙̃µt| ≤ ‖ṽt‖L2(µ̃t) = ‖vt‖L2(µt) for a.e.t. Notice that
i is bilipschitz and therefore(µt) is absolutely continuous as well. Hence to conclude it is sufficient
to show that| ˙̃µt| = |µ̇t| a.e. t. To prove this, one can notice that the fact thati is bilipschitz and
validity of

lim
r→0

sup
x,y∈M

d(x,y)<r

d(x, y)

|i(x)− i(y)| = 1,

give that

lim
r→0

sup
µ,ν∈P2(M)

W2(µ,ν)<r

W2(µ, ν)

W2(i#µ, i#ν)
= 1.

We omit the details.
Part A . Fix ϕ ∈ C∞

c (Rd) and observe that for everyγst ∈ Opt(µt, µs) it holds

∣∣∣∣
∫
ϕdµs −

∫
ϕdµt

∣∣∣∣ =
∣∣∣∣
∫
ϕ(y)dγst (x, y)−

∫
ϕ(x)dγst (x, y)

∣∣∣∣

=

∣∣∣∣
∫
ϕ(y)− ϕ(x)dγst (x, y)

∣∣∣∣

=

∣∣∣∣
∫ ∫ 1

0

〈∇ϕ(x + λ(y − x)), y − x〉 dλdγst (x, y)
∣∣∣∣

=

∣∣∣∣
∫

〈∇ϕ(x), y − x〉 dγst (x, y)
∣∣∣∣+Rem(ϕ, t, s)

≤
√∫

|∇ϕ(x)|2dγst (x, y)
√∫

|x− y|2dγst (x, y) + Rem(ϕ, t, s)

= ‖∇ϕ‖L2(µt)W2(µt, µs) + Rem(ϕ, t, s),

(2.25)

where the remainder termRem(ϕ, t, s) can be bounded by by

|Rem(ϕ, t, s)| ≤ Lip(∇ϕ)
2

∫
|x− y|2dγst (x, y) =

Lip(∇ϕ)
2

W 2
2 (µt, µs).

Thus (2.25) implies that the mapt 7→
∫
ϕdµt is absolutely continuous for anyϕ ∈ C∞

c (Rd).
Now letD ⊂ C∞

c (Rd) be a countable set such that{∇ϕ : ϕ ∈ D} is dense inTanµt(P2(R
d))

for everyt ∈ [0, 1] (the existence of suchD follows from the compactness of{µt}t∈[0,1] ⊂ P2(R
d),

we omit the details). The above arguments imply that there exists a setA ⊂ [0, 1] of full Lebesgue
measure such thatt 7→

∫
ϕdµt is differentiable att ∈ A for everyϕ ∈ D; we can also assume that

the metric derivative|µ̇t| exists for everyt ∈ A. Also, by (2.25) we know that fort0 ∈ A the linear
functionalLt0 : {∇ϕ : ϕ ∈ D} → R given by

∇ϕ 7→ Lt0(∇ϕ) :=
d

dt |t=t0
∫
ϕdµt
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satisfies
|Lt0(∇ϕ)| ≤ ‖∇ϕ‖L2(µt0 )

|µ̇t0 |,
and thus it can be uniquely extended to a linear and bounded functional onTanµt0

(P2(R
d)). By the

Riesz representation theorem there exists a vector fieldvt0 ∈ Tanµt0
(P2(R

d)) such that

d

dt |t=t0
∫
ϕdµt = Lt0(∇ϕ) =

∫
〈∇ϕ, vt0〉 dµt0 , ∀ϕ ∈ D, (2.26)

and whose norm inL2(µt0) is bounded above by the metric derivative|µ̇t| at t = t0. It remains to
prove that the continuity equation is satisfied in the sense of distributions. This is a consequence of
(2.26), see Theorem 8.3.1 of [6] for the technical details.
Part B. Up to a time reparametrization argument, we can assume that‖vt‖L2(µt) ≤ L for some
L ∈ R for a.e.t. Fix a Gaussian family of mollifiersρε and define

µεt := µt ∗ ρε,

vεt :=
(vtµt) ∗ ρε

µεt
.

It is clear that
d

dt
µεt +∇ · (vεtµεt ) = 0.

Moreover, from Jensen inequality applied to the map(X, z) 7→ z|X/z|2 = |X |2/z (X = vtµt) it
follows that

‖vεt ‖L2(µε
t )

≤ ‖vt‖L2(µt) ≤ L. (2.27)

This bound, together with the smoothness ofvεt , implies that there exists a unique locally Lipschitz
mapTε(·, ·) : [0, 1]× R

d → R
d, t ∈ [0, 1] satisfying

{
d

dt
T
ε(t, x) = vεt

(
T
ε(t, x)

)
∀x ∈ R

d, a.e. t ∈ [0, 1],

T
ε(t, x) = x, ∀x ∈ R

d, t ∈ [0, 1].

A simple computation shows that the curvet 7→ µ̃εt := T
ε(t, ·)#µε0 solves

d

dt
µ̃εt +∇ · (vεt µ̃εt ) = 0, (2.28)

which is the same equation solved by(µεt ). It is possible to show that this fact together with the
smoothness of thevεt ’s and the equalityµε0 = µ̃ε0 gives that̃µεt = µεt for everyt, ε (see Proposition
8.1.7 and Theorem 8.3.1 of [6] for a proof of this fact).

Conclude observing that

W 2
2 (µ

ε
t , µ

ε
s) ≤

∫
|Tε(t, x)−T

ε(s, x)|2dµε0(x) =
∫ ∣∣∣∣
∫ s

t

vεr
(
T
ε(r, x)

)∣∣∣∣
2

dµε0(x)

≤ |t− s|
∫ ∫ s

t

∣∣vεr
(
T
ε(r, x)

)∣∣2dr dµε0 = |t− s|
∫ s

t

∥∥vεr
(
T
ε(r, ·)

)∥∥2
L2(µε

0)
dr

≤ |t− s|
∫ s

t

‖vεr‖2L2(µε
r)
dr

(2.27)
≤ |t− s|2L,

and that, by the characterization of convergence (2.4),W2(µ
ε
t , µt) → 0 asε→ 0 for everyt ∈ [0, 1].

�
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2.4 Bibliographical notes

To call the distanceW2 the ‘Wasserstein distance’ is quite not fair: a much more appropriate would
be Kantorovich distance. Also, the spelling ‘Wasserstein’is questionable, as the original one was
‘Vasershtein’. Yet, this terminology is nowadays so commonthat it would be impossible to change
it.

The equivalence (2.4) has been proven by the authors and G. Savaré in [6]. In the same reference
Remark 2.8 has been first made. The fact that(P2(X),W2) is complete and separable as soon as
(X, d) is belongs to the folklore of the theory, a proof can be found in [6]. Proposition 2.4 was proved
by C. Villani in [79], Theorem 7.12.

The terminologydisplacement interpolationwas introduced by McCann [63] for probability mea-
sures inRd. Theorem 2.10 appears in this form here for the first time: in [58] the theorem was proved
in the compact case, in [80] (Theorem 7.21) this has been extended to locally compact structures and
much more general forms of interpolation. The main source ofdifficulty when dealing with general
Polish structure is the potential lack of tightness: the proof presented here is strongly inspired by the
work of S. Lisini [54].

Proposition 2.16 and Theorem 2.18 come from [80] (Corollary7.32 and Theorem 7.36 respec-
tively). Theorem 2.20 and the counterexample 2.21 are takenfrom [6] (Theorem 7.3.2 and Example
7.3.3 respectively).

The proof of Corollary 2.24 is taken from an argument by A. Fathi [35], the paper being inspired
by Bernand-Buffoni [13]. Remark 2.27 is due to N. Juillet [48].

The idea of looking at the transport problem as dynamical problem involving the continuity equa-
tion is due to J.D. Benamou and Y. Brenier ([12]), while the fact that(P2(R

d),W2) can be viewed as
a sort of infinite dimensional Riemannian manifold is an intuition by F. Otto [67]. Theorem 2.29 has
been proven in [6] (where also Propositions 2.32, 2.33 and 2.34 were proven) in the caseM = R

d,
the generalization to Riemannian manifolds comes from Nash’s embedding theorem.

3 Gradient flows

The aim of this Chapter is twofold: on one hand we give an overview of the theory of Gradient Flows
in a metric setting, on the other hand we discuss the important application of the abstract theory to
the case of geodesically convex functionals on the space(P2(R

d),W2).
Let us recall that for a smooth functionF : M → R on a Riemannian manifold, a gradient flow

(xt) starting fromx ∈M is a differentiable curve solving
{

x′t = −∇F (xt),
x0 = x.

(3.1)

Observe that there are two necessary ingredients in this definition: the functionalF and the metric
onM . The role of the functional is clear. The metric is involved to define∇F : it is used to identify
the cotangent vectordF with the tangent vector∇F .

3.1 Hilbertian theory of gradient flows

In this section we quickly recall the main results of the theory of Gradient flow forλ-convex func-
tionals on Hilbert spaces. This will deserve as guideline for the analysis that we will make later on
of the same problem in a purely metric setting.
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Let H be Hilbert andλ ∈ R. A λ-convex functionalF : H → R ∪ {+∞} is a functional
satisfying:

F
(
(1 − t)x+ ty

)
≤ (1− t)F (x) + tF (y)− λ

2
t(1− t)|x − y|2, ∀x, y ∈ H,

(this corresponds to∇2F ≥ λId for functionals onRd). We denote withD(F ) the domain ofF , i.e.
D(F ) := {x : F (x) <∞}.

The subdifferential∂−F (x) of F at a pointx ∈ D(F ) is the set ofv ∈ H such that

F (x) + 〈v, y − x〉+ λ

2
|x− y|2 ≤ F (y), ∀y ∈ H.

An immediate consequence of the definition is the fact that the subdifferential ofF satisfies the
monotonicity inequality:

〈v − w, x− y〉 ≥ λ|x− y|2 ∀v ∈ ∂F (x), w ∈ ∂−F (y).

We will denote by∇F (x) the element of minimal norm in∂F (x), which exists and is unique as soon
as∂−F (x) 6= ∅, because∂−F (x) is closed and convex.

For convex functions a natural generalization of Definition(3.1) of Gradient Flow is possible: we
say that(xt) is a Gradient Flow forF starting fromx ∈ H if it is a locally absolutely continuous
curve in(0,+∞) such that

{
x′t ∈ −∂−F (xt) for a.e.t > 0
lim
t↓0

xt = x. (3.2)

We now summarize without proof the main existence and uniqueness results in this context.

Theorem 3.1 (Gradient Flows in Hilbert spaces - (Brezis, Pazy) ) If F : H → R ∪ {+∞} is λ-
convex and lower semicontinuous, then the following statements hold.

(i) Existence and uniquenessfor all x̄ ∈ D(F ) (3.2)has a unique solution(xt).

(ii) Minimal selection and Regularizing effectsIt holds d+
dt xt = −∇F (xt) for everyt > 0

(that is, the right derivative ofxt always exists and realizes the element of minimal norm in
∂−F (xt)) and d+

dt F ◦ x(t) = −|∇F (x(t))|2 for everyt > 0. Also

F (xt) ≤ inf
v∈D(F )

{
F (v) +

1

2t
|v − x̄|2

}
,

|∇F (xt)|2 ≤ inf
v∈D(∂F )

{
|∇F (v)|2 + 1

t2
|v − x̄|2

}
.

(iii) Energy Dissipation Equality |x′t|, |∇F |(xt) ∈ L2
loc(0,+∞), F (xt) ∈ ACloc(0,+∞) and

the following Energy Dissipation Equality holds:

F (xt)− F (xs) =
1

2

∫ s

t

|∇F (xr)|2 dr +
1

2

∫ s

t

|x′r|2 dr 0 < t ≤ s <∞;

(iv) Evolution Variational Inequality and contraction (xt) is the unique solution of the system
of differential inequalities

1

2

d

dt
|x̃t − y|2 + F (xt) +

λ

2
|x̃t − y|2 ≤ F (y), ∀y ∈ H, a.e. t,
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among all locally absolutely continuous curves(x̃t) in (0,∞) converging tox as t → 0.
Furthermore, if(yt) is a solution of(3.2)starting fromy, it holds

|xt − yt| ≤ e−λt|x− y|.

(v) Asymptotic behavior If λ > 0 then there exists a unique minimumxmin ofF and it holds

F (xt)− F (xmin) ≤
(
F (x̄)− F (xmin)

)
e−2λt.

In particular, the pointwise energy inequality

F (x) ≥ F (xmin) +
λ

2
|x− xmin|2, ∀x ∈ H

gives

|xt − xmin| ≤
√

2(F (x)− F (xmin))

λ
e−λt.

3.2 The theory of Gradient Flows in a metric setting

Here we give an overview of the theory of Gradient Flows in a purely metric framework.

3.2.1 The framework

The first thing we need to understand is the meaning of Gradient Flow in a metric setting. Indeed, the
system (3.2) makes no sense in metric spaces, thus we need to reformulate it so that it has a metric
analogous. There are several ways to do this, below we summarize the most important ones.

For the purpose of the discussion below, we assume thatH = R
d and thatE : H → R is

λ-convex and of classC1.
Let us start observing that (3.2) may be written as:t 7→ xt is locally absolutely continuous in

(0,+∞), converges tox ast ↓ 0 and it holds

d

dt
E
(
xt
)
≤ −1

2
|∇E|2

(
xt
)
− 1

2
|x′t|2, a.e. t ≥ 0. (3.3)

Indeed, alonganyabsolutely continuous curveyt it holds

d

dt
E
(
yt
)
= 〈∇E(yt), y

′
t〉

≥ −|∇E|(yt)|y′t| (= if and only if − y′t is a positive multiple of∇E(yt)),

≥ −1

2
|∇E|2

(
yt
)
− 1

2
|y′t|2 (= if and only if |y′t| = |∇E(yt)|).

(3.4)

Thus in particular equation (3.3) may be written in the following integral form

E
(
xs
)
+

1

2

∫ s

t

|x′r|2dr +
1

2

∫ s

t

|∇E|2(xr)dr ≤ E(xt), a.e. t < s (3.5)

which we callEnergy Dissipation Inequality(EDI in the following).
Since the inequality (3.4) shows thatddtE

(
yt
)
< − 1

2 |∇E|2
(
yt
)
− 1

2 |y′t|2 never holds, the system
(3.2) may be also written in form ofEnergy Dissipation Equality(EDE in the following) as

E
(
xt
)
+

1

2

∫ s

t

|x′r|2dr +
1

2

∫ s

t

|∇E|2(xr)dr = E(xt), ∀0 ≤ t ≤ s. (3.6)
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Notice that the convexity ofE does not play any role in this formulation.
A completely different way to rewrite (3.2) comes from observing that if xt solves (3.2) and

y ∈ H is a generic point it holds

1

2

d

dt
|xt − y|2 = 〈xt − y, x′t〉 = 〈y − xt,∇E(xt)〉 ≤ E(y)− E(xt)−

λ

2
|xt − y|2,

where in the last inequality we used the fact thatE is λ-convex. Since the inequality

〈y − x, v〉 ≤ E(y)− E(x)− λ

2
|x− y|2, ∀y ∈ H,

characterizesthe elementsv of the subdifferential ofE atx, we have that an absolutely continuous
curvext solves (3.2) if and only if

1

2

d

dt
|xt − y|2 + 1

2
λ|xt − y|2 + E(xt) ≤ E(y), a.e. t ≥ 0, (3.7)

holds for everyy ∈ H . We will call this system of inequalities theEvolution Variational Inequality
(EVI).

Thus we got three different characterizations of Gradient Flows in Hilbert spaces: the EDI, the
EDE and the EVI. We now want to show that it is possible to formulate these equations also for
functionalsE defined on a metric space(X, d).

The object|x′t| appearing in EDI and EDE can be naturally interpreted as themetric speedof the
absolutely continuous curvext as defined in (2.19). The metric analogous of|∇E|(x) is theslopeof
E, defined as:

Definition 3.2 (Slope) LetE : X → R ∪ {+∞} andx ∈ X be such thatE(x) < ∞. Then the
slope|∇E|(x) ofE at x is:

|∇E|(x) := lim
y→x

(E(x) − E(y))+

d(x, y)
= max

{
lim
y→x

E(x)− E(y)

d(x, y)
, 0

}
.

The three definitions of Gradient Flows in a metric setting that we are going to use are:

Definition 3.3 (Energy Dissipation Inequality definition of GF - EDI) LetE : X → R ∪ {+∞}
and letx ∈ X be such thatE(x) <∞. We say that[0,∞) ∋ t 7→ xt ∈ X is a Gradient Flow in the
EDI sense starting atx provided it is a locally absolutely continuous curve,x0 = x and

E(xs) +
1

2

∫ s

0

|ẋr|2dr +
1

2

∫ s

0

|∇E|2(xr)dr ≤ E(x), ∀s ≥ 0,

E(xs) +
1

2

∫ s

t

|ẋr|2dr +
1

2

∫ s

t

|∇E|2(xr)dr ≤ E(xt), a.e. t > 0, ∀s ≥ t.

(3.8)

Definition 3.4 (Energy Dissipation Equality definition of GF - EDE) LetE : X → R ∪ {+∞}
and letx ∈ X be such thatE(x) <∞. We say that[0,∞) ∋ t 7→ xt ∈ X is a Gradient Flow in the
EDE sense starting atx provided it is a locally absolutely continuous curve,x0 = x and

E(xs) +
1

2

∫ s

t

|ẋr|2dr +
1

2

∫ s

t

|∇E|2(xr)dr = E(xt), ∀0 ≤ t ≤ s. (3.9)
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Definition 3.5 (Evolution Variation Inequality definition o f GF - EVI) LetE : X → R∪{+∞},
x ∈ {E <∞} andλ ∈ R. We say that(0,∞) ∋ t 7→ xt ∈ X is a Gradient Flow in the EVI sense
(with respect toλ) starting atx provided it is a locally absolutely continuous curve in(0,∞), xt → x
ast→ 0 and

E(xt) +
1

2

d

dt
d2(xt, y) +

λ

2
d2(xt, y) ≤ E(y), ∀y ∈ X, a.e. t > 0.

There are two basic and fundamental things that one needs understand when studying the problem
of Gradient Flows in a metric setting:

1) Although the formulations EDI, EDE and EVI are equivalentfor λ-convex functionals on
Hilbert spaces, they arenot equivalent in a metric setting. Shortly said, it holds

EV I ⇒ EDE ⇒ EDI

and typically none of the converse implication holds (see Examples 3.15 and 3.23 below). Here
the second implication is clear, for the proof of the first onesee Proposition 3.6 below.

2) Whatever definition of Gradient Flow in a metric setting weuse, the main problem is to show
existence. The main ingredient in almost all existence proofs is the Minimizing Movements
scheme, which we describe after Proposition 3.6.

Proposition 3.6 (EVI implies EDE) Let E : X → R ∪ {+∞} be a lower semicontinuous func-
tional,x ∈ X a given point,λ ∈ R and assume that(xt) is a Gradient Flow forE starting fromx in
the EVI sense w.r.t.λ. Then equation(3.9)holds.

Proof First we assume thatxt is locally Lipschitz. The claim will be proved if we show thatt 7→
E(xt) is locally Lipschitz and it holds

− d

dt
E(xt) =

1

2
|ẋt|2 +

1

2
|∇E|2(xt), a.e. t > 0.

Let us start observing that the triangle inequality implies

1

2

d

dt
d2(xt, y) ≥ −|ẋt|d(xt, y), ∀y ∈ X, a.e. t > 0,

thus plugging this bound into the EVI we get

−|ẋt|d(xt, y) +
λ

2
d2(xt, y) + E(xt) ≤ E(y), ∀y ∈ X, a.e. t > 0,

which implies

|∇E|(xt) = lim
y→xt

(
E(xt)− E(y)

)+

d(xt, y)
≤ |ẋt|, a.e. t > 0. (3.10)

Fix an interval[a, b] ⊂ (0,∞), let L be the Lipschitz constant of(xt) in [a, b] and observe that for
anyy ∈ X it holds

d

dt
d2(xt, y) ≥ −|ẋt|d(xt, y) ≥ −Ld(xt, y), a.e. t ∈ [a, b].

Plugging this bound in the EVI we get

−Ld(xt, y) +
λ

2
d2(xt, y) + E(xt) ≤ E(y), a.e. t ∈ [a, b],
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and by the lower semicontinuity oft 7→ E(xt) the inequality holds for everyt ∈ [a, b]. Taking
y = xs and then exchanging the roles ofxt, xs we deduce

∣∣E(xt)− E(xs)
∣∣ ≤ Ld(xt, xs)−

λ

2
d2(xt, xs) ≤ L|t− s|

(
L+

|λ|
2
L|t− s|

)
, ∀t, s ∈ [a, b],

thus the mapt 7→ E(xt) is locally Lipschitz. It is then obvious that it holds

− d

dt
E(xt) = lim

h→0

E(xt)− E(xt+h)

h
= lim
h→0

E(xt)− E(xt+h)

d(xt+h, xt)

d(xt+h, xt)

h

≤ |∇E|(xt)|ẋt| ≤
1

2
|∇E|2(xt) +

1

2
|ẋt|2, a.e. t.

Thus to conclude we need only to prove the opposite inequality. Integrate the EVI fromt to t+ h to
get

d2(xt+h, y)− d2(xt, y)

2
+

∫ t+h

t

E(xs) ds+

∫ t+h

t

λ

2
d2(xs, y)ds ≤ hE(y).

Let y = xt to obtain

d2(xt+h, xt)

2
≤
∫ t+h

t

E(xt)− E(xs) ds+
|λ|
6
L2h3 = h

∫ 1

0

E(xt)− E(xt+hr) dr +
|λ|
6
L2h3.

Now letA ⊂ (0,+∞) be the set of points of differentiability oft 7→ E(xt) and where|ẋt| exists,
chooset ∈ A∩(a, b), divide byh2 the above inequality, leth→ 0 and use the dominated convergence
theorem to get

1

2
|ẋt|2 ≤ lim

h→0

∫ 1

0

E(xt)− E(xt+hr)

h
dr = − d

dt
E(xt)

∫ 1

0

r dr = −1

2

d

dt
E(xt).

Recalling (3.10) we conclude with

− d

dt
E(xt) ≥ |ẋt|2 ≥ 1

2
|ẋt|2 +

1

2
|∇E|2(xt), a.e. t > 0.

Finally, we see how the local Lipschitz property of(xt) can be achieved. It is immediate to verify
that the curvet 7→ xt+h is a Gradient Flow in the EVI sense starting fromxh for all h > 0. We now
use the fact that the distance between curves satisfying theEVI is contractive up to an exponential
factor (see the last part of the proof of Theorem 3.25 for a sketch of the argument, and Corollary
4.3.3 of [6] for the rigorous proof). We have

d(xs, xs+h) ≤ e−λ(s−t)d(xt, xt+h), ∀s > t.

Dividing by h, lettingh ↓ 0 and callingB ⊂ (0,∞) the set where the metric derivative ofxt exists,
we obtain

|ẋs| ≤ |ẋt|e−λ(s−t), ∀s, t ∈ B, s > t.

This implies that the curve(xt) is locally Lipschitz in(0,+∞). �

Let us come back to the case of a convex and lower semicontinuous functionalF on an Hilbert
space. Pickx ∈ D(F ), fix τ > 0 and define the sequencen 7→ xτ(n) recursively by settingxτ(n) := x
and definingxτ(n+1) as a minimizer of

x 7→ F (x) +
|x− xτ(n)|2

2τ
.
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It is immediate to verify that a minimum exists and that it is unique, thus the sequencen 7→ xτ(n) is
well defined. The Euler-Lagrange equation ofxτ(n+1) is:

xτ(n+1) − xτ(n)

τ
∈ −∂−F (xτ(n+1)),

which is a time discretization of (3.2). It is then natural tointroduce the rescaled curvet 7→ xτt by

xτt := xτ([t/τ ]),

where[·] denotes the integer part, and to ask whether the curvest 7→ xτt converge in some sense to a
limit curve (xt) which solves (3.2) asτ ↓ 0. This is the case, and this procedure is actually the heart
of the proof of Theorem 3.1.

What is important for the discussion we are making now, is that the minimization procedure just
described can be naturally posed in a metric setting for a general functionalE : X → R∪ {+∞}: it
is sufficient to pickx ∈ {E <∞}, τ > 0, definexτ(0) := x and then recursively

xτ(n+1) ∈ argmin

{
x 7→ E(x) +

d2(x, xτ(n))

2τ

}
. (3.11)

We this give the following definition:

Definition 3.7 (Discrete solution) Let (X, d) be a metric space,E : X → R ∪ {+∞} lower semi-
continuous,x ∈ {E <∞} and τ > 0. A discrete solutionis a map[0,+∞) ∋ t 7→ xτt defined
by

xτt := xτ([t/τ ]),

wherexτ(0) := x andxτ(n+1) satisfies(3.11).

Clearly in a metric context it is part of the job the identification of suitable assumptions that
ensure that the minimization problem (3.11) admits at leasta minimum, so that discrete solutions
exist.

We now divide the discussion into three parts, to see under which conditions on the functionalE
and the metric spaceX it is possible to prove existence of Gradient Flows in the EDI, EDE and EVI
formulation.

3.2.2 General l.s.c. functionals and EDI

In this section we will make minimal assumptions on the functionalE and show how it is possible,
starting from them, to prove existence of Gradient Flows in the EDI sense.

Basically, there are two “independent” sets of assumptionsthat we need: those which ensure the
existence of discrete solutions, and those needed to pass tothe limit. To better highlight the structure
of the theory, we first introduce the hypotheses we need to guarantee the existence of discrete solution
and see which properties the discrete solutions have. Then,later on, we introduce the assumptions
needed to pass to the limit.

We will denote byD(E) ⊂ X the domain ofE, i.e.D(E) := {E <∞}
Assumption 3.8 (Hypothesis for existence of discrete solutions) (X, d) is a Polish space andE :
X → R ∪ {+∞} be a l.s.c. functional bounded from below. Also, we assume that there existsτ > 0
such that for every0 < τ < τ andx ∈ D(E) there exists at least a minimum of

x 7→ E(x) +
d2(x, x)

2τ
. (3.12)
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Thanks to our assumptions we know that discrete solutions exist for every starting pointx, for
τ sufficiently small. The big problem we have to face now is to show that the discrete solutions
satisfy a discretized version of the EDI suitable to pass to the limit. The key enabler to do this, is the
following result, due to de Giorgi.

Theorem 3.9 (Properties of the variational interpolation) LetX, E be satisfying the Assumption
3.8. Fixx ∈ X , and for any0 < τ < τ choosexτ among the minimizers of(3.12). Then the map

τ 7→ E(xτ ) +
d2(x,xτ)

2τ is locally Lipschitz in(0, τ) and it holds

d

dτ

(
E(xτ ) +

d2(x, xτ )

2τ

)
= −d

2(x, xτ )

2τ2
, a.e. τ ∈ (0, τ). (3.13)

Proof Observe that fromE(xτ0) +
d2(xτ0 ,x)

2τ0
≤ E(xτ1) +

d2(xτ1 ,x)

2τ0
we deduce

E(xτ0) +
d2(xτ0 , x)

2τ0
− E(xτ1) +

d2(xτ1 , x)

2τ1
≤
(

1

2τ0
− 1

2τ1

)
d2(xτ1 , x) =

τ1 − τ0
2τ0τ1

d2(xτ1 , x).

Arguing symmetrically we see that

E(xτ0) +
d2(xτ0 , x)

2τ0
− E(xτ1) +

d2(xτ1 , x)

2τ1
≥ τ1 − τ0

2τ0τ1
d2(xτ0 , x).

The last two inequalities show thatτ 7→ E(xτ ) +
d2(x,xτ)

2τ is locally Lipschitz and that equation
(3.13) holds. �

Lemma 3.10 With the same notation and assumptions as in the previous theorem,τ 7→ d(x, xτ ) is
non decreasing andτ 7→ E(xτ ) is non increasing. Also, it holds

|∇E|(xτ ) ≤
d(xτ , x)

τ
. (3.14)

Proof Pick0 < τ0 < τ1 < τ . From the minimality ofxτ0 andxτ1 we get

E(xτ0) +
d2(xτ0 , x)

2τ0
≤ E(xτ1) +

d2(xτ1 , x)

2τ0
,

E(xτ1) +
d2(xτ1 , x)

2τ1
≤ E(xτ0) +

d2(xτ0 , x)

2τ1
.

Adding up and using the fact that1τ0 −
1
τ1

≥ 0 we getd(x, xτ0) ≤ d(x, xτ1). The fact thatτ 7→ E(xτ )
is non increasing now follows from

E(xτ1) +
d2(xτ0 , x)

2τ1
≤ E(xτ1) +

d2(xτ1 , x)

2τ1
≤ E(xτ0) +

d2(xτ0 , x)

2τ1
.

For the second part of the statement, observe that from

E(xτ ) +
d2(xτ , x)

2τ
≤ E(y) +

d2(y, x)

2τ
, ∀y ∈ X

we get

E(xτ )− E(y)

d(xτ , y)
≤ d2(y, x)− d2(xτ , x)

2τd(xτ , y)
=

(
d(y, x)− d(xτ , x)

)(
d(xτ , x) + d(y, x, )

)

2τd(xτ , y)

≤ d(xτ , x, ) + d(y, x)

2τ
.

Taking the limsup asy → xτ we get the thesis. �
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By Theorem 3.9 and Lemma 3.10 it is natural to introduce the following variational interpo-
lation in the Minimizing Movements scheme (as opposed to the classical piecewise constant/affine
interpolations used in other contexts):

Definition 3.11 (Variational interpolation) LetX,E be satisfying Assumption 3.8,x ∈ D(E) and
0 < τ < τ . We define the map[0,∞) ∋ t 7→ xτt in the following way:

• xτ0 := x,

• xτ(n+1)τ is chosen among the minimizers of(3.12)with x replaced byxτnτ ,

• xτt with t ∈ (nτ, (n+1)τ) is chosen among the minimizers of(3.12)with x andτ replaced by
xτnτ andt− nτ respectively.

For (xτt ) defined in this way, we define thediscrete speedDspτ : [0,+∞) → [0,+∞) and the
Discrete slopeDslτ : [0,+∞) → [0,+∞) by:

Dspτt :=
d
(
xτnτ , x

τ
(n+1)τ

)

τ
, t ∈ (nτ, (n+ 1)τ),

Dslτt :=
d
(
xτt , x

τ
nτ

)

t− nτ
, t ∈ (nτ, (n+ 1)τ).

(3.15)

Although the objectDslτt does not look like a slope, we chose this name because from (3.14) we
know that|∇E|(xτt ) ≤ Dslτt and because in the limiting processDslτ will produce the slope term in
the EDI (see the proof of Theorem 3.14).

With this notation we have the following result:

Corollary 3.12 (EDE for the discrete solutions) Let X, E be satisfying Assumption 3.8,x ∈
D(E), 0 < τ < τ and (xτt ) defined via the variational interpolation as in Definition 3.11 above.
Then it holds

E(xτs ) +
1

2

∫ s

t

|Dspτr |2dr +
1

2

∫ s

t

|Dslτr |2dr = E(xτt ), (3.16)

for everyt = nτ , s = mτ , n < m ∈ N.

Proof It is just a restatement of equation (3.13) in terms of the notation given in (3.15). �

Thus, at the level of discrete solutions, it is possible to get a discrete form of the Energy Dissipa-
tion Equality under the quite general Assumptions 3.8. Now we want to pass to the limit asτ ↓ 0. In
order to do this, we need to add some compactness and regularity assumptions on the functional:

Assumption 3.13 (Coercivity and regularity assumptions)Assume thatE : X → R ∪ {+∞}
satisfies:

• E is bounded from below and its sublevels are boundedly compact, i.e. {E ≤ c} ∩ Br(x) is
compact for anyc ∈ R, r > 0 andx ∈ X ,

• the slope|∇E| : D(E) → [0,+∞] is lower semicontinuous,

• E has the following continuity property:

xn → x, sup
n
{|∇E|(xn), E(xn)} <∞ ⇒ E(xn) → E(x).

Under these assumptions we can prove the following result:

Theorem 3.14 (Gradient Flows in EDI formulation) Let (X, d) be a metric space and letE :
X → R∪{+∞} be satisfying the Assumptions 3.8 and 3.13. Also, letx ∈ D(E) and for0 < τ < τ
define the discrete solution via the variational interpolation as in Definition 3.11. Then it holds:
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• the set of curves{(xτt )}τ is relatively compact in the set of curves inX w.r.t. local uniform
convergence,

• any limit curve(xt) is a Gradient Flow in the EDI formulation (Definition 3.3).

Sketch of the Proof
Compactness.By Corollary 3.12 we have

d2(xτt , x) ≤
(∫ T

0

|Dspτr |dr
)2

≤ T

∫ T

0

|Dspτr |2dr ≤ 2T
(
E(x)− inf E

)
, ∀t ≤ T,

for anyT = nτ . Therefore for anyT > 0 the set{xτt }t≤T is uniformly bounded inτ . As this set is
also contained in{E ≤ E(x)}, it is relatively compact. The fact that there is relative compactness
w.r.t. local uniform convergence follows by an Ascoli-Arzelà-type argument based on the inequality

d2
(
xτt , x

τ
s

)
≤
(∫ s

t

|Dspτr |dr
)2

≤ 2(s− t)
(
E(x)− inf E

)
, ∀t = nτ, s = mτ, n < m ∈ N.

(3.17)
Passage to the limit.Let τn ↓ 0 be such that(xτnt ) converges to a limit curvext locally uniformly.
Then by standard arguments based on inequality (3.17) it is possible to check thatt 7→ xt is abso-
lutely continuous and satisfies

∫ s

t

|ẋr|2dr ≤ lim
n→∞

∫ s

t

|Dspτnr |2dr ∀0 ≤ t < s. (3.18)

By the lower semicontinuity of|∇E| and (3.14) we get

|∇E|(xt) ≤ lim
n→∞

|∇E|(xτnt ) ≤ lim
n→∞

Dslτnt , ∀t,

thus Fatou’s lemma ensures that for anyt < s it holds
∫ s

t

|∇E|2(xr)dr ≤
∫ s

t

lim
n→∞

|∇E|2(xτr )dr ≤ lim
n→∞

∫ s

t

|Dslτnr |2 dr ≤ 2T
(
E(x)− inf E

)
. (3.19)

Now passing to the limit in (3.16) written fort = 0 we get the first inequality in (3.8). Also, from
(3.19) we get that theL2 norm off(t) := limn→∞ |∇E|(xτnt ) on [0,∞) is finite. ThusA := {f <
∞} has full Lebesgue measure and for eacht ∈ A we can find a subsequenceτnk

↓ 0 such that
supk |∇E|(xτnk

t ) < ∞. Then the third assumption in 3.13 guarantees thatE(x
τnk
t ) → E(xt) and

the lower semicontinuity ofE thatE(xs) ≤ limk→∞ E(x
τnk
s ) for everys ≥ t. Thus passing to the

limit in (3.16) asτnk
↓ 0 and using (3.18) and (3.19) we get

E(xs) +
1

2

∫ s

t

|ẋr|2dr +
1

2

∫ s

t

|∇E|2(xr)dr ≤ E(xt), ∀t ∈ A, ∀s ≥ t.

�

We conclude with an example which shows why in general we cannot hope to have equality in the
EDI. Shortly said, the problem is that we don’t know whethert 7→ E(xt) is an absolutely continuous
map.

Example 3.15 Let X = [0, 1] with the Euclidean distance,C ⊂ X a Cantor-type set with null
Lebesgue measure andf : [0, 1] → [1,+∞] a continuous, integrable function such thatf(x) = +∞
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for anyx ∈ C, which is smooth on the complement ofC. Also, letg : [0, 1] → [0, 1] be a “Devil
staircase” built overC, i.e. a continuous, non decreasing function satisfyingg(0) = 0, g(1) = 1
which is constant in each of the connected components of the complement ofC. Define the energies
E, Ẽ : [0, 1] → R by

E(x) := −g(x)−
∫ x

0

f(y)dy.

Ẽ(x) := −
∫ x

0

f(y)dy.

It is immediate to verify thatE, Ẽ satisfy all the Assumptions 3.8, 3.13 (the choice off guarantees
that the slopes ofE, Ẽ are continuous). Now build a Gradient Flow starting from 0: with some work
it is possible to check that the Minimizing Movement scheme converges in both cases to absolutely
continuous curves(xt) and(x̃t) respectively satisfying

x′t = −|∇E|(xt), a.e. t

x̃′t = −|∇Ẽ|(x̃t), a.e. t.

Now, notice that|∇E|(x) = |∇Ẽ|(x) = f(x) for everyx ∈ [0, 1], therefore the fact thatf ≥ 1
is smooth on[0, 1] \ C gives that each of these two equations admit a unique solution. Therefore
- this is the key point of the example -(xt) and(x̃t) must coincide. In other words, the effect of
the functiong is not seen at the level of Gradient Flow. It is then immediateto verify that there is
Energy Dissipation Equality for the energỹE, but there is only the Energy Dissipation Inequality for
the energyE. �

3.2.3 The geodesically convex case: EDE and regularizing effects

Here we study gradient flows of so calledgeodesically convexfunctionals, which are the natural
metric generalization of convex functionals on linear spaces.

Definition 3.16 (Geodesic convexity)LetE : X → R ∪ {+∞} be a functional andλ ∈ R. We say
thatE is λ-geodesically convex provided for everyx, y ∈ X there exists a constant speed geodesic
γ : [0, 1] → X connectingx to y such that

E(γt) ≤ (1− t)E(x) + tE(y)− λ

2
t(1 − t)d2(x, y). (3.20)

In this section we will assume that:

Assumption 3.17 (Geodesic convexity hypothesis)(X, d) is a Polish geodesic space,E : X →
R ∪ {+∞} is lower semicontinuous,λ-geodesically convex for someλ ∈ R. Also, we assume that
the sublevels ofE are boundedly compact, i.e. the set{E ≤ c} ∩ Br(x) is compact for anyc ∈ R,
r > 0, x ∈ X .

What we want to prove is that forX, E satisfying these assumptions there is existence of Gradient
Flows in the formulation EDE (Definition 3.4).

Our first goal is to show that in this setting it is possible to recover the results of the previous
section. We start claiming that it holds:

|∇E|(x) = sup
y 6=x

(
E(x)− E(y)

d(x, y)
+
λ

2
d(x, y)

)+

, (3.21)
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so that thelim in the definition of the slope can be replaced by asup. Indeed, we know that

|∇E|(x) = lim
y→x

(
E(x)− E(y)

d(x, y)
+
λ

2
d(x, y)

)+

≤ sup
y 6=x

(
E(x) − E(y)

d(x, y)
+
λ

2
d(x, y)

)+

.

To prove the opposite inequality fixy 6= x and a constant speed geodesicγ connectingx to y for
which (3.20) holds. Then observe that

|∇E|(x) ≥ lim
t↓0

(
E(x) − E(γt)

d(x, γt)

)+

=

(
lim
t↓0

E(x)− E(γt)

d(x, γt)

)+

(3.20)
≥
(
lim
t↓0

(
E(x) − E(y)

d(x, y)
+
λ

2
(1− t)d(x, y)

))+

=

(
E(x) − E(y)

d(x, y)
+
λ

2
d(x, y)

)+

.

Using this representation formula we can show that all the assumptions 3.8 and 3.13 hold:

Proposition 3.18 Suppose that Assumption 3.17 holds. Then Assumptions 3.8 and 3.13 hold as well.

Sketch of the ProofFrom theλ-geodesic convexity and the lower semicontinuity assumption it is
possible to deduce (we omit the details) thatE has at most quadratic decay at infinity, i.e. there
existsx ∈ X , a, b > 0 such that

E(x) ≥ −a− bd(x, x) + λ−d2(x, x), ∀x ∈ X.

Therefore from the lower semicontinuity again and the bounded compactness of the sublevels ofE
we immediately get that the minimization problem (3.12) admits a solution ifτ < 1/λ−.

The lower semicontinuity of the slope is a direct consequence of (3.21) and of the lower semi-
continuity ofE. Thus, to conclude we need only to show that

xn → x, sup
n
{|∇E|(xn), E(xn)} <∞ ⇒ lim

n→∞
E(xn) ≤ E(x). (3.22)

From (3.21) withx, y replaced byxn, x respectively we get

E(x) ≥ E(xn)− |∇E|(xn)d(x, xn) +
λ

2
d2(x, xn),

and the conclusion follows by lettingn→ ∞. �

Thus Theorem 3.14 applies directly also to this case and we get existence of Gradient Flows in
the EDI formulation. To get existence in the stronger EDE formulation, we need the following result,
which may be thought as a sort of weak chain rule (observe thatthe validity of the proposition below
rules out behaviors like the one described in Example 3.15).

Proposition 3.19 LetE be aλ-geodesically convex and l.s.c. functional. Then for everyabsolutely
continuous curve(xt) ⊂ X such thatE(xt) <∞ for everyt, it holds

∣∣E(xs)− E(xt)
∣∣ ≤

∫ s

t

|ẋr||∇E(xr)|dr, ∀t < s. (3.23)

Proof We may assume that the right hand side of (3.23) is finite for any t, s ∈ [0, 1], and, by
a reparametrization argument, we may also assume that|ẋt| = 1 for a.e. t (in particular(xt) is
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1-Lipschitz), so thatt 7→ |∇E|(xt) is anL1 function. Notice that it is sufficient to prove that
t 7→ E(xt) is absolutely continuous, as then the inequality

lim
h↑0

E(xt+h)− E(xt)

h
≤ lim

h↑0

(E(xt)− E(xt+h))
+

|h|

≤ lim
h↑0

(E(xt)− E(xt+h))
+

d(xt, xt+h)
lim
h↑0

d(xt, xt+h)

|h| ≤ |∇E(xt)||ẋt|,

valid for anyt ∈ [0, 1] gives (3.23).
Define the functionsf, g : [0, 1] → R by

f(t) := E(xt),

g(t) := sup
s6=t

(f(t)− f(s))+

|s− t|

Let D be the diameter of the compact set{xt}t∈[0,1], use the fact that(xt) is 1-Lipschitz, formula
(3.21) and the trivial inequalitya+ ≤ (a+ b)+ + b− (valid for anya, b ∈ R) to get

g(t) ≤ sup
s6=t

(E(xt)− E(xs))
+

d(xs, xt)
≤ |∇E|(xt) +

λ−

2
D.

Therefore the thesis will be proved if we show that:

g ∈ L1 ⇒ |f(s)− f(t)| ≤
∫ s

t

g(r)dr ∀t < s. (3.24)

Fix M > 0 and definefM := min{f,M}. Now fix ε > 0, pick a smooth mollifierρε : R → R with
support in[−ε, ε] and definefMε , gMε : [ε, 1− ε] → R by

fMε (t) := fM ∗ ρε(t),

gMε (t) := sup
s6=t

(fMε (t)− fMε (s))+

|s− t| .

SincefMε is smooth andgMε ≥ (fMε )′ it holds

|fMε (s)− fMε (t)| ≤
∫ s

t

gMε (r)dr. (3.25)

From the trivial bound(
∫
h)+ ≤

∫
h+ we get

gMε (t) ≤ sup
s

∫
(fM (t− r) − fM (s− r))+ρε(r)dr

|s− t| ≤ sup
s

∫
(f(t− r) − f(s− r))+ρε(r)dr

|s− t|

= sup
s

∫
(f(t− r) − f(s− r))+

|(s− r)− (t− r)| ρε(r)dr ≤
∫
g(t− r)ρε(r)dr = g ∗ ρε(t).

(3.26)

Thus the family of functions{gMε }ε is dominated inL1(0, 1). From (3.25) and (3.26) it follows that
the family of functions{fMε } uniformly converge to some functioñfM on [0, 1] asε ↓ 0 for which
it holds

|f̃M (s)− f̃M (t)| ≤
∫ s

t

g(r)dr.
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We know thatfM = f̃M on some setA ⊂ [0, 1] such thatL1([0, 1] \ A) = 0, and we want to
prove that they actually coincide everywhere. Recall thatfM is l.s.c. andf̃M is continuous, hence
fM ≤ f̃M in [0, 1]. If by contradiction it holdsfM (t0) < c < C < f̃M (t0) for somet0, c, C, we
can findδ > 0 such thatf̃M (t) > C in t ∈ [t0−δ, t0+δ]. ThusfM (t) > C for t ∈ [t0−δ, t0+δ]∩A
and the contradiction comes from

∫ 1

0

g(t)dt ≥
∫

[t0−δ,t0+δ]∩A

g(t)dt ≥
∫

[t0−δ,t0+δ]∩A

C − c

|t− t0|
dt = +∞.

Thus we proved that ifg ∈ L1(0, 1) it holds

|fM (t)− fM (s)| ≤
∫ s

t

g(r)dr, ∀t < s ∈ [0, 1], M > 0.

LettingM → ∞ we prove (3.24) and hence the thesis. �

This proposition is the key ingredient to pass from existence of Gradient Flows in the EDI for-
mulation to the one in the EDE formulation:

Theorem 3.20 (Gradient Flows in the EDE formulation) LetX, E be satisfying Assumption 3.17
andx ∈ X be such thatE(x) <∞. Then all the results of Theorem 3.14 hold.

Also, any Gradient Flow in the EDI sense is also a Gradient Flow in the EDE sense (Definition
3.4).

Proof The first part of the statement follows directly from Proposition 3.18.
By Theorem 3.14 we know that the limit curve is absolutely continuous and satisfies

E(xs) +
1

2

∫ s

0

|ẋ|2rdr +
1

2

∫ s

0

|∇E|2(xr)dr ≤ E(x), ∀s ≥ 0. (3.27)

In particular, the functionst 7→ |ẋt| and t 7→ |∇E|(xt) belong toL2
loc(0,+∞). Now we use

Proposition 3.19: we know that for anys ≥ 0 it holds

∣∣E(x)− E(xs)
∣∣ ≤

∫ s

0

|ẋr||∇E|(xr)dr ≤
1

2

∫ s

0

|ẋr|2dr +
1

2

∫ s

0

|∇E|2(xr)dr. (3.28)

Thereforet 7→ E(xt) is locally absolutely continuous and it holds

E(xs) +
1

2

∫ s

0

|ẋr|2dr +
1

2

∫ s

0

|∇E|2(xr)dr = E(x), ∀s ≥ 0.

Subtracting from this last equation the same equality written fors = t we get the thesis. �

Remark 3.21 It is important to underline that the hypothesis ofλ-geodesic convexity is in general
of no help for what concerns the compactness of the sequence of discrete solutions. �

Theλ-geodesic convexity hypothesis, ensures various regularity results for the limit curve, which we
state without proof:

Proposition 3.22 LetX, E be satisfying Assumption 3.17 and let(xt) be any limit of a sequence of
discrete solutions. Then:
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i) the limit

|ẋ+t | := lim
h↓0

d(xt+h, xt)

h
,

exists for everyt > 0,

ii) the equation
d

dt+
E(xt) = −|∇E|2(xt) = −|ẋ+t |2 = −|ẋ+t ||∇E|(xt),

is satisfied at everyt > 0,

iii) the map t 7→ e−2λ−tE(xt) is convex, the mapt 7→ eλt|∇E|(xt) is non increasing, right
continuous and satisfies

t

2
|∇E|2(xt) ≤ e2λ

−t
(
E(x0)− Et(x0)

)
,

t|∇E|2(xt) ≤ (1 + 2λ+t)e−2λt
(
E(x0 − inf E

)
,

whereEt : X → R is defined as

Et(x) := inf
y
E(y) +

d2(x, y)

2t
,

iv) if λ > 0, thenE admits a unique minimumxmin and it holds

λ

2
d2(xt, xmin) ≤ E(xt)− E(xmin) ≤ e−2λt

(
E(x0)− E(xmin)

)
.

Observe that we didn’t state any result concerning the uniqueness (nor about contractivity) of
the curve(xt) satisfying the Energy Dissipation Equality (3.9). The reason is that if no further
assumptions are made on eitherX orE, in general uniqueness fails, as the following simple example
shows:

Example 3.23 (Lack of uniqueness)Let X := R
2 endowed with theL∞ norm,E : X → R be

defined byE(x1, x2) := x1 andx := (0, 0). Then it is immediate to verify that|∇E| ≡ 1 and that
any Lipschitz curvet 7→ xt = (x1t , x

2
t ) satisfying

x1t = −t, ∀t ≥ 0

|x2t
′| ≤ 1, a.e. t > 0,

satisfies also

E(xt) = −t,
|ẋt| = 1.

This implies that any such(xt) satisfies the Energy Dissipation Equality (3.9). �

3.2.4 The compatibility of Energy and distance: EVI and error estimates

As the last example of the previous section shows, in generalwe cannot hope to have uniqueness of
the limit curve(xt) obtained via the Minimizing Movements scheme for a genericλ-geodesically
convex functional. If we want to derive properties like uniqueness and contractivity of the flow, we
need to have some stronger relation between the Energy functionalE and the distanced onX : in
this section we will assume the following:
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Assumption 3.24 (Compatibility in Energy and distance) (X, d) is a Polish space.E : X →
R ∪ {+∞} is a lower semicontinuous functional and for anyx0, x1, y ∈ X , there exists a curve
t 7→ γ(t) such that

E(γt) ≤ (1− t)E(x0) + tE(x1)−
λ

2
t(1− t)d2(x0, x1),

d2(γt, y) ≤ (1− t)d2(x0, y) + td2(x1, y)− t(1− t)d2(x0, x1),
(3.29)

for everyt ∈ [0, 1].

Observe that there is no compactness assumption of the sublevels ofE. If X is an Hilbert space (and
more generally a NPC space - Definition 2.19) then the second inequality in (3.29) is satisfied by
geodesics. Henceλ-convex functionals are automatically compatible with themetric.

Following the same lines of the previous section, it is possible to show that this assumption im-
plies both Assumption 3.8 and, if the sublevels ofE are boundedly compact, Assumption 3.13, so that
Theorem 3.14 holds. Also it can be shown that formula (3.21) is true and thus that Proposition 3.19
holds also in this setting, so that Theorem 3.20 can be provedas well.

However, if Assumption 3.24 holds, it is better not to followthe general theory as developed
before, but to restart from scratch: indeed, in this situation much stronger statements hold, also at the
level of discrete solutions, which can be proved by a direct use of Assumption 3.24.

We collect the main results achievable in this setting in thefollowing theorem:

Theorem 3.25 (Gradient Flows for compatibleE and d: EVI) Assume thatX, E satisfy As-
sumption 3.24. Then the following hold.

• For everyx ∈ D(E) and 0 < τ < 1/λ− there exists a unique discrete solution(xτt ) as in
Definition 3.7.

• Let x ∈ D(E) and(xτt ) any family of discrete solutions starting from it. Then(xτt ) converge
locally uniformly to a limit curve(xt) asτ ↓ 0 (so that the limit curve is unique). Furthermore,
(xt) is the unique solution of the system of differential inequalities:

1

2

d

dt
d2(x̃t, y) +

λ

2
d2(x̃t, y) + E(x̃t) ≤ E(y), a.e. t ≥ 0, ∀y ∈ X, (3.30)

among all locally absolutely continuous curves(x̃t) converging tox as t ↓ 0. I.e. xt is a
Gradient Flow in the EVI formulation - see Definition 3.5.

• Letx, y ∈ D(E) and(xt), (yt) be the two Gradient Flows in the EVI formulation. Then there
is λ-exponential contraction of the distance, i.e.:

d2(xt, yt) ≤ e−λtd2(x, y). (3.31)

• Suppose thatλ ≥ 0, thatx ∈ D(E) and buildxτt , xt as above. Then the following a priori
error estimate holds:

sup
t≥0

d(xt, x
τ
t ) ≤ 8

√
τ(E(x)− E(xt)). (3.32)

Sketch of the ProofWe will make the following simplifying assumptions:E ≥ 0, λ ≥ 0 and
x ∈ D(E). Also we will prove just that the sequence of discrete solutionsn 7→ x

τ/2n

t converges to
a limit curve asn→ ∞ for any givenτ > 0.
Existence and uniqueness of the discrete solution.Pick x ∈ X . We have to prove that there
exists a unique minimizer of (3.12). LetI ≥ 0 be the infimum of (3.12). Let(xn) be a minimizing
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sequence for (3.12), fixn, m ∈ N and letγ : [0, 1] → X be a curve satisfying (3.29) forx0 := xn,
x1 := xm andy := x. Using the inequalities (3.29) att = 1/2 we get

I ≤ E(γ1/2) +
d2(γ1/2, x)

2τ

≤ 1

2

(
E(xn) +

d2(xn, x)

2τ
+ E(xm) +

d2(xm, x)

2τ

)
− 1 + λτ

8τ
d2(xn, xm).

Therefore

lim
n,m→∞

1 + λτ

8τ
d2(xn, xm) ≤ lim

n,m→∞

1

2

(
E(xn) +

d2(xn, x)

2τ
+ E(xm) +

d2(xm, x)

2τ

)
− I = 0,

and thus the sequence(xn) is a Cauchy sequence as soon as0 < τ < 1/λ−. This shows uniqueness,
existence follows by the l.s.c. ofE.
One step estimatesWe claim that the following discrete version of the EVI (3.30) holds: for any
x ∈ X ,

d2(xτ , y)− d2(x, y)

2τ
+
λ

2
d2(xτ , y) ≤ E(y)− E(xτ ), ∀y ∈ X, (3.33)

wherexτ is the minimizer of (3.12). Indeed, pick a curveγ satisfying (3.29) forx0 := xτ , x1 := y
andy := x and use the minimality ofxτ to get

E(xτ ) +
d2(x, xτ )

2τ
≤ E(γt) +

d2(x, γt)

2τ
≤ (1− t)E(xτ ) + tE(y)− λ

2
t(1− t)d2(xτ , y)

+
(1 − t)d2(x, xτ ) + td2(x, y)− t(1− t)d2(xτ , y)

2τ
.

Rearranging the terms, dropping the positive addendtd2(x, xτ ) and dividing byt > 0 we get

(1− t)d2(xτ , y)

2τ
− d2(x, y)

2τ
+
λ

2
(1 − t)d2(xτ , y) ≤ E(y)− E(xτ ),

so that lettingt ↓ 0 we get (3.33).
Now we pass to the discrete version of the error estimate, which will also give the full conver-

gence of the discrete solutions to the limit curve. Givenx, y ∈ D(E), and the associate discrete
solutionsxτt , yτt , we are going to bound the distanced(xτ/2τ , yττ ) in terms of the distanced(x, y).

Write two times the discrete EVI (3.33) forτ := τ/2 andy := y: first with x := x, then with

x := x
τ/2
τ/2 to get (we use the assumptionλ ≥ 0)

d2(x
τ/2
τ/2, y)− d2(x, y)

τ
≤ E(y)− E(x

τ/2
τ/2),

d2(x
τ/2
τ , y)− d2(x

τ/2
τ/2, y)

τ
≤ E(y)− E(xτ/2τ ).

Adding up these two inequalities and observing thatE(x
τ/2
τ ) ≤ E(x

τ/2
τ/2) we obtain

d2(x
τ/2
τ , y)− d2(x, y)

τ
≤ 2
(
E(y)− E(xτ/2τ )

)
.
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On the other hand, equation (3.33) withx := y andy := x
τ/2
τ reads as

d2(yττ , x
τ/2
τ )− d2(y, x

τ/2
τ )

τ
≤ 2
(
E(xτ/2τ )− E(yττ )

)
.

Adding up these last two inequalities we get

d2(yττ , x
τ/2
τ )− d2(x, y)

τ
≤ 2
(
E(y)− E(yττ )

)
. (3.34)

Discrete estimates.Pick t = nτ < mτ = s, write inequality (3.33) forx := xτiτ , i = n, . . . ,m− 1
and add everything up to get

d2(xτt , y)− d2(xτs , y)

2(s− t)
+

λτ

2(s− t)

m∑

i=n+1

d2(xτiτ , y) ≤ E(y)− τ

s− t

m∑

i=n+1

E(xτiτ ). (3.35)

Similarly, pick t = nτ , write inequality (3.34) forx := x
τ/2
iτ andy := yτiτ for i = 0, . . . , n− 1 and

add everything up to get

d2(x
τ/2
t , yτt )− d2(x, y)

τ
≤ 2
(
E(y)− E(yτt )

)
.

Now lety = x to get

d2(x
τ/2
t , xτt ) ≤ 2τ

(
E(x)− E(xτt )

)
≤ 2τE(x), (3.36)

having used the fact thatE ≥ 0.
Conclusion of passage to the limit.Puttingτ/2n instead ofτ in (3.36) we get

d2(x
τ/2n+1

t , x
τ/2n

t ) ≤ τ

2n−1
E(x),

therefore
d2(x

τ/2n

t , x
τ/2m

t ) ≤ τ(22−n − 22−m)E(x), ∀n < m ∈ N,

which tells thatn 7→ x
τ/2n

t is a Cauchy sequence for anyt ≥ 0. Also, choosingn = 0 and letting
m→ ∞ we get the error estimate (3.32).

We pass to the EVI. Lettingτ ↓ 0 in (3.35) it is immediate to verify that we get

d2(xt, y)− d2(xs, y)

2(s− t)
+

λ

2(s− t)

∫ s

t

d2(xr, y) ≤ E(y)− 1

s− t

∫ s

t

E(xr)dr,

which is precisely the EVI (3.30) written in integral form.
Uniqueness and contractivity. It remains to prove that the solution to the EVI is unique and the
contractivity (3.31). The heuristic argument is the following: pick (xt) and(yt) solutions of the EVI
starting fromx, y respectively. Choosey = yt in the EVI for (xt) to get

1

2

d

ds |s=td
2(xs, yt) +

λ

2
d2(xt, yt) + E(xt) ≤ E(yt).

Symmetrically we have

1

2

d

ds |s=td
2(xt, ys) +

λ

2
d2(xt, yt) + E(yt) ≤ E(xt).
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Adding up these two inequalities we get

d

dt
d2(xt, yt) ≤ −2λd2(xt, yt), a.e. t.

The rigorous proof follows this line and uses a doubling of variables argument á la Kruzkhov.
Uniqueness and contraction then follow by the Gronwall lemma. �

3.3 Applications to the Wasserstein case

The aim of this section is to apply the abstract theory developed in the previous one to the case of
functionals on(P2(R

d),W2). As we will see, various diffusion equations may be interpreted as
Gradient Flows of appropriate energy functionals w.r.t. tothe Wasserstein distance, and quantitive
analytic properties of the solutions can be derived by this interpretation.

Most of what we are going to discuss here is valid in the more general contexts of Riemannian
manifolds and Hilbert spaces, but the differences between these latter cases and the Euclidean one
are mainly technical, thus we keep the discussion at a level of Rd to avoid complications that would
just obscure the main ideas.

The secton is split in two subsections: in the first one we discuss the definition of subdifferential
of aλ-geodesicaly convex functional onP2(R

d), which is based on the interpretation ofP2(R
d) as

a sort of Riemannian manifold as discussed in Subsection 2.3.2. In the second one we discuss three
by now classical applications, for which the full power of the abstract theory can be used (i.e. we
will have Gradient Flows in the EVI formulation).

Before developing this program, we want to informally discuss a fundamental example.
Let us consider the Entropy functionalE : P2(R

d) → R ∪ {+∞} defined by

E(µ) :=





∫
ρ log(ρ)dLd, if µ = ρLd,

+∞ otherwise.

We claim that:the Gradient Flow of the Entropy in(P2(R
d),W2) produces a solution of the Heat

equation. This can be proved rigorously (see Subsection 3.3.2), but for the moment we want to keep
the discussion at the heuristic level.

By what discussed in the previous section, we know that the Minimizing Movements scheme
produces Gradient Flows. Let us apply the scheme to this setting. Fix an absolutely continuous
measureρ0 (here we will make no distinction between an absolutely continuous measure and its
density), fixτ > 0 and minimize

µ 7→ E(µ) +
W 2

2 (µ, ρ0)

2τ
. (3.37)

It is not hard to see that the minimum is attained at some absolutely continuous measureρτ (actually
the minimum is unique, but this has no importance). Our claimwill be “proved” if we show that for
anyϕ ∈ C∞

c (Rd) it holds ∫
ϕρτ −

∫
ϕρ0

τ
=

∫
∆ϕρτ + o(τ), (3.38)

because this identity tells us thatρτ is a first order approximation of the distributional solution of the
Heat equation starting fromρ0 and evaluated at timeτ .
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To prove (3.38), fixϕ ∈ C∞
c (Rd) and perturbρτ in the following way:

ρε := (Id+ ε∇ϕ)#ρτ .
The density ofρε can be explicitly expressed by

ρε(x+ ε∇ϕ(x)) = ρτ (x)

det(Id+ ε∇2ϕ(x))
.

Observe that it holds

E(ρε) =

∫
ρε log(ρε) =

∫
ρτ log

(
ρε ◦ (Id+ ε∇ϕ)

)
=

∫
ρτ log

(
ρτ

det(Id+ ε∇2ϕ)

)

= E(ρτ )−
∫
ρτ log

(
det(Id+ ε∇2ϕ)

)
= E(ρτ )− ε

∫
ρτ∆ϕ+ o(ε),

(3.39)

where we used the fact thatdet(Id+ εA) = 1 + εtr(A) + o(ε).
To evaluate the first variation of the distance squared, letT be the optimal transport map fromρτ

to ρ0, which exists because of Theorem 1.26, and observe that fromT#ρτ = ρ0, (Id+ ε∇ϕ)#ρτ =
ρε and inequality (2.1) we have

W 2
2 (ρ0, ρ

ε) ≤ ‖T − Id− ε∇ϕ‖2L2(ρτ )
,

therefore from the fact that equality holds atε = 0 we get

W 2
2 (ρ0, ρ

ε)−W 2
2 (ρ0, ρτ ) ≤ ‖T − Id− ε∇ϕ‖2L2(ρτ )

− ‖T − Id‖2L2(ρτ )

= −2ε

∫
〈T − Id,∇ϕ〉 ρτ + o(ε).

(3.40)

From the minimality ofρτ for the problem (3.37) we know that

E(ρε) +
W 2

2 (ρ
ε, ρ0)

2τ
≥ E(ρτ ) +

W 2
2 (ρτ , ρ0)

2τ
, ∀ε,

so that using (3.39) and (3.40), dividing byε, rearranging the terms and lettingε ↓ 0 andε ↑ 0 we
get following Euler-Lagrange equation forρτ :

∫
ρτ∆ϕ+

∫ 〈
T − Id

τ
,∇ϕ

〉
ρτ = 0. (3.41)

Now observe that fromT#ρτ = ρ0 we get
∫
ϕρτ −

∫
ϕρ0

τ
= − 1

τ

∫ (
ϕ(T (x))− ϕ(x)

)
ρτ (x)dx

= − 1

τ

∫∫ 1

0

〈∇ϕ((1 − t)x + tT (x)), T (x)− x〉 dt ρτ (x) dx

= − 1

τ

∫
〈∇ϕ(x), T (x) − x〉 ρτ (x) dx +Remτ

(3.41)
=

∫
∆ϕρτ +Remτ ,

where the remainder termRemτ is bounded by

|Remτ | ≤
Lip(∇ϕ)

τ

∫∫ 1

0

t|T (x)− x|2dt ρτ (x) dx =
Lip(∇ϕ)

2τ
W 2

2 (ρ0, ρτ ).

Since, heuristically speaking,W2(ρ0, ρτ ) has the same magnitude ofτ , we haveRemτ = o(τ) and
the “proof” is complete.
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3.3.1 Elements of subdifferential calculus in(P2(R
d),W2)

Recall that we introduced a weak Riemannian structure on thespace(P2(M),W2) in Subsec-
tion 2.3.2. Among others, this weak Riemannian structure of(P2(M),W2) allows the development
of a subdifferential calculus for geodesically convex functionals, in the same spirit (and with many
formal similarities) of the usual subdifferential calculus for convex functionals on an Hilbert space.

To keep the notation and the discussion simpler, we are goingto define the subdifferential of a
geodesically convex functional only for the caseP2(R

d) and for regular measures (Definition 1.25),
but everything can be done also on manifolds (or Hilbert spaces) and for generalµ ∈ P2(M).

Recall that for aλ-convex functionalF on an Hilbert spaceH , the subdifferential∂−F (x) at a
pointx is the set of vectorsv ∈ H such that

F (x) + 〈v, y − x〉+ λ

2
|x− y|2 ≤ F (y), ∀y ∈ H.

Definition 3.26 (Subdifferential in (P2(R
d),W2)) Let E : P2(R

d) → R ∪ {+∞} be a λ-
geodesically convex and lower semicontinuous functional,andµ ∈ P2(R

d) be a regular measure
such thatE(µ) < ∞. The set∂WE(µ) ⊂ Tanµ(P2(R

d)) is the set of vector fieldsv ∈ L2(µ,Rd)
such that

E(µ) +

∫ 〈
T νµ − Id, v

〉
dµ+

λ

2
W 2

2 (µ, ν) ≤ E(ν), ∀ν ∈ P2(R
d),

where here and in the followingT νµ will denote the optimal transport map from the regular measure
µ to ν (whose existence and uniqueness is guaranteed by Theorem 1.26).

Observe that the subdifferential of aλ-geodesically convex functionalE has the following mono-
tonicity property (which closely resembles the analogous valid forλ-convex functionals on an Hilbert
space): ∫ 〈

v, T νµ − Id
〉
dµ+

∫
〈w, T µν − Id〉 dν ≤ −λW 2

2 (µ, ν), (3.42)

for every couple of regular measuresµ, ν in the domain ofE, andv ∈ ∂WE(µ), w ∈ ∂WE(ν). To
prove (3.42) just observe that from the definition of subdifferential we have

E(µ) +

∫ 〈
T νµ − Id, v

〉
dµ+

λ

2
W 2

2 (µ, ν) ≤ E(ν),

E(ν) +

∫
〈T µν − Id, w〉 dν + λ

2
W 2

2 (µ, ν) ≤ E(µ),

and add up these inequalities.
The definition of subdifferential leads naturally to the definition of Gradient Flow: it is sufficient

to transpose the definition given with the system (3.2).

Definition 3.27 (Subdifferential formulation of Gradient F low) Let E be aλ-geodesically con-
vex functional onP2(R

d) andµ ∈ P2(R
d). Then(µt) is a Gradient Flow forE starting fromµ

provided it is a locally absolutely continuous curve,µt → µ as t → 0 w.r.t. the distanceW2, µt is
regular for t > 0 and it holds

−vt ∈ ∂WE(µt), a.e. t,

where(vt) is the vector field uniquely identified by the curve(µt) via

d

dt
µt +∇ · (vtµt) = 0,

vt ∈ Tanµt(P2(R
d)) a.e. t,
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(recall Theorem 2.29 and Definition 2.31).

Thus we have a total of 4 different formulations of Gradient Flows ofλ-geodesically convex func-
tionals onP2(R

d) based respectively on the Energy Dissipation Inequality, the Energy Dissipation
Equality, the Evolution Variational Inequality and the notion of subdifferential.

The important point is that these 4 formulations areequivalentfor λ−geodesically convex func-
tionals:

Proposition 3.28 (Equivalence of the various formulation of GF in the Wasserstein space)Let
E be aλ-geodesically convex functional onP2(R

d) and (µt) a curve made of regular measures.
Then for(µt) the 4 definitions of Gradient Flow forE (EDI, EDE, EVI and the Subdifferential one)
are equivalent.

Sketch of the Proof
We prove only that the EVI formulation is equivalent to the Subdifferential one. Recall that by
Proposition 2.34 we know that

1

2

d

dt
W 2

2 (µt, ν) = −
∫ 〈

vt, T
ν
µt

− Id
〉
dµt, a.e.t

whereT νµt
is the optimal transport map fromµt to ν. Then we have

−vt ∈ ∂WE(µt), a.e. t,

m

E(µt) +

∫ 〈
−vt, T νµt

− Id
〉
dµt +

λ

2
W 2

2 (µt, ν) ≤ E(ν), ∀ν ∈ P2(R
d), a.e. t

m

E(µt) +
1

2

d

dt
W 2

2 (µt, ν) +
λ

2
W 2

2 (µt, ν) ≤ E(ν), ∀ν ∈ P2(R
d), a.e. t.

�

3.3.2 Three classical functionals

We now pass to the analysis of 3 by now classical examples of Gradient Flows in the Wasserstein
space. Recall that in terms of strength, the best theory to use is the one of Subsection 3.2.4, be-
cause the compatibility in Energy and distance ensures strong properties both at the level of discrete
solutions and for the limit curve obtained. Once we will havea Gradient Flow, the Subdifferential
formulation will let us understand which is the PDE associated to it.

Let us recall (Example 2.21) that the space(P2(R
d),W2) is not Non Positively Curved in the

sense of Alexandrov, this means that if we want to check whether a given functional is compatible
with the distance or not, we cannot use geodesics to interpolate between points (because we would
violate the second inequality in (3.29)). A priori the choice of the interpolating curves may depend
on the functional, but actually in what comes next we will always use the ones defined by:

Definition 3.29 (Interpolating curves) Letµ, ν0, ν1 ∈ P2(R
d) and assume thatµ is regular (Def-

inition 1.25). The interpolating curve(νt) fromν0 to ν1 with baseµ is defined as

νt := ((1 − t)T0 + tT1)#µ,

whereT0 andT1 are the optimal transport maps fromµ to ν0 andν1 respectively. Observe that if
µ = ν0, the interpolating curve reduces to the geodesic connecting it to ν1.
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Strictly speaking, in order to apply the theory of Section 3.2.4 we should define interpolating
curves having as base any measureµ ∈ P2(R

d), and not just regular ones. This is actually possible,
and the foregoing discussion can be applied to the more general definition, but we prefer to avoid
technicalities, and just focus on the main concepts.

For an interpolating curve as in the definition it holds:

W 2
2 (µ, νt) ≤ (1− t)W 2

2 (µ, ν0) + tW 2
2 (µ, ν1)− t(1− t)W 2

2 (ν0, ν1). (3.43)

Indeed the map(1 − t)T0 + tT1 is optimal fromµ to νt (because we know thatT0 andT1 are the
gradients of convex functionsϕ0, ϕ1 respectively, thus(1− t)T0 + tT1 is the gradient of the convex
function(1 − t)ϕ0 + tϕ1, and thus is optimal), and we know by inequality (2.1) thatW 2

2 (ν0, ν1) ≤
‖T0 − T1‖2L2(µ), thus it holds

W 2
2 (µ, νt) = ‖(1− t)T0 + tT1‖2L2(µ)

= (1− t)‖T0 − Id‖2L2(µ) + t‖T1 − Id‖2L2(µ) − t(1− t)‖T0 − T1‖2L2(µ)

≤ (1− t)W 2
2 (µ, ν0) + tW 2

2 (µ, ν1)− t(1− t)W 2
2 (ν0, ν1).

We now pass to the description of the three functionals we want to study.

Definition 3.30 (Potential energy) LetV : Rd → R∪{+∞} be lower semicontinuous and bounded
from below. The potential energy functionalV : P2(R

d) → R ∪ {+∞} associated toV is defined
by

V(µ) :=
∫
V dµ.

Definition 3.31 (Interaction energy) LetW : Rd → R ∪ {+∞} be lower semicontinuous, even
and bounded from below. The interaction energy functionalW : P2(R

d) → R ∪ {+∞} associated
toW is defined by

W(µ) :=
1

2

∫
W (x1 − x2)dµ× µ(x1, x2).

Observe that the definition makes sense also for not even functionsW ; however, replacing if neces-
sary the functionW (x) with (W (x) +W (−x))/2 we get an even function leaving the value of the
functional unchanged.

Definition 3.32 (Internal energy) Let u : [0,+∞) → R ∪ {+∞} be a convex function bounded
from below such thatu(0) = 0 and

lim
z→0

u(z)

zα
> −∞, for someα >

d

d+ 2
, (3.44)

let u′(∞) := limz→∞ u(z)/z. The internal energy functionalE associated tou is

E(µ) :=
∫
u(ρ)Ld + u′(∞)µs(Rd),

whereµ = ρLd + µs is the decomposition ofµ in absolutely continuous and singular parts w.r.t. the
Lebesgue measure.
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Condition (3.44) ensures that the negative part ofu(ρ) is integrable forµ ∈ P2(R
d), so thatE

is well defined (possibly+∞). Indeed from (3.44) we haveu−(z) ≤ az + bzα for someα < 1
satisfying2α/(1− α) > d, and it holds

∫
ρα(x)dLd(x) =

∫
ρα(x)(1 + |x|)2α(1 + |x|)−2αdLd(x)

≤
(∫

ρ(x)(1 + |x|)2dLd(x)
)α(∫

(1 + |x|)−2α
1−αLd(x)

)1−α

<∞.

Under appropriate assumptions onV ,W ande the above defined functionals are compatible with
the distanceW2. As said before we will use as interpolating curves those given in Definition 3.29.

Proposition 3.33 Letλ ≥ 0. The following holds.

i) The functionalV is λ-convex along interpolating curves in(P2(R
d),W2) if and only ifV is

λ-convex.

ii) The functionalW is λ-convex along interpolating curves(P2(R
d),W2) if W is λ-convex.

iii) The functionalE is convex along interpolating curves(P2(R
d),W2) providedu satisfies

z 7→ zdu(z−d) is convex and non increasing on(0,+∞). (3.45)

Proof Since the second inequality in (3.29) is satisfied by the interpolating curves that we are con-
sidering (inequality (3.43)) we need only to check the convexity of the functionals.

Let (νt) be an interpolating curve with base the regular measureµ, andT0, T1 the optimal trans-
port maps fromµ to ν0 andν1 respectively.

Theonly if part of(i) follows simply considering interpolation of deltas. For the if, observe that5

V(νt) =
∫
V (x)dνt(x) =

∫
V
(
(1− t)T0(x) + tT1(x)

)
dµ(x)

≤ (1− t)

∫
V (T0(x))dµ(x) + t

∫
V (T1(x))dµ(x) −

λ

2
t(1− t)

∫
|T0(x) − T1(x)|2dµ(x)

≤ (1− t)V(ν0) + tV(ν1)−
λ

2
t(1− t)W 2

2 (ν0, ν1).

(3.46)

For(ii) we start claiming thatW 2
2 (µ×µ, ν×ν) = 2W 2

2 (µ, ν) for anyµ, ν ∈ P2(R
d). To prove

this, it is enough to check that ifγ ∈ Opt(µ, ν) thenγ̃ := (π1, π1, π2, π2)#γ ∈ Opt(µ× µ, ν × ν).
To see this, letϕ : Rd → R ∪ {+∞} be a convex function such thatsupp(γ) ⊂ ∂−ϕ and define the
convex functioñϕ onR2d by ϕ̃(x, y) = ϕ(x)+ϕ(y). It is immediate to verify thatsupp(γ̃) ⊂ ∂−ϕ̃,
so thatγ̃ is optimal as well. This argument also shows that if(νt) is an interpolating curve with
baseµ, thent 7→ νt × νt is an interpolating curve fromν0 × ν0 to ν1 × ν1 with baseµ × µ. Also,
(x1, x2) 7→W (x1 − x2) is λ-convex ifW is. The conclusion now follows from case(i).

We pass to(iii). We will make the simplifying assumption thatµ ≪ Ld and thatT0 andT1
are smooth and satisfydet(∇T0)(x) 6= 0, det(∇T1)(x) 6= 0 for everyx ∈ supp(µ) (up to an
approximation argument, it is possible to reduce to this case, we omit the details). Then, writing
µ = ρLd, from the change of variable formula we get thatνt ≪ Ld and for its densitỹρt it holds

ρ̃t(Tt(x)) =
ρ(x)

det(∇Tt(x))
,

5the assumptionλ ≥ 0 is necessary to have the last inequality in (3.46). Ifλ < 0, λ−convexity ofV along interpolating
curves is not anymore true, so that we cannot apply directly the results of Subsection 3.2.4. Yet, adapting the arguments, it
possible to show that all the results which we will present hereafter are true for generalλ ∈ R.
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where we wroteTt for (1 − t)T0 + tT1. Thus

E(νt) =
∫
u(ρ̃t(y))dLd(y) =

∫
u

(
ρ(x)

det(∇Tt)(x)

)
det(∇Tt)(x)dLd(x).

Therefore the proof will be complete if we show thatA 7→ u( ρ(x)
det(A) ) det(A) is convex on the set of

positively defined symmetric matrices for anyx ∈ supp(µ). Observe that this map is the composition
of the convex and non increasing mapz 7→ zdu(ρ(x)/zd) with the mapA 7→ (det(A))1/d. Thus to
conclude it is sufficient to show thatA 7→ (det(A))1/d is concave. To this aim, pick two symmetric
and positive definite matricesA0 andA1, notice that

(
det((1− t)A0 + tA1)

)1/d
=
(
det(A0) det(Id+ tB)

)1/d
,

whereB =
√
A0(A1 −A0)

√
A0 and conclude by

d

dt
det(Id+ tB)1/d =

1

d

(
det(Id+ tB)

)1/d
tr
(
B (Id+ tB)−1

)
,

d2

dt2
det(Id+ tB)1/d =

1

d2
tr2
(
B (Id+ tB)−1

)
− 1

d
tr
((
B (Id+ tB)−1

)2) ≤ 0

where in the last step we used the inequalitytr2(C) ≤ d tr(C2) for C = B (Id+ tB)−1. �

Important examples of functionsu satisfying (3.44) and (3.45) are:

u(z) =
zα − z

α− 1
, α ≥ 1− 1

d
, α 6= 1

u(x) = z log(z).
(3.47)

Remark 3.34 (A dimension free condition onu) We saw that a sufficient condition onu to ensure
that E is convex along interpolating curves is the fact that the mapz 7→ zdu(z−d) is convex and
non increasing, so the dimensiond of the ambient space plays a role in the condition. The fact that
the map is non increasing follows by the convexity ofu together withu(0) = 0, while by simple
computations we see that its convexity is equivalent to

z−1u(z)− u′(z) + zu′′(z) ≥ − 1

d− 1
zu′′(z). (3.48)

Notice that the higherd is, the stricter the condition becomes. For applications ininfinite dimensional
spaces, it is desirable to have a condition onu ensuring the convexity ofE in which the dimension
does not enter. As inequality (3.48) shows, the weakest suchcondition for whichE is convex in any
dimension is:

z−1u(z)− u′(z) + zu′′(z) ≥ 0,

and some computations show that this is in turn equivalent tothe convexity of the map

z 7→ ezu(e−z).

A key example of map satisfying this condition isz 7→ z log(z) . �

Therefore we have the following existence and uniqueness result:
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Theorem 3.35 Let λ ≥ 0 andF be eitherV , W , E (or a linear combination of them with positive
coefficients) andλ-convex along interpolating curves. Then for everyµ ∈ P2(R

d) there exists a
unique Gradient Flow(µt) for F starting fromµ in the EVI formulation. The curve(µt) satisfies: is
locally absolutely continuous on(0,+∞), µt → µ ast → 0 and, ifµt is regular for everyt ≥ 0, it
holds

−vt ∈ ∂WF (µt), a.e. t ∈ (0,+∞), (3.49)

where(vt) is the velocity vector field associated to(µt) characterized by

d

dt
µt +∇ · (vtµt) = 0,

vt ∈ Tanµt(P2(R
d)) a.e. t.

Proof Use the existence Theorem 3.25 and the equivalence of the EVIformulation of Gradient Flow
and the Subdifferential one provided by Proposition 3.28. �

It remains to understand which kind of equation is satisfied by the Gradient Flow(µt). By
equation (3.49), this corresponds to identify the subdifferentials ofV ,W , E at a genericµ ∈ P2(R

d).
This is the content of the next three propositions. For simplicity, we state and prove them only under
some - unneeded - smoothness assumptions. The underlying idea of all the calculations we are going
to do is the following equivalence:

v ∈ ∂WF(µ)
≈⇔ lim

ε→0

F((Id+ ε∇ϕ)#µ)−F(µ)

ε
=

∫
〈v,∇ϕ〉 , ∀ϕ ∈ C∞

c (Rd),

(3.50)
valid for anyλ-geodesically convex functional, where we wrote

≈⇔ to intend that this equivalence
holds only when everything is smooth. To understand why (3.50) holds, start assuming thatv ∈
∂WF (µ), fix ϕ ∈ C∞

c (Rd) and recall that forε sufficiently small the mapId + ε∇ϕ is optimal
(Remark 1.22). Thus by definition of subdifferential we have

F(µ) + ε

∫
〈v,∇ϕ〉 dµ+ ε2

λ

2
‖∇ϕ‖2L2(µ) ≤ F((Id+ ε∇ϕ)#µ).

SubtractingF(µ) on both sides, dividing byε > 0 andε < 0 and lettingε→ 0 we get the implication
⇒. To “prove” the converse one, pickν ∈ P2(R

d), let T be the optimal transport map fromµ to
ν and recall thatT is the gradient of a convex functionφ. Assume thatφ is smooth and define
ϕ(x) := φ(x) − |x|2/2. The geodesic(µt) from µ to ν can then be written as

µt =
(
(1 − t)Id+ tT

)
#
µ =

(
(1− t)Id+ t∇φ

)
#
µ =

(
Id+ t∇ϕ

)
#
µ.

From theλ-convexity hypothesis we know that

F(ν) ≥ F(µ) +
d

dt |t=0
F(µt) +

λ

2
W 2

2 (µ, ν),

therefore, since we know thatddt |t=0
F(µt) =

∫
〈v,∇ϕ〉 dµ, from the arbitrariness ofν we deduce

v ∈ ∂WF(µ).

Proposition 3.36 (Subdifferential ofV) Let V : R
d → R be λ-convex andC1, let V be as in

Definition 3.30 and letµ ∈ P2(R
d) be regular and satisfyingV(µ) < ∞. Then∂WV(µ) is non

empty if and only if∇V ∈ L2(µ), and in this case∇V is the only element in the subdifferential ofV
at µ.
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Therefore, if(µt) is a Gradient Flow ofV made of regular measures, it solves

d

dt
µt = ∇ · (∇V µt),

in the sense of distributions inRd × (0,+∞).

Sketch of the ProofFix ϕ ∈ C∞
c (Rd) and observe that

lim
ε→0

V((Id+ ε∇ϕ)#µ)− V(µ)
ε

= lim
ε→0

∫
V ◦ (Id+ ε∇ϕ)− V

ε
dµ =

∫
〈∇V,∇ϕ〉 dµ.

Conclude using the equivalence (3.50). �

Proposition 3.37 (Subdifferential ofW) LetW : Rd → R beλ-convex, even andC1, let W be
defined by 3.31 andµ be regular and satisfyingW(µ) < ∞. Then∂WW(µ) 6= ∅ if and only if
(∇W ) ∗ µ belongs toL2(µ) and in this case(∇W ) ∗ µ is the only element in the subdifferential of
W at µ.

Therefore, if(µt) is a Gradient Flow ofW made of regular measures, it solves the non local
evolution equation

d

dt
µt = ∇ · ((∇W ∗ µt)µt),

in the sense of distributions inRd × (0,+∞).

Sketch of the ProofFix ϕ ∈ C∞
c (Rd), letµε := (Id+ ε∇ϕ)#µ and observe that

W
(
µε
)
=

1

2

∫
W (x− y)dµε(x)dµε(y) =

1

2

∫
W (x − y + ε(∇ϕ(x) −∇ϕ(y)))dµ(x)dµ(y)

=
1

2

∫
W (x− y)dµ(x)dµ(y) +

ε

2

∫
〈∇W (x − y),∇ϕ(x) −∇ϕ(y)〉 dµ(x)dµ(y) + o(ε).

Now observe that
∫

〈∇W (x− y),∇ϕ(x)〉 dµ(x)dµ(y) =
∫ 〈∫

∇W (x− y)dµ(y),∇ϕ(x)
〉
dµ(x)

=

∫
〈∇W ∗ µ(x),∇ϕ(x)〉 dµ(x),

and, similarly,
∫

〈∇W (x− y),−∇ϕ(y)〉 dµ(x)dµ(y) =
∫

〈∇W ∗ µ(y),∇ϕ(y)〉 dµ(y)

=

∫
〈∇W ∗ µ(x),∇ϕ(x)〉 dµ(x).

Thus the conclusion follows by applying the equivalence (3.50). �

Proposition 3.38 (Subdifferential ofE) Letu : [0,+∞) → R be convex,C2 on(0,+∞), bounded
from below and satisfying conditions(3.44)and (3.45). Letµ = ρLd ∈ P2(R

d) be an absolutely
continuous measure with smooth density. Then∇(u′(ρ)) is the unique element in∂WE(µ).

Therefore, if(µt) is a Gradient Flow forE andµt is absolutely continuous with smooth density
ρt for everyt > 0, thent 7→ ρt solves the equation

d

dt
ρt = ∇ · (ρt∇(u′(ρt))).
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Note: this statement is not perfectly accurate, because we are neglecting the integrability issues.
Indeed a priori we don’t know that∇(u′(ρ)) belongs toL2(µ).

Sketch of the ProofFix ϕ ∈ C∞
c (Rd) and defineµε := (Id+ ε∇ϕ)#µ. Forε sufficiently small,µε

is absolutely continuous and its densityρε satisfies - by the change of variable formula - the identity

ρε(x+ ε∇ϕ(x)) = ρ(x)

det(Id+ ε∇2ϕ(x))
.

Using the fact thatddε |ε=0
(det(Id+ ε∇2ϕ(x))) = ∆ϕ(x) we have

d

dε |ε=0
E(µε) = d

dε |ε=0

∫
u(ρε(y))dy =

d

dε |ε=0

∫
u

(
ρ(x)

det(Id+ ε∇2ϕ(x))

)
det(Id+ ε∇2ϕ(x))dx

=

∫
−ρu′(ρ)∆ϕ + u(ρ)∆ϕ =

∫
〈∇(ρu′(ρ)− u(ρ)),∇ϕ〉 =

∫
〈∇(u′(ρ)),∇ϕ〉 ρ,

and the conclusion follows by the equivalence (3.50). �

As an example, letu(z) := z log(x), and letV be aλ-convex smooth function onRd. Since
u′(z) = log(z) + 1, we haveρ∇(u′(ρ)) = ∆ρ, thus a gradient flow(ρt) of F = E + V solves the
Fokker-Plank equation

d

dt
ρt = ∆ρt +∇ · (∇V ρt).

Also, the contraction property (3.31) in Theorem 3.25 givesthat for two gradient flows(ρt), (ρ̃t) it
holds the contractivity estimate

W2(ρt, ρ̃t) ≤ e−λtW2(ρ0, ρ̃0).

3.4 Bibliographical notes

The content of Section 3.2 is taken from the first part of [6] (we refer to this book for a detailed
bibliographical references on the topic of gradient flows inmetric spaces), with the only exception
of Proposition 3.6, whose proof has been communicated to us by Savaré (see also [72], [73]).

The study of geodesically convex functionals in(P2(R
d),W2) has been introduced by R. Mc-

Cann in [63], who also proved that conditions (3.44) and (3.45) were sufficient to deduce the geodesic
convexity (called by him displacement convexity) of the internal energy functional.

The study of gradient flows in the Wasserstein space began in the seminal paper by R. Jordan, D.
Kinderlehrer and F. Otto [47], where it was proved that the minimizing movements procedure for the
functional

ρLd 7→
∫
ρ log ρ+ V ρdLd,

on the space(P2(R
d),W2), produce solutions of the Fokker-Planck equation. Later, F. Otto in [67]

showed that the same discretization applied to

ρLd 7→ 1

α− 1

∫
ραdLd,

(with the usual meaning for measures with a singular part) produce solutions of the porous medium
equation. The impact of Otto’s work on the community of optimal transport has been huge: not only
he was able to provide concrete consequences (in terms of newestimates for the rate of convergence
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of solutions of the porous medium equation) out of optimal transport theory, but he also clearly
described what is now called the ‘weak Riemannian structure’ of (P2(R

d),W2) (see also Chapter 6
and Subsection 2.3.2).

Otto’s intuitions have been studied and extended by many authors. The rigorous description
of many of the objects introduced by Otto, as well as a generaldiscussion about gradient flows of
λ-geodesically convex functionals on(P2(R

d),W2) has been done in the second part of [6] (the
discussion made here is taken from this latter reference).

4 Geometric and functional inequalities

In this short Chapter we show how techniques coming from optimal transport can lead to simple
proofs of some important geometric and functional inequalities. None of the results proven here are
new, in the sense that they all were well known before the proofs coming from optimal transport
appeared. Still, it is interesting to observe how the tools described in the previous sections allow to
produce proofs which are occasionally simpler and in any case providing new informations when
compared to the ‘standard’ ones.

4.1 Brunn-Minkowski inequality

Recall that the Brunn-Minkowski inequality inRd is:

(
L

d

(
A+B

2

))1/d

≥ 1

2

((
L

d(A)
)1/d

+
(
L

d(B)
)1/d)

,

and is valid for any couple of compact setsA, B ⊂ R
d.

To prove it, letA,B ⊂ R
d be compact sets and notice that without loss of generality wecan

assume thatL d(A),L d(B) > 0. Define

µ0 :=
1

L d(A)
L

d|A µ1 :=
1

L d(B)
L

d|B,

and let(µt) be the unique geodesic in(P2(R
d),W2) connecting them.

Recall from (3.47) that foru(z) = −d(z1−1/d−z) the functionalE(ρ) :=
∫
u(ρ)dLd is geodesi-

cally convex in(P2(R
d),W2). Also, simple calculations show thatE(µ0) = −d(L d(A)1/d − 1),

E(µ1) = −d(L d(B)1/d − 1). Hence we have

E(µ1/2) ≤ −d
2

((
L

d(A)
)1/d

+
(
L

d(B)
)1/d)

+ d.

Now notice that Theorem 2.10 (see also Remark 2.13) ensures thatµ1/2 is concentrated onA+B
2 ,

thus lettingµ̃1/2 := (L d((A+B)/2))−1L d|(A+B)/2
and applying Jensen’s inequality to the convex

functionu we get

E(µ1/2) ≥ E(µ̃1/2) = −d
(

L
d
(A+B

2

)1/d
− 1

)
,

which concludes the proof.
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4.2 Isoperimetric inequality

OnR
d the isoperimetric inequality can be written as

L
d(E)1−

1
d ≤ P (E)

dL d(B)
1
d

,

whereE is an arbitrary open set,P (E) its perimeter andB the unitary ball.
We will prove this inequality via Brenier’s theorem 1.26, neglecting all the smoothness issues.

Let

µ :=
1

L d(E)
L

d|E , ν :=
1

L d(B)
L

d|B,

andT : E → B be the optimal transport map (w.r.t. the cost given by the distance squared). The
change of variable formula gives

1

L d(E)
= det(∇T (x)) 1

L d(B)
, ∀x ∈ E.

Since we know thatT is the gradient of a convex function, we have that∇T (x) is a symmetric matrix
with non negative eigenvalues for everyx ∈ E. Hence the arithmetic-geometric mean inequality
ensures that

(det∇T (x))1/d ≤ ∇ · T (x)
d

, ∀x ∈ E.

Coupling the last two equations we get

1

L d(E)
1
d

≤ ∇ · T (x)
d

1

L d(B)
1
d

∀x ∈ E.

Integrating overE and applying the divergence theorem we get

L
d(E)1−

1
d ≤ 1

dL d(B)1/d

∫

E

∇ · T (x)dx =
1

dL d(B)1/d

∫

∂E

〈T (x), ν(x)〉 dHd−1(x),

whereν : ∂E → R
d is the outer unit normal vector. SinceT (x) ∈ B for everyx ∈ E, we have

|T (x)| ≤ 1 for x ∈ ∂E and thus〈T (x), ν(x)〉 ≤ 1. We conclude with

L
d(E)1−

1
d ≤ 1

dL d(B)1/d

∫

∂E

〈T (x), ν(x)〉 dHd−1(x) ≤ P (E)

dL d(B)1/d
.

4.3 Sobolev Inequality

The Sobolev inequality inRd reads as:
(∫

|f |p∗
)1/p∗

≤ C(d, p)

(∫
|∇f |p

)1/p

, ∀f ∈W 1,p(Rd),

where1 ≤ p < d, p∗ := dp
d−p andC(d, p) is a constant which depends only on the dimensiond and

the exponentp.
We will prove it via a method which closely resemble the one just used for the isoperimetric

inequality. Again, we will neglect all the smoothness issues. Fix d, p and observe that without loss
of generality we can assumef ≥ 0 and

∫
|f |p∗ = 1, so that our aim is to prove that

(∫
|∇f |p

)1/p

≥ C, (4.1)
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for some constantC not depending onf . Fix once and for all a smooth, non negative function
g : Rd → R satisfying

∫
g = 1, define the probability measures

µ := fp
∗

L
d, ν := gL d,

and letT be the optimal transport map fromµ to ν (w.r.t. the cost given by the distance squared).
The change of variable formula gives

g(T (x)) =
fp

∗

(x)

det(∇T (x)) , ∀x ∈ R
d.

Hence we have
∫
g1−

1
d =

∫
g−

1
d g =

∫
(g ◦ T )− 1

d fp
∗

=

∫
det(∇T ) 1

d (fp
∗

)1−
1
d .

As for the case of the isoperimetric inequality, we know thatT is the gradient of a convex function,
thus∇T (x) is a symmetric matrix with non negative eigenvalues and the arithmetic-geometric mean
inequality gives(det(∇T (x)))1/d ≤ ∇·T (x)

d . Thus we get

∫
g1−

1
d ≤ 1

d

∫
∇ · T (fp∗)1− 1

d = −p
∗

d

(
1− 1

d

)∫
f

p∗

q T · ∇f,

where1
p + 1

q = 1. Finally, by Hölder inequality we have

∫
g1−

1
d ≤ p∗

d

(
1− 1

d

)(∫
fp

∗ |T |q
) 1

q
(∫

|∇f |p
) 1

p

=
p∗

d

(
1− 1

d

)(∫
g(y)|y|qdy

) 1
q
(∫

|∇f |p
) 1

p

.

Sinceg was a fixed given function, (4.1) is proved.

4.4 Bibliographical notes

The possibility of proving Brunn-Minkowski inequality viaa change of variable is classical. It has
been McCann in his PhD thesis [62] to notice that the use of optimal transport leads to a natural
choice of reparametrization. It is interesting to notice that this approach can be generalized to curved
and non-smooth spaces havingRicci curvature bounded below, see Proposition 7.14.

The idea of proving the isoperimetric inequality via a change of variable argument is due to Gro-
mov [65]: in Gromov’s proof it is not used the optimal transport map, but the so called Knothe’s
map. Such a map has the property that its gradient has non negative eigenvalues at every point, and
the reader can easily check that this is all we used of Brenier’s map in our proof, so that the argument
of Gromov is the same we used here. The use of Brenier’s map instead of Knothe’s one makes the
difference when studying the quantitative version of the isoperimetric problem: Figalli, Maggi and
Pratelli in [38], using tools coming from optimal transport, proved the sharp quantitative isoperi-
metric inequality inRd endowed with any norm (the sharp quantitative isoperimetric inequality for
the Euclidean norm was proved earlier by Fusco, Maggi and Pratelli in [40] by completely different
means).

The approach used here to prove the Sobolev inequality has been generalized by Cordero-
Erasquin, Nazaret and Villani in [30] to provide a new proof of the sharp Gagliardo-Nirenberg-
Sobolev inequality together with the identification of the functions realizing the equality
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5 Variants of the Wasserstein distance

In this chapter we make a quick overview of some variants of the Wasserstein distanceW2 together
with their applications. No proofs will be reported: our goal here is only to show that concepts
coming from the transport theory can be adapted to cover a broader range of applications.

5.1 Branched optimal transportation

Consider the transport problem withµ := δx andν := 1
2 (δy1 +δy2) for the cost given by the distance

squared onRd. Then Theorem 2.10 and Remark 2.13 tell that the unique geodesic (µt) connecting
µ to ν is given by

µt :=
1

2

(
δ(1−t)x+ty1 + δ(1−t)x+ty2

)
,

so that the geodesic produces a ‘V-shaped’ path.
For some applications, this is unnatural: for instance in real life networks, when one wants to

transport the good located inx to the destinationsy1 andy2 it is preferred to produce a branched
structure, where first the good it is transported ‘on a singletruck’ to some intermediate point, and
only later split into two parts which are delivered to the 2 destinations. This produces a ‘Y-shaped’
path.

If we want to model the fact that ‘it is convenient to ship things together’, we are lead to the
following construction, due to Gilbert. Say that the starting distribution of mass is given byµ =∑

i aiδxi and that the final one isν =
∑
j bjδyj , with

∑
i ai =

∑
j bj = 1. An admissible dynamical

transfer is then given by a finite, oriented, weighted graphG, where the weight is a functionw :
{set of edges of G} → R, satisfying the Kirchoff’s rule:

∑

edgese outgoing fromxi

w(e) −
∑

edgese incoming inxi

w(e) = ai, ∀i

∑

edgese outgoing fromyj

w(e) −
∑

edgese incoming inyj

w(e) = −bj, ∀j

∑

edgese outgoing fromz

w(e) −
∑

edgese incoming inz

w(e) = 0, for any ‘internal’ nodez of G

Then forα ∈ [0, 1] one minimizes

∑

edgese ofG

wα(e) · length(e),

among all admissible graphsG.
Observe that forα = 0 this problem reduces to the classical Steiner problem, while forα = 1 it

reduces to the classical optimal transport problem forcost = distance.
It is not hard to show the existence of a minimizer for this problem. What is interesting, is that a

‘continuous’ formulation is possible as well, which allowsto discuss the minimization problem for
general initial and final measure inP(Rd).

Definition 5.1 (Admissible continuous dynamical transfer) Let µ, ν ∈ P(Rd). An admissible
continuous dynamical transfer fromµ toν is given by a countablyH1-rectifiable setΓ, an orientation
on it τ : Γ → Sd−1, and a weight functionw : Γ → [0,+∞), such that theRd valued measure
JΓ,τ,w defined by

JΓ,τ,w := wτH1|Γ,
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satisfies
∇ · JΓ,τ,w = ν − µ,

(which is the natural generalization of the Kirchoff rule).

Givenα ∈ [0, 1], the cost function associated to(Γ, τ, w) is defined as

Eα(JΓ,τ,w) :=
∫

Γ

wα dH 1.

Theorem 5.2 (Existence)Let µ, ν ∈ P(Rd) with compact support. Then for allα ∈ [0, 1) there
exists a minimizer of the cost in the set of admissible continuous dynamical transfers connectingµ to
ν. If µ = δz andν = Ld|[0,1]d , the minimal cost is finite if and only ifα > 1− 1/d.

The fact that1 − 1/d is a limit value to get a finite cost, can be heuristically understood by the
following calculation. Suppose we want to move a Delta massδx into the Lebesgue measure on a
unit cube whose center isx. Then the first thing one wants to try is: divide the cube into2d cubes
of side length1/2, then split the delta into2d masses and let them move onto the centers of these2d

cubes. Repeat the process by dividing each of the2d cubes into2d cubes of side length1/4 and so
on. The total cost of this dynamical transfer is proportional to:

∞∑

i=1

2id︸︷︷︸
number of segments

at the stepi

1

2i︸︷︷︸
length of each

segment at the stepi

1

2αid︸︷︷︸
weighted mass on each
segment at the stepi

=
∞∑

i=1

2i(d−1−αd),

which is finite if and only ifd− 1− αd < 0, that is, if and only ifα > 1− 1
d .

A regularity result holds forα ∈ (1− 1/d, 1) which states that far away from the supports of the
starting and final measures, any minimal transfer is actually a finite tree:

Theorem 5.3 (Regularity) Let µ, ν ∈ P(Rd) with compact support,α ∈ (1 − 1/n, 1) and let
(Γ, τ, w) be a continuous tree with minimalα-cost betweenµ andν. ThenΓ is locally a finite tree in
R
d \ (suppµ ∪ supp ν).

5.2 Different action functional

Let us recall that the Benamou-Brenier formula (Proposition 2.30) identifies the squared Wasserstein
distance betweenµ0 = ρ0L d, µ1 := ρ1L d ∈ P2(R

d) by

W 2
2 (µ

0, µ1) = inf

∫ 1

0

∫
|vt|2(x)ρt(x)dL d(x)dt,

where the infimum is taken among all the distributional solutions of the continuity equation

d

dt
ρt +∇ · (vtρt) = 0,

with ρ0 = ρ0 andρ1 = µ1.
A natural generalization of the distanceW2 comes by considering a new action, modified by

putting a weight on the density, that is: given a smooth functionh : [0,∞) → [0,∞) we define

W 2
h (ρ

0Ld, ρ1Ld) = inf

∫ 1

0

∫
|vt|2(x)h(ρt(x))dL d(x)dt, (5.1)
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where the infimum is taken among all the distributional solutions of thenon linearcontinuity equa-
tion

d

dt
ρt +∇ · (vth(ρt)) = 0, (5.2)

with ρ0 = ρ0 andρ1 = ρ1.
The key assumption that leads to the existence of an action minimizing curve is the concavity of

h, since this leads to the joint convexity of

(ρ, J) 7→ h(ρ)

∣∣∣∣
J

h(ρ)

∣∣∣∣
2

,

so that using this convexity withJ = vh(ρ), one can prove existence of minima of (5.1). Particularly
important is the case given byh(z) := zα for α < 1 from which we can build the distancẽWα

defined by

W̃α(ρ
0
L

d, ρ1L d) :=

(
inf

∫ 1

0

∫
|vt|2(x)ρ2−αt (x)dL d(x)dt

) 1
α

, (5.3)

the infimum being taken among all solutions of (5.2) withρ0 = ρ0 andρ1 = ρ1. The following
theorem holds:

Theorem 5.4 Let α > 1 − 1
d . Then the infimum in(5.3) is always reached and, if it is finite, the

minimizer is unique. Now fix a measureµ ∈ P(Rd). The set of measuresν with W̃α(µ, ν) < ∞
endowed withW̃α is a complete metric space and bounded subsets are narrowly compact.

We remark that the behavior of action minimizing curves in this setting is, in some very rough
sense, “dual” of the behavior of the branched optimal transportation discussed in the previous section.
Indeed, in this problem the mass tends to spread out along an action minimizing curve, rather than to
glue together.

5.3 An extension to measures with unequal mass

Let us come back to the Heat equation seen as Gradient Flow of the entropy functionalE(ρ) =∫
ρ log(ρ) with respect to the Wasserstein distanceW2, as discussed at the beginning of Section 3.3

and in Subsection 3.3.2. We discussed the topic for arbitrary probability measures inRd, but actually
everything could have been done for probability measures concentrated on some open bounded set
Ω ⊂ R

d with smooth boundary, that is: consider the metric space(P(Ω),W2) and the entropy
functionalE(ρ) =

∫
ρ log(ρ) for absolutely continuous measures andE(µ) = +∞ for measures

with a singular part. Now use the Minimizing Movements scheme to build up a family of discrete
solutionsρτt starting from some given measureρ ∈ P(Ω). It is then possible to see that these discrete
families converge asτ ↓ 0 to the solution of the Heat equation withNeumann boundary condition:





d
dtρt = ∆ρt, in Ω× (0,+∞),
ρt → ρ, weakly ast→ 0

∇ρt · η = 0, in ∂Ω× (0,∞),

whereη is the outward pointing unit vector on∂Ω.
The fact that the boundary condition is the Neumann’s one, can be heuristically guessed by the

fact that working inP(Ω) enforces the mass to be constant, with no flow of the mass through the
boundary.

It is then natural to ask whether it is possible to modify the transportation distance in order to
take into account measures with unequal masses, and such that the Gradient Flow of the entropy
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functional produces solutions of the Heat equation inΩ with Dirichlet boundary conditions. This is
actually doable, as we briefly discuss now.

LetΩ ⊂ R
d be open and bounded. Consider the setM2(Ω) defined by

M2(Ω) :=
{

measuresµ onΩ such that
∫
d2(x, ∂Ω)dµ(x) <∞

}
,

and for anyµ, ν ∈ M2(Ω) define the set of admissible transfer plans Admb(µ, ν) by: γ ∈
Admb(µ, ν) if and only if γ is a measure on(Ω)2 such that

π1
#γ|Ω = µ, π2

#γ|Ω = ν.

Notice the difference w.r.t. the classical definition of transfer plan: here we are requiring the first
(respectively, second) marginal to coincide withµ (respectivelyν) only inside the open setΩ. This
means that in transferring the mass fromµ to ν we are free to take/put as much mass as we want
from/to the boundary. Then one defines thecostC(γ) of a planγ by

C(γ) :=

∫
|x− y|2dγ(x, y),

and then the distanceWb2 by
Wb2(µ, ν) := inf

√
C(γ),

where the infimum is taken among allγ ∈ Admb(µ, ν).
The distanceWb2 shares many properties with the Wasserstein distanceW2.

Theorem 5.5 (Main properties ofWb2) The following hold:

• Wb2 is a distance onM2(Ω) and the metric space(M2(Ω),Wb2) is Polish and geodesic.

• A sequence(µn) ⊂ M2(Ω) converges toµ w.r.t. Wb2 if and only ifµn converges weakly
to µ in duality with continuous functions with compact support in Ω and

∫
d2(x, ∂Ω)dµn →∫

d2(x, ∂Ω)dµ asn→ ∞.

• Finally, a planγ ∈ Admb(µ, ν) is optimal (i.e. it attains the minimum cost among admissible
plans) if and only there exists ac-concave functionϕ which is identically0 on ∂Ω such that
supp(γ) ⊂ ∂cϕ (herec(x, y) = |x− y|2).

Observe that(M2(Ω),Wb2) is always a geodesic space (while from Theorem 2.10 and Remark
2.14 we know that(P(Ω),W2) is geodesic if and only ifΩ is, that is, if and only ifΩ is convex).

It makes perfectly sense to extend the entropy functional tothe wholeM2(Ω): the formula is
still E(µ) =

∫
ρ log(ρ) for µ = ρLd|Ω, andE(µ) = +∞ for measures not absolutely continuous.

The Gradient Flow of the entropy w.r.t.Wb2 produces solutions of the Heat equation with Dirichlet
boundary conditions in the following sense:

Theorem 5.6 Letµ ∈ M2(Ω) be such thatE(µ) <∞. Then:

• for everyτ > 0 there exists a unique discrete solutionρτt starting fromµ and constructed via
the Minimizing Movements scheme as in Definition 3.7.

• Asτ ↓ 0, the measuresρτt converge to a unique measureρt in (M2(Ω),Wb2) for anyt > 0.

• The map(x, t) 7→ ρt(x) is a solution of the Heat equation
{

d
dtρt = ∆ρt, in Ω× (0,+∞),
ρt → µ, weakly ast→ 0,

subject to the Dirichlet boundary conditionρt(x) = e−1 in ∂Ω for everyt > 0 (that is,ρt−e−1

belongs toH1
0 (Ω) for everyt > 0).
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The fact that the boundary value is given bye−1 can be heuristically guessed by the fact that
the entropy has a global minimum inM2(Ω): such minimum is given by the measure with constant
densitye−1, i.e. the measure whose density is everywhere equal to the minimum ofz 7→ z log(z).

On the bad side, the entropyE is notgeodesically convex in(M2(Ω),Wb2), and this implies that
it is not clear whether the strong properties of Gradient Flows w.r.t.W2 as described in Section 3.3
- Theorem 3.35 and Proposition 3.38 are satisfied also in thissetting. In particular, it is not clear
whether there is contractivity of the distance or not:

Open Problem 5.7 Letρ1t , ρ
2
t two solutions of the Heat equation with Dirichlet boundary condition

ρit = e−1 in ∂Ω for everyt > 0, i = 1, 2. Prove or disprove that

Wb2(ρ
1
s, ρ

2
s) ≤Wb2(ρ

1
t , ρ

2
t ), ∀t > s.

The question is open also for convex and smooth open setsΩ.

5.4 Bibliographical notes

The connection of branched transport and transport problemas discussed in Section 5.1 was first
pointed out by Q. Xia in [81]. An equivalent model was proposed by F. Maddalena, J.-M. Morel and
S. Solimini in [61]. In [81], [60] and [15] the existence of anoptimal branched transport (Theorem
5.2) was also provided. Later, this result has been extendedin several directions, see for instance the
works A. Brancolini, G. Buttazzo and F. Santambrogio ([16])and Bianchini-Brancolini [15]. The
interior regularity result (Theorem 5.3) has been proved ByQ. Xia in [82] and M. Bernot, V. Caselles
and J.-M. Morel in [14]. Also, we remark that L. Brasco, G. Buttazzo and F. Santambrogio proved a
kind of Benamou-Brenier formula for branched transport in [17].

The content of Section 5.2 comes from J. Dolbeault, B. Nazaret and G. Savaré [33] and [26] of J.
Carrillo, S. Lisini, G. Savaré and D. Slepcev.

Section 5.3 is taken from a work of the second author and A. Figalli [37].

6 More on the structure of (P2(M),W2)

The aim of this Chapter is to give a comprehensive description of the structure of the ‘Riemannian
manifold’ (P2(R

d),W2), thus the content of this part of the work is the natural continuation of what
we discussed in Subsection 2.3.2. For the sake of simplicity, we are going to stick to the Wasserstein
space onRd, but the reader should keep in mind that the discussions herecan be generalized with
only little effort to the Wasserstein space built over a Riemannian manifold.

6.1 “Duality” between the Wasserstein and the Arnold Manifolds

The content of this section is purely formal and directly comes from the seminal paper of Otto [67].
We won’t even try to provide a rigorous background for the discussion we will do here, as we believe
that dealing with the technical problems would lead the reader far from the geometric intuition. Also,
we will not use the “results” presented here later on: we justthink that these concepts are worth of
mention. Thus for the purpose of this section just think that‘each measure is absolutely continuous
with smooth density’, that ‘eachL2 function isC∞’, and so on.

Let us recall the definition of Riemannian submersion. LetM, N be Riemannian manifolds and
let f :M → N a smooth map.f is a submersion provided the map:

df : Ker⊥
(
df(x)

)
→ Tf(x)N,
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is a surjective isometry for anyx ∈ M . A trivial example of submersion is given in the caseM =
N×L (for some Riemannian manifoldL, withM endowed with the product metric) andf :M → N
is the natural projection. More generally, iff is a Riemannian submersion, for eachy ∈ N , the set
f−1(y) ⊂M is a smooth Riemannian submanifold.

The “duality” between the Wasserstein and the Arnold Manifolds consists in the fact that there
exists a Big ManifoldBM which is flat and a natural Riemannian submersion fromBM to P2(R

d)
whose fibers are precisely the Arnold Manifolds.

Let us define the objects we are dealing with. Fix once and for all a reference measureρ ∈
P2(R

d) (recall that we are “assuming” that all the measures are absolutely continuous with smooth
densities - so that we will use the same notation for both the measure and its density).

• The Big ManifoldBM is the spaceL2(ρ) of maps fromR
d to R

d which areL2 w.r.t. the
reference measureρ. The tangent space at some mapT ∈ BM is naturally given by the set of
vector fields belonging toL2(ρ), where the perturbation ofT in the direction of the vector field
u is given byt 7→ T + tu.

• The target manifold of the submersion is the Wasserstein “manifold” P2(R
d). We recall that

the tangent spaceTanρ(P2(R
d)) at the measureρ is the set

Tanρ(P2(R
d)) :=

{
∇ϕ : ϕ ∈ C∞

c (Rd)
}
,

endowed with the scalar product ofL2(ρ) (we neglect to take the closure inL2(ρ) because we
want to keep the discussion at a formal level). The perturbation of a measureρ in the direction
of a tangent vector∇ϕ is given byt 7→ (Id+ t∇ϕ)#ρ.

• The Arnold ManifoldArn(ρ) associated to a certain measureρ ∈ P2(R
d) is the set of maps

S : Rd → R
d which preserveρ:

Arn(ρ) :=
{
S : Rd → R

d : S#ρ = ρ}.

We endowArn(ρ) with theL2 distance calculated w.r.t.ρ. To understand who is the tangent
space atArn(ρ) at a certain mapS, pick a vector fieldv onR

d and consider the perturbation
t 7→ S + tv of S in the direction ofv. Thenv is a tangent vector if and only ifddt |t=0

(S +

tv)#ρ = 0. Observing that

d

dt |t=0
(S+tv)#ρ =

d

dt |t=0
(Id+tv◦S−1)#(S#ρ) =

d

dt |t=0
(Id+tv◦S−1)#ρ = ∇·(v◦S−1ρ),

we deduce

TanSArn(ρ) =
{

vector fieldsv onRd such that∇ · (v ◦ S−1ρ) = 0
}
,

which is naturally endowed with the scalar product inL2(ρ).
We are calling the manifoldArn(ρ) an Arnold Manifold, because ifρ is the Lebesgue measure
restricted to some open, smooth and bounded setΩ, this definition reduces to the well known
definition of Arnold manifold in fluid mechanics: the geodesic equation in such space is -
formally - the Euler equation for the motion of an incompressible and inviscid fluid inΩ.

• Finally, the “Riemannian submersion”Pf fromBM to P2(R
d) is the push forward map:

Pf : BM → P2(R
d),

T 7→ T#ρ,
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We claim thatPf is a Riemannian submersion and that the fiberPf−1(ρ) is isometric to the manifold
Arn(ρ).

We start considering the fibers. Fixρ ∈ P2(R
d). Observe that

Pf−1(ρ) =
{
T ∈ BM : T#ρ = ρ

}
,

and that the tangent spaceTanTPf
−1(ρ) is the set of vector fieldsu such thatddt |t=0

(T +tu)#ρ = 0,
so that from

d

dt |t=0
(T + tu)#ρ =

d

dt |t=0
(Id+ tu◦T−1)#(T#ρ) =

d

dt |t=0
(Id+ tu◦T−1)#ρ = ∇· (u◦T−1ρ),

we have
TanTPf

−1(ρ) =
{

vector fieldsu onRd such that∇ · (u ◦ T−1ρ) = 0
}
,

and the scalar product between two vector fields inTanTPf
−1(ρ) is the one inherited by the one in

BM, i.e. is the scalar product inL2(ρ).
Now choose a distinguished mapT ρ ∈ Pf−1(ρ) and notice that the right composition withT ρ

provides a natural bijective map fromArn(ρ) intoPf−1(ρ), because

S#ρ = ρ ⇔ (S ◦ T ρ)#ρ = ρ.

We claim that this right composition also provides an isometry between the “Riemannian manifolds”
Arn(ρ) andPf−1(ρ): indeed, ifv ∈ TanSArn(ρ), then the perturbed mapsS + tv are sent to
S ◦ T ρ + tv ◦ T ρ, which means that the perturbationv of S is sent to the perturbationu := v ◦ T ρ
of S ◦ T ρ by the differential of the right composition. The conclusion follows from the change of
variable formula, which gives ∫

|v|2dρ =

∫
|u|2dρ.

Clearly, the kernel of the differentialdPf of Pf atT is given byTanTPf
−1
(
Pf(T )

)
, thus it remains

to prove that its orthogonal is sent isometrically ontoTanPf(T )(P2(R
d)) by dPf. Fix T ∈ BM, let

ρ := Pf(T ) = T#ρ and observe that

Tan⊥T
(
Pf−1

(
ρ
))

=
{

vector fieldsw :

∫
〈w, u〉 dρ = 0, ∀u s.t.∇ · (u ◦ T−1ρ) = 0

}

=
{

vector fieldsw :

∫ 〈
w ◦ T−1, u ◦ T−1

〉
dρ = 0, ∀u s.t.∇ · (u ◦ T−1ρ) = 0

}

=
{

vector fieldsw : w ◦ T−1 = ∇ϕ for someϕ ∈ C∞
c (Rd)

}
.

Now pickw ∈ Tan⊥T
(
Pf−1

(
ρ
))

, letϕ ∈ C∞
c (Rd) be such thatw ◦ T−1 = ∇ϕ and observe that

d

dt |t=0
Pf(T+tw) =

d

dt |t=0
(T+tw)#ρ =

d

dt |t=0
(Id+tw◦T−1)#(T#ρ) =

d

dt |t=0
(Id+t∇ϕ)#ρ,

which means, by definition ofTanρ(P2(R
d)) and the action of tangent vectors, that the differential

dPf(T )(w) of Pf calculated atT along the directionw is given by∇ϕ. The fact that this map is an
isometry follows once again by the change of variable formula

∫
|w|2dρ =

∫
|w ◦ T−1|2dρ =

∫
|∇ϕ|2dρ.
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6.2 On the notion of tangent space

Aim of this section is to quickly discuss the definition of tangent space ofP2(R
d) at a certain

measureµ from a purely geometric perspective. We will see how this perspective is related to the
discussion made in Subsection 2.3.2, where we defined tangent space as

Tanµ(P2(R
d)) :=

{
∇ϕ : ϕ ∈ C∞

c (Rd)
}L2(Rd,Rd;µ)

.

Recall that this definition came from the characterization of absolutely continuous curves onP2(R
d)

(Theorem 2.29 and the subsequent discussion).
Yet, there is a completely different and purely geometricalapproach which leads to a definition

of tangent space atµ. The idea is to think the tangent space atµ as the “space of directions”, or,
which is the same, as the set of constant speed geodesics emanating fromµ. More precisely, let the
setGeod µ be defined by:

Geod µ :=
{ constant speed geodesics starting fromµ

and defined on some interval of the kind[0, T ]

}
/ ≈,

where we say that(µt) ≈ (µ′
t) provided they coincide on some right neighborhood of 0. The natural

distanceD onGeod µ is:

D
(
(µt), (µ

′
t)
)
:= lim

t↓0

W2(µt, µ
′
t)

t
. (6.1)

TheGeometric Tangent spaceTanµ(P2(R
d)) is then defined as the completion ofGeod µ w.r.t. the

distanceD.
The natural question here is: what is the relation between the “space of gradients”

Tanµ(P2(R
d)) and the “space of directions”Tanµ(P2(R

d))?
Recall that from Remark 1.22 we know that givenϕ ∈ C∞

c (Rd), the mapt 7→ (Id + t∇ϕ)#µ
is a constant speed geodesic on a right neighborhood of 0. This means that there is a natural mapιµ
from the set{∇ϕ : ϕ ∈ C∞

c } into Geod µ, and therefore intoTanµ(P2(R
d)), which sends∇ϕ into

the (equivalence class of the) geodesict 7→ (Id + t∇ϕ)#µ. The main properties of the Geometric
Tangent space and of this map are collected in the following theorem, which we state without proof.

Theorem 6.1 (The tangent space)Letµ ∈ P2(R
d). Then:

• the lim in (6.1) is always a limit,

• the metric space(Tanµ(P2(R
d)), D) is complete and separable,

• the mapιµ : {∇ϕ} → Tanµ(P2(R
d)) is an injective isometry, where on the source space

we put theL2 distance w.r.t.µ. Thus,ιµ always extends to a natural isometric embedding of
Tanµ(P2(R

d)) intoTanµ(P2(R
d)).

Furthermore, the following statements are equivalent:

i) the space(Tanµ(P2(R
d)), D) is an Hilbert space,

ii) the mapιµ : Tanµ(P2(R
d)) → Tanµ(P2(R

d)) is surjective,

iii) the measureµ is regular (definition 1.25).

We comment on the second part of the theorem. The first thing tonotice is that the “space of di-
rections”Tanµ(P2(R

d)) can be strictly larger than ‘the space of gradients’Tanµ(P2(R
d)). This

is actually not surprising if one thinks to the case in whichµ is a Dirac mass. Indeed in this situ-
ation the space(Tanµ(P2(R

d)), D) coincides with the space(P2(R
d),W2) (this can be checked
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directly from the definition), however, the spaceTanµ(P2(R
d)) is actually isometric toRd itself,

and is therefore much smaller.
The reason is that geodesics are not always induced by maps, that is, they are not always of the

form t 7→ (Id + tu)#µ for some vector fieldu ∈ L2
µ. To some extent, here we are facing the same

problem we had to face when starting the study of the optimal transport problem: maps are typically
not sufficient to produce (optimal) transports. From this perspective, it is not surprising that if the
measure we are considering is regular (that is, if for anyν ∈ P2(R

d) there exists a unique optimal
plan, and this plan is induced by a map), then the “space of directions” coincides with the “space of
directions induced by maps”.

6.3 Second order calculus

Now we pass to the description of the second order analysis over P2(R
d). The concepts that now

enter into play are: Covariant Derivative, Parallel Transport and Curvature. To some extent, the
situation is similar to the one we discussed in Subsection 2.3.2 concerning the first order structure: the
metric space(P2(R

d),W2) is not a Riemannian manifold, but if we are careful in giving definitions
and in the regularity requirements of the objects involved we will be able to perform calculations
very similar to those valid in a genuine Riemannian context.

Again, we are restricting the analysis to the Euclidean caseonly for simplicity: all of what comes
next can be generalized to the analysis overP2(M), for a generic Riemannian manifoldM .

On a typical course of basic Riemannian geometry, one of the first concepts introduced is that
of Levi-Civita connection, which identifies the only natural (“natural” here means: “compatible with
the Riemannian structure”) way of differentiating vector fields on the manifold. It would therefore
be natural to set up our discussion on the second order analysis onP2(R

d) by giving the definition
of Levi-Civita connection in this setting. However, this cannot be done. The reason is that we don’t
have a notion of smoothness for vector fields, therefore not only we don’t know how to covariantly
differentiate vector fields, but we don’t know either which are the vector fields regular enough to be
differentiated. In a purely Riemannian setting this problem does not appear, as a Riemannian man-
ifold borns as smooth manifold on which we define a scalar product on each tangent space; but the
spaceP2(R

d) does not have a smooth structure (there is no diffeomorphismof a small ball around
the origin inTanµ(P2(R

d)) onto a neighborhood ofµ in P2(R
d)). Thus, we have to proceed in a

different way, which we describe now:
Regular curvesfirst of all, we drop the idea of defining a smooth vector field onthe whole “mani-
fold”. We will rather concentrate on finding an appropriate definition of smoothness for vector fields
defined along curves. We will see that to do this, we will need to work with a particular kind of
curves, which we callregular, see Definition 6.2.
Smoothness of vector fields. We will then be able to define the smoothness of vector fields defined
along regular curves (Definition 6.5). Among others, a notion of smoothness of particular relevance
is that ofabsolutely continuousvector fields: for this kind of vector fields we have a natural notion
of total derivative(not to be confused with the covariant one, see Definition 6.6).
Levi-Civita connection. At this point we have all the ingredients we need to define thecovariant
derivative and to prove that it is the Levi-Civita connection onP2(R

d) (Definiton 6.8 and discussion
thereafter).
Parallel transport . This is the main existence result on this subject: we prove that along regular
curves the parallel transport always exists (Theorem 6.15). We will also discuss a counterexample to
the existence of parallel transport along a non-regular geodesic (Example 6.16). This will show that
the definition of regular curve is not just operationally needed to provide a definition of smoothness
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of vector fields, but is actually intrinsically related to the geometry ofP2(R
d).

Calculus of derivatives. Using the technical tools developed for the study of the parallel transport,
we will be able to explicitly compute the total and covariantderivatives of basic examples of vector
fields.
Curvature . We conclude the discussion by showing how the concepts developed can lead to a rigor-
ous definition of the curvature tensor onP2(R

d).

We will write ‖v‖µ and〈v, w〉µ for the norm of the vector fieldv and the scalar product of the
vector fieldsv, w in the spaceL2(µ) (which we will denote byL2

µ), respectively.
We now start with the definition of regular curve. All the curves we will consider are defined on

[0, 1], unless otherwise stated.

Definition 6.2 (Regular curve) Let (µt) be an absolutely continuous curve and let(vt) be its ve-
locity vector field, that is(vt) is the unique vector field - up to equality for a.e.t - such that
vt ∈ Tanµt(P2(R

d)) for a.e.t and the continuity equation

d

dt
µt +∇ · (vtµt) = 0,

holds in the sense of distributions (recall Theorem 2.29 andDefinition 2.31). We say that(µt) is
regular provided ∫ 1

0

‖vt‖2µt
dt <∞, (6.2)

and ∫ 1

0

Lip(vt)dt <∞. (6.3)

Observe that the validity of (6.3) is independent on the parametrization of the curve, thus if it is
fulfilled it is always possible to reparametrize the curve (e.g. with constant speed) in order to let it
satisfy also (6.2).

Now assume that(µt) is regular. Then by the classical Cauchy-Lipschitz theory we know that
there exists a unique family of mapsT(t, s, ·) : supp(µt) → supp(µs) satisfying

{
d

ds
T(t, s, x) = vs(T(t, s, x)), ∀t ∈ [0, 1], x ∈ supp(µt), a.e. s ∈ [0, 1],

T(t, t, x) = x, ∀t ∈ [0, 1], x ∈ supp(µt).
(6.4)

Also it is possible to check that these maps satisfy the additional properties

T(r, s, ·) ◦T(t, r, ·) = T(t, s, ·) ∀t, r, s ∈ [0, 1],
T(t, s, ·)#µt = µs, ∀t, s ∈ [0, 1].

We will call this family of maps theflow mapsof the curve(µt). Observe that for any couple
of timest, s ∈ [0, 1], the right composition withT(t, s, ·) provides a bijective isometry fromL2

µs
to

L2
µt

. Also, notice that from condition (6.2) and the inequalities

‖T(t, s, ·)−T(t, s′, ·)‖2µt
≤
∫ (∫ s′

s

vr(T(t, r, x))dr

)2

dµt(x)

≤ |s′ − s|
∫ s′

s

‖vr(x)‖2µr(x)
dr
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we get that for fixedt ∈ [0, 1], the maps 7→ T(t, s, ·) ∈ L2
µt

is absolutely continuous.
It can be proved that the set of regular curves is dense in the set of absolutely continuous curves

on P2(R
d) with respect to uniform convergence plus convergence of length. We omit the technical

proof of this fact and focus instead on the important case of geodesics:

Proposition 6.3 (Regular geodesics)Let (µt) be a constant speed geodesic on[0, 1]. Then its re-
striction to any interval[ε, 1 − ε], with ε > 0, is regular. In general, however, the whole curve(µt)
may be not regular on[0, 1].

Proof To prove that(µt) may be not regular just consider the case ofµ0 := δx andµ1 := 1
2 (δy1 +

δy2): it is immediate to verify that for the velocity vector field(vt) it holdsLip(vt) = t−1.
For the other part, recall from Remark 2.25 (see also Proposition 2.16) that fort ∈ (0, 1) and

s ∈ [0, 1] there exists a unique optimal mapT st fromµt toµs. It is immediate to verify from formula
(2.11) that these maps satisfy

T st − Id

s− t
=
T s

′

t − Id

s′ − t
, ∀t ∈ (0, 1), s ∈ [0, 1].

Thus, thanks to Proposition 2.32, we have thatvt is given by

vt = lim
s→t

T st − Id

s− t
=
Id− T 0

t

t
. (6.5)

Now recall that Remark 2.25 givesLip(T t0) ≤ (1− t)−1 to obtain

Lip(vt) ≤ t−1((1− t)−1 + 1) =
2− t

t(1− t)
.

Thust 7→ Lip(vt) is integrable on any interval of the kind[ε, 1− ε], ε > 0. �

Definition 6.4 (Vector fields along a curve)A vector field along a curve(µt) is a Borel map
(t, x) 7→ ut(x) such thatut ∈ L2

µt
for a.e.t. It will be denoted by(ut).

Observe that we are considering also non tangent vector fields, that is, we are not requiring
ut ∈ Tanµt(P2(R

d)) for a.e.t.
To define the (time) smoothness of a vector field(ut) defined along a regular curve(µt) we will

make an essential use of the flow maps: notice that the main problem in considering the smoothness
of (ut) is that for different times, the vectors belong to differentspaces. To overcome this obstruction
we will define the smoothness oft 7→ ut ∈ L2

µt
in terms of the smoothness oft 7→ ut ◦T(t0, t, ·) ∈

L2
µt0

:

Definition 6.5 (Smoothness of vector fields)Let (µt) be a regular curve,T(t, s, ·) its flow maps
and(ut) a vector field defined along it. We say that(ut) is absolutely continuous (orC1, orCn, . . .,
or C∞ or analytic) provided the map

t 7→ ut ◦T(t0, t, ·) ∈ L2
µt0

is absolutely continuous (orC1, or Cn, . . ., orC∞ or analytic) for everyt0 ∈ [0, 1].

Sinceut ◦T(t1, t, ·) = ut ◦T(t0, t, ·)◦T(t1, t0, ·) and the composition withT(t1, t0, ·) provides
an isometry fromL2

µt0
toL2

µt1
, it is sufficient to check the regularity oft 7→ ut ◦T(t0, t, ·) for some

t0 ∈ [0, 1] to be sure that the same regularity holds for everyt0.
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Definition 6.6 (Total derivative) With the same notation as above, assume that(ut) is an absolutely
continuous vector field. Its total derivative is defined as:

d

dt
ut := lim

h→0

ut+h ◦T(t, t+ h, ·)− ut
h

,

where the limit is intended inL2
µt

.

Observe that we are not requiring the vector field to be tangent, and that the total derivative is in
general a non tangent vector field, even if(ut) is.

The identity

lim
h→0

ut+h ◦T(t, t+ h, ·)− ut
h

=

(
lim
h→0

ut+h ◦T(t0, t+ h, ·)− ut ◦T(t0, t, ·)
h

)
◦T(t, t0, ·)

=

(
d

dt

(
ut ◦T(t0, t, ·)

))
◦T(t, t0, ·),

shows that the total derivative is well defined for a.e.t and that is anL1 vector field, in the sense that
it holds ∫ 1

0

∥∥∥∥
d

dt
ut

∥∥∥∥
µt

dt <∞.

Notice also the inequality

‖us ◦T(t, s, ·) − ut‖µt ≤
∫ s

t

∥∥∥∥
d

dt
(ur ◦T(t, r, ·))

∥∥∥∥
µt

dr =

∫ s

t

∥∥∥∥
d

dt
ur

∥∥∥∥
µr

dr.

An important property of the total derivative is theLeibnitz rule: for any couple of absolutely contin-
uous vector fields(u1t ), (u

2
t ) along the same regular curve(µt) the mapt 7→

〈
u1t , u

2
t

〉
µt

is absolutely
continuous and it holds

d

dt

〈
u1t , u

2
t

〉
µt

=

〈
d

dt
u1t , u

2
t

〉

µt

+

〈
u1t ,

d

dt
u2t

〉

µt

, a.e. t. (6.6)

Indeed, from the identity
〈
u1t , u

2
t

〉
µt

=
〈
u1t ◦T(t0, t, ·), u2t ◦T(t0, t, ·)

〉
µt0

,

it follows the absolute continuity, and the same expressiongives

d

dt

〈
u1t , u

2
t

〉
µt

=
d

dt

〈
u1t ◦T(t0, t, ·), u2t ◦T(t0, t, ·)

〉
µt0

=

〈
d

dt

(
u1t ◦T(t0, t, ·)

)
, u2t ◦T(t0, t, ·)

〉

µt0

+

〈
u1t ◦T(t0, t, ·),

d

dt

(
u2t ◦T(t0, t, ·)

)〉

µt0

=

〈
d

dt
u1t , u

2
t

〉

µt

+

〈
u1t ,

d

dt
u2t

〉

µt

.

Example 6.7 (The smooth case)Let (x, t) 7→ ξt(x) be aC∞
c vector field onRd, (µt) a regular

curve and(vt) its velocity vector field. Then the inequality

‖ξs ◦T(t, s, ·)− ξt‖µt ≤ ‖ξs − ξt‖µs + ‖ξt ◦T(t, s, ·)− ξt‖µt ≤ C|s− t|+C′‖T(t, s, ·)− Id‖µt ,
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with C := supt,x |∂tξt(x)|, C′ := supt,x |ξt(x)|, together with the fact thats 7→ T(t, s, ·) ∈ L2(µt)
is absolutely continuous, gives that(ξt) is absolutely continuous along(µt).

Then a direct application of the definition gives that its total derivative is given by

d

dt
ξt = ∂tξt +∇ξt · vt, a.e. t, (6.7)

which shows that the total derivative is nothing but theconvective derivativewell known in fluid
dynamics. �

Forµ ∈ P2(R
d), we denote byPµ : L2

µ → Tanµ(P2(R
d)) the orthogonal projection, and we

putP⊥
µ := Id− Pµ.

Definition 6.8 (Covariant derivative) Let(ut) be an absolutely continuous andtangentvector field
along the regular curve(µt). Its covariant derivative is defined as

D

dt
ut := Pµt

(
d

dt
ut

)
. (6.8)

The trivial inequality ∥∥∥∥
D

dt
ut

∥∥∥∥
µt

≤
∥∥∥∥
d

dt
ut

∥∥∥∥
µt

shows that the covariant derivative is anL1 vector field.
In order to prove that the covariant derivative we just defined is the Levi-Civita connection, we

need to prove two facts:compatibiliy with the metricand torsion free identity. Recall that on a
standard Riemannian manifold, these two conditions are respectively given by:

d

dt
〈X(γt), Y (γt)〉 =

〈
(∇γ′

t
X)(γt), Y (γt)

〉
+
〈
X(γt), (∇γ′

t
Y )(γt)

〉

[X,Y ] = ∇XY −∇YX,

whereX, Y are smooth vector fields andγ is a smooth curve onM .
The compatibility with the metric follows immediately fromthe Leibnitz rule (6.6), indeed if

(u1t ), (u
2
t ) are tangent absolutely continuous vector fields we have:

d

dt

〈
u1t , u

2
t

〉
µt

=

〈
d

dt
u1t , u

2
t

〉

µt

+

〈
u1t ,

d

dt
u2t

〉

µt

=

〈
Pµt

(
d

dt
u1t

)
, u2t

〉

µt

+

〈
u1t ,Pµt

(
d

dt
u2t

)〉

µt

=

〈
D

dt
u1t , u

2
t

〉

µt

+

〈
u1t ,

D

dt
u2t

〉

µt

.

(6.9)

To prove the torsion-free identity, we need first to understand how to calculate the Lie bracket of
two vector fields. To this aim, letµit, i = 1, 2, be two regular curves such thatµ1

0 = µ2
0 =: µ and let

uit ∈ Tanµi
t
(P2(R

d)) be twoC1 vector fields satisfyingu10 = v20 , u20 = v10 , wherevit are the velocity
vector fields ofµit. We assume that the velocity fieldsvit of µit are continuous in time (in the sense
that the mapt 7→ vitµ

i
t is continuous in the set of vector valued measure with the weak topology and

t 7→ ‖vit‖µi
t

is continuous as well), to be sure that (6.7) holds forall t with vt = vit and the initial
condition makes sense. With these hypotheses, it makes sense to consider the covariant derivative
D

dtu
2
t along(µ2

t ) at t = 0: for this derivative we write∇u1
0
u2t . Similarly for (u1t ).
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Let us consider vector fields as derivations, and the functionalµ 7→ Fϕ(µ) :=
∫
ϕdµ, for given

ϕ ∈ C∞
c (Rd). By the continuity equation, the derivative ofFϕ alongu2t is equal to

〈
∇ϕ, u2t

〉
µ2
t
,

therefore the compatibility with the metric (6.9) gives:

u1(u2(Fϕ))(µ) =
d

dt

〈
∇ϕ, u2t

〉
µ2
t
|t=0

=
〈
∇2ϕ · v20 , u20

〉
µ
+
〈
∇ϕ,∇u1

0
u2t

〉
µ

=
〈
∇2ϕ · u10, u20

〉
µ
+
〈
∇ϕ,∇u1

0
u2t

〉
µ
.

Subtracting the analogous termu2(u1(Fϕ))(µ) and using the symmetry of∇2ϕ we get

[u1, u2](Fϕ)(µ) =
〈
∇ϕ,∇u1

0
u2t −∇u2

0
u1t

〉
µ
.

Given that the set{∇ϕ}ϕ∈C∞
c

is dense inTanµ(P2(R
d)), the above equation characterizes[u1, u2]

as:
[u1, u2] = ∇u1

0
u2t −∇u2

0
u1t , (6.10)

which proves the torsion-free identity for the covariant derivative.

Example 6.9 (The velocity vector field of a geodesic)Let (µt) be the restriction to[0, 1] of a
geodesic defined in some larger interval(−ε, 1+ ε) and let(vt) be its velocity vector field. Then we
know by Proposition 6.3 that(µt) is regular. Also, from formula (6.5) it is easy to see that it holds

vs ◦T(t, s, ·) = vt, ∀t, s ∈ [0, 1],

and thus(vt) is absolutely continuous and satisfiesd

dtvt = 0 and a fortioriDdtvt = 0.
Thus, as expected, the velocity vector field of a geodesic haszero convariant derivative, in analogy

with the standard Riemannian case. Actually, it is interesting to observe that not only the covariant
derivative is 0 in this case, but also the total one. �

Now we pass to the question of parallel transport. The definition comes naturally:

Definition 6.10 (Parallel transport) Let (µt) be a regular curve. A tangent vector field(ut) along
it is a parallel transport if it is absolutely continuous and

D

dt
ut = 0, a.e. t.
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It is immediate to verify that the scalar product of two parallel transports is preserved in time,
indeed the compatibility with the metric (6.9) yields

d

dt

〈
u1t , u

2
t

〉
µt

=

〈
D

dt
u1t , u

2
t

〉

µt

+

〈
u1t ,

D

dt
u2t

〉

µt

= 0, a.e. t,

for any couple of parallel transports. In particular, this fact and the linearity of the notion of
parallel transport give uniqueness of the parallel transport itself, in the sense that for anyu0 ∈
Tanµ0(P2(R

d)) there exists at most one parallel transport(ut) along(µt) satisfyingu0 = u0.
Thus the problem is to show the existence. There is an important analogy, which helps under-

standing the proof, that we want to point out: we already knowthat the space(P2(R
d),W2) looks

like a Riemannian manifold, but actually it has also stronger similarities with a Riemannian manifold
M embedded in some bigger space (say, on some Euclidean spaceR

D), indeed in both cases:

• we have a natural presence of non tangent vectors: elements of L2
µ \ Tanµ(P2(R

d)) for
P2(R

d), and vectors inRD non tangent to the manifold for the embedded case.

• The scalar product in the tangent space can be naturally defined also for non tangent vectors:
scalar product inL2

µ for the spaceP2(R
d), and the scalar product inRD for the embedded

case. This means in particular that there are natural orthogonal projections from the set of
tangent and non tangent vectors onto the set of tangent vectors: Pµ : L2

µ → Tanµ(P2(R
d))

for P2(R
d) andPx : RD → TxM for the embedded case.

• The Covariant derivative of a tangent vector field is given byprojecting the “time derivative”
onto the tangent space. Indeed, for the spaceP2(R

d) we know that the covariant derivative is
given by formula (6.8), while for the embedded manifold it holds:

∇γ̇tut = Pγt

(
d

dt
ut

)
, (6.11)

wheret 7→ γt is a smooth curve andt 7→ ut ∈ TγtM is a smooth tangent vector field.

Given these analogies, we are going to proceed as follows: first we give a proof of the existence
of the parallel transport along a smooth curve in an embeddedRiemannian manifold, then we will
see how this proof can be adapted to the Wasserstein case: this approach should help highlighting
what’s the geometric idea behind the construction.

Thus, say thatM is a given smooth Riemannian manifold embedded onR
D, t 7→ γt ∈ M a

smooth curve on[0, 1] andu0 ∈ Tγ0M is a given tangent vector. Our goal is to prove the existence
of an absolutely continuous vector fieldt 7→ ut ∈ TγtM such thatu0 = u0 and

Pγt

(
d

dt
ut

)
= 0, a.e. t.

For anyt, s ∈ [0, 1], let trst : TγtR
D → TγsR

D be the natural translation map which takes a
vector with base pointγt (tangent or not to the manifold) and gives back the translated of this vector
with base pointγs. Notice that an effect of the curvature of the manifold and the chosen embedding
onRD, is thattrst (u) may be not tangent toM even ifu is. Now defineP st : TγtR

D → TγsM by

P st (u) := Pγs(tr
s
t (u)), ∀u ∈ TγtR

D.
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An immediate consequence of the smoothness ofM andγ are the two inequalities:

|trst (u)− P st (u)| ≤ C|u||s− t|, ∀t, s ∈ [0, 1] andu ∈ TγtM, (6.12a)

|P st (u)| ≤ C|u||s− t|, ∀t, s ∈ [0, 1] andu ∈ T⊥
γtM, (6.12b)

whereT⊥
γtM is the orthogonal complement ofTγtM in TγtR

D. These two inequalities are all we
need to prove existence of the parallel transport. The proofwill be constructive, and is based on the
identity:

∇γtP
t
0(u)|t=0

= 0, ∀u ∈ Tγ(0)M, (6.13)

which tells that the vectorsP t0(u) are a first order approximation att = 0 of the parallel transport.
Taking (6.11) into account, (6.13) is equivalent to

|P 0
t (tr

t
0(u)− P t0(u))| = o(t), u ∈ Tγ(0)M. (6.14)

Equation (6.14) follows by applying inequalities (6.12) (note thattrt0(u)− P t0(u) ∈ T⊥
γtM ):

|P 0
t (tr

t
0(u)− P t0(u))| ≤ Ct|trt0(u)− P t0(u)| ≤ C2t2|u|.

Now, letP be the direct set of all the partitions of[0, 1], where, forP , Q ∈ P, P ≥ Q if P is a
refinement ofQ. ForP = {0 = t0 < t1 < · · · < tN = 1} ∈ P andu ∈ Tγ0M defineP(u) ∈ Tγ1M
as:

P(u) := P tNtN−1
(P

tN−1

tN−2
(· · · (P t10 (u)))).

Our first goal is to prove that the limitP(u) for P ∈ P exists. This will naturally define a curve
t→ ut ∈ TγtM by taking partitions of[0, t] instead of[0, 1]: the final goal is to show that this curve
is actually the parallel transport ofu along the curveγ.

The proof is based on the following lemma.

Lemma 6.11 Let0 ≤ s1 ≤ s2 ≤ s3 ≤ 1 be given numbers. Then it holds:
∣∣P s3s1 (u)− P s3s2 (P

s2
s1 (u))

∣∣ ≤ C2|u||s1 − s2||s2 − s3|, ∀u ∈ Tγs1M.

Proof FromP s3s1 (u) = Pγs3 (tr
s3
s1(u)) = Pγs3 (tr

s3
s2(tr

s2
s1(u))) we get

P s3s1 (u)− P s3s2 (P
s2
s1 (u)) = P s3s2 (tr

s2
s1(u)− P s2s1 (u))

Sinceu ∈ Tγs1M andtrs2s1(u) − P s2s1 (u) ∈ T⊥
γs2
M , the proof follows applying inequalities (6.12).

�

From this lemma, an easy induction shows that for any0 ≤ s1 < · · · < sN ≤ 1 andu ∈ Tγs1M
we have

∣∣P sNs1 (u)− P sNsN−1
(P sN−1
sN−2

(· · · (P s2s1 (u))))
∣∣

≤
∣∣P sNs1 (u)− P sNsN−1

(P sN−1
s1 (u))

∣∣+
∣∣P sNsN−1

(P sN−1
s1 (u))− P sNsN−1

(P sN−1
sN−2

(· · · (P s2s1 (u))))
∣∣

≤ C2|u||sN1 − s1|!sN − sN−1|+
∣∣P sN−1
s1 (u)− P sN−1

sN−2
(· · · (P s2s1 (u)))

∣∣
≤ · · ·

≤ C2|u|
N−1∑

i=2

|s1 − si||si − si+1| ≤ C2|u||s1 − sN |2. (6.15)

With this result, we can prove existence of the limit ofP (u) asP varies inP.
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Theorem 6.12 For anyu ∈ Tγ0M there exists the limit ofP(u) asP varies inP.

Proof We have to prove that, givenε > 0, there exists a partitionP such that

|P(u)−Q(u)| ≤ |u|ε, ∀Q ≥ P . (6.16)

In order to do so, it is sufficient to find0 = t0 < t1 < · · · < tN = 1 such that
∑

i |ti+1−ti|2 ≤ ε/C2,
and repeatedly apply equation (6.15) to all partitions induced byQ in the intervals(ti, ti+1). �

Now, for s ≤ t we can introduce the mapsT st : TγtM → TγsM which associate to the vector
u ∈ TγtM the limit of the process just described taking into account partitions of [s, t] instead of
those of[0, 1].

Theorem 6.13 For anyt1 ≤ t2 ≤ t3 ∈ [0, 1] it holds

T t3t2 ◦ T t2t1 = T t3t1 . (6.17)

Moreover, for anyu ∈ Tγ0M the curvet → ut := T t0(u) ∈ TγtM is the parallel transport ofu
alongγ.

Proof For the group property, consider those partitions of[t1, t3] which containt2 and pass to the
limit first on [t1, t2] and then on[t2, t3]. To prove the second part of the statement, we prove first
that(ut) is absolutely continuous. To see this, pass to the limit in (6.15) withs1 = t0 andsN = t1,
u = ut0 to get

|P t1t0 (ut0)− ut1 | ≤ C2|ut0 |(t1 − t0)
2 ≤ C2|u|(t1 − t0)

2, (6.18)

so that from (6.12a) we get

|trt1t0(ut0)− ut1 | ≤ |trt1t0(ut0)− P t1t0 (ut0)|+ |P t1t0 (ut0)− ut1 | ≤ C|u||t1 − t0|(1 + C|t1 − t0|),

which shows the absolute continuity. Finally, due to (6.17), it is sufficient to check that the covariant
derivative vanishes at 0. To see this, putt0 = 0 andt1 = t in (6.18) to get|P t0(u)− ut| ≤ C2|u|t2,
so that the thesis follows from (6.13). �

Now we come back to the Wasserstein case. To follow the analogy with the Riemannian case,
keep in mind that the analogous of the translation maptrst is the right composition withT(s, t, ·),
and the analogous of the mapP st is

P
s
t (u) := Pµs(u ◦T(s, t, ·)),

which mapsL2
µt

ontoTanµs(P2(R
d)) We saw that the key to prove the existence of the parallel

transport in the embedded Riemannian case are inequalities(6.12). Thus, given that we want to im-
itate the approach in the Wasserstein setting, we need to produce an analogous of those inequalities.
This is the content of the following lemma.

We will denote byTan⊥µ (P2(R
d)) the orthogonal complement ofTanµ(P2(R

d)) in L2
µ.

Lemma 6.14 (Control of the angles between tangent spaces)Letµ, ν ∈ P2(R
d) andT : Rd →

R
d be any Borel map satisfyingT#µ = ν. Then it holds:

‖v ◦ T − Pµ(v ◦ T )‖µ ≤ ‖v‖νLip(T − Id), ∀v ∈ Tanν(P2(R
d)),

and, ifT is invertible, it also holds

‖Pµ(w ◦ T )‖µ ≤ ‖w‖νLip(T−1 − Id), ∀w ∈ Tan⊥ν (P2(R
d)).
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Proof We start with the first inequality, which is equivalent to

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ‖νLip(T − Id), ∀ϕ ∈ C∞
c (Rd). (6.19)

Let us suppose first thatT − Id ∈ C∞
c (Rd). In this case the mapϕ ◦ T is in C∞

c (Rd), too, and
therefore∇(ϕ ◦ T ) = ∇T · (∇ϕ) ◦ T belongs toTanµ(P2(R

d)). From the minimality properties
of the projection we get:

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇T · (∇ϕ) ◦ T ‖µ

=

(∫
|(I −∇T (x)) · ∇ϕ(T (x))|2dµ(x)

)1/2

≤
(∫

|∇ϕ(T (x))|2‖∇(Id− T )(x)‖2opdµ(x)
)1/2

≤ ‖∇ϕ‖νLip(T − Id),

whereI is the identity matrix and‖∇(Id − T )(x)‖op is the operator norm of the linear functional
fromR

d toR
d given byv 7→ ∇(Id− T )(x) · v.

Now turn to the general case, and we can certainly assume thatT is Lipschitz. Then, it is not
hard to see that there exists a sequence(Tn − Id) ⊂ C∞

c (Rd) such thatTn → T uniformly on
compact sets andlimn Lip(Tn − Id) ≤ Lip(T − Id). It is clear that for such a sequence it holds
‖T − Tn‖µ → 0, and we have

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇(ϕ ◦ Tn)‖µ
≤ ‖∇ϕ ◦ T −∇ϕ ◦ Tn‖µ + ‖∇ϕ ◦ Tn −∇(ϕ ◦ Tn)‖µ
≤ Lip(∇ϕ)‖T − Tn‖µ + ‖∇ϕ ◦ Tn‖µLip(Tn − Id).

Lettingn→ +∞ we get the thesis.
For the second inequality, just notice that

‖Pµ(w ◦ T )‖µ = sup
v∈Tanµ(P2(Rd))

‖v‖µ=1

〈w ◦ T, v〉µ = sup
v∈Tanµ(P2(Rd))

‖v‖µ=1

〈
w, v ◦ T−1

〉
ν

= sup
v∈Tanµ(P2(Rd))

‖v‖µ=1

〈
w, v ◦ T−1 − Pν(v ◦ T−1)

〉
ν
≤ ‖w‖νLip(T−1 − Id)

�

From this lemma and the inequality

Lip
(
T(s, t, ·)− Id

)
≤ e|

∫
s
t
Lip(vr)dr| − 1 ≤ C

∣∣∣∣
∫ s

t

Lip(vr)dr

∣∣∣∣ , ∀t, s ∈ [0, 1],

(whose simple proof we omit), whereC := e
∫

1
0
Lip(vr)dr − 1, it is immediate to verify that it holds:

‖u ◦T(s, t, ·)− P
s
t (u)‖µs ≤ C‖u‖µt

∣∣∣∣
∫ s

t

Lip(vr)dr

∣∣∣∣ , u ∈ Tanµt(P2(R
d)),

‖Ps
t (u)‖µs ≤ C‖u‖µt

∣∣∣∣
∫ s

t

Lip(vr)dr

∣∣∣∣ , u ∈ Tan⊥µt
(P2(R

d)).

(6.20)

These inequalities are perfectly analogous to the (6.12) (well, the only difference is that here the
bound on the angle isL1 in t, s while for the embedded case it wasL∞, but this does not really
change anything). Therefore the arguments presented before apply also to this case, and we can
derive the existence of the parallel transport along regular curves:
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Theorem 6.15 (Parallel transport along regular curves)Let (µt) be a regular curve andu0 ∈
Tanµ0(P2(R

d)). Then there exists a parallel transport(ut) along(µt) such thatu0 = u0.

Now, we know that the parallel transport exists along regular curves, and we know also that
regular curves are dense, it is therefore natural to try to construct the parallel transport along any
absolutely continuous curve via some limiting argument. However, this cannot be done, as the fol-
lowing counterexample shows:

Example 6.16 (Non existence of parallel transport along a non regular geodesic) Let
Q = [0, 1] × [0, 1] be the unit square inR2 and letTi, i = 1, 2, 3, 4, be the four open trian-
gles in whichQ is divided by its diagonals. Letµ0 := χQL

2 and define the functionv : Q → R
2

as the gradient of the convex mapmax{|x|, |y|}, as in the figure. Set alsow = v⊥, the rotation by
π/2 of v, inQ andw = 0 out ofQ. Notice that∇ · (wµ0) = 0.

Setµt := (Id + tv)#µ0 and observe that, for positivet, the supportQt of µt is made of 4
connected components, each one the translation of one of thesetsTi, and thatµt = χQtL

2.

It is immediate to check that(µt) is a geodesic in[0,∞), so that from 6.3 we know that the
restriction ofµt to any interval[ε, 1] with ε > 0 is regular. Fixε > 0 and note that, by construction,
the flow maps ofµt in [ε, 1] are given by

T(t, s, ·) = (Id+ sv) ◦ (Id+ tv)−1, ∀t, s ∈ [ε, 1].

Now, setwt := w ◦ T(t, 0, ·) and notice thatwt is tangent atµt (becausewt is constant in the
connected components of the support ofµt, so we can define aC∞

c function to be affine on each
connected component and with gradient given bywt, and then use the space between the components
themselves to rearrange smoothly the function). Sincewt+h ◦T(t, t+h, ·) = wt, we haved

dtwt = 0

and a fortioriDdtwt = 0. Thus(wt) is a parallel transport in[ε, 1]. Furthermore, since∇· (wµ0) = 0,
we havew0 = w /∈ Tanµ0(P2(R

2)). Therefore there is no way to extendwt to a continuoustangent
vector field on the whole[0, 1]. In particular, there is no way to extend the parallel transport up to
t = 0. �

Now we pass to the calculus of total and covariant derivatives. Let(µt) be a fixed regular curve
and let(vt) be its velocity vector field. Start observing that, if(ut) is absolutely continuous along
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(µt), then(Pµt(ut)) is absolutely continuous as well, as it follows from the inequality
∥∥∥
(
Pµs(us)

)
◦T(t, s, ·)− Pµt(ut)

∥∥∥
µt

≤
∥∥∥
(
Pµs(us)

)
◦T(t, s, ·)− Pµt

((
Pµs(us)

)
◦T(t, s, ·)

)∥∥∥
µt

+
∥∥∥Pµt

((
Pµs(us)

)
◦T(t, s, ·)

)
− Pµt

(
us ◦T(t, s, ·)

)∥∥∥
µt

+ ‖Pµt(us ◦T(t, s, ·))− Pµt(ut)‖µt

≤
∥∥∥P⊥

µt

(
Pµs(us) ◦T(t, s, ·)

)∥∥∥
µt

+
∥∥∥Pµt

(
P⊥
µs
(us) ◦T(t, s, ·)

)∥∥∥
µt

+ ‖us ◦T(t, s, ·)− ut‖µt

(6.20)
≤ 2SC

∫ s

t

Lip(vr)dr +

∫ s

t

∥∥∥∥
d

dr
ur

∥∥∥∥
µr

dr,

(6.21)

valid for anyt ≤ s, whereS := supt ‖ut‖µt . Thus(Pµt(ut)) has a well defined covariant derivative
for a.e.t. The question is: can we find a formula to express this derivative?

To compute it, apply the Leibniz rule for the total and covariant derivatives ((6.6) and (6.9)), to
get that for a.e.t ∈ [0, 1] it holds

d

dt
〈Pµt(ut),∇ϕ〉µt

=

〈
D

dt
Pµt(ut),∇ϕ

〉

µt

+

〈
Pµt(ut),

D

dt
∇ϕ
〉

µt

,

d

dt
〈ut,∇ϕ〉µt

=

〈
d

dt
ut,∇ϕ

〉

µt

+

〈
ut,

d

dt
∇ϕ
〉

µt

.

Since∇ϕ ∈ Tanµt(P2(R
d)) for any t, it holds〈Pµt(ut),∇ϕ〉µt

= 〈ut,∇ϕ〉µt
for anyt ∈ [0, 1],

and thus the left hand sides of the previous equations are equal for a.e.t. Recalling formula (6.7) we
have d

dt∇ϕ = ∇2ϕ · vt and D

dt∇ϕ = Pµt(∇2ϕ · vt), thus from the equality of the right hand sides
we obtain
〈
D

dt
Pµt(ut),∇ϕ

〉

µt

=

〈
d

dt
ut,∇ϕ

〉

µt

+
〈
ut,∇2ϕ · vt

〉
µt

−
〈
Pµt(ut),Pµt(∇2ϕ · vt)

〉
µt

=

〈
d

dt
ut,∇ϕ

〉

µt

+
〈
P⊥
µt
(ut),P

⊥
µt
(∇2ϕ · vt)

〉
µt
.

(6.22)

This formula characterizes the scalar product ofD

dtPµt(ut) with any∇ϕ whenϕ varies onC∞
c (Rd).

Since the set{∇ϕ} is dense inTanµt(P2(R
d)) for any t ∈ [0, 1], the formula actually identifies

D

dtPµt(ut).
However, from this expression it is unclear what is the valueof

〈
D

dtPµt(ut), w
〉
µt

for a general

w ∈ Tanµt(P2(R
d)), because some regularity of∇ϕ seems required to compute∇2ϕ · vt. In order

to better understand what the value ofD

dtPµt(ut) is, fix t ∈ [0, 1] and assume for a moment that
vt ∈ C∞

c (Rd). Then compute the gradient ofx 7→ 〈∇ϕ(x), vt(x)〉 to obtain

∇〈∇ϕ, vt〉 = ∇2ϕ · vt +∇vtt · ∇ϕ,

and consider this expression as an equality between vector fields inL2
µt

. Taking the projection onto
the Normal space we derive

P⊥
µt
(∇2ϕ · vt) + P⊥

µt
(∇vtt · ∇ϕ) = 0.
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Plugging the expression forP⊥
µt
(∇2ϕ · vt) into the formula for the covariant derivative we get

〈
D

dt
Pµt(ut),∇ϕ

〉

µt

=

〈
d

dt
ut,∇ϕ

〉

µt

−
〈
P⊥
µt
(ut),P

⊥
µt
(∇vtt · ∇ϕ)

〉
µt

=

〈
d

dt
ut,∇ϕ

〉

µt

−
〈
∇vt · P⊥

µt
(ut),∇ϕ

〉
µt
,

which identifiesDdtPµt(ut) as

D

dt
Pµt(ut) = Pµt

(
d

dt
ut −∇vt · P⊥

µt
(ut)

)
. (6.23)

We found this expression assuming thatvt was a smooth vector field, but given that we know that
D

dtPµt(ut) exists for a.e.t, it is realistic to believe that the expression makes sense also for general
Lipschitzvt’s. The problem is that the object∇vt may very well be not definedµt-a.e. for arbitrary
µt and Lipschitzvt (Rademacher’s theorem is of no help here, because we are not assuming the
measuresµt to be absolutely continuous w.r.t. the Lebesgue measure). To give a meaning to formula
(6.23) we need to introduce a new tensor.

Definition 6.17 (The Lipschitz non Lipschitz space)Letµ ∈ P2(R
d). The setLNLµ ⊂ [L2

µ]
2 is

the set of couples of vector fields(u, v) such thatmin{Lip(u),Lip(v)} < ∞, i.e. the set of couples
of vectors such that at least one of them is Lipschitz.

We say that a sequence(un, vn) ∈ LNLµ converges to(u, v) ∈ LNLµ provided‖un−u‖µ → 0,
‖vn − v‖µ → 0 and

sup
n

min{Lip(un),Lip(vn)} <∞.

The following theorem holds:

Theorem 6.18 (The Normal tensor)Letµ ∈ P2(R
d). The map

Nµ(u, v) : [C
∞
c (Rd,Rd)]2 → Tan⊥µ (P2(R

d)),
(u, v) 7→ P⊥

µ (∇ut · v)

extends uniquely to a sequentially continuous bilinear andantisymmetric map, still denoted byNµ,
from LNLµ in Tan⊥µ (P2(R

d)) for which the bound

‖Nµ(u, v)‖µ ≤ min{Lip(u)‖v‖µ,Lip(v)‖u‖µ}, (6.24)

holds.

Proof Foru, v ∈ C∞
c (Rd,Rd) we have∇〈u, v〉 = ∇ut · v +∇vt · u so that taking the projections

onTan⊥µ (P2(R
d)) we get

Nµ(u, v) = −Nµ(v, u) ∀u, v ∈ C∞
c (Rd,Rd).

In this case, the bound (6.24) is trivial.
To prove existence and uniqueness of the sequentially continuous extension, it is enough to show

that for any given sequencen 7→ (un, vn) ∈ [C∞
c (Rd,Rd)]2 converging to some(u, v) ∈ LNLµ, the

sequencen 7→ Nµ(un, vn) ∈ Tan⊥µ (P2(R
d)) is a Cauchy sequence. Fix such a sequence(un, vn),

letL := supnmin{Lip(un),Lip(vn)}, I ⊂ N be the set of indexesn such thatLip(un) ≤ L and fix
two smooth vectors̃u, ṽ ∈ C∞

c (Rd,Rd).
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Notice that forn,m ∈ I it holds

‖Nµ(un, vn)−Nµ(um, vm)‖µ ≤ ‖Nµ(un, vn − ṽ)‖µ + ‖Nµ(un − um, ṽ)‖µ + ‖Nµ(um, ṽ − vm)‖µ
≤ L‖vn − ṽ‖µ + Lip(ṽ)‖un − um‖µ + L‖vm − ṽ‖µ,

and thus
lim

n,m→∞
n,m∈I

‖Nµ(un, vn)−Nµ(um, vm)‖µ ≤ 2L‖v − ṽ‖µ,

(this expression being vacuum ifI is finite). If n ∈ I andm /∈ I we haveLip(vm) ≤ L and

‖Nµ(un, vn)−Nµ(um, vm)‖µ
≤ ‖Nµ(un, vn − ṽ)‖µ + ‖Nµ(un − ũ, ṽ)‖µ + ‖Nµ(ũ, ṽ − vm)‖µ + ‖Nµ(ũ− um, vm)‖µ
≤ L‖vn − ṽ‖µ + Lip(ṽ)‖un − ũ‖µ + Lip(ũ)‖ṽ − vm‖µ + L‖um − ũ‖µ,

which gives

lim
n,m→∞

n∈I, m/∈I

‖Nµ(un, vn)−Nµ(um, vm)‖µ ≤ L‖v − ṽ‖µ + L‖u− ũ‖µ.

Exchanging the roles of theu’s and thev’s in these inequalities for the case in whichn /∈ I we can
conclude

lim
n,m→∞

‖Nµ(un, vn)−Nµ(um, vm)‖µ ≤ 2L‖v − ṽ‖µ + 2L‖u− ũ‖µ.

Sinceũ, ṽ are arbitrary, we can let̃u → u andṽ → v in L2
µ and conclude thatn 7→ Nµ(un, vn) is a

Cauchy sequence, as requested.
The other claims follow trivially by the sequential continuity. �

Definition 6.19 (The operatorsOv (·) and O∗
v (·)) Let µ ∈ P2(R)

d and v ∈ L2
µ with Lip(v) <

∞. Then the operatoru 7→ Ov (u) is defined by

Ov (u) := Nµ(v, u).

The operatoru 7→ O∗
v (u) is the adjoint ofOv (·), i.e. it is defined by

〈O∗
v (u) , w〉µ = 〈u,Ov (w)〉µ , ∀w ∈ L2

µ.

It is clear that the operator norm ofOv (·) andO∗
v (·) is bounded byLip(v). Observe that in

writing Ov (u), O∗
v (u) we are losing the reference to the base measureµ, which certainly plays a

role in the definition; this simplifies the notation and hopefully should create no confusion, as the
measure we are referring to should always be clear from the context. Notice that ifv ∈ C∞

c (Rd,Rd)
these operators read as

Ov (u) = P⊥
µ (∇vt · u),

O∗
v (u) = ∇v · P⊥

µ (u).

The introduction of the operatorsOv (·) andO∗
v (·) allows to give a precise meaning to formula (6.23)

for general regular curves:

Theorem 6.20 (Covariant derivative ofPµt(ut)) Let (µt) be a regular curve,(vt) its velocity vec-
tor field and let(ut) be an absolutely continuous vector field along it. Then(Pµt(ut)) is absolutely
continuous as well and for a.e.t it holds

D

dt
Pµt(ut) = Pµt

(
d

dt
ut −O∗

vt (ut)

)
. (6.25)
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Proof The fact that(Pµt(ut)) is absolutely continuous has been proved with inequality (6.21). To
get the thesis, start from equation (6.22) and conclude noticing that for a.e.t it holdsLip(vt) < ∞
and thus

P⊥
µt
(∇2ϕ · vt) = Nµ(∇ϕ, vt) = −Nµ(vt,∇ϕ) = −Ovt (∇ϕ) .

�

Corollary 6.21 (Total derivatives ofPµt(ut) andP⊥
µt
(ut)) Let (µt) be a regular curve, let(vt) be

its velocity vector field and let(ut) be an absolutely continuous vector field along it. Then(P⊥
µt
(ut))

is absolutely continuous and it holds

d

dt
Pµt(ut) = Pµt

(
d

dt
ut

)
− Pµt

(
O∗
vt (ut)

)
−Ovt (Pµt(ut)) ,

d

dt
P⊥
µt
(ut) = P⊥

µt

(
d

dt
ut

)
+ Pµt

(
O∗
vt (ut)

)
+Ovt (Pµt(ut)) .

(6.26)

Proof The absolute continuity of(P⊥
µt
(ut)) follows from the fact that both(ut) and(Pµt(ut)) are

absolutely continuous. Similarly, the second formula in (6.26) follows immediately from the first one
noticing thatut = Pµt(ut) + P⊥

µt
(ut) yields d

dtut =
d

dtPµt(ut) +
d

dtP
⊥
µt
(ut). Thus we have only

to prove the first equality in (6.26). To this aim, let(wt) be an arbitrary absolutely continuous vector
field along(µt) and observe that it holds

d

dt
〈Pµt(ut), wt〉µt

=

〈
d

dt
Pµt(ut), wt

〉

µt

+

〈
Pµt(ut),

d

dt
wt

〉

µt

,

d

dt
〈Pµt(ut),Pµt(wt)〉µt

=

〈
D

dt
Pµt(ut),Pµt(wt)

〉

µt

+

〈
Pµt(ut),

D

dt
Pµt(wt)

〉

µt

.

Since the left hand sides of these expression are equal, the right hand sides are equal as well, thus we
get

〈
d

dt
Pµt(ut)−

D

dt
Pµt(ut), wt

〉

µt

= −
〈
Pµt(ut),

d

dt
wt −

D

dt
Pµt(wt)

〉

µt

= −
〈
Pµt(ut),Pµt

( d

dt
wt

)
− D

dt
Pµt(wt)

〉

µt

(6.25)
= −

〈
Pµt(ut),O∗

vt (wt)
〉
µt

= −〈Ovt (Pµt(ut)) , wt〉µt
,

so that the arbitrariness of(wt) gives

d

dt
Pµt(ut) =

D

dt
Pµt(ut)−Ovt (Pµt(ut)) ,

and the conclusion follows from (6.25). �

Along the same lines, the total derivative of(Nµt(ut, wt)) for given absolutely continuous vector
fields(ut), (wt) along the same regular curve(µt) can be calculated. The only thing the we must take
care of, is the fact thatNµt is not defined on the whole[L2

µt
]2, so that we need to make some assump-

tions on(ut), (wt) to be sure that(Nµt(ut, wt)) is well defined and absolutely continuous. Indeed,
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observe that from a purely formal point of view, we expect that the total derivative of(Nµt(ut, wt))
is something like

d

dt
Nµt(ut, wt) = Nµt

(
d

dt
ut, wt

)
+Nµt

(
ut,

d

dt
wt

)
+




some tensor - which we may think
as the derivative ofNµt -
applied to the couple(ut, wt)


 .

Forget about the last object and look at the first two addends:given that the domain of definition of
Nµt is not the whole[L2

µt
]2, in order for the above formula to make sense, we should ask that in each

of the couples( d

dtut, wt) and(ut, d

dtwt), at least one vector is Lipschitz. Under the assumption that

{
∫ 1

0
Lip(ut)dt < ∞ and

∫ 1

0
Lip( d

dtut)dt < +∞ }, it is possible to prove the following theorem
(whose proof we omit).

Theorem 6.22 Let(µt) be an absolutely continuous curve, let(vt) be its velocity vector field and let
(ut), (wt) be two absolutely continuous vector fields along it. Assume that

∫ 1

0
Lip(ut)dt < ∞ and∫ 1

0 Lip( d

dtut)dt < +∞. Then(Nµt(ut, wt)) is absolutely continuous and it holds

d

dt
Nµt(ut, wt) =Nµt

(
d

dt
ut, wt

)
+Nµt

(
ut,

d

dt
wt

)

−Ovt (Nµt(ut, wt)) + Pµt

(
O∗
vt (Nµt(ut, wt))

)
.

(6.27)

Corollary 6.23 Let (µt) be a regular curve and assume that its velocity vector field(vt) satisfies:
∫ 1

0

Lip

(
d

dt
vt

)
dt <∞. (6.28)

Then for every absolutely continuous vector field(ut) both(Ovt (ut)) and(O∗
vt (ut)) are absolutely

continuous and their total derivatives are given by:

d

dt
Ovt (ut) = O d

dt vt
(ut) +Ovt

(
d

dt
ut

)
−Ovt (Ovt (ut)) + Pµt

(
O∗
vt (Ovt (ut))

)

d

dt
O∗
vt (ut) = O∗

d

dt vt
(ut) +O∗

vt

(
d

dt
ut

)
−O∗

vt

(
O∗
vt (ut)

)
+O∗

vt (Ovt (Pµt(ut)))

(6.29)

Proof The first formula follows directly from Theorem 6.22, the second from the fact thatO∗
vt (·) is

the adjoint ofOvt (·). �

An important feature of equations (6.27) and (6.29) is that to express the derivatives of
(Nµt(ut, wt)), (Ovt (ut)) and(O∗

vt (ut)) no “new operators appear”. This implies that we can re-
cursively calculate derivatives of any order of the vector fields(Pµt(ut)), (P

⊥
µt
(ut)), Ovt (ut) and

O∗
vt (ut), provided - of course - that we make appropriate regularity assumptions on the vector field

(ut) and on the velocity vector field(vt). An example of result which can be proved following this
direction is that the operatort 7→ Pµt(·) is analytic along (the restriction of) a geodesic:

Proposition 6.24 (Analyticity of t 7→ Pµt(·)) Let (µt) be the restriction to[0, 1] of a geodesic de-
fined in some larger interval[−ε, 1 + ε]. Then the operatort 7→ Pµt(·) is analytic in the following
sense. For anyt0 ∈ [0, 1] there exists a sequence of bounded linear operatorsAn : L2

µt0
→ L2

µt0

such that the following equality holds in a neighborhood oft0

Pµt(u) =
∑

n∈N

(t− t0)
n

n!
An
(
u ◦T(t0, t, ·)

)
◦T(t, t0, ·), ∀u ∈ L2

µt
. (6.30)
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Proof From the fact that(µt) is the restriction of a geodesic we know thatL := supt∈[0,1] Lip(vt) <

∞ and thatddtvt = 0 (recall Example 6.9). In particular condition (6.28) is fulfilled.
Fix t0 ∈ [0, 1], u ∈ L2

µt0
and defineut := u ◦ T(t, t0, ·), so that ddtut = 0. From equations

(6.26) and (6.29) and by induction it follows that(Pµt(ut)) is C∞. Also, d
n

dtnPµt(ut) is the sum of
addends each of which is the composition of projections ontothe tangent or normal space and up
to n operatorsOvt (·) andO∗

vt (·), applied to the vectorut. Since the operator norm ofOvt (·) and
O∗
vt (·) is bounded byL, we deduce that

∥∥∥∥
dn

dtn
Pµt(ut)

∥∥∥∥
µt

≤ ‖ut‖µtL
n = ‖u‖µt0

Ln, ∀n ∈ N, t ∈ [0, 1].

Defining the curvet 7→ Ut := Pµt(ut) ◦T(t0, t, ·) ∈ L2
µt0

, the above bound can be written as

∥∥∥∥
dn

dtn
Ut

∥∥∥∥
µt0

≤ ‖Ut0‖µt0
Ln, ∀n ∈ N, t ∈ [0, 1],

which implies that the curvet 7→ Ut ∈ L2
µt0

is analytic. This means that fort close tot0 it holds

Pµt(ut) ◦T(t0, t, ·) =
∑

n≥0

(t− t0)
n

n!

dn

dtn |t=t0(Pµt(ut)).

Now notice that equations (6.26) and (6.29) and the fact thatd

dtut ≡ 0 ensure that
d
n

dtn |t=t0(Pµt(ut)) = An(u), whereAn : L2
µt0

→ L2
µt0

is bounded. Thus the thesis follows by

the arbitrariness ofu ∈ L2
µt0

. �

Now we have all the technical tools we need in order to study the curvature tensor of the “mani-
fold” P2(R

d).
Following the analogy with the Riemannian case, we are lead to define the curvature tensor in the

following way: given three vector fieldsµ 7→ ∇ϕiµ ∈ Tanµ(P2(R
d)), i = 1, . . . , 3, the curvature

tensorR calculated on them at the measureµ is defined as:

R(∇ϕ1
µ,∇ϕ2

µ)(∇ϕ3
µ) := ∇∇ϕ2

µ
(∇∇ϕ1

µ
∇ϕ3

µ)−∇∇ϕ1
µ
(∇∇ϕ2

µ
∇ϕ3

µ) +∇[∇ϕ1
µ,∇ϕ

2
µ]
∇ϕ3

µ,

where the objects like∇∇ϕµ(∇ψµ), are, heuristically speaking, the covariant derivative ofthe vector
field µ 7→ ∇ψµ along the vector fieldµ 7→ ∇ϕµ.

However, in order to give a precise meaning to the above formula, we should be sure, at least,
that the derivatives we are taking exist. Such an approach ispossible, but heavy: indeed, consider
that we should define what areC1 andC2 vector fields, and in doing so we cannot just consider
derivatives along curves. Indeed we would need to be sure that “the partial derivatives have the right
symmetries”, otherwise there won’t be those cancellationswhich let the above operator be a tensor.

Instead, we adopt the following strategy:

• First we calculate the curvature tensor for some very specific kind of vector fields, for which
we are able to do and justify the calculations. Specifically,we will consider vector fields of the
kind µ 7→ ∇ϕ, where the functionϕ ∈ C∞

c (M) does not depend on the measureµ.

• Then we prove that the object found is actually a tensor, i.e.that its value depends only on the
µ−a.e. value of the considered vector fields, and not on the factthat we obtained the formula
assuming that the functionsϕ’s were independent on the measure.
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• Finally, we discuss the minimal regularity requirements for the object found to be well defined.

Pick ϕ, ψ ∈ C∞
c (Rd) and observe that a curve of the kindt 7→ (Id + t∇ϕ)#µ is a regular

geodesic on an interval[−T, T ] for T sufficiently small (Remark 1.22 and Proposition 6.3). It is
then immediate to verify that a vector field of the kind(∇ψ) along it isC∞. Its covariant derivative
calculated att = 0 is given byPµ(∇2ψ · ∇ϕ). Thus we write:

∇∇ϕ∇ψ := Pµ(∇2ψ · ∇ϕ) ∀ϕ, ψ ∈ C∞
c (Rd). (6.31)

Proposition 6.25 Let µ ∈ P2(R
d) and ϕ1, ϕ2, ϕ3 ∈ C∞

c (Rd). The curvature tensorR in µ
calculated for the 3 vector fields∇ϕi, i = 1, 2, 3 is given by

R(∇ϕ1,∇ϕ2)∇ϕ3 =Pµ

(
O∗

∇ϕ2
(Nµ(∇ϕ1,∇ϕ3))

−O∗
∇ϕ1

(Nµ(∇ϕ2,∇ϕ3)) + 2O∗
∇ϕ3

(Nµ(∇ϕ1,∇ϕ2))

)
.

(6.32)

Proof We start computing the value of∇∇ϕ2∇∇ϕ1∇ϕ3. Let µt := (Id + t∇ϕ2)#µ and observe,
as just recalled, that(µt) is a regular geodesic in some symmetric interval[−T, T ]. The vector field
∇2ϕ3 · ∇ϕ1 is clearlyC∞ along it, thus by Proposition 6.24 also the vector fieldut := Pµt(∇2ϕ3 ·
∇ϕ1) = ∇∇ϕ1∇ϕ3(µt) isC∞. The covariant derivative att = 0 of (ut) along(µt) is, by definition,
the value of∇∇ϕ2∇∇ϕ1∇ϕ3 atµ. Applying formula (6.25) we get

∇∇ϕ2∇∇ϕ1∇ϕ3 = Pµ
(
∇(∇2ϕ3 · ∇ϕ1) · ∇ϕ2 −∇2ϕ2 · P⊥

µ (∇2ϕ3 · ∇ϕ1)
)
. (6.33)

Symmetrically, it holds

∇∇ϕ1∇∇ϕ2∇ϕ3 = Pµ
(
∇(∇2ϕ3 · ∇ϕ2) · ∇ϕ1 −∇2ϕ1 · P⊥

µ (∇2ϕ3 · ∇ϕ2)
)
. (6.34)

Finally, from the torsion free identity (6.10) we have

[∇ϕ1,∇ϕ2] = Pµ(∇2ϕ1 · ∇ϕ2 −∇2ϕ2 · ∇ϕ1),

and thus
∇[∇ϕ1,∇ϕ2]∇ϕ3 = Pµ

(
∇2ϕ3 ·

(
Pµ(∇2ϕ1 · ∇ϕ2 −∇2ϕ2 · ∇ϕ1)

))
. (6.35)

Subtracting (6.35) and (6.34) from (6.33) and observing that

∇(∇2ϕ3 · ∇ϕ1) · ∇ϕ2 −∇(∇2ϕ3 · ∇ϕ2) · ∇ϕ1 = ∇2ϕ3 · ∇2ϕ1 · ∇ϕ2 −∇2ϕ3 · ∇2ϕ2 · ∇ϕ1,

we get the thesis. �

Observe that equation (6.32) is equivalent to

〈R(∇ϕ1,∇ϕ2)∇ϕ3,∇ϕ4〉µ= 〈Nµ(∇ϕ1,∇ϕ3),Nµ(∇ϕ2,∇ϕ4)〉µ
− 〈Nµ(∇ϕ2,∇ϕ3),Nµ(∇ϕ1,∇ϕ4)〉µ
+ 2 〈Nµ(∇ϕ1,∇ϕ2),Nµ(∇ϕ3,∇ϕ4)〉µ,

(6.36)

for anyϕ4 ∈ C∞
c (M). From this formula it follows immediately that the operatorR is actually a

tensor:

Proposition 6.26 Letµ ∈ P2(R
d). The curvature operator, given by formula(6.36), is a tensor on

[{∇ϕ}]4, i.e. its value depends only on theµ−a.e. value of the 4 vector fields.

Proof Clearly the left hand side of equation (6.36) is a tensor w.r.t. the fourth entry. The conclusion
follows from the symmetries of the right hand side. �
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We remark that from (6.36) it follows thatR has all the expected symmetries.
Concerning the domain of definition of the curvature tensor,the following statement holds, whose

proof follows from the properties of the normal tensorNµ:

Proposition 6.27 Letµ ∈ P2(R
d). Then the curvature tensor, thought as map from[{∇ϕ}]4 to R

given by(6.36), extends uniquely to a sequentially continuous map on the set of 4-ples of vector fields
in L2

µ in which at least 3 vector fields are Lipschitz, where we say that (v1n, v
2
n, v

3
n, v

4
n) is converging

to (v1, v2, v3, v4) if there is convergence inL2
µ on each coordinate and

sup
n

Lip(vin) <∞,

for at least 3 indexesi.

Thus, in order for the curvature tensor to be well defined we need at least 3 of the 4 vector fields
involved to be Lipschitz. However, for some related notion of curvature the situation simplifies. Of
particular relevance is the case of sectional curvature:

Example 6.28 (The sectional curvature)If we evaluate the curvature tensorR on a 4-ple of vectors
of the kind(u, v, u, v) and we recall the antisymmetry ofNµ we obtain

〈R(u, v)u, v〉µ = 3 ‖Nµ(u, v)‖2µ .

Thanks to the simplification of the formula, the value of〈R(u, v)u, v〉µ is well defined as soon as
eitheru or v is Lipschitz. That is,〈R(u, v)u, v〉µ is well defined for(u, v) ∈ LNLµ. In analogy with
the Riemannian case we can therefore define the sectional curvatureK(u, v) at the measureµ along
the directionsu, v by

K(u, v) :=
〈R(u, v)u, v〉µ

‖u‖2µ‖v‖2µ − 〈u, v〉2µ
=

3 ‖Nµ(u, v)‖2µ
‖u‖2µ‖v‖2µ − 〈u, v〉2µ

, ∀(u, v) ∈ LNLµ.

This expression confirms the fact that the sectional curvatures ofP2(R
d) are positive (coherently

with Theorem 2.20), and provides a rigorous proof of the analogous formula already appeared in [67]
and formally computed using O’Neill formula. �

6.4 Bibliographical notes

The idea of looking at the Wasserstein space as a sort of infinite dimensional Riemannian manifold
is due to F. Otto and given in his seminal paper [67]. The wholediscussion in Section 6.1 is directly
taken from there.

The fact that the ‘tangent space made of gradients’Tanµ(P2(R
d)) was not sufficient to study

all the aspects of the ‘Riemannian geometry’ of(P2(R
d),W2) has been understood in [6] in con-

nection with the definition of subdifferential of a geodesically convex functional, in particular con-
cerning the issue of having a closed subdifferential. In theappendix of [6] the concept of Geometric
Tangent space discussed in Section 6.2 has been introduced.Further studies on the properties of
Tanµ(P2(M)) have been made in [43]. Theorem 6.1 has been proved in [46].

The first work in which a description of the covariant derivative and the curvature tensor of
(P2(M),W2),M being a compact Riemannian manifold has been given (beside the formal calculus
of the sectional curvature via O’Neill formula done alreadyin [67]) is the paper of J. Lott [56]:
rigorous formulas are derived for the computation of such objects on the ‘submanifold’PC∞(M)
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made of absolutely continuous measures with densityC∞ and bounded away from 0. In the same
paper Lott shows that ifM has a Poisson structure, then the same is true forPC∞(M) (a topic which
has not been addressed in these notes).

Independently on Lott’s work, the second author built the parallel transport on(P2(R
d),W2) in

his PhD thesis [43], along the same lines provided in Section6.3. The differences with Lott’s work
are the fact that the analysis was carried out onR

d rather than on a compact Riemannian manifold,
that no assumptions on the measures were given, and that boththe existence Theorem 6.15 for the
parallel transport along a regular curve and counterexamples to its general existence (the Example
6.16) were provided. These results have been published by the authors of these notes in [5]. Later
on, after having beed aware of Lott’s results, the second author generalized the construction to the
case of Wasserstein space built over a manifold in [44]. Not all the results have been reported here:
we mention that it is possible to push the analysis up show thedifferentiability properties of the
exponential map and the existence of Jacobi fields.

7 Ricci curvature bounds

Let us start recalling what is the Ricci curvature for a Riemannian manifoldM (which we will
always consider smooth and complete). LetR be the Riemann curvature tensor onM , x ∈ M and
u, v ∈ TxM . Then the Ricci curvatureRic(u, v) ∈ R is defined as

Ric(u, v) :=
∑

i

〈R(u, ei)v, ei〉 ,

where{ei} is any orthonormal basis ofTxM . An immediate consequence of the definition and the
symmetries ofR is the fact thatRic(u, v) = Ric(v, u).

Another, more geometric, characterization of the Ricci curvature is the following. Pickx ∈ M ,
a small ballB around the origin inTxM and letµ be the Lebesgue measure onB. The exponential
mapexpx : B → M is injective and smooth, thus the measure(expx)#µ has a smooth density w.r.t.
the volume measureVol onM . For anyu ∈ B, let f(u) be the density of(expx)#µ w.r.t. Vol at the
pointexpx(u). Then the functionf has the following Taylor expansion:

f(u) = 1 +
1

2
Ric(u, u) + o(|u|2). (7.1)

It is said that the Ricci curvature is bounded below byλ ∈ R provided

Ric(u, u) ≥ λ|u|2,

for everyx ∈M andu ∈ TxM .
Several important geometric and analytic inequalities arerelated to bounds from below on Ricci

curvature, we mention just two of them.

• Brunn-Minkowski. Suppose thatM has non negative Ricci curvature, and for anyA0, A1 ⊂M
compact, let

At :=
{
γt : γ is a constant speed geodesic s.t.γ0 ∈ A0, γ1 ∈ A1

}
, ∀t ∈ [0, 1].

Then it holds
(
Vol(At)

)1/n ≥ (1− t)
(
Vol(A0)

)1/n
+ t
(
Vol(A1)

)1/n
, ∀t ∈ [0, 1], (7.2)

wheren is the dimension ofM .
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• Bishop-Gromov. Suppose thatM has Ricci curvature bounded from below by(n−1)k, where

n is the dimension ofM andk a real number. Let̃M be the simply connected,n-dimensional
space with constant curvature, having Ricci curvature equal to (n− 1)k (so thatM̃ is a sphere
if k > 0, a Euclidean space ifk = 0 and an hyperbolic space ifk < 0). Then for everyx ∈M
andx̃ ∈ M̃ the map

(0,∞) ∋ r 7→ Vol(Br(x))

Ṽol(Br(x̃))
, (7.3)

is non increasing, whereVol andṼol are the volume measures onM , M̃ respectively.

A natural question is whether it is possible to formulate thenotion of Ricci bound from below also
for metric spaces, analogously to the definition of Alexandrov spaces, which are a metric analogous
of Riemannian manifolds with bounded (either from above or from below) sectional curvature. What
became clear over time, is that the correct non-smooth object where one could try to give a notion of
Ricci curvature bound is not a metric space, but rather a metric measurespace, i.e. a metric space
where a reference non negative measure is also given. When looking to the Riemannian case, this
fact is somehow hidden, as a natural reference measure is given by the volume measure, which is a
function of the distance.

There are several viewpoints from which one can see the necessity of a reference measure (which
can certainly be the Hausdorff measure of appropriate dimension, if available). A first (cheap) one
is the fact that in most of identities/inequalities where the Ricci curvature appears, also the reference
measures appears (e.g. equations (7.1), (7.2) and (7.3) above). A more subtle point of view comes
from studying stability issues: consider a sequence(Mn, gn) of Riemannian manifolds and assume
that it converges to a smooth Riemannian manifold(M, g) in the Gromov-Hausdorff sense. Assume
that the Ricci curvature of(Mn, gn) is uniformly bounded below by someK ∈ R. Can we deduce
that the Ricci curvature of(M, g) is bounded below byK? The answer isno(while the same question
with sectional curvature in place of Ricci one has affirmative answer). It is possible to see that when
Ricci bounds are not preserved in the limiting process, it happens that the volume measures of the
approximating manifolds are not converging to the volume measure of the limit one.

Another important fact to keep in mind is the following: if wewant to derive useful ana-
lytic/geometric consequences from a weak definition of Ricci curvature bound, we should also known
what is the dimension of the metric measure space we are working with: consider for instance the
Brunn-Minkowski and the Bishop-Gromov inequalities above, both make sense if we know the di-
mension ofM , and not just that its Ricci curvature is bounded from below.This tells that the natural
notion of bound on the Ricci curvature should be a notion speaking both about thecurvatureand
the dimensionof the space. Such a notion exists and is calledCD(K,N) condition,K being the
bound from below on the Ricci curvature, andN the bound from above on the dimension. Let us
tell in advance that we will focus only on two particular cases: the curvature dimension condition
CD(K,∞), where no upper bound on the dimension is specified, and the curvature-dimension con-
ditionCD(0, N), where the Ricci curvature is bounded below by 0. Indeed, thegeneral case is much
more complicated and there are still some delicate issues tosolve before we can say that the theory
is complete and fully satisfactory.

Before giving the definition, let us highlight which are the qualitative properties that we expect
from a weak notion of curvature-dimension bound:
Intrinsicness. The definition is based only on the property of the space itself, that is, is not something
like “if the space is the limit of smooth spaces....”
Compatibility . If the metric-measure space is a Riemannian manifold equipped with the volume
measure, then the bound provided by the abstract definition coincides with the lower bound on the
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Ricci curvature of the manifold, equipped with the Riemannian distance and the volume measure.
Stability . Curvature bounds are stable w.r.t. the natural passage to the limit of the objects which
define it.
Interest. Geometrical and analytical consequences on the space can be derived from curvature-
dimension condition.

In the next section we recall some basic concepts concerningconvergence of metric measure
spaces (which are key to discuss the stability issue), whilein the following one we give the definition
of curvature-dimension condition and analyze its properties.

All the metric measure spaces(X, d,m) that we will consider satisfy the following assumption:

Assumption 7.1 (X, d) is Polish, the measurem is a Borel probability measure andm ∈ P2(X).

7.1 Convergence of metric measure spaces

We say that two metric measure spaces(X, dX ,mX) and (Y, dY ,mY ) are isomorphicprovided
there exists a bijective isometryf : supp(mX) → supp(mY ) such thatf#mX = mY . This is the
same as to say that ‘we don’t care about the behavior of the space(X, dX) where there is no mass’.
This choice will be important in discussing the stability issue.

Definition 7.2 (Coupling between metric measure spaces)Given two metric measure spaces
(X, dX ,mX), (Y, dY ,mY ), we consider the product space(X × Y,DXY ), whereDXY is the
distance defined by

DXY

(
(x1, y1), (x2, y2)

)
:=
√
d2X(x1, x2) + d2Y (y1, y2).

We say that a couple(d,γ) is an admissible coupling between(X, dX ,mX) and(Y, dY ,mY ), we
write (d,γ) ∈ Adm((dX ,mX), (dY ,mY )) if:

• d is a pseudo distance onsuppmX ⊔ suppmY (i.e. it may be zero on two different
points) which coincides withdX (resp. dY ) when restricted tosuppmX × suppmX (resp.
suppmY × suppmY ).

• a Borel (w.r.t. the Polish structure given byDXY ) measureγ on suppmX × suppmY such
thatπ1

#γ = mX andπ2
#γ = mY .

It is not hard to see that the set of admissible couplings is always non empty.
ThecostC(d,γ) of a coupling is given by

C(d,γ) :=

∫

suppùscriptsizem
X
×suppùscriptsizem

Y

d2(x, y)dγ(x, y).

The distanceD
(
(X, dX ,mX), (Y, dY ,mY )

)
is then defined as

D
(
(X, dX ,mX), (Y, dY ,mY )

)
:= inf

√
C(d,γ), (7.4)

the infimum being taken among all couplings(d,γ) of (X, dX ,mX) and(Y, dY ,mY ).
A trivial consequence of the definition is that if(X, dX ,mX) and (X̃, dX̃ ,mX̃) (resp.

(Y, dY ,mY ) and(Ỹ , dỸ ,mỸ )) are isomorphic, then

D

(
(X, dX ,mX), (Y, dY ,mY )

)
= D

(
(X̃, dX̃ ,mX̃), (Ỹ , dỸ ,mỸ )

)
,
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so thatD is actually defined on isomorphism classes of metric measurespaces.
In the next proposition we collect, without proof, the main properties ofD.

Proposition 7.3 (Properties ofD) The inf in (7.4) is realized, and a coupling realizing it will be
calledoptimal.

Also, letX be the set of isomorphism classes of metric measure spaces satisfying Assumption 7.1.
ThenD is a distance onX, and in particularD is 0 only on couples of isomorphic metric measure
spaces.

Finally, the space(X,D) is complete, separable and geodesic.

Proof See Section 3.1 of [74]. �

We will denote byOpt((dX ,mX), (dY ,mY )) the set of optimal couplings between(X, dX ,mX)
and(Y, dY ,mY ), i.e. the set of couplings where theinf in (7.4) is realized.

Given a metric measure space(X, d,m) we will denote byPa
2 (X) ⊂ P(X) the set of measures

which are absolutely continuous w.r.t.m.
To any coupling(d,γ) of two metric measure spaces(X, dX ,mX) and(Y, dY ,mY ), it is natu-

rally associated a mapγ# : Pa
2 (X) → Pa

2 (Y ) defined as follows:

µ = ρmX 7→ γ#µ := ηmY , whereη is defined by η(y) :=
∫
ρ(x)dγy(x), (7.5)

where{γy} is the disintegration ofγ w.r.t. the projection onY . Similarly, there is a natural map
γ−1
# : Pa

2 (Y ) → Pa
2 (X) given by:

ν = ηmY 7→ γ−1
# ν := ρmX , whereρ is defined by ρ(x) :=

∫
η(y)dγx(y),

where, obviously,{γx} is the disintegration ofγ w.r.t. the projection onX .
Notice thatγ#mX = mY andγ−1

# mY = mX and that in generalγ−1
# γ#µ 6= µ. Also, if γ is

induced by a mapT : X → Y , i.e. if γ = (Id, T )#mX , thenγ#µ = T#µ for anyµ ∈ Pa
2 (X).

Our goal now is to show that if(Xn, dn,mn)
D→ (X, d,m) of the internal energykind on

(Pa
2 (Xn),W2) Mosco-converge to the corresponding functional on(Pa

2 (X),W2). Thus, fix a con-
vex and continuous functionu : [0,+∞) → R, define

u′(∞) := lim
z→+∞

u(z)

z
,

and, for every compact metric space(X, d), define the functionalE : [P(X)]2 → R ∪ {+∞} by

E (µ|ν) :=
∫
u(ρ)dν + u′(∞)µs(X), (7.6)

whereµ = ρν + µs is the decomposition ofµ in absolutely continuousρν and singular partµs w.r.t.
to ν.

Lemma 7.4 (E decreases underγ#) Let (X, dX ,mX) and (Y, dY ,mY ) be two metric measure
space and(d,γ) a coupling between them. Then it holds

E (γ#µ|mY ) ≤ E (µ|mX), ∀µ ∈ P
a
2 (X),

E (γ−1
# ν|mX) ≤ E (ν|mY ), ∀ν ∈ P

a
2 (Y ).
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Proof Clearly it is sufficient to prove the first inequality. Letµ = ρmX andγ#µ = ηmY , with η
given by (7.5). By Jensen’s inequality we have

E (γ#µ|mY ) =

∫
u(η(y))dmY (y) =

∫
u

(∫
ρ(x)dγy(x)

)
dmY (y)

≤
∫ ∫

u(ρ(x))dγy(x)dmY (y) =

∫
u(ρ(x))dγ(x, y)

=

∫
u(ρ(x))dmX(x) = E (µ|mX)

�

Proposition 7.5 (‘Mosco’ convergence of internal energy functionals) Let (Xn, dn,mn)
D→

(X, d,m) and(dn,γn) ∈ Opt((dn,mn), (d,m)). Then the following two are true:
WeakΓ− lim. For any sequencen 7→ µn ∈ Pa

2 (Xn) such thatn 7→ (γn)#µn narrowly converges
to someµ ∈ P(X) it holds

lim
n→∞

E (µn|mn) ≥ E (µ|m).

Strong Γ− lim. For anyµ ∈ Pa
2 (X) with bounded density there exists a sequencen 7→ µn ∈

Pa
2 (Xn) such thatW2((γn)#µn, µ) → 0 and

lim
n→∞

E (µn|mn) ≤ E (µ|m).

Note: we put the apexes inMoscobecause we prove theΓ − lim inequality only for measures with
bounded densities. This will be enough to prove the stability of Ricci curvature bounds (see Theorem
7.12).

Proof For the first statement we just notice that by Lemma 7.4 we have

E (µn|mn) ≥ E ((γn)#µn|m),

and the conclusion follows from the narrow lower semicontinuity of E (·|m).
For the second one we defineµn := (γ−1

n )#µ. Then applying Lemma 7.4 twice we get

E (µ|m) ≥ E (µn|mn) ≥ E ((γn)#µn|m),

from which the Γ − lim inequality follows. Thus to conclude we need to show that
W2((γn)#µn, µ) → 0. To check this, we use the Wassertein space built over the (pseudo-)metric
space(Xn ⊔ X, dn): let µ = ρmX and for anyn ∈ N define the plañγn ∈ P(Xn × X) by
dγ̃n(y, x) := ρ(x)dγn(y, x) and notice that̃γn ∈ Adm(µn, µ). Thus

W2(µn, µ) ≤
√∫

d2n(x, y)dγ̃n(y, x) ≤
√∫

d2n(x, y)ρ(x)dγn(y, x) ≤
√
M
√
C(dn,γn),

whereM is the essential supremum ofρ. By definition, it is immediate to check that the densityηn
of µn is also bounded above byM . Introduce the planγn by dγn(y, x) := ηn(y)dγn(y, x) and
notice thatγn ∈ Adm(µn, (γn)#µn), so that, as before, we have

W2(µn, (γn)#µn) ≤
√∫

d2n(x, y)dγn(y, x) ≤
√∫

d2n(x, y)ηn(y)dγn(y, x) ≤
√
M
√
C(dn,γn).

In conclusion we have

W2(µ, (γn)#µn) ≤W2(µn, (γn)#µn) +W2(µn, µ) ≤ 2
√
M
√
C(dn,γn),

which gives the thesis. �
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7.2 Weak Ricci curvature bounds: definition and properties

Define the functionsuN ,N > 1, andu∞ on [0,+∞) as

uN(z) := N(z − z1−
1
N ),

and
u∞(z) := z log(z).

Then given a metric measure space(X, d,m) we define the functionalsEN , E∞ : P(X) →
R ∪ {+∞} by

EN(µ) := E (µ|m),

whereE (·|·) is given by formula (7.6) withu := uN ; similarly for E∞.
The definitions of weak Ricci curvature bounds are the following:

Definition 7.6 (Curvature ≥ K and no bound on dimension -CD(K,∞)) We say that a metric
measure space(X, d,m) has Ricci curvature bounded from below byK ∈ R provided the functional

E∞ : P(X) → R ∪ {+∞},

isK-geodesically convex on(Pa
2 (X),W2). In this case we say that(X, d,m) satisfies the curvature

dimension conditionCD(K,∞) or that (X, d,m) is aCD(K,∞) space.

Definition 7.7 (Curvature ≥ 0 and dimension≤ N - CD(0, N)) We say that a metric measure
space(X, d,m) has nonnegative Ricci curvature and dimension bounded fromabove byN provided
the functionals

EN ′ : P(X) → R ∪ {+∞},
are geodesically convex on(Pa

2 (X),W2) for everyN ′ ≥ N . In this case we say that(X, d,m)
satisfies the curvature dimension conditionCD(0, N), or that(X, d,m) is aCD(0, N) space.

Note thatN > 1 is not necessarily an integer.

Remark 7.8 Notice that geodesic convexity is required onP2(supp(mX)) and not onP2(X).
This makes no difference for what concernsCD(K,∞) spaces, asE∞ is +∞ on measures having
a singular part w.r.t.m, but is important for the case ofCD(0, N) spaces, as the functionalEN has
only real values, and requiring geodesic convexity on the whole P2(X) would lead to a notion not
invariant under isomorphism of metric measure spaces.

Also, for theCD(0, N) condition one requires the geodesic convexity of allEN ′ to ensure the
following compatibility condition: ifX is aCD(0, N) space, then it is also aCD(0, N ′) space
for anyN ′ > N . Using Proposition 2.16 it is not hard to see that such compatibility condition is
automatically satisfied on non branching spaces. �

Remark 7.9 (How to adapt the definitions to general bounds on curvature the dimension) It is
pretty natural to guess that the notion of bound from below onthe Ricci curvature byK ∈ R

and bound from above on the dimension byN can be given by requiring the functionalEN to be
K-geodesically convex on(P(X),W2). However, this iswrong, because such condition is not
compatible with the Riemannian case. The hearth of the definition of CD(K,N) spaces still con-
cerns the properties ofEN , but a different and more complicated notion of “convexity”is involved.
�
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Let us now check that the definitions given have the qualitative properties that we discussed in
the introduction of this chapter.
Intrinsicness. This property is clear from the definition.
Compatibility . To give the answer we need to do some computations on Riemannian manifolds:

Lemma 7.10 (Second derivative of the internal energy)LetM be a compact and smooth Rieman-
nian manifold,m its normalized volume measure,u : [0,+∞) be convex, continuous andC2 on
(0,+∞) with u(0) = 0 and define the “pressure”p : [0,+∞) → R by

p(z) := zu′(z)− u(z), ∀z > 0,

andp(0) := 0. Also, letµ = ρm ∈ Pa
2 (M) with ρ ∈ C∞(M), pickϕ ∈ C∞

c (M), and define
Tt :M →M byTt(x) := expx(t∇ϕ(x)). Then it holds:

d2

dt2 |t=0
E ((Tt)#µ) =

∫
p′(ρ) ρ (∆ϕ)2 − p(ρ)

(
(∆ϕ)2 −

∣∣∇2ϕ
∣∣2 − Ric

(
∇ϕ,∇ϕ

))
dm,

where by
∣∣∇2ϕ(x)

∣∣2 we mean the trace of the linear map(∇2ϕ(x))2 : TxM → TxM (in coordi-
nates, this reads as

∑
ij(∂ijϕ(x))

2).

Proof
(Computation of the second derivative). LetDt(x) := det(∇Tt(x)), µt := (Tt)#µ = ρtVol. By
compactness, fort sufficiently smallTt is invertible with smooth inverse, so thatDt, ρt ∈ C∞(M).
For smallt, the change of variable formula gives

ρt(Tt(x)) =
ρ(x)

det(∇Tt(x))
=

ρ(x)

Dt(x)
.

Thus we have (all the integrals being w.r.t.m):

d

dt

∫
u(ρt) =

d

dt

∫
u

(
ρ

Dt

)
Dt =

∫
−u′

(
ρ

Dt

)
ρD′

t

D2
t

Dt + u

(
ρ

Dt

)
D′
t = −

∫
p

(
ρ

Dt

)
D′
t,

and
d2

dt2 |t=0

∫
u(ρt) = − d

dt |t=0

∫
p

(
ρ

Dt

)
D′
t =

∫
p′(ρ)ρ(D′

0)
2 − p(ρ)D′′

0 ,

having used the fact thatD0 ≡ 1.
(Evaluation of D′

0 andD′′
0 ). We want to prove that

D′
0(x) = ∆ϕ(x),

D′′
0 (x) = (∆ϕ(x))2 −

∣∣∇2ϕ(x)
∣∣2 − Ric

(
∇ϕ(x),∇ϕ(x)

)
.

(7.7)

For t ≥ 0 andx ∈M , let Jt(x) be the operator fromTxM to Texpx(t∇ϕ(x))
M given by:

Jt(x)(v) :=

{
the value ats = t of the Jacobi fieldjs along the geodesic
s 7→ expx(s∇ϕ(x)), having the initial conditionsj0 := v, j′0 := ∇2ϕ · v,

(where here and in the following the apex′ on a vector/tensor field stands for covariant differentia-
tion), so that in particular we have

J0 = Id,

J ′
0 = ∇2ϕ.

(7.8)
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The fact that Jacobi fields are the differential of the exponential map reads, in our case, as:

∇Tt(x) · v = Jt(x) · v,

therefore we have
Dt = det(Jt). (7.9)

Also, Jacobi fields satisfy the Jacobi equation, which we write as

J ′′
t +AtJt = 0, (7.10)

whereAt(x) : Texpx(t∇ϕ(x))
M → Texpx(t∇ϕ(x))

M is the map given by

At(x) · v := R(γ̇t, v)γ̇t,

whereγt := expx(t∇ϕ(x)). Recalling the rule(detBt)′ = det(Bt)tr(B
′
tB

−1
t ), valid for a smooth

curve of linear operators, we obtain from (7.9) the validityof

D′
t = Dttr(J

′
tJ

−1
t ). (7.11)

Evaluating this identity att = 0 and using (7.8) we get the first of (7.7). Recalling the rule(B−1
t )′ =

−B−1
t B′

tB
−1
t , valid for a smooth curve of linear operators, and differentiating in time equation (7.11)

we obtain

D′′
t = Dt

(
tr(J ′

tJ
−1
t )
)2
+Dttr(J

′′
t J

−1
t −J ′

tJ
−1
t J ′

tJ
−1
t ) = Dt

((
tr(J ′

tJ
−1
t )
)2−tr

(
At+J

′
tJ

−1
t J ′

tJ
−1
t

))
,

having used the Jacobi equation (7.10). Evaluate this expression att = 0, use (7.8) and observe that

tr(A0) = tr
{
v 7→ R(∇ϕ, v)∇ϕ

}
= Ric(∇ϕ,∇ϕ),

to get the second of (7.7). �

Theorem 7.11 (Compatibility of weak Ricci curvature bounds) LetM be a compact Riemannian
manifold,d its Riemannian distance andm its normalized volume measure. Then:

i) the functionalE∞ is K-geodesically convex on(P2(M),W2) if and only ifM has Ricci
curvature uniformly bounded from below byK.

ii) the functionalEN is geodesically convex on(P2(M),W2) if and only ifM has non negative
Ricci curvature anddim(M) ≤ N .

Sketch of the ProofWe will give only a formal proof, neglecting all the issues which arise due to the
potential non regularity of the objects involved.

We start with(i). Assume thatRic(v, v) ≥ K|v|2 for anyv. Pick a geodesic(ρtm) ⊂ P2(M)
and assume thatρt ∈ C∞ for anyt ∈ [0, 1]. By Theorem 1.33 we know that there exists a function
ϕ : M → R differentiableρ0m-a.e. such thatexp(∇ϕ) is the optimal transport map fromρ0m to
ρ1m and

ρtm =
(
exp(t∇ϕ)

)
#
ρ0m.

Assume thatϕ isC∞. Then by Lemma 7.10 withu := u∞ we know that

d2

dt2
E∞(ρtm) =

∫ (∣∣∇2ϕ
∣∣2 +Ric(∇ϕ,∇ϕ)

)
ρ0 dm ≥ K

∫
|∇ϕ|2ρ0 dm.
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Since
∫
|∇ϕ|2ρ0dm =W 2

2 (ρ0, ρ1), the claim is proved.
The converse implication follows by an explicit construction: if Ric(v, v) < K|v|2 for some

x ∈ M andv ∈ TxM , then forε ≪ δ ≪ 1 defineµ0 := c0m|Bε(x)
(c0 being the normalizing

constant) andµt := (Tt)#µ0 whereTt(y) := expy(tδ∇ϕ(y)) andϕ ∈ C∞ is such that∇ϕ(x) = v
and∇2ϕ(x) = 0. Using Lemma 7.10 again and the hypothesisRic(v, v) < K|v|2 it is not hard to
prove thatE∞ is notλ-geodesically convex along(µt). We omit the details.

Now we turn to(ii). Let (ρtm) andϕ as in the first part of the argument above. Assume that
M has non negative Ricci curvature and thatdim(M) ≤ N . Observe that foru := uN Lemma 7.10
gives

d2

dt2 |t=0
EN(ρt) =

∫ (
1− 1

N

)
ρ1−

1
N (∆ϕ)2 − ρ1−

1
N

(
(∆ϕ)2 −

∣∣∇2ϕ
∣∣2 − 1

2
Ric(∇ϕ,∇ϕ)

)
dm.

Using the hypothesis onM and the fact that(∆ϕ)2 ≤ N
∣∣∇2ϕ

∣∣2 we get d
2

dt2 |t=0
EN(ρt) ≥ 0, i.e. the

geodesic convexity ofEN . For the converse implication it is possible to argue as above, we omit the
details also in this case. �

Now we pass to thestability :

Theorem 7.12 (Stability of weak Ricci curvature bound) Assume that (Xn, dn,mn)
D→

(X, d,m) and that for everyn ∈ N the space(Xn, dn,mn) isCD(K,∞) (resp.CD(0, N)). Then
(X, d,m) is aCD(K,∞) (resp.CD(0, N)) space as well.

Sketch of the ProofPick µ0, µ1 ∈ Pa
2 (X) and assume they are both absolutely continuous with

bounded densities, sayµi = ρim, i = 0, 1. Choose(d̃n,γn) ∈ Opt((dn,mn), (d,m)). Define
µni := (γ−1

n )#µi ∈ P
a
2 (Xn), i = 0, 1. Then by assumption there is a geodesic(µnt ) ⊂ P

a
2 (Xn)

such that

E∞(µnt ) ≤ (1− t)E∞(µn0 ) + tE∞(µn1 )−
K

2
t(1− t)W 2

2 (µ
n
0 , µ

n
1 ). (7.12)

Now let σnt := (γn)#µ
n
t ∈ Pa

2 (X), t ∈ [0, 1]. From Proposition 7.5 and its proof we know that
W2(µi, σ

n
i ) → 0 asn → ∞, i = 0, 1. Also, from (7.12) ad Lemma 7.4, we know thatE∞(σnt ) is

uniformly bounded inn, t. Thus for every fixedt the sequencen 7→ σnt is tight, and we can extract
a subsequence, not relabeled, such thatσnt narrowly converges to someσt ∈ P2(supp(m)) for
every rationalt. By an equicontinuity argument it is not hard to see that thenσnt narrowly converges
to someσt for any t ∈ [0, 1] (we omit the details). We claim that(σt) is a geodesic, and that the
K-convexity inequality is satisfied along it. To check that itis a geodesic just notice that for any
partition{ti} of [0, 1] we have

W2(µ0, µ1) = lim
n→∞

W2(σ
n
0 , σ

n
1 ) = lim

n→∞

∑

i

W2(σ
n
ti , σ

n
ti+1

)

≥
∑

i

lim
n→∞

W2(σ
n
ti , σ

n
ti+1

) ≥
∑

i

W2(σti , σti+1).

Passing to the limit in (7.12), recalling Proposition 7.5 toget thatE∞(µni ) → E∞(µi), i = 0, 1, and
that limn→∞ E∞(µnt ) ≥ limn→∞ E∞(σnt ) ≥ E∞(σt) we conclude.

To deal with generalµ0, µ1, we start recalling that the sublevels ofE∞ are tight, indeed using
first the boundz log(z) ≥ − 1

e and then Jensen’s inequality we get

1

e
+ C ≥ m(X \ E)

e
+ E∞(µ) ≥

∫

E

ρ log(ρ)dm ≥ µ(E) log

(
µ(E)

m(E)

)
,
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for anyµ = ρm such thatE∞(µ) ≤ C and any BorelE ⊂ X . This bound gives that ifm(En) → 0
thenµ(En) → 0 uniformly on the set ofµ’s such thatE∞(µ) ≤ C. This fact together with the
tightness ofm gives the claimed tightness of the sublevels ofE∞.

Now the conclusion follows by a simple truncation argument using the narrow compactness of
the sublevels ofE∞ and the lower semicontinuity ofE∞ w.r.t. narrow convergence.

For the stability of theCD(0, N) condition, the argument is the following: we first deal with
the case ofµ0, µ1 with bounded densities with exactly the same ideas used forE∞. Then to pass to
the general case we use the fact that if(X, d,m) is aCD(0, N) space, then(supp(m), d,m) is a
doubling space (Proposition 7.15 below - notice thatEN ′ ≤ N ′ and thus it is not true that sublevels
of EN ′ are tight) and therefore boundedly compact. Then the inequality

R2µ(supp(m) \BR(x0)) ≤
∫
d2(·, x0)dµ,

shows that the set ofµ’s in Pa
2 (X) with bounded second moment is tight. Hence the conclusion

follows, as before, using this narrow compactness togetherwith the lower semicontinuity ofEN ′

w.r.t. narrow convergence. �

It remains to discuss theinterest: from now on we discuss some of the geometric and analytic
properties of spaces having a weak Ricci curvature bound.

Proposition 7.13 (Restriction and rescaling)Let (X, d,m) be a CD(K,∞) space (resp.
CD(0, N) space). Then:

i) Restriction. If Y ⊂ X is a closed totally convex subset (i.e. every geodesic with endpoints
in Y lies entirely insideY ) such thatm(Y ) > 0, then the space(Y, d,m(Y )−1m|Y ) is a

CD(K,∞) space (resp.CD(0, N) space),

ii) Rescaling. for everyα > 0 the space(X,αd,m) is aCD(α−2K,∞) space (resp.CD(0, N)
space).

Proof
(i). Pickµ0, µ1 ∈ P(Y ) ⊂ P(X) and a constant speed geodesic(µt) ⊂ P(X) connecting them
such that

E∞(µt) ≤ (1− t)E∞(µ0) + tE∞(µ1)−
K

2
t(1− t)W 2

2 (µ0, µ1),

(resp. satisfying the convexity inequality for the functionalEN ′ ,N ′ ≥ N ).
We claim thatsupp(µt) ⊂ Y for any t ∈ [0, 1]. Recall Theorem 2.10 and pick a measure

µ ∈ P(Geod(X)) such that
µt = (et)#µ,

whereet is the evaluation map defined by equation (2.6). Sincesupp(µ0), supp(µ1) ⊂ Y we know
that for any geodesicγ ∈ supp(µ) it holdsγ0, γ1 ∈ Y . SinceY is totally convex, this implies that
γt ∈ Y for any t and anyγ ∈ supp(µ), i.e. µt = (et)#µ ∈ P(Y ). Therefore(µt) is a geodesic
connectingµ0 to µ1 in (Y, d). Conclude noticing that for anyµ ∈ P2(Y ) it holds

∫
dµ

dmY
log

(
dµ

dmY

)
dmY = log(m(Y )) +

∫
dµ

dm
log

(
dµ

dm

)
dm,

∫ (
dµ

dmY

)1− 1
N′

dmY = m(Y )−
1

N′

∫ (
dµ

dm

)1− 1
N′

dm,

where we wrotemY for m(Y )−1m|Y .

(ii). Fix α > 0 and letd̃ := αd andW̃2 be the Wasserstein distance onP(X) induced by the
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distanced̃. It is clear that a planγ ∈ Adm(µ, ν) is optimal for the distanceW2 if and only if it is
optimal forW̃2, thusW̃2 = αW2. Now pickµ0, µ1 ∈ P(X) and let(µt) ⊂ P(X) be a constant
speed geodesic connecting them such that

E∞(µt) ≤ (1 − t)E (µ0) + tE (µ1)−
K

2
t(1− t)W 2

2 (µ0, µ1),

then it holds

E∞(µt) ≤ (1− t)E (µ0) + tE (µ1)−
K

2α2
t(1− t)W̃ 2

2 (µ0, µ1),

and the proof is complete. A similar argument applies for thecaseCD(0, N). �

ForA0, A1 ⊂ X , we define[A0, A1]t ⊂ X as:

[A0, A1]t :=
{
γ(t) : γ is a constant speed geodesic such thatγ(0) ∈ A0, γ(1) ∈ A1

}
.

Observe that ifA0, A1 are open (resp. compact)[A0, A1]t is open (resp. compact), hence Borel.

Proposition 7.14 (Brunn-Minkowski) Let (X, d,m) be a metric measure space andA0, A1 ⊂
supp(m) compact subsets. Then:

i) if (X, d,m) is aCD(K,∞) space it holds:

log(m([A0, A1]t)) ≥ (1− t) log(m(A0))+ t log(m(A1))+
K

2
t(1− t)D2

K(A0, A1), (7.13)

whereDK(A0, A1) is defined assup x0∈A0
x1∈A1

d(x0, x1) if K < 0 and asinf x0∈A0
x1∈A1

d2(x0, x1) if

K > 0.

ii) If (X, d,m) is aCD(0, N) space it holds:

m
(
[A0, A1]t

)1/N ≥ (1− t)m(A0)
1/N + tm(A1)

1/N . (7.14)

Proof We start with(i). Suppose thatA0, A1 are open satisfyingm(A0),m(A1) > 0. Define the
measuresµi := m(Ai)

−1m|Ai
for i = 0, 1 and find a constant speed geodesic(µt) ⊂ P(X) such

that

E∞(µt) ≤ (1− t)E∞(µ0) + tE∞(µ1)−
K

2
t(1− t)W 2

2 (µ0, µ1).

Arguing as in the proof of the previous proposition, it is immediate to see thatµt is concentrated on
[A0, A1]t for anyt ∈ [0, 1].

In particularm([A0, A1]t) > 0, otherwiseE∞(µt) would be+∞ and the convexity inequality
would fail. Now letνt := m([A0, A1]t)

−1m|[A0,A1]t
: an application of Jensen inequality shows

thatE∞(µt) ≥ E∞(νt), thus we have

E∞(νt) ≤ (1− t)E∞(µ0) + tE∞(µ1)−
K

2
t(1 − t)W 2

2 (µ0, µ1).

Notice that for a generalµ of the formm(A)−1m|A it holds

E∞(µ) = log
(
m(A)−1

)
= − log

(
m(A)

)
,

and conclude using the trivial inequality

inf
x0∈A0
x1∈A1

d2(x0, x1) ≤W 2
2 (µ0, µ1) ≤ sup

x0∈A0
x1∈A1

d2(x0, x1).
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The case ofA0, A1 compact now follows by a simple approximation argument by considering the
ε-neighborhoodAεi := {x : d(x,Ai) < ε}, i = 0, 1, noticing that[A0, A1]t = ∩ε>0[A

ε
0, A

ε
1]t, for

anyt ∈ [0, 1] and thatm(Aεi ) > 0 becauseAi ⊂ supp(m), i = 0, 1.
Part (ii) follows along the same lines taking into account that for a general µ of the form

m(A)−1m|A it holds

EN(µ) = N(1−m(A)1/N ),

and that, as before, ifm(A0),m(A1) > 0 it cannot bem([A0, A1]t) = 0 or we would violate the
convexity inequality. �

A consequence of Brunn-Minkowski is the Bishop-Gromov inequality.

Proposition 7.15 (Bishop-Gromov) Let (X, d,m) be aCD(0, N) space. Then it holds

m(Br(x))

m(BR(x))
≥
( r
R

)N
, ∀x ∈ supp(m). (7.15)

In particular, (supp(m), d,m) is a doubling space.

Proof Pick x ∈ supp(m) and assume thatm({x}) = 0. Let v(r) := m(Br(x)). Fix R > 0
and apply the Brunn-Minkowski inequality toA0 = {x}, A1 = BR(x) observing that[A0, A1]t ⊂
BtR(x) to get

v1/N (tR) ≥ m
(
[A0, A1]t

)1/N ≥ tv1/N (R), ∀0 ≤ t ≤ 1.

Now let r := tR and use the arbitrariness ofR, t to get the conclusion.
It remains to deal with the casem({x}) 6= 0. We can also assumesupp(m) 6= {x}, otherwise

the thesis would be trivial: under this assumption we will prove thatm({x}) = 0 for anyx ∈ X .
A simple consequence of the geodesic convexity ofEN tested with delta measures is that

supp(m) is a geodesically convex set, therefore it is uncountable. Then there must exist some
x′ ∈ supp(m) such thatm({x′}) = 0. Apply the previous argument withx′ in place ofx to get that

v(r)

v(R)
≥
( r
R

)N
, ∀0 ≤ r < R, (7.16)

where nowv(r) is the volume of the closed ball of radiusr aroundx′. By definition, v is right
continuous; lettingr ↑ R we obtain from (7.16) thatv is also left continuous. Thus it is continuous,
and in particular the volume of the spheres{y : d(y, x′) = r} is 0 for anyr ≥ 0. In particular
m({y}) = 0 for anyy ∈ X and the proof is concluded. �

An interesting geometric consequence of the Brunn-Minkowski inequality in conjunction with the
non branching hypothesis is the fact that the ‘cut-locus’ isnegligible.

Proposition 7.16 (Negligible cut-locus)Assume that(X, d,m) is aCD(0, N) space and that it is
non branching. Then for everyx ∈ supp(m) the set ofy’s such that there is more than one geodesic
fromx to y ism-negligible. In particular, form×m-a.e.(x, y) there exists only one geodesicγx,y

fromx to y and the mapX2 ∋ (x, y) 7→ γx,y ∈ Geod(X) is measurable.

Proof Fix x ∈ supp(m), R > 0 and consider the setsAt := [{x}, BR(x)]t. Fix t < 1 andy ∈ At.
We claim that there is only one geodesic connecting it tox. By definition, we know that there is some
z ∈ BR(x) and a geodesicγ from z to x such thatγt = y. Now argue by contradiction and assume
that there are 2 geodesicsγ1, γ2 from y to x. Then starting fromz, following γ for time 1 − t, and
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then following each ofγ1, γ2 for the rest of the time we find 2 different geodesics fromz to x which
agree on the non trivial interval[0, 1− t]. This contradicts the non-branching hypothesis.

ClearlyAt ⊂ As ⊂ BR(x) for t ≤ s, thust 7→ m(At) is non decreasing. By (7.14) and the
fact thatm({x}) = 0 (proved in Proposition 7.15) we know thatlimt→1 m(At) = m(BR(x))
which means thatm-a.e. point inBR(x) is connected tox by a unique geodesic. SinceR andx are
arbitrary, uniqueness is proved.

The measurability of the map(x, y) 7→ γx,y is then a consequence of uniqueness, of Lemma 2.11
and classical measurable selection results, which ensure the existence of a measurable selection of
geodesics: in our case there ism ×m-almost surely no choice, so the unique geodesic selection is
measurable. �

Corollary 7.17 (Compactness)LetN, D <∞. Then the familyX (N,D) of (isomorphism classes
of) metric measure spaces(X, d,m) satisfying the conditionCD(0, N), with diameter bounded
above byD is compact w.r.t. the topology induced byD.

Sketch of the ProofUsing the Bishop-Gromov inequality withR = D we get that

m(Bε(x)) ≥
( ε
D

)N
, ∀(X, d,m) ∈ X (N,D), x ∈ supp(mX). (7.17)

Thus there existsn(N,D, ε) which does not depend onX ∈ X (N,D), such that we can find at most
n(N,D, ε) disjoint balls of radiusε in X . Thussupp(mX) can be covered by at mostn(N,D, ε)
balls of radius2ε. This means that the familyX (N,D) is uniformly totally bounded, and thus it is
compact w.r.t. Gromov-Hausdorff convergence (see e.g. Theorem 7.4.5 of [20]).

Pick a sequence(Xn, dn,mn) ∈ X (N,D). By what we just proved, up to pass to a subsequence,
not relabeled, we may assume that(supp(mn), dn) converges in the Gromov-Hausdorff topology to
some space(X, d). It is well known that in this situation there exists a compact space(Y, dY ) and a
family of isometric embeddingsfn : supp(mn) → Y , f : X → Y , such that the Hausdorff distance
betweenfn(supp(mn)) andf(X) goes to 0 asn→ ∞.

The space(fn(supp(mn), dY , (fn)#mn)) is isomorphic to(Xn, dn,mn) by construction for
everyn ∈ N, and(f(X), dY ) is isometric to(X, d), so we identify these spaces with the respective
subspaces of(Y, dY ). Since(Y, dY ) is compact, the sequence(mn) admits a subsequence, not
relabeled, which weakly converges to somem ∈ P(Y ). It is immediate to verify that actually
m ∈ P(X). Also, again by compactness, weak convergence is equivalent to convergence w.r.t.W2,
which means that there exists plansγn ∈ P(Y 2) admissible for the couple(m,mn) such that

∫
d2Y (x, x̃)dγn(x, x̃) → 0.

Thereforen 7→ (dY ,γn) is a sequence of admissible couplings for(X, d,m) and (Xn, dn,mn)
whose cost tends to zero. This concludes the proof. �

Now we prove the HWI (which relates the entropy, often denoted byH , the Wasserstein distance
W2 and the Fisher informationI) and the log-Sobolev inequalities. To this aim, we introduce the
Fisher information functionalI : P(X) → [0,∞] on a general metric measure space(X, d,m) as
the squared slope of the entropyE∞:

I(µ) :=





lim
ν→µ

(
(E∞(µ)− E∞(ν))+

)2

W 2
2 (µ, ν)

, if E∞(µ) <∞,

+∞, otherwise.
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The functionalI is called Fisher information because its value on(Rd, | · − · |,Ld) is given by

I(ρLd) =
∫ |∇ρ|2

ρ
dLd,

and the object on the right hand side is called Fisher information onRd. It is possible to prove that a
formula like the above one is writable and true on generalCD(K,∞) spaces (see [7]), but we won’t
discuss this topic.

Proposition 7.18 (HWI inequality) Let (X, d,m) be a metric measure space satisfying the condi-
tionCD(K,∞). Then

E∞(µ) ≤ E∞(ν) +W2(µ, ν)
√
I(µ)− K

2
W 2

2 (µ, ν), ∀µ, ν ∈ P(X). (7.18)

In particular, choosingν = m it holds

E∞(µ) ≤W2(µ,m)
√
I(µ)− K

2
W 2

2 (µ,m), ∀µ ∈ P(X). (7.19)

Finally, if K > 0 the log-Sobolev inequality with constantK holds:

E∞ ≤ I

2K
. (7.20)

Proof Clearly to prove (7.18) it is sufficient to deal with the caseE∞(ν), E∞(µ) < ∞. Let (µt) be
a constant speed geodesic fromµ to ν such that

E∞(µt) ≤ (1− t)E∞(µ) + tE∞(ν) − K

2
t(1− t)W 2

2 (µ, ν).

Then from
√
I(µ) ≥ limt↓0(E∞(µ)− E∞(µt))/W2(µ, µt) we get the thesis.

Equation (7.20) now follows from (7.19) and the trivial inequality

ab− 1

2
a2 ≤ 1

2
b2,

valid for anya, b ≥ 0. �

The log-Sobolev inequality is a notion ofglobal Sobolev-type inequality, and it is known that it
implies a global Poincaré inequality (we omit the proof of this fact). When working on metric
measure spaces, however, it is often important to have at disposal alocal Poincaré inequality (see
e.g. the analysis done by Cheeger in [29]).

Our final goal is to show that in non-branchingCD(0, N) spaces a local Poincaré inequality
holds. The importance of the non-branching assumption is due to the following lemma.

Lemma 7.19 Let (X, d,m) be a non branchingCD(0, N) space,B ⊂ X a closed ball of positive
measure and2B the closed ball with same center and double radius. Define themeasuresµ :=
m(B)−1m|B and µ := γ·,·# (µ × µ) ∈ P(Geod(X)), where(x, y) 7→ γx,y is the map which
associates to eachx, y the unique geodesic connecting them (such a map is well defined form×m-
a.e.x, y by Proposition 7.16). Then

(et)#µ ≤ 2N

m(B)
m|2B , ∀t ∈ [0, 1].
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Proof Fix x ∈ B, t ∈ (0, 1) and consider the ‘homothopy’ mapB ∋ y 7→ Homx
t (y) := γx,yt . By

Proposition 7.16 we know that this map is well defined form-a.e.y and that (using the characteriza-
tion of geodesics given in Theorem 2.10)t 7→ µxt := (Homx

t )#µ is the unique geodesic connecting
δx to µ. We have

µxt (E) = µ
(
(Homx

t )
−1(E)

)
=

m
(
(Homx

t )
−1(E)

)

m(B)
, ∀E ⊂ X Borel.

The non branching assumption ensures thatHomx
t is invertible, therefore from the fact that

[{x}, (Homx
t )

−1(E)]t = Homx
t

(
Homx

t )
−1(E)

)
= E, the Brunn-Minkowski inequality and the

fact thatm({x}) = 0 we get

m(E) ≥ tNm
(
(Homx

t )
−1(E)

)
,

and thereforeµxt (E) ≤ m(E)
tNm(B) . Given thatE was arbitrary, we deduce

µxt ≤ m

tNm(B)
. (7.21)

Notice that the expression on the right hand side is independent onx.
Now pickµ as in the hypothesis, and defineµt := (et)#µ. The equalities

∫

X

ϕdµt =

∫

Geod(X)

ϕ(γt)dµ(γ) =

∫

X2

ϕ(γx,yt )dµ(x)dµ(y),

∫

X

ϕdµxt =

∫

X

ϕ(γx,yt )dµ(y),

valid for anyϕ ∈ Cb(X), show that

µt =

∫
µxt dµ(x),

and therefore, by (7.21), we have

µt ≤
m

tNm(B)
.

All these arguments can be repeated symmetrically with1− t in place oft (because the push forward
of µ via the map which takesγ and gives the geodesict 7→ γ1−t, isµ itself), thus we obtain

µt ≤ min

{
m

tNm(B)
,

m

(1− t)Nm(B)

}
≤ 2Nm

m(B)
, ∀t ∈ (0, 1).

To conclude, it is sufficient to prove thatµt is concentrated on2B for all t ∈ (0, 1). But this is
obvious, asµt is concentrated on[B,B]t and a geodesic whose endpoints lie onB cannot leave2B.

�

As we said, we will use this lemma (together with the doublingproperty, which is a consequence
of the Bishop-Gromov inequality) to prove a local Poincaré inequality. For simplicity, we stick
to the case of Lipschitz functions and their local Lipschitzconstant, although everything could be
equivalently stated in terms of generic Borel functions andtheir upper gradients.

Forf : X → R Lipschitz, the local Lipschitz constant|∇f | : X → R is defined as

|∇f |(x) := lim
y→x

|f(x)− f(y)|
d(x, y)

.
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For any ballB such thatm(B) > 0, the number〈f〉B is the average value off onB:

〈f〉B :=
1

m(B)

∫

B

f dm.

Proposition 7.20 (Local Poincaré inequality) Assume that (X, d,m) is a non-branching
CD(0, N) space. Then for every ballB such thatm(B) > 0 and any Lipschitz functionf : X → R

it holds
1

m(B)

∫

B

|f(x)− 〈f〉B | dm(x) ≤ r
22N+1

m(2B)

∫

2B

|∇f |dm,

r being the radius ofB.

Proof Notice that

1

m(B)

∫

B

|f(x)− 〈f〉B |dm(x) ≤ 1

m(B)2

∫

B×B

|f(x)− f(y)| dm(x)dm(y)

=

∫

Geod(X)

|f(γ0)− f(γ1)| dµ(γ),

whereµ is defined as in the statement of Lemma 7.19. Observe that for any geodesicγ, the map
t 7→ f(γt) is Lipschitz and its derivative is bounded above byd(γ0, γ1)|∇f |(γt) for a.e. t. Hence,
since any geodesicγ whose endpoints are inB satisfiesd(γ0, γ1) ≤ 2r, we have

∫

Geod(X)

|f(γ0)−f(γ1)| dµ(γ) ≤ 2r

∫ 1

0

∫

Geod(X)

|∇f |(γt) dµ(γ)dt = 2r

∫ 1

0

∫

X

|∇f |d(et)#µdt.

By Lemma 7.19 we obtain

2r

∫ 1

0

∫

X

|∇f |d(et)#µdt ≤
2N+1r

m(B)

∫

2B

|∇f |dm.

By the Bishop-Gromov inequality we know thatm(2B) ≤ 2Nm(B) and thus

2N+1r

m(B)

∫

2B

|∇f |dm ≤ 22N+1r

m(2B)

∫

2B

|∇f |dm,

which is the conclusion. �

7.3 Bibliographical notes

The content of this chapter is taken from the works of Lott andVillani on one side ([58], [57]) and of
Sturm ([74], [75]) on the other.

The first link betweenK-geodesic convexity of the relative entropy functional in(P2(M),W2)
and the bound from below on the Ricci curvature is has been given by Sturm and von Renesse
in [76]. The works [74], [75] and [58] have been developed independently. The main difference
between them is that Sturm provides the general definition ofCD(K,N) bound (which we didn’t
speak about, with the exception of the quick citation in Remark 7.9), while Lott and Villani focused
on the casesCD(K,∞) andCD(0, N). Apart from this, the works are strictly related and the
differences are mostly on the technical side. We mention only one of these. In giving the definition of
CD(0, N) space we followed Sturm and asked only the functionalsρm 7→ N ′

∫
(ρ− ρ1−1/N ′

)dm,
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N ′ ≥ N , to be geodesically convex. Lott and Villani asked for something more restrictive, namely
they introduced thedisplacement convexityclassesDCN as the set of functionsu : [0,∞) → R

continuous, convex and such that

z 7→ zNu(z−N),

is convex. Notice thatu(z) := N ′(z − z1−1/N ′

) belongs toDCN . Then they say that a space is
CD(0, N) provided

ρm 7→
∫
u(ρ)dm,

(with the usual modifications for a measure which is not absolutely continuous) is geodesically con-
vex for anyu ∈ DCN . This notion is still compatible with the Riemannian case and stable un-
der convergence. The main advantage one has in working with this definition is the fact that for
a CD(0, N) space in this sense, for any couple of absolutely continuousmeasures there exists a
geodesic connecting them which is made of absolutely continuous measures.

The distanceD that we used to define the notion of convergence of metric measure spaces has
been defined and studied by Sturm in [74]. This is not the only possible notion of convergence
of metric measure spaces: Lott and Villani used a different one, see [58] or Chapter 27 of [80].
A good property of the distanceD is that it pleasantly reminds the Wasserstein distanceW2: to
some extent, the relation ofD to W2 is the same relation that there is between Gromov-Hausdorff
distance and Hausdorff distance between compact subsets ofa given metric space. A bad property
is that it is not suitable to study convergence of metric measure spaces which are endowed with
infinite reference measures (well, the definition can easilybe adapted, but it would lead to a too
strict notion of convergence - very much like the Gromov-Hausdorff distance, which is not used to
discuss convergence of non compact metric spaces). The onlynotion of convergence of Polish spaces
endowed withσ-finite measures that we are aware of, is the one discussed by Villani in Chapter 27 of
[80] (Definition 27.30). It is interesting to remark that this notion of convergence doesnot guarantee
uniqueness of the limit (which can be though of as a negative point of the theory), yet, bounds from
below on the Ricci curvature are stable w.r.t. such convergence (which in turn is a positive point, as
it tells that these bounds are ‘even more stable’)

The discussion on the local Poincaré inequality and on Lemma7.19 is extracted from [57].

There is much more to say about the structure and the properties of spaces with Ricci curvature
bounded below. This is an extremely fast evolving research area, and to give a complete discussion on
the topic one would probably need a book nowadays. Two thingsare worth to be quickly mentioned.

The first one is the most important open problem on the subject: is the property of being a
CD(K,N) space a local notion? That is, suppose we have a metric measure space(X, d,m) and a
finite open cover{Ωi} such that(Ωi, d,m(Ωi)

−1m|Ωi
) is aCD(K,N) space for everyi. Can we

deduce that(X, d,m) is aCD(K,N) space as well? One would like the answer to be affirmative,
as any notion of curvature should be local. ForK = 0 orN = ∞, this is actually the case, at least
under some technical assumptions. The general case is stillopen, and up to now we only know that
the conjecture 30.34 in [80] isfalse, being disproved by Deng and Sturm in [32] (see also [11]).

The second, and final, thing we want to mention is the case of Finsler manifolds, which are
differentiable manifolds endowed with a norm - possibly notcoming from an inner product - on each
tangent space, which varies smoothly with the base point. A simple example of Finsler manifolds
is the space(Rd, ‖ · ‖), where‖ · ‖ is any norm. It turns out that for any choice of the norm, the
space(Rd, ‖ · ‖,Ld) is aCD(0, N) space. Various experts have different opinion about this fact:
namely, there is no agreement on the community concerning whether one really wants or not Finsler
geometries to be included in the class of spaces with Ricci curvature bounded below. In any case,
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it is interesting to know whether there exists a different, more restrictive, notion of Ricci curvature
bound which rules out the Finsler case. Progresses in this direction have been made in [8], where the
notion of spaces withRiemannian Riccibounded below is introduced: shortly said, these spaces are
the subclass ofCD(K,N) spaces where the heat flow (studied in [45], [53], [7]) is linear.
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