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Abstract
This textis an expanded version of the lectures given by thieduthor in the 2009 CIME summer
school of Cetraro. It provides a quick and reasonably adoofuthe classical theory of optimal mass
transportation and of its more recent developments, imctuthe metric theory of gradient flows,
geometric and functional inequalities related to optinmahsportation, the first and second order
differential calculus in the Wasserstein space and théhsyicttheory of metric measure spaces with
Ricci curvature bounded from below.
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Introduction

The opportunity to write down these notes on Optimal Trandpas been the CIME course in Cetraro
given by the first author in 2009. Later on the second authoegbto the project, and the initial set of
notes has been enriched and made more detailed, in particidannection with the differentiable
structure of the Wasserstein space, the synthetic cus/éiounds and their analytic implications.
Some of the results presented here have not yet appearedakddrm, with the exception of [44].

It is clear that this subject is expanding so quickly thasiimpossible to give an account of all
developments of the theory in a few hours, or a few pages. Aemudest approach is to give a
quick mention of the many aspects of the theory, stimulatirggreader’s curiosity and leaving to
more detailed treatises as [6] (mostly focused on the thebgyadient flows) and the monumental
book [80] (for a -much - broader overview on optimal transpor

In Chapter 1 we introduce the optimal transport problem énébrmulations in terms of trans-
port maps and transport plans. Then we introduce basic tdallse theory, namely the duality
formula, thec-monotonicity and discuss the problem of existence of optimaps in the model case
cost=distance

In Chapter 2 we introduce the Wasserstein distdfig@n the set??,(X') of probability measures
with finite quadratic moments antl is a generic Polish space. This distance naturally arisesawh
considering the optimal transport problem with quadratistc The connections between geodesics
in &,5(X) and geodesics itX and between the time evolution of Kantorovich potentiald tre
Hopf-Lax semigroup are discussed in detail. Also, when iloglat geodesics in this space, and in
particular when the underlying metric spakds a Riemannian manifold/, one is naturally lead to
the so-called time-dependent optimal transport probleinere/geodesics are singled out by an action
minimization principle. This is the so-called Benamou-ies formula, which is the first step in the



interpretation of%?, (M) as an infinite-dimensional Riemannian manifold, with as Riemannian
distance. We then further exploit this viewpoint followi@gto’s seminal work [67].

In Chapter 3 we make a quite detailed introduction to theheb gradient flows, borrowing
almost all material from [6]. First we present the classibabry, for\-convex functionals in Hilbert
spaces. Then we present some equivalent formulationswte only the distance, and therefore
are applicable (at least in principle) to general metriccepaThey involve the derivative of the
distance from a point (the (EVI) formulation) or the rate édgipation of the energy (the (EDE)
and (EDI) formulations). For all these formulations theseai corresponding discrete version of
the gradient flow formulation given by the implicit Euler gche. We will then show that there is
convergence of the scheme to the continuous solution asntieediscretization parameter tends to
0. The (EVI) formulation is the stronger one, in terms of w@gess, contraction and regularizing
effects. On the other hand this formulation depends on a atibility condition between energy
and distance; this condition is fulfilled in Non Positively@ed spaces in the sense of Alexandrov
if the energy is convex along geodesics. Luckily enoughctimapatibility condition holds even for
some important model functionals #2 (R™) (sum of the so-called internal, potential and interaction
energies), even though the space is Positively Curved inghse of Alexandrov.

In Chapter 4 we illustrate the power of optimal transpootatiechniques in the proof of some
classical functional/geometric inequalities: the Bruvimkowski inequality, the isoperimetric in-
equality and the Sobolev inequality. Recent works in theadnave also shown the possibility to
prove by optimal transportation methods optimal effectieesions of these inequalities: for instance
we can quantify the closedness Bfto a ball with the same volume in terms of the vicinity of the
isoperimetric ratio of to the optimal one.

Chapter 5 is devoted to the presentation of three recergntarof the optimal transport problem,
which lead to different notions of Wasserstein distancefittst one deals with variational problems
giving rise to branched transportation structures, witly ahaped path’ opposed to the *V shaped
one’ typical of the mass splitting occurring in standardmji transport problems. The second one
involves modification in the action functional on curvessargy in the Benamou-Brenier formula:
this leads to many different optimal transportation disem maybe more difficult to describe from
the Lagrangian viepoint, but still with quite useful imglitons in evolution PDE’s and functional
inequalities. The last one deals with transportation distebetween measures with unequal mass, a
variant useful in the modeling problems with Dirichlet balany conditions.

Chapter 6 deals with a more detailed analysis of the difteable structure o, (R%): besides
the analytic tangent space arising from the Benamou-Brémimula, also the “geometric” tangent
space, based on constant speed geodesics emanating fraenabgse point, is introduced. We
also present Otto’s viewpoint on the duality between Watsir space and Arnold’s manifolds of
measure-preserving diffeomorphisms. A large part of treptér is also devoted to the second order
differentiable properties, involving curvature. The oot of parallel transport along (sufficiently
regular) geodesics and Levi-Civita connection in the Was$sin space are discussed in detail.

Finally, Chapter 7 is devoted to an introduction to the sgtithnotions of Ricci lower bounds
for metric measure spaces introduced by Lott & Villani andr8t in recent papers. This notion is
based on suitable convexity properties of a dimension+udgeat internal energy along Wasserstein
geodesics. Synthetic Ricci bounds are completely comgistith the smooth Riemannian case and
stable under measured-Gromov-Hausdorff limits. For te@son these bounds, and their analytic
implications, are a useful tool in the description of meaduGH-limits of Riemannian manifolds.

Acknowledgement.Work partially supported by a MIUR PRIN2008 grant.



1 The optimal transport problem

1.1 Monge and Kantorovich formulations of the optimal trangport problem

Given a Polish spacgX, d) (i.e. a complete and separable metric space), we will ddmote (X)
the set of Borel probability measures &n By supporsupp(r) of a measure € #2(X) we intend
the smallest closed set on whighis concentrated.

If X,Y are two Polish spaced; : X — Y is a Borel map, angk € (X)) a measure, the
measurd’y . € Z(Y), called thepush forward ofu throughT is defined by

Tyu(E) = w(T~'(E)),  VECY, Borel.

The push forward is characterized by the fact that

[ #itpn= [ rotan

for every Borel functionf : Y — R U {00}, where the above identity has to be understood in the
following sense: one of the integrals exists (possiblyiaittg the valuet-oco) if and only if the other
one exists, and in this case the values are equal.

Now fix a Borelcost functionc : X x Y — R U {+occ}. The Monge version of the transport
problem is the following:

Problem 1.1 (Monge's optimal transport problem) Lety € 2(X), v € Z(Y). Minimize

TH/ c(z,T(z)) du(x)
X
among alltransport map§’ from y to v, i.e. all mapsl” such thatlyp = v. |

Regardless of the choice of the cost functipMonge’s problem can be ill-posed because:
e no admissiblél’ exists (for instance if. is a Dirac delta and is not).
o the constrainfy ;. = v is not weakly sequentially closed, w.r.t. any reasonablektepology.

As an example of the second phenomenon, one can consideedhersef, (z) := f(nz),
wheref : R — R is 1-periodic and equal tbon [0, 1/2) and to—1 on [1/2, 1), and the measures
W= E|[o 5 andv := (6_1 + 01)/2. Itis immediate to check thaff,,)«u = v for everyn € N, and

yet( f,,) weakly converges to the null functigh= 0 which satisfiesfup = 0o # v.
A way to overcome these difficulties is due to Kantorovichpvgnoposed the following way to
relax the problem:
Problem 1.2 (Kantorovich’s formulation of optimal transportation) We minimize
Y c(z,y) dy(z,y)
X XY

in the setadm(p, v) of all transportplany € (X xY) fromptov, i.e. the set of Borel Probability
measures otk x Y such that

YA xY)=p(A) VAe B(X), (X x B)y=v(B) VBe AY).

Equivalently:m~v = u, 7}, = v, wherer ™, 7" are the natural projections fronX x Y onto X
andY respectively. [ ]



Transport plans can be thought of as “multivalued” transp@ps:y = [ v, du(x), with v, €
Z({z} xY'). Another way to look at transport plans is to observe thatfer 44m(u, v), the value
of v(A x B) is the amount of mass initially id which is sent into the séB.

There are several advantages in the Kantorovich formulatiche transport problem:

e Adm(u,v) is always not empty (it contains x v),

o the setadm(u, v) is convex and compact w.r.t. the narrow topology{ X x Y') (see below
for the definition of narrow topology and Theorem 1.5), ané> [ cd- is linear,

e minima always exist under mild assumptionsc«fTheorem 1.5),

e transport plans “include” transport maps, sifiEg; = v implies thaty := (Id x T)xpu
belongs taadm(u, v).

In order to prove existence of minimizers of Kantorovich’siplem we recall some basic notions
concerning analysis over a Polish space. We say that a segiuen C £?(X) narrowly converges
to p provided

/wdun = /sodu, Vo € Cy(X),

Cy(X) being the space of continuous and bounded function’ okt can be shown that the topology
of narrow convergence is metrizable. A &t &?(X) is calledtight provided for every > 0 there
exists a compact sét. C X such that

WX\ K.)<e, Vpek.

It holds the following important result.

Theorem 1.3 (Prokhorov) Let (X, d) be a Polish space. Then a famity ¢ #(X) is relatively
compact w.r.t. the narrow topology if and only if it is tight.

Notice that if C contains only one measure, one recovers Ulam’s theoremBarg! probability
measure on a Polish space is concentratedmic@mpact set.

Remark 1.4 The inequality
(X XY\ Ky x K2) < p(X\ Ky) +v(Y \ Ka), (1.1)

valid for any~y € adm(u,v), shows thatifC; C Z(X)andK, C Z(Y) are tight, then so is the set
{’y ELP(XXY) : wfé’y € Ky, W%Z’y € ICQ}

Existence of minimizers for Kantorovich’s formulation dfet transport problem now comes from a
standard lower-semicontinuity and compactness argument:

Theorem 1.5 Assume that is lower semicontinuous and bounded from below. Then thestsea
minimizer for Problem 1.2.

Proof
CompactnessRemark 1.4 and Ulam’s theorem show that theasi(u, v) is tightin (X x Y),
and hence relatively compact by Prokhorov theorem.



To get the narrow compactness, pick a sequénce C Adm(u,v) and assume thag, —
narrowly: we want to prove thaf € adm(u, v) as well. Lety be any function irC}, (X ) and notice
that(z,y) — ¢(z) is continuous and bounded & x Y, hence we have

/sadﬂfé’yz/ (x) dy(z,y) = hm/ z) dy, (2,y) = lim /sﬁdﬂ#’yn—/sﬂdu,

so that by the arbitrariness of € C,(X) we getw#~y = p. Similarly we can proveﬁy = v,
which givesy € adm(u, v) as desired.

Lower semicontinuity. We claim that the functiona} — [ cd~ is |.s.c. with respect to narrow
convergence. This is true because our assumptionsguarantee that there exists an increasing
sequence of functions, : X x Y — R continuous an bounded such thét, y) = sup,, ¢, (z,y),

so that by monotone convergence it holds

/cd‘y:sup/cndﬂy.

Since by constructiofy — [ ¢,, d~ is narrowly continuous, the proof is complete. O

We will denote byopt (1, ) the set obptimal plansrom y to v for the Kantorovich formulation
of the transport problem, i.e. the set of minimizers of Peabll.2. More generally, we will say that
a plan is optimal, if it is optimal between its own margind¥hserve that with the notatiadp: (., v)
we are losing the reference to the cost functiowhich of course affects the set itself, but the context
will always clarify the cost we are referring to.

Once existence of optimal plans is proved, a number of nequiestions arise:

e are optimal plans unique?

e s there a simple way to check whether a given plan is optimabt?

e do optimal plans have any natural regularity property? htigalar, are they induced by maps?
e how far is the minimum of Problem 1.2 from the infimum of Praohl&.1?

This latter question is important to understand whether arereally consider Problem 1.2 the re-
laxation of Problem 1.1 or not. It is possible to prove that i§ continuous ang: is non atomic,
then

inf (Monge)= min (Kantorovich), (1.2)
so that transporting with plans can’t be strictly cheapanttransporting with maps. We won't detail
the proof of this fact.

1.2 Necessary and sufficient optimality conditions

To understand the structure of optimal plans, probably &t thing to do is to start with an example.
Let X =Y = R? andc(x,y) := |z — y|?/2. Also, assume that, v € Z(R%) are supported on
finite sets. Then it is immediate to verify that a ptare adm(u, v) is optimal if and only if it holds

N
Z |$Z 1 Z |$z ya(z)| ,

i=1

forany N € N, (x;,y;) € supp(y) ando permutation of the sefl, . .., N}. Expanding the squares

we get
N N
Z <xi7 yz Z T, yo(l )
=1 =1
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which by definition means that the supportpfs cyclically monotone. Let us recall the following
theorem:

Theorem 1.6 (Rockafellar) A setl’ ¢ R? x R? is cyclically monotone if and only if there exists a
convex and lower semicontinuous functipnR? — R U {+oo} such thaf" is included in the graph
of the subdifferential ap.

We skip the proof of this theorem, because later on we willpra much more general version.
What we want to point out here is that under the above assangpting andr we have that the
following three things are equivalent:

e v € Adm(p,v) is optimal,
e supp(7y) is cyclically monotone,

e there exists a convex and lower semicontinuous functieuch thaty is concentrated on the
graph of the subdifferential af.

The good news is that the equivalence between these thiteenstats holds in a much more
general context (more general underlying spaces, costifuns; measures). Key concepts that are
needed in the analysis, are the generalizations of the ptgoé cyclical monotonicity, convexity
and subdifferential which fit with a general cost function

The definitions below make sense for a general Borel and edadd cost.

Definition 1.7 (c-cyclical monotonicity) We say thatll’ ¢ X x Y is c-cyclically monotoneif
(x5,9:) €T, 1 <i < N, implies

Zc(zi,yi) < Zc(ﬂﬂi,ya(i)) for all permutationsr of {1,..., N}.

1=1 =1
Definition 1.8 (c-transforms) Lett : Y — R U {£oo} be any function. ltg-transformyc+ :
X — RU{—o0} is defined as
“t(x) := inf - .
V(@) = inf c(z,y) — ¥(y)
Similarly, giveny : X — RU{+o0}, its ci-transform is the functiop®t : ¥ — RU{+occ} defined
by

Pt (y) = nf c(x,y) — ¢(x).

Thec_-transformy®- : X — R U {+oo} of a functiomy onY is given by
’l/)C7 (IE) ‘= sup 7C($7 y) - ’[/)(y)v

yey
and analogously for._ -transforms of functiong on X .

Definition 1.9 (c-concavity andc-convexity) We say thap : X — RU{—oo} is c-concave if there
existsy : Y — RU {—o0} such thatp = ¢+. Similarly,y) : Y — R U {—o0} is c-concave if there
existsp : Y — R U {—o0} such that) = p°+.

Symmetricallyy : X — R U {+o0o} is c-convex if there existg : Y — R U {400} such that
e = ¢, andy : Y — RU {400} is c-convex if there existg : ¥ — R U {+o0o} such that

Y=



Observe thap : X — R U {—o0} is c-concave if and only ifx“+“+ = ¢. This is a consequence
of the fact that for any functiogh : Y — R U {£oo} it holdsy ¢+ = ¢pe+c+¢+ indeed
C4CyCp — : f . f AN ~ o~ ~ o
(8 () = Inf, sup inf co(z,g) — c(Z,9) + c(Z,y) — ¥(y),
and choosingt = x we gety+c+c+ > ¢ while choosingy = 7 we gety+e+c+ < oo+,
Similarly for functions onY” and for thec-convexity.

Definition 1.10 (c-superdifferential and c-subdifferential) Let ¢ : X — R U {—o0} be ac-
concave function. Thesuperdifferentiab“+¢ C X x Y is defined as

I = {(lny) €EX XY : o(x)+ ¢ (y) ZC(xvy)}-

Thec-superdifferentiab°+ p(z) atz € X is the set of) € Y such that(z, y) € 9°t¢. A symmetric
definition is given foe-concave functiong : Y — R U {—oc}.
The definition of-subdifferentiab®~ of a c-convex functiorp : X — {400} is analogous:

0~ = {(x,y) EX XY : o(x)+ ¢ (y) = —c(m,y)}.
Analogous definitions hold ferconcave and-convex functions ofr.

Remark 1.11 (The base case:(r,y) = — (z,)) Let X =Y = R? andc(z,y) = — (z,y). Then
a direct application of the definitions show that:

e a setisc-cyclically monotone if and only if it is cyclically monoten

e a function isc-convex (respc-concave) if and only if it is convex and lower semicontingou
(resp. concave and upper semicontinuous),

o thec-subdifferential of the:-convex (respc-superdifferential of the-concave) function is the
classical subdifferential (resp. superdifferential),

e thec_ transform is the Legendre transform.

Thus in this situation these new definitions become the iclaldsasic definitions of convex analysis.
[

Remark 1.12 (For most applicationsc-concavity is sufficient) There are several trivial relations
betweenc-convexity, c-concavity and related notions. For instangeis c-concave if and only if
—pis c-convex,—p°+ = (—p)°~ andd+yp = 9°~ (—). Therefore, roughly said, every statement
concerning:-concave functions can be restated in a statementfmnvex ones. Thus, choosing to
work with c-concave or-convex functions is actually a matter of taste.

Our choice is to work withe-concave functions. Thus all the statements from now ondeidl
only with these functions. There is only one, important,tdrthe theory where the distinction
betweenc-concavity ande-convexity is useful: in the study of geodesics in the Wastear space
(see Section 2.2, and in particular Theorem 2.18 and itsezprence Corollary 2.24).

We also point out that the notation used here is differeninftbe one in [80], where a less
symmetric notion (but better fitting the study of geodesafs)-concavity and:-convexity has been
preferred. |

An equivalent characterization of thesuperdifferential is the followingy € 9+ ¢(z) if and
only if it holds



or equivalently if
(p($) - C($,y) > SD(Z) - C(Zvy)a Vz e X. (13)

A direct consequence of the definition is that thsuperdifferential of a-concave function is
always ac-cyclically monotone set, indeed(i;, y;) € 0°+ ¢ it holds

> @i, i) Z@xz + (%) wal + ¢ (Yo <Z c(@is Yoi))
7

for any permutatiomr of the indexes.

What is important to know is that actually under mild assuoms one, everye-cyclically mono-
tone set can be obtained as thsuperdifferential of a-concave function. This result is part of the
following important theorem:

Theorem 1.13 (Fundamental theorem of optimal transport) Assume that : X x Y — R is
continuous and bounded from below andilet (X)), v € & (Y) be such that

c(z,y) < a(x) + b(y), (1.4)

for somea € L'(u), b € L*(v). Also, lety € adm(u, v). Then the following three are equivalent:
i) the plan~ is optimal,

ii) the setsupp(~) is c-cyclically monotone,

iii) there exists ac-concave functiop such thatmax{, 0} € L' (1) andsupp(y) C 9.

Proof Observe that the inequality (1.4) together with

/ oz, 9) () < / a(z)+b(y)d (z, y) = / a()dju(z)+ / by)du(y) < o, ¥ € Adm(u, )

implies that for any admissible plaf € 4dm(u,v) the functionmax{c,0} is integrable. This,
together with the bound from below ergives thatc € L!(#) for any admissible pla#.
(i) = (ii) We argue by contradiction: assume that the suppottisfnotc-cyclically monotone.

Thus we can findV € N, {(z;,¥:) }1<i<n C supp(vy) and some permutationof {1,..., N} such
that

N N

Z (i, yi) > Z (T, Yo (i))-

i=1 i=1

By continuity we can find neighborhoods > z;, V; > y; with
N
Zc Ui, Vo(i)) — c(ui, v;) <0 V(ui,v;) €U; x Vi, 1<4i < N.
1=1

Our goal is to build a “variation¥ = « + mn of « in such a way that minimality of is violated.
To this aim, we need signedmeasure; with:

(A) n~ <~ (so thaty is nonnegative);
(B) nullfirst and second marginal (so that Adm(pu, v));
(C) [ cdn < 0 (so thaty is not optimal).



LetQ := II¥,U; x V; andP € 22(2) be defined as the product of the measun%gs“Uvav,
wherem; := ~(U; x V;). Denote byrU:, #V the natural projections d® to U; andV; respectively
and define

min; m;

N

(rV, 7Ve )y P — (a0, 7V10) 4P,

=1

n =

It is immediate to verify that fulfills (A), (B), (C) above, so that the thesis is proven.

(ii) = (iii) We need to prove that I C X x Y is ac-cyclically monotone set, then there exists
a c-concave functionp such that)°y > I' andmax{y,0} € L'(u). Fix (z,7) € ' and observe
that, since we wanp to bec-concave with the-superdifferential that contairig for any choice of
(x;,y;) €T,1=1,..., N, we need to have

p(x) < clz,yn) = ¢ () = ez, 91) — el 1) + p(a)
< (el 1) = ez, p)) + el ye) — ¢ (32)

(C(fﬂayl) - 0(171791)) + (0(171792) - 0(1727y2)) + p(22)

IN

< (el ) = elar,y)) + (cl@r o) — elwa,e) ) -+ (claw.§) — e(@.7)) + 2(@).

.....

among allN-ples inT" and N varies inN. Also, since we are free to add a constanptove can
neglect the addendum(z) and define:

o) = inf (el 1) = elwr, ) + (cwn, 2) = cl@a, ) + -+ (claw,7) — @),

the infimum being taken oV > 1 integer andz;,y;) € I',i = 1,..., N. ChoosingN = 1 and
(x1,y1) = (T,7) we getp(T) < 0. Conversely, from the-cyclical monotonicity ofl" we have
©(T) > 0. Thusp(Z) = 0.

Also, it is clear from the definition thap is c-concave. Choosing agai¥ = 1 and(x1,y1) =
(Z,7), using (1.3) we get

p(x) < c(,y) - c(T,y) < a(z) +0(y) - c(T,7),

which, together with the fact that € L'(p), yieldsmax{p,0} € L'(u). Thus, we need only to
prove that“+ ¢ containsl". To this aim, chooséz, §) € T, let (1, y1) = (Z, ) and observe that by
definition of () we have

o

o) < elw,§) = c(@7) + inf (e(@, o) — (w2, o)) + -+ (elan. ) = o(@.7))
(2,5) = (&, §) + $(2)

I
o

By the characterization (1.3), this inequality shows {iat)) € 9°+ ¢, as desired.
(iii) = (i). Lety € Adm(u,v) be any transport plan. We need to prove thatly < [ cd¥.
Recall that we have

o(x) + ¢t (y) = c(z,y),  V(x,y) € supp(7y)
o(x) + ¢ (y) <clz,y), VeeX,yey,

N
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and therefore
/C(w,y)d’v(w,y) = /w(x)ﬂac*(y)d‘v(x,y) :/w(x)dﬂ(xH Ot (y)dv(y)

:/¢m+¢wwwwws/aawﬁ@m.
O

Remark 1.14 Condition (1.4) is natural in some, but not all, problemst iRgtance problems with
constraints or in Wiener spaces (infinite-dimensional Giamsspaces) includeoo-valued costs,
with a “large” set of points where the cost is not finite. We Waliscuss these topics. |

Animportant consequence of the previous theorem is thagtmitimal is a property that depends
only on the support of the plaf, and not on how the mass is distributed in the support itseH:
is an optimal plan (between its own marginals) ané such thasupp(¥y) C supp(v), theny is
optimal as well (between its own marginals, of course). W seie in Proposition 2.5 that one of
the important consequences of this fact isstability of optimality

Analogous arguments works for maps. Indeed assumelthatX — Y is a map such that
T(xz) € 0°Fp(x) for somec-concave functiorp for all z. Then, for everyu € (X)) such that
condition (1.4) is satisfied for = T'xp, the mapI’ is optimal between and T, . Therefore it
makes sense to say tHatis an optimal map, without explicit mention to the refereneeasures.

Remark 1.15 From Theorem 1.13 we know that given € Z(X), v € Z(Y) satisfying the
assumption of the theorem, for every optimal ptathere exists a-concave functionp such that
supp(y) C 9°+p. Actually, a stronger statement holds, namelysipp(v) C 9°+¢ for some
optimal~y, thensupp(v’) C 9+ ¢ for everyoptimal plarry’. Indeed arguing as in the proof of 1.13
one can see thatax{p,0} € L(x) impliesmax{¢°+,0} € L'(v) and thus it holds

/sodqu/sDC*dv Z/w(x) + o (y)dy' (z,y) < /C(xvy)dv'(fc,y) = /C(fc,y)dv(fc,y)
(supp(7y) C 9 ) Z/w(x) + o (y)dvy(z,y) = /wdwr/wc*dl/-

Thus the inequality must be an equality, which is true if anly & for v’-a.e.(x, y) it holds(z, y) €
0+ ¢, hence, by the continuity ef we concludeupp(y’) C 9. [ |
1.3 The dual problem

The transport problem in the Kantorovich formulation is pleblem of minimizing the linear func-
tionaly [ cdv with the affine constraints{~y = p, 7,y = v andy > 0. Itis well known
that problems of this kind admit a natural dual problem, vehege maximize a linear functional with
affine constraints. In our case the dual problem is:

Problem 1.16 (Dual problem) Lety € Z(X), v € Z(Y). Maximize the value of

[ @it + [vavty)
among all functions € L'(p), v € L'(v) such that
olx) +¥(y) < clx,y), VeeX,ye Y. (1.5)
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The relation between the transport problem and the dual ongigts in the fact that

yEAdm(p,v

nf / (o) () =sup / o(@)dp() + / b(y)du(y),

where the supremum is taken amonggall) as in the definition of the problem.

Although the fact that equality holds is an easy consequehddeorem 1.13 of the previous
section (taking) = ¢+, as we will see), we prefer to start with an heuristic argutmérich shows
“why” duality works. The calculations we are going to do aegyvcommon in linear programming
and are based on tlmin-max principle Observe how the constrainte adm(u,v) “becomes” the
functional to maximize in the dual problem and the functidwaminimize | cdy “becomes” the
constraint in the dual problem.

Start observing that

inf ,y)dy(z,y) = inf ,y)dy + , 1.6
Veﬂ{][{}l(w)/C(x y)dvy(z,y) %Mljl(my)/c(:r y)dy +x(7) (1.6)
wherex () is equal to O ify € Adm(u,v) and+oco if v ¢ Adm(p,v), and M, (X x Y) is the set
of non negative Borel measures &nx Y. We claim that the functioly may be written as

x) = sup { [ e@aute) + [wwar) - [ o) +vwire}
%,

where the supremum is taken among(all /) € Cy,(X) x Cp(Y). Indeed, ify € adm(p, v) then

X () = 0, while if v ¢ Adm(u, v) we can findy, 1)) € Cp(X) x Cp(Y) such that the value between

the brackets is different from 0, thus by multiplyitig, 1/) by appropriate real numbers we have that

the supremum is-co. Thus from (1.6) we have

inf /C(x, y)dvy(z,y)

~yeadm(p,v)

wt s [cenarten + [e@ine) + [ i) - [ o+ vwaran}.

YEM (X XY) @,y

Call the expression between brackeétsy, ¢, v). Sincey — F(v, ¢, 1) is convex (actually linear)
and(¢,v) — F(v, ¢, ) is concave (actually linear), the min-max principle holds ae have

inf  sup F(v,p,¢) =su inf F(v,p,7).
W e 1 (v, 0:%) ORIV (v, 0:7)

Thus we have

inf /C(x, y)dy(z,y)

Y€ Adm(p,v)

= sup inf
@, 76M+(X><Y)

= sup{/w(x)du(l’) +/w(y)dl/(y) +  inf [/ c(z,y) — (x) —¢(y)dv(fc,y)} }

0, YEM L (X XY)

{ [ ctemavan + [e@an + [t - [ o+ v}

Now observe the quantity

nt | [ elon) = @) - varan) .

1
’YEM+(X><Y)

12



If o(x) + ¢¥(y) < c(z,y) for any (z,y), then the integrand is non-negative and the infimum is 0
(achieved wheny is the null-measure). Conversely,@{x) + ¢ (y) > c(z,y) for some(z,y) €
X x Y, then choose := nd, ) with n large to get that the infimum iscc.

Thus, we proved that

il [ ety =sw [ @t + o),
YEAdm(p,v) @,
where the supremum is taken among continuous and boundetidiusy( p, 1) satisfying (1.5).
We now give the rigorous statement and a proof independeheahin-max principle.

Theorem 1.17 (Duality) Let p € Z(X), v € Z(Y)andc : X x Y — R a continuous and
bounded from below cost function. Assume {tia4) holds. Then the minimum of the Kantorovich
problem 1.2 is equal to the supremum of the dual problem 1.16.

Furthermore, the supremum of the dual problem is attained,the maximizing couplep, ¢) is of
the form(yp, ¢+ ) for somec-concave functiorp.

Proof Let~ € 4dm(u,v) and observe that for any couple of functionse L (1) andy € L(v)
satisfying (1.5) it holds

/C(l’vy)d"/(x,y) > /w(l’) +(y)dy(z,y) = /so(w)du(w) +/w(y)dV(y)-

This shows that the minimum of the Kantorovich problerrithan the supremum of the dual prob-
lem.

To prove the converse inequality pieke Opt(u, v) and use Theorem 1.13 to find-aconcave
functiony such thatupp(vy) C 9t p, max{p,0} € L*(u) andmax{¢“+,0} € L'(v). Then, asin
the proof of(iii) = (i) of Theorem 1.13, we have

/C(lny) dy(z,y) = /w(l’) + o (y) dy(z,y) = /so(w) du(x) +/so°’*(y) dv(y),

and [ cdy € R. Thusp € L'(u) andyp™ € L'(v), which shows thafp, °+) is an admissible
couple in the dual problem and gives the thesis. O

Remark 1.18 Notice that a statement stronger than the one of Remark dl@iS,mamely: under the
assumptions of Theorems 1.13 and 1.17, forangncave couple of functior(s, ©°+) maximizing
the dual problem and any optimal plgrit holds

supp(y) C 9T .
Indeed we already know that for some&oncavey we havep € L'(u), p°+ € L'(v) and

supp(y) C 90 ¢,

for any optimaly. Now pick another maximizing couple, v) for the dual problem 1.16 and notice
that@(z) + 1 (y) < c(z,y) for anyz,y impliesty < @°+, and thereforég, p°+) is a maximizing
couple as well. The fact thgi“+ € L!(v) follows as in the proof of Theorem 1.17. Conclude
noticing that for any optimal plas it holds

/@du+/<ﬁ’:*dv= /wdu+/<pc+dv= /w(l’) + ¢ (y)dy (2, y)
~ [ty = [edn+ [

so that the inequality must be an equality. |
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Definition 1.19 (Kantorovich potential) A c-concave function such tha{y, ¢°+) is a maximizing
pair for the dual problem 1.16 is called @concave Kantorovich potential, or simply Kantorovich
potential, for the couple, v. A c-convex functiorp is calledc-convex Kantorovich potential i ¢

is a c-concave Kantorovich potential.

Observe that-concave Kantorovich potentials are related to the trarigwoblem in the follow-
ing two different (but clearly related) ways:

e asc-concave functions whose superdifferential contains thppert of optimal plans, accord-
ing to Theorem 1.13,

e as maximizing functions, together with their-tranforms, in the dual problem.

1.4 Existence of optimal maps

The problem of existence of optimal transport maps consigtoking for optimal plany which are
induced by amafi' : X — Y, i.e. plansy which are equal t¢Id, T') xp, for y := wﬁﬂ/ and some
measurable map. As we discussed in the first section, in general this prolflamno answer, as it
may very well be the case when, for givere Z(X), v € 2(Y), there is no transport map at all
from p to v. Still, since we know that (1.2) holds wherhas no atom, it is possible that under some
additional assumptions on the starting meaguamd on the cost functiony optimal transport maps
exist.

To formulate the question differently: given v and the cost function, is that true that at least
one optimal plany is induced by a map?

Let us start observing that thanks to Theorem 1.13, the artevtkis question relies in a natural
way on the analysis of the properties@monotone sets, to see how far are they from being graphs.
Indeed:

Lemma 1.20 Let vy € Adm(u,v). Thenw is induced by a map if and only if there existsya
measurable sef' C X x Y where~ is concentrated, such that far-a.e. « there exists only one
y =T(z) € Y such that(xz,y) € I'. In this casey is induced by the map.

Proof Theif partis obvious. For thenly if, letT" be as in the statement of the lemma. Possibly
removing froml™ a productV x Y, with N p-negligible, we can assume tHats a graph, and denote
by T' the corresponding map. By the inner regularity of measitéseasily seen that we can also
assumd’ = U, I';, to beo-compact. Under this assumption the domaifi'qf.e. the projection of’

on X) is o-compact, hence Borel, and the restrictiorfotfo the compact setx (T',,) is continuous.

It follows thatT is a Borel map. Sincg = T'(x) y-a.e. inX x Y we conclude that

/ oz, y) dv(z,y) = / o, T(@))dy (z,y) = / o, T(x))du(x),

so thaty = (Id x T') 4. O

Thus the point is the following. We know by Theorem 1.13 thatiroal plans are concentrated
on c-cyclically monotone sets, still from Theorem 1.13 we knbwatt-cyclically monotone sets are
obtained by taking the-superdifferential of a--concave function. Hence from the lemma above
what we need to understand is “how often” theuperdifferential of a-concave function is single
valued.

There is no general answer to this question, but many péaticases can be studied. Here we
focus on two special and very important situations:

14



e X =Y =Reandc(z,y) = |z — y|?/2,
e X =Y = M, whereM is a Riemannian manifold, andx,y) = d?(x,y)/2, d being the
Riemannian distance.

Let us start with the cas&¥ = Y = R? andc(z,y) = |z — y|?/2. In this case there is a simple
characterization of-concavity and:-superdifferential:

Proposition 1.21 Let p : R? — R U {—oo}. Theney is c-concave if and only if: — 3(z) =
|z|?/2 — o(z) is convex and lower semicontinuous. In this case 9+ ¢(z) if and only ify €
0~ p(x).

Proof Observe that

jz/?

2
o) =it 22 ) o o) = int T 4 g0,y B0

which proves the first claim. For the second observe that

|z —y?/2 — ¢ (y),

c p(z) =
yeaﬂa(w)@{ < |z —yl2/2 — o+ (y), Vz € R4

o(2)
o { o(x) — |z>/2 = (&, —y) + [y|*/2 — ¢“+ (),
o(2) = 127/2 < (z,—y) + |y[*/2 — ©°* (v), Vz € R?

 o(2) = 2 /2 < p(a) = |2 /2+ (2 —2,—y)  VzeR?
s —yedtp—|[/2)()
sy ed p(x)
]

Therefore in this situation being concentrated ondtseiperdifferential of a-concave map means
being concentrated on the (graph of) the subdifferential@fnvex function.

Remark 1.22 (Perturbations of the identity via smooth gradéents are optimal) An  immediate
consequence of the above proposition is the fact that & C°(R9), then there exists > 0
such that/d + £V is an optimal map for anje| < z. Indeed, it is sufficient to take such that
—Id < V%) < Id. With this choice, the map — |z|?/2 + ey (z) is convex for anye| < g, and
thus its gradient is an optimal map. |

Proposition 1.21 reduced the problem of understanding \ilene exists optimal maps reduces to the
problem of convex analysis of understanding how the set ofdifferentiability points of a convex
function is made. This latter problem has a known answerrdeicto state it, we need the following
definition:

Definition 1.23 (¢ — ¢ hypersurfaces) A setE ¢ R? is calledc — ¢ hypersurfacgif, in a suitable
system of coordinates, it is the graph of the difference ofreal valued convex functions, i.e. if there
exists convex functions g : R~ — R such that

E = {(y,t) eR? . ye R teR, t:f(y)fg(y)}.

*herec — ¢ stands for ‘convex minus convex’ and has nothing to do with:ttve used to indicate the cost function
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Then it holds the following theorem, which we state withordgd:

Theorem 1.24 (Structure of sets of non differentiability ofconvex functions) Let A ¢ R?. Then
there exists a convex functign : R? — R such thatA is contained in the set of points of non
differentiability ofp if and only if A can be covered by countably many ¢ hypersurfaces.

We give the following definition:

Definition 1.25 (Regular measures oiR?) A measurey € 2 (R%) is called regular provided
u(E) = 0 for anyc — ¢ hypersurface? C R

Observe that absolutely continuous measures and meashi@s give 0 mass to Lipschitz hy-
persurfaces are automatically regular (because convestifuns are locally Lipschitz, thusa— ¢
hypersurface is a locally Lipschitz hypersurface).

Now we can state the result concerning existence and unégserf optimal maps:

Theorem 1.26 (Brenier) Letu € 22(R?) be such thatf |z|?du(z) is finite. Then the following are
equivalent:

i) for everyv € 2(R?) with [ |z|?dv(z) < oo there exists only one transport plan frqarto v
and this plan is induced by a mép

i) pisregular.

If either (¢) or (i¢) hold, the optimal mafd” can be recovered by taking the gradient of a convex
function.

Proof

(ii) = (i) and the last statement Takea(z) = b(z) = |z|? in the statement of Theorem 1.13. Then
our assumptions op, v guarantees that the bound (1.4) holds. Thus the conclusiofiseorems
1.13 and 1.17 are true as well. Using Remark 1.18 we know tharfyc-concave Kantorovich po-
tentialp and any optimal plary € Opt(u, v) it holdssupp(vy) C 9“+¢. Now from Proposition 1.21
we know thatp := | - |?/2 — ¢ is convex and thad°p = 9~p. Here we use our assumption on
12 sinceyp is convex, we know that the sét of points of non differentiability ofz is p-negligible.
Therefore the mayp : R? — R? is well definedu-a.e. and every optimal plan must be concen-
trated on its graph. Hence the optimal plan is unique anddediy the gradient of the convex
functiong.

(ii) = (i). We argue by contradiction and assume that there is somexduamctionp : R? — R
such that the sdf of points of non differentiability ofs has positive: measure. Possibly modifying
© outside a compact set, we can assume that it has linear gadvitifinity. Now define the two
maps:

T(x) := the element of smallest norm & g (x),
S(x) := the element of biggest norm i (),

and the plan
1
v = 5((Id, T)sp+ (Id, S)sp).

The fact thatp has linear growth, implies that := 7r§'y has compact support. Thus in particular
[ |z|?dv(z) < oo. The contradiction comes from the fact that 4dm(y, v) is c-cyclically mono-
tone (because of Proposition 1.21), and thus optimal. Hewdvis not induced by a map, because
T # S on a set of positiveg measure (Lemma 1.20). O
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The question ofegularity of the optimal map is very delicate. In general it is only otihded
variation (BV in short), since monotone maps always have this regularapegrty, and disconti-
nuities can occur: just think to the case in which the suppbthe starting measure is connected,
while the one of the arrival measure is not. It turns out tlwtnectedness is not sufficient to prevent
discontinuities, and that if we want some regularity, weehivimpose a convexity restriction on
supp v. The following result holds:

Theorem 1.27 (Regularity theorem) Assume2;, Q, C R< are two bounded and connected open
sets,u = p£d|szl’ v = n£d|ﬂ2 with0 < ¢ < p,n < C for somee, C € R. Assume also thd®,

is convex. Then the optimal transport nf&gelongs toC%< () for somea < 1. In addition, the
following implication holds:

pECOQ), neC Q) =  Tel(Q).

The convexity assumption dn, is needed to show that the convex functipivhose gradient
provides the optimal map is aviscositysolution of the Monge-Ampere equation

pH(x) = p*(Vip(x)) det (Ve (x)),

and then the regularity theory for Monge-Ampere, develdpe@affarelli and Urbas, applies.

As an application of Theorem 1.26 we discuss the questigolafr factorizationof vector fields
onRY. LetQ ¢ R? be a bounded domain, denote fay the normalized Lebesgue measureband
consider the space

S(Q) := {Borelmaps : Q@ — Q : sxpo = pa}.

The following result provides a (nonlinear) projection be {(nonconvex) space((?).

Proposition 1.28 (Polar factorization) Let S € L?(uq;R™) be such that := Sy u is regular
(Definition 1.25). Then there exist unigee S(2) and Ve, with ¢ convex, such thaf = (V) o s.
Also, s is the unique minimizer of _

[1s = s

Proof By assumption, we know that both, andv are regular measures with finite second moment.
We claim that

among alls € S(Q).

inf S —3%du = i / —yPdy(z,y). 1.7
sé?(n)/' 8% du Loimin lz —y[*dvy(z,y) (1.7)
To see why, associate to eagéhe S(Q2) the planvy; := (8,S5)4u which clearly belongs to

Adm(uq,v). This gives inequality>. Now let% be the unique optimal plan and apply Theorem
1.26 twice to get that

¥ =d,Vo)ypua = (V@,Id)yv,

for appropriate convex functions, ¢, which therefore satisfWy o Vo = Id p-a.e.. Defines :=
V@oS. Thensyua = 1o and thuss € S(€2). Also, S = Vi o s which proves the existence of the
polar factorization. The identity

/ & — y[2dry(z,y) = / s — S]2dug = / VoS — SPdug = / V6 — Id]Pdv

= min / & — y2dy(z,y),
Y€ Adn(ji,v)
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shows inequality< in (1.7) and the uniqueness of the optimal plan ensuresstigtthe unique
minimizer.

To conclude we need to show uniqueness of the polar factmmizaAssume thaf = (Vg)osis
another factorization and notice thap . uo = (Vp 0 5) 4 i = v. Thus the map/p is a transport
map fromugq to v and is the gradient of a convex function. By Proposition Ja@d Theorem 1.13
we deduce thaVy is the optimal map. Henc€y = Vi and the proof is achieved. O

Remark 1.29 (Polar factorization vs Helmholtz decompositin) The classical Helmoltz decom-
position of vector fields can be seen as a linearized verdidimeopolar factorization result, which
therefore can be though as a generalization of the former.

To see why, assume th&tand all the objects considered are smooth (the argumeresfter
are just formal). Letu : Q — R< be a vector field and apply the polar factorization to the map
S. := Id + eu with || small. Then we havés. = (Vp.) o s. and bothVy. ands. will be
perturbation of the identity, so that

Ve = Id+ev + o(e),
se =Id+ew + o(e).

The question now is: which information is carried@nov from the properties of the polar factoriza-
tion? At the level ofv, from the fact thaWV x (Vy.) = 0 we deducév x v = 0, which means that
is the gradient of some functign On the other hand, the fact thatis measure preserving implies
thatw satisfiesV - (wyq) = 0 in the sense of distributions: indeed for any smopthR? — R it

holds ; ]

0= £|E:0/fd(85)#/‘9 = £|E:O/fos‘E duq = /Vf-wd/m.

Then from the identityf V. ) o s. = Id + &(Vp + w) + o(c) we can conclude that
u = Vp+w.

We now turn to the cas&@ = Y = M, with M smooth Riemannian manifold, ardzr, y) =
d*(x,y)/2, d being the Riemannian distance bh For simplicity, we will assume that/ is compact
and with no boundary, but everything holds in more genetahtons.

The underlying ideas of the foregoing discussion are vamjlai to the ones of the casg =
Y = R¢, the main difference being that there is no more the cormdgoce given by Proposition
1.21 betweemr-concave functions and convex functions, as in the Eudtidese. Recall however
that the concepts of semiconvexity (i.e. second derivatdainded from below) and semiconcavity
make sense also on manifolds, since these properties caathéocally and changes of coordinates
are smooth.

In the next proposition we will use the fact that on a compadtsmooth Riemannian manifold,
the functionsr — d?(z, y) are uniformly Lipschitz and uniformly semiconcaveyjre M (i.e. the
second derivative along a unit speed geodesic is boundaat ddyoa universal constant depending
only on M, see e.g. the third appendix of Chapter 10 of [80] for the &nppoof).

Proposition 1.30 Let M be a smooth, compact Riemannian manifold without boundaey. :
M — R U {—o0} be ac-concave function not identically equal teco. Theng is Lipschitz,
semiconcave and real valued. Also, assumeghatd“+¢(z). Thenexp, 1 (y) C —0Tp(z).
Conversely, ifp is differentiable atz, thenexp, (—Vp(z)) € 0% p(x).
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Proof The fact thaty is real valued follows from the fact that the cost functitiiz, y)/2 is uni-
formly bounded inr,y € M. Smoothness and compactness ensure that the funefiong),/2
are uniformly Lipschitz and uniformly semiconcaveyne M, this gives thatp is Lipschitz and
semiconcave.

Now picky € 9+ ¢(z) andv € exp, *(y). Recall that-v belongs to the superdifferential of
d*(-,y)/2 atx, i.e.

E(z,y) _ E(x,y)
2 - 2
Thus fromy € 9°+¢(x) we have

o(2) = ola) 'S R - T < (v e (2) + ol ),

— <V7 expgl(z)> + o(d(z, 2)).

thatis—v € 0%y (x).
To prove the converse implication, it is enough to show thattsuperdifferential ofp at z is
non empty. To prove this, use theconcavity ofy to find a sequencgy,,) C M such that

d(x,yn) .
— 1 P S s
p(z) = lim —— P (yn);
d2(z, yn
p(z) < %—cpc*(g/n), Vze M, neN.

By compactness we can extract a subsequence convergingé&yse M. Then from the continuity
of d*(z,-)/2 andy®+ (+) it is immediate to verify thay € 9°+ p(x). O

Remark 1.31 The converse implication in the previous propositiofaiseif one doesn’t assumg
to be differentiable at: i.e., itisnottrue in general thatxp, (—0T¢(z)) C 0t p(x). [ ]

From this proposition, and following the same ideas used@Euclidean case, we give the
following definition:

Definition 1.32 (Regular measures inZ?(M)) We say that. € &2 (M) is regular provided it van-
ishes on the set of points of non differentiability/ofor any semiconvex functiah: M — R.

The set of points of non differentiability of a semiconvexdétion onM can be described as in
the Euclidean case by using local coordinates. For mostcapioins it is sufficient to keep in mind
that absolutely continuous measures (w.r.t. the volumesarey and even measures vanishing on
Lipschitz hypersurfaces are regular.

By Proposition 1.30, we can derive a result about existendecharacterization of optimal trans-
port maps in manifolds which closely resembles Theorem:1.26

Theorem 1.33 (McCann) Let M be a smooth, compact Riemannian manifold without boundary
andp € Z(M). Then the following are equivalent:

i) for everyv € &(M) there exists only one transport plan frgirto » and this plan is induced
by a magr’,
i) pisregular.

If either (¢) or (i¢) hold, the optimal mag@” can be written asc — exp,,(—V(x)) for somec-
concave functiop : M — R.

19



Proof

(ii) = (i) and the last statement Pickv € #2(M) and observe that, sine8(-,-)/2 is uniformly
bounded, condition (1.4) surely holds. Thus from Theoreb3 hnd Remark 1.15 we get that any
optimal plarry € Opt(u, v) must be concentrated on thesuperdifferential of a-concave function
. By Proposition 1.30 we know that is semiconcave, and thus differentiaplea.e. by our as-
sumption ory. Thereforer — T'(z) := exp,(—Ve(x)) is well definedu-a.e. and its graph must
be of full v-measure for anyy € Opt(u, ). This means thay is unique and induced b¥.

(i) = (ii). Argue by contradiction and assume that there exists a sewwéwe functionf whose
set of points of non differentiability has positigemeasure. Use Lemma 1.34 below to find> 0
such thatp := ¢f is c-concave and satisfies: € 9T p(z) if and onlyexp,,(—v) € 3“tp(z). Then
conclude the proof as in Theorem 1.26. O

Lemma 1.34 Let M be a smooth, compact Riemannian manifold without boundadya M — R
semiconcave. Then far > 0 sufficiently small the functiony is c-concave and it holds ¢
0% (ep)(x) if and onlyexp, (—v) € 9% (ep)(x).

Proof We start with the following claim: there exists> 0 such that for every, € M and every
v € 0% p(xg) the function
d2 (:L'a eprg (75\7))

x = ep(x) — 5

has a global maximum at = x.

Use the smoothness and compactnesd @6 findr > 0 such thati?(-,-)/2 : {(z,y) : d(z,y) <
r} — Ris C> and satisfie&’?d?(-,y)/2 > cld, for everyy € M, with ¢ > 0 independent op.
Now observe that sinceis semiconcave and real valued, itis Lipschitz. Thusgfor 0 sufficiently
small it holdssq|v| < 7/3 for anyv € % p(x) and anyx € M. Also, sincep is bounded, possibly
decreasing the value e, we can assume that

T2
colp(o)] < T

Fix zo € M, v € 0%p(xo) and lety, := exp, (—eov). We claim that forsy chosen as above,
the maximum ofzop — d?(-,30)/2, cannot lie outsideB,.(zo). Indeed, ifd(z,x¢) > r we have
d(x,yo) > 2r/3 and thus:

d(x,y0)  r? 27 2 d?(z0,y0)

2w 2 L < _
cop(x) 2 12 9 12 " 18 S f0¥(@) 2

Thus the maximum must lie if3,(zo). Recall that in this ball, the functiod® (-, yo) is C> and
satisfiesV?(d?(-, yo)/2) > cld, thus it holds

A& (5090(-) — M) < (g0X — ¢)1d,

where)\ € R is such thalv2y < AId on the whole ofd/. Thus decreasing if necessary the value of
€p We can assume that

v? <€oga(~) - M) <0 on B,(xy),

which implies thategp(-) — d?(-,y0)/2 admits a unique point: € B,(zo) such that0 €
Ot (¢ — d*(-,y0)/2)(z), which therefore is the unique maximum. Sif€gd? (-, yo)(zo) = €ov €
97 (e0) (o), we conclude that is the unique global maximum, as claimed.
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Now define the functiony : M — R U {—oc} by

. d?(z,
¥(y) = inf (2 v (),
if y = exp,(—¢eov) for somez € M, v € 0t p(z), andy(y) := —oo otherwise. By definition we
have °
d*(x,
gop(z) < % —y),  Vo,yeM,

and the claim proved ensures thayif = exp, (—eovo) for zo € M, vo € 07 p(xo) theinf in the
definition of(yo) is realized at: = xy and thus

d*(xo,yo)

5 — ¥ (Yo)-

op(wo) =
Henceegp = ¢+ and therefore ig-concave. Along the same lines one can easily see that for
y € exp, (—e00T p(x)) it holds

d?(x,y .
cop(e) = TED _cygyery)
i.e.y € 0 (eop)(z0). Thus we havé+(eop) D exp(—dT(ey)). Since the other inclusion has

been proved in Proposition 1.30 the proof is finished. O

Remark 1.35 With the same notation of Theorem 1.33, recall that we kn@awttec-concave func-
tion ¢ whosec-superdifferential contains the graph of any optimal plamf . to v is differentiable
p-a.e. (for regulay). Fix zo such thatVo(xz) exists, lety := exp, (—Ve(zo)) € 0t p(z0) and

observe that from

d*(z, yo) _ d*(z0,Yo) >

2 2 -

we deduce thaF(xq) belongs to thesuldifferential of d2(-,y)/2 at . Since we know that
d*(-,y0)/2 always have non empty superdifferential, we deduce thauitre differentiable at,.
In particular,there exists only one geodesic connectigdo y,. Therefore ifu is regular, not only
there exists a unique optimal transport mBpbut also foru-a.e. = there is only one geodesic
connectinge to T'(x). [ |

SD("E) - SO(‘TO))

The question of regularity of optimal maps on manifolds iscmunore delicate than the cor-
responding question oR?, even if one wants to get only the continuity. We won’t enteoithe
details of the theory, we just give an example showing thficdity that can arise in a curved setting.
The example will show a smooth compact manifold, and two messabsolutely continuous with
positive and smooth densities, such that the optimal ti@mspap is discontinuous. We remark that
similar behaviors occur as soon &5 has one point and one sectional curvature at that point which
is strictly negative. Also, even if one assumes that the folthihas non negative sectional curvature
everywhere, this is not enough to guarantee continuity @fojitimal map: what comes into play in
this setting is the Ma-Trudinger-Wang tensor, an objectWwhie will not study.

Example 1.36 Let M C R? be a smooth surface which has the following properties:
e M is symmetric w.r.t. the: axis and they axis,
e )M crosses the linéz,y) = (0,0) at two points, namelp, O’.
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e the curvature of/ atO is negative.
These assumptions ensure that we candiric> 0 such that for some,, z; the points

A:=(a,0, z,),
A= (=a,0,2,),
B (O,b,zb),
B’ = (0,-b, z),

belong toM and
d*(A, B) > d*(A,0) +d*(O, B),

d being the intrinsic distance ol . By continuity and symmetry, we can fimd> 0 such that
d*(x,y) > d*(x,0) + d*(0,y), Vo € B.(A)UB.(4"), y€ B-(B)UB.(B). (1.8)

Now let f (resp. g) be a smooth probability density everywhere positive amdregtric w.r.t. the
x,y axes such thaf, 5 (4 fdvol > i (resp. [ (myup. () 9 dvol > 1), and letI (resp.T”)
be the optimal transport map frofivol to gvol (resp. fromgvol to fvol).

We claim that eithefl” or 7" is discontinuous and argue by contradiction. Suppose thidit b
are continuous and observe that by the symmetry of the optiaasport problem it must hold
T'(x) = T () foranyz € M. Again by the symmetry ofi/, f, g, the point7(O) must be
invariant under the symmetries around thandy axes. Thus itis eitheéF(O) = O orT'(O) = O’,
and similarly,7"(0") € {0, 0'}.

We claim that it must hold@’(O) = O. Indeed otherwise eith&f(O) = O’ andT'(O’) = O, or
T(0) = O"andT(0’) = O’. In the first case the two couplé®, O’) and(O’, O) belong to the
support of the optimal plan, and thus by cyclical monotdyiitiholds

d*(0,0") + d*(0',0) < d*(0,0) +d*(0',0") = 0,

which is absurdum.

In the second case we ha¥®(z) # O for all z € M, which, by continuity and compactness
impliesd(T’(M),O) > 0. This contradicts the fact thdtis positive everywhere ariﬁ#(gvol) =
fvol.

Thus it holdsT'(O) = O. Now observe that by construction there must be some massfera
from B.(A) U B.(A") to B.(B) U B.(B’), i.e. we can find: € B.(A) U B.(A") andy € B.(B) U
B.(B’) such that(x,y) is in the support of the optimal plan. Sin¢®, O) is the support of the
optimal plan as well, by cyclical monotonicity it must hold

d*(x,y) +d*(0,0) < d*(z,0) + d*(O,y),

which contradicts (1.8). |

1.5 Bibliographical notes

G. Monge’s original formulation of the transport probler6&]) was concerned with the casée =
Y = R4 andc(z,y) = |z — y|, and L. V. Kantorovich’s formulation appeared first in [49].

The equality (1.2), saying that the infimum of the Monge peobkquals the minimum of Kan-
torovich one, has been proved by W. Gangbo (Appendix A of)[dafl the first author (Theorem 2.1
in [4]) in particular cases, and then generalized by A. Mi§&S].
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In [50] L. V. Kantorovich introduced the dual problem, andelal. V. Kantorovich and G. S.
Rubinstein [51] further investigated this duality for thasec(x,y) = d(z,y). The fact that the
study of the dual problem can lead to important informatiforsthe transport problem has been
investigated by several authors, among others M. Knott ar®l Smith [52] and S. T. Rachev and L.
Ruschendorf [69], [71].

The notions of cyclical monotonicity and its relation withbglifferential of convex function
have been developed by Rockafellar in [70]. The generadizab c-cyclical monotonicity and te-
sub/super differential af-convex/concave functions has been studied, among otheRijschendorf
[71].

The characterization of the set of non differentiabilitycohvex functions is due to Z&gk ([83],
see also the paper by G. Alberti [2] and the one by G. Albedithe first author [3])

Theorem 1.26 on existence of optimal map®&ihfor the cost=distance-squared is the celebrated
result of Y. Brenier, who also observed that it implies théapéactorization result 1.28 ([18], [19]).
Brenier's ideas have been generalized in many directionse @ the most notable one is R. Mc-
Cann’s theorem 1.33 concerning optimal maps in Riemanniamifwids for the case cost=squared
distance ([64]). R. McCann also noticed that the origingddthesis in Brenier’s theorem, which was
p < L%, can be relaxed intgi gives 0 mass to Lipschitz hypersurfaces’. In [42] W. Gangho a
R. McCann pointed out that to get existence of optimal mag@invith c(z,y) = |z — y|?/2 it is
sufficient to ask to the measureto be regular in the sense of the Definition 1.25. The shargiaer
of Brenier's and McCann'’s theorems presented here, whenedbessity of the regularity pfis also
proved, comes from a paper of the second author of these (1465

Other extensions of Brenier’s result are:

¢ Infinite-dimensional Hilbert spaces (the authors and Savs])
e cost functions induced by Lagrangians, Bernard-BuffoB][hamely

(,y) = in { / LA, 4(0) dt : A(0) = 2, 7(1) = y} ;

¢ Carnot groups and sub-Riemannian manifolds, dZ . /2: the first author and S. Rigot ([10]),
A. Figalli and L. Rifford ([39]);

e cost functions induced by sub-Riemannian Lagrangians Aaétgev and P. Lee ([1]).

e Wiener spaceéE, H,v), D. Feyel- A. S. Ustiinel ([36]).
HereFE is a Banach space,c &?(F) is Gaussian ané is its Cameron- Martin space, namely

H:={heE: (m)yy <}.
In this case )
|z —?J|H

c(z,y) == 2
+00 otherwise.

if v —y € H;

The issue of regularity of optimal maps would nowadays neqailecture note in its own. A
rough statement that one should have in mind is that it isttah&ve regular (even just continuous)
optimal transport maps. The key Theorem 1.27 is due to L.a@daff ([22], [21], [23)]).

Example 1.36 is due to G. Loeper ([55]). For the general chsest=squared distance on a com-
pact Riemannian manifold, it turns out that continuity ofiofal maps between two measures with
smooth and strictly positive density is strictly relatedtte positivity of the so-called Ma-Trudinger-
Wang tensor ([59]), an object defined taking fourth ordeivd¢ives of the distance function. The
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understanding of the structure of this tensor has been aaetie research area in the last years, with
contributions coming from X.-N. Ma, N. Trudinger, X.-J. W@rC. Villani, P. Delanoe, R. McCann,
A. Figalli, L. Rifford, H.-Y. Kim and others.

A topic which we didn’t discuss at all is the original formtitan of the transport problem of
Monge: the case(z, y) := |z — y| onR%. The situation in this case is much more complicated than
the one withe(z,y) = |z — y|?/2 as it is typically not true that optimal plans are unique, latt
optimal plans are induced by maps. For example considé& any two probability measurgs v
such thatu is concentrated on the negative numbers arwh the positive ones. Then one can see
that any admissible plan between them is optimal for the dasty) = |z — y|.

Still, even in this case there is existence of optimal mapsjrborder to find them one has to
use a sort of selection principle. A successful strategyiewhas later been applied to a number of
different situation - has been proposed by V. N. Sudakov 1}, Who used a disintegration principle
to reduce the-dimensional problem to a problem & The original argument by V. N. Sudakov was
flawed and has been fixed by the first author in [4] in the caskeoEuclidean distance. Meanwhile,
different proofs of existence of optimal maps have been@sed by L. C.Evans- W. Gangbo ([34]),
Trudinger and Wang [78], and L. Caffarelli, M. Feldman andRCann [24].

Later, existence of optimal maps for the caée, y) := ||z — y|, || - || being any norm has been
established, at increasing levels of generality, in [98][227] (containing the most general result,
for any norm) and [25].

2 The Wasserstein distancél,

The aim of this chapter is to describe the properties of theséfstein distancl’; on the space
of Borel Probability measures on a given metric sp@¥ed). This amounts to study the transport
problem with cost function(z, y) = d*(z,y).

An important characteristic of the Wasserstein distandbasit inherits many interesting geo-
metric properties of the base spd@g d). For this reason we split the foregoing discussion intoghre
sections on which we deal with the cases in whiclis: a general Polish space, a geodesic space and
a Riemannian manifold.

Aword on the notation: when considering product spacestikewith 7% : X™ — X we intend
the natural projection onto theth coordinate; = 1,...,n. Thus, for instance, fog, v € Z(X)
andy € Adm(u, v) we haver),y = pandr?y = v. Similarly, with7*/ : X — X* we intend the
projection onto the-th andj-th coordinates. And similarly for multiple projections.

2.1 X Polish space

Let (X, d) be a complete and separable metric space.
The distancéVs, is defined as

Wa(u,v) :\/7 in /d2<z,y>d~y<z,y>

€ Adm(p,v)

\// d*(z,y)dy(z,y), Vv € Opt(p,v).

The natural space to endow with the Wasserstein dist&ricés the space”’,(X) of Borel
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Probability measures with finite second moment:
Py(X) = {M € Z(X) : /dQ(z,zo)du(z) < oo for some, and thus any, € X}.

Notice that if eithery or v is a Dirac delta, say = d,,, then there exists only one planin
Adm(u, v): the planu x J.,, which therefore is optimal. In particular it holds

/dQ(:L',:L'())d[L($) = W;(Maaxo)a

that is: the second moment is nothing but the squared Wassedistance from the corresponding
Dirac mass.

We start proving thalll’; is actually a distance o, (X). In order to prove the triangle inequal-
ity, we will use the following lemma, which has its own intste

Lemma 2.1 (Gluing) LetX, Y, Z be three Polish spaces andtgt ¢ Z2(X xY),v% € 2(Y x 2)
be such thatr},v' = 7, +*. Then there exists a measuye= &(X x Y x Z) such that

XYy 1
ﬂ-# ’7 - ’Y )
YZ_ 2
Tty ="
Proof Let u := 7my~y' = 7,~* and use the disintegration theorem to writg'(z,y) =

du(y)d’y;(x) andd~?3(y,z) = du(y)d’yi(z). Conclude definingy by

dy(z,y,z) = dp(y)d(vy x v3)(x, 2).

Theorem 2.2 (73 is a distance) W, is a distance o, (X).
Proof It is obvious thatVs (i, 1) = 0 and thatWs (u, v) = Wa(v, 1). To prove thatVa(p,v) = 0
implies 4 = v just pick an optimal plary € Opt(u, ) and observe thaf d?(z, y)dvy(z,y) = 0
implies thaty is concentrated on the diagonal®fx X, which means that the two map$ andn?
coincidey-a.e., and therefore), v = 77,~.

For the triangle inequality, we use the gluing lemma to “cos®y two optimal plans. Let
w1, 2, iz € P2(X) and lety3 € Opt(p1, p2), ¥3 € Opt(uz, u3). By the gluing lemma we
know that there exists € £25(X?) such that

7_(_1,2 2
# YT =71
230 3

# 7 =72

Sincew;gy = andwiy = pus3, we havevr;ggﬁy € Adm(py1, us) and therefore from the triangle
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inequality in L2(~) it holds

Wa(p, ps) < \// (a1, x5)dm (w1, 03) = \// d*(x1, x3)dy (21, 22, 3)

< \// (d(:L'l,:L'Q)+d($2,$3))2d’7($17$27$3)

< \//d2(3017172)d’7(1?173027173)+ \//d2($2,$3)d’7($1,$2,$3)

= \// d?(z1, z2)dv} (w1, 22) + \// d? (w2, x3)dy3 (w2, 23) = Walp, pa) + Wa(pa, p13).

Finally, we need to prove thadt- is real valued. Here we use the fact that we restricted thiysina
to the space?,(X): from the triangle inequality we have

Wa(p,v) < Walp, 0zy) + Wa(v,0,) = \// d?(x, xo)dp(z) + \// d?(z, xp)dv(x) < .

A trivial, yet very useful inequality is:

W2(fapts gieit) < / 02 (f(x), g(x))dp(z), 2.1)

valid for any couple of metric space$,Y, anyu € £(X) and any couple of Borel maps g :
X — Y. This inequality follows from the fact thdif, ¢).. 1 is an admissible plan for the measures
fa1t, g2 11, and its cost is given by the right hand side of (2.1).

Observe that there is a natural isometric immersiofafd) into (%2 (X), Ws), namely the map
T 0.

Now we want to study the topological propertieg 6P»(X ), W>). To this aim, we introduce the
notion of2-uniform integrability IC C Z2,(X) is 2-uniformly integrable provided for ary> 0 and
o € X there existsR. > 0 such that

sup/ d*(x, 20)dp < .
1EK J X\Br, (z0)

Remark 2.3 Let (X,dx),(Y,dy) be Polish and endowX x Y with the product distance
d2((x1,y1), (22, yg)) := d% (21, 22) + d% (y1,y2). Then the inequality

/ d% (z,z0)dy(z,y) = / d% (z, 20)dy(z,y) + / d% (z,x0)dy(z,y)

(Br(zo)XBr(yo))© (Br(z0))XY Br(zo)x(Br(yo))®

< / d% (z, xo)du(x) + / R%d~y(x,y)
(Br(z0))* X x(Br(yo))°

< / 0 (, z0)dpu() + / &2 (4, yo)du(y),
(Br(xo0))© (Br(yo))©
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valid for any~y € A4dm(u,v) and the analogous one with the integraldjf(y, yo) in place of
d% (z,z0), show that ifC; C P25(X) andK, C P»(Y) are 2-uniformly integrable, so is the
set

{'y EPXxY): wfé'y € Ky, W;’Y € ’CQ}.

We say that a functioif : X — R has quadratic growth provided
[f(@)] < a(d®(x,x0) + 1), 2.2)

forsomes € Randzy € X. Itisimmediate to check that jf has quadratic growth ande 275 (X),
thenf € L1 (X, u).

The concept of 2-uniform integrability (in conjunction Witightness) in relation with conver-
gence of integral of functions with quadratic growth, play®ole similar to the one played by tight-
ness in relation with convergence of integral of boundedfions, as shown in the next proposition.

Proposition 2.4 Let (u,) C 22(X) be a sequence narrowly converging to someThen the fol-
lowing 3 properties are equivalent

i) (un)is 2-uniformly integrable,
i) [ fdun, — [ fdufor any continuoug’ with quadratic growth,
i)y [ d?(-,z0)dpn — [ d*(-,z0)du for somer, € X.

Proof

(i) = (ii). Itis not restrictive to assumg > 0. Since any suclf can be written as supremum of a
family of continuous and bounded functions, it clearly fsold

/fdugliminf/fdun.
n—roo

Thus we only have to prove the limsup inequality. Eix- 0, o € X and findR. > 1 such that
fX\BR (o) d?(-, z0)dp, < e for everyn. Now lety be a function with bounded support, values in

[0,1] and identically 1 onBx_ and notice that for every € N it holds
[ = [ P+ [ 100 < [+ [ . Jd < [ i+ 2ae.
X\Br,

a being given by (2.2). Sincgy is continuous and bounded we hay¢ xdu, — [ fxdp and
therefore

T [ faun < [ frd+ 20 < [ fa+20e
n—r00
Sincees > 0 was arbitrary, this part of the statement is proved.
(ii) = (iii). Obvious.
(iii) = (i). Argue by contradiction and assume that there exist 0 andz, € X such that for
everyR > 0 it holdssup, ey [\ 5, (5,) @ (" To)dun > €. Thenitis easy to see that it holds

Tim A2 (-, o) dpin > €. (2.3)
n—oo X\BR(zo)
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For everyR > 0 let xr be a continuous cutoff function with valuesiity 1] supported orBr(zo)
and identically 1 omBp 5 (z¢). Sinced? (-, zo)x r is continuous and bounded, we have

/d2(~,x0)XRdu: lim d2(~,z0)XRdun

n—roo

Jim. (/dQ(-,wo)dun—/dQ(-,:co)(l _XR)d,un)
— [ i+t~ [ a1~ ),

< [ @todu+ tm - 02, 20) dpin
X\Br(zo)

n—oo

:/dQ('va)dﬂ_ lim dQ(-,Jlo)d/Ln
n— oo X\Br(xo)

< / d* (-, o)dp — ¢,
having used (2.3) in the last step. Since
[ @ aydn=sup [ Eaopxndn < [ &y —e,
we got a contradiction. O

Proposition 2.5 (Stability of optimality) The distancéls is lower semicontinuous w.r.t. narrow
convergence of measures. Furthermorgpnif) C £2,(X?) is a sequence of optimal plans which
narrowly converges tey € #,(X?), then~ is optimal as well.

Proof Let (un), (vn) C P2(X) be two sequences of measures narrowly converging to
P5(X) respectively. Picky,, € Opt(un, v,) and use Remark 1.4 and Prokhorov theorem to get that
(v,,) admits a subsequence, not relabeled, narrowly convergisgrhey € #2(X?). Itis clear that
7T71#’Y =u andﬂi'y = v, thus it holds

W3 (p,v) < /dQ(%y)dv(%y) < lim [ d&(z,y)dy,(z,y) = Lm W3 (un,va).
n—oo n—oo
Now we pass to the second part of the statement, that is: we togarove that with the same

notation just used it holdg € Opt(u,v). Choosen(x) = b(z) = d*(x,z) for somezy € X in
the bound (1.4) and observe that sincer € #,(X) Theorem 1.13 applies, and thus optimality is
equivalent ta:-cyclical monotonicity of the support. The same for the ghap. Fix N € N and pick
(z%,y") € supp(), i = 1,..., N. From the fact thaty,,) narrowly converges tg it is not hard to
infer the existence ofr?,, y!,) € supp(v,,) such that

lim (d(x;,xi)er(yfl,yi)) =0, Vi=1,...,N.

n—oo

Thus the conclusion follows from thecyclical monotonicity okupp(+y,,) and the continuity of the
cost function. O

Now we are going to prove that?; (X ), Ws) is a Polish space. In order to enable some construc-
tions, we will use (a version of) Kolmogorov’s theorem, whige recall without proof (see e.g. [31]
§51).
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Theorem 2.6 (Kolmogorov) Let X be a Polish space and,, € Z(X™), n € N, be a sequence of
measures such that
R = Y22,

Then there exists a measyiec X such that
W;“""u =pu,, Vn € N.

Theorem 2.7 (Basic properties of the spaceZ?;(X), Ws)) Let(X, d) be complete and separable.
Then

n — [ narrowly
Wa(in, 1) = 0 < /d ,x0)dpy — / - xo)dp  for somery € X. (2.4)

Furthermore, the space?; (X ), W>) is complete and separable. Finall, C #,(X) is relatively
compact w.r.t. the topology induced By, if and only if it is tight and 2-uniformly integrable.

Proof We start showing implicatiors> in (2.4). Thus assume théts (s, 1) — 0. Then

‘\//dQ(-,wo)dun— \//dQ(wxo)du

To prove narrow convergence, for everyc N choosey,, € Opt(u, i, ) and® use repeatedly the
gluing lemma to find, for every € N, a measurex,, € (X x X") such that

= |W2(Mn761'0) - W2(u76$0)| < WQ(:U/na:u) —0

0,n
ﬂ-# an ’7n7
0,1,...,n—1 _
7T# Ay = Opy—1.

Then by Kolmogorov’s theorem we know that there exists a oreas € #(X x X) such that
2#’1’ Mo = ay, Vn € N.
By construction we have
d(m, 7™M L2 (x s x,00) = 1T, 7| L2(x2 ) = Wa(pt, pin) — 0.

Thus up to passing to a subsequence, not relabeled, we eanetsatr™ (x) — 7°(x) for a-almost
anyx € X x XN, Now pick f € Cy(X) and use the dominated convergence theorem to get

n—r00

lim [ fdu, = 1i_>m /foﬂ'"da:/fOWOda:/fd,u.

%if closed balls inX are compact, the proof greatly simplifies. Indeed in thissdae inequalityR*(X \ Br(zo)) <
J d?(-, zo)dp and the uniform bound on the second moments yields that theeseen — 1., is tight. Thus to prove narrow
convergence it is sufficient to check thAtfdu, — [ fdu for every f € C.(X). Since Lipschitz functions are dense in
C.(X) w.r.t. uniform convergence, it is sufficient to check thevangence of the integral only for LipschifZs. This follows
from the inequality

‘ [ i~ [ su,

,‘/f d'ynxy' /If y)ldyn(z,y)

< Lip(f) | (o), (o) < Lip(f)\/ / @2 (z, y)dn,, (2 9) = Lip(£)Wa (i, in).
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Since the argument does not depend on the subsequence dheseaim is proved.

We pass to the converse implication in (2.4). Pigk € Opt(u, un,) and use Remark 1.4 to
get that the sequendey,,) is tight, hence, up to passing to a subsequence, we can assatrie
narrowly converges to some. By Proposition 2.5 we know thag € Opt(u, 1), which forces
[ d*(z,y)dv(x,y) = 0. By Proposition 2.4 and our assumption @1,), u we know that(s,,) is
2-uniformly integrable, thus by Remark 2.3 again we know thg,) is 2-uniformly integrable as
well. Since the magz, y) — d*(x,y) has quadratic growth i 2 it holds

lim WQQ(,umM) = nlLIr;O/dQ(m,y)dvn(x,y) = /d2(m,y)d'y(ac,y) =0.

n—oo

Now we prove that %%, (X ), W-) is complete. Pick a Cauchy sequerigg) and assumie with-
out loss of generality, thgt,,, Wa(pn, ftny1) < co. For everyn € N choosey,, € Opt(in, fin+1)
and use repeatedly the gluing lemma to find, for every N, a measur@,, € #,(X") such that

+1
Tr;n 5’!‘1/:7'!‘1/’

By Kolmogorov's theorem we get the existence of a meaguee (X ") such thabr "B =0,
for everyn € N. The inequality

Z (", 7 )| L2 xn,8) = Z ld(x", 7 L2 (x2.4,) = Z Wa(pi, pit1) < oo,

n=1
shows thaty ~ 7" : XV % X is a Cauchy sequence i?(3, X), i.e. the space of maps :
XN — X such thatf d*(f xo)dﬁ( ) < oo for some, and thus every, € X endowed with

the distancel(f, g) : \/f d2(f y))dB(y). SinceX is complete,L?(3, X) is complete as

well, and therefore there eX|sts a I|m|t map of the Cauchy sequenc¢e™). Definey := 73’3 and
notice that by (2.1) we have

W21, 1) < / & (7%, 7)dB > 0,

so thaty is the limit of the Cauchy sequen¢g,,) in (2%2(X), W3). The fact thal &2, (X), Ws) is

separable follows from (2.4) by considering the set of ficibd@vex combinations of Dirac masses

centered at points in a dense countable séf imith rational coefficients. The last claim now follows.
(I

Remark 2.8 (On compactness properties o7, (X)) An immediate consequence of the above
theorem is the fact that i is compact, the{ 2%, (X), W5) is compact as well: indeed, in this
case the equivalence (2.4) tells that convergenc#4(.X ) is equivalent to weak convergence.

It is also interesting to notice that X is unbounded, thed?,(X) is not locally compact. Actu-
ally, for any measurg € &,(X) and anyr > 0, the closed ball of radiusaroundu is not compact.
To see this, fixt € X and find a sequende:,,) C X such thatd(z,,,Z) — co. Now define the

Sagain, if closed balls ifX are compact the argument simplifies. Indeed from the unifooomd on the second moments
and the inequality?? (X \ Br(zo)) < fX\BH(wU) d*(-, zo)dp we get the tightness of the sequence. Hence up to pass to a

subsequence we can assume tpat) narrowly converges to a limit measyreand then using the lower semicontinuitydh
w.r.t. narrow convergence we can conclude,, Wa(u, pin) < limy, lim , Wa(tim, pin) = 0
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measureg, := (1 —e,)u +e,0,,, Wheres,, is chosen such that,d?(z, x,,) = r2. To bound from
aboveW?Z (u, ui, ), leave fixed1 — €,,) 1, movee,, i to T and then move,,dz into €,,6,, , this gives

W) < 2o ( [ PloT)dnto) + e
so thatlim W (y, 1, ) < 7. Conclude observing that

lim [ d*(z,Z)dp, = lim (1—sn)/dQ(:r,f)dqusndQ(xn,E) :/dQ(x,E)dqurQ,

n—roo n—roo

thus the second moments do not converge. Since clgarlyweakly converges tp, we proved that
there is no local compactness. |

2.2 X geodesic space

In this section we prove that if the base sp&ég d) is geodesic, then the same is true also for
(2,(X), W5) and we will analyze the properties of this latter space.
Let us recall that a curve : [0, 1] — X is calledconstant speed geodegimovided

d(%%) = |f—8|d(’}/0,’)/1), Vt7s € [051]5 (25)
or equivalently if< always holds.

Definition 2.9 (Geodesic spaceA metric spacd X, d) is called geodesidf for everyz, y € X
there exists a constant speed geodesic connecting thema censtant speed geodesic such that
Y0 =z andy; = y.

Before entering into the details, let us describe an impbggample. Recall that > z +— 6, €
P5(X) is anisometry. Thereforeif— ~; is a constant speed geodesicXrtonnectinge to y, the
curvet — 45, is a constant speed geodesic#h (X ) which connects,, to §,. The important thing
to notice here is that the natural way to interpolate betwgeando, is given by this - so called -
displacement interpolatiarConversely, observe that the classical linear interpmiat

t—= = (1 —1)d; +tdy,

produces a curve which has infinite length as soonzas# y (becauseWs(uy, ps) =
V|t — sld(z,y)), and thus is unnatural in this setting.

We will denote byGeod(X) the metric space of all constant speed geodesics endowed with
the sup norm. With some work it is possible to show thatod(X) is complete and separable as
soon asX is (we omit the details). Thevaluation maps; : Geod(X) — X are defined for every
t €10,1] by

e(7) =" (2.6)

Theorem 2.10 Let (X, d) be Polish and geodesic. Thé#» (X ), Ws) is geodesic as well. Further-
more, the following two are equivalent:

i) t— u € Po(X) is aconstant speed geodesic,
ii) There exists a measuye € %, (Geod (X)) such that(eg, e1)4xp € Opt(po, 1) and

pe = (e¢) 4. (2.7)
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Proof Choosen’, u' € 2,(X) and find an optimal plary € Opt(u,v). By Lemma 2.11 be-
low and classical measurable selection theorems we knavirteee exists a Borel ma@eodSel :

X? — Geod(X) such that for any:, y € X the curveGeodSel(x,y) is a constant speed geodesic
connectingr to y. Define the Borel probability measugec &7(Geod (X)) by

p = GeodSely~y,

and the measurgs € Z(X) by 1 == (er) -
We claim thatt — 1, is a constant speed geodesic connectihtp 1.!. Consider indeed the map

(eg,e1) : Geod(X) — X? and observe that fronteo,el)(GeodSel(x,y)) = (x,y) we get

(€0, e1)pp = 1. (2.8)

In particular,uo = (eo)4p = 73y = p°, and similarlyu; = ', so that the curve — i, connects
©° to ut. The facts that the measurgs have finite second moments afyg ) is a constant speed
geodesic follow from

v@mhmfmy”/f@wm%w»mw>
@9 - 8)2/d2(eo(7),e1(7))du(7)

<@u—wffmmmmm=@—WW%ﬂff

The fact that(ii) implies (7) follows from the same kind of argument just used. So, we torn t
(1) = (i7). Forn > 0 we use iteratively the gluing Lemma 2.1 and the Borel riapdSel to build
ameasure” € Z(C([0,1], X)) such that

(ei/2n7€(i+1)/2n)#l~tn € Opt(ui/Q"a,u(i+1)/2")a Vi = 07 R 2" — 17

andp-a.e.y is a geodesic in the intervalg/2™, (i + 1)/2"],i = 0,...,2" — 1. Fix n and observe
that for any0 < j < k£ < 2" it holds

k—

Z €i/2m, e(z+1)/2”)

k—1
< D lld(eiszn s eisnyan) [l o

=]

[d(ej/2n, ex/2n HLZ(un)

’N(u")
k—
Z Mz/Q"a,U/ z+1)/2”) = W2(Nj/2"a,uk/2”)-

(2.9)
Therefore it holds
(ej/Q”;ek/Q")#y’n € Opt(ﬂj/anl’Lk/Q")v VJ, ke {07 SRR 271}

Also, since the inequalities in (2.9) are equalities, itd hard to see that for"-a.e. v the points
if2ns i = 0,...,2" must lie along a geodesic and satisfyy; 2n, v(i+1)/27) = d(v0,71)/2",
i=0,...,2" — 1 Henceu™-a.e. v is a constant speed geodesic and thtisc &?(Geod(X)).

Now suppose for a moment thgt™) narrowly converges - up to pass to a subsequence - to some
p € Z(Geod(X)). Then the continuity of the evaluation magsyields that for anyt € [0, 1] the
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sequencer — (e;)xp™ narrowly converges tge; ) p and this, together with the uniform bound
(2.9), easily implies thagt satisfies (2.7).

Thus to conclude it is sufficient to show that some subseauiehige,,) has a narrow limft. We
will prove this by showing that™ € %2,(Geod (X)) for everyn € N and that some subsequence is a
Cauchy sequence {7, (Geod (X)), W2), W being the Wasserstein distance built oGeind (X))
endowed with theup distance, so that by Theorem 2.7 we conclude.

We know by Remark 1.4, Remark 2.3 and Theorem 2.7 that foiyever N the set of plans
a € P(X?" ) such thatrl,a = p1;5- fori = 0,...,2", is compact in?,(X*" ). Therefore
a diagonal argument tells that possibly passing to a suleseginot relabeled, we may assume that
for everyn € N the sequence

2’71
mi— H(ei/w)#Hm
i=0

converges to some plan w.r.t. the distaficgon X 2" +1.
Now fix n € N and notice that fot € [i/2™, (i + 1)/2"] andvy, ¥ € Geod(X) it holds

. . 1 - -
d(ve,7) < d(Vijan, Viit1y2m) + on (d(’YO,%) + d(’YoKh)),
and therefore squaring and then takingshg overt € [0, 1] we get

2" —1

- - 1 -
Sl[%)pl] d2(%,%) <2 Z d? ('7i/2"'7'7(i+1)/2”') + on—2 (dQ(VO,%) + d2(70,71))- (2.10)
telo, i—0

Choosingy to be a constant geodesic and using (2.9), we getiifaEe &2, (Geod(X)) for every
m € N. Now, for any giverv, o € &(Geod(X)), by a gluing argument (Lemma 2.12 below with
v, in place ofv, 7, Y = Geod(X), Z = X?"*1) we can find a plaig € 2 ([Geod(X)]?) such

that
ﬂé&ﬂ =v,
Wi&ﬁ =,
271 27’1,
<<e(), sy G omy 761) © 7.(_17 (e(), sy Ciomy e el) © 7T2) ﬁ € Opt(H(ei/2">#V7 H(ei/2">#i)>a
# i=0 i=0

where optimality betweel]—[fl0 (Cyrrymy andHin(ei/Qn)#f/ is meant w.r.t. the Wasserstein dis-
tance onZ,(X2"+1). UsingB to bound from abovéV, (v, ) and using (2.10) we get that for
every couple of measures v € &5 (Geod(X)) it holds

2™ 2"
Wi, ) <2W3([J(eio)sv. [ (eipn)?)
=0 =0

+

sz [ @enmavt) + [ o))

4as for Theorem 2.7 everything is simpler if closed ball&irare compact. Indeed, observe that a geodesic connecting two
points in Br (o) lies entirely on the compact s&:r(zo), and that the set of geodesics lying on a given compact seseli$ i
compact inGeod(X), so that the tightness ¢f+™) follows directly from the one of uo, o1 }.
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Pluggingv = p™, » = p™ and recalling thatV, (Hfio(ei/gn)#um, Hflo(ei/gn)#um') —0as
m, m’ — +oo for everyn € N we get that

T m m’ 1 m ~ m’ [~

lim ~ Wi(p™, p™) < n2 (/ d* (0, 1) dp™ () + /dz(vom)du (7))

m, m’—oo
1

= 2,1—_3W22(M07M1)-

Lettingn — oo we get tha{u™) C P2(Geod(X)) is a Cauchy sequence and the conclusiori]
Lemma 2.11 The multivalued map fror& : X2 — Geod(X ) which associates to each pdir, y)
the setGG(x, y) of constant speed geodesics conneciing y has closed graph.

Proof Straightforward. O

Lemma 2.12 (A variant of gluing) LetY, Z be Polish spaces;, v € #(Y)andf,g:Y — Z be
two Borel maps. Ley € Adm(f4v, g47). Then there exists a plad € 22(Y?) such that

(foﬂ'l,gOﬂ'Q)#[j' =7.
Proof Let {v.}, {7z} be the disintegrations of, 7 w.r.t. f, g respectively. Then define

8 ::/ vy X Uz dy(z, Z).
Z2
g

Remark 2.13 (The Hilbert case) If X is an Hilbert space, then for every y € X there exists only
one constant speed geodesic connecting them: the tusvél —t)x +ty. Thus Theorem 2.10 reads
as:t — u is a constant speed geodesic if and only if there exists amapplany € Opt(uo, 1)
such that

pe=((1—t)r + t7r2)#'7.
If v is induced by a mafy’, the formula further simplifies to
pe = ((1—t)Id+ tT)#uo. (2.11)
|

Remark 2.14 A slight modification of the arguments presented in the sdqmant of the proof of
Theorem 2.10 shows that (X, d) is Polish and %%, (X)), W>) is geodesic, the(lX, d) is geodesic
as well. Indeed, given,y € X and a geodesi;) connecting, to J,,, we can build a measure
p € Z(Geod(X)) satisfying (2.7). Then every € supp(u) is a geodesic connectingtoy. W

Definition 2.15 (Non branching spaces)A geodesic spaceX, d) is said non branching if for any
t € (0,1) a constant speed geodesids uniquely determined by its initial point and by the point
~¢. In other words{ X, d) is non branching if the map

Geod(X) > Yy — (70)715) S X27

is injective for anyt € (0,1).
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Non-branching spaces are interesting from the optimalsprart point of view, because for such

spaces the behavior of geodesicsgfa(X) is particularly nice: optimal transport plan from inter-

mediate measures to other measures along the geodesidgue and induced by maps (it is quite

surprising that such a statement is true in this generatigmpare the assumption of the proposition
below with the ones of Theorems 1.26, 1.33). Examples of iramching spaces are Riemannian
manifolds, Banach spaces with strictly convex norms anaaidrov spaces with curvature bounded
below. Examples of branching spaces are Banach spacesanitétrictly convex norms.

Proposition 2.16 (Non branching and interior regularity) Let (X, d) be a Polish, geodesic, non
branching space. Thef®?,(X), W>) is non branching as well. Furthermore,(if,) C 22;(X)is a
constant speed geodesic, then for evegy (0, 1) there exists only one optimal plan @pt(po, 11+)
and this plan is induced by a map from. Finally, the measurgx. € &?(Geod (X)) associated to
(1) via (2.7)is unique.

Proof Let (i) C Z5(X) be a constant speed geodesic anddix (0,1). Pick~y! € 0pt(uo, pi1,)
and~? € Opt (4, i11). We want to prove that botly! and~? are induced by maps from,. To
this aim use the gluing lemma to find a 3-plare %2, (X?) such that

L2 1
TSa=,
23 2
Tyo=T,

and observe that sindg, ) is a geodesic it holds
At 7|2 < lld(mt, 72) +d(7?, 7°)| L2y < (Tt 72) || 20y + (T, 72) | 12 (0r)
= [ld(mt, 7)o () + ld(mt, 7°) ([ L2 (y2) = Walhios pirg) + Wa(pzg s 1)
= Wa(po, 1),
so that(n!, %) s € Opt(po, 1) Also, since the first inequality is actually an equality, we
have thatd(z,y) + d(y,z) = d(z,z) for a-a.e. (x,y, z), which means that, y, z lie along a
geodesic. Furthermore, since the second inequality is aaliég the functiongz, y, z) — d(z,y)
and(z,y, z) — d(y, z) are each a positive multiple of the otherimpp (). It is then immediate to
verify that for every(z, y, z) € supp(a) it holds
d(l‘,y) = (1 - ﬁo)d(m, Z)a
d(y, z) = tod(z, 2).
We now claim that for(z, y, 2), (2/,v’, 2’) € supp(ex) it holds (z,y, z) = («/,/, 2") if and only if

y = 3. Indeed, pick(z,y, z), (2/,y,z") € supp(c) and assume, for instance, thatt z’. Since
(m!, 73) 2 is an optimal plan, by the cyclical monotonicity of its suppae know that

= (1 = to)d(w, 2) + tod(z’, 2"))* + ((1 — to)d(’, 2) + tod(z, 2)),

dz(z, z)+ dQ(x/, 2') < dz(z, 2"+ d2(z', z) < (d(x,y) +d(y, z/))2 + (d(x’,y) + d(y, z))2

which, after some manipulation, givééz, z) = d(a’,2’) =: D. Again from the cyclical mono-
tonicity of the support we haveD? < d?(x, 2') + d?(2’, 2), thus eitherl(z2’, ) ord(z, ') is > than
D. Sayd(z,z') > D, so that it holds

D <d(z,2') <d(x,y) +d(y,z") = (1 —to)D + toD = D,
which means that the triple of points, y, z) lies along a geodesic. Sin¢e, y, z) lies on a geodesic

as well, by the non-branching hypothesis we get a contriadict
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Thus the mapupp(a) > (z,y,2) — vy is injective. This means that there exists two maps
fy9: X — X suchtha{z,y, z) € supp(e) ifand only ifz = f(y) andz = ¢g(y). This is the same
as to say that' is induced byf and~? is induced byy.

To summarize, we proved that givene (0, 1), every optimal plany € Opt(uo, p+,) is induced
by a map fromu,,. Now we claim that the optimal plan is actually unique. Indlgéthere are two
of them induced by two different maps, sgynd f’, then the plan

S ()t + (7 TD) 11, ),

would be optimal and not induced by a map.

It remains to prove that?,(X) is non branching. Chooge € %»(Geod (X)) such that (2.7)
holds, fixto € (0, 1) and lety be the unique optimal plan iapt (w0, 111, ). The thesis will be proved
if we show thatu depends only ory. Observe that from Theorem 2.10 and its proof we know that

(€0, ety ) w1t € Opt(po, i),

and thus(eo, ey, )¢ = ~. By the non-branching hypothesis we know that, e;,) : Geod(X) —
X?isinjective. Thus it it invertible on its image: letting the inverse map, we get

p = Fp,
and the thesis is proved. O

Theorem 2.10 tells us not only that geodesics exists, bwigke also a natural way to “interpo-
late” optimal plans: once we have the measure &?(Geod(X)) satisfying (2.7), an optimal plan
from p, to pi, is simply given by(e;, e, )« . Now, we know that the transport problem has a natural
dual problem, which is solved by the Kantorovich potentialis then natural to ask how to inter-
polate potentials. In other words, (i, p+) arec—conjugate Kantorovich potentials fogo, 11),
is there a simple way to find out a couple of Kantorovich pagsitissociated to the couple, js?
The answer is yes, and it is given - shortly said - by the sotutif an Hamilton-Jacobi equation. To
see this, we first define tHeopf-Laxevolution semigrougd; (which inR¢ produces the viscosity
solution of the Hamilton-Jacobi equation) via the follogyiformula:

d? .
LA
Hi(¢)(x) = ¥(@), if t = s, (2.12)
sup —M—i—w(y), if t > s,

yeX s—t

To fully appreciate the mechanisms behind the theory, ietésh to introduce theescaled costs’*
defined by

) d?(z,
i (z,y) = (z f), vVt <s, z,y € X.
Observe thatfot < r < s
Ct.”r‘(z’ y) J’» Cr7s(y7 Z) Z Ct75($7 Z)7 vx? y) Z E X7

and equality holds if and only if there is a constant speedigsioy : [t,s] — X such thatr =
Yo, Y = Yr 2 = 7¥s. The notions ofcigs andc"*® transforms, convexity/concavity and sub/super-
differential are defined as in Section 1.2, Definitions 1.8,dnd 1.10.

The basic properties of the Hopf-Lax formula are collectethe following proposition:
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Proposition 2.17 (Basic properties of the Hopf-Lax formulg We have the following three prop-
erties:

(i) Foranyt, s € [0, 1] the mapH; is order preserving, thatie < ¢ = H7(¢) < H} ().

(i) Foranyt < s € [0, 1] it holds

(i) Foranyt, s € [0,1]it holds
HfoH!o H} = Hj.

Proof The order preserving property is a straightforward consage of the definition. To prove
property(ii) observe that

HL(H; (6)) (@) = supinf (6(a") +¢"*(@/,y) = ¢"*(2,1)).

Yy x

which gives the equality?! (Hf((b)) = d)cﬁsc’f: in particular, choosing’ = x we get the claim
(the proof of the other equation is similar). For the lastpgamy assume < s (the other case is
similar) and observe that by) we have

H} o Hi oH > H}
———
>Id

and
HfoH!o Hj < H;.
——

<Id
O

The fact that Kantorovich potentials evolve according te iHopf-Lax formula is expressed in
the following theorem. We remark that in the statement bedo& must deal at the same time with
c-concave and-convex potentials.

Theorem 2.18 (Interpolation of potentials) Let (X, d) be a Polish geodesic spadey) C 925(X)
a constant speed geodesic(it?z (X ), W2) andy a ¢ = %!-convexKantorovich potential for the
couple(po, p1). Then the functionp, := H{(p) is a c¢'*-concaveKantorovich potential for the
couple(us, ), for anyt < s.

Similarly, if ¢ is a c-concaveKantorovich potential for(u1, uo), then Hi(¢) is a c¢**-convex
Kantorovich potential for i, uu5) for anyt < s.

Observe that that for = 0, s = 1 the theorem reduces to the fact tH#} (p) = (—¢)* is ac-
concave Kantorovich potential far, 1, a fact that was already clear by the symmetry of the dual
problem discussed in Section 1.3.

Proof

We will prove only the first part of the statement, as the sddemnalogous.

Step 1 We prove tha#f§ (1) is ac’-*-concave function for any < s and any : X — R U {+o0}.
This is a consequence of the equality

co"s(x,y) = Zlg)f( co’t(z,y) + ¥ (x, 2),
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from which it follows
Hs — f 0,s — f t,s f 0.t )
§()(0) = fuf o) + 0lo) = inf (o 2) 4 g o)+ 0l0))

Step 2 Letp € Z(Geod(X)) be a measure associated to the geodgsicvia equation (2.7). We
claim that for everyy € supp(p) ands € (0, 1] it holds

©s(7s) = @(70) + (70, 7s)- (2.13)

Indeed the inequalityc comes directly from the definition by taking= ~,. To prove the opposite
one, observe that sindeg,e1)xp € Opt(uo, 1) andy is ac-convex Kantorovich potential for
10, [41, we have from Theorem 1.13 that

¢~ (m) = =" (70, m) — ¥(0),
thus

o(x) = sup —" Mz, y) — o (y) > =N z,m) — ¢ ()
ye

= —c"Ya,m) + < (yv0,711) + ©(70)-

Plugging this inequality in the definition of; we get
s 0,s
ws(vs) = Inf % (x,75) + o(2)

> inf (2, 7s) — O Ma, ) + @ (v0,71) + ()

> —c* (s, m1) + ¢ (0,m) = 9(70) = < (70,75) + ¢(70)-
Step 3 We know that an optimal transport plan framto 1, is given by(e,, es )« ut, thus to conclude
the proof we need to show that

s

0s(vs) + () (1) =*(4,7s), Vv € supp(p),

Where(aps)ci’s is thect*-conjugate of the!*-concave functionp,. The inequality< follows from
the definition ofct*-conjugate. To prove opposite inequality start observiad t

Ps(y) = inf (@) + e(y) < < (10,9) + ©(0)

< (0, 7¢) + (v, ) + ©(0),

and conclude by

t,s
C

s (1) = inf (v, ) — s (y) = = (70, 1) — ¢(70)
= 76078(707 VS) + Ct,s(/ytv VS) - 90(/70)

213) 4
= Ct's(')/ta')/s) _(PS('YS)'
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We conclude the section studying some curvature propesfi€s’,(X), W2). We will focus
on spacegositively/non positively curveih the sense of Alexandrov, which are the non smooth
analogous of Riemannian manifolds having sectional curedtounded from below/above by O.

Definition 2.19 (PC and NPC spaces)A geodesic spaceX,, d) is said to be positively curved (PC)
in the sense of Alexandrov if for every constant speed genged0, 1] — X and every: € X the
following concavity inequality holds:

d? ('yt,z) > (1- t)d2 ('yo,z) + td? (71,,2) —t(1 — t)d2 (70,71). (2.14)
Similarly, X is said to be non positively curved (NPC) in the sense of Aldray if the converse
inequality always holds.
Observe that in an Hilbert space equality holds in (2.14).
The result here is that??; (X ), Ws) is PC if (X, d) is, while in general it is not NPC iX is.
Theorem 2.20 (#2(X), W) is PCif (X, d) is) Assume tha(X,d) is positively curved. Then
(P,5(X), Ws) is positively curved as well.

Proof Let (u:) be a constant speed geodesicih(X) andy € H5(X). Letp € Po(Geod(X))
be a measure such that

Mt = (et)#l"’a vVt € [Oa 1];

as in Theorem 2.10. Fit € [0, 1] and choosey € Opt(u,,v). Using a gluing argument (we omit
the details) it is possible to show the existence a measure? (Geod(X) x X) such that

a=yp,
(etmﬁx)#a =7,

ﬂ_Geod(X)
# (2.15)

whererG0d(X) (y 1) := v € Geod(X), 7% (y,z) := x € X andey, (v,2) := v, € X. Thena
satisfies also

(eo, ﬂ'X)#a € Adm(o,v)

2.16
(el,ﬂ'X)#a € Adm(p1,v), ( )
and therefore it holds
W) = [ @(er(0),2)da(r,2)
(2.14) ) ) )
> /(1 — t0)d*(v0,2) + tod* (11, 2) — to(1 — to)d” (70, 11)dex(v, )
(2.15) 2 2
= (1—t0)/d (Vo,z)da(%x)—i-to/d (11, 2)da(y, x)
— to(1 —to)/dQ(%m)du(v)
(2.16) ) ) )
(1 —to) W5 (o, v) + toWs5 (1, v) — to(1 — to)Ws5 (1o, 1),
and by the arbitrariness of we conclude. O
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Example 2.21 (2,(X), W») may be not NPC if (X, d) is) Let X = R? with the Euclidean dis-
tance. We will prove that%; (R?), Ws) is not NPC. Define

1 1 1
o 1= 5(5(1,1) +95,3)), M1:= 5(5(71,1) +0(-53), V= 5(5(0,0) +9(0,-4));

then explicit computations show th8t3 (o, 1) = 40 and W2 (pug,v) = 30 = Wi(u1,v). The
unigue constant speed geodegig) from 1 to p; is given by

1
=5 (6(176t,1+2t) + 6(576t,372t))7

and simple computations show that

30
40 = W3 (pr o, v) > > t3 71

2.3 X Riemannian manifold

In this sectionX will always be a compact, smooth Riemannian manifdldwithout boundary,
endowed with the Riemannian distante

We study two aspects: the first one is the analysis of someriapoconsequences of Theorem
2.18 about the structure of geodesics#ha (M), the second one is the introduction of the so called
weak Riemannian structugd (2 (M), Ws).

Notice that sincelM is compact,Z, (M) = Z2(M). Yet, we stick to the notatiorn?s (M)
because all the statements we make in this section are swéglnon compact manifolds (although,
for simplicity, we prove them only in the compact case).

2.3.1 Regularity of interpolated potentials and consequeres
We start observing how Theorem 2.10 specializes to the ddgemannian manifolds:

Corollary 2.22 (Geodesics i %25 (M), W3)) Let(u:) € P2(M). Then the following two things
are equivalent:

i) (u:)lisageodesicif (M), Ws),
ii) there exists a plary € &2(T' M) (T'M being the tangent bundle 8f) such that
[ Pt = W2 o).

(EXp(t))#'Y = Mt

(2.17)

Exp(t) : TM — M being defined byz, v) — exp, (tv).

Also, for anyu, v € Z»(M) such thatu is a regular measure (Definition 1.32), the geodesic con-
nectingy to v is unique.

Notice that we cannot substitute the first equation in (2uit) (7, exp) g~y € Opt(po, 1), be-
cause this latter condition is strictly weaker (it may bet the curvel — exp,(tv) is not a globally
minimizing geodesic from: to exp, (v) for some(z, v) € supp ).
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Proof The implication(i) = (ii) follows directly from Theorem 2.10 by taking into accoungth
fact thatt — ~; is a constant speed geodesic bhimplies that for soméz,v € TM) it holds
v+ = exp, (tv) and in this casé(vo, v1) = |v].

For the converse implication, just observe that from thesdequation in (2.17) we have

W2 (e, ps) < /d2(expz(tv),expw(sv))d'y(x,v) < (t—s)2/|v|2d'y(ac,v) = (t—5)2W3 (1o, j11),

having used the first equation in (2.17) in the last step.

To prove the last claim just recall that by Remark 1.35 we kioat for ;.-a.e. = there exists
a unique geodesic connectirgo T'(x), T being the optimal transport map. Hence the conclusion
follows from (i:) of Theorem 2.10. O

Now we discuss the regularity properties of Kantorovictepaiils which follows from Theorem
2.18.

Corollary 2.23 (Regularity properties of the interpolated potentials) Let ¢) be a c—convex po-
tential for (uo, p11) and lety := Hi (¢). Definey, := H{(v), »: := Hi(p) and choose a geodesic
() from g to g Then for every € (0, 1) it holds:

i) 1 > ¢ and both the functions are real valued,

i) ¥ = 1 ONsupp (),
iii) 1y andy; are differentiable in the support @f, and on this set their gradients coincide.

Proof For (i) we have
pr = Hi(p) = (Hi o Hy)(v) = (Hi o H; oHg)yp < Hy(t) = ¢
——
<Id
Now observe that by definition);(x) < 400 andg;(x) > —oo for everyz € M, thus it holds
+o0 > () > () > —o0, Vo € M.

To prove(ii), let u be the unique plan associated to the geodgsi¢ via (2.7) (recall Proposi-
tion 2.16 for uniqueness) and pigke supp(u). Recall that it holds

V() = (0, m) + ¥ (),
ei(v) = (v, m) + e(m).

Thus fromep(y1) = ¢”'(y0,71) + ¥(70) we get that, () = ¢i(ve). Sinceps = (er)zp, the
compactness o/ givessupp(¢) = {7t }yesupp(p), SO that(ii) follows.
Now we turn to(zi). With the same choice df— ~, as above, recall that it holds

Ye(ve) = M (v0, %) + ¥ (0)
1/1t($) S CO7t(fYOa‘T) + 1/)(70)7 vV € Ma

and that the functiom — %! (v, 2)+(70) is superdifferentiable at = ~;. Thus the function: —
1y is superdifferentiable at = ~;. Similarly, ¢, is subdifferentiable at;. Choosev; € 9% (v:),
v € 0~ () and observe that

Ve (1) + (vi, expl ! (@) +o(D(x, 7)) = ve(x) > (@) = pe(ye) + (va, exp, () +o(D(x, 1)),

which givesy; = vy and the thesis. O
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Corollary 2.24 (The intermediate transport maps are localy Lipschitz) Let (u;) C (M) a
constant speed geodesic(i?2 (M), Ws). Then for every € (0,1) ands € [0, 1] there exists only
one optimal transport plan from; to u, this transport plan is induced by a map, and this map is
locally Lipschitz.

Note: clearly in a compact setting being locally Lipschitzans being Lipschitz. We wrote ‘locally’
because this is the regularity of transport maps in the nampeat situation.

Proof Fix ¢t € (0,1) and, without loss of generality, lat= 1. The fact that the optimal plan from
is unique and induced by a map is known by Proposition 2.16v lov be the vector field defined
onsupp(u:) by v(z) = Vi, = Vi, (we are using partizi) of the above corollary, with the same
notation). The fact that), is a c’*-concave potential for the coupje, o tells that the optimal

transport mafl” satisfiesT'(z) € ac(i’t@(x) for pus-a.e.xz. Using Theorem 1.33, the fact thaf is
differentiable insupp(p:) and taking into account the scaling properties of the costget thatl"
may be written a§’(z) = exp, —v(x). Since the exponential mapd&™, the fact thaf" is Lipschitz
will follow if we show that the vector field onsupp(u:) is, when read in charts, Lipschitz.

Thus, passing to local coordinates and recalling #iét y) is uniformly semiconcave, the sit-
uation is the following. We have a semiconcave functfonR¢ — R and a semiconvex function
g : R — R such thatf > g onR?, f = g on a certain closed séf and we have to prove that the
vector fieldu : K — R? defined byu(x) = Vf(z) = Vg(z) is Lipschitz. Up to rescaling we may
assume thaf andg are such thaf — | - |? is concave ang + | - |? is convex. Then for every € K
andy € R? we have

(u(@),y —x) — |z =y < g(y) — g(x) < f(y) — f(z) < (w(z),y —z) + |y — 2|,
and thus for every € K, y € R% it holds
[f(y) = f(z) = (u(z),y —z) | < |z —y|*
Pickingz:,z» € K andy € R% we have
fxa) = f@1) = (u(ar), 22 — 21) < |z — 227,

[l +y) = fla2) = (u(x2),y) < lyl?,
—f(x2+y) + fla1) + (w(ar), 22 +y — 31) < |22 +y — 21|

Adding up we get
(u(z1) = u(w2),y) < |oy — w2 + [y1* + |o2 +y — 21> < 3(Jwx — 22/ + [yf?).
Eventually, choosing = (u(x1) — u(x2))/6 we obtain
lu(z1) — u(z2)|? < 36|21 — 292
0

It is worth stressing the fact that the regularity propenguwed by the previous corollary holds
without any assumption on the measungs;.; .

Remark 2.25 (A (much) simpler proof in the Euclidean case)The fact that intermediate trans-
port maps are Lipschitz can be proved, in the Euclidean casethe theory of monotone op-
erators. Indeed itz : R? — R? is a - possibly multivalued - monotone map (i.e. satisfies
(y1 — ya2, 71 — x2) > 0 for everyxy, o € RY, y; € G(x;), i = 1,2), then the operator
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(1 —t)Id+tG)~!is single valued, Lipschitz, with Lipschitz constant boaddbove byt /(1 —t).
To prove this, picke;, 72 € R?, y; € G(x1), y2 € G(22) and observe that

|(1 — f)l’l + ty1 — (1 — t)wg + ty2|2
= (1 —t)?}o1 — z2® + }y1 — yo? + 2t(1 — 1) (x1 — 22, y1 — ya) > (1 — t)|zy — 22,

which is our claim.

Now pick z1g, 11 € Po(R?), an optimal plany € Opt(uo, 111) and consider the geodesic—
pe = ((1 — )7t + tw?) 4 (recall Remark 2.13). From Theorem 1.26 we know that theigt®a
convex functionp such thasupp(vy) C 0~ ¢. Also, we know that the unique optimal plan frqrm
to u; is given by the formula

(7', A —t)r' + t7r2)#‘y,

which is therefore supported in the graph(of- ¢t)Id + t0~ . Since the subdifferential of a convex
function is a monotone operator, the thesis follows frompirevious claim.

Considering the case in whicly is a delta andu is not, we can easily see that the bound
(1 —t)~! on the Lipschitz constant of the optimal transport map fygno 1 is sharp. |

An important consequence of Corollary 2.24 is the followgmgposition:

Proposition 2.26 (Geodesic convexity of the set of absollyecontinuous measures)Let M be a
Riemannian manifoldy:,) C &2,(M) a geodesic and assume thatis absolutely continuous w.r.t.
the volume measure (resp. gives 0 mass to Lipschitz hypaecegrof codimension 1). Then is
absolutely continuous w.r.t. the volume measure (respesgivmass to Lipschitz hypersurfaces of
codimension 1) for every< 1. In particular, the set of absolutely continuous measusegeiodesi-
cally convex (and the same for measures giving 0 mass toHhitpdtypersurfaces of codimension
1).

Proof Assume thafy, is absolutely continuous, let € M be of 0 volume measure, € (0,1)
and letT; be the optimal transport map from to po. Then for every Borel set ¢ M it holds
T, Y(T;(A)) D A and thus

11 (A) < pu(T7H(TU(A))) = po(Ti(A)).
The claims follow from the fact th&t; is locally Lipschitz. O
Remark 2.27 (The set of regular measures isot geodesically convex)lt is natural to ask
whether the same conclusion of the previous propositionlshédr the set of regular measures
(Definitions 1.25 and 1.32). The answemigt there are examples of regular measyigs:; in
2,(R?) such that the middle point of the geodesic connecting themtisegular. |
2.3.2 The weak Riemannian structure of &, (M), Ws)

In order to introduce the weak differentiable structuré.éh (X ), W5), we start with some heuristic
considerations. LeX = R? and(u;) be a constant speed geodesic@a(R?) induced by some
optimal mapT’, i.e.:

pe=((1—1t)Id+ tT)#uo.

Then a simple calculation shows that ) satisfies the continuity equation

d
L + V- (vipe) = 0,
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with vy := (T — Id) o (1 — t)Id + tT)~! for everyt, in the sense of distributions. Indeed for
¢ € C=(R?) it holds

%/ Gdpy = %/qﬁ((kt)]dﬂT)duo = /(ng((lft)IdthT),TfId} dpo = /<V¢,vt>dut.

Now, the continuity equation describes the link betweenntwion of the continuum; and the
instantaneous velocity;, : R? — R< of every “atom” of ;. It is therefore natural to think at the
vector fieldv; as the infinitesimal variation of the continuym

From this perspective, one might expect that the set of “shiaurves on2,(R¢) (and more
generally on,(M)) is somehow linked to the set of solutions of the continujy&ion. This is
actually the case, as we are going to discuss now.

In order to state the rigorous result, we need to recall tfiaitien of absolutely continuous curve
on a metric space.

Definition 2.28 (Absolutely continuous curve)Let (Y, d) be a metric space and I¢d, 1] > ¢ —
y: € Y be a curve. Thefy,) is said absolutely continuous if there exists a functfos L'(0,1)
such that

Ay, ys) < /ts f(r)dr, vVt < se€0,1]. (2.18)

We recall that if(y;) is absolutely continuous, then for a.ethe metric derivatively;| exists,
given by

A(Yt+n, Yt) : (2.19)
||

and that)y;| € L*(0,1) and is the smallest! function (up to negligible sets) for which inequality

(2.18) is satisfied (see e.g. Theorem 1.1.2 of [6] for the &rppoof).

The link between absolutely continuous curves#a (M) and the continuity equation is given
by the following theorem:

[4e] == lim

Theorem 2.29 (Characterization of absolutely continuouswves in (%2 (M), W,)) Let M be a
smooth complete Riemannian manifold without boundarynThe following holds.

(A) For every absolutely continuous curye;) C &»(M) there exists a Borel family of vector fields
vy on M such that|ve|[z2(,,) < || for a.e.t and the continuity equation

d

ot + V- (vepe) = 0, (2.20)
holds in the sense of distributions.

(B) If (u:,v) satisfies the continuity equatiof2.20) in the sense of distributions and
fol lvellL2(uydt < oo, then up to redefining — 1 on a negligible set of timegy;) is an ab-
solutely continuous curve of, (M) and ;| < |lv¢][z2(,,) fora.e.t € [0,1].

Note that we are not assuming any kind of regularity ont}ie.

We postpone the (sketch of the) proof of this theorem to tlteadrthe section, for the moment
we analyze its consequences in terms of the geomet&ygf\7).

The first important consequence is that the Wassersteiandist which was defined via the
‘static’ optimal transport problem, can be recovered via fillowing ‘dynamic’ Riemannian-like
formula:

44



Proposition 2.30 (Benamou-Brenier formula) Let u°, u! € £,(M). Then it holds

1
Walu, ) =it { [ ol (2.21)
0

where the infimum is taken among all weakly continuous Bigfional solutions of the continuity
equation(uy, v;) such thatug = p® anduy = ut.

Proof We start with inequality<. Let (u:,v:) be a solution of the continuity equation. Then if
fol lvell L2,y = +oo there is nothing to prove. Otherwise we may apply fadf Theorem 2.29 to
get that(y;) is an absolutely continuous curve 6%, (M ). The conclusion follows from

1 o1
mw%hg/WMﬁgjnwmwm,
0 0

where in the last step we used pd}) f Theorem 2.29 again.

To prove the converse inequality it is enough to considemstzmt speed geodesje; ) connect-
ing ° to 1! and apply part&) of Theorem 2.29 to get the existence of vector fieldsuch that the
continuity equation is satisfied ani@ || 12(,.,) < [fu| = Wa(u, ') for a.e. t € [0,1]. Then we
have

1
Wil i) > [l
as desired. -

This proposition strongly suggests that the scalar promué€ (;) should be considered as the
metric tensor on%,(M) at u. Now observe that given an absolutely continuous cujug C
P5(M) in general there is no unique choice of vector fiélg) such that the continuity equation
(2.20) is satisfied. Indeed, if (2.20) holds amd is a Borel family of vector fields such that -
(wepe) = 0 for a.e.t, then the continuity equation is satisfied also with the eefields(v; + w;). It
is then natural to ask whether there is some natural sefeptinciple to associate uniquely a family
of vector fields(v;) to a given absolutely continuous curve. There are two plesajtproaches:
Algebraic approach. The fact that for distributional solutions of the contityuequation the vector
field v, acts only on gradients of smooth functions suggests that;thehould be taken in the set of
gradients as well, or, more rigorously,should belong to

T CgO(M)}LZ(M) (2.22)

fora.e.t € [0,1].

Variational approach. The fact that the continuity equation is linearp and theL? norm is
strictly convex, implies that there exists a unique, up tgligéble sets in time, family of vector fields
vy € L?(uy), t € [0,1], with minimal norm for a.e¢, among the vector fields compatible with the
curve(u,) via the continuity equation. In other words, for any othectee field (o;) compatible with
the curve(u,) in the sense that (2.20) is satisfied, it holds||.2(,,) > [|vtllz2(u,) for a.e.t. Itis
immediate to verify that; is of minimal norm if and only if it belongs to the set

{v € L*(m) - /(v,w> dpe = 0, Yw € L*(jug) 5.t. V - (wpy) = O}. (2.23)

The important point here is that the sets defined by (2.22)2128) are the same, as it is easy to
check. Therefore it is natural to give the following
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Definition 2.31 (The tangent space)Let , € &»(M). Then the tangent spadén,, (2 (M)) at
Po(M) in p is defined as

L (1)

Tan, (2(M)) ;:{w Lpe Cgo(M)}
:{v € L?(p) : /(v,w) dp =0, Vw € L*(u) 5.t. V - (wp) = 0}

Thus we now have a definition of tangent space for eueey &, (M) and this tangent space is natu-
rally endowed with a scalar product: the one3{ ). This fact, Theorem 2.29 and Proposition 2.30
are the bases of the so-called weak Riemannian structr&efM ), Ws).

We now state, without proof, some other propertie§#h (M), Ws) which resemble those of a
Riemannian manifold. For simplicity, we will deal with thase)M = R¢ only and we will assume
that the measures we are dealing with are regular (Definitiah), but analogous statements hold
for general manifolds and general measures.

In the next three propositior{g) is an absolutely continuous curve i, (R?) such thatu; is
regular for everyt. Also (v:) is the unique, up to a negligible set of times, family of vedtelds
such that the continuity equation holds ands Tan,,, (2>(R%)) for a.e.t.

Proposition 2.32 (; can be recovered by infinitesimal displacement)Let (x;) and(v;) as above.
Also, letT} be the optimal transport map from to s (which exists and is unique by Theorem 1.26,
due to our assumptions gn). Then for a.et € [0, 1] it holds

T —1d
Ut:Hm ¢

s—=t s —1

)

the limit being understood B2 ().

Proposition 2.33 (“Displacement tangency”) Let (1) and (v¢) as above. Then for a.e.€ [0, 1]
it holds

. Wapesn, (Id + hog) )
lim
h—0 h

= 0. (2.24)

Proposition 2.34 (Derivative of the squared distance) et (x;) and (v;) as above andv €
P5(R%). Then for a.et € [0, 1] it holds

d
—WQQ(/J,t,V) = —2/<Ut,Tt — Id> d,ut,

dt
whereT; is the unique optimal transport map from to v (which exists and is unique by Theo-
rem 1.26, due to our assumptions @y).

We conclude the section with a sketch of the proof of Theore?8.2

Sketch of the Proof of Theoreir29

Reduction to the Euclidean caseSuppose we already know the result for the cR$eand we
want to prove it for a compact and smooth maniféll Use the Nash embedding theorem to get
the existence of a smooth map: M — R whose differential provides an isometry ©f M
and its image for ang € M. Now notice that the inequalityi(x) — i(y)| < d(x,y) valid for
anyz,y € M ensures thalWWs(igp,igr) < Wa(u,v) for any u,v € Z5(M). Hence given an
absolutely continuous cun(@;) C Z,(M), the curve(iypu,) C 22(RP) is absolutely continuous
as well, and there exists a family vector fieldssuch that (2.20) is fulfilled witl ., in place ofy;
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and||vel| 2 (i) < ligpe| < |si¢| for a.e.t. Testing the continuity equation with functions constant
oni(M) we get that for a.et the vector field, is tangent ta (M) for ixp,-a.e. point. Thus the,’s
are the (isometric) image of vector fields dfiand part A) is proved.

Viceversa, let(u:) C P»(M) be a curve and they's vector fields in M such that
fO \vt||Lz(m)dt < oo and assume that they satisfy the continuity equation. Thernmeasures
fir == iy and the vector fields, := di(v;) satisfy the continuity equation dhP. Therefore(ji;)
is an absolutely continuous curve and it holdg < 0¢l L2y = llvellL2(u,) for a.e.t. Notice that
i is bilipschitz and thereforgu,) is absolutely continuous as well. Hence to conclude it ificaht

to show thatl/i;| = |;i;| a.e.t. To prove this, one can notice that the fact that bilipschitz and
validity of
d
lim sup — (x,y) =1,
=0 oyen |i(x) —i(y)|
d(m y)<r
give that
w.
lim  sup _Waliv) =1.

=0 pwezyny Woligpl, i4V)

Wa (p,v)<r

We omit the details.
Part A. Fix p € C°(R%) and observe that for every; € Opt (i, i1s) it holds

‘ / pdps — / Pdpu

— /gp(y)d’yf(x,y) /sa(w)dvf(x,w‘
=| [ o) - etertnitan)

= [ [ et 2w - 20 - 0y i y>\
0 (2.25)

= / (Vo(z),y — ) dvi (z, y)‘ + Rem(¢p, t, s)

\//va(x)Idef(xvy)\//lw—yIdef(:ﬂ,y)+Rem(so7t,8)

= HVSOHLP(LH,)WQ(MM MS) + Rem(% ta S)a

IN

where the remainder terRem (¢, t, s) can be bounded by by

Lip(Vy)

5 W2 (1, o).

Rem(p,t.5)) < “2VE [ o~y o.y) -
Thus (2.25) implies that the map— [ ¢du, is absolutely continuous for any € C2°(R?).

Now let D C C2°(R?) be a countable set such tHaf ¢ : ¢ € D} is dense iflan,, (% (R%))
for everyt € [0,1] (the existence of such follows from the compactness §f; }cjo,1] C Z2(R%),
we omit the details). The above arguments imply that theistea setd C [0, 1] of full Lebesgue
measure such that— [ dy, is differentiable at € A for everyy € D; we can also assume that
the metric derivativéy;| exists for every € A. Also, by (2.25) we know that fofy € A the linear
functional L, : {Vy : ¢ € D} — R given by

V= Ly (V) = dt|t to /‘Pd,ut
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satisfies
1Lty (Vo) < IVl L2414 | Ftto |5

and thus it can be uniguely extended to a linear and boundiedidmal onTan,,, (#;(R%)). By the
Riesz representation theorem there exists a vectordigld Tan,, (% (R9)) such that

d
7 lito /(pd,ut =L, (Vo) = /(th,vto) dpeey, Vo € D, (2.26)

and whose norm i?(u,,) is bounded above by the metric derivatjyg| att = t,. It remains to
prove that the continuity equation is satisfied in the serigkstributions. This is a consequence of
(2.26), see Theorem 8.3.1 of [6] for the technical details.

Part B. Up to a time reparametrization argument, we can assume|thiat-(,,) < L for some

L € R for a.e.t. Fix a Gaussian family of mollifiers® and define

g 2= pe * P,
e o (Othe) * p°
' 5

Itis clear that

d
e+ V- (i) = 0.

Moreover, from Jensen inequality applied to the niapz) — 2| X/z|? = |X|?/2 (X = vypy) it
follows that
lvillL2gus) < Mvell2guey < L. (2.27)

This bound, together with the smoothnesspfimplies that there exists a unique locally Lipschitz
mapTe(-,-) : [0,1] x RY — R4, ¢ € [0, 1] satisfying

d
%Te(t, z) =vi(Te(t,z)) Vr € R4 ae.t €0,1],
Te(t,z) ==, vz € R4, t€0,1].

A simple computation shows that the cutvies 5 := T°(t, -)»u solves

d .
ar’’

which is the same equation solved fy;). It is possible to show that this fact together with the
smoothness of thef's and the equality.§ = /i gives thati; = p; for everyt,  (see Proposition
8.1.7 and Theorem 8.3.1 of [6] for a proof of this fact).

Conclude observing that

i§ +V - (o) = 0, (2.28)

W3 (s, 1is) §/|T€(t,:p) T (s, z)|2dps (z /'/ 2(Te(r, )
<lesl [ [ e Paraus == o [ 6000 g, o0

.27)
<le—s| [ Tl <l - sPL,
t

d#o( )

and that, by the characterization of convergence (214) ., 1) — 0 ase — 0 for everyt € [0, 1].
O
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2.4 Bibliographical notes

To call the distancéV, the ‘Wasserstein distance’ is quite not fair: a much more@mate would
be Kantorovich distance. Also, the spelling ‘Wasserst&juestionable, as the original one was
‘Vasershtein’. Yet, this terminology is nowadays so comrtimat it would be impossible to change
it.

The equivalence (2.4) has been proven by the authors andv@ré3a [6]. In the same reference
Remark 2.8 has been first made. The fact th@h(X), W>) is complete and separable as soon as
(X, d) is belongs to the folklore of the theory, a proof can be foum{®]. Proposition 2.4 was proved
by C. Villani in [79], Theorem 7.12.

The terminologydisplacement interpolatiowas introduced by McCann [63] for probability mea-
sures inR?. Theorem 2.10 appears in this form here for the first time58j fhe theorem was proved
in the compact case, in [80] (Theorem 7.21) this has beem@égtkto locally compact structures and
much more general forms of interpolation. The main souradifé€ulty when dealing with general
Polish structure is the potential lack of tightness: theoppzesented here is strongly inspired by the
work of S. Lisini [54].

Proposition 2.16 and Theorem 2.18 come from [80] (CorollaB2 and Theorem 7.36 respec-
tively). Theorem 2.20 and the counterexample 2.21 are thkem[6] (Theorem 7.3.2 and Example
7.3.3 respectively).

The proof of Corollary 2.24 is taken from an argument by AhiFE85], the paper being inspired
by Bernand-Buffoni [13]. Remark 2.27 is due to N. Juillet]48

The idea of looking at the transport problem as dynamicallera involving the continuity equa-
tion is due to J.D. Benamou and Y. Brenier ([12]), while thet that( 2, (R?), W) can be viewed as
a sort of infinite dimensional Riemannian manifold is aniiida by F. Otto [67]. Theorem 2.29 has
been proven in [6] (where also Propositions 2.32, 2.33 ad ®ere proven) in the case = R¢,
the generalization to Riemannian manifolds comes from Nashbedding theorem.

3 Gradient flows

The aim of this Chapter is twofold: on one hand we give an aeeref the theory of Gradient Flows
in a metric setting, on the other hand we discuss the impbaggplication of the abstract theory to
the case of geodesically convex functionals on the spaggR?), W5).

Let us recall that for a smooth functidn: M — R on a Riemannian manifold, a gradient flow
(x¢) starting from € M is a differentiable curve solving

{ zy = —VF(x), (3.1)

o =1.

Observe that there are two necessary ingredients in thisitigfi. the functionalF’ and the metric
on M. The role of the functional is clear. The metric is involvediefineV F: it is used to identify
the cotangent vectatF' with the tangent vectov F'.

3.1 Hilbertian theory of gradient flows

In this section we quickly recall the main results of the tlyeaf Gradient flow forA-convex func-
tionals on Hilbert spaces. This will deserve as guidelirrettie analysis that we will make later on
of the same problem in a purely metric setting.
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Let H be Hilbert and\ € R. A A-convex functionalF’ : H — R U {+oco} is a functional
satisfying:

F((l —t)x + ty) <1 —-t)F(z)+tF(y) — %t(l —t)|z — y|2, Vae,y € H,

(this corresponds t§2F > \Id for functionals oriR?). We denote withD(F) the domain ofF, i.e.
D(F) :={x: F(z) < oo}.
The subdifferentiad~ F'(z) of F at a pointz € D(F) is the set ofv € H such that

A
F(a)+ vy —a)+ Jle—y <Fly), vyeH

An immediate consequence of the definition is the fact thatsihbdifferential ofF’ satisfies the
monotonicity inequality

(v—w,z—y) >Nz —y|? Yo € OF (z), w € 0™ F(y).

We will denote byV F'(x) the element of minimal norm ifiF'(x), which exists and is unique as soon
asd™ F(z) # ), becaus®™ F'(z) is closed and convex.

For convex functions a natural generalization of Definii{@rl) of Gradient Flow is possible: we
say that(x;) is a Gradient Flow fo starting fromz € H if it is a locally absolutely continuous
curve in(0, +o0) such that

(3.2)

limzx; = 7.

xp € =07 F(xy) fora.e.t >0
tl0

We now summarize without proof the main existence and umigs&results in this context.

Theorem 3.1 (Gradient Flows in Hilbert spaces - (Brezis, Pgg ) If F': H — R U {400} IS A-
convex and lower semicontinuous, then the following stetésrhold.

(i) Existence and uniquenesfor all z € D(F') (3.2)has a unique solutiofi;).

(i) Minimal selection and Regularizing effectslt holds %xt = —VF(xa) for everyt > 0
(that is, the right derivative of; always exists and realizes the element of minimal norm in
0~ F(x)) and %F ox(t) = —|VF(x(t))|* for everyt > 0. Also

1
F(xy) < inf {F —lv—z?
@< nf, {FO)+ gl - P},

1
F(zy)*> < inf F)P+=lv—z*.
vreP <t {IVFOP+ glo- o
(iii) Energy Dissipation Equality |z}|, |V F|(z;) € L.(0,+00), F(z:) € ACi0c(0,+00) and
the following Energy Dissipation Equality holds:
1 [° 1 [°
F(x¢) — F(xs) = 5/ |VF(z,)? dr + 5/ |22 dr 0<t<s <o
t t

(iv) Evolution Variational Inequality and contraction () is the unique solution of the system
of differential inequalities

1d

- A
§%|xtfy|2+F(xt)+§|xtfy|2§F(y), Vy € H, a.e.t,
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among all locally absolutely continuous curves) in (0,00) converging tox ast — 0.
Furthermore, if(y;) is a solution of(3.2) starting fromy, it holds

|zt — | < e MT -7l
(v) Asymptotic behavior If A > 0 then there exists a unique minimumg;,, of £ and it holds
F(xt) - F(zmin) < (F(IZ') - F($min))€72)\t.

In particular, the pointwise energy inequality

A
—|zfxmin|2, Ve e H

F(z) > F(xmin) + 5

gives

(51 — 2] < \/2(F(f) — F(@min)) —xe
A
3.2 The theory of Gradient Flows in a metric setting

Here we give an overview of the theory of Gradient Flows in eefyjumetric framework.

3.2.1 The framework

The first thing we need to understand is the meaning of GraHElew in a metric setting. Indeed, the
system (3.2) makes no sense in metric spaces, thus we nesfditimulate it so that it has a metric
analogous. There are several ways to do this, below we suizerthe most important ones.

For the purpose of the discussion below, we assumefihat R? and thatE : H — R is
A-convex and of clasg’!.

Let us start observing that (3.2) may be written s> x; is locally absolutely continuous in
(0, +00), converges t@ ast | 0 and it holds

d 1 1
EE(act) < —§|VE|2($,5) - §|x;|2, a.e.t>0. (3.3)

Indeed, alon@nyabsolutely continuous curvg it holds

SB(n) = (V). 1)

> —|VE|(y:) |y (= ifand only if — v, is a positive multiple oV E(y:)), (3.4)
> LIVEP(w) — s (= itand only if 5] = [VE(y,))
Thus in particular equation (3.3) may be written in the faflog integral form
E(z,) + % /ts ! |2dr + % /: |VE*(z,)dr < E(z;), ae.t<s (3.5)
which we callEnergy Dissipation Inequalit¢eDI in the following).

Since the inequality (3.4) shows th&tF (y;) < —1|VE|?(y:) — 1|y;|* never holds, the system
(3.2) may be also written in form d&nergy Dissipation EqualityEDE in the following) as

1 [° 1 /°
E(l’t) + 5/ 2! |2dr + 5/ \VE|*(2,)dr = E(x;), V0o <t <s. (3.6)
¢ ¢
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Notice that the convexity of’ does not play any role in this formulation.
A completely different way to rewrite (3.2) comes from ohgeg that if z; solves (3.2) and
y € H is a generic pointit holds

1d A
§%|=’Et —yl? = (z —y,2)) = (y — 2, VE(zy)) < E(y) — E(2) — §|1Et -yl

where in the last inequality we used the fact thais A-convex. Since the inequality
A 2
(y—z,0) <E(y) - E(2) - gl -y,  Vyed,

characterizeshe elements of the subdifferential of¢ at z, we have that an absolutely continuous
curvez, solves (3.2) if and only if

1d 1
§E|xt —y*+ 5)\|$t —yl> + B(x:) < E(y), a.e.t>0, (3.7)

holds for everyy € H. We will call this system of inequalities thevolution Variational Inequality
(EVI).

Thus we got three different characterizations of Gradiéow in Hilbert spaces: the EDI, the
EDE and the EVI. We now want to show that it is possible to foateithese equations also for
functionalsE defined on a metric spa¢&, d).

The objectz;| appearing in EDI and EDE can be naturally interpreted astéieic speef the
absolutely continuous curvg as defined in (2.19). The metric analogou$Wf|(z) is theslopeof
E, defined as:

Definition 3.2 (Slope) Let £ : X — R U {400} andz € X be such that(z) < oco. Then the
slope|VE|(x) of F atx is:

— (FE(z) — E(y))* — Ex)—-F
[VE|(z) := lim (E@) = Bl)* = max < lim El) = Ey) , 0.
y=rd(z,y) vor o d(x,y)
The three definitions of Gradient Flows in a metric settirgf the are going to use are:

Definition 3.3 (Energy Dissipation Inequality definition of GF - EDI) LetE : X — RU {+o0}
and letz € X be such thaf(Z) < oo. We say thal0, oo) > ¢t — z; € X is a Gradient Flow in the
EDI sense starting at provided it is a locally absolutely continuous curug,= 7 and

S 1 S
Elz,) + —/ @, Pdr + + [ IVEP@)dr < B@),  Vs20,
0 2 0
: h (38)
E(zs) + —/ |&,.| 2 dr + 3 \VE|*(2,)dr < E(x;), a.e. t>0,Vs>t.
t t

Definition 3.4 (Energy Dissipation Equality definition of GF- EDE) LetE : X — R U {+o0}
and letz € X be such thaf(T) < co. We say thaf0, oo) > ¢t — z; € X is a Gradient Flow in the
EDE sense starting at provided it is a locally absolutely continuous curug,= 7 and

1 /[* 1/
E(zs) + 5/ |2, [2dr + 3 / |VE|*(x,)dr = E(z;), Vo <t <s. (3.9)
t t
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Definition 3.5 (Evolution Variation Inequality definition o f GF - EVI) LetE : X — RU{+4o0},

T € {E < oo} and X € R. We say that0, c0) > ¢t — =z, € X is a Gradient Flow in the EVI sense
(with respect to\) starting atz provided it is a locally absolutely continuous curveioo), =, — =
ast — 0and

1d A
E(x) + EEdQ(xt,y) + §d2(xt,y) < E(y), Vy € X, a.e. t > 0.

There are two basic and fundamental things that one needsatadd when studying the problem
of Gradient Flows in a metric setting:

1) Although the formulations EDI, EDE and EVI are equivalémt \-convex functionals on
Hilbert spaces, they aretequivalent in a metric setting. Shortly said, it holds

EVI = EDE = EDI

and typically none of the converse implication holds (sear&ples 3.15 and 3.23 below). Here
the second implication is clear, for the proof of the first see Proposition 3.6 below.

2) Whatever definition of Gradient Flow in a metric setting uge, the main problem is to show
existence. The main ingredient in almost all existence fsreothe Minimizing Movements
scheme, which we describe after Proposition 3.6.

Proposition 3.6 (EVI implies EDE) Let E : X — R U {+oco} be a lower semicontinuous func-
tional,z € X agiven point) € R and assume thdtr, ) is a Gradient Flow forE starting fromz in
the EVI sense w.r.t\. Then equatioii3.9) holds.

Proof First we assume that; is locally Lipschitz. The claim will be proved if we show that—
E(x:) is locally Lipschitz and it holds

d 1. 1
*EE(IL}) = §|$t|2 + §|VE|2(ZE1§), a.e.t> 0.
Let us start observing that the triangle inequality implies
1d , )
QECZ (xe,y) > —|&¢|d (2, y), Vy € X, a.e.t >0,

thus plugging this bound into the EVI we get
A
—|.Tt|d(xt,y) + §d2($tay) + E(.Tt) < E(?J)) vy € Xa a.e.t> 07

which implies

4
|\VE|(z:) = ym (B) ~ E)) <], a.e.t > 0. (3.10)

— d(l’t,y)

Fix an intervalla, b] C (0,00), let L be the Lipschitz constant @f:;) in [a, b] and observe that for
anyy € X it holds

d
EdQ(wta y) > _|j;t|d(‘rtvy) > _Ld(‘rta y)7 a.e.l € [aa b]
Plugging this bound in the EVI we get

A
—Ld(ws,y) + 5d* (@i, y) + E(z) < By),  ae.telob],
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and by the lower semicontinuity @f — FE(x;) the inequality holds for every € [a,b]. Taking
y = x5 and then exchanging the rolesf x, we deduce

|E(z1) — E(xs)| < Ld(zy, x5) — %dz(zt,:ps) < L|t — 5| <L + |—;\|L|t - 5|> ) Vt, s € [a,b],
thus the map — E(x,) is locally Lipschitz. It is then obvious that it holds

g B = Bla) _ B~ Blans) dlarinn)
“ h h h=0 d(Tyyn, ) h

. 1 1.
S |VE|(ZEt)|ZEt| S §|VE|2(IL't) + §|$t|27 a.e.t.

Thus to conclude we need only to prove the opposite inequtditegrate the EVI frontto ¢t + h to

get

d2 _ d2 t+h t+h )\

($t+hay)2 (l’uy) + E(l’é)ds +/ §d2($s,y)d8 S hE(y)
t t

Lety = x; to obtain

22 t+h A 1 A
M < / E(xy) — E(xs)ds + %szﬁ = h/ E(zy) — E(@t4nr) dr + %L%?’.
t 0
Now let A C (0, +o00) be the set of points of differentiability af— E(x;) and wherg,| exists,
choose € An(a, b), divide byh? the above inequality, lét — 0 and use the dominated convergence

theorem to get

VE(xy) — E(zignr) d ! 1d
Dgr =g — 22 B(x).
- dr g (xt)/o rdr 5 7 (2¢)

1
~|#¢|* < lim
2 h—0 Jo

Recalling (3.10) we conclude with

LB > |if? >
Finally, we see how the local Lipschitz property (@f) can be achieved. It is immediate to verify
that the curve — =, is a Gradient Flow in the EVI sense starting frapfor all A > 0. We now
use the fact that the distance between curves satisfying\tés contractive up to an exponential
factor (see the last part of the proof of Theorem 3.25 for dcékef the argument, and Corollary
4.3.3 of [6] for the rigorous proof). We have

1
|i‘t|2+§|VE|2(:L't), a.e.t> 0.

|~

d(-rs; ws-i—h) < e_k(s_t)d(-rtzxtﬂ-h)a Vs > 1.

Dividing by h, letting . | 0 and callingB C (0, co) the set where the metric derivativeof exists,
we obtain
lig| < |iele 67D, Vs, te B, s>t

This implies that the curvér,) is locally Lipschitz in(0, +c0). O

Let us come back to the case of a convex and lower semicontinwmctionalr’ on an Hilbert
space. Pickk € D(F), fix 7 > 0 and define the sequenae— x(Tn) recursively by settinq(fn) =T
and definingc7, . ;) as a minimizer of

|l — Tl |2 '

F
T — (z) + 5
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It is immediate to verify that a minimum exists and that it ieque, thus the sequenge— «7 | is
) . ) (n)
well defined. The Euler-Lagrange equatlom@jﬂ) is:

anJrl - an _ T
( )7_ ) € -0 F(‘T(n-ﬁ-l))a
which is a time discretization of (3.2). It is then naturaintroduce the rescaled curve— =] by

T = Ty

where[-] denotes the integer part, and to ask whether the curves:] converge in some sense to a
limit curve (z;) which solves (3.2) as | 0. This is the case, and this procedure is actually the heart
of the proof of Theorem 3.1.

What is important for the discussion we are making now, isttheminimization procedure just
described can be naturally posed in a metric setting for aggfunctionalF : X — RU {400} it
is sufficient to pickz € {E < oo}, 7> 0, define:z:(fo) := 7z and then recursively

d2($7 x‘(rn))
T{p41y € argmin{ @ — E(z) + (- (3.11)

We this give the following definition:

Definition 3.7 (Discrete solution) Let (X, d) be a metric spacer : X — R U {+oo} lower semi-
continuousz € {F < oo} and7 > 0. Adiscrete solutionis a map|0, +o0) > ¢t — 2] defined

by
i = Ty
Wherex(To) =7 andx(nﬂ) satisfieq3.11)

Clearly in a metric context it is part of the job the identifioa of suitable assumptions that
ensure that the minimization problem (3.11) admits at leastinimum, so that discrete solutions
exist.

We now divide the discussion into three parts, to see und@hadonditions on the functional
and the metric spac¥ it is possible to prove existence of Gradient Flows in the FHDE and EVI
formulation.

3.2.2 General l.s.c. functionals and EDI

In this section we will make minimal assumptions on the fiorel £ and show how it is possible,
starting from them, to prove existence of Gradient Flowh&EDI sense.

Basically, there are two “independent” sets of assumptibaswe need: those which ensure the
existence of discrete solutions, and those needed to p#ss limit. To better highlight the structure
of the theory, we first introduce the hypotheses we need tagtee the existence of discrete solution
and see which properties the discrete solutions have. Tatm,on, we introduce the assumptions
needed to pass to the limit.

We will denote byD(FE) C X the domain o, i.e. D(E) := {F < oo}

Assumption 3.8 (Hypothesis for existence of discrete solans) (X, d) is a Polish space and :
X — RU{+cx} be al.s.c. functional bounded from below. Also, we assuatdhkre exists > 0
such that for every < 7 < 7 andz € D(FE) there exists at least a minimum of

d*(x,7T)

v Bla) (3.12)
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Thanks to our assumptions we know that discrete solutiois$ #x every starting poing, for
7 sufficiently small. The big problem we have to face now is tovglithat the discrete solutions
satisfy a discretized version of the EDI suitable to paskeditmit. The key enabler to do this, is the
following result, due to de Giorgi.

Theorem 3.9 (Properties of the variational interpolation) Let X, E be satisfying the Assumption
3.8. FixZ € X, and for any0 < 7 < 7 chooser, among the minimizers f3.12) Then the map

T E(z,) + dQ(gif’) is locally Lipschitz in(0, 7) and it holds

d d*(z,x,) d*(z,x,)

— (P —_— | = .e. 7). A

o ( (xr) + - 52 a.e. T € (0,7) (3.13)
Proof Observe that fronk(z,) + dz(;;ﬁf’z) < E(zr)+ dz(;;; ") we deduce

d*(27,, ) d*(zr,, ) 1 1 L — 7o
E(a,) + 2808 p y CE T (2 2 ) 2 a) = 202 ).
(‘T 0) + 27_0 (‘T 1) + 27_1 — 27_0 27_1 (‘T 12 :r) 27_07_1 (:I" 17 :I")

Arguing symmetrically we see that

d* (27, 1)
27'()

d*(z7,, ) ST

E($T0)+ _E($T1)+ dQ(xwa)'

27’1 - 27'()7'1

The last two inequalities show that — E(z,) + @ is locally Lipschitz and that equation
(3.13) holds. O

Lemma 3.10 With the same notation and assumptions as in the previowsgher — d(T,z) is
non decreasing and — E(z,) is non increasing. Also, it holds
d(x,,T)
p
Proof Pick0 < 19 < 71 < 7. From the minimality ofz,, andx,, we get
d*(2+y,T) d* (7, T)
27'() 27'()
d2(leaf) dQ("ETan>
27’1 27‘1 '

Adding up and using the fact thdt — - > 0 we getd(T, =) < d(T, z., ). The factthat — E(z,)
is non increasing now follows from

IVE|(z,) < (3.14)

E(xr,) + < E(zr) +

?

E(zr) + < B(zq,) +

d*(x.,,7) d*(z,,, ) d*(x,,,T)
T T« VTV« R SR R
E(xr) + 271 < E(zr)+ 27 < E(rr,) + 27
For the second part of the statement, observe that from
& (a7, 7) & (y,7)
E —— - <F —_— X
(177—) + 27_ — (y) + 27_ ’ Vy €
we get
E(z) - E(y) _ (y, %) — d*(27,7) _ (d(y. ) — d(z-,7)) (d(z;,T) + d(y, T, ))
d(xr,y) 27d(x+,y) 27d(x+,y)
- d(z,,Z,) + d(y,T)
- 27 ’
Taking the limsup ag — . we get the thesis. O
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By Theorem 3.9 and Lemma 3.10 it is natural to introduce thieang variational interpo-
lation in the Minimizing Movements scheme (as opposed to the dakpiecewise constant/affine
interpolations used in other contexts):

Definition 3.11 (Variational interpolation) Let X, E be satisfying Assumption 38, D(F) and
0 < 7 < 7. We define the mdp, co) > ¢t — «7 in the following way:

o 1) =T,
® Ty, is chosen among the minimizers(@12)with = replaced byz? _,

e 17 witht € (n7, (n+1)7) is chosen among the minimizers(@t12)with = and r replaced by
x] - andt — nt respectively.
For («]) defined in this way, we define thiéscrete spee®sp” : [0, +00) — [0,+00) and the
Discrete slop®sl” : [0, +00) — [0, +00) by:
d(xl ., x7.
Dsp] = M, t e (nr,(n+1)7),
T (3.15)

d T T
7(% ’ zm) , te (nr,(n+1)7).

Dsl} :=
t—nt

Although the objecDsl; does not look like a slope, we chose this name because frdm)(@e
know that|V E|(«]) < Dsl{ and because in the limiting proce3sl” will produce the slope term in
the EDI (see the proof of Theorem 3.14).

With this notation we have the following result:

Corollary 3.12 (EDE for the discrete solutions) Let X, I/ be satisfying Assumption 3.& €
D(FE), 0 < 7 < 7 and (2] ) defined via the variational interpolation as in DefinitiorL3.above.
Then it holds

1 S 1 S
E(z]) + 3 / |Dsp?|?dr + 5 / |DsI7 |*dr = E(x]), (3.16)
t t

foreveryt = nr,s = mr,n <m € N.
Proof It is just a restatement of equation (3.13) in terms of thatiot given in (3.15). O
Thus, at the level of discrete solutions, it is possible toegéiscrete form of the Energy Dissipa-

tion Equality under the quite general Assumptions 3.8. N@wwant to pass to the limit as] 0. In
order to do this, we need to add some compactness and régakssumptions on the functional:

Assumption 3.13 (Coercivity and regularity assumptions)Assume that? : X — R U {400}
satisfies:

e F is bounded from below and its sublevels are boundedly compac{E < ¢} N B,(x) is
compact forany: € R, r > 0 andx € X,

o the slopeVE|: D(E) — [0, +o0] is lower semicontinuous,
e [ has the following continuity property:

Ty = X, Sl:lp{|VE|($n),E(:En)} < 00 = E(zy,) — E(x).

Under these assumptions we can prove the following result:

Theorem 3.14 (Gradient Flows in EDI formulation) Let (X, d) be a metric space and I€f :
X — RU{+o0o} be satisfying the Assumptions 3.8 and 3.13. Alsa; letD(F) andfor0 < 7 <7
define the discrete solution via the variational interp@atas in Definition 3.11. Then it holds:
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o the set of curve$(z])}, is relatively compact in the set of curvesinw.r.t. local uniform
convergence,

e any limit curve(x;) is a Gradient Flow in the EDI formulation (Definition 3.3).

Sketch of the Proof
CompactnessBy Corollary 3.12 we have

T 2 T
d*(z7,T) < (/ |Dsp:|dr> < T/ |Dsp; |’dr < 2T (E(Z) — inf E),  Vt<T,
0 0

for anyT = nr. Therefore for any” > 0 the set{x] }+< is uniformly bounded in-. As this set is
also contained iI{E < E(z)}, itis relatively compact. The fact that there is relativenpactness
w.r.t. local uniform convergence follows by an Ascoli-Aladype argument based on the inequality

s 2
d* (a7, 2]) < (/ |Dsp:|dr) < 2(s —t)(E(T) — inf E), Vit =nt, s=mr, n<m & N.
t

(3.17)
Passage to the limit.Let 7,, | 0 be such thafz;{") converges to a limit curve, locally uniformly.
Then by standard arguments based on inequality (3.17) i$siple to check that— x; is abso-
lutely continuous and satisfies

/ &, |?dr < lim |Dsp’™ |2dr V0 <t < s. (3.18)
t

n—oo Jt

By the lower semicontinuity ofV E| and (3.14) we get

VE|(x) < lim [VE|(@]") < lim Dslf, v,

n—r oo n—oo

thus Fatou’s lemma ensures that for any s it holds

/ |VE|*(x,)dr < / lim [VEP(z])dr < lim [ |Dsl*|*dr <27 (E(Z) —inf E). (3.19)
t t n—o00 n—oo Jt
Now passing to the limit in (3.16) written far= 0 we get the first inequality in (3.8). Also, from
(3.19) we get that thé? norm of f(¢) := lim,, , . [VE|(x;") on [0, cc) is finite. ThusA := {f <
oo} has full Lebesgue measure and for each A we can find a subsequeneg, | 0 such that
supy, [VE|(z;"*) < oc. Then the third assumption in 3.13 guarantees fat, "*) — E(z,;) and
the lower semicontinuity oF that E(zs) < lim, , E(xl”k) for everys > t. Thus passing to the
limitin (3.16) asr,,, J 0 and using (3.18) and (3.19) we get

1 /[° 1 /[°

E(zs) + 5/ |, |2dr + 5/ \VE|*(z,)dr < E(x;), Vi e A, Vs > t.
t t

O

We conclude with an example which shows why in general we @mope to have equality in the
EDI. Shortly said, the problem is that we don’t know whethes E(z;) is an absolutely continuous
map.

Example 3.15 Let X = [0, 1] with the Euclidean distanc&; C X a Cantor-type set with null
Lebesgue measure ayfid [0, 1] — [1, +00] a continuous, integrable function such tlfét) = +oo
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for anyx € C, which is smooth on the complement©f Also, letg : [0,1] — [0, 1] be a “Devil
staircase” built over”, i.e. a continuous, non decreasing function satisfyjt@ = 0, g(1) = 1
which is constant in each of the connected components ofaimplement of”. Define the energies
E,E:[0,1] - Rby

E(x) == —g(a) - / " Fy)dy.
B) = - / " )y,

It is immediate to verify thaf?, £ satisfy all the Assumptions 3.8, 3.13 (the choicefafuarantees
that the slopes of, E are continuous). Now build a Gradient Flow starting from @thvéome work

it is possible to check that the Minimizing Movement schemeverges in both cases to absolutely
continuous curvegr,) and(z;) respectively satisfying

zy = —|VE|(z4), ae.t
i, = —|VE|(&),  ae.t.

Now, notice thal VE|(z) = |VE|(z) = f(z) for everyz € [0, 1], therefore the fact thaf > 1

is smooth on0, 1] \ C gives that each of these two equations admit a unique solufibierefore

- this is the key point of the example(«;) and (Z;) must coincide. In other words, the effect of
the functiong is not seen at the level of Gradient Flow. It is then immediateerify that there is
Energy Dissipation Equality for the ener@y but there is only the Energy Dissipation Inequality for
the energyr. |

3.2.3 The geodesically convex case: EDE and regularizingfefts

Here we study gradient flows of so callggodesically convefunctionals, which are the natural
metric generalization of convex functionals on linear gzac

Definition 3.16 (Geodesic convexity)Let E : X — R U {+oco} be a functional and € R. We say
that E is A\-geodesically convex provided for everyy € X there exists a constant speed geodesic
~:[0,1] — X connecting: to y such that

E(v) < (1 —t)E(z) +tE(y) — gﬁ(l —t)yd*(z,y). (3.20)

In this section we will assume that:

Assumption 3.17 (Geodesic convexity hypothesig)X, d) is a Polish geodesic spacé&; : X —
R U {40} is lower semicontinuousy-geodesically convex for somee R. Also, we assume that
the sublevels of are boundedly compact, i.e. the 46t < ¢} N B,.(z) is compact for any € R,
r>0,z€eX.

What we want to prove is that fo¥, F satisfying these assumptions there is existence of Gradien
Flows in the formulation EDE (Definition 3.4).

Our first goal is to show that in this setting it is possible éoaver the results of the previous
section. We start claiming that it holds:

X
|[VE|(z) = sup (E )\d(x,y)) , (3.21)
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so that thdim in the definition of the slope can be replaced byia. Indeed, we know that

E(x)-E(y) A "
ey + §d(f&y)) < 21;1; (

E(r) - E(y)
d(x,y)

To prove the opposite inequality fix # = and a constant speed geodesgiconnectinge to y for
which (3.20) holds. Then observe that

VE|(2) zm(w>+ _ (EM)*

|vm@g:ﬁa(

Yy—x

+%ﬂay0+.

t d(x, v t d(z, )
(3.>20j01'_ E(;)E(y) A ’ d( ' " _(E@-EQy) A ’
= (M 20 -oe)) = (R gen)

Using this representation formula we can show that all tisemgtions 3.8 and 3.13 hold:

Proposition 3.18 Suppose that Assumption 3.17 holds. Then Assumptions@3Ehhold as well.

Sketch of the ProofFrom the A-geodesic convexity and the lower semicontinuity assuompti is
possible to deduce (we omit the details) tiahas at most quadratic decay at infinity, i.e. there
existst € X, a,b > 0 such that

E(z) > —a — bd(z,T) + A\~ d*(x,T), Vo € X.

Therefore from the lower semicontinuity again and the baahcbmpactness of the sublevelstf
we immediately get that the minimization problem (3.12) &dra solution ifr < 1/\~.

The lower semicontinuity of the slope is a direct conseqaeiq3.21) and of the lower semi-
continuity of . Thus, to conclude we need only to show that

n—roo

Tp — x, sup{|VE|(xy,), E(x,)} < o0 = lim E(x,) < E(z). (3.22)
From (3.21) withz, y replaced byz,,, « respectively we get
E(z) > E(x,) — [VE|(a,)d(x, x,) + %dQ(ac,mn),

and the conclusion follows by letting — oo. O

Thus Theorem 3.14 applies directly also to this case and wexjgtence of Gradient Flows in
the EDI formulation. To get existence in the stronger EDEfolation, we need the following result,
which may be thought as a sort of weak chain rule (observatikatalidity of the proposition below
rules out behaviors like the one described in Example 3.15).

Proposition 3.19 Let F be aA-geodesically convex and |.s.c. functional. Then for eadsolutely
continuous curvézr,) C X such thatE(x;) < oo for everyt, it holds

|E(zs) — B(xy)| < /S |2 || VE ()| dr, Vit < s. (3.23)
t

Proof We may assume that the right hand side of (3.23) is finite fgran € [0, 1], and, by
a reparametrization argument, we may also assumeldhjat= 1 for a.e. t (in particular(z;) is
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1-Lipschitz), so that — |VE|(z;) is an L' function. Notice that it is sufficient to prove that
t — E(x;) is absolutely continuous, as then the inequality

g E(@en) — E(xe) (E(zt) — E(@eqn))”

< lim
h10 h - h%l |hl
_ (E —E +__d
< T B = B@en)” g d@nen) 195014,
R10 d(ze, Teqn) h10 A

valid for anyt € [0, 1] gives (3.23).
Define the functiong, g : [0,1] — R by

f(t) = E(xy),
(0 s T =)
s#t |5 t|

Let D be the diameter of the compact det; },c[o,1], use the fact thatz;) is 1-Lipschitz, formula
(3.21) and the trivial inequality™ < (a + b)™ + b~ (valid for anya, b € R) to get

(E(xt) — BE(xy)) "
90t) < sup e )

-
Therefore the thesis will be proved if we show that:
ge Lt = If(s) — f(O)] < / g(rydr  Vt<s. (3.24)
t

Fix M > 0 and definef* := min{ f, M'}. Now fix ¢ > 0, pick a smooth mollifiep. : R — R with
supportin[—¢, ] and definefM, g™ : [e,1 — ] — R by
fsM(t) = fM * pe(t),
(f2(t) — fM(s)) "
s#t |S — t|

SincefM is smooth ang™ > (M) it holds
#2100 - 201 < [ g rar (3.25)
t
From the trivial bound [ h)™ < [ T we get

LMt —r) = fM(s =)t pe(r)dr JUt=r) = fls =r) " pe(r)dr

< sup
S

gM(t) < sup
S

|s — ¢t |s — ¢t
= sup / (fTES_T:)_f((:_ :))|)+ pe(r)dr < / g(t = r)pe(r)dr = g * pe(t).

(3.26)

Thus the family of functiongg?’}. is dominated in’.' (0, 1). From (3.25) and (3.26) it follows that
the family of functions{ f2} uniformly converge to some functioff’ on |0, 1] ase | 0 for which
it holds

P (s) = P ()] < / " g(rr.
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We know thatf™ = fM on some setd C [0,1] such thatC!([0,1] \ A) = 0, and we want to
prove that they actually coincide everywhere. Recall f{4tis |.s.c. andf is continuous, hence
M < fMin[0,1]. If by contradiction it holdsf™ (to) < ¢ < C' < fM(t,) for somety, ¢, C, we
canfinds > 0 suchthatf™ (t) > C'int € [to—d,to+6]. ThusfM(t) > C'fort € [to—0,to+I]NA
and the contradiction comes from

1
C _
/ g(t)ydt > / g(t)dt > / — =%t = +oc.
0 [to—8,t0-+8]NA [to—0,to+3]nA |t — ol

Thus we proved that if € L*(0, 1) it holds
M) — ()| < / g(r)dr,  Vt<sel[0,1], M >0,
t

Letting M — oo we prove (3.24) and hence the thesis. O

This proposition is the key ingredient to pass from existeoitGradient Flows in the EDI for-
mulation to the one in the EDE formulation:

Theorem 3.20 (Gradient Flows in the EDE formulation) Let X, E be satisfying Assumption 3.17
andZ € X be such tha#(z) < co. Then all the results of Theorem 3.14 hold.

Also, any Gradient Flow in the EDI sense is also a GradienwFin the EDE sense (Definition
3.4).

Proof The first part of the statement follows directly from Propiosi 3.18.
By Theorem 3.14 we know that the limit curve is absolutelytoorous and satisfies

1/ I
E(xs) + 5/ || 2dr + 5/ |VE|*(z,)dr < E(z), Vs >0. (3.27)
0 0

In particular, the function$ — |i,| and¢ — |VE|(xz;) belong toL? (0,+0oc). Now we use
Proposition 3.19: we know that for ary> 0 it holds

|E(T) — E(x,)] SL || [V E| (2, )dr < %/0 |:i:r|2dr+%/o |VE|?(z,)dr. (3.28)

Thereforet — E(x:) is locally absolutely continuous and it holds
1% 5 1 [® 9 _
E(zs) + 3 || dr + 3 |VE|*(x,)dr = E(T), Vs > 0.
0 0
Subtracting from this last equation the same equality @mifor s = ¢ we get the thesis. O

Remark 3.21 It is important to underline that the hypothesis)efjeodesic convexity is in general
of no help for what concerns the compactness of the sequédiligcoete solutions. |

The \-geodesic convexity hypothesis, ensures various regutasults for the limit curve, which we
state without proof:

Proposition 3.22 Let X, E be satisfying Assumption 3.17 and(et) be any limit of a sequence of
discrete solutions. Then:
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i) the limit

exists for every > 0,
ii) the equation

d . .
EE(%) = —|VEP(ze) = — i} | = — i || VE|(xe),

is satisfied at every > 0,
iii) the mapt +— e~} tE(x,) is convex, the map — e |VE|(z;) is non increasing, right
continuous and satisfies
t _
SIVER () < e *(E(wo) - Eilao) )
HVE[2(2;) < (1+ 2XTt)e 2N (E(:z:o — inf E)

whereE; : X — R is defined as

2
Ei(z) ;= inf E(y) + 7d (x,y),
y 2t

iv) if A\ > 0, thenE admits a unique minimum,,;,, and it holds

A

Edz(zt; zmzn) S E(zt) - E(zmzn) S 672)\16 (E($0) - E(zmzn))
Observe that we didn’t state any result concerning the werigss (nor about contractivity) of

the curve(x;) satisfying the Energy Dissipation Equality (3.9). The wrass that if no further

assumptions are made on eittéor E, in general uniqueness fails, as the following simple examp

shows:

Example 3.23 (Lack of uniqueness)Let X := R? endowed with theL> norm,E : X — R be
defined byE(z!, 2?) := z! andZ := (0,0). Then it is immediate to verify thalV £| = 1 and that
any Lipschitz curve — z; = (z}, 2?) satisfying

r) = —t, vt >0

|zt2/| <1, a.e.t>0,
satisfies also
E(zy) = —t,
|| = 1.
This implies that any sucte;) satisfies the Energy Dissipation Equality (3.9). |

3.2.4 The compatibility of Energy and distance: EVI and erra estimates

As the last example of the previous section shows, in gem@ra@annot hope to have uniqueness of
the limit curve(z;) obtained via the Minimizing Movements scheme for a gengrgeodesically
convex functional. If we want to derive properties like wnégess and contractivity of the flow, we
need to have some stronger relation between the Energyidnatf’ and the distancé on X: in
this section we will assume the following:
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Assumption 3.24 (Compatibility in Energy and distance) (X, d) is a Polish space.E : X —
R U {400} is a lower semicontinuous functional and for any, =1, y € X, there exists a curve
t — ~y(¢) such that
A 2
() < (1= )E(wo) + tB(w) = St(1 = )d (o, 21),

d*(ye,y) < (1 = t)d*(zo,y) + td*(z1,y) — t(1 — t)d?(zo, 21),

(3.29)

for everyt € [0, 1].

Observe that there is no compactness assumption of thevelsotd ££. If X is an Hilbert space (and
more generally a NPC space - Definition 2.19) then the seaweguility in (3.29) is satisfied by
geodesics. Henck-convex functionals are automatically compatible with tinetric.

Following the same lines of the previous section, it is gasedio show that this assumption im-
plies both Assumption 3.8 and, if the subleveldidre boundedly compact, Assumption 3.13, so that
Theorem 3.14 holds. Also it can be shown that formula (3.21jue and thus that Proposition 3.19
holds also in this setting, so that Theorem 3.20 can be prasetkll.

However, if Assumption 3.24 holds, it is better not to folltkve general theory as developed
before, but to restart from scratch: indeed, in this sitrathuch stronger statements hold, also at the
level of discrete solutions, which can be proved by a dirsetaf Assumption 3.24.

We collect the main results achievable in this setting inftflewing theorem:

Theorem 3.25 (Gradient Flows for compatibleF and d: EVI) Assume thatX, E satisfy As-
sumption 3.24. Then the following hold.

e Foreveryx € D(E) and0 < 7 < 1/\~ there exists a unique discrete solutiot] ) as in
Definition 3.7.

e Letx € D(FE) and(z]) any family of discrete solutions starting from it. Therf) converge
locally uniformly to a limit curvez,) as7 | 0 (so that the limit curve is unique). Furthermore,
(x¢) is the unique solution of the system of differential inedjiest

1d A

5%(12(53, y) + 5dz(i:t, y) + E(3;) < E(y), ae.t>0,VycX, (3.30)
among all locally absolutely continuous curveg ) converging toz ast | 0. l.e. x; is a
Gradient Flow in the EVI formulation - see Definition 3.5.

e Letz, y € D(E) and(z;), (y¢) be the two Gradient Flows in the EVI formulation. Then there
is A-exponential contraction of the distance, i.e.:

d?(zy,y;) < e Md2(T, 7). (3.31)

e Suppose thak > 0, thatT € D(F) and buildz], z; as above. Then the following a priori
error estimate holds:

supd(zs, 2]) < 8\/7(E(T) — E(x)). (3.32)
t>0
Sketch of the ProofWe will make the following simplifying assumptionsz > 0, A > 0 and
T € D(FE). Also we will prove just that the sequence of discrete sohgh — x{/zn converges to
a limit curve as» — oo for any givenr > 0.
Existence and uniqueness of the discrete solutionRick x € X. We have to prove that there
exists a unique minimizer of (3.12). L&t> 0 be the infimum of (3.12). Letz,,) be a minimizing

64



sequence for (3.12), fix, m € N and lety : [0, 1] — X be a curve satisfying (3.29) fa := z,,,
x1 := x,, andy := z. Using the inequalities (3.29) at= 1/2 we get

d2(’yl/27x)
I<FE _—
< E(y12) + o7
1 d*(zp, x) d*(zpm, x) 1+ A7 ,
<= E n - a_ E m - nytm):
—2((x)+ 5y PEm) 7 57 @ (@ Tm)
Therefore
P — 1 )\ e 1 d2 n d2 m
T 2 ey < T b (B + T80 4 g,y ¢ TEmY g
n,Mm—00 T n,Mm—00 21 21

and thus the sequence, ) is a Cauchy sequence as sooflas T < 1/\~. This shows uniqueness,
existence follows by the I.s.c. df.
One step estimatedVe claim that the following discrete version of the EVI (3)3lds: for any
re X, ) )

T ) Apr g < Bw) - B0, wex, (339
wherex™ is the minimizer of (3.12). Indeed, pick a curyesatisfying (3.29) forrg := 27, z1 ==y
andy := x and use the minimality of” to get

d*(z,27)
2T

T < (1 - @) +18) - S0 - 6" y)

n (1 —t)d?(x,27) + td*(z,y) — t(1 — t)d*(z7,y)
2T '

E(x7) + < BE(y) +

Rearranging the terms, dropping the positive adder(tr, ™) and dividing byt > 0 we get

08 m)  T0D) | A e, y) < Bly) - BG),

so that letting | 0 we get (3.33).

Now we pass to the discrete version of the error estimate;wivill also give the full conver-
gence of the discrete solutions to the limit curve. Giwery € D(FE), and the associate discrete
solutionsz], y7, we are going to bound the distani:(ezﬁ/z, yI) in terms of the distancé(z, 7).

Write two times the discrete EVI (3.33) far:= 7/2 andy := 3: first with 2 := Z, then with

x = x:g to get (we use the assumptian> 0)
d2 (‘T:/Qv y) - d2 (fv y)
2 < B(@) - B@])3).
=
(@7 p) - & (@])5.7)
BT < B(@) - B).
=
Adding up these two inequalities and observing tE(ade/2) < E(x:@) we obtain

(7, 7) — &(T,7)
T

<2(E®y) — E(2]/)).
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On the other hand, equation (3.33) with= 7 andy := 27/? reads as

d?(y7,27%) — d*(g,27'%)

- < 2(B(27?) —~ (D).

Adding up these last two inequalities we get

& (y7,27”) - (7, 7)

. <2(E@y) - Ey])). (3.34)

Discrete estimatesPickt = nt < m7 = s, write inequality (3.33) for := 27 ,i=n,...,m —1
and add everything up to get

d*(af,y) — d*(27,y) M & e &
2(s — 1) + 20— 1) i:nz;ld (ziry) < E(y) p— i:;q (z7) (3.35)

Similarly, pickt = nr, write inequality (3.34) fol := z;/z andy :=yJ fori=0,...,n—1and
add everything up to get

&2(z]%,y7) — (T, 7)

Now lety = T to get
d(x]"?, a7) < 2r(BE(@) — E(2])) < 27E(T), (3.36)

having used the fact thdt > 0.
Conclusion of passage to the limitPuttingr /2" instead ofr in (3.36) we get

r/2ntl L om T _
P 2] < FE(J/’%
therefore . N
d2(actT/2 ,x:/2 ) < T(227" — 22" E(T), Vn <m €N,

which tells thatn — :ctT/Qn is a Cauchy sequence for any> 0. Also, choosing: = 0 and letting
m — oo we get the error estimate (3.32).
We pass to the EVI. Letting | 0 in (3.35) it is immediate to verify that we get

d (xt,ggs—ci)@ww N 2(8{ 5 /:d%,-,y) < B(y) - Slt/:E(“”")d“

which is precisely the EVI (3.30) written in integral form.

Uniqueness and contractivity. It remains to prove that the solution to the EVI is unique amal t
contractivity (3.31). The heuristic argument is the follog pick (z;) and(y;) solutions of the EVI
starting fromz, 7 respectively. Choosg = y; in the EVI for (x;) to get

1d
2 dsls—t?

Symmetrically we have

A
*(ws,yt) + §d2(xt,yt) + E(xy) < E(yy).

1d

A
2 2
§%|S:td (1, Ys) + §d (e, ye) + E(ye) < E(2y).
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Adding up these two inequalities we get

d
EdQ(act,yt) < —2Md% (w4, 1), a.e.t.
The rigorous proof follows this line and uses a doubling afalsles argument & la Kruzkhov.

Uniqueness and contraction then follow by the Gronwall lemm O

3.3 Applications to the Wasserstein case

The aim of this section is to apply the abstract theory dguedan the previous one to the case of
functionals on( 22, (R%), W,). As we will see, various diffusion equations may be intetg@deas
Gradient Flows of appropriate energy functionals w.r.tthi® Wasserstein distance, and quantitive
analytic properties of the solutions can be derived by thtisrpretation.

Most of what we are going to discuss here is valid in the moregs contexts of Riemannian
manifolds and Hilbert spaces, but the differences betwkeset latter cases and the Euclidean one
are mainly technical, thus we keep the discussion at a lévef do avoid complications that would
just obscure the main ideas.

The secton is split in two subsections: in the first one weudis¢he definition of subdifferential
of a \-geodesicaly convex functional o#, (R?), which is based on the interpretation@h (R?) as
a sort of Riemannian manifold as discussed in Subsectio.2:3the second one we discuss three
by now classical applications, for which the full power oéthbstract theory can be used (i.e. we
will have Gradient Flows in the EVI formulation).

Before developing this program, we want to informally dssa fundamental example.
Let us consider the Entropy function&l: £2,(R%) — R U {+o0} defined by

1 dce, if u=pLe,
Bl = /p og(p) ju g
400 otherwise

We claim that:the Gradient Flow of the Entropy i0%,(R?), W) produces a solution of the Heat
equation This can be proved rigorously (see Subsection 3.3.2) diihe moment we want to keep
the discussion at the heuristic level.

By what discussed in the previous section, we know that theinvzing Movements scheme
produces Gradient Flows. Let us apply the scheme to thisgetfFix an absolutely continuous
measurepy (here we will make no distinction between an absolutely iooimus measure and its
density), fixr > 0 and minimize

PR E(u)+%ﬁ. (3.37)

Itis not hard to see that the minimum is attained at some atedglcontinuous measuge (actually
the minimum is unique, but this has no importance). Our chaithbe “proved” if we show that for

anyp € C°(R?) it holds
M = / Ag pr + ol7), (3.38)

because this identity tells us that is a first order approximation of the distributional solatiof the
Heat equation starting fromy and evaluated at time.
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To prove (3.38), fixp € C=°(R%) and perturlp, in the following way:
= (Id +eV)ypr.
The density of® can be explicitly expressed by

P‘r( )

pS(x +eVp(r)) = det(Id +eV2p(z))

Observe that it holds

E(p°) = /F’8 log(p®) = /Pr log (p° o (Id +eVy)) = /Pr log <m
= E(p,) — /pT log (det(Id + 5V2<p)) = FE(p,) — g/pTAgo + o(e),

where we used the fact thétt(Id + cA) = 1 + etr(A) + o(e).

To evaluate the first variation of the distance squared; le¢ the optimal transport map fropp
to po, which exists because of Theorem 1.26, and observe thatfiom = po, (Id+eVp)yupr =
p° and inequality (2.1) we have

W3 (po, p°) <|IT — 1d —eVol[is(,.y,
therefore from the fact that equality holdszat 0 we get
W3 (po, p°) = W5 (po, pr) <|IT = Id — eVelli(, y — IIT = Id|72(,.)

_ _25/<T 14, W) pr+o(c).

From the minimality ofp.- for the problem (3.37) we know that

) (3.39)

(3.40)

2( ¢ 2
W2 (p aPO) > E(p'r) + W2 (p‘f‘apo), v€7
2T 2T

so that using (3.39) and (3.40), dividing byrearranging the terms and lettiag, 0 ande 1 0 we
get following Euler-Lagrange equation fpf:

T —Id
oo [ < . ,w> pr =0, (3.41)

Now observe that frorfi’yzp. = po we get

Jepr = Jero _ 71/( (T(2)) — () pr ()da

E(p°) +

:7_// (Vo((1 — e + tT(2)), T(x) — z) dt p- (z) da
— 7 [ (V6@ T(@) = 2} pr(z) d + Rem,
(Sél)/A@pT+Remrv

where the remainder terRem. is bounded by

Lip(V ! Lip(V
IRem, | < % // HT () — 2)dt pr (z) da = %Wf(m,m).
0

Since, heuristically speakingVz(po, p-) has the same magnitude ofwe haveRem, = o(7) and
the “proof” is complete.
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3.3.1 Elements of subdifferential calculus i, (R%), W5)

Recall that we introduced a weak Riemannian structure orsplaee( %%, (M), Ws) in Subsec-
tion 2.3.2. Among others, this weak Riemannian structure?f(M ), Ws) allows the development
of a subdifferential calculus for geodesically convex funutils, in the same spirit (and with many
formal similarities) of the usual subdifferential calcslior convex functionals on an Hilbert space.

To keep the notation and the discussion simpler, we are doindgfine the subdifferential of a
geodesically convex functional only for the cag® (R?) and for regular measures (Definition 1.25),
but everything can be done also on manifolds (or Hilbert eppand for general € %, (M).

Recall that for a\-convex functionaF’ on an Hilbert spacé’, the subdifferentiab~ F'(z) at a
pointz is the set of vectors € H such that

A
F(a)+ vy —a)+ Sle—y <Fly), vyeH

Definition 3.26 (Subdifferential in (#,(R%), W>)) Let E : P (R?) — R U {+oc} be a\-
geodesically convex and lower semicontinuous functicarad,. € 2,(R%) be a regular measure
such thatE (i) < oo. The se®" E(u) C Tan,(22(R?)) is the set of vector fields € L?(u, RY)
such that

A
E(u) + / (T — Id,v)dp+ §W22(u, v) < E(v), Vv € Py(RY),

where here and in the following,; will denote the optimal transport map from the regular measu
1 to v (whose existence and uniqueness is guaranteed by Thed2éjmn 1.

Observe that the subdifferential ohageodesically convex functionél has the following mono-
tonicity property (which closely resembles the analogalsifor A\-convex functionals on an Hilbert
space):

/<U,T: —Id) dp + / (w, TF — Id) dv < —\W3(p,v), (3.42)

for every couple of regular measuresv in the domain ofz, andv € W E(u), w € 0V E(v). To
prove (3.42) just observe that from the definition of suletéhtial we have

E(p) +/<Tﬁ — Id,v)dp + %WQQ(IM/) < B(v),
BO) + [ (12~ Hd,w)dv -+ SW ) < E(u),

and add up these inequalities.
The definition of subdifferential leads naturally to the difbon of Gradient Flow: it is sufficient
to transpose the definition given with the system (3.2).

Definition 3.27 (Subdifferential formulation of Gradient Flow) Let E be a A-geodesically con-
vex functional on?,(R%) andp € P5(R4). Then(u,) is a Gradient Flow forE starting fromu
provided it is a locally absolutely continuous curyg, — p ast — 0 w.r.t. the distancéVs, p is
regular fort > 0 and it holds
—v € 0V E(m), a.e.t,
where(v,) is the vector field uniquely identified by the cufyg) via
d

L + V- (vipe) = 0,

vy € Tan,, (P2 (R?)) a.e.t,
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(recall Theorem 2.29 and Definition 2.31).

Thus we have a total of 4 different formulations of Gradidnt¥s of A-geodesically convex func-
tionals on#,(R?) based respectively on the Energy Dissipation Inequality,Energy Dissipation
Equality, the Evolution Variational Inequality and the ioot of subdifferential.

The important point is that these 4 formulations egelivalentfor A—geodesically convex func-
tionals:

Proposition 3.28 (Equivalence of the various formulation 8GF in the Wasserstein space)Let

E be a)\-geodesically convex functional o#, (R¢) and (u;) a curve made of regular measures.
Then for(u.) the 4 definitions of Gradient Flow fat (EDI, EDE, EVI and the Subdifferential one)
are equivalent.

Sketch of the Proof
We prove only that the EVI formulation is equivalent to theb8ifferential one. Recall that by
Proposition 2.34 we know that

1d
2dt

whereT};, is the optimal transport map from to ». Then we have

Wi (e, v) = — / <UtaT;lf,, — Id> dpis, a.e.t

—v € 0V E(p), a.e.t,

)

A
E(u) + / <—vt,Tﬁt — Id)dpy + §W22(,ut,1/) < E(v), Vv € Z5(RY), a.e.t

d

1d A
E(pe) + §%W22(Mt71/) + §W22(Ht,1/) <E(), VYve PR, ae.t.

3.3.2 Three classical functionals

We now pass to the analysis of 3 by now classical examples afli€nt Flows in the Wasserstein
space. Recall that in terms of strength, the best theory @édsuthe one of Subsection 3.2.4, be-
cause the compatibility in Energy and distance ensuresgpooperties both at the level of discrete
solutions and for the limit curve obtained. Once we will hav&radient Flow, the Subdifferential
formulation will let us understand which is the PDE ass@&ddb it.

Let us recall (Example 2.21) that the spdcg,(R?), W) is not Non Positively Curved in the
sense of Alexandrov, this means that if we want to check vérathgiven functional is compatible
with the distance or not, we cannot use geodesics to inizigbketween points (because we would
violate the second inequality in (3.29)). A priori the cheif the interpolating curves may depend
on the functional, but actually in what comes next we willa® use the ones defined by:

Definition 3.29 (Interpolating curves) Lety, vy, v1 € Z5(R?) and assume that is regular (Def-
inition 1.25). The interpolating curve) from v, to 14 with baseu is defined as

ve = ((1 = t)To + tT1) s,
whereT,, andT; are the optimal transport maps fromto v, and v, respectively. Observe that if

1 = vy, the interpolating curve reduces to the geodesic conngdtito »/; .
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Strictly speaking, in order to apply the theory of Sectio®.8.we should define interpolating
curves having as base any meagure #,(R?), and not just regular ones. This is actually possible,
and the foregoing discussion can be applied to the more gkdefinition, but we prefer to avoid
technicalities, and just focus on the main concepts.

For an interpolating curve as in the definition it holds:

W3 (1) < (1= )W (,v0) + W5 (,11) — t(1 — W3 (v, 1) (3.43)

Indeed the magl — ¢)T, + 11 is optimal frompu to v, (because we know thd&f, andT; are the
gradients of convex functionsy, ¢ respectively, thugl — ¢)T, + ¢T3 is the gradient of the convex
function (1 — t)po + te1, and thus is optimal), and we know by inequality (2.1) tHat(vp, 1) <
ITo — T1|72(,, thus it holds

W3 (i, ve) = [|(1 = )To + tTh |72,
= (1= t)|To — Id||72¢,y + Ty = 1d||72(,y — t(1 = )| To — Tu[172(,)
< (1= t)W3 (s v0) + tW3 (1, 1) — t(1 = )W (v, 11).

We now pass to the description of the three functionals we teestudy.

Definition 3.30 (Potential energy) LetV : R? — RU{+occ} be lower semicontinuous and bounded
from below. The potential energy functional: #,(R%) — R U {+oc} associated td/ is defined

by
V(p) := /Vdu.

Definition 3.31 (Interaction energy) Let W : R — R U {+oc} be lower semicontinuous, even
and bounded from below. The interaction energy functiofial 22, (R¢) — R U {+oco} associated
to W is defined by

1
W(p) = §/W(ac1 — zo)dp x p(xy, x2).
Observe that the definition makes sense also for not evetidnaél’; however, replacing if neces-

sary the functiorV (x) with (W (x) + W(—z))/2 we get an even function leaving the value of the
functional unchanged.

Definition 3.32 (Internal energy) Letw : [0,4+00) — R U {400} be a convex function bounded
from below such that(0) = 0 and

d
lim wz) > —00, for somen > ——, (3.44)
20 29 d+2

letu’(c0) := lim,_ u(z)/z. The internal energy functiondl associated ta is
£n) = [ ulp)£ + (oo’ (B,

wherey, = pL£? + ;1# is the decomposition ¢f in absolutely continuous and singular parts w.r.t. the
Lebesgue measure.
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Condition (3.44) ensures that the negative part(@f) is integrable for € #,(R%), so thatg
is well defined (possiblytoo). Indeed from (3.44) we have (z) < az + bz® for somea < 1
satisfying2«/(1 — «) > d, and it holds

[ @ict@ = [ @)+ a1+ la e
< ([ +iapaci@) (fa+up@eiw) e

Under appropriate assumptionsBni¥ ande the above defined functionals are compatible with
the distancéV,. As said before we will use as interpolating curves thosergin Definition 3.29.

Proposition 3.33 Let A > 0. The following holds.

i) The functionalV is A-convex along interpolating curves {2, (R%), W) if and only if V is
A-convex.

ii) The functionalV is \-convex along interpolating curvés?, (R%), Ws) if W is A-convex.
i) The functional€ is convex along interpolating curvés?, (R%), W5) providedu satisfies

z 2% (2% s convex and non increasing ¢f, 4+cc). (3.45)

Proof Since the second inequality in (3.29) is satisfied by thejiating curves that we are con-
sidering (inequality (3.43)) we need only to check the caityeof the functionals.

Let (1) be an interpolating curve with base the regular meaguaadTy, 73 the optimal trans-
port maps fromu to vy andwv; respectively.

Theonly if part of (i) follows simply considering interpolation of deltas. Foeth observe that

V() = /V(ac)dut(x) = /V((l — 0)To(z) + tT1(z))dp(x)
< (1) [ V@) + ¢ [ VT@)dut) - 5t~ 1) [ 1) - Ta(o)Pdu(o)

< (1—=t)V(vo) + V(1) — %t(l — W3 (v, v1).
(3.46)

For (i) we start claiming thaktV2 (i x p, v x v) = 2W2(u, v) foranyu, v € 25 (R%). To prove
this, it is enough to check thatif € Opt(u, v) theny := (r!, 7!, 7%, 7%)uy € Opt(u x p,v X v).
To see this, lep : R — R U {+00} be a convex function such thatpp(y) C 9~ ¢ and define the
convex functions onR?4 by 3(z, y) = ¢(z) +¢(y). Itis immediate to verify thatupp(7) C 9~ ,
so that¥ is optimal as well. This argument also shows thatf) is an interpolating curve with
baseu, thent — vy x vy is an interpolating curve fromy x vy to v; x 11 with baseu x p. Also,
(x1,m2) — W(x1 — x2) is A-convex if IV is. The conclusion now follows from ca$8.

We pass tqiii). We will make the simplifying assumption that < £¢ and thatT, and Ty
are smooth and satisffet(V71y)(z) # 0, det(VTy)(z) # 0 for everyz € supp(u) (up to an
approximation argument, it is possible to reduce to thiecage omit the details). Then, writing
u = pL?, from the change of variable formula we get that< £¢ and for its densityj, it holds

p(z)

pe(T(x)) = m,

Sthe assumption\ > 0 is necessary to have the last inequality in (3.46)\ K 0, A—convexity ofV along interpolating
curves is not anymore true, so that we cannot apply direb#yrésults of Subsection 3.2.4. Yet, adapting the argumgnts
possible to show that all the results which we will presemehtter are true for generalc R.
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where we wrotd; for (1 — ¢)T, + tT3. Thus

e = [ upacs) = [ i ) VT L @),

Therefore the proof will be complete if we show thai— “(dgéa) ) det(A) is convex on the set of
positively defined symmetric matrices for any supp(u). Observe that this map is the composition
of the convex and non increasing map+ z%u(p(z)/z%) with the mapA — (det(A))*/¢. Thus to
conclude it is sufficient to show that — (det(A))/? is concave. To this aim, pick two symmetric
and positive definite matrice$, and A, notice that

(det((1 — t)Ag + tA1))* = (det(Ao) det(Id + tB))"*,

whereB = /Ay(A4; — Ap)v/Ap and conclude by

d 1
= det(Id + tB)"/* = = (det(Id + tB)) e (B (Id + tB)™),
2

% det(Id +tB)"/* = d—12tr2 (B(Id+tB)™") - étr((B (Id+tB)"")*) <0

where in the last step we used the inequali®(C) < dtr(C?) for C = B (Id +tB)~ . O
Important examples of functionssatisfying (3.44) and (3.45) are:

2% —z 1
= > — —
W)= ezl-ga#l (3.47)

u(x) = zlog(2).

Remark 3.34 (A dimension free condition oru) We saw that a sufficient condition ento ensure
that & is convex along interpolating curves is the fact that the map z%u(2~?) is convex and
non increasing, so the dimensidrof the ambient space plays a role in the condition. The faadt th
the map is non increasing follows by the convexityuofogether withu(0) = 0, while by simple
computations we see that its convexity is equivalent to

-1 ! " 1
27 u(z) —u'(2) + zu (Z)Z—d_l

2’ (2). (3.48)

Notice that the highet is, the stricter the condition becomes. For applicationisfinite dimensional
spaces, it is desirable to have a conditionwoansuring the convexity of in which the dimension
does not enter. As inequality (3.48) shows, the weakest soietition for which& is convex in any
dimension is:

27 hu(z) =/ (2) + 2u”(2) >0,

and some computations show that this is in turn equivaletitd@onvexity of the map
z = eule™?).
A key example of map satisfying this conditionzis— z log(z) . [ |

Therefore we have the following existence and uniquenesstre
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Theorem 3.35 Let A > 0 and F be eitherV, W, £ (or a linear combination of them with positive
coefficients) and\-convex along interpolating curves. Then for everg 225(R9) there exists a
unique Gradient Flow ) for F starting fromp in the EVI formulation. The curvi:,) satisfies: is
locally absolutely continuous off), +00), 1+ — @ ast — 0 and, if u; is regular for everyt > 0, it
holds

—vp € OV F (1), a.e. t € (0,+00), (3.49)

where(v;) is the velocity vector field associated(je.) characterized by

d
P + V- (vep) = 0,

vy € Tany,, (P2 (R?)) a.e.t.

Proof Use the existence Theorem 3.25 and the equivalence of théEYulation of Gradient Flow
and the Subdifferential one provided by Proposition 3.28. O

It remains to understand which kind of equation is satisfigdhe Gradient Flow(y;). By
equation (3.49), this corresponds to identify the subthffiéials ofV, W, £ at a generigi € Z,(R?).
This is the content of the next three propositions. For sicitp] we state and prove them only under
some - unneeded - smoothness assumptions. The underlgagfall the calculations we are going
to do is the following equivalence:

ve oW F(u) z ti LA+ eVe)yp) — F(u)
e—0 £

=/<U,V<P>, Vp € C2°(RY),
(3.50)

valid for any \-geodesically convex functional, where we wré¥eto intend that this equivalence

holds only when everything is smooth. To understand whyQBtlds, start assuming that e

O F(p), fix o € C*(R?) and recall that foe sufficiently small the magd + eV is optimal

(Remark 1.22). Thus by definition of subdifferential we have

' A
F)+ e [ @99 du+ E519pl3y < F(Td+T0)pn).

SubtractingZ (1) on both sides, dividing by > 0 ande < 0 and lettings — 0 we get the implication
=. To “prove” the converse one, pick € Z,(R?), let T be the optimal transport map fromto
v and recall thafl’ is the gradient of a convex functioh Assume that) is smooth and define
o(z) := ¢(x) — |z|?/2. The geodesi€u,) from u to v can then be written as

pe = (1 =t)Id+1tT) yu = (1= )Id+ V) yu = (Id + V) ,p.
From theA-convexity hypothesis we know that
d A,
Fw) 2 Fu) + = |, o F () + 5 W3 (1, v),
therefore, since we know th%h:()f(ut) = [ (v, V) dpu, from the arbitrariness of we deduce
v e dVF(u).

Proposition 3.36 (Subdifferential ofV) LetV : RY — R be A\-convex andC, let V be as in
Definition 3.30 and lefx € Z%,(R¢) be regular and satisfying’(;1) < oo. Thend" V(u) is non
empty if and only iV € L?(u), and in this cas&/V is the only element in the subdifferentianof
at u.
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Therefore, if(1;) is a Gradient Flow of made of regular measures, it solves

aHt V- (VV ),
in the sense of distributions k¢ x (0, +oc0).
Sketch of the ProoFix ¢ € C2°(R?) and observe that

V((Id+eVp)gn) — V(1) _ lim/ Vo(ld+eVy) -V
5

lim

e—0 g e—0

dp = / (VV, Vo) dpu.
Conclude using the equivalence (3.50). O

Proposition 3.37 (Subdifferential of W) Let W : R? — R be A-convex, even and'!, let W be
defined by 3.31 angd be regular and satisfyingV(u) < oo. Thend"WW(u) # 0 if and only if
(VW) % u belongs toL%() and in this casé VW) x u is the only element in the subdifferential of
W at p.

Therefore, if(x) is a Gradient Flow o)) made of regular measures, it solves the non local
evolution equation

=V (VW s i) pa )

in the sense of distributions iR¢ x (0, +oc).

Sketch of the ProoFix ¢ € C2°(R?), let ¥ := (Id + e V). u and observe that

W) = 5 [ Wie = )i @) = 5 [ Wia =y + (Volo) = Violy))da(e)du(y)

= %/W(:E —y)du(z)duly) + 5

Now observe that

/ (VW (z —y), Ve(z)) du(z)duly) = / </ VW (z — y)du(y), V<P(l’)> du(z)

/ (VW (x —y),Vo(z) — Vo(y)) du(z)du(y) + o(e).

- / (VW 5 (), Viola)) dia(z),

and, similarly,
/ (YW (& — y), ~Veo(y)) du(x)dpu(y) = / (YW (), Veo()) du(y)

= [(OW s @), V(o)) (o)
Thus the conclusion follows by applying the equivalenc&@}. O

Proposition 3.38 (Subdifferential of€) Letw : [0, +c0) — R be convex{? on (0, +o00), bounded
from below and satisfying conditiorf8.44)and (3.45) Lety = pL? € 22,(RY) be an absolutely
continuous measure with smooth density. TRién’(p)) is the unique element "V &(p).

Therefore, if(1;) is a Gradient Flow for€ and y, is absolutely continuous with smooth density
pi for everyt > 0, thent — p; solves the equation

200 =V (Y (W (p1))).
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Note: this statement is not perfectly accurate, becauserev@eglecting the integrability issues.
Indeed a priori we don’t know tha¥ (u’(p)) belongs taL?(u).

Sketch of the ProoFix » € C2°(R?) and defing:® := (Id + eV) 4 u. Fore sufficiently small,u®
is absolutely continuous and its densifysatisfies - by the change of variable formula - the identity

] B p(x)
pf(z +eVp(x)) = det(Id + eV2p(z))’

Using the fact thatdd—8|8:0(det(ld +eV2p(z))) = Ap(z) we have

d d

: d : . i
£|8:05(u6) = Ela:o/ u(p®(y))dy = Zle=o / u <det([d i(g)v%(x))> det(Id 4+ eV<p(x))dx

=/—pu’(p)AsD+u(p)A<P=/(V(pu'(p)—u(p)LV@ =/<V(u’(p))7vso> 2

and the conclusion follows by the equivalence (3.50). O

As an example, let(z) := zlog(x), and letV be a\-convex smooth function oR?. Since
u'(z) = log(z) + 1, we havepV (u/(p)) = Ap, thus a gradient flowp;) of F = £ + V solves the
Fokker-Plank equation

d
ik Apt +V - (VVp).

Also, the contraction property (3.31) in Theorem 3.25 givedt for two gradient flowsp,), (5;) it
holds the contractivity estimate

Wa(pt, pr) < e Wa(po, po)-

3.4 Bibliographical notes

The content of Section 3.2 is taken from the first part of [6¢ (vfer to this book for a detailed
bibliographical references on the topic of gradient flowsnietric spaces), with the only exception
of Proposition 3.6, whose proof has been communicated ty S&abaré (see also [72], [73]).

The study of geodesically convex functionals(i#¢; (R¢), W5 ) has been introduced by R. Mc-
Cannin [63], who also proved that conditions (3.44) andgBwere sufficient to deduce the geodesic
convexity (called by him displacement convexity) of theeimal energy functional.

The study of gradient flows in the Wasserstein space begae iseminal paper by R. Jordan, D.
Kinderlehrer and F. Otto [47], where it was proved that theimizing movements procedure for the
functional

pL? — /plogp + VpdL?,

on the spacéZ%, (R%), W), produce solutions of the Fokker-Planck equation. Late@tf in [67]
showed that the same discretization applied to
1 « d
a—1 /p dLs,

(with the usual meaning for measures with a singular padjlpce solutions of the porous medium
equation. The impact of Otto’s work on the community of olirtmansport has been huge: not only
he was able to provide concrete consequences (in terms aéstawates for the rate of convergence

pL?
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of solutions of the porous medium equation) out of optimahsport theory, but he also clearly
described what is now called the ‘weak Riemannian struttireé?; (R4), W) (see also Chapter 6
and Subsection 2.3.2).

Otto’s intuitions have been studied and extended by manyoasit The rigorous description
of many of the objects introduced by Otto, as well as a gertisalission about gradient flows of
A-geodesically convex functionals qr?, (R%), W,) has been done in the second part of [6] (the
discussion made here is taken from this latter reference).

4 Geometric and functional inequalities

In this short Chapter we show how techniques coming fromnegititransport can lead to simple
proofs of some important geometric and functional inedjigali None of the results proven here are
new, in the sense that they all were well known before the fsrooming from optimal transport
appeared. Still, it is interesting to observe how the toelscdibed in the previous sections allow to
produce proofs which are occasionally simpler and in ang gasviding new informations when
compared to the ‘standard’ ones.

4.1 Brunn-Minkowski inequality

Recall that the Brunn-Minkowski inequality iR is:

(2 (22N 2 Lty s zm) ).

2 -2

and is valid for any couple of compact sets B C R¢.

To prove it, letA, B ¢ R? be compact sets and notice that without loss of generalitgave
assume that??(A), £%(B) > 0. Define
1 d 1! d
po = zd(A)'Z |4 pa = gd(B)-i” 5

and let(p;) be the unique geodesic (%, (R?), W) connecting them.

Recall from (3.47) that fou(z) = —d(2'~1/¢— 2) the functionak (p) := [ u(p)dL? is geodesi-
cally convex in(2,(R%), Ws). Also, simple calculations show th&t ) = —d(Z*(A)"/¢ - 1),
E(pr) = —d(L%(B)"4 —1). Hence we have

d 1/d 1/d
Eluy) < —5((29)"" + (2°B)") +d.
Now notice that Theorem 2.10 (see also Remark 2.13) ensaést/, is concentrated oﬁ;—B,

thus lettingii /» := (L%((A+B)/2))~'.£4 and applying Jensen’s inequality to the convex
functionu we get

l(a+B)/2

which concludes the proof.
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4.2 Isoperimetric inequality

OnRR? the isoperimetric inequality can be written as
P(E)
dZL4(B)a’
whereFE is an arbitrary open seE(E) its perimeter and3 the unitary ball.

We will prove this inequality via Brenier's theorem 1.26 glexting all the smoothness issues.
Let

ZUB) 1 <

1 1
=———1 =——— 1

K Z4(E) | v 24(B) B>
andT : E — B be the optimal transport map (w.r.t. the cost given by théadise squared). The
change of variable formula gives

1 1
——— =det(VT(2)) ——= Vo € E.

Since we know thdf" is the gradient of a convex function, we have tR&t(z) is a symmetric matrix
with non negative eigenvalues for everye E. Hence the arithmetic-geometric mean inequality
ensures that

(det VT'(z))'/¢ < V'TT@), Vr € E.
Coupling the last two equations we get
1 1§V-T(ac) 1 1 —
ZLUE) d  24B)
Integrating ovelZ and applying the divergence theorem we get

1 1 .
< W/EV-T(JU)M:: W/ME (T(), v(x)) dHO (2),

wherev : 9F — R< is the outer unit normal vector. Sind&x) € B for everyz € E, we have
|T'(x)| <1forz € OF and thus(T'(z),v(z)) < 1. We conclude with

1 B P(E)
A2 B /BE (T(2), v(@)) dH™H(z) < 2B

1

fd(E)l_d

-

gd(E)l— <

4.3 Sobolev Inequality

The Sobolev inequality iiR? reads as:

( / Iflp*>1/p* < O(d.p) ( / IVflp)l/p, vf e Whe(RY),

wherel < p < d, p* := ddTpp andC'(d, p) is a constant which depends only on the dimensiamd
the exponenp.

We will prove it via a method which closely resemble the orst used for the isoperimetric
inequality. Again, we will neglect all the smoothness issuix d, p and observe that without loss
of generality we can assunfe> 0 and [ | f|P* = 1, so that our aim is to prove that

</ IVfI’”>1/p > C, (4.1)

78



for some constan€' not depending ory. Fix once and for all a smooth, non negative function
g : R — R satisfying [ g = 1, define the probability measures

= fp*fd, vi= g%

and letT" be the optimal transport map fromto v (w.r.t. the cost given by the distance squared).
The change of variable formula gives

vz e RY.

Hence we have

/91_5 :/g_%g:/(goT)_%fp* :/det(VT)%(fp*)l—%_

As for the case of the isoperimetric inequality, we know thas the gradient of a convex function,
thusVT'(z) is a symmetric matrix with non negative eigenvalues and titleraetic-geometric mean
inequality givegdet(VT'(z)))*/? < %(I). Thus we get

Y

where; + ¢ = 1. Finally, by Holder inequality we have

al

1

Jorst o) () (fr) -5 -3 o) (o)

Sinceg was a fixed given function, (4.1) is proved.

4.4 Bibliographical notes

The possibility of proving Brunn-Minkowski inequality via change of variable is classical. It has
been McCann in his PhD thesis [62] to notice that the use dingbttransport leads to a natural
choice of reparametrization. It is interesting to noticat tinis approach can be generalized to curved
and non-smooth spaces haviRgci curvature bounded belgwee Proposition 7.14.

The idea of proving the isoperimetric inequality via a chanfvariable argumentis due to Gro-
mov [65]: in Gromov’s proof it is not used the optimal trangpmap, but the so called Knothe’s
map. Such a map has the property that its gradient has notiveegigenvalues at every point, and
the reader can easily check that this is all we used of Bremigp in our proof, so that the argument
of Gromov is the same we used here. The use of Brenier's méith®f Knothe’s one makes the
difference when studying the quantitative version of tteperimetric problem: Figalli, Maggi and
Pratelli in [38], using tools coming from optimal transpgotoved the sharp quantitative isoperi-
metric inequality inR¢ endowed with any norm (the sharp quantitative isoperimétequality for
the Euclidean norm was proved earlier by Fusco, Maggi anttlria [40] by completely different
means).

The approach used here to prove the Sobolev inequality hais generalized by Cordero-
Erasquin, Nazaret and Villani in [30] to provide a new prodftlee sharp Gagliardo-Nirenberg-
Sobolev inequality together with the identification of thctions realizing the equality
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5 \Variants of the Wasserstein distance

In this chapter we make a quick overview of some variants @eMilasserstein distand®, together
with their applications. No proofs will be reported: our gbare is only to show that concepts
coming from the transport theory can be adapted to coveraderaange of applications.

5.1 Branched optimal transportation

Consider the transport problem with:= &, andv := 3(é,, +d,,) for the cost given by the distance
squared oiR?. Then Theorem 2.10 and Remark 2.13 tell that the unique g#o(le) connecting
uto v is given by

1
5 (6(17t)x+ty1 + 6(17t)x+ty2)7

so that the geodesic produces a ‘V-shaped’ path.

For some applications, this is unnatural: for instance ai liee networks, when one wants to
transport the good located into the destinationg; andys it is preferred to produce a branched
structure, where first the good it is transported ‘on a sitiglek’ to some intermediate point, and
only later split into two parts which are delivered to the Btiteations. This produces a ‘Y-shaped’
path.

If we want to model the fact that ‘it is convenient to ship tpntogether’, we are lead to the
following construction, due to Gilbert. Say that the stagtdistribution of mass is given by =
>_; aidy, andthatthe finaloneis =} . b;d,,, with >, a; = >, b; = 1. An admissible dynamical
transfer is then given by a finite, orlented weighted gré;prwhere the weight is a function :
{set of edges of G} — R, satisfying the Kirchoff’s rule:

Z w(e) - Z w(e) = aj, Vi

Mt =

edges outgoing fromz; edges incoming inx;
> we) = Y wle)=-b, Y
edgese outgoing fromy ; edgese incoming iny;
w(e) Z w(e) = 0, for any ‘internal’ nodez of G
edges outgoing fromz edges incoming inz

Then fora € [0, 1] one minimizes

> w(e)-lengthe),

edges of G

among all admissible graplis

Observe that forv = 0 this problem reduces to the classical Steiner problemenbila = 1 it
reduces to the classical optimal transport problenzéet = distance.

It is not hard to show the existence of a minimizer for thistjpeon. What is interesting, is that a
‘continuous’ formulation is possible as well, which allotesdiscuss the minimization problem for
general initial and final measure & (R?).

Definition 5.1 (Admissible continuous dynamical transfer) Let 4, v € Z(R%). An admissible
continuous dynamical transfer fromto v is given by a countabl§ ! -rectifiable sel’, an orientation
onitt : I' — S471 and a weight functiomw : T' — [0, +00), such that théR¢ valued measure
Jr.-w defined by

1
JF,T,w = wrH |F’
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satisfies
V-Jrrw=V—p,

(which is the natural generalization of the Kirchoff rule).

Givena € [0, 1], the cost function associated (, 7, w) is defined as
Ea(Trrn) = / W dA
r

Theorem 5.2 (Existence)Let u, v € Z(R?) with compact support. Then for all € [0, 1) there
exists a minimizer of the cost in the set of admissible cantis dynamical transfers connectingo
v. If p=4,andrv = tho e the minimal cost is finite if and onlydf > 1 — 1/d.

The fact thatl — 1/d is a limit value to get a finite cost, can be heuristically uistigod by the
following calculation. Suppose we want to move a Delta miasisito the Lebesgue measure on a
unit cube whose center ia Then the first thing one wants to try is: divide the cube Rftacubes
of side lengthl /2, then split the delta inta? masses and let them move onto the centers of tifese
cubes. Repeat the process by dividing each oftheubes int@2¢ cubes of side length/4 and so
on. The total cost of this dynamical transfer is proportidoa

(oo} oo

Z oid 1 1 _ Z gi(d—1-ad)
N~ 2t Qaid - ’
=1 number of segments N~~~ N~ =1

at the stepi length of each  weighted mass on each
segment at the step  segment at the step

which is finite if and only ifd — 1 — ad < 0, that is, if and only ifa > 1 — é.
A regularity result holds forr € (1 — 1/d, 1) which states that far away from the supports of the
starting and final measures, any minimal transfer is agtadiinite tree:

Theorem 5.3 (Regularity) Let u, v € 22(R?) with compact supporty € (1 — 1/n,1) and let
(T, 7,w) be a continuous tree with minimatcost betweep andv. Thenl is locally a finite tree in

R®\ (supp 1 U supp v).

5.2 Different action functional

Let us recall that the Benamou-Brenier formula (Proposii80) identifies the squared Wasserstein
distance between’ = p* .24, u! .= p'.L? € P, (R?) by

1
W3 ) =int [ [ P @p(e)d2 @i,
0
where the infimum is taken among all the distributional Soha of the continuity equation
d
—pt + V- (vepr) =0,

dt

with pg = p® andp; = p'.
A natural generalization of the distan®8, comes by considering a new action, modified by
putting a weight on the density, that is: given a smooth fiandt : [0, oc) — [0, c0) we define

Wi L ) =it [ [ @i (@) a2 @t (5.1)
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where the infimum is taken among all the distributional Soha of thenon linearcontinuity equa-
tion

LotV - (h(p) = (5.2)

with po = p® andp; = p'.
The key assumption that leads to the existence of an actinimizing curve is the concavity of
h, since this leads to the joint convexity of

J 2

h(p)

so that using this convexity withh = vh(p), one can prove existence of minima of (5.1). Particularly
important is the case given by(z) := z® for & < 1 from which we can build the distand&,
defined by

3

(0.7) > h(p) \

Wa (P24, pt 2?) = (inf /0 1 /|vt|2(x)pfO‘(:z:)d.,fd(x)dt>;, (5.3)

the infimum being taken among all solutions of (5.2) with= p° andp; = p'. The following
theorem holds:

Theorem5.4 Leta > 1 — 5. Then the infimum i5.3) is always reached and, if it is finite, the
minimizer is unique. Now fix a measyrec #(R?). The set of measureswith Wa (i, v) < oo
endowed withV,, is a complete metric space and bounded subsets are narr@mipact.

We remark that the behavior of action minimizing curves irs thetting is, in some very rough
sense, “dual” of the behavior of the branched optimal trartsgion discussed in the previous section.
Indeed, in this problem the mass tends to spread out alongti@mm aninimizing curve, rather than to
glue together.

5.3 An extension to measures with unequal mass

Let us come back to the Heat equation seen as Gradient Floheddritropy functionaE(p) =

| plog(p) with respect to the Wasserstein distafite, as discussed at the beginning of Section 3.3
and in Subsection 3.3.2. We discussed the topic for arliparbability measures iR?, but actually
everything could have been done for probability measurasemtrated on some open bounded set
Q < R? with smooth boundary, that is: consider the metric spagg(2), W,) and the entropy
functional E(p) = [ plog(p) for absolutely continuous measures afifi;) = +oo for measures
with a singular part. Now use the Minimizing Movements schambuild up a family of discrete
solutionsp] starting from some given measugres 27(12). Itis then possible to see that these discrete
families converge as | 0 to the solution of the Heat equation witeumann boundary condition

%pt = Apta in Q2 x (05 +OO),
Pt — P, weakly ast — 0
Vpi-n =0, in 992 x (0, 00),

wheren is the outward pointing unit vector ai.

The fact that the boundary condition is the Neumann’s one beaheuristically guessed by the
fact that working in2?(2) enforces the mass to be constant, with no flow of the massghrthe
boundary.

It is then natural to ask whether it is possible to modify ttemsportation distance in order to
take into account measures with unequal masses, and sucthéh@radient Flow of the entropy
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functional produces solutions of the Heat equatiof iwith Dirichlet boundary conditions. This is
actually doable, as we briefly discuss now.
Let 2 c R? be open and bounded. Consider the/s64(92) defined by

My (Q) := {measure& on {2 such that/ d*(x, 09Q)du(x) < oo},

and for anyu, v € M»(Q2) define the set of admissible transfer plans Admv) by: v €
Admy, (u, v) if and only if v is @ measure o(f2)? such that

1 _ 2 —
o = b g = v

Notice the difference w.r.t. the classical definition ofniséer plan: here we are requiring the first
(respectively, second) marginal to coincide wittfrespectively) only inside the open sét. This
means that in transferring the mass franto v we are free to take/put as much mass as we want
from/to the boundary. Then one defines tostC/(+y) of a plany by

Cly) = / |z — ydvy(x,y),

and then the distand& b, by
Who(u,v) ;= inf \/W,
where the infimum is taken among alle Adm;,(u, v).
The distancé? b, shares many properties with the Wasserstein distérnice

Theorem 5.5 (Main properties ofiWb,) The following hold:

e Wh, is a distance on\5(2) and the metric spaceM»(Q2), Wbs) is Polish and geodesic.

e A sequencéu,) C M-(£2) converges tq: w.r.t. Wb if and only if u,, converges weakly
to 1 in duality with continuous functions with compact supparfi and [ d?(z, 9Q)du, —

[ d*(z,000)dp asn — oco.

e Finally, a plany € Adm,(u, v) is optimal (i.e. it attains the minimum cost among admissibl
plans) if and only there exists @concave functiorp which is identically0 on 02 such that
supp(7y) C 9°p (herec(z,y) = |z — y/?).

Observe thatMs (), Wbs) is always a geodesic space (while from Theorem 2.10 and Fkemar

2.14 we know that. 2 (Q2), W) is geodesic if and only i is, that is, if and only i) is convex).

It makes perfectly sense to extend the entropy function#iéonvhole M, (Q2): the formula is
still E(u) = [ plog(p) for u = pﬁdkz, andE(u) = +oo for measures not absolutely continuous.
The Gradient Flow of the entropy w.ribs produces solutions of the Heat equation with Dirichlet
boundary conditions in the following sense:

Theorem 5.6 Let € M2 (€2) be such thaf (i) < co. Then:

o for everyr > 0 there exists a unique discrete solutiph starting fromy and constructed via
the Minimizing Movements scheme as in Definition 3.7.

e AsT | 0, the measures] converge to a unique measuysein (Ms(§2), Why) for anyt > 0.

e The map(x,t) — p:(x) is a solution of the Heat equation

%pt = Aph inQ x (05 +OO)7
P = I, weakly asg — 0,

subject to the Dirichlet boundary conditign(z) = e~ in 992 for everyt > 0 (thatis,p; —e !
belongs toH ! () for everyt > 0).
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The fact that the boundary value is given &y' can be heuristically guessed by the fact that
the entropy has a global minimum i, (£2): such minimum is given by the measure with constant
densitye 1, i.e. the measure whose density is everywhere equal to thienmin of z — z log(2).

On the bad side, the entrofyis notgeodesically convex iiMs (€2), Wbs), and this implies that
it is not clear whether the strong properties of GradientBlav.r.t. W5 as described in Section 3.3
- Theorem 3.35 and Proposition 3.38 are satisfied also ins#tiing. In particular, it is not clear
whether there is contractivity of the distance or not:

Open Problem 5.7 Let p;, p? two solutions of the Heat equation with Dirichlet boundaoydition
pi =e~1in 90 for everyt > 0,i = 1, 2. Prove or disprove that

Whba(ps, p2) < Wha(pt,p7), V> s.

The question is open also for convex and smooth operflsets

5.4 Bibliographical notes

The connection of branched transport and transport probkemiscussed in Section 5.1 was first
pointed out by Q. Xia in [81]. An equivalent model was propbbg F. Maddalena, J.-M. Morel and
S. Solimini in [61]. In [81], [60] and [15] the existence of aptimal branched transport (Theorem
5.2) was also provided. Later, this result has been exteindel/eral directions, see for instance the
works A. Brancolini, G. Buttazzo and F. Santambrogio ([1&}d Bianchini-Brancolini [15]. The
interior regularity result (Theorem 5.3) has been provedB¥Xia in [82] and M. Bernot, V. Caselles
and J.-M. Morel in [14]. Also, we remark that L. Brasco, G. Buizo and F. Santambrogio proved a
kind of Benamou-Brenier formula for branched transportlif]|

The content of Section 5.2 comes from J. Dolbeault, B. Nazaré G. Savaré [33] and [26] of J.
Carrillo, S. Lisini, G. Savaré and D. Slepcev.

Section 5.3 is taken from a work of the second author and AalFig7].

6 More on the structure of (2, (M), Ws)

The aim of this Chapter is to give a comprehensive descrififadhe structure of the ‘Riemannian
manifold’ (225 (R%), W5), thus the content of this part of the work is the natural cordtion of what
we discussed in Subsection 2.3.2. For the sake of simplig&yare going to stick to the Wasserstein
space orR?, but the reader should keep in mind that the discussionsdeaerde generalized with
only little effort to the Wasserstein space built over a Ra@mian manifold.

6.1 *“Duality” between the Wasserstein and the Arnold Manifdds

The content of this section is purely formal and directly esnfrom the seminal paper of Otto [67].
We won't even try to provide a rigorous background for thedssion we will do here, as we believe
that dealing with the technical problems would lead the eeat from the geometric intuition. Also,
we will not use the “results” presented here later on: we thistk that these concepts are worth of
mention. Thus for the purpose of this section just think teath measure is absolutely continuous
with smooth density’, that ‘each? function isC*’, and so on.

Let us recall the definition of Riemannian submersion. &&tN be Riemannian manifolds and
let f : M — N asmooth mapf is a submersion provided the map:

df : Ker (df (x)) = Tg)N,
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is a surjective isometry for any € M. A trivial example of submersion is given in the cake=
N x L (for some Riemannian manifold, with M/ endowed with the product metric) arfid M — N
is the natural projection. More generally,fifis a Riemannian submersion, for eagke N, the set
f~1(y) € M is a smooth Riemannian submanifold.

The “duality” between the Wasserstein and the Arnold Mddgaonsists in the fact that there
exists a Big ManifoldBM which is flat and a natural Riemannian submersion figl to &7, (R<)
whose fibers are precisely the Arnold Manifolds.

Let us define the objects we are dealing with. Fix once and Ifaa eeference measurg €
P5(R?) (recall that we are “assuming” that all the measures arelafegp continuous with smooth
densities - so that we will use the same notation for both teasure and its density).

e The Big Manifold BM is the spacd.?(p) of maps fromR¢ to R¢ which areL? w.r.t. the
reference measufe The tangent space at some miag BM is naturally given by the set of
vector fields belonging té?(p), where the perturbation @f in the direction of the vector field
u is given byt — T + tu.

e The target manifold of the submersion is the Wassersteimifola” &2, (R¢). We recall that
the tangent spackan, (%, (R?)) at the measurg is the set

Tan, (P5(RY)) 1= {w Lpe CSO(Rd)},

endowed with the scalar product bf (p) (we neglect to take the closure Ir¥(p) because we
want to keep the discussion at a formal level). The pertishaif a measure in the direction
of a tangent vecto¥ ¢ is given byt — (Id + tV)xp.

e The Arnold ManifoldArn(p) associated to a certain measpre 2%,(R?) is the set of maps
S : R? — R4 which preserve:

Arn(p) := {S ‘R 5 R : Syup=p}.

We endowArn(p) with the L? distance calculated w.r.p. To understand who is the tangent
space atArn(p) at a certain mag, pick a vector field» onR¢ and consider the perturbation
t — S + tv of S in the direction ofv. Thenv is a tangent vector if and only i[-;ﬂt:O(S +

tv)xp = 0. Observing that

d
(Id+tvoS™")4(Syp) =

o Td 1008 ™) 4 p = V(w05 p),

(S+tv)xp

_d
Ehzo - Eh:o

we deduce

TangArn(p) = {vectorfieIdSU onR? such thatv - (vo S™!p) = 0},

which is naturally endowed with the scalar producLit(p).

We are calling the manifoldrn(p) an Arnold Manifold, because jf is the Lebesgue measure
restricted to some open, smooth and boundesétis definition reduces to the well known
definition of Arnold manifold in fluid mechanics: the geodesiquation in such space is -
formally - the Euler equation for the motion of an incompiiekesand inviscid fluid in€2.

e Finally, the “Riemannian submersioff from BM to %,(R9) is the push forward map:

Pf:BM — @Q(Rd),
T — Tup,
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We claim thatPf is a Riemannian submersion and that the fiB&F' () is isometric to the manifold
Arn(p).
We start considering the fibers. Fixc &, (R?). Observe that

PfL(p) = {T €BM : Tup = p},

and that the tangent spaten,Pf ' (p) is the set of vector fields such that%
so that from

|t:0(T+tu)#ﬁ =0,

_ d _ _, d _ _
Eh:O(T—i—tu)#p = E|t:0(1d+tuOT Yy (Typ) = Eh:oad—'—tUOT Yup=V-(uoT 'p),

we have
Tans Pt~ (p) = {vectorfieIdSu onR? such thatv - (u o T 'p) = 0},

and the scalar product between two vector fieldSin,Pf ' (p) is the one inherited by the one in
BM, i.e. is the scalar product ih?(p).

Now choose a distinguished map € Pf~'(p) and notice that the right composition wiiff
provides a natural bijective map frofrn(p) into Pf~*(p), because

Sgp=p & (ST )up=p.

We claim that this right composition also provides an isagneétween the “Riemannian manifolds
Arn(p) andPf~*(p): indeed, ifv € TangArn(p), then the perturbed maps + tv are sent to
S oT? + tv o T?, which means that the perturbatiorof S is sent to the perturbation:= v o 77

of S o T by the differential of the right composition. The conclusillows from the change of

variable formula, which gives
[ 12an= [ upap

Clearly, the kernel of the differentidPf of Pf atT is given byTanpPf™* (Pf(T)), thus it remains
to prove that its orthogonal is sent isometrically ofitap (7 (22 (R?)) by dPf. Fix T € BM, let
p = P{(T) = Txp and observe that

Tang (Pf'(p)) = {vectorfieIdSw : /(w,u) dp=0,Vust.V-(uoT 'p)= 0}
= {vectorfieIdSw : /<w oT M uoT Ndp=0, Vust.V-(uoT 'p)= 0}
= {vectorfieIdSw cwo T~ =V for somep € C° (Rd)}.

Now pickw € Tanz (Pf~(p)), lety € C°(R?) be such thaty o T—! = V¢ and observe that

PE(T +tw) Id+twoT™ 1) (Typ) = 1d+tVp)4p,

d
E|t:0(

_d
THtw)up = E|t:0(

_d
dt =0 - Eh:o(

which means, by definition 6Fan, (%, (R%)) and the action of tangent vectors, that the differential
dPf(T)(w) of Pf calculated af” along the directionw is given byVy. The fact that this map is an
isometry follows once again by the change of variable foemul

/ wl?dp = / wo T 2dp = / Vel2dp.
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6.2 On the notion of tangent space

Aim of this section is to quickly discuss the definition of g@mt space of#,(R?) at a certain
measureu from a purely geometric perspective. We will see how thispective is related to the
discussion made in Subsection 2.3.2, where we defined tasgace as

L2 (R R%; )

Tan,(25(RY) = { Ve : ¢ € O (Re)}

Recall that this definition came from the characterizatibmbsolutely continuous curves oy (RY)
(Theorem 2.29 and the subsequent discussion).

Yet, there is a completely different and purely geometraggdroach which leads to a definition
of tangent space at. The idea is to think the tangent spaceuaas the “space of directions”, or,
which is the same, as the set of constant speed geodesicatimyadnomy.. More precisely, let the
setgeod , be defined by:

o { constant speed geodesics starting from }/ N
Geod . =\ and defined on some interval of the kid 7] S/ ™

where we say thafu;) ~ (1) provided they coincide on some right neighborhood of 0. Tateral
distanceD on Geod , is:

D () () = T 2o te) (6.1)

The Geometric Tangent spacan,, (2>(R?)) is then defined as the completion@fod , w.r.t. the
distanceD.

The natural question here is: what is the relation between “dpace of gradients”
Tan,, (Z,(R?)) and the “space of direction&an,, (%5 (R?))?

Recall that from Remark 1.22 we know that givere C°(R?), the mapt — (Id + tVp)gu
is a constant speed geodesic on a right neighborhood of 8.rii&ans that there is a natural map
from the sef{Vp : ¢ € C2°} into Geod |, and therefore int@an,, (&> (R)), which sends7¢ into
the (equivalence class of the) geodesie: (Id + tV)4u. The main properties of the Geometric
Tangent space and of this map are collected in the followiegtem, which we state without proof.

Theorem 6.1 (The tangent space)l ety € Z25(R?). Then:
e thelim in (6.1)is always a limit,
e the metric spacéTan,, (%, (R?)), D) is complete and separable,

e the mapy, : {Vy} — Tan,(Z>(R%) is an injective isometry, where on the source space
we put theL? distance w.r.t.u. Thus,, always extends to a natural isometric embedding of
Tan,, (22(R?)) into Tan,, (P, (R)).

Furthermore, the following statements are equivalent:
i) the spacgTan, (% (R%)), D) is an Hilbert space,
i) the mape,, : Tan, (Z>(R%)) — Tan, (P, (R?)) is surjective,
iii) the measure: is regular (definition 1.25).

We comment on the second part of the theorem. The first thimmptige is that the “space of di-
rections"Tan,, (%, (R?)) can be strictly larger than ‘the space of gradiefitsi, (%22(R?)). This

is actually not surprising if one thinks to the case in whicis a Dirac mass. Indeed in this situ-
ation the spacéTan,, (,(R)), D) coincides with the space?, (R%), W5) (this can be checked
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directly from the definition), however, the spaten,, (. (R%)) is actually isometric taR? itself,
and is therefore much smaller.

The reason is that geodesics are not always induced by niegbss tthey are not always of the
form¢ — (Id + tu)4p for some vector field: € L. To some extent, here we are facing the same
problem we had to face when starting the study of the optiraakport problem: maps are typically
not sufficient to produce (optimal) transports. From thisspective, it is not surprising that if the
measure we are considering is regular (that is, if for any 22, (R?) there exists a unique optimal
plan, and this plan is induced by a map), then the “space ettiins” coincides with the “space of
directions induced by maps”.

6.3 Second order calculus

Now we pass to the description of the second order analysis@y(R?). The concepts that now
enter into play are: Covariant Derivative, Parallel Tras$@nd Curvature. To some extent, the
situation is similar to the one we discussed in Subsecti®22oncerning the first order structure: the
metric spacé 2, (R9), W3) is not a Riemannian manifold, but if we are careful in givirggiditions
and in the regularity requirements of the objects involverlwill be able to perform calculations
very similar to those valid in a genuine Riemannian context.

Again, we are restricting the analysis to the Euclidean oagefor simplicity: all of what comes
next can be generalized to the analysis o¥&1( M ), for a generic Riemannian manifold .

On a typical course of basic Riemannian geometry, one of teeddncepts introduced is that
of Levi-Civita connection, which identifies the only natufaatural” here means: “compatible with
the Riemannian structure”) way of differentiating vect@lds on the manifold. It would therefore
be natural to set up our discussion on the second order amalys?,(R?) by giving the definition
of Levi-Civita connection in this setting. However, thisncet be done. The reason is that we don’t
have a notion of smoothness for vector fields, therefore nigtwe don’t know how to covariantly
differentiate vector fields, but we don’t know either whiale ¢he vector fields regular enough to be
differentiated. In a purely Riemannian setting this praboes not appear, as a Riemannian man-
ifold borns as smooth manifold on which we define a scalar pecbdn each tangent space; but the
spaceZ,(R%) does not have a smooth structure (there is no diffeomorpbfsarsmall ball around
the origin inTan,, (%, (R%)) onto a neighborhood of in %2,(R%)). Thus, we have to proceed in a
different way, which we describe now:

Regular curvesfirst of all, we drop the idea of defining a smooth vector fieldttom whole “mani-
fold”. We will rather concentrate on finding an appropria¢didition of smoothness for vector fields
defined along curves. We will see that to do this, we will nezavbrk with a particular kind of
curves, which we callegular, see Definition 6.2.

Smoothness of vector fieldsWe will then be able to define the smoothness of vector fieddimed
along regular curves (Definition 6.5). Among others, a nmotibsmoothness of particular relevance
is that ofabsolutely continuousgector fields: for this kind of vector fields we have a naturation

of total derivative(not to be confused with the covariant one, see Definitioi 6.6

Levi-Civita connection. At this point we have all the ingredients we need to definecthariant
derivative and to prove that it is the Levi-Civita conneatan &, (R?) (Definiton 6.8 and discussion
thereafter).

Parallel transport. This is the main existence result on this subject: we prbe¢ along regular
curves the parallel transport always exists (Theorem 6\8)will also discuss a counterexample to
the existence of parallel transport along a non-reguladgsic (Example 6.16). This will show that
the definition of regular curve is not just operationally dee to provide a definition of smoothness
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of vector fields, but is actually intrinsically related teetgeometry of#?, (R?).

Calculus of derivatives Using the technical tools developed for the study of thalertransport,
we will be able to explicitly compute the total and covaridativatives of basic examples of vector
fields.

Curvature. We conclude the discussion by showing how the conceptdafee@ can lead to a rigor-
ous definition of the curvature tensor o/, (R9).

We will write |[v[|,, and (v, w) , for the norm of the vector field and the scalar product of the

vector fieldsv, w in the spacd.? (1) (which we will denote b)Li), respectively.
We now start with the definition of regular curve. All the caswve will consider are defined on
[0, 1], unless otherwise stated.

Definition 6.2 (Regular curve) Let () be an absolutely continuous curve and (ef) be its ve-
locity vector field, that iSv;) is the unique vector field - up to equality for a.e.- such that
vy € Tan,, (P,(R?)) for a.e.t and the continuity equation

d
it + V- (vepe) = 0,

holds in the sense of distributions (recall Theorem 2.29 Befinition 2.31). We say thdj.) is
regular provided

o1
A|mmﬁ<m, 6.2)
and

/1 Lip(vs)dt < 0. (6.3)
0

Observe that the validity of (6.3) is independent on the ip&taization of the curve, thus if it is
fulfilled it is always possible to reparametrize the curve(evith constant speed) in order to let it
satisfy also (6.2).

Now assume thaftu;) is regular. Then by the classical Cauchy-Lipschitz theoeykmow that
there exists a unique family of mafi¥t, s, -) : supp(u:) — supp(us) satisfying

d

{ ET(t,s,x) = vs(T(t, s,x)), vt € [0,1], x € supp(pt), a.e. s € [0,1], (6.4)
(t,t,z) = , vt € [0, 1], = € supp(p).

Also it is possible to check that these maps satisfy the mahdit properties

) 1])
].
We will call this family of maps thélow mapsof the curve(u;). Observe that for any couple

of timest, s € [0, 1], the right composition withl'(t, s, -) provides a bijective isometry frorh?,  to
Lit. Also, notice that from condition (6.2) and the inequaditie

T(r,s,-)oT(t,r,-) = T(ts,-) Ve, r,s €10
T(t7 5, ')#Mt = Ws, Vt,s € [0, 1

’ 2
|T(t,s,-) —T(t,s, )an < / </ v (T (¢, 7, x))dr) dp(x)
Swfﬂ/HMM&mW
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we get that for fixed € [0, 1], the maps — T(¢,s,-) € Lit is absolutely continuous.

It can be proved that the set of regular curves is dense irethef @bsolutely continuous curves
on Z,(R%) with respect to uniform convergence plus convergence aftter\We omit the technical
proof of this fact and focus instead on the important caseeofigsics:

Proposition 6.3 (Regular geodesics) et (1) be a constant speed geodesic[onl]. Then its re-
striction to any intervale, 1 — <], withe > 0, is regular. In general, however, the whole cuiyg)
may be not regular of, 1].

Proof To prove thaf(x;) may be not regular just consider the casguof= 6, andy; := 1(4,, +
dy,): itis immediate to verify that for the velocity vector fie{d; ) it holdsLip(v,) = ¢ .

For the other part, recall from Remark 2.25 (see also Prtipn<2.16) that fort € (0,1) and
s € [0, 1] there exists a unique optimal ma&p from p; to u,. Itis immediate to verify from formula
(2.11) that these maps satisfy

Ts—Id TfF —1Id
= vt e (0,1 0,1].
pp— —— €(0,1), s €[0,1]

Thus, thanks to Proposition 2.32, we have thas given by

s _ _ 70
vp = lim 1L 14 1A= T, (6.5)

st §—1t t

Now recall that Remark 2.25 givésp(7{) < (1 —¢)~ to obtain

2—t
1 < -1 _ ! = .
Lip(vg) <t 7 ((1—t)"" +1) =0
Thust — Lip(v;) is integrable on any interval of the kind, 1 — ¢], £ > 0. O

Definition 6.4 (Vector fields along a curve) A vector field along a curvéyu,) is a Borel map
(t,x) — us(z) such that, € L2, fora.e.t. It will be denoted byu;).

Observe that we are considering also non tangent vectosfighét is, we are not requiring
uy € Tan,, (2, (R?)) for a.e.t.

To define the (time) smoothness of a vector figld) defined along a regular curyg;) we will
make an essential use of the flow maps: notice that the mabigman considering the smoothness
of (u) is that for different times, the vectors belong to differgpaéces. To overcome this obstruction
we will define the smoothness of— u; € Lit in terms of the smoothness ot u; o T(to,t,-) €
L?
Mg
Definition 6.5 (Smoothness of vector fields) et (1;) be a regular curveL'(¢, s, -) its flow maps
and (u;) a vector field defined along it. We say tffat) is absolutely continuous (@', or C", . . .,
or C*° or analytic) provided the map

t > uy o T(to, t,-) € Lito

is absolutely continuous (aF!, or C, ..., or C*° or analytic) for everyt, € [0, 1].

Sinceu; o T (t1,t, ) = ugo T(to, t,-) o T(t1, o, -) and the composition witl'(¢+, ¢y, -) provides
an isometry fromLit0 to Litl , it is sufficient to check the regularity of— wu; o T(t¢, t, -) for some
to € [0, 1] to be sure that the same regularity holds for evgry
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Definition 6.6 (Total derivative) With the same notation as above, assumethatis an absolutely
continuous vector field. Its total derivative is defined as:

li ut+hOT(t7t+h’a') — U
— Ut = 111N
dt ' h50 h ’

where the limit is intended iﬂit.

Observe that we are not requiring the vector field to be tangel that the total derivative is in
general a non tangent vector field, evefuif) is.
The identity

lim Uppn 0 T(L, t+ hy ) — uy — (tim g, © T(to,t + h,-) —ur o T(to,t,-) o T(t, to, )
h—0 h h—0 h

_ (%(utoT(to,t,-))) o T(t,to, ),

shows that the total derivative is well defined for &.and that is arl.! vector field, in the sense that

/1 ‘—u
0 dt ¢

s
HUS o T(t,S, ) - ut”#t < /
t

dt < .
Ht

Notice also the inequality

d
—u,

d
— (u, o T(t,7,-)) o

dr.
dt "

dr:/
Mt t

An important property of the total derivative is theibnitz rule for any couple of absolutely contin-
uous vector field$u; ), (u7) along the same regular curge;) the mapt — (u{, uf)m is absolutely
continuous and it holds

d d
T <u%,uf>m = <Eu%,u§> + <u%, Euf> , a.e.t. (6.6)
Ht Ht

Indeed, from the identity

o

)

<u%’u%>ut = <U% o T(t07ta )auf © T(t07ta .)>#t0

it follows the absolute continuity, and the same expresgioes

d d
— (uy, uf>m =2 (u} o T(to,t,-),u? o T(to, t, .)>M0

dt
d 1 2 1 d 2
= E(ut o T(to,t,-)),ui o T(to,t,-) ) + (us o T(to,t,-), E(ut o T(to,t,"))

Hig Htg

Example 6.7 (The smooth case) et (z,t) — & (x) be aC vector field onR?, (u,) a regular
curve andv;) its velocity vector field. Then the inequality

[€s 0 T(t,s,) _‘ftlluz < [|€s — &l

s + ||€t © T(ﬁa S, ) - Etlluz < C|S - t| + C/HT(tv S, ) - IdHMtv
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with C' := sup, , [0:& ()|, C" := sup, , |& ()|, together with the fact that— T(t, s, -) € L*(ju)
is absolutely continuous, gives th@t ) is absolutely continuous alorig ).
Then a direct application of the definition gives that itataterivative is given by

d
Eft = 0t + V& - vt a.e.t, (6.7)

which shows that the total derivative is nothing but twvective derivativevell known in fluid
dynamics. ]

Foru € 2,(R%), we denote by, : L? — Tan,, (#22(R?)) the orthogonal projection, and we
putP; :=Id—P,.

Definition 6.8 (Covariant derivative) Let(u;) be an absolutely continuous atehgentsector field
along the regular curvéy,). Its covariant derivative is defined as

D d

%ut = P#t (@Ut) . (68)
The trivial inequality

|7+, <1

—; Ut = || U

e, i,

shows that the covariant derivative is Ah vector field.

In order to prove that the covariant derivative we just defiisethe Levi-Civita connection, we
need to prove two factscompatibiliy with the metriandtorsion free identity Recall that on a
standard Riemannian manifold, these two conditions aggeively given by:

D X0, Y () = ((V51X)(30). Y () + (X (30). (Vo) 30))
[X,Y]=VyY — VyX,

whereX, Y are smooth vector fields andis a smooth curve oi/.
The compatibility with the metric follows immediately frothe Leibnitz rule (6.6), indeed if
(u}), (u?) are tangent absolutely continuous vector fields we have:

d 1 2 d 1 2 1 d 2
E <ut’“t>#t = <Eut,ut + Uy Eut
Mt Mt
d d
(o) e (B), e
D D
= <£u%,uf> +<u%,aut2> .
K Mt

To prove the torsion-free identity, we need first to underdtaow to calculate the Lie bracket of
two vector fields. To this aim, leti, i = 1, 2, be two regular curves such tha} = p2 =: . and let
uj € Tan,,; (P (R?)) be twoC" vector fields satisfying = vg, uj = vg, wherev; are the velocity
vector fields ofui. We assume that the velocity fieldsof ;¢ are continuous in time (in the sense
that the mapg — v} 1! is continuous in the set of vector valued measure with thekwezology and
t— ””z%”ui is continuous as well), to be sure that (6.7) holdsdirt with v, = v} and the initial
condition makes sense. With these hypotheses, it makes seesnsider the covariant derivative
L} along(u7) att = 0: for this derivative we writéV, u7. Similarly for (u}).

92



] 4
! 4
\ . )
I. ut \ .r/ “t
\
5 4 ’
\ A
1
\‘/ ’,ut L
' \ ’
' o
. -
1 = 2
uD uD

Let us consider vector fields as derivations, and the funatio — F,(n) := [ ¢du, for given
¢ € C>*(R%). By the continuity equation, the derivative 6f, alongu? is equal t0<th,u§>H2,
therefore the compatibility with the metric (6.9) gives: '

d
u' (W (F)10) = 35 (Vouud) o |, = (V- o), + (Vi Vi)
=(V%p-ud,ud) + (Vp,V,u?
(V2 - uq 0>u < ¥ Vul t>#
Subtracting the analogous temrf(u' (F,))(x) and using the symmetry &%, we get
(! w?)(Fp) () = (V. Vi — Vigup)

Given that the sefV} oo is dense iflan, (2% (R?)), the above equation characterize, u?]
as:

[w!,u?) = Vaui — V,auf, (6.10)
which proves the torsion-free identity for the covariantiehgive.

Example 6.9 (The velocity vector field of a geodesiclet (u:) be the restriction t00,1] of a
geodesic defined in some larger interiak, 1 + <) and let(v;) be its velocity vector field. Then we
know by Proposition 6.3 thdj;) is regular. Also, from formula (6.5) it is easy to see thailds

vs o T(t,s,-) = v, vt, s € [0, 1],

and thug(v;) is absolutely continuous and satisfigs;, = 0 and a fortioriZ v, = 0.

Thus, as expected, the velocity vector field of a geodesizérasconvariant derivative, in analogy
with the standard Riemannian case. Actually, it is inténgsto observe that not only the covariant
derivative is 0 in this case, but also the total one. |

Now we pass to the question of parallel transport. The defimiéomes naturally:

Definition 6.10 (Parallel transport) Let (1+) be a regular curve. A tangent vector fidld;) along
it is a parallel transport if it is absolutely continuous and

D
—us =0, a.e.t.

dt
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It is immediate to verify that the scalar product of two phalairansports is preserved in time,
indeed the compatibility with the metric (6.9) yields

d D D
T <u%,uf>M = <Eui,u3> + <u%, Euf> =0, ae.t,
223 Ht

for any couple of parallel transports. In particular, thégtf and the linearity of the notion of
parallel transport give uniqueness of the parallel trartsipgelf, in the sense that for any’ <
Tan,,, (2 (R?)) there exists at most one parallel transger) along(u.) satisfyinguo = u°.

Thus the problem is to show the existence. There is an impioatzalogy, which helps under-
standing the proof, that we want to point out: we already kituat the spacéZ?,(R4), W5) looks
like a Riemannian manifold, but actually it has also strorggmilarities with a Riemannian manifold
M embedded in some bigger space (say, on some EuclideanBpacmdeed in both cases:

» we have a natural presence of non tangent vectors: elemerit§ § Tan,, (P (R%)) for
P5(R%), and vectors iR” non tangent to the manifold for the embedded case.

e The scalar product in the tangent space can be naturallyediedilso for non tangent vectors:
scalar product irLfL for the spaceZ,(R?), and the scalar product iR” for the embedded
case. This means in particular that there are natural oothagorojections from the set of
tangent and non tangent vectors onto the set of tangentrse€tp : L7, — Tan, (% (R9))
for 2,(R%) and P, : RP — T, M for the embedded case.

e The Covariant derivative of a tangent vector field is giverpbgjecting the “time derivative”
onto the tangent space. Indeed, for the spaiséR?) we know that the covariant derivative is
given by formula (6.8), while for the embedded manifold itdw

d
VAYt’lLt == P’Yt (%Ut) 5 (611)

wheret — ~, is a smooth curve and— u, € T, M is a smooth tangent vector field.

Given these analogies, we are going to proceed as folloveswig give a proof of the existence
of the parallel transport along a smooth curve in an embe&iechannian manifold, then we will
see how this proof can be adapted to the Wasserstein casepihioach should help highlighting
what’s the geometric idea behind the construction.

Thus, say thafl/ is a given smooth Riemannian manifold embedded®éh ¢ — v, € M a
smooth curve or0, 1] andu® € T, M is a given tangent vector. Our goal is to prove the existence
of an absolutely continuous vector figld> «, € T, M such that,y = «? and

P.

d
e (EUt) =0, a.e.t.

For anyt,s € [0,1], lettr; : T,,RP — T, RP be the natural translation map which takes a
vector with base point; (tangent or not to the manifold) and gives back the trandlafehis vector
with base pointy;. Notice that an effect of the curvature of the manifold arelcthosen embedding
onRRP, is thattr; (u) may be not tangent td/ even ifu is. Now defineP : T,,RP — T, M by

Pf(u) == P, (trf (u)), Vu € T, RP.
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An immediate consequence of the smoothnesg aind~ are the two inequalities:

[tr (u) — P/ (u)| < Clulls —t], Vt, s € [0,1] andu € T, M, (6.12a)
|P?(u)] < Clulls —t, vt, s € [0,1] andu € T, M, (6.12b)

WhereTth is the orthogonal complement @, M in T,,RP. These two inequalities are all we
need to prove existence of the parallel transport. The psbbe constructive, and is based on the
identity:

V%Pot(u) =0, Yue T,Y(O)M, (613)

lt=0

which tells that the vectorg} (u) are a first order approximation at= 0 of the parallel transport.
Taking (6.11) into account, (6.13) is equivalent to
|Pt0(tr6(u) — Pot(u))| = o(t), u € Tyo)M. (6.14)
Equation (6.14) follows by applying inequalities (6.12pt@thattrf (u) — Pj(u) € T5-M):
| PP (trg(u) — Py (u))| < Ctltrg(u) — Py(u)| < C*2[ul.

Now, let]3 be the direct set of all the partitions tf, 1], where, forP, Q € B, P > Qif Pisa
refinemento. ForP = {0 =ty < t1 < --- <ty =1} € Pandu € T, M defineP(u) € T, M
as:
Plu) == P (P (- (Pgt (w)))-

Our first goal is to prove that the lim#®(u) for P € B exists. This will naturally define a curve
t — u, € T, M by taking partitions of0, ¢] instead of0, 1]: the final goal is to show that this curve
is actually the parallel transport afalong the curvey.

The proof is based on the following lemma.

Lemma 6.11 Let0 < s; < s5 < s3 < 1 be given numbers. Then it holds:
| P22 (u) — P32 (P32 (u)| < CPlul|sy — sal|s2 — s3], VYu €T, M.
Proof From Ps (u) = P,.. (trg2 (u)) = P, (trgs (tri2(u))) we get
P33 (u) — P& (P2 (u) = PR (g (u) — P (u)

Sinceu € T, M andtr$?(u) — P2 (u) € TVLWM, the proof follows applying inequalities (6.12).
0

From this lemma, an easy induction shows that for@ry s; < --- < sy <1 andu € T, M
we have

| P2 (u) = Py (P (- (P2 (w))]

SN—1 SN—2

<P (u) = POy (Pt ()| + [ P23 (P (w) = Py (PoY=) (- (P2 (w)))]

< C?lullsn, *51|!SN*SN71|+|P§1N Hu) = PN (P2 (w))]

< ..
N-1

< C?ul Z |s1 — sil[si — sip1| < C*ul|sy — sn|*. (6.15)
i=2

With this result, we can prove existence of the limitffu) as P varies in3.
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Theorem 6.12 For anyu € T, M there exists the limit P (u) as’P varies inl3.
Proof We have to prove that, given> 0, there exists a partitio® such that

[P(u) — Q(u)| < |ule, VQ>P. (6.16)
In order to do so, itis sufficientto fintl= ¢y < t; < --- < ¢ty = 1suchthal", |t;11—1;* < /C?,
and repeatedly apply equation (6.15) to all partitions aetlbyQ in the intervalgt;, t;11). O

Now, for s < ¢t we can introduce the mafi$® : 7, M — T, M which associate to the vector
u € T, M the limit of the process just described taking into accouatifions of[s, ¢] instead of
those of{0, 1].

Theorem 6.13 For anyt; <ty <3 € [0,1] it holds

Tf o T)? =T (6.17)
Moreover, for anyu € T,,M the curvet — u; := T (u) € T,,M is the parallel transport of:
along~.

Proof For the group property, consider those partition$tofts] which containt, and pass to the
limit first on [t1, 2] and then orfts, t3]. To prove the second part of the statement, we prove first
that(u;) is absolutely continuous. To see this, pass to the limit ibgpwith s; = ¢o andsy = t1,
u = uy, 10 get

| Pyt (gy) = g, | < Clugy|(t1 — o) < C?lul(t — to)?, (6.18)

so that from (6.12a) we get
Jtgy (eg) — we | < Jtrg) (ueo) — P (uro )| + [Pry (ueo) — e, | < Clullty = to| (1 + Cltr — tol),

which shows the absolute continuity. Finally, due to (6, it} sufficient to check that the covariant
derivative vanishes at 0. To see this, put= 0 andt; = ¢ in (6.18) to get Pt (u) — us| < C?|ult?,
so that the thesis follows from (6.13). O

Now we come back to the Wasserstein case. To follow the apality) the Riemannian case,
keep in mind that the analogous of the translation mégs the right composition witlT'(s, ¢, -),
and the analogous of the majj is

th‘S(u> = P#s (u © T(Sa 2 ))7

which mapsL? onto Tan,,, (#»(R?)) We saw that the key to prove the existence of the parallel
transport in the embedded Riemannian case are inequéitie?). Thus, given that we want to im-
itate the approach in the Wasserstein setting, we need tlupecan analogous of those inequalities.
This is the content of the following lemma.

We will denote byTan,, (£ (R?)) the orthogonal complement Ghn,, (%, (R%)) in L2,

Lemma 6.14 (Control of the angles between tangent spacept i, v € Z5(R?) andT : R? —
R? be any Borel map satisfyirifjy ;. = v. Then it holds:

looT — Pu(vo )|, < [l Lip(T — Id), ‘Yo € Tan,(Z2(R%)),
and, if 7" is invertible, it also holds

IPu(wo D) < wlLin(T~! — Id),  Vw € Tan, (P2(RY)).
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Proof We start with the first inequality, which is equivalent to
IVeoT = Pu(Veo D) < Vel Lip(T — Id), Ve € CZ(R?). (6.19)

Let us suppose first thdt — Id € C>°(R?). In this case the map o T is in C°(R?), too, and
thereforeV(p o T') = VT - (V) o T belongs tdlan,, (% (R%)). From the minimality properties
of the projection we get:

IVgoT — Pu(VpoT)|, < [VooT - VT (Vg) o T,
1/2
- ( [1-vra). w<T<x>>|2du<x>)

1/2
< </ V(T (x)) |V (Id ~ T)(x)llipdu(w)>
< Vel Lip(T — 1d),
wherelI is the identity matrix andV(Id — T')(z)||., is the operator norm of the linear functional
from R? to R? given byv + V(Id — T)(z) - v.

Now turn to the general case, and we can certainly assum@ tigtipschitz. Then, it is not
hard to see that there exists a sequefice— Id) c C2°(R?) such thatl}, — T uniformly on
compact sets andm,, Lip(7,, — Id) < Lip(T — Id). Itis clear that for such a sequence it holds
|T — T5,||, — 0, and we have

[VeoT —Pu(VeoT)|u < Vool —V(poTy)l,
S|VeoT = Vool + Voo T, — V(poTh)l,
< Lip(V)|T — Tall, + Vo © Tl uLip(T,, — Id).

Lettingn — +oo we get the thesis.
For the second inequality, just notice that

[Pu(woT)|,=  sup  (woT,v),=  sup (wwoT ')
vGTTu“(Wz (rd)) vGTTuH(Wz(le))
vllp=1 vll=1

= sup (w,voT™! —Pl,(voT_l)>V < |lw||, Lip(T~! — Id)
17€Ta‘ru‘|(§"2 (R4))
v le

From this lemma and the inequality

Lip(T(s,t, ) - Id) < el vpendr| _q < o . Vtselo,1],

/ Lip(v,)dr
t

(whose simple proof we omit), whete := elo Lip(vr)dr _ 1 it is immediate to verify that it holds:

/ Lip(v,.)dr

t

/ Lip(v,.)dr
t

These inequalities are perfectly analogous to the (6.12])l,(the only difference is that here the
bound on the angle i&' in t, s while for the embedded case it was®, but this does not really
change anything). Therefore the arguments presentedebefiply also to this case, and we can
derive the existence of the parallel transport along regulaves:

Hu o T(Svﬁa ) - '@ts(u)'

Hs < CHUHMt ) u e Ta“nut,(gZQ(Rd))v

(6.20)
|2 (u)]

pe < Cllullp, ., u€ Tan, (2,(R%)).
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Theorem 6.15 (Parallel transport along regular curves)Let (1;) be a regular curve and® €
Tan,, (Z2(R)). Then there exists a parallel transpdtt;) along (y¢) such thatug = u°.

Now, we know that the parallel transport exists along regalaves, and we know also that
regular curves are dense, it is therefore natural to try tstact the parallel transport along any
absolutely continuous curve via some limiting argumentweleer, this cannot be done, as the fol-
lowing counterexample shows:

Example 6.16 (Non existence of parallel transport along a noregular geodesic) Let
Q = [0,1] x [0,1] be the unit square iR? and letT;, i = 1,2,3,4, be the four open trian-
gles in which@ is divided by its diagonals. Let, := yo-¢? and define the function : @ — R?
as the gradient of the convex mapwx{|z|, |y|}, as in the figure. Set also = v+, the rotation by
/2 of v, in @ andw = 0 out of Q). Notice thatV - (wug) = 0.

Setyu, = (Id + tv)xuo and observe that, for positivie the supporiy; of u, is made of 4
connected components, each one the translation of one sétsE;, and thafu, = XQtZQ.

.V

Ha Hy

It is immediate to check thdtu.) is a geodesic ifj0, ), so that from 6.3 we know that the
restriction ofu; to any intervale, 1] with ¢ > 0 is regular. Fixe > 0 and note that, by construction,
the flow maps ofi; in [e, 1] are given by

T(t,s,-) = (Id + sv) o (Id +tv)~', Vt,s€[e1].

Now, setw; := w o T(¢,0,-) and notice thatv, is tangent afu; (becausev, is constant in the
connected components of the supporuef so we can define &2° function to be affine on each
connected component and with gradient givendpyand then use the space between the components
themselves to rearrange smoothly the function). Since, o T(t,t+ h, -) = w;, we have%wt =0

and a fortiori%wt = 0. Thus(w;) is a parallel transportife, 1]. Furthermore, sinc¥ - (wpg) = 0,

we havew, = w ¢ Tan,,, (Z>(R?)). Therefore there is no way to extengl to a continuousangent
vector field on the wholg0, 1]. In particular, there is no way to extend the parallel tramspp to
t=0. |

Now we pass to the calculus of total and covariant derivativet(1;) be a fixed regular curve
and let(v;) be its velocity vector field. Start observing that{if;) is absolutely continuous along
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(pt), then(P,, (u;)) is absolutely continuous as well, as it follows from the inality

<[ (Pu () 0 ts,) = P (P () 0 Tt 5,)|
[P (P @) 0 Tt 5,)) = P (w0 Tt 5.)
+ [1Pu,(us 0 T(E, 5,-)) = P, (ur)

<[P (P () 0 Tt 5, )

+ llus o T(t, s,-) — will,

(6.20) s s
< QSC’/ Lip(vr)dr+/
¢ t

[P ) 0 T )~ P )

ot Mt

K

H#t
+ HPM (Pjs (us) o T(t, s, ))
Ht

Kt

uy|| dr,

dr

o

(6.21)

valid for anyt < s, whereS := sup, ||u¢||,.,. Thus(P,, (u:)) has a well defined covariant derivative
for a.e.t. The question is: can we find a formula to express this dévivat

To compute it, apply the Leibniz rule for the total and coaatiderivatives ((6.6) and (6.9)), to
get that for a.et € [0, 1] it holds

d

D D
% <PH1, (ut)a V‘P>m = <EPH1 (ut)a V(P> + <PMt (ut)a %VQD> 5

Mt Ht

d d d
— (u, Vo), = —uy, V —V :
a1V <dt“t’ g0>W+<“t’dt g0>

SinceVp € Tan,, (22(R?)) for anyt, it holds (P,,, (u¢), Vi), = (us, V) ,, foranyt € [0,1],
and thus the left hand sides of the previous equations as &a.e.t. Recalling formula (6.7) we
have £Vy = V¢ - v, and2Ve = P, (V¢ - 1), thus from the equality of the right hand sides

we obtain

D d
(FPulu) To) = (GuuVe) +{un T u), = (Pulun)Pu (T )
Kt Ht

1233

Ht.

d
_ <Eut,w> + (P, (ue), P, (V2 0))
1237

(6.22)

This formula characterizes the scalar producd? ., (u.) with any Vo wheng varies onC2° (RY).
Since the se{V} is dense inTan,, (222(R?)) for anyt € [0, 1], the formula actually identifies
%Pﬂt (ut)

However, from this expression it is unclear what is the valfié2 P, (u,), w) . fora general

w € Tan,, (P5(R?)), because some regularity ©f» seems required to compu¥& - v;. In order
to better understand what the valueﬁﬂ)m (ug) is, fix t € [0,1] and assume for a moment that
vy € C°(RY). Then compute the gradient ofi— (Vi (z), v, (x)) to obtain

V (Vp,v) = Vg - v, + Voy - Ve,

and consider this expression as an equality between veelds thit. Taking the projection onto
the Normal space we derive

Pjt(VQQD vg) + Pj (Vop - Vo) = 0.

t
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Plugging the expression f(’ﬂ’rﬁt (V2p - v;) into the formula for the covariant derivative we get

D d
<%Put (ut)v V(,D> = <Eut7 V(p>#t - <Pi (ut)’ Plt (vv;n : V(P)>M

Ht

d
B <Eut7v@>m B <V’Ut ’ Plt (ut)’ v(p>ut ’

which identifies2 P, (u;) as

%Pﬂt (’LLt) = P#t (%Ut — Vvt . PlJl_t (Ut)) . (623)
We found this expression assuming thatvas a smooth vector field, but given that we know that

DPp,.(u) exists for a.et, it is realistic to believe that the expression makes selssefar general

Lipschitzv,'s. The problem is that the obje®tv;, may very well be not defined,-a.e. for arbitrary

1 and Lipschitzv, (Rademacher’s theorem is of no help here, because we aressrniang the

measureg,; to be absolutely continuous w.r.t. the Lebesgue measuog)ivé a meaning to formula

(6.23) we need to introduce a new tensor.

Definition 6.17 (The Lipschitz non Lipschitz space)Letu € #»(R?). The selLNL,, C [L7]* is
the set of couples of vector fielts, v) such thatmin{Lip(u), Lip(v)} < oo, i.e. the set of couples
of vectors such that at least one of them is Lipschitz.
We say that a sequen¢e,,, v,) € LNL,, converges tgu, v) € LNL,, provided|u, — ul[, — 0,
|lvn, — v||, — 0 and
sup min{Lip(uy,), Lip(vy,) } < 0.

The following theorem holds:
Theorem 6.18 (The Normal tensor) Letu € Z25(R%). The map
Npu(u,v) 1 [CERERDZ = Tan, (P(RY)),
(u,v) — P (Vu'-v)

extends uniquely to a sequentially continuous bilinear antisymmetric map, still denoted by,
from LNL, in Tan;; (27, (R%)) for which the bound

[NV, )]0 < min{Lip(w)[[o]],4, Lip(v) [ul] .} (6.24)

holds.

Proof Foru, v € C° (R4, R%) we haveV (u,v) = Vu' - v + Vo' - u so that taking the projections
on Tan,, (2,(R)) we get

Nu(u,v) = =Ny (v,u) Vu,v € C°(R%, RY).

In this case, the bound (6.24) is trivial.

To prove existence and uniqueness of the sequentiallyraamis extension, it is enough to show
that for any given sequenee— (u,,v,) € [C°(R?,R%)]? converging to soméu, v) € LNL ,, the
sequencer — N, (un,,v,) € Tanj(g%(Rd)) is a Cauchy sequence. Fix such a sequéngev,,),
let L := sup,, min{Lip(u,,), Lip(v,)}, I C N be the set of indexes such thalLip(u,,) < L and fix
two smooth vectors, o € C2°(R?, R).
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Notice that forn, m € I it holds

HNu(uann) _Nu(umavm)Hu < HNu(uann - ﬁ)HM + HNu(un - “mvﬁ)llu + HNM(umvﬁ - Um)”u
< Lfvn = 9l + Lip(9) [un — wm||p + Ll|om — 9,

and thus L
lim ([N (tns vn) = Np(tm, vm) |l < 2L[1v — 9|,

n,m-— oo
n,mel

(this expression being vacuumliifis finite). If n € I andm ¢ I we haveLip(v,,) < L and

HNu(umvn) _Nu(umavm)HM
<IN (s vn = O) |+ N (un = @, ) [+ N (8 0 = vim) e+ [N (@ =t v ) [
< Lfjvn — 0|y + Lip(0)||un — @l + Lip(@)[[0 — vm |4 + Lllwn — all,,
which gives

B WG, 00) = Nt )l < Ll = 1+ Ll = .
nel, mgl

Exchanging the roles of thes and theuv’s in these inequalities for the case in whiehZ I we can
conclude L
Hm [N (un, vi) = Ny (i, vm) [ < 2L 10 = 0| + 2L[Ju — |-

n,m—00

Sinceu, v are arbitrary, we can let — » ando — v in Li and conclude that — N, (un,vy,) is a
Cauchy sequence, as requested.
The other claims follow trivially by the sequential contityu O

Definition 6.19 (The operatorsO, (-) and O}, (-)) Letu € #5(R)? andv € L2 with Lip(v) <
oo. Then the operatot — O, (u) is defined by
O, (u) = Ny (v, ).
The operaton, — O} (u) is the adjoint of0, (-), i.e. it is defined by
(0, (), w), = (u, Oy (w))

It is clear that the operator norm @1, (-) and O} (-) is bounded byLip(v). Observe that in
writing O, (u), O} (u) we are losing the reference to the base meaguxehich certainly plays a
role in the definition; this simplifies the notation and haplgfshould create no confusion, as the
measure we are referring to should always be clear from thiegb Notice that ity € C°(R?, R9)
these operators read as

Yw € Li.

Iz W

O, (u) = Pj;(VUt ),
O (u)=Vu- Pi‘(u)

The introduction of the operato?, (-) andO;: (-) allows to give a precise meaning to formula (6.23)
for general regular curves:

Theorem 6.20 (Covariant derivative ofP,, (u:)) Let(u.) be aregular curve(u;) its velocity vec-
tor field and let(u,) be an absolutely continuous vector field along it. TKBp, (u¢)) is absolutely
continuous as well and for a.¢it holds

D d .
Pl = Py (G O ()} (6.25)
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Proof The fact thatP,,, (u;)) is absolutely continuous has been proved with inequalit1(6 To
get the thesis, start from equation (6.22) and concludeingtthat for a.e¢ it holds Lip(v;) < oo
and thus

P (V20 v) = Nu(Vo,vr) = —Nu(vg, Vi) = —0,, (Vo).

O

Corollary 6.21 (Total derivatives of P,,, (u;) and Py (u;)) Let () be a regular curve, lev;) be
its velocity vector field and I€t;) be an absolutely continuous vector field along it. ThE[jt (ut))
is absolutely continuous and it holds

P00 =P () = P (05, () = O, (P ().
(6.26)

d d «
P00 = P, () + P (O, () + Oy (P ().
Proof The absolute continuity ofP;;, (u;)) follows from the fact that botliu;) and (P, (u;)) are
absolutely continuous. Similarly, the second formula 26 follows immediately from the first one
noticing thatu, = P, (u) + P, (uy) yields £u, = 4P, (us) + $P;- (uy). Thus we have only
to prove the first equality in (6.26). To this aim, let;) be an arbitrary absolutely continuous vector

field along(u:) and observe that it holds

d d d
i P00, = (P (P, )

: + (P 20, )

D
P00, Prw)), = (P00 ()

1227 Mt

Since the left hand sides of these expression are equalgtiténand sides are equal as well, thus we
get

d D d D
<EP#JL (ut) - EP,U't (ut)th>ut = - <P#t (ut)a Ewt - EPHt (wt)>
d D
= - <PMt (ut)a PMt (Ewt) - EPMt (wt)>

O _ (P, (), 0%, (w))
= — <Ovt (P#t (ut)) ’wt>

1223

Kt
Ht

e’

so that the arbitrariness 6, ) gives

d D
EPM (ut) = %Plh (ut) - OUt (PM (ut)) )

and the conclusion follows from (6.25). O

Along the same lines, the total derivative(@f,,, (u¢, w¢)) for given absolutely continuous vector
fields(u¢), (w;) along the same regular curie;) can be calculated. The only thing the we must take
care of, is the fact thaV/,, is not defined on the Who[eLit]Q, so that we need to make some assump-
tions on(u¢), (w;) to be sure thatV,,, (u¢, w;)) is well defined and absolutely continuous. Indeed,
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observe that from a purely formal point of view, we expect tha total derivative of N, (u:, wy))
is something like

d

p as the derivative aV,, -

7 dt applied to the coupléu;, w;)

d d some tensor - which we may thin
N#t(utawt) :N,U«t <_ut7wt) +N,ut <ut;_wt)+ .

Forget about the last object and look at the first two addegigisn that the domain of definition of
N, is notthe wholgZ? ]?, in order for the above formula to make sense, we should askitleach

of the couples{%ut, wy) and (ug, %wt), at least one vector is Lipschitz. Under the assumption that
{fol Lip(u)dt < oo and fol Lip(4u;)dt < 400 }, it is possible to prove the following theorem
(whose proof we omit).

Theorem 6.22 Let (11;) be an absolutely continuous curve, (ef) be its velocity vector field and let
(ut), (wy) be two absolutely continuous vector fields along it. ASSlhBEfBl Lip(us)dt < oo and

fol Lip(%ut)dt < +00. Then(N,, (u, wy)) is absolutely continuous and it holds

d d d
%N#t (utawt) :N#t <Eut’wt> +Nﬂt (uta %wt)

= O N (1 00)) + P, (O3, Wi (e, w0)) ).

(6.27)

Corollary 6.23 Let(u.) be a regular curve and assume that its velocity vector fiejdl satisfies:

1
/ Lip (ivt> dt < oo. (6.28)

Then for every absolutely continuous vector figlg) both(O,, (u;)) and (O, (u.)) are absolutely
continuous and their total derivatives are given by:

GO (1) = O, (1) + O, () = Ou (O )+ Py (0%, (O () )
(6.29)
GO () =0y, () + 05, () = 0%, (05, () + 0%, (O, (P (ur))

Proof The first formula follows directly from Theorem 6.22, the sed from the fact thaD;;, (-) is
the adjoint ofO,, (-).

An important feature of equations (6.27) and (6.29) is tlmtexpress the derivatives of
(N, (ug, wy)), (O, (ug)) and(O;, (u)) No “new operators appear”. This implies that we can re-
cursively calculate derivatives of any order of the vectelds (P, (u¢)), (Plt (u)), Oy, (ur) and
O;, (ut), provided - of course - that we make appropriate regulasguenptions on the vector field
(u¢) and on the velocity vector fielth;). An example of result which can be proved following this
direction is that the operator— P, (-) is analytic along (the restriction of) a geodesic:

Proposition 6.24 (Analyticity of t — P, (-)) Let () be the restriction td0, 1] of a geodesic de-
fined in some larger intervgl-¢, 1 + ¢]. Then the operatot — P, (-) is analytic in the following
sense. For any, € [0, 1] there exists a sequence of bounded linear operators Lito — Lito
such that the following equality holds in a neighborhoodof

P, (u) =Y %An(u oT(to,t,)) o T(t, to,"),  VuelL?. (6.30)
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Proof From the fact thaty:; ) is the restriction of a geodesic we know tfat= sup, ¢ o 1 Lip(v:) <
oo and that%vt = 0 (recall Example 6.9). In particular condition (6.28) isfiileéd.

Fix top € [0,1], u € Lf% and defineu; := u o T(t,to,-), S0 that%u, = 0. From equations
(6.26) and (6.29) and by induction it follows th@,,, (u)) is C>. Also, 4-P,, (u;) is the sum of
addends each of which is the composition of projections timtatangent or normal space and up
to n operatorg0,, (-) andO;, (-), applied to the vecton;. Since the operator norm @?,, (-) and
Oy, (+) is bounded by, we deduce that

< HutHHth - HuHﬂtOan Vn € Nv te [07 1]
Mt

dn
Hdt—nPut (ut)

Defining the curve — U, := P, (u;) o T(to,?,-) € Lim, the above bound can be written as

dt_"Ut < ||Uto||HzULna VneN, te [0, 1],

Mg

i

which implies that the curve— U, € Lim is analytic. This means that forclose tot it holds

t —to)" d”
Py () o Tltost, ) = > (T(ﬁ_"|t:t0 (P, (ur).
n>0
Now notice that equations (6.26) and (6.29) and the fact tggatt = 0 ensure that

gTT;lt:tU(Put (ut)) = An(u), whereAd, : L? =~ — L is bounded. Thus the thesis follows by

the arbitrariness of ¢ Lito. O

Now we have all the technical tools we need in order to studyctirvature tensor of the “mani-

fold” 2, (R%).
Following the analogy with the Riemannian case, we are leaetine the curvature tensor in the
following way: given three vector fields — V!, € Tan,(Z2(R?%)), i = 1,...,3, the curvature

tensorR calculated on them at the measures defined as:
R(Ve,, Vo) (V) = Vauz (Vo Vi) — Vo (Voez V) + Vives vez Ve,

where the objects k&, (V,,), are, heuristically speaking, the covariant derivativehefvector
field  — V1, along the vector fielg, — V,,.

However, in order to give a precise meaning to the above ftapwe should be sure, at least,
that the derivatives we are taking exist. Such an approaphbssible, but heavy: indeed, consider
that we should define what arg! and C? vector fields, and in doing so we cannot just consider
derivatives along curves. Indeed we would need to be sutéttteapartial derivatives have the right
symmetries”, otherwise there won't be those cancellatigimsh let the above operator be a tensor.

Instead, we adopt the following strategy:

e First we calculate the curvature tensor for some very spekifid of vector fields, for which
we are able to do and justify the calculations. Specificallywill consider vector fields of the
kind 1 — V¢, where the functiop € C2°(M) does not depend on the measure

e Then we prove that the object found is actually a tensorthat its value depends only on the
p—a.e. value of the considered vector fields, and not on thetlattwe obtained the formula
assuming that the functiongss were independent on the measure.
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e Finally, we discuss the minimal regularity requirementsffie object found to be well defined.

Pick p,1 € C°(R?) and observe that a curve of the kind— (Id + tV)4pu is a regular
geodesic on an intervahT, T'] for T sufficiently small (Remark 1.22 and Proposition 6.3). It is
then immediate to verify that a vector field of the kif\d«) along it isC°. Its covariant derivative
calculated at = 0 is given byP,, (V%4 - V). Thus we write:

Vo, Vi =P (VY- Vy) Vo, € CZ(RY). (6.31)

Proposition 6.25 Let € P5(R?) and ¢1, @2, ¢35 € C°(R?). The curvature tensoR in
calculated for the 3 vector fieldgy;, i = 1,2, 3 is given by

R(V(p1, V(pQ)V(pg ZPH (O*VLP2 (NM(V(PD V(Pg))
(6.32)
0%, (N(Vpa, Vigs)) + 205, (No(Veer, Vipn) )

Proof We start computing the value &y, Vv, Vis. Let s == (Id 4+ tVs)4p and observe,
as just recalled, thdju.) is a regular geodesic in some symmetric intefval’, T'|. The vector field
V25 - Vi is clearlyC™ along it, thus by Proposition 6.24 also the vector figld= P,,, (Vs -
V1) = Vv, Vs (ue) is C*. The covariant derivative at= 0 of (u,;) along(u.) is, by definition,
the value ofVy ., Vv, Vs at . Applying formula (6.25) we get

Vi, Vo, Vios = Py (V(V203 - Vior) - Vipy — V2, - P (Vs - Vior)) (6.33)
Symmetrically, it holds
Vo, Vo, Vs = P (V(V3s - Via) - Vior — V31 - P (Vs - Vo)) . (6.34)

Finally, from the torsion free identity (6.10) we have
Vo1, Vo] = Pu(V2p1 - Vips — V25 - Vo),
and thus
Vv, v Vs = Py (V% : (PH(VQW Vs — Vi - Wl)))- (6.35)
Subtracting (6.35) and (6.34) from (6.33) and observing) tha
V(V3p3 - Vr) - Vs — V(V2p3 - Vi) - Vi = V23 - V291 - Vs — Vi3 - V3 - Vo,
we get the thesis. O
Observe that equation (6.32) is equivalent to
(R(Vip1, Vipa) Vs, Vipu ) = (Nu(Veor, Vips), Nu(Vipa, Vipa)),
= Nu(Vez, Veos), Nu(Veor, Veou)), (6.36)
+2 <N#(V<p1, V<P2)aNu(V<P37 V504)>#7

for any o, € C°(M). From this formula it follows immediately that the operalris actually a
tensor:

Proposition 6.26 Let, € £, (R4). The curvature operator, given by formu(@.36) is a tensor on
[{Ve}]4, i.e. its value depends only on the-a.e. value of the 4 vector fields.

Proof Clearly the left hand side of equation (6.36) is a tensot.wvitre fourth entry. The conclusion
follows from the symmetries of the right hand side. O
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We remark that from (6.36) it follows th& has all the expected symmetries.
Concerning the domain of definition of the curvature ten@rfollowing statement holds, whose
proof follows from the properties of the normal tengay:

Proposition 6.27 Let . € 22,(R?). Then the curvature tensor, thought as map fid¥p}]* to R

given by(6.36) extends uniquely to a sequentially continuous map on thef deples of vector fields

in L2 in which at least 3 vector fields are Lipschitz, where we say(h, v2, v3, v?) is converging
1,2

to (vt,v?, v3, v?) if there is convergence iﬁi on each coordinate and

sup Lip(vy;,) < oo,
n

for at least 3 indexes

Thus, in order for the curvature tensor to be well defined weelreg least 3 of the 4 vector fields
involved to be Lipschitz. However, for some related notibrarvature the situation simplifies. Of
particular relevance is the case of sectional curvature:

Example 6.28 (The sectional curvature)lf we evaluate the curvature tendgron a 4-ple of vectors
of the kind(u, v, u, v) and we recall the antisymmetry &f, we obtain

(R(u,v)u,v), =3 |Nou(u,0)]5,-

Thanks to the simplification of the formula, the value(®(u, v)u, v),, is well defined as soon as
eitheru orv is Lipschitz. Thatis{R(u, v)u,v) , is well defined for(u, v) € LNL,,. In analogy with
the Riemannian case we can therefore define the sectionaltateK (u, v) at the measurg along
the directions., v by

R(u,v)u,v 3|V (u, v 2
O . 0 17

[ullZ vl = (w v, ullZlollf = (u,0),

V(u,v) € LNL,,.

This expression confirms the fact that the sectional cureataf 22, (R?) are positive (coherently
with Theorem 2.20), and provides a rigorous proof of the@yalis formula already appeared in [67]
and formally computed using O’Neill formula. |

6.4 Bibliographical notes

The idea of looking at the Wasserstein space as a sort oftmfiinensional Riemannian manifold
is due to F. Otto and given in his seminal paper [67]. The whkideussion in Section 6.1 is directly
taken from there.

The fact that the ‘tangent space made of gradiefitsi,, (222 (R?)) was not sufficient to study
all the aspects of the ‘Riemannian geometry(o#,(R?), W) has been understood in [6] in con-
nection with the definition of subdifferential of a geodadliz convex functional, in particular con-
cerning the issue of having a closed subdifferential. Inaghygendix of [6] the concept of Geometric
Tangent space discussed in Section 6.2 has been introd&egther studies on the properties of
Tan, (#2(M)) have been made in [43]. Theorem 6.1 has been proved in [46].

The first work in which a description of the covariant derivatand the curvature tensor of
(P5(M), Ws), M being a compact Riemannian manifold has been given (bdstdetmal calculus
of the sectional curvature via O’Neill formula done already[67]) is the paper of J. Lott [56]:
rigorous formulas are derived for the computation of sucjeab on the ‘submanifold? ¢« (M)
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made of absolutely continuous measures with dersityand bounded away from 0. In the same
paper Lott shows that i#/ has a Poisson structure, then the same is trué4ge« (M) (a topic which
has not been addressed in these notes).

Independently on Lott's work, the second author built theapel transport or{ 22, (R?), W5) in
his PhD thesis [43], along the same lines provided in Se@&i8n The differences with Lott's work
are the fact that the analysis was carried ouRdrrather than on a compact Riemannian manifold,
that no assumptions on the measures were given, and thath@o#xistence Theorem 6.15 for the
parallel transport along a regular curve and counterexasrpl its general existence (the Example
6.16) were provided. These results have been publishedebgutihors of these notes in [5]. Later
on, after having beed aware of Lott’s results, the seconkceugeneralized the construction to the
case of Wasserstein space built over a manifold in [44]. Ndha results have been reported here:
we mention that it is possible to push the analysis up shovdiffierentiability properties of the
exponential map and the existence of Jacobi fields.

7 Ricci curvature bounds

Let us start recalling what is the Ricci curvature for a Riamian manifold) (which we will
always consider smooth and complete). Rebe the Riemann curvature tensor bh = € M and
u, v € T, M. Then the Ricci curvaturBic(u, v) € R is defined as

Ric(u,v) := Z (R(u,e;)v,e;),

where{e; } is any orthonormal basis @, M. An immediate consequence of the definition and the
symmetries of? is the fact thaRic(u, v) = Ric(v,u).

Another, more geometric, characterization of the Riccivature is the following. Pick: € M,
a small ballB around the origin irff, M and letu be the Lebesgue measure Bn The exponential
mapexp,, : B — M is injective and smooth, thus the meas(irep,, ) 1 has a smooth density w.r.t.
the volume measuréol on M. For anyu € B, let f(u) be the density ofexp,, )4 w.r.t. Vol at the
pointexp, (u). Then the functiory has the following Taylor expansion:

1
flu)=1+ §Ric(u, u) + o(|ul?). (7.2)
Itis said that the Ricci curvature is bounded below\oy R provided
Ric(u,u) > Aul?,

foreveryz € M andu € T, M.
Several important geometric and analytic inequalitiesalsted to bounds from below on Ricci
curvature, we mention just two of them.

e Brunn-Minkowski Suppose that/ has non negative Ricci curvature, and for alay A; € M
compact, let

Ay = {% : 7 is a constant speed geodesic sgte Ay, v1 € Al}, vt € 10, 1].
Then it holds
(Vol(A)) /™ > (1 = ) (Vol(Ag)) /" + t(Vol(A)) /", vtelo,1],  (7.2)

wheren is the dimension of\/.
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e Bishop-Gromov Suppose that/ has Ricci curvature bounded from below (oy— 1)k, where

n is the dimension of/ and a real number. Led/ be the simply connected.dimensional
space with constant curvature, having Ricci curvature igua — 1)k (so that)/ is a sphere
if k > 0, a Euclidean space kf = 0 and an hyperbolic space#f< 0). Then for every: € M
andi# € M the map

Vol(B,(z))

0,00 r e )
(0002 Vol(B, (7))

(7.3)
is non increasing, wheréol andVol are the volume measures o, 1 respectively.

A natural question is whether it is possible to formulatertbgon of Ricci bound from below also
for metric spaces, analogously to the definition of Alexawdipaces, which are a metric analogous
of Riemannian manifolds with bounded (either from aboveonfbelow) sectional curvature. What
became clear over time, is that the correct non-smooth bljeere one could try to give a notion of
Ricci curvature bound is not a metric space, but rather aicneieasurespace, i.e. a metric space
where a reference non negative measure is also given. Wbkm¢gpto the Riemannian case, this
fact is somehow hidden, as a natural reference measurees bivthe volume measure, which is a
function of the distance.

There are several viewpoints from which one can see the sigce$a reference measure (which
can certainly be the Hausdorff measure of appropriate dsinanif available). A first (cheap) one
is the fact that in most of identities/inequalities where Ricci curvature appears, also the reference
measures appears (e.g. equations (7.1), (7.2) and (7.8¢)nbd more subtle point of view comes
from studying stability issues: consider a sequeidg, g,,) of Riemannian manifolds and assume
that it converges to a smooth Riemannian manifdlfl ¢) in the Gromov-Hausdorff sense. Assume
that the Ricci curvature dfM,,, g,,) is uniformly bounded below by son¥€ € R. Can we deduce
that the Ricci curvature dfV/, ¢) is bounded below byx ? The answer ino (while the same question
with sectional curvature in place of Ricci one has affirmatwnswer). It is possible to see that when
Ricci bounds are not preserved in the limiting process, jipleas that the volume measures of the
approximating manifolds are not converging to the volumesoee of the limit one.

Another important fact to keep in mind is the following: if weant to derive useful ana-
lytic/geometric consequences from a weak definition of Riacvature bound, we should also known
what is the dimension of the metric measure space we are mgpvkith: consider for instance the
Brunn-Minkowski and the Bishop-Gromov inequalities abdveth make sense if we know the di-
mension ofM, and not just that its Ricci curvature is bounded from beldhis tells that the natural
notion of bound on the Ricci curvature should be a notion kipgaboth about theurvatureand
the dimensionof the space. Such a notion exists and is calldd( K, V) condition, K being the
bound from below on the Ricci curvature, ahdthe bound from above on the dimension. Let us
tell in advance that we will focus only on two particular ceiséhe curvature dimension condition
CD(K, o), where no upper bound on the dimension is specified, and tvatcue-dimension con-
dition CD(0, N), where the Ricci curvature is bounded below by 0. Indeedyémeral case is much
more complicated and there are still some delicate issugeslve before we can say that the theory
is complete and fully satisfactory.

Before giving the definition, let us highlight which are theadjtative properties that we expect
from a weak notion of curvature-dimension bound:

Intrinsicness. The definition is based only on the property of the spacH,itbat is, is not something
like “if the space is the limit of smooth spaces....”

Compatibility . If the metric-measure space is a Riemannian manifold @guaipvith the volume
measure, then the bound provided by the abstract definiborcides with the lower bound on the
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Ricci curvature of the manifold, equipped with the Riemamniistance and the volume measure.
Stability. Curvature bounds are stable w.r.t. the natural passadesttniit of the objects which
define it.

Interest. Geometrical and analytical consequences on the spaceecderlved from curvature-
dimension condition.

In the next section we recall some basic concepts conceatingergence of metric measure
spaces (which are key to discuss the stability issue), vimilee following one we give the definition
of curvature-dimension condition and analyze its properti

All the metric measure spacé€¥, d, m) that we will consider satisfy the following assumption:

Assumption 7.1 (X, d) is Polish, the measure is a Borel probability measure angh € 92,5(X).

7.1 Convergence of metric measure spaces

We say that two metric measure spa¢és dx, mx) and (Y, dy, my) areisomorphicprovided
there exists a bijective isometyfy: supp(mx) — supp(my ) such thatfzmx = my. This is the
same as to say that ‘we don't care about the behavior of theegpd dx ) where there is no mass’.
This choice will be important in discussing the stabilitgus.

Definition 7.2 (Coupling between metric measure spacespiven two metric measure spaces
(X,dx,mx), (Y,dy,my), we consider the product spa¢& x Y, Dxy), where Dxy is the
distance defined by

Dxy ((z1,y1), (z2,42)) == \/dﬁ(xl,xz) + d3 (Y1, 92)-
We say that a couplél, ) is an admissible coupling betweéX, dx, mx) and (Y, dy, my ), we
write (d,’y) € ﬂdm((dx,mx), (dy, my)) if:

e ( is a pseudo distance osuppmy Ll suppmy (i.e. it may be zero on two different
points) which coincides withx (resp. dy’) when restricted tgupp mx x suppmx (resp.
SuUpp my X supp my).

e a Borel (w.r.t. the Polish structure given @yyy) measurey onsupp mx X supp my such
tha’[ﬂ';#'y =my andﬂ'f#'y =my.

It is not hard to see that the set of admissible couplingsisyd non empty.
ThecostC(d,~) of a coupling is given by

C(dy) = / o 2y ).
supp USCFIptSlZ@nx Xsupp USCT'IptSlZ@nY

The distanc@®((X, dx, mx), (Y, dy,my)) is then defined as
D((X,dx,mx),(Y,dy,my)) := inf C(d,"y), (74)

the infimum being taken among all couplings ) of (X, dx, mx) and(Y, dy, my ).
A trivial consequence of the definition is that {iX,dx,mx) and (X,dg,m¢) (resp.
(Y,dy,my) and(Y,dy, my)) are isomorphic, then

D((X,dx,mx), (V,dy,my)) =D((X,dg,mg), (V. dy,my)).
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so thatD is actually defined on isomorphism classes of metric meapaees.
In the next proposition we collect, without proof, the mamoperties ofD.

Proposition 7.3 (Properties ofD) Theinf in (7.4)is realized, and a coupling realizing it will be
called optimal

Also, letX be the set of isomorphism classes of metric measure spaisygisg Assumption 7.1.
ThenD is a distance orX, and in particularlD is O only on couples of isomorphic metric measure
spaces.

Finally, the spacéX, D) is complete, separable and geodesic.

Proof See Section 3.1 of [74]. O

We will denote byopt((dx, mx), (dy,my)) the set of optimal couplings betweéX,dx, mx)
and(Y,dy,my), i.e. the set of couplings where thef in (7.4) is realized.

Given a metric measure spack, d, m) we will denote byZ¢ (X) C £ (X) the set of measures
which are absolutely continuous w.nt.

To any couplingd, «) of two metric measure space¥, dx,mx) and(Y, dy, my ), it is natu-
rally associated a map,, : Z5(X) — £3(Y) defined as follows:

= pmx — Y41 = nmy, wheren is defined by n(y) := /p(z)d‘yy(:r), (7.5)

where{~, } is the disintegration ofy w.r.t. the projection orY”. Similarly, there is a natural map
Y4 P8(Y) = 25(X) given by:

v =nmy > 7;1/ = pmyx, Wherep is defined by p(z) := /n(y)d’yz(y),

where, obviously{~,} is the disintegration of w.r.t. the projection orX .
Notice thaty,mx = my andy,'my = my and thatin generaj, 'y, u # . Also, if v is
inducedby amafi’: X — Y, i.e.ify = (Id, T)ygmx, theny,pu = Typforanyu € 24(X).

Our goal now is to show that ifX,,, d,,, m,) B (X, d, m) of the internal energykind on
(25(X,), Wa) Mosco-converge to the corresponding functional 5 (X), W>). Thus, fix a con-
vex and continuous functiom: [0, +o00) — R, define

u(2)

!/ R :

and, for every compact metric spack, d), define the functiona’ : [#2(X)]? — R U {+o0} by

E(uly) i= [ ulp)dv +uf (co* (X), (7.6)

wherey = pr + p® is the decomposition qi in absolutely continuousr and singular part® w.r.t.
tov.

Lemma 7.4 (¢ decreases undety,,) Let (X,dx,mx) and (Y, dy, my) be two metric measure
space andd, «) a coupling between them. Then it holds

(M|mX>a V,LL € 93()(),
(Wmy), Ve PY).



Proof Clearly it is sufficient to prove the first inequality. Let= pmx andyu = nmy, with
given by (7.5). By Jensen’s inequality we have

E(Ypulmy) = /u(n(y))dmy(y) = /u (/p(w)dvy(x)) dmy (y)

< [ [ utotanan, (wamy ) = [ utpla)iriay)

- / u(p(z))dmx (z) = &(umx)
O

Proposition 7.5 (‘Mosco’ convergence of internal energy foctionals) Let (X, d,, m,) B
(X,d,m)and(d,,~,) € Opt((dn, my,), (d,m)). Then the following two are true:
WeakT" — lim. For any sequence — u,, € 25(X,,) suchthat — (v,,)xu, narrowly converges
to someu € Z(X) it holds

lim & (inlm) > & (ulm).

n—r oo

Strong T — lim. For anyyu € 225(X) with bounded density there exists a sequemcer 1, €
28(X,,) such thatVs((7y,,) 4 tn, #) — 0 and

fim & (pinlm,) < &(um).
n—oo
Note: we put the apexes Moscobecause we prove tHe— lim inequality only for measures with

bounded densities. This will be enough to prove the stghfiRicci curvature bounds (see Theorem
7.12).

Proof For the first statement we just notice that by Lemma 7.4 we have

E(pnlmy) > E(7,) hn|m),
and the conclusion follows from the narrow lower semicauitnof &'(-|m).
For the second one we defipg := (v,,!)4u. Then applying Lemma 7.4 twice we get
E(plm) = & (pnlmn) = E((7,)41nlm),

from which the I' — lim inequality follows. Thus to conclude we need to show that
Wa((v,,)#kn, ) — 0. To check this, we use the Wassertein space built over treifos)metric
space(X,, U X,d,): let u = pmx and for anyn € N define the plary,, € £(X,, x X) by
d7,,(y, z) := p(x)dv, (y, ) and notice thaf,, € Adm(uy,, 1). Thus

Wa(ttns 1) < \/ / &2 (2, y) A5 (1, 7) < \/ / & (2, 9)p(@)dv (4, 7) < VIV Cdmi7),

where) is the essential supremum af By definition, it is immediate to check that the densjty
of p.,, is also bounded above hy/. Introduce the plafy, by ¥, (y,x) := n.(y)dv,,(y,x) and
notice thaty,, € Adm(un, (7v,,)#/n), SO that, as before, we have

Wa(ttns () btm) < \/ / &2 (2, y) 7 () < \/ / @ (2,91 () dy () < VIO,

In conclusion we have

Wa(p, (V) bin) < Wi, (Y ) ttn) + Walpn, 1) < 2VM/C(dn,7,,),

which gives the thesis. O
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7.2 Weak Ricci curvature bounds: definition and properties

Define the functions, N > 1, andu, on [0, +o0) as
un(z) = N(z — 27 %),

and
Uoo(2) 1= zlog(2).

Then given a metric measure spgce, d, m) we define the functionalgy, & : Z(X) —
R U {400} by
En(p) := &(plm),

whereé () is given by formula (7.6) with, := w; similarly for &.
The definitions of weak Ricci curvature bounds are the foithgwy

Definition 7.6 (Curvature > K and no bound on dimension -C D(K, c0)) We say that a metric
measure spacgX, d, m) has Ricci curvature bounded from belowkye R provided the functional

Eno : P(X) = RU{+o0},

is K-geodesically convex di?d (X ), Ws). In this case we say thék , d, m) satisfies the curvature
dimension conditio D (K, co) or that (X, d,m) is aCD(K, o) space.

Definition 7.7 (Curvature > 0 and dimension< N - CD(0, N)) We say that a metric measure
space( X, d, m) has nonnegative Ricci curvature and dimension boundeddtoone byN provided
the functionals

En f@(X) — RU {+OO},

are geodesically convex di”4(X), W) for everyN’ > N. In this case we say thadtX, d, m)
satisfies the curvature dimension condit@® (0, N), or that(X, d, m) isaCD(0, N) space.

Note thatV > 1 is not necessarily an integer.

Remark 7.8 Notice that geodesic convexity is required 6 (supp(mx)) and not on%,(X).
This makes no difference for what conce®® (K, co) spaces, ag is +oo on measures having
a singular part w.r.tm, but is important for the case 6D (0, V) spaces, as the functionély has
only real values, and requiring geodesic convexity on thele/l#”?» (X' ) would lead to a notion not
invariant under isomorphism of metric measure spaces.

Also, for theC'D(0, N') condition one requires the geodesic convexity of4all to ensure the
following compatibility condition: ifX is a C'D(0, N) space, then it is also @D(0, N') space
for any N/ > N. Using Proposition 2.16 it is not hard to see that such coimiligt condition is
automatically satisfied on non branching spaces. |

Remark 7.9 (How to adapt the definitions to general bounds onwrvature the dimension) It is
pretty natural to guess that the notion of bound from belowtten Ricci curvature by € R
and bound from above on the dimension Bycan be given by requiring the functionély to be
K-geodesically convex o0& (X ), Ws). However, this iswrong, because such condition is not
compatible with the Riemannian case. The hearth of the diefindf C D(K, N) spaces still con-
cerns the properties @y, but a different and more complicated notion of “convexiyinvolved.

|
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Let us now check that the definitions given have the qualiggtroperties that we discussed in
the introduction of this chapter.
Intrinsicness. This property is clear from the definition.
Compatibility . To give the answer we need to do some computations on Rigaramanifolds:

Lemma 7.10 (Second derivative of the internal energy)Let M be a compact and smooth Rieman-
nian manifold,m its normalized volume measure,: [0, +o0o) be convex, continuous ar@f on
(0, +00) with u(0) = 0 and define the “pressurep : [0, +c0) — R by

p(2) = 20/ (2) — u(2), Vz >0,
andp(0) := 0. Also, lety = pm € P5(M) with p € C*(M), pickp € C°(M), and define
T, : M — M byT(x) := exp, (tVp(x)). Then it holds:

il E @) = [10) (B o) (A0 = [V - Ric(T. V) ) dm,

where by]V%(z)]Q we mean the trace of the linear mép2¢(z))? : T,M — T, M (in coordi-
nates, this reads a5, (9 (2))?).

Proof

(Computation of the second derivative) Let D, (z) := det(VTy(z)), pt := (T})xp = p:Vol. By
compactness, farsufficiently smallT; is invertible with smooth inverse, so thB, p; € C*°(M).
For smallt, the change of variable formula gives

o) pla)
@) = TN ~ D)’

Thus we have (all the integrals being w.ft.):
d d P (P PD; P\ 1y / P\
— = — L), = [ v & D L) =— )b
a | e dt/u(Dt) ! / “ (Dt) D2t p, ) P P\, )"

and )
d d p
ﬁltzo/“(m = _altzo/P (E) D, = /p’(p)p(D6)2 —p(p) Dy,

having used the fact thd}, = 1.
(Evaluation of D{; and D{/). We want to prove that

Dy(x) = Ap(x),
Dy(x) = (Ap(x))? - |V2p(x)]* - Ric(Ve(@), V().

Fort > 0 andz € M, let J;(x) be the operator fror, M t0 Toxp (1vy(2)) M given by:

(7.7)

To(@)(v) = the value ak = ¢ of the Jacobi field; along the geodesic
ASACV R RN exp, (sV(z)), having the initial conditiongy := v, jj :== VZ¢ - v,

(where here and in the following the aplean a vector/tensor field stands for covariant differentia-
tion), so that in particular we have

Jo = 1d,

7.8
Jy = V3. (7.8)
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The fact that Jacobi fields are the differential of the exptiaémap reads, in our case, as:
VTi(x)-v=Jy(x) - v,
therefore we have
D, = det(Jy). (7.9)
Also, Jacobi fields satisfy the Jacobi equation, which weenas
J! + Audy =0, (7.10)
whereA; () : Texp, (1vp(2) M — Texp, (tv(2)) M is the map given by
Ap(z) - v = R(31,0)3,
wherey; := exp, (tVip(z)). Recalling the rulddetB;)’ = det(B;)tr(B.B; '), valid for a smooth
curve of linear operators, we obtain from (7.9) the validify
D} = Dytr(J;J;1). (7.11)

Evaluating this identity at = 0 and using (7.8) we get the first of (7.7). Recalling the ks ')’ =
—B;'B/B; !, valid for a smooth curve of linear operators, and diffeiatirg in time equation (7.11)
we obtain

D} = Dy(te(J{ I )+ Dot (S I g I T I = Dt((tr(J,{ng))Q—tr(At+J;J;1J;J;1)),
having used the Jacobi equation (7.10). Evaluate this sgfme att = 0, use (7.8) and observe that
tr(Ag) = tr{v — R(Vo, v)w} = Ric(Ve, Vo),

to get the second of (7.7). O

Theorem 7.11 (Compatibility of weak Ricci curvature boundg Let M be a compact Riemannian
manifold,d its Riemannian distance an its normalized volume measure. Then:

i) the functionalé,, is K-geodesically convex oq#, (M), Ws) if and only if M has Ricci
curvature uniformly bounded from below B

i) the functionalé&y is geodesically convex o, (M), Ws) if and only if M has non negative
Ricci curvature andlim (M) < N.

Sketch of the ProofVe will give only a formal proof, neglecting all the issuesiatharise due to the
potential non regularity of the objects involved.

We start with(i). Assume thaRic(v,v) > K|v|? for anyv. Pick a geodesi¢p,m) C Z5(M)
and assume that € C°° for anyt € [0, 1]. By Theorem 1.33 we know that there exists a function
¢ : M — R differentiablepym-a.e. such thatxp(V) is the optimal transport map fropym to
p1m and

prm = (exp(thp))#pom.
Assume that is C>°. Then by Lemma 7.10 with := u., we know that

d? .
ﬁé@o(ptm) = / (|V2<p|2 + Ric(V, V(p))po dm > K/|V<p|2po dm.
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Since [ |V|?podm = W3 (po, p1), the claim is proved.
The converse implication follows by an explicit constroati if Ric(v,v) < K|v|? for some
x € M andv € T, M, then fore < § <« 1 definepg := COM| 5 (0 (co being the normalizing

constant) ang; := (7%)4po0 WhereTy(y) := exp, (t0Vp(y)) andy € C is such thaWVy(z) = v
andVZ2p(x) = 0. Using Lemma 7.10 again and the hypothésis(v,v) < K|v|? it is not hard to
prove that¢, is not\-geodesically convex along:). We omit the details.

Now we turn to(ii). Let (p,m) andy as in the first part of the argument above. Assume that
M has non negative Ricci curvature and thah(M) < N. Observe that fot. := uy Lemma 7.10
gives

d? 1 _1 _1 2 1.
T3 lo N (pr) = / (1 - N) P (80) = p N ((A0) = |V2¢|” — SRic(Vep, Vip) ) dma.
Using the hypothesis oM/ and the fact thatAp)? < N|V2<p|2 we getj—;|t:0£’N(pt) >0, i.e. the
geodesic convexity of’y. For the converse implication it is possible to argue as apae omit the
details also in this case. O

Now we pass to thetability:

Theorem 7.12 (Stability of weak Ricci curvature bound) Assume  that (X,,,d,, m,) B
(X,d,m) and that for every: € N the spacé X,,, d,,, m,) is CD(K, oo) (resp.C'D(0, N)). Then
(X,d,m)isaCD(K,) (resp.CD(0, N)) space as well.

Sketch of the ProofPick o, 1 € 2¢(X) and assume they are both absolutely continuous with
bounded densities, say, = p;m, i = 0,1. Choose(d,,v,) € Opt((d,,m,), (d,m)). Define

pl o= (v € 24(X,), i = 0,1. Then by assumption there is a geoddsit) C 25 (X,,)
such that

Scli}) < (1= )8 145) + 1 ) — 11— OWE (1, 7). (7.12)

Now leto} := (v, )xuy € Z3(X), t € [0,1]. From Proposition 7.5 and its proof we know that
Wa(ui, o) — 0asn — oo, i = 0,1. Also, from (7.12) ad Lemma 7.4, we know thé{, (o}") is
uniformly bounded im, t. Thus for every fixed the sequence — o} is tight, and we can extract
a subsequence, not relabeled, such #ffaharrowly converges to somg € s (supp(m)) for
every rationat. By an equicontinuity argument it is not hard to see that #iémarrowly converges
to someo; for anyt € [0, 1] (we omit the details). We claim thé#,) is a geodesic, and that the
K -convexity inequality is satisfied along it. To check thaisiia geodesic just notice that for any
partition{¢;} of [0, 1] we have

Wa(po, 1) = lim Wa(of,0f) = lim » Wa(o}, o7 )
7

Z Z h_m W2(027JZ+1) Z ZWQ(Jt”JtH,l)'

T M—00 -

Passing to the limit in (7.12), recalling Proposition 7.9&i thaté, (1)) — &x (1), @ = 0,1, and
thatlim, , & (pf) > lm, . Ex(o}) > (o) we conclude.

To deal with generaji, 111, we start recalling that the sublevels&f, are tight, indeed using
first the bound: log(z) > f% and then Jensen’s inequality we get

1 m(X \ E) n(E)

SO 2 () 2 /Eplog(p)dm > p(E)log (M) ’
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for anyu = pm such thats’,, (1) < C and any BoreE' C X. This bound gives that ifn(E,,) — 0
thenu(E,) — 0 uniformly on the set ofu’s such that’,, (1) < C. This fact together with the
tightness ofn gives the claimed tightness of the sublevelggf.

Now the conclusion follows by a simple truncation argumesihg the narrow compactness of
the sublevels o, and the lower semicontinuity &f,, w.r.t. narrow convergence.

For the stability of theC'D(0, N') condition, the argument is the following: we first deal with
the case of.g, ;11 with bounded densities with exactly the same ideas used_forThen to pass to
the general case we use the fact thdthf, d, m) is aC'D(0, N) space, thelfsupp(m),d,m) is a
doubling space (Proposition 7.15 below - notice thiat < N’ and thus it is not true that sublevels
of &y are tight) and therefore boundedly compact. Then the inggua

R2u(supp(m) \ Ba(eo)) < [ & (a0)dp,

shows that the set gf's in 22 (X) with bounded second moment is tight. Hence the conclusion
follows, as before, using this narrow compactness togetlitér the lower semicontinuity oy
w.r.t. narrow convergence. O

It remains to discuss thiaterest: from now on we discuss some of the geometric and analytic
properties of spaces having a weak Ricci curvature bound.

Proposition 7.13 (Restriction and rescaling)Let (X,d,m) be a CD(K,co) space (resp.
CD(0,N) space). Then:
i) Restriction. If Y € X is a closed totally convex subset (i.e. every geodesic witdp@nts
in Y lies entirely insideY’) such thatm(Y) > 0, then the spac¢Y, d,m(Y)*1m|Y) is a
CD(K, o) space (respCD(0, N) space),
i) Rescaling for everya > 0 the spacé X, ad, m) is aCD(a 2K, oo) space (respCD(0, N)
space).
Proof

(i). Pick ug, 1 € 2(Y) € 2(X) and a constant speed geoddgic) C &?(X) connecting them
such that

Suclim) < (1= Do) + 16 () — 11— W3 o, o),

(resp. satisfying the convexity inequality for the func@ds&y., N’ > N).

We claim thatsupp(u:) C Y for anyt € [0,1]. Recall Theorem 2.10 and pick a measure
p € Z(Geod(X)) such that

pe = (er) g,

wheree, is the evaluation map defined by equation (2.6). Singe(uo),supp(u1) C Y we know
that for any geodesig € supp(u) it holdsyp,11 € Y. SinceY is totally convex, this implies that
v € Y foranyt and anyy € supp(u), i.e. uy = (er)xp € Z(Y). Therefore(y,) is a geodesic
connectingu to p1 in (Y, d). Conclude noticing that for any € 92,(Y") it holds

dp dp /d,u dp
g (O —1 Y A o (L1
/d —log (d Y) dmy = log(m(Y)) + 7 108 { =~ dm,
1—

1

1
dp \V - L dy -
/ <—de> dmy = m() 4 [ (%) dm,

where we wroteny for m(Y)*1m|Y.
(ii). Fix a > 0 and letd := ad and W, be the Wasserstein distance 6A(X) induced by the
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distanced. It is clear that a plary € Adm(u,v) is optimal for the distancél, if and only if it is
optimal for Wy, thusWsy = aWs. Now pick ug, 11 € Z(X) and let(u;) C &(X) be a constant
speed geodesic connecting them such that

K
Eoo(pr) < (1= 1)& (o) + 16 (p1) = (1 = )Wy (po, 1),
then it holds K
Enclpe) < (1= )8 (o) + 18 () = 55t(1 = WS (o, ),
and the proof is complete. A similar argument applies fordageC D (0, V). O
For Ag, A1 C X, we defind Ay, A1]; C X as:

[Ag, A1]; := {v(t) : v is a constant speed geodesic such i} € Ay, v(1) € Al}.

Observe that ifdy, A, are open (resp. compa¢ty, 4,]; is open (resp. compact), hence Borel.

Proposition 7.14 (Brunn-Minkowski) Let (X, d, m) be a metric measure space adgd, A, C
supp(m) compact subsets. Then:

i) if (X,d,m)isaCD(K,oo) space it holds:
log(m([Ao, A1])) = (1—1)log(m(Ao)) +tlog(m(A1))+ gt(l —1)D% (Ao, A1), (7.13)

where Dy (Ag, A1) is defined asup-qca, d(xo, 1) if K < 0 and asinf zyea, d?(xq,z1) if
] €AY T1 €AY
K > 0.
i1) If (X,d,m)isaCD(0,N) space it holds:

m([Ap, Aa]e) Y > (1= ym(A0)/N + tm (AN (7.14)

Proof We start with(i). Suppose thatly, A; are open satisfyingn(4y), m(A;) > 0. Define the
measureg,; := m(Ai)_1m|A> fori = 0,1 and find a constant speed geoddsig) C Z?(X) such
that '

Eool1t) < (1 =)o (0) + tEo (1) — %t(l — W5 (o, f11).

Arguing as in the proof of the previous proposition, it is imdmate to see that; is concentrated on
[Ag, A;]; foranyt € [0,1].

In particularm([Ao, A1]:) > 0, otherwises, (1:) would be+oo and the convexity inequality
would fail. Now lety; := m([Ao, Al]t)*lmh : an application of Jensen inequality shows

Ao, Ax]e”
thatéx (11t) > & (1), thus we have

K
oo (1) < (1 = 1)Eo (o) + toc(p1) — S (1 — W3 (10, -
Notice that for a general of the formm(A)*1m|A it holds
oo (1) = log (m(A)™") = —log (m(4)),
and conclude using the trivial inequality

inf d*(zo, 1) < W3 (o, 1) < sup d*(zo,z1).
zp€Ap zg€AQ
] €AY ] €AY
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The case ofd,, A; compact now follows by a simple approximation argument bysidering the
e-neighborhood4; := {z : d(z, A;) < €}, ¢ = 0, 1, noticing that{ Ay, A1]; = Nexo[A§, A7]+, for
anyt € [0,1] and thatm(AS) > 0 becaused; C supp(m),i =0, 1.

Part (i) follows along the same lines taking into account that for aegal 1 of the form
m(A)’1m|A it holds

Enl(p) = N(1—m(4)"N),

and that, as before, #(Ap), m(A;) > 0 it cannot bem([Ao, A1]¢) = 0 or we would violate the
convexity inequality. O

A consequence of Brunn-Minkowski is the Bishop-Gromov inady.

Proposition 7.15 (Bishop-Gromov) Let (X, d, m) be aCD(0, N) space. Then it holds
m(B,(x)) _ (r\N
—_— > (= . 7.1
m(Br(@) = (R) , Vx € supp(m) (7.15)

In particular, (supp(m), d, m) is a doubling space.

Proof Pick z € supp(m) and assume than({z}) = 0. Letwv(r) := m(B,(z)). Fix R > 0
and apply the Brunn-Minkowski inequality & = {z}, A1 = Bgr(z) observing thafAg, A1]: C
Big(x) to get

VWNER) > m([Ag, A1) N > 00VN(R),  Vo<t<l

Now letr := tR and use the arbitrariness Bf t to get the conclusion.

It remains to deal with the case({x}) # 0. We can also assum&pp(m) # {z}, otherwise
the thesis would be trivial: under this assumption we wit@ thatm({z}) = 0 for anyz € X.

A simple consequence of the geodesic convexitysaf tested with delta measures is that
supp(m) is a geodesically convex set, therefore it is uncountableenTthere must exist some
a’ € supp(m) such thatn({z'}) = 0. Apply the previous argument witk in place ofz to get that

v(r) r\N
> (- < 7.16
wm (7)o wsr<n (7.16)
where nowu(r) is the volume of the closed ball of radiusaroundz’. By definition, v is right
continuous; letting: 1 R we obtain from (7.16) that is also left continuous. Thus it is continuous,
and in particular the volume of the sphergs: d(y,z’) = r} is 0 for anyr > 0. In particular
m({y}) = 0 foranyy € X and the proof is concluded. O

An interesting geometric consequence of the Brunn-Minkowsequality in conjunction with the
non branching hypothesis is the fact that the ‘cut-locusagligible.

Proposition 7.16 (Negligible cut-locus)Assume thatX, d,m) isaCD(0, N) space and that it is
non branching. Then for eveny € supp(m) the set ofy’s such that there is more than one geodesic
fromz to y is m-negligible. In particular, form x m-a.e.(z, y) there exists only one geodesit¥
fromx to y and the mapX? > (z,y) — 7Y € Geod(X) is measurable.

Proof Fix « € supp(m), R > 0 and consider the sets; := [{z}, Bg(z)]:. Fixt < 1 andy € A;.
We claim that there is only one geodesic connectingit tBy definition, we know that there is some
z € Br(z) and a geodesig from z to « such thaty, = y. Now argue by contradiction and assume
that there are 2 geodesigs, v2 from y to . Then starting from, following ~ for time 1 — ¢, and
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then following each ofy!, 42 for the rest of the time we find 2 different geodesics froto = which
agree on the non trivial interv@), 1 — ¢]. This contradicts the non-branching hypothesis.

Clearly A; € A; C Bg(x) fort < s, thust — m(A;) is non decreasing. By (7.14) and the
fact thatm({z}) = 0 (proved in Proposition 7.15) we know thAtn, .1 m(A;) = m(Bgr(x))
which means thatn-a.e. point inBg(z) is connected ta: by a unique geodesic. Sinéeandz are
arbitrary, uniqueness is proved.

The measurability of the map:, y) — ~*¥ is then a consequence of uniqueness, of Lemma 2.11
and classical measurable selection results, which enkarexistence of a measurable selection of
geodesics: in our case thereris x m-almost surely no choice, so the unique geodesic seledion i
measurable. O

Corollary 7.17 (Compactness)Let N, D < oo. Then the family¥’(V, D) of (isomorphism classes
of) metric measure spac€s(, d, m) satisfying the conditiorC’D(0, N), with diameter bounded
above byD is compact w.r.t. the topology induced by

Sketch of the ProotJsing the Bishop-Gromov inequality witk = D we get that

(—)N, V(X,d,m) € X(N,D), x € supp(my). (7.17)

Thus there exists (N, D, ¢) which does not depend oXi € X(N, D), such that we can find at most
n(N, D, ) disjoint balls of radiug in X. Thussupp(mx) can be covered by at mos{N, D, ¢)
balls of radiu2s. This means that the famil{f' (N, D) is uniformly totally bounded, and thus it is
compact w.r.t. Gromov-Hausdorff convergence (see e.gofme 7.4.5 of [20]).

Pick a sequenceX,,, d,, m,) € X(N, D). By what we just proved, up to pass to a subsequence,
not relabeled, we may assume tfsatpp(m,, ), d,,) converges in the Gromov-Hausdorff topology to
some spaceX, d). Itis well known that in this situation there exists a compgmaceY, dy ) and a
family of isometric embedding$, : supp(m,) — Y, f : X — Y, such that the Hausdorff distance
betweenf,, (supp(m,,)) andf(X) goes to 0 as — oo.

The space f,,(supp(my,), dy, (fn)#m,)) is isomorphic to( X,,, d,,, m,,) by construction for
everyn € N, and(f(X), dy) is isometric to( X, d), so we identify these spaces with the respective
subspaces ofY,dy). Since(Y,dy) is compact, the sequencen,,) admits a subsequence, not
relabeled, which weakly converges to some ¢ 2(Y). It is immediate to verify that actually
m € Z(X). Also, again by compactness, weak convergence is equitalennvergence w.r.1/s,
which means that there exists plaps € #2(Y?) admissible for the couplen, m,,) such that

/d%(x,f)d%(z,@ — 0.

Thereforen — (dy,~,,) is @ sequence of admissible couplings (6f, d, m) and (X,,, d,,, m.,)
whose cost tends to zero. This concludes the proof. O

Now we prove the HWI (which relates the entropy, often dedttgH , the Wasserstein distance
W, and the Fisher information) and the log-Sobolev inequalities. To this aim, we introgltize
Fisher information functional : #2(X) — [0, oc] on a general metric measure Spéae d, m) as
the squared slope of the entrogy,:

2

(B = )

I(u) = Vh_rg W20 v) , if & (1) < o0,
400, otherwise
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The functionall is called Fisher information because its value(®d, | - — - |, £4) is given by
2
I(pL?) = / Vol gga,
P

and the object on the right hand side is called Fisher inftionanR¢. It is possible to prove that a
formula like the above one is writable and true on gen€t@l K, o) spaces (see [7]), but we won't
discuss this topic.

Proposition 7.18 (HWI inequality) Let (X, d, m) be a metric measure space satisfying the condi-
tion CD(K, o). Then

K
Exct) < Exv) + Walw, )VI(W) = Wi (,v),  Vpve 2(X).  (7.18)
In particular, choosing’ = m it holds

Suclt) < Wl m)/T) — W3 (), W& P(X). (7.19)

Finally, if K > 0 the log-Sobolev inequality with constakitholds:
I
< —.
bo < 2K
Proof Clearly to prove (7.18) it is sufficient to deal with the cage(v), &xo (1) < co. Let (1) be
a constant speed geodesic franto v such that

(7.20)

Bucli) < (1= () + 16 (v) — 511 ()WE (1),

Then fromy/T () > limyg o (S (i) — Eno(11¢))/Wa (g, 1) We get the thesis.
Equation (7.20) now follows from (7.19) and the trivial inedity

valid for anya, b > 0. O

The log-Sobolev inequality is a notion gtobal Sobolev-type inequality, and it is known that it
implies a global Poincaré inequality (we omit the proof oftfact). When working on metric
measure spaces, however, it is often important to have poskds alocal Poincaré inequality (see
e.g. the analysis done by Cheeger in [29]).

Our final goal is to show that in non-branchingD (0, N) spaces a local Poincaré inequality
holds. The importance of the non-branching assumptionegalthe following lemma.

Lemma 7.19 Let (X, d, m) be a non branching’D(0, N) space,B C X a closed ball of positive
measure an®B the closed ball with same center and double radius. Definarthasureg: :=
m(B)*1m|B and p = v (u x p) € P (Geod(X)), where(z,y) — =¥ is the map which
associates to each y the unique geodesic connecting them (such a map is well ddbnen x m-
a.e.x,y by Proposition 7.16). Then
2N
(et)um < mmhlgv vt € [0,1].
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Proof Fix z € B, t € (0,1) and consider the ‘homothopy’ map > y — Hom¥(y) := ;Y. By
Proposition 7.16 we know that this map is well definedifera.e.y and that (using the characteriza-
tion of geodesics given in Theorem 2.10)» 1 := (Hom7 )4 is the unique geodesic connecting
0, to u. We have

m((Hom{) '(E))

VE C X Borel
m(B) , C ore

pi (B) = p((Homi) ' (E)) =

The non branching assumption ensures tHatny is invertible, therefore from the fact that
{z}, (Homf)~Y(E)]; = Hom{(Hom{) '(E)) = E, the Brunn-Minkowski inequality and the
fact thatm({z}) = 0 we get

m(E) > t"m((Hom{) ' (E)),

and thereforei (F) < %. Given thatF was arbitrary, we deduce
m
L 7.21
Be = tNm(B) ( )

Notice that the expression on the right hand side is indepetrwhz.
Now pick p as in the hypothesis, and defing:= (e;)xp. The equalities

/deut =/Geod(x) (ve)dp(y) =/XQ o(v Y )dp(x)du(y),

/X pdu; = /X (v ) du(y),

valid for anyy € Cy,(X), show that

m:/ﬁww,

and therefore, by (7.21), we have
m

tNm(B)’
All these arguments can be repeated symmetrically Witht in place oft (because the push forward
of u via the map which takeg and gives the geodesic— ~; ¢, is p itself), thus we obtain

e < mln{ﬁNm(B)v (1 _t)Nm(B)} = m(B)’

e <

vt € (0,1).

To conclude, it is sufficient to prove that is concentrated o2B for all t € (0,1). But this is
obvious, agi; is concentrated of3, BJ; and a geodesic whose endpoints lie/®oannot leav@ B.
]

As we said, we will use this lemma (together with the doublimgperty, which is a consequence
of the Bishop-Gromov inequality) to prove a local Poincaréduality. For simplicity, we stick
to the case of Lipschitz functions and their local Lipsclutmstant, although everything could be
equivalently stated in terms of generic Borel functions #radr upper gradients.

For f : X — R Lipschitz, the local Lipschitz constafi¥ f| : X — R is defined as

= @)~ )
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For any ballB such thatn(B) > 0, the numbex f) ; is the average value ¢fon B:

o
(s 'W/Bf dm-

Proposition 7.20 (Local Poincaré inequality) Assume that (X,d,m) is a non-branching
CD(0, N) space. Then for every balt such thatm(B) > 0 and any Lipschitz functiofi : X — R

it holds
2N+1

1 2
_ T) — dm(zx Sri/ Vfldm,
55 1@ =y ldm(e) <o [ 9]
r being the radius oB.
Proof Notice that

1
o /BXB £ (2) — f(y)| dm(z)dm(y)

1
e /B (@) — () ldm(z)

[ 1560~ fon)ldut.
Geod(X)

wherep is defined as in the statement of Lemma 7.19. Observe thanjogeodesicy, the map
t — f(v:) is Lipschitz and its derivative is bounded aboveddyo,v1)|V f|(:) for a.e.t. Hence,
since any geodesigcwhose endpoints are iB satisfiesi(yo,v1) < 2r, we have

1 1
/G o, OO0 da) <20 /0 /G ) [Tl i =21 /O /X IV fld(er) ppudt.

By Lemma 7.19 we obtain

2 r

1, N+1 .
2r/0 /x |V fld(e)ppdt < m(B) /23 |V fldm.

By the Bishop-Gromov inequality we know that(2B) < 2¥m/(B) and thus
2N+1’I“ 2N+1

2 r
B oo 71 = S35 [ T

which is the conclusion. O

7.3 Bibliographical notes

The content of this chapter is taken from the works of Lott ®illdni on one side ([58], [57]) and of
Sturm ([74], [75]) on the other.

The first link betweer{-geodesic convexity of the relative entropy functiona( i, (M), W)
and the bound from below on the Ricci curvature is has beeengby Sturm and von Renesse
in [76]. The works [74], [75] and [58] have been developedeipendently. The main difference
between them is that Sturm provides the general definitioff Bf K, N) bound (which we didn’t
speak about, with the exception of the quick citation in Ren7a9), while Lott and Villani focused
on the case€' D(K,c0) andC'D(0, N). Apart from this, the works are strictly related and the
differences are mostly on the technical side. We mentioyp oné of these. In giving the definition of
CD(0, N) space we followed Sturm and asked only the functiopats— N’ [(p — p'~'/N")dm,
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N’ > N, to be geodesically convex. Lott and Villani asked for sdwnrgg more restrictive, namely
they introduced thelisplacement convexiglassesDCy as the set of functions : [0,00) — R
continuous, convex and such that

N

z — Nu(z7N)

is convex. Notice that(z) := N'(z — z'~Y/N") belongs toDCy. Then they say that a space is
CD(0, N) provided

pm = / u(p)dm,

(with the usual modifications for a measure which is not altety continuous) is geodesically con-
vex for anyu € DC). This notion is still compatible with the Riemannian case atable un-
der convergence. The main advantage one has in working wighdefinition is the fact that for
a CD(0,N) space in this sense, for any couple of absolutely continmeessures there exists a
geodesic connecting them which is made of absolutely cootis measures.

The distancéD that we used to define the notion of convergence of metric uteapaces has
been defined and studied by Sturm in [74]. This is not the owlysible notion of convergence
of metric measure spaces: Lott and Villani used a differemd, see [58] or Chapter 27 of [80].
A good property of the distand® is that it pleasantly reminds the Wasserstein distdnige to
some extent, the relation &f to 15 is the same relation that there is between Gromov-Hausdorff
distance and Hausdorff distance between compact subsatgieén metric space. A bad property
is that it is not suitable to study convergence of metric measpaces which are endowed with
infinite reference measures (well, the definition can eds#lyadapted, but it would lead to a too
strict notion of convergence - very much like the Gromov-stirff distance, which is not used to
discuss convergence of non compact metric spaces). Thaotibn of convergence of Polish spaces
endowed withr-finite measures that we are aware of, is the one discusseillé@yih Chapter 27 of
[80] (Definition 27.30). It is interesting to remark thatghiotion of convergence doastguarantee
uniqueness of the limit (which can be though of as a negatmst pf the theory), yet, bounds from
below on the Ricci curvature are stable w.r.t. such convergéwhich in turn is a positive point, as
it tells that these bounds are ‘even more stable’)

The discussion on the local Poincaré inequality and on Lemut@is extracted from [57].

There is much more to say about the structure and the prep@tispaces with Ricci curvature
bounded below. This is an extremely fast evolving researeh, and to give a complete discussion on
the topic one would probably need a book nowadays. Two thangsvorth to be quickly mentioned.

The first one is the most important open problem on the subjscthe property of being a
CD(K, N) space a local notion? That is, suppose we have a metric neessace X, d, m) and a
finite open covef);} such that;, d, m(Qi)—lmm) isaCD(K, N) space for every. Can we
deduce thatX,d, m) is aCD(K, N) space as well? One would like the answer to be affirmative,
as any notion of curvature should be local. For= 0 or N = oo, this is actually the case, at least
under some technical assumptions. The general case igpitl, and up to now we only know that
the conjecture 30.34 in [80] false being disproved by Deng and Sturm in [32] (see also [11]).

The second, and final, thing we want to mention is the case rdléti manifolds, which are
differentiable manifolds endowed with a norm - possibly c@iing from an inner product - on each
tangent space, which varies smoothly with the base pointimple example of Finsler manifolds
is the spacdR?, || - ||), where|| - || is any norm. It turns out that for any choice of the norm, the
space(R%, || - ||, £4) is aC'D(0, N) space. Various experts have different opinion about ttdt fa
namely, there is no agreement on the community concernirgheh one really wants or not Finsler
geometries to be included in the class of spaces with Riasiature bounded below. In any case,
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it is interesting to know whether there exists a differenbrerestrictive, notion of Ricci curvature
bound which rules out the Finsler case. Progresses in tigstitin have been made in [8], where the
notion of spaces witfiRiemannian Ricdbounded below is introduced: shortly said, these spaces are
the subclass of D(K, N) spaces where the heat flow (studied in [45], [53], [7]) isdine

References

[1] A. AGRACHEV AND P. LEE, Optimal transportation under nonholonomic constrajnisans.
Amer. Math. Soc., 361 (2009), pp. 6019-6047.

[2] G. ALBERTI, On the structure of singular sets of convex functj@alc.Var. and Part.Diff.Eq.,
2 (1994), pp. 17-27.

[3] G. ALBERTIAND L. AMBROSIO, A geometrical approach to monotone function®ih, Math.
Z.,230(1999), pp. 259-316.

[4] L. AMBROSIO, Lecture notes on optimal transport probleim Mathematical aspects of evolv-
ing interfaces, CIME summer school in Madeira (Pt), P. Goild J. Rodrigues, eds., vol. 1812,
Springer, 2003, pp. 1-52.

[5] L. AMBROSIO AND N. GIGLI, Construction of the parallel transport in the Wasserstgiace
Methods Appl. Anal., 15 (2008), pp. 1-29.

[6] L. AMBROSIO, N. GIGLI, AND G. SavARE, Gradient flows in metric spaces and in the space
of probability measured_ectures in Mathematics ETH Zrich, Birkh&user Verlags&asec-
ond ed., 2008.

, Calculus and heat flows in metric measure spaces with riceiature bounded below
preprint, (2011).

[8] ——, Spaces with riemannian ricci curvature bounded belpreprint, (2011).

[7]

[9] L. AMBROSIO, B. KIRCHHEIM, AND A. PRATELLI, Existence of optimal transport maps for
crystalline normsDuke Mathematical Journal, 125 (2004), pp. 207-241.

[10] L. AMBROSIO AND S. RGOT, Optimal mass transportation in the Heisenberg grpdid-unct.
Anal., 208 (2004), pp. 261-301.

[11] K. BACHER AND K. T. STURM, Localization and tensorization properties of the curvatur
dimension condition for metric measure spackd-unct. Anal., 259 (2010), pp. 28-56.

[12] J.-D. BENAMOU AND Y. BRENIER, A numerical method for the optimal time-continuous mass
transport problem and related problenis Monge Ampére equation: applications to geometry
and optimization (Deerfield Beach, FL, 1997), vol. 226 of @onp. Math., Amer. Math. Soc.,
Providence, RI, 1999, pp. 1-11.

[13] P. BERNARD AND B. BUFFONI, Optimal mass transportation and Mather thepdyEur. Math.
Soc. (JEMS), 9 (2007), pp. 85-127.

[14] M. BERNOT, V. CASELLES, AND J.-M. MOREL, The structure of branched transportation
networks Calc. Var. Partial Differential Equations, 32 (2008), B#9-317.

[15] S. BIANCHINI AND A. BRANCOLINI, Estimates on path functionals over Wasserstein spaces
SIAM J. Math. Anal., 42 (2010), pp. 1179-1217.

[16] A. BRANCOLINI, G. BUTTAZZO, AND F. SANTAMBROGI0, Path functionals over Wasserstein
spacesJ. Eur. Math. Soc. (JEMS), 8 (2006), pp. 415-434.

124



[17] L. BRASCO, G. BuTTAZZO, AND F. SANTAMBROGIO, A benamou-brenier approach to
branched transportAccepted paper at SIAM J. of Math. Anal., (2010).

[18] Y. BRENIER, Décomposition polaire et réarrangement monotone des ckataprecteursC.
R. Acad. Sci. Paris Sér. | Math., 305 (1987), pp. 805-808.

, Polar factorization and monotone rearrangement of veeitded functionsComm.
Pure Appl. Math., 44 (1991), pp. 375-417.

[20] D. BURAGO, Y. BURAGO, AND S. IVANOV, A course in metric geometryol. 33 of Graduate
Studies in Mathematics, American Mathematical Societyyllence, RI, 2001.

(19]

[21] L. A. CAFFARELLI, Boundary regularity of maps with convex potentia@mmm. Pure Appl.
Math., 45 (1992), pp. 1141-1151.

[22] ——, The regularity of mappings with a convex potentidl Amer. Math. Soc., 5 (1992),
pp. 99-104.

[23] ——, Boundary regularity of maps with convex potentials Ahn. of Math. (2), 144 (1996),
pp. 453-496.

[24] L. A. CAFFARELLI, M. FELDMAN, AND R. J. McCANN, Constructing optimal maps for
Monge’s transport problem as a limit of strictly convex epdt Amer. Math. Soc., 15 (2002),
pp. 1-26 (electronic).

[25] L. CARAVENNA, A proof of sudakov theorem with strictly convex norMath. Z., to appear.

[26] J. A. CARRILLO, S. LISINI, G. SAvARE, AND D. SLEPCEV, Nonlinear mobility continuity
equations and generalized displacement conveXitiyunct. Anal., 258 (2010), pp. 1273-1309.

[27] T. CHAMPION AND L. DE PASCALE, The Monge problem iiR?, Duke Math. J.

[28] ——, The Monge problem for strictly convex normsRf, J. Eur. Math. Soc. (JEMS), 12
(2010), pp. 1355-1369.

[29] J. CHEEGER Differentiability of Lipschitz functions on metric measwpacesGeom. Funct.
Anal., 9 (1999), pp. 428-517.

[30] D. CORDERO-ERAUSQUIN, B. NAZARET, AND C. VILLANI, A mass-transportation approach
to sharp Sobolev and Gagliardo-Nirenberg inequalitiddv. Math., 182 (2004), pp. 307-332.

[31] C. DELLACHERIE AND P.-A. MEYER, Probabilities and potentialvol. 29 of North-Holland
Mathematics Studies, North-Holland Publishing Co., Andaen, 1978.

[32] Q. DENG AND K. T. STURM, Localization and tensorization properties of the curvatur
dimension condition for metric measure spaceSiibmitted, (2010).

[33] J. DoLBEAULT, B. NAZARET, AND G. SAVARE, On the Bakry-Emery criterion for linear
diffusions and weighted porous media equatji@amm. Math. Sci, 6 (2008), pp. 477-494.

[34] L. C. Evans AND W. GANGBO, Differential equations methods for the Monge-Kantorovich
mass transfer problepMem. Amer. Math. Soc., 137 (1999), pp. Viii+66.

[35] A. FATHIAND A. FIGALLI, Optimal transportation on non-compact manifgltsael J. Math.,
175 (2010), pp. 1-59.

[36] D. FEYEL AND A. S. USTUNEL, Monge-Kantorovitch measure transportation and Monge-
Ampeére equation on Wiener spaégobab. Theory Related Fields, 128 (2004), pp. 347-385.

[37] A. FiGaLLI AND N. GIGLI, A new transportation distance between non-negative measur
with applications to gradients flows with Dirichlet bounglazonditions J. Math. Pures Appl.
(9), 94 (2010), pp. 107-130.

125



[38] A. FiGALLI, F. MAGGI, AND A. PRATELLI, A mass transportation approach to quantitative
isoperimetric inequalitiednvent. Math., 182 (2010), pp. 167-211.

[39] A. FIGALLI AND L. RIFFORD, Mass transportation on sub-Riemannian manifol@gom.
Funct. Anal., 20 (2010), pp. 124-159.

[40] N. Fusco, F. MAGGI, AND A. PRATELLI, The sharp quantitative isoperimetric inequality
Ann. of Math. (2), 168 (2008), pp. 941-980.

[41] W. GANGBO, The Monge mass transfer problem and its applicatiam&longe Ampére equa-
tion: applications to geometry and optimization (Deerfid&hch, FL, 1997), vol. 226 of Con-
temp. Math., Amer. Math. Soc., Providence, RI, 1999, pp10@-

[42] W. GANGBO AND R. J. McCANN, The geometry of optimal transportatioActa Math., 177
(1996), pp. 113-161.

[43] N. GiGgLI, On the geometry of the space of probability measure&’inendowed with the
quadratic optimal transport distanc2008. Thesis (Ph.D.)-Scuola Normale Superiore.

[44] ——, Second order calculus o2 (M), W5), Accepted by Memoirs of the AMS, 2009.
[45]

, On the heat flow on metric measure spaces: existence, urgagsie@md stabilityCalc.
Var. Partial Differential Equations, (2010).

[46] ——, On the inverse implication of Brenier-McCann theorems ahé structure of
Py (M), Ws), accepted paper Meth. Appl. Anal., (2011).

[47] R. JORDAN, D. KINDERLEHRER, AND F. OTTO, The variational formulation of the Fokker-
Planck equationSIAM J. Math. Anal., 29 (1998), pp. 1-17 (electronic).

[48] N. JuiLLET, On displacement interpolation of measures involved in ierntheorem ac-
cepted paper Proc. of the AMS, (2011).

[49] L. V. KANTOROVICH, On an effective method of solving certain classes of exirproblems
Dokl. Akad. Nauk. USSR, 28 (1940), pp. 212-215.

, On the translocation of masseBokl. Akad. Nauk. USSR, 37 (1942), pp. 199-201.
English translation in J. Math. Sci. 133, 4 (2006), 1381E2.38

[51] L. V. KANTOROVICH AND G. S. RUBINSHTEIN, On a space of totally additive functions
Vestn. Leningrad. Univ. 13, 7 (1958), pp. 52-59.

[52] M. KNOTT AND C. S. SuiTH, On the optimal mapping of distributions. Optim. Theory
Appl., 43 (1984), pp. 39-49.

[53] K. KuwaDA, N. GIGLI, AND S.-I. OHTA, Heat flow on alexandrov spacgweprint, (2010).

[50]

[54] S. LisiNi, Characterization of absolutely continuous curves in Wese# spacesCalc. Var.
Partial Differential Equations, 28 (2007), pp. 85-120.

[55] G.LoepPER On the regularity of solutions of optimal transportatioropiems Acta Math., 202
(2009), pp. 241-283.

[56] J. LoTT, Some geometric calculations on Wasserstein sgaocexm. Math. Phys., 277 (2008),
pp. 423-437.

[57] J. LoTT AND C. VILLANI, Weak curvature conditions and functional inequaliti@sFunct.
Anal., (2007), pp. 311-333.

[58] J. LoTT AND C. VILLANI, Ricci curvature for metric-measure spaces via optimal $gzort,
Ann. of Math. (2), 169 (2009), pp. 903—991.

126



[59] X.-N. MA, N. S. TRUDINGER, AND X.-J. WANG, Regularity of potential functions of the
optimal transportation problepArch. Ration. Mech. Anal., 177 (2005), pp. 151-183.

[60] F. MADDALENA AND S. SOLIMINI, Transport distances and irrigation modeld. Convex
Anal., 16 (2009), pp. 121-152.

[61] F. MADDALENA, S. SOLIMINI, AND J.-M. MOREL, A variational model of irrigation pat-
terns Interfaces Free Bound., 5 (2003), pp. 391-415.

[62] R. J. MccaNN, A convexity theory for interacting gases and equilibriurgstals ProQuest
LLC, Ann Arbor, Ml, 1994. Thesis (Ph.D.)—Princeton Univigys

[63] R. J. McCANN, A convexity principle for interacting gase&dv. Math., 128 (1997), pp. 153—
179.

[64] , Polar factorization of maps on riemannian manifgl@eometric and Functional Anal-

ysis, 11 (2001), pp. 589-608.

[65] V. D. MILMAN AND G. SCHECHTMAN, Asymptotic theory of finite-dimensional normed
spacesvol. 1200 of Lecture Notes in Mathematics, Springer-\@riBerlin, 1986. With an
appendix by M. Gromov.

[66] G. MONGE, Mémoire sur la théorie des d’eblais et des remhlaistoire de IOAcadémie
Royale des Sciences de Paris, (1781), pp. 666—704.

[67] F. OrTOo, The geometry of dissipative evolution equations: the pommedium equatign
Comm. Partial Differential Equations, 26 (2001), pp. 1024-1

[68] A. PRATELLI, On the equality between Monge’s infimum and Kantorovichfémuim in opti-
mal mass transportatigiAnnales de I'Institut Henri Poincare (B) Probability an@ttics, 43
(2007), pp. 1-13.

[69] S. T. RacHEV AND L. RUSCHENDORF Mass transportation problems. Vol.Rrobability and
its Applications, Springer-Verlag, New York, 1998. Theory

[70] R. T. ROCKAFELLAR, Convex AnalysisPrinceton University Press, Princeton, 1970.

[71] L. RUSCHENDORF ANDS. T. RACHEV, A characterization of random variables with minimum
L2-distance J. Multivariate Anal., 32 (1990), pp. 48-54.

[72] G. SAVARE, Gradient flows and diffusion semigroups in metric spacesufwver curvature
bounds C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 151-154.

[73] G. SAVARE, Gradient flows and evolution variational inequalities intmespaces In prepa-
ration, (2010).

[74] K.-T. STURM, On the geometry of metric measure spaceécta Math., 196 (2006), pp. 65—
131.

[75] ——, On the geometry of metric measure spacedA¢ta Math., 196 (2006), pp. 133-177.

[76] K.-T. STURM AND M.-K. VON RENESSE Transport inequalities, gradient estimates, entropy,
and Ricci curvatureComm. Pure Appl. Math., 58 (2005), pp. 923-940.

[77] V. N. Subakov, Geometric problems in the theory of infinite-dimensionalyability distri-
butions Proc. Steklov Inst. Math., (1979), pp. i-v, 1-178. Covecdwer translation of Trudy
Mat. Inst. Steklov141(1976).

[78] N. S. TRUDINGER AND X.-J. WANG, On the Monge mass transfer proble@alc. Var. Partial
Differential Equations, 13 (2001), pp. 19-31.

[79] C. ViLLANI, Topics in optimal transportatignvol. 58 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 2003.

127



[80] ——, Optimal transport, old and nev&pringer Verlag, 2008.

[81] Q. XiIA, Optimal paths related to transport problemSommun. Contemp. Math., 5 (2003),
pp. 251-279.

, Interior regularity of optimal transport path<Calc. Var. Partial Differential Equations,
20 (2004), pp. 283—299.

[83] L. ZAJi” CEK, On the differentiability of convex functions in finite andinite dimensional
spacesCzechoslovak Math. J., 29 (1979), pp. 340—348.

(82]

128



