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ABSTRACT. In this paper we define Maxwell’s equations in the setting
of the intrinsic complex of differential forms in Carnot groups intro-
duced by M. Rumin. It turns out that these equations are higher order
equations in the horizontal derivatives. In addition, when looking for a
vector potential, we have to deal with a new class of higher order evolu-
tion equations that replace usual wave equations of the Euclidean setting
and that are no more hyperbolic. We prove equivalence of these equa-
tions with the “geometric equations” defined in the intrinsic complex,
as well as existence and properties of solutions.
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1. INTRODUCTION

Consider the space-time R x R3 of special relativity, where we denote by
s € R the time variable and by z € R? the space variable. If (*,d) is the de
Rham complex of differential forms in R x R?, classical Maxwell’s equations
can be formulated in their simplest form as follows: we fix the standard
volume form dV in R3, and we consider a 2-form F € Q? (Faraday’s form),
that can be always written as F' = ds A E + B, where E is the electric field
1-form and B is the magnetic induction 2-form. Then, if we assume for
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sake of simplicity all “physical” constants (i.e. magnetic permeability and
electric permittivity) to be 1, classical Maxwell’s equations become

(1) dF =0 and d(xyF)=J.

Here ), is the Hodge-star operator associated with the space-time Minkow-
skian metric and the volume form ds A dV in R x Rg, and J =dsAxJ —p
is a closed 3-form in R x R3, where *J and p = podV are respectively the
current density 2-form and the charge density 3-form (here * is the standard
Hodge-star operator in R3 associated with the Euclidean metric and the
volume form dV). Since dF' = 0, we can always assume that F' = dA, where
A (the electromagnetic potential 1-form) can be written as A = Ay, + @ds.
If in addition Ay, and ¢ satisfy suitable gauge conditions, then they satisfy
the wave equations

0% Ay,
2 = —AAy—J
(2) 052 2
0%
Zr _ _A
where AAy is the positive Hodge Laplacian on 1-forms AAy = (d*d +

dd*)As.

It is well known that this theory has a natural extension in general rela-
tivity to Riemannian manifolds. The aim of the present paper is to extend
this theory, as much as possible, to space-time structures based on non Rie-
mannian spaces, looking for analogies with classical theory, but, first of all,
trying to detect new phenomena.

In this paper we carry on our program in the setting of Carnot groups,
that are, as we shall see, on several respect the first natural generalization
of Euclidean spaces. In the special case of the first Heisenberg group H', a
Maxwell theory has been presented in [21].

A Carnot group G is a connected, simply connected, nilpotent Lie group
with stratified Lie algebra g. More precisely, this means that the Lie algebra
g has dimension n, and admits a step k stratification, i.e. there exist linear
subspaces (so-called layers) V1, ..., Vj; such that

(4) g:‘/l@@vm [‘/17‘/1] :V:L'+17 VK#{O}U VVZZ{O} ifi>/{7

where [V7, V] is the subspace of g generated by the commutators [ X, Y] with
X eViand Y € V. Clearly, the Lie algebra g can be endowed with a scalar
product that makes the decomposition (4) orthogonal. We refer to the first
layer V1 as to the horizontal layer. It plays a key role in our theory, since it
generates the all of g by commutations.

Through exponential coordinates, the group G can be identified with
(R™, -), the Euclidean space R™ endowed with a (generally non-commutative)
group law.

One of the main properties of Carnot groups is that they are endowed with
two family of important transformations: the (left) translation 7, : G — G
defined as z — 7,z := x-z, and the non-isotropic group dilations ) : G — G,
that are associated with the stratification of g and are automorphisms of the

group.
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It is well known that the Lie algebra g of G can be identified with the
tangent space at the origin e of G, and hence the horizontal layer of g can be
identified with a subspace HG, of T'G.. By left translation, HG. generates
a subbundle HG of the tangent bundle T'G, called the horizontal bundle. A
section of HG is called a horizontal vector field.

Obviously, Euclidean spaces are commutative Carnot groups, and, more
precisely, the only commutative Carnot groups.

It is well known that Carnot groups are endowed with an intrinsic geome-
try, the so-called Carnot-Carathéodory geometry (see for instance, choosing
in a wide literature, [8], [26] [17]). From now on, the adjective “intrin-
sic” is meant to emphasize a privileged role played by the horizontal layer
and by group translations and dilations. It is worth stressing that Carnot-
Carathéodory geometry is not Riemannian at any scale (see [41]).

In fact, Carnot groups can be seen as a particular case of more gen-
eral structures, the so-called sub-Riemannian spaces. It is worth describ-
ing shortly these structures, since this makes more perspicuous the role of
Carnot groups for our purposes.

Roughly speaking, a sub-Riemannian structure on a manifold M is defined
by a subbundle H of the tangent bundle T'M, that defines the “admissible”
directions at any point of M (typically, think of a mechanical system with
non-holonomic constraints). Usually, H is called the horizontal bundle. If
we endow each fiber H, of H with a scalar product, there is a naturally
associated Carnot-Carathéodory distance d on M, defined as the Riemann-
ian length of the horizontal curves on M, i.e. of the curves 7 such that
’y’(t) S ny(t)~

In the last few years, sub-Riemannian structures have been largely studied
in several respects, such as differential geometry, geometric measure theory,
subelliptic differential equations, complex variables, optimal control theory,
mathematical models in neurosciences, non-holonomic mechanics, robotics.

Clearly, Carnot groups fit in this more general picture, playing a privileged
role, akin to that of Euclidean spaces versus Riemannian manifolds, provid-
ing not only some of the most relevant examples, but also acting in some
sense as rigid “tangent” spaces to general sub-Riemannian spaces (rigid be-
cause they are invariant under left translations and group dilations). Thus,
they provide a natural setting for Maxwell’s equations, similar to that of
special relativity that is, roughly speaking, a “tangent theory” for general
relativity.

We want to stress preliminarily that, in spite of the number of various ap-
plications of Carnot groups to describe different phenomena in applications,
here we are not looking for any application modeling physical situations.
Our purpose is to carry on - through the study of Maxwell’s equations -
the investigation of the peculiar features of the geometry of Carnot groups.
Since we are interested in detecting non-Euclidean phenomena more than
in the analogies with the classical setting, it has been intriguing to discover
- as we shall see - that intrinsic Maxwell’s equations yield a new class of
“wave equations”, with new unexpected properties

In order to develop a theory of Maxwell’s equations in Carnot groups, we
need a complex of “intrinsic” differential forms. This setting is provided by
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Rumin’s complex (E, d.) of differential forms in a Carnot group G. Rumin’s
theory needs a quite technical introduction that is sketched in Section 3 to
make the paper self-consistent. For a more exhaustive presentation, we refer
to original Rumin’s papers [40] and [39], as well as to the presentation in [2].
The main properties of (Ef, d.) that we shall use through this paper can be
summarized in the following points:

e Intrinsic 1-forms are horizontal 1-forms, i.e. forms that are dual of
horizontal vector fields, where by duality we mean that, if v is a
vector field in R”, then its dual form v acts as v%(w) = (v, w), for
all w e R™

e The “intrinsic” exterior differential d. on a smooth function is its
horizontal differential (that is the dual operator of the gradient along
a basis of the horizontal bundle).

e The complex (E{,d.) is exact and self-dual under Hodge *-duality.

The first two properties above clearly fit our request for an “intrinsic” the-
ory. However an even stronger evidence is provided by Theorem 3.16 that
proves what we can call the “weak naturality” of the complex under homo-
geneous homomorphisms of the group G. Indeed, let T" be a homogeneous
homomorphism of G (where homogeneous means that T'(dyx) = 6,(Tx)). In
exponential coordinates, T' can be identified with linear map T : R™ — R".
Suppose now that also ‘T is a homogeneous homomorphism. Then the
pull-back T# maps Ej into Ej and the following diagram is commutative:

d. de dc

h h+1
E! gt ey

r# | o |

ho__de
Ly

de de

Engl —C 5 ...

Since the class of homogeneous homomorphisms (denoted by HL(G))
well reflects both the group structure and the stratification, the naturality
of d. under homogeneous homomorphisms shows the intimate connection
between the complex and the Carnot group. Indeed, homogeneous homo-
morphisms between Carnot groups appear naturally as Pansu differentials
of maps between Carnot groups ([37]). On the other hand, the “artificial
assumption” on T is extensively discussed in Remarks 3.17 and 3.13 below,
and is basically motivated by the fact that we are working with classes of
“true differential forms” and not with quotient classes. Nevertheless, for the
purposes of the present paper, this “weak naturality” suffices, since it yields
the invariance of our Maxwell’s equations in G under the action of intrinsic
Lorentz transformations.

We stress also that in [1] it is proved that, despite its technical definition,
the complex appears naturally through a variational approach. Indeed, on
intrinsic 1-forms, the energy associated with d., i.e. the functional

Flw) = /G |deo|]? V.

is a suitable I'-limit (see [11]) of “Riemannian” energies associated with the
usual de Rham’s exterior differential (this result is akin to some I'-limit
results in elasticity).
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If we need to stress that the complex is built on a specific group G, we
shall denote it by (E{)"’G7 dc,G), to avoid misunderstandings.

Below we shall go back to the structure of (Ef, d.), but we want to empha-
size here a key property of d. that will play later a crucial role in Maxwell’s
theory, yielding new unexpected phenomena: in general, d. is an operator
of higher order (i.e. greater than 1) in the horizontal derivatives (unlike
classical de Rham’s exterior differential), and also, in general, not even ho-
mogenous.

At this point, we can mimic classical formulation of Maxwell’s equations
as follows: starting from a Carnot group G, we define a space-time Carnot
group Rx@G, just by adding to the first layer of the Lie algebra the vector field
S = 0/0s, where s is the time variable, and by assuming that S commutes
with all the element of the Lie algebra g of G. To avoid misunderstandings,
we denote by a hat ~ all objects related to the space-time R x G. Thus,
for instance, g will denote its Lie algebra, and (E’é‘, ch) its intrinsic complex.
In Section 4, we write explicitly £ (Lemma 4.4) and d,. (Proposition 4.7),
and we define a group HO(G) of special homogeneous automorphisms of
R x G, that plays the role of Lorentz transformations. Again as in the
Euclidean setting, /\h g, the spaces of h-covectors in R x G, can be endowed
with a Minkowskian scalar product (-,-)as (see Definition 4.1). In turn,
if dV =61 A--- A6, is the canonical volume form in G, the Minkowskian
scalar product together with the natural volume form dsAdV define a Hodge
duality operator ;.

Once all this machinery is assembled, it is straightforward to write Max-
well’s equations in R x G as

(5) deF =0 and de(xyF)=J.

Here F' € Eg is the unknown Faraday’s form, and J is a fixed closed intrinsic
n-form in R x G (a source form), that can be written as J = ds A xJ — p,
where J = J(s,-) is an intrinsic 1-form on G and p(s,-) = po(s,-)dV is a
volume form on G for any fixed s € R.

However, we have to point out that the analogies with classical theory
basically stop here, and we are facing a series of new unexpected phenomena.

First of all, we notice that equations (5) are invariant under the action
of the Lorentz group HO(G), as we should expect, but the rigidity of the
structure of H L(R xG) substantially reduces the number of intrinsic Lorentz
transformations that are allowed. This is due to the fact that homogeneous
homomorphisms of a Carnot group G enjoy the contact property (see Theo-
rem 2.10). If we identify 7' € HL(G) through exponential coordinates with
a linear map 7' : g — g, this means basically that T" must preserve the layers
of g (it is a block-matrix). As pointed out in Remark 4.15, this implies that,
with the exception of some special groups with a product structure, intrinsic
Lorentz transformations “do not mix space and time”.

However, the most interesting phenomena come from the fact that the ex-
terior differential d, is a non-homogeneous higher order differential operator.
In this perspective, let us give a gist of how non-homogeneous higher order
horizontal derivatives appear in d, (but we stress that they may already
appear when we restrict ourselves to the “stationary” d. acting on forms
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on G). To avoid cumbersome notations, let us consider a Carnot group M,
that can be both G or R x G, with Lie algebra m. We need now the notion
of weight of vectors in m and, by duality, of covectors (see [40]). Elements
of the j-th layer of m are said to have (pure) weight w = j; by duality, a
1-covector that is dual of a vector of (pure) weight w = j will be said to
have (pure) weight w = j.

This procedure can be extended to h-forms. Clearly, there are forms
that have no pure weight, but we can decompose E&M in the direct sum of
orthogonal spaces of forms of pure weight, and therefore we can find a basis
of E&M given by orthonormal forms of increasing pure weights. We refer to
such a basis as to a basis adapted to the filtration of E{}M induced by the
weight. 7

Then, once suitable adapted bases of h-forms and (h+1)-forms are chosen,
d.m can be seen as a matrix-valued operator such that, if o has weight
p, then the component of weight ¢ of d.mo is given by an homogeneous
differential operator in the horizontal derivatives of order ¢ — p > 1, acting
on the components of «.

In order to provide a concrete example of these phenomena, let us consider
as in [21] the specific case G = H! = R3, the first Heisenberg group, with
variables z, y, t. For sake of simplicity, we set X := &T—%y@t, Y = y—i—%ac@t,
T := 0;. The stratification of the algebra g is given by g = V1 & V5, where
Vi = span {X,Y} and V, = span {T'}. We have X! = dz, Y0 =dy, T" =6
(the contact form of H'). In this case

E&H1 = span {dz, dy};

E&Hl = span {dz A 0,dy A 0};

E&Hl = span {dz A dy A 6}.
The action of d. on Eéﬂl is the following ([38], [20], [4]): let a = aidz +
aody € E&Hl be given. Then

depno = (X2oz2 —2XYa; +YXaq)dx N6
+(2Y X — Y?a; — XYas)dy A6
= Pi(a1,a9)dx N0+ Po(ag,ae)dy A 6.

We see that d,pn is a homogeneous operator of order 2 in the horizontal
derivatives, since 2-forms have weight 3 and 1-forms have weight 1.

On the other hand, if
a = aizdr A ds + aszdy A ds + ayadz A O + aogdy A O € E&Rle,
then, by Proposition 4.7 below,
derxmo = (Xagg — Yayg)dz ANdy N
+ (Saiq — Pi(ai3, a93))ds Adz N6
+ (Sagq — Pa(ais, a3)) ds Ady N 6.

Here the operator d. g1 is no more homogeneous: indeed, though all 3-

forms have weight 4, X aoq — Y a4, Sai4, and Sasy are operators of order 1,

since both ai4dz A 0 and agsdy A 0 have weight 3, whereas P; and P, have

order 2, coherently with the fact that they act on the coefficients of forms
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of weight 2. Incidentally, we notice that this lack of homogeneity always
appears in space-time Carnot groups (except in the commutative case).

Let us see now how this peculiarity of the intrinsic differential affects
Maxwell’s equations (beside to the obvious fact that they are no more first
order equations).

Since the complex (EZ, d,) is exact, if F € E2 is a solution of (5), we can
write

F =d.(As + ¢ ds),

where Ay, is an intrinsic 1-form on G (with coefficients depending also on
s), and ¢ is a scalar function of s and z. As in Euclidean setting, we can
proceed now to write explicitly the equations satisfied by Ax and ¢, under
suitable gauge conditions. For sake of simplicity, we assume here J = 0 and
po = 0. If we denote by d. the formal L2-adjoint of d., using the explicit
form of d, provided by Proposition 4.7, an elementary computation shows
that

2

OIS g a2
In the classical setting, if Lorenz gauge condition holds, we can replace the
right hand side by —(0.d. + d.6.) Ay, = —AAs. Keeping also in mind that
the usual Hodge Laplacian on 1-forms is diagonal in Cartesian coordinates,
it follows that the Cartesian components of Ay, solve the classical wave
equation.

On the other hand, in our case, if we want to repeat a similar argument, we
face several difficulties. First of all, the “naif Hodge Laplacian” associated
with d., i.e.

(6) Sede + dcdy,

generally is not homogeneous (and therefore, as long as we know, we lack
Rockland type hypoellipticity results (see, e.g. [27]) and sharp a priori
estimates in a “natural” scale of Sobolev spaces). This because d, itself may
not be homogeneous, but mainly because the two terms in (6) may have
different orders. When dealing with intrinsic 1-forms, as in our case, we
can recover the homogeneity of d, with an additional assumption on G: we
assume that G is free (see Definition 5.8); then Theorem 5.9 below yields
that d. is an homogeneous differential operator of order x (the step of the
group) in the horizontal derivatives when acting on 1-forms. However, even
if d. is homogeneous, such a “Hodge Laplacian” fails to be homogeneous.
For instance, on 1-forms, é.d. is an operator of order 2x, while d.d. is a
2nd order one. This is due to the fact that the order of d. depends on
the order of the forms on which it acts on: d. on intrinsic 1-forms is an
operator of order x, as well as its adjoint d. (which acts on 2—form), while
d. on intrinsic 1-forms is a first order operator, since it is the adjoint of
d. on O—forms, which is a first order operator. To overcome this difficulty,
we remind that in H' (where x = 2), M. Rumin in [38] introduces a new
homogeneous 4th order operator d.d. + (d.0.)? that satisfies sharp a priori
estimates in intrinsic Sobolev spaces of order 4. We apply the same idea in
free groups of arbitrary step x and we obtain an homogeneous operator of
7



order 2k in the horizontal derivatives acting on intrinsic 1-forms
A1 = bede + (dede)"™.

We prove in Theorem 5.10 that Ag; satisfies sharp a priori estimates of
order 2k and is self-adjoint (see Proposition 6.18). Assume now (as we can
always do) the higher order gauge condition

_ Oy
Kk—1 _
(7) (—AG) 0cAs + 785 =0.

where Ag := Z;n:l X? is the usual subelliptic Laplacian in G. Then we
have:

d9*A

e = e
®) o’

TP (LA

832 - ( G) 2

provided (7) holds (see Theorem 5.12).

Some remarks are now in order: first of all, the equation for Ay, cannot
be diagonalized, and has to be treated as a whole. But the main new
phenomenon is that the “wave equations” we obtain utterly differ even in the
scalar case from what one could imagine as “wave equations in the group”,
ie.

2

o) N
Indeed, the equations we obtain are by no means hyperbolic equations, by
[29], Theorem 5.5.2, since they contain second order derivatives in s and
2k-th order derivatives in x, so that their principal parts are (degenerate) el-
liptic. Thus, we should not expect any hyperbolic behavior, as, for instance,
finite speed of propagation like in (9) (see, e.g., [35], [25]). To retrieve a
suggestion of the possible behavior of our solutions, let us notice that the
scalar equation for ¢ can be written through the product of two Schrédinger
operators in G, since

0? o . o .

5+ AL = (- +iAg) (5 — i),
and it is natural to expect our equation to inherit intrinsic features of Schro-
dinger operator that essentially differ from those of the classical wave oper-
ator.

Another interesting feature of “wave equations” (8) has been already
pointed out in [21]. In case of cylindrical symmetry in H! (i.e. when dealing
with functions depending only on the horizontal variables), the components
of Ay, as well as ¢ all solve the equation

0%u

0s?
with suitable Cauchy data at s = 0. If we consider this equation in a cylinder
Q x R, where Q is a (say) bounded open subset of R™, we can impose
boundary conditions on 0€2. In this way, we recover a classical equation
of elasticity, the so-called Germain-Lagrange equation for the vibration of
plates (see e.g. [43], Section 9).

= —A?y in R2,
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We point out also another discrepancy with the Euclidean case, that arises
when we want to reverse our result and to derive solutions of Maxwell’s
equations from “wave equations” (8). This derivation is in fact possible,
but, unlike in the classical case, it is not just matter of straightforward
computations. Indeed (see Theorem 5.15), to achieve the proof we have to
rely on quite delicate Liouville type theorem for subelliptic Laplacians in
Carnot groups that are proved in [8].

We notice that one could legitimately ask at what extent equations (8)
are “natural”. Indeed, the operator Ag; could be considered “artificial”,
since it is obtained by adding an “artificial” term (d.6.)" to the “natural”
term d.d., just to obtain a Rockland type operator. However, we point out
that this term comes from our choice of the gauge condition, that is, by
its nature, arbitrary, precisely as in the usual choice of Lorenz gauge in R*
that yields the usual Hodge Laplace operator and the associated d’Alembert
equation.

Finally, as for the existence and regularity of solutions of our “wave equa-
tions”, in Section 6 we prove the existence of solutions in the natural Sobolev
spaces by means of the theory of the so-called abstract cosine functions for
second order evolution equations in Banach spaces (see Theorems 6.19 and
6.20). If we restrict ourselves to step 2 groups, we also prove in Theorem 6.1
the existence of plane wave solutions of our “wave equations”. Again, plane
wave has to be understood in the intrinsic sense of the group, since their
wave fronts are group hyperplanes (in the sense, e.g., of [18], [17], i.e. max-
imal subgroups that contain the center of G). Again, the non-Riemannian
character of the group geometry yields new different phenomena for plane
waves that are described in Proposition 6.14 and Remark 6.16.

2. MULTILINEAR ALGEBRA IN CARNOT GROUPS

Let (G, -) be a Carnot group of step r identified to R™ through exponential
coordinates (see [8] for details). By definition, the Lie algebra g has dimen-
sion n, and admits a step k stratification, i.e. there exist linear subspaces
Vi, ..., Vi such that

(10) g=Vi®..eV., W,Vil=Vin, Vi.#{0}, Vi={0}ifi> &,

where [V, V;] is the subspace of g generated by the commutators [X, Y] with
X eViandY € V. Set m; =dim(V;), fori =1,...,kand h; = mi+---+m;
with hg = 0. Clearly, h, = n.

We say that G is a free Carnot group if its algebra g is isomorphic the
free Lie algebra f,,, » (see, for instance [8], Section 14.1).

Choose now a basis eq, ..., e, of g adapted to the stratification, i.e. such
that

€h;_1+1---»€h; 18 a basis of V; foreach j =1,... k.

Let X = {Xy,...,X,,} be the family of left invariant vector fields such
that X;(0) = e;, @ = 1,...,n. The Lie algebra g can be endowed with a
scalar product (-,-), making {X1,...,X,} an orthonormal basis. If we are
dealing with free groups, choosing a Grayson-Grossman-Hall basis of g (see
[24] and [8], Theorem 14.1.10) makes several computations simpler.

9



Since G is written in exponential coordinates, a point p € G is identified
with the n-tuple (p1,...,p,) € R™ and we we can identify G with (R",-),
where the explicit expression of the group operation - is determined by the
Campbell-Hausdorff formula.

For any x € G, the (left) translation 7, : G — G is defined as

2V TRz =T - 2.
For any A > 0, the dilation 0y : G — G, is defined as
(11) ON(T1y ey ) = ANy, . Ay,

where d; € N is called homogeneity of the variable x; in G (see [16] Chapter
1) and is defined as

(12) d;j =1 whenever h; 1 +1<j < h;.
The dilations ) are group automorphisms, since
T - 0\y =z y).

We remind that the generating vector fields X7, ..., X, are homogeneous
of degree 1 with respect to group dilations.

As customary, we fix a smooth homogeneous norm |- | in G such that the
gauge distance d(x,y) := |y x| is a left-invariant true distance, equivalent
to the Carnot-Carathéodory distance in G (see [42], p.638). We set B(p,r) =
{a € G; d(p.q) <r}.

The Haar measure of G = (R",-) is the Lebesgue measure £" in R". If

A C G is L-measurable, we write also |A] := L"(A).
We denote by @ the homogeneous dimension of G, i.e. we set

Q=) idim(V;).
=1

Since for any z € G |B(z,r)| = |B(e,r)| = r®|B(e, 1), Q is the Hausdorff
dimension of the metric space (G, d).

By (10), the subset X1, ..., X, generates by commutations all the other
vector fields. Therefore, the subbundle of the tangent bundle T'G that is
spanned by Xi,..., X, plays a particularly important role in the theory,
and it is called the horizontal bundle HG; the fibers of HG are

HG, = span {Xi(z),...,Xm, (2)}, z€G.

From now on, for sake of simplicity, we set m := m;.

A subriemannian structure is defined on G, endowing each fiber of HG
with a scalar product (-, -), making the basis X1(z), ..., X;,(x) an orthonor-
mal basis. The sections of HG are called horizontal sections, and a vector
of HG, is an horizontal vector.

The Euclidean space R™ endowed with the usual (commutative) sum of
vectors provides the simplest example of Carnot group. It is a trivial exam-
ple, since in this case the stratification of the algebra consists of only one
layer, i.e. the Lie algebra reduces to the horizontal layer.

Following [16], we also adopt the following multi-index notation for higher-
order derivatives. If I = (iy,...,1,) is a multi-index, we set X! = X}' .. Xin.
By the Poincaré-Birkhoff-Witt theorem (see, e.g. [9], 1.2.7), the differential
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operators X! form a basis for the algebra of left invariant differential opera-
tors in G. Furthermore, we set |I| := i1+ - -+, the order of the differential
operator X', and d(I) := dyiy + - - - + dyi, its degree of homogeneity with
respect to group dilations. From the Poincaré-Birkhoff-Witt theorem, it
follows, in particular, that any homogeneous linear differential operator in
the horizontal derivatives can be expressed as a linear combination of the
operators X! of the special form above.

Let k be a positive integer, 1 < p < oo, and let €2 be an open set in G.
The Folland-Stein Sobolev space Wé’p (Q) associated with the vector fields
X1,..., Xy, is defined to consist of all functions f € LP(Q) with distribu-
tional derivatives X! f € LP(Q) for any X' as above with d(I) < k, endowed
with the natural norm. We keep the subscript G to avoid misunderstanding
with the usual Sobolev spaces WP ().

Again following e.g. [16], we can define a group convolution in G: if, for
instance, f € D(G) and g € L{ (G), we set

(13) fg(p) = / f(@9la'p)dg for p € G.

We remind that, if (say) g is a smooth function and L is a left invariant
differential operator, then L(f * g) = f % Lg. In addition

(14) (fxgle) = (gl"fx¢) and (f*glp) = (flpx"g)
for any test function . Suppose now f € £'(G) and g € D'(G). Then, if
1 € D(G), we have (all convultions being well defined)

(XTf) % gly = (Xl Vg) = (D) fly « (XT)*¥g))
= (=D =¥ (XT) v glu).

We remind now the notion of kernel of order a. Following [15], a kernel
of order « is a homogeneous distribution of degree v — @ (with respect to
group dilations), that is smooth outside of the origin.

Proposition 2.1. Let K € D'(Q) be a kernel of order .

i) VK is again a kernel of order «;
il) XyK is a a kernel of order a— 1 for any horizontal derivative X, K ,
=1,...,m;
iii) If a >0, then K € L{ (H");

iv) if a =0, then the map f — f* K is LP.continuous for 1 < p < oo.

(15)

Proof. Assertions ii) and iii) are contained in [15]. Assertion i) follows since
St(p~Y) = (0yp) ' fort > 0 and p € G. As for iv), we refer to [15] Proposition
1.9, or to [32] O

The dual space of g is denoted by /\1 g. The basis of /\1 g, dual of the basis
X1, , Xp, is the family of covectors {61, - -, 6,}. We indicate by (-,-) also
the inner product in /\1 g that makes 61, --- , 60, an orthonormal basis. We
point out that, except for the trivial case of the commutative group R",
the forms 61, , 6, may have polynomial (hence variable) coefficients. In
addition, if G is a free group, because of our choice of Xi,..., X, as in
Grayson-Grossman [24], we have 0; = dz;, i =1,...,m.
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Following Federer (see [14] 1.3), the exterlor algebras of g and of /\ g are

the graded algebras indicated as /\ g = @ /\ g and /\ g= @ /\ g

where /\09—/\ g =R and, forlghgn,
/\hg:zspan{Xi1 AN ANXG, 01 <4 <+ <ip <n},
h
/\ g:=span{f;, A---A0;, 11 <ip <--- <ip < n}.
The elements of A, g and A" g are called h-vectors and h-covectors.
We denote by ©" the basis {0;, A---A0;, 1 <i; < - <iy <n}of
A"g.
The dual space \'(A\, g) of A, g can be naturally identified with Aa.
The action of a h-covector ¢ on a h-vector v is denoted as (p|v).

The inner product (-, -) extends canonically to A, g and to /\h g making
the bases X;, A---AXj;, and 6;; A--- A6;, orthonormal.

Definition 2.2. We define linear isomorphisms (Hodge duality: see [14]

1.7.8)
*:/\hg<—>/\n_hg and *:/\hg<—>/\n7hg,

for 1 < h < n, putting, for v,w € A, g and ¢, € /\hg
vAsw = (v,w) X1 A A Xy, O Axp = ()01 A+ A Oy.
It is easy to see that
sxv = (—1)Mn=hly
(xplxv) = (plv).
From now on, we refer to the n-form
dV =0, N---NO,

as to the canonical volume form in G.

Notice that, if v = v1 A --- A vy is a simple h-vector, then v is a simple
(n — h)-vector.

If v € A\, g we define v! € \"g by the identity (v?|w) := (v,w), and
analogously we define o € A\, g for € /\hg.

To fix our notations, we remind the following definition (see e.g. [23],
Section 2.1).

)h(n—h)

) **@:(_1 P,

(16)

Definition 2.3. If V,W are finite dimensional linear vector spaces and
L :V — W is a linear map, we define

AhL:/\hV—>/\hW

as the linear map defined by
(ApL)(vi A+ Awp) = L(v1) A« -+ A L(v)
for any simple h-vector vy A--- Av, € A, V, and

AL N'ws Ay
12



as the linear map defined by
(A"L)(@)vr A+ Avg) = @l (ApL) (v A=+~ Awp))
for any a € /\h W and any simple h-vector v1 A--- Awvp € A\, V.

Proposition 2.4. If V.W are finite dimensional linear vector spaces en-
dowed with a scalar product that is naturally extended to the associated
graded algebras. Let L : V — W be a linear map, then
i) ifve \yV and a € AW, then (ML)v = Lv and (A'L)a)? =
L*(a%);
i) if « € A"W and 8 € N"W, then (A**"L)(a A B) = (A*L)a A
(A*L)B;
iii) ifve A,V andw € \,V, then (AgpL)(vAw) = (AgL)vA(ApL)w;
iv) *(ApL) = Ap(tL) and *(APL) = AP(*L);
v) if H is another finite dimensional linear vector space and G : H — V'
is a linear map, then Ap(L o G) = (AyL) o (ALG) and A*(Lo G) =
(A"G) o (A"L);
vi) if L : V — V is a unitary linear operator, then AL and A"L are
linear isometries. Moreover

«((A"L)a) = (det L) - (A"L) x .

We can define now two families of vector bundles (still denoted by A, g
and A\" g over G), by putting

(1) A, 8= udn)A, o)
and, respectively,
h h
(18) /\p g := (A"dr,1)( /\e g)
for any p € G and h =1,...,n, where we have chosen

h’egz/\hg and /\:gz/\hg.

If, for instance, ©" is a basis of A" g, then Oh := (Atdr,1)(0") is a basis
of the fiber /\Z g of A" g over p € G. We refer to the section p — O of N'g
as to the left invariant moving frame associated with ©".

The inner products (-,-) on A, g and /\h g induce inner products on each
fiber A\;,, 9 and /\Z g by the identity

(Apdrp(v), Apdry(w))p == (v, w)

and
(N'dry-1 (), Atdry-1 (B))p = (@, B).
Lemma 2.5. If p,q € G, then

Apdry : /\hvpg — /\h,qu

Athqq : /\Zg — /\Zpg

13
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In general, a subbundle N of A, g is said to be left-invariant if
Np = (Athp)(NE)
for all p € G. Analogously, a subbundle A of /\h g is said to be left-invariant
if
Ny = (A'dr,1)(N)

for all p € G.

From now on, if i/ C G is an open set and h = 0,1,...,n we denote by
Qn(U) and Q"(U) the sets of all sections of A, g and A" g, respectively. If
U = G we write only €25, and Q" We refer to elements of €, as to fields of
h-vectors and to elements of Q" as to h-forms.

If X is a vector field and « is a h-form, we denote by ¢ x« the contraction
of a with X given by (ixa)(vi A+ Avp_1) = (X Avi A=+ Avp_q).

If d is the usual De Rham’s exterior differential, we denote by é = d* its
formal adjoint in L?(G, Q*). We remind that, when acting on h-forms

(19) § = (1) g s,

As customary, if f : G — G is a continuously differentiable map, then the
pull-back f#w of a form w € Q*(G) is defined by

fro(@) = (A"(df))w(f(@).
If v € Q(G), we set also

Fo) = (Anldf ;L)) e(F ().
We have
(20) (ffw| fyv) = (wlv) o f.

A h-form o on G is said left-invariant if Tf a = o for any p € G. If in
particular « € G is arbitrary and we take p = 271, we get

(21) a(z) = (Ardr,—1)a(e).
Lemma 2.6. Let £ € \'g = /\Zg be given. If x € G, we set I¢(x) =
(A'dr,-1)E. Then

i) the map x — I¢(x) belongs to Q" and is left-invariant;

ii) any left-invariant form o € Q" has the form o = Ioge)s

Proof. By (18), I¢(x) € /\Zg and therefore the map x — I¢(x) is a section

of A" g. Take now p € G. Keeping in mind Proposition 2.4, vi), we have
(i Ie)(2) = (A"dmp) Ie(p - @) = (Atdry) o (Atdry1 1)€

Ah(de—l_p—l odry))é = A(dry-1)€

3

(
Ie(x).

This proves that I is left-invariant. The second assertion follows from (21).

(]
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Remark 2.7. In the sequel, we use also another notation, that has to be
clarified to avoid misunderstandigs: let (for instance) o be a differential
form in G, and let ¢ : G — G be a (say) continuous map. Once a basis
©* of A" g (and hence a “moving frame” of the fiber bundle A" g) is fixed,
we denote by « o ¢ the section of A\*g with coefficients with respct to ©%
coinciding with those of a(p(x)) with respect to O

Let G and M be two Carnot groups, and let g = @1, V; and m = @72, W,
be their Lie algebras (respectively n-dimensional and N-dimensional).

We denote by é1,...,éx an adapted basis of m, and by Xi,... ,XN the
corresponding family of vector fields.

Definition 2.8. A map L : G — M is said to be H-linear (and we write
L e HL(G,M)) if

i) it is a group homomorphism;

ii) it is homogeneous, i.e. d,(Lz) = L(d,z) for all r > 0.
A H-linear map induces an algebra homomorphism (that we still denote by
L) between g and m by taking InoL o exp. In particular the induced map L
is linear.

Since we are using exponential coordinates in G and M, the map L itself
from G to M can be written as N x n real matrix, and we still denote
by HL(G,M) the set of associated matrices. Finally, if M = G, we write
HL(G) := HL(G,G).

In addition, we denote by HUgr(G) C HL(G) the subgroup of the unitary
real n X n matrices satisfying i) and ii).

Definition 2.9. Let G and M be Carnot groups with Lie algebras g and m.
A linear map L : g — m is said to have the contact property if

(22) LV)CW; i=1,... k.

If the groups G and M are written in exponential coordinates in R™ and
RY respectively, and the map L : g — m has the contact property, then L
can be seen as a linear map from R™ to RV (that in general fails to be an
homomorphism).

Theorem 2.10 ([34], Corollary 3.15 and [36]). Let L : G — M be a H-linear
map. Then L enjoys the contact property (22).

Remark 2.11. If a linear map L is a contact map, we have also
LW CcV; i=1,..., ko.

In other words, 'L is again a contact map.
Indeed, take j # i and o € V. If § € W, then ('L(0), ) = (0, L(«)) = 0,
since L(a) € Wj, by Theorem 2.10.

Example 2.12. In H', H-linear maps are associated with 3 x 3 real matrices
of the form (see [36], [31])

aipr aiz 0
. a a
a1 a9y 0 ,  with ay44 = det < CLH a12 > .
0 0 aua, 21 22
15



More generally, if we denote by J the symplectic (2N x 2N )-matrix
= Ovxnv Inxn
' —INxn Onxn )’
then the real (2N + 1) x (2N + 1) real matrix

A= < Aanxan  Oanxi )
' O1x2n a

belongs to HL(HY) if and only if
"ATA = alJ.
If @ > 0, then the above condition reads as

ﬁA belongs to the symplectic group Spy(R).

For characterizations and properties of Spy(R) we refer to [7], Section 1.2.

Example 2.13. Later on, we have to deal with a space-time group like
R x H!. In this case, a H-linear map L : R x H' — R x H' has the two
following possible structures:

i) either the associated matrix L has the form

0
B Lo |0
L= o |
0 0 00

where Lg is a 3 x 3 real matrix with the last two row linearly depen-
dent,
ii) or the associated matrix L has the form

agp  apl Qo2 0
0 allp a2 0

L= ,
0 a1 agy 0

0 0 0 anage —aan
with ai11a99 — ai2a91 # 0.

More generally, let G be a step 2 group. First of all, a matrix A € HL(G)
has a block structure of the form

A= ( A£7113><m1 07(7121)”"2 > .
0m2><m1 A

mo X1Mm2
Denote a point z € G as z = (2/,2”), with 2’ € R™ and 2" € R™2; then
(x-y) =2"4+y and
(:Ey)j :xj—{_yj—l_(Qj:E/vy/)lea j:ml+17"-m27
where the @);’s are m; x my real matrices (see e.g. [17], Proposition 2.1). If

we denote now by agjz-) the entries of AngWQ,

that A € HL(G) if and only if
1 1 2
tASniXleiAEnixml = Zaz(j)Q]"
J

a direct computation shows

16



3. WEIGHTS OF FORMS AND RUMIN’S COMPLEX

Definition 3.1. If o € /\1 g, a # 0, we say that o has pure weight k, and
we write w(a) = k, if of € V.. More generally, if a € /\h g, we say that o
has pure weight k if « is a linear combination of covectors 8;, A---A8;, with
w(biy) + -+ w(by,) = k.

Remark 3.2. If o, 8 € A\"g and w(e) # w(B), then (a,) = 0. Indeed,
it is enough to notice that, if w(f;; A --- A6;,) # w(@;, A--- A0}, ), with
i1 <19 < -+ <ipand j; < jg <--- < jp, then for at least one of the indices
¢=1,...,h, iy # j;, and hence (0;; A---N0;,,0;, N---N0Oj,) =0.

We have ([2], formula (16))
Mmax

(23) Ne= @B As

— A/ min
p—Mh

where /\h’p g is the linear span of the h—covectors of weight p and M}Lnin,
M3 are respectively the smallest and the largest weight of left-invariant
h-covectors.

Keeping in mind the decomposition (23), we can define in the same way
several left invariant fiber bundles over G, that we still denote with the same
symbol A" g.

We notice also that the fiber /\Z g (and hence the fiber /\Z’p g) can be
endowed with a natural scalar product (-, ).

We denote by QP the vector space of all smooth h—forms in G of pure
weight p, i.e. the space of all smooth sections of /\h’p g. We have

(24) o= @ ot

The following crucial property of the weight follows from Cartan identin-
tity: see [40], Section 2.1:

Lemma 3.3. We have d(A\"Pg) ¢ N""'Pg, ie., if o € N"Pg is a left
invariant h-form of weight p with da # 0, then w(da) = w(w).

Proposition 3.4. If L enjoys the contact property (22), then
AL /\huv g— h’pg
forh=1,...,n and MM < p < Mjrex,
Proof. Let 0;, A---A0;, be an element of the basis ©"? of AP g. Since
AL(O;, A N0 = (AL)O;, A--- A (ATL)A

we have only to show that w((A'L)8,) = w() for £ = 1,...,n. But this
follows straightforwardly from Theorem 2.10, since, by Proposition 2.4, i),

((A'L)8,)" = "L(Xy) € Vi(ay),

by Remark 2.11. O
17
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Definition 3.5. Let now a = Y gnognp @ 0 € QP be a (say) smooth form
of pure weight p. Then we can write

da =doa+dia+ -+ dga,

h
da= > db)]
ohecohp

where

does not increase the weight,

dia = Z i(){jai)ej/\%‘

oheohr j=1
increases the weight by 1, and, more generally,
diov = Z Z (Xji)0; A O%,
ohconr X;€V;
when ¢ = 0,1,..., k. In particular, dy is an algebraic operator.
Lemma 3.6. d2 =0, i.e. (Q*,dp) is a complez.

Proof. Take a € Q"P, and write the identity d?a = 0, gathering all terms
according their weights. Since terms with different weights are orthogonal,
this yields that all groups of given weight vanish. But the group of weight
p is precisely d3a, and we are done.

O

Lemma 3.7. Let o € Q" be left-invariant. We have:
i) da = dpa;
ii) doa is left-invariant.

Proof. The first assertion is straightforward by Lemma 3.3. As for ii), if
p € G we have
T#(doa) = Tf(da) = d(Tfa) = da = dya.
O

We denote by d; the formal L?-adjoint of d; for i = 0,...,x. We stress
that also dg is an algebric operator.

Proposition 3.8. Ifh =0,1,...,n, MpPin < p < MM andi=0,1,...,k,
1 < p— MM, we have

S(QMP) c QP gnd 8 = (—1)"PFDF sy x
Proof. If & € Q"P and € Q"~1, then

/ (61, YAV = / (0, diB)dV £ 0 only if 3 € Qh—19—i,

This proves the first assertion. As for the second assertion, by (19),

So+01+---=06= (—1)n(h+1)+1 * d*

_ (_1)n(h+1)+1 % do *+(_1)n(h+1)+1 wdy k4 -,

and the assertion follows since both decompositions are orthogonal. (]
18



The following definition of intrinsic covectors (and therefore of intrinsic
forms) is due to M. Rumin ([40], [39]).

Definition 3.9. If 0 < h < n we set
Eg := ker dp Nker & = ker dp N (Im dg)*+ ¢ Q"

In the sequel, we refer to the elements of E(’} as to intrinsic h-forms on G.
Since the construction of Eg is left invariant, this space of forms can be
seen as the space of sections of a fiber subbundle of /\h g, generated by left
translation and still denoted by Eg. In particular Eg inherits from /\h g the
scalar product on the fibers.

Moreover, there exists a left invariant orthonormal basis Z} = {¢;} of Ef!
that is adapted to the filtration (23).

Since it is easy to see that E} = span {6,...,60,,}, without loss of gener-
ality, we can take §; = 0; for j =1,...,m.

Finally, we denote by N ,rlnin and N;"* respectively the lowest and highest
weight of forms in E(})l.

We define now a (pseudo) inverse of dy as follows (see [2], Lemma 2.11):

Lemma 3.10. If 3 € \"™ g, then there exists a unique a € \" g (ker do)*
such that

dodoax = 6p8. We set a := dalﬂ.
In particular
a=dy'B if and only if doo — B € ker 8y = R(dp)™.
In addition, dal preserves the weights.

Proof. The first statement follows by an easy linear algebra argument. As for
the second statement, suppose 3 € /\hH’p g, and, by (23), write a = ), a,
with a; € A" g. We have S doci = B+ &, with € € R(dp)*. Keeping in
mind that covectors of different weights are orthogonal, and that dy preserves
the weights, if j # p, we get

ldocy[|* = (@i, doas) = (B, doc;) + (¢, docyj) = 0.

i
Therefore a; € kerdy L « for j # p, and hence
levj|* = (e, ) = 0
if j # p. This proves the assertion. O

The following theorem summarizes the construction of the intrinsic dif-
ferential d. (for details, see [40] and [2], Section 2) .

Theorem 3.11. The de Rham complex (0*,d) splits in the direct sum of
two sub-complezes (E*,d) and (F*,d), with

E :=kerdy' Nker(dy'd) and F :=R(dy")+R(ddy").

We have
19



i) Let Ilg be the projection on E along F (that is not an orthogonal
projection). Then for any o € Eg’p, if we denote by (Ilga); the
component of llgpa of weight j, then

(Hpa)p = o

(25) (Upa)pinin = —dg (D de(lpa)piriie)-
1<0<k+1

i) g is a chain map, i.e.
dllg = Il gd.
iii) Let Ilg, be the orthogonal projection from Q* on Ej, then
(26) g, = Id —dy'dy —dody ', gy = dy'do + dody ™.

Notice that, since dy and do_1 are algebraic, then formulas (26) hold

also fOT covectors.
iV) HEOHEHEO = HEO and HEHEOHE = HE

Set now
de. =g, dllg: E} - BV h=0,...,n—1.
We have:
v) d? =0;

vi) the complex Ey = (Ef,d.) is exact;

vii) with respect to the bases E*, the intrinsic differential d. can be seen
as a matriz-valued operator such that, if o has weight p, then the
component of weight q of d.a is given by an homogeneous differential
operator in the horizontal derivatives of order q — p > 1, acting on
the components of .

Remark 3.12. Let us give a gist of the construction of E. The map dy td
induces an isomorphism from R(d; 1) to itself. Thus, since dy Ydy = Id on
R(dy'), we can write dy'd = Id+ D, where D is a differential operator that
increases the weight. Clearly, D : R(dy') — R(dy"'). As a consequence
of the nilpotency of G, D¥ = 0 for k large enough, and therefore the Neu-
mann series of d, 'd reduces to a finite sum on R(dy 1). Hence there exist a
differential operator

N

P =) (-1)*D*, N €N suitable,
=1

such that

Pdy'd = dy'dP = dp -1y

We set @) := Pdal. Then Ilg is given by
g =1d—Qd—dQ.
If more Carnot groups are involved, to avoid misunderstandings we write

also (Ean dc,c), whereas the usual exterior differential is denoted by dg.
20



Remark 3.13. Our definition of the complex (E{,d.) is not fully intrinsic,
since it depends not only on the group structure of G and on the stratifica-
tion of its Lie algebra, but also on the scalar product we have fixed rather
arbitrarily at the very beginning. In fact, the elements of E{ should better
be defined intrinsically as quotient classes, by putting

Ej = kerdy/R(dy),

and then by defining coherently the intrinsic differential as an operator be-
tween classes.

As pointed out in [40], Section 2.2.2, the choice of the orthogonal com-
plement of R(dp) as a representative of the quotient space makes possible
to work with “true forms” instead of equivalence classes. Obviously, this
advantage must have some negative counterpart. In particular, when we are
interested in the invariance of (Ej,d.) under the pull-back, we are forced
to add supplementary and “non natural” assumptions related to the scalar
product (see Remark 3.17).

The following “integration by parts” formula (that is not a straightforward
consequence of Stokes theorem as in R™) is proved in [2], Remark 3.18.
Indeed, the identity d.(a A B) = dea A B — a A d.p fails to hold for intrinsic
forms, as pointed out in [4], Proposition A.7, since aw A f cannot be defined
in a coherent way.

Proposition 3.14. If o € D(G, E!) and 8 € D(G, EY) with k+h+1=n,

we have
/ dea N = (—1)h+1/ aNd.f.
G

G
We denote by 6. = 6. = d = d s the formal adjoint of d. in L*(G, E).

C,

Thanks to Proposition 3.14, the following assertion holds.
Proposition 3.15. We have

be = (—1)MHDHL 4 g

Proof of Proposition 3.15. Let o € E(}} and (3 € Eg_l be smooth compactly
supported forms. Then

[ g = [ (o.apav

G

:/dcﬂ/\*a:(—l)h/ B A %% d. (xa)
G G
:(—1)n<h+1>+1/ B A x# de (xa)

G

= (—1)nh D)+l / (B, *d. * ) dV.
G

O

The following theorem states the so-called naturality of the exterior dif-
ferential d.. Since homogeneous homomorphisms of G appear naturally as
intrinsic differentials (Pansu differentials: see [37]) of maps between Carnot
groups, we can expect the invariance of (E{,d.) under pull-back associated
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with maps in HL(G). However, our statement is weaker than one could
wish, and the reason is illustrated below in Remark 3.16.

Theorem 3.16. If both L and 'L belong to HL(G), then
i) L# : B} — Eg;
ii) for any intrinsic h-form « € Eg

do(L* o) = L (d.0);

Proof. The proof is divided in several steps.

Step 1. We prove that, if a € Q" is left-invariant, then both L#a and
tL#q are left invariant. We prove the assertion for L#a. Take p € G. We
notice preliminarily that L o7, = 71, o L. Thus, by Proposition 2.4, vi), we
have

T#(L#a) = (Lom)"a = (rp0 L)*a = L#Tfpa = L*a.

Step 2. For any h-form w € Q" we have do(L#w) = L*(dow) (again the
same assertion still holds for ‘L#). Indeed, suppose w has pure weight p, i.e.
suppose w € QP We can write now

d(L7w) = do(L*w) + dy(L¥w) + - - -,
and, at the same time, by linearity
d(L#w) = L (dw) = L (dow) + L (dyw) + - - .

But both d;(L#w) and L#(d;w) belong to Q1P+ for i = 0,1, ..., since the
pull back preserves the weights, by Proposition 3.4. Keeping in mind that
QP17 s orthogonal to Q"1 for r # s, it follows that d;(L#w) = L#(d;w)
fori=0,1,....

Step 3. Suppose w € Q" is left-invariant. Combining Steps 1 and 2, and
keeping in mind that dg preserves the left-invariance, we obtain that do(L#w)
and L#(dyw) are left-invariant. If we write the identity do(L#w) = L# (dow)
at 0, keeping in mind that Le = e, we obtain

do ((A"L)w(0)) = (A"L)(dow(0)),
since
Step 4. Suppose w € Q" is left-invariant. Then dalL#w = L#(dalw).

Since both terms are left-invariant, by Step 1, keeping in mind that dy Lis
algebraic, we need only to prove the assertion at 0, i.e to prove that

dy (A" L)w(0)) = (A"L)(dy 'w(0)),
since Le = e. Set now wp := w(0); by the very definition of dj’, this is
equivalent to show that
(a) (A"L)(dytwo) L ker do;
(b) do((A"L)(dy " wo)) — (A"L)wy € R(do)*-

To prove (a), take £ € kerdy. We notice that dole = Ig,¢, since both
dole and Igye are left-invariant (Lemma 3.7) and coincide at 0 (since djp is
algebraic).

By Proposition 2.4, we obtain

((A"L)(dg 'wo), €) = (dg 'wo, (A" 'L)E).
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On the other hand, keeping in mind Lemma 2.6,
do(A" 'L)¢ = do('L#I(0)) = do( 'L*I¢) (0)
= (L#(dol))(0)  (by Step 3) = ( 'L#(I4ye)) (0) = 0.

Therefore (dy 'wo, (A" *L)¢) = 0, since dj 'wp is normal to ker dy, by its very
definition. This proves (a).
To prove (b), take £ = don € R(dp). Arguing as above, we obtain

(do((A"L)(dy 'wo)) — (A" L)wo, €)
= ((A"L)(dody wo) — (A"L)wo, &) = (dody *wo — wo, (A" L)E).
On the other hand, don = (doI;)(0), and hence
(A" 'L)¢ = ('L*(dol,))(0) = (do( 'L¥I,))(0)
= do(A" 1 'Ln) € R(dy).

Thus (dody *wo — wo, (A" L)€) = 0, by the very definition of dy *wp and (b)
follows.
Step 5. By Steps 3 and 4, L# commutes with both dy and alo_1 and
therefore
L#1g, = L#(Id — dody ' — dy'do) = g, L*.

In particular, i) follows.
Step 6. In order to prove ii), we have but to show that the pull back
commutes with IIg.

Following now the notations of Lemma ??, L# commutes with D =
dytdy — Id, and hence with P = >, (—1)*DF, and finally with Q. Thus
it commutes with Il = Id — Qd — d@). This achieves the proof of the

theorem.
O

Remark 3.17. The statement of Theorem 3.16 is not as natural as we could
wish, though sufficient for our purposes when dealing later with Maxwell’s
equations. This because of the assumption on L. However, as we already
pointed out in Remark 3.13, this is due to the fact that we are not working
with the natural complex (ES, d.), but with an isomorphic complex of “true
forms”, that depends on the choice of a scalar product in g. Indeed, we could
get rid of the “non natural” assumption by working on quotient spaces as
sketched in Remark 3.13, and keeping in mind that, by Step 2 of our previous
proof, if L € HL(G), then dgL# = L#dy. Thus the map

L# : ker do/R(dy) — ker dy/R(dp)
given by
L#[a] := [L* o]
is well defined without further assumption on L.
IfQc Gisanopenset,0 < h<n, ke Nand1l < p < oo, then we denote
by Wéj’p (Q, E) the space of all forms in E} with coefficients in Wéﬁ’p (Q),

endowed with its natural norm. It is easy to see that this definition is

independent of the basis of /\h g we have chosen. The spaces LP((2, E}') and
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D(Q, E) are defined analogously starting from LP(Q) and from the space
of test functions D(S?), respectively.

Definition 3.18. If Q2 C G is an open set and 1 < h < n, we say that T is
a h-current on Q if T is a continuous linear functional on D(Q, E}) endowed
with the usual topology. We write T' € D'(, E&).

Any (usual) distribution 7' € D'(2) can be identified canonically with an
n-current T € D'(2, Ef) through the formula
(27) (T)a) := (T|*a)

for any o € D(Q, Ef). Reciprocally, by (27), any n-current T can be iden-
tified with an usual distribution T € D’(Q).
Following [14], 4.1.7, we give the following definition.

Definition 3.19. If T € D'(Q, E}), and ¢ € £(Q, EY), with 0 < k < n, we
define TL p € D'(Q, Eg_k) by the identity

(TLpla) = (Tlany)
for any o € D(Q, EF ).

We notice that, when ¢ € £(Q, E§) and a € D(Q, E; %), then the wedge
product o A ¢ belongs to D(€2, Ef), since Eff = Q".

The following result is taken from [3], Propositions 5 and 6, and Definition
10, but we refer also to [12], Sections 17.3 17.4 and 17.5.
Let @ C G be an open set. If 1 < h < n, If ZF = {f{l,...fgimEh} is
0

a left invariant basis of E! and T € D/(2, E}), then there exist (uniquely
determined) 71, ..., Ty, Eh € D'(Q) such that

T = TjL(«}).
j

It is well known that currents can be seen as forms with distributional co-
efficients in the following sense: if a € E(Q, E}), then « can be identified
canonically with a h-current T;, through the formula

(28) (Tolp) == / xa A @
Q
for any ¢ € D(Q, El). Moreover, if a = > ozjgjh then
To =) a;L(x£])
J
The notion of convolution can be extended by duality to currents.

4. SPACE-TIME CARNOT GROUPS

From now on, we denote by = a “space” point in the Carnot group G,
and by s € R the “time”, and we choose in R x G the canonical volume
form ds A dV, where dV = 601 A --- A 0, is the canonical volume form in G.
Moreover, we denote by (Qf,dg) and (25, ¢, drxg) the de Rham complex
of forms on G and on R x G, respectively. For sake of brevity, we write

Q*:=Qf and Q' :=Q%.q,
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d:=dg and d:=dgxc,
§:=df and §:=d, ¢
Analogously, we write

di :=dg; and d;:= drxG,,

6 =dg,; and §; = dp.g,,
i=0,...,k (see Definition 3.5).
When dealing with intrinsic forms, we denote by (Ef ¢, de.c) and (£ g« s de,RxG)
the complex of intrinsic forms on G and on R x G, respectively. For sake of
brevity, we write

ES = EE;,G and ES = Eg,RXG’

as well as
d. = dc,((} and d.:= dc,RXGa

50 = dZ’G and (50 = dz,RXG'

Denote by S the vector field %. The Lie group R x G is a Carnot group;
its Lie algebra g admits the stratification

(29) i=Viehe oV,

where V3 = span {S,V1}. Since the adapted basis {Xi,...,X,} has been
already fixed once and for all, the associated orthonormal fixed basis for g
will be

(S, X1, s Xy e oo X} = { X0, .., X ),

where we have set Xg := 5. Coherently, we write also 6y := ds. Consider
the Lie derivative Lg along S. If f@;, A---A0;, is a h-form in G, 1 <4y <
-+ <ip <mn, we have Lg(f0;; N---Nb;,) = (Sf)0i, A---A0b;, . Indeed
e if h =0, by definition Lsf = igdf = > 7_(X;1)0;(Xo) = Sf;
o if f0; N---6;, is a h-form in G, h > 1, then Lg(f6;, N---N¥b;,)
(Sf)&ll A A Gih + fﬁs(ezl A A 0%) But ES(Qil A A Gzh) is
a sum of terms of the form 6;, A--- A Lg0;, A--- AN8;, = 0, since
Ls6;, = 0.
Thus, when acting on h-forms « in G, without risk of misunderstandings,
we write Sa for Lga.

We point out that S commutes with d, the exterior differential in G.
Indeed, if a =377, ozjé??, then

Sda = Zn: Zn:(sxgaj)eg N = Zn: i(xgsaj)eg A0} = d(Sa).

Jj=lt=1 Jj=11¢=1

Moreover, if a € Q" and its coefficients depend on s and x (and is identified
with a h-form in Q"), then

(30) da = da + ds A (Sa).

As in special relativity, the space-time R x G can be endowed with a
Minkowskian scalar product as follows.
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Definition 4.1. We denote by G = (gij)i j=o....n the (n+1) x (n+1)-matrix
in HL(R X G,R x G) such that gij = 0ifi=#£ 7, gs =1ifi >0, goo = —1,
i.e. we set

-1 0 00
0 1 00
0 0
0 0 10
0 0 0 1
G = 1 0
0 - 0
0 1
0 0

We can define now “Minkowskian” scalar products (-,-)ps in A, § and A" §
by

(0, ") = (ARG)v, v if v, € N\, 8
and
(a, 0V = (A"@)a, !y if a0 € A" g

Notice that the bilinear form (-,-)5s is nondegenerate.

Definition 4.2. We denote by *,; the Hodge operator ), : /\hg — A"fh@
associated with the Minkowskian scalar product in A" § and with the volume
form ds A dV by

a Ay B = (e, B)pyds AdV.

Definition 4.3. If 1 < h < n, we denote by 524 the codifferential 53/1 :
Q" — QP 1 associated with the Minkowskian scalar product by

/<5g‘4a,5>MdsAdvz/<a,cicﬁ>Mds/\dv
G G

for o € D(G, E}) and 8 € D(G, EM ).
By Proposition 3.14, we have

S(]:\/[ _ (_1)(n+1)(h+1)+1 11 CZC *ur -

Let us state preliminarily a structure lemma for intrinsic forms in R x
G. The result is proved in [5], but we sketch the proof here for sake of
completeness.

Lemma 4.4. If1 < h <n, then a h-form « belongs to Eg if and only if it
can be written as

(31) a=dsN\p+7,

where € Eg_l and v € E{)L are respectively intrinsic (h — 1)-forms and
h-forms in G with coefficients depending on x and s.
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Proof. Without loss of generality, we can restrict ourselves to prove an
analogous decomposition for covectors (identified with left invariant forms)
acN'g,ve AN'gand g e N' g, where, as usual, we identify A" g with
a linear subspace of /\h g.

First of all, notice that, if o € A"g is arbitrary, then do(ds A o) =
d(dsNo) =dsNdo = dsNdyo. Thus, if dp = 0 and dyy = 0, then dpaw = 0.

On the other hand, let o/ = ds A 8/ ++' be arbitrarily given in A"~ §.
Then, keeping in mind that covectors in /\Eg are orthogonal in /\h@ to
covectors of the form ds A o with ¢ € /\é_1 g, by the very definition of the
scalar product, we have

<Oé, dOO/> = <67d05/> + <’77 d07/> =0,
since both § and 7 belong to Ej ¢ and hence are orthogonal to the range of

dp. Thus also « is orthogonal to the range of dg and eventually « € Eg
Suppose now « belongs to E{} We can always write it as « = ds A B+,
with 8 € A" 'gand v € A" g, and 0 = doo = ds A dof + doy. But ds A dof
and dyy are orthogonal, and hence dy8 = 0 and dyy = 0. Let now + € /\h g
be given. Since dpy’ is orthogonal to any h-covector of the form ds A 3’ with

B e N'"'g, we have 0 = (o,dpy') = (ds A B +7,do7) = (7,do7), e v
is orthogonal to the range of dy and then v € E&G. Analogously, if g’ €

N7t then 0 = (a,do(ds A B)) = (a,ds AdofB') = (ds A B,ds Adof') +
(v,ds N doB'y = (B,dpf’). Thus 8 is orthogonal to the range of dy and then
B e By O

Remark 4.5. If 1 < ¢ < n, by Lemma 4.4, keeping in mind that forms in Eg
are orthogonal to the forms ds A o with o € Eg_l, we have

(ds A B+7,ds AP+ ) = (v,7) — (B, 8).
Remark 4.6. fa=dsANB+~ € E'(’}, then
sara = (—1)Pds A wy — %8.
Indeed, if o/ =ds A3 ++ € Eé‘, by Lemma 4.4 we have
(ds A B +~) A ((=1)ds A sy — *p)
= —ds A B AxB+ (=1)"y ANds A xy
(since 4/ A %[ vanishes, being a (n + 1)-form in G)
= —dsAB AxB+ds Ny Axy
= (a, ) prds N dV.

Proposition 4.7. If 1 <h<n,anda=dsANB+~ € E(})’, then

(32) decv = ds A (S7y — defB) + dey.

and

(33) Mo = —ds A 6.8+ by + SB.

Proof. The proof will be articulated in several lemmata. O
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Lemma 4.8. I[fa=dsANf+~ € Q" then
(34) doa = ds A (Sy — dB) + dr.
Proof. By (30) we have:
doo = —ds A dB + dy = —ds A (dB + ds A (SB)) + dy + ds A (S)
=ds N\ (Svy —dp) + dy.

O
Lemma 4.9. I[fa=dsANf+~ € ESL, then
(35) dyo = ds A (Sy — di8) + dv,
and
(36) dio = —ds NdiB + diy  fori# 1.

Proof. Suppose a has weight p, i.e. suppose [ has weight p — 1 and v has
weight p. By Lemma 4.8, and keeping in mind that S+ has weight p too, we
can write

da = ds A (Sy —dB) + dy
=ds N\ (Sy—doB—dif—---)+doy+diy+---
= {—ds ANdoB + dov} + {ds A (57 — d18) + d1v}
+{=ds ANdaff +doy} + - .

This proves the assertion.

Lemma 4.10. Ifa=dsAf+~v € E(})‘, then
(37) dyta = —ds Ndy' B+ dyty.
Proof. 'To prove the assertion, by the very definition of d ! we have to show
that —ds Ady '8 +dy'y L kerdy and do(—ds Ady '8 +dy'y) —a € R(do)* .
Thus, take first ds A 0 + 7 € kerdy. Then dyo = 0, dg7 = 0, and hence,
(—ds A do_lﬂ + dal’y, dsNo+T1) = <d515, o) + <d0—1%7> =0, since do_lﬁ L
o, and dalfy 1 7, by definition.

Take now ds Ao + 7 € Q1. By (36), do(—ds A dy'B+dyty) —a =
ds A (dody B — B) + (dody 'y — ), so that

(do(—ds NdyB + dyty) — a,do(ds Ao + 7))
= —{dodg '8 — B, doc) + {dody 'y — 7, doT) =0,

since, by definition, both dody '8 — 8 L R(do) and dody 'y —~ L R(dp).
U

We want to express the lifting operator I1g and the orthogonal projection
IIg, in Q* in terms of its counterpart in Qf,. We denote by E and F' the

0
complexes F and F' in Q2*. These notations are coherent with our previous

notations when we had to distinguish between R x G and G.

Lemma 4.11. Ifa=dsAf+~v € E’g, then
(38) Hpo = ds Ngs + Igy.
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Proof. The proof consists of two steps: first we shall prove that

(39) dy N(ds NS +Tigy) =0
and
(40) dytd(ds ATIggB + py) =0

This proves that ds A llgB + gy € E. The second step will consist of
showing that

(41) a— (ds NS + Igy) € R(dy") + R(ddy") = F.
Clearly, (39), (40), and (41) yield (38).
Now, by (35),
dyt(ds NS +Tgy) = —ds Ady 'TIgf + dy gy = 0,

ie. (39). As for (40), by (34) (keeping in mind that S commutes with IIg,
since Il is a linear differential operator on G)

A~

d(ds NMIgS + gy) = ds A (—=dUgp + gSy) + dllgy.
Therefore
cZach(ds NlgB + 11gy)
=ds A (dy dllgB — dy 'TIESy) + dy 'dllgy = 0,
since g8 € F C ker(dy'd), MpSy € E C ker(dy'), and Mgy € E C
ker(dy'd). This proves (40).
In order to prove (41), we write
a—(ds NIgB +1lgy) = ds A (B —HgB) + (v — Igv).
We know that
B—TgB =B =dy o1 +ddy or
for suitable o1 € Q{é and o9 € Qgﬁl, and
Y — HE’)/ = HF’)/ = dalTl + ddalTQ
for suitable 7 € Q&H and o € Q&.
We show that
ﬁal(ds A(—=o1+ Sm)+ 1)+ cicial(ds N o9+ 7o)
=ds A\ (B —gh) + (v — Ugy).

This will achieve the proof of (41). By Lemmata 4.10 and 4.8, and keeping
into account that S commutes with d ! that is a linear algebraic operator,
we have

d5(ds A (=0 + ST2) +71) + ddg (ds A o + 7)
=ds A (dytoy —dytSme) + dytm 4 d(—ds Adytos + dy )
=dsAdy'oy —dsAdy' ST +dy'n
+ds Addy oy + ds A Sdy o + ddy M
=ds A (dy oy +ddytog) + dytr 4 ddy 't

=ds N\ (B —TIgB)+ (v — Igy).
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This achieves the proof of the lemma.

Lemma 4.12. Ifa=dsAf+~v € E{}, then
(42) Han:dSAHEOB+HEO’y.

Proof. By Lemma 4.4, ds ANllg,3+11g,y belongs to Eg On the other hand,
ifdsho+T1¢€ E’h, then
(a0 —ds NIg,p —g,y,ds Ao+ )
=(ds N (B —1g,B)+~v—1g,y,ds Ao +T)
= (B =g f,0) + (v = g7, 7) =0,
since f—1Ilg, 3 L Eg_l, v—1g,y L Eg, and, again by Lemma 4.4, o € E(’}_l

and 7 € E(})’.
O

End of the proof of Proposition 4.7. By Lemma 4.4, if « =dsAf+ € E‘g,
then g8 € Eg_l and vy € E(’}. Moreover, by Lemma 4.11, keeping in mind
that S commutes with IIg, since IIg is a linear differential operator on G,
and that S(E[) C El, since S acts only on the coefficients of a form in EZ,
we have

(fHEa = cZ(ds ANlg8 + HE’y)
=ds A (—dllgp + Slgy) + dllgy
=ds A (—dlgp + Lgllg,Sy) + dllgy.
Thus, by Lemma 4.12 and Theorem 3.11, iv),

M, dgor = ds A (~Tg,dlpB + g, 11, S)
+ g, dllgy
=ds N (—def + S7v) +dey.
This proves (32).
Let us now prove (33). Take o = ds A+ v € DR x G, Eg),a’ =
ds\NB' ++" € DR x G, E(]}_l). We have

/ (Mo, oy ds NdV = {a, decYpy ds A dV
RxG RxG

= / (a,ds N (S —d.B') +dey'Ypr ds A dV
RxG

. [(v,dey') — (B, —doB + S')] ds A dV

[(6c7,7") — (=805, B) + (SB,~)] ds A dV

@

X

I
— s

(—ds N\ 6ef + 8ey + SB, ') pr ds A dV.
xG
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Definition 4.13. We denote by HO(G) the group of all (n+ 1) x (n+1)
matrices L € HL(R x G,R x G) such that 'LGL = G, where G is defined in
Definition 4.1.

We refer to HO(G) as to the contact Lorentzian group of G. If L €
HO(G), then det L = +1. In particular, L is an homogeneous automor-
phism.

Example 4.14. As in Example 2.12, consider the first Heisenberg group.
A matrix as in i) does not belong to HO(G), since it has zero determinant.
Thus, a matrix L belongs to HO(G) if and only if it has the form

+1 0 0 0
|l 0 a1 a2 O
L= 0 a2 ax 0O ’
0 0 0 detA

where

A= < @ ar ) is a unitary matrix.
az1 a2

Remark 4.15. The previous example shows that, due to the rigidity of the
contact structure in H', Lorentz transformations in H' “do not mix space
and time”. In fact, it turns out that this phenomenon is not peculiar to
Heisenberg groups, but is common to most of the non-commutative Carnot
groups. For instance, in the case of free Carnot groups, this property is
not at all unexpected, keeping into account the lack of homogeneity of the
associated “wave equation” (see Theorem 5.12 below).

Theorem 4.16. If L € HO(G), then
i) L#: Ef — E3;
i) d.L7* = L7#d,;
iil) *,,L7% = (det L) - L¥ (x,,).
Proof. Assertions i) and ii) are already contained in Theorem 3.16, since
‘I, = GL7'G is an homogeneous automomorphism. Indeed, both L~! and

G are both homogeneous automomorphisms. As for iii), given a h-forma «,
we have but to show that

(43) BAL#(xpa) = (det L) - (8, L7 &) pyds A dV
for any (n + 1 — h)-form 5. Indeed
BAL*(xp0) = L#((L_l)#ﬁ Aspa) = (det L) - ((L_l)#ﬂ Aspa) oL
= (det L) - (A"G)(A"L™Y)B, a0 L) ds A dV
= (detL) - (B, (A"L)a o L) ds A dV
= (det L) - (B8, L") prds A dV.

5. MAXWELL’S EQUATIONS

Let J be a fixed closed intrinsic n-form in R x G (a source form). By
Lemma 4.4, J = ds A %J — p, where J = J(s,-) is an intrinsic 1-form on G
and p(s,-) = po(s,-)dV is a volume form on G for any fixed s € R.
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IfFe Eg, we call Mazwell’s equations in G the system
(44) d.F =0 and d.(xpF)=J

(for sake of simplicity, we assume all “physical” constants to be 1). This
system corresponds to a particular choice of the so-called constitutive rela-
tions.

Remark 5.1. The source form J is closed; thus, by Proposition 4.7,
0=d.J =dsA(=Sp—d.(xJ)) —dep
= —ds N\ (Sp+d.(xJ)) (since p is a volume form in G)
= —(Spo)ds NdV —ds A *xd.(xJ) (by (16))
= —(Spo — dcJ)ds NdV  (by Proposition 3.15),
that is equivalent to the continuity equation

dpo

(45) s 0cJ = 0.
Since J is an intrinsic 1-form in G, we can assume J = (J)f, where J is a
horizontal vector field. Thus, equation (45) takes the more familiar form of
the continuity equation

@@+deJ:0

s
Remark 5.2. For sake of simplicity, Maxwell’s equations, as they appear
in (44), are formulated for smooth forms, though their natural formulation
should be given in the sense of distributions, or, better, in the sense of intrin-
sic currents. Indeed, differential operators among intrinsic forms naturally
extend by duality to differential operators among currents. Nevertheless,
in this note we do not really need to deal with these equations in such a
generality; therefore, to avoid cumbersome notations, whenever it is possible
we write our equations in terms of differential forms.

Let us clarify the meaning of the last statement: our equations derive
their intrinsic character from their formulation (44), but can be written
alternatively “in coordinates”; to this end, we remind that we have fixed
once for all a basis of g, i.e. a system of coordinates in G, so that, by
Theorem 3.11, vii), the system (44) can be read as a system of differential
equations for the coefficients of the differential form F'. On the other hand,
by duality, this system for a current F' can be read as the same system for
the distributional coefficients of F'.

A crucial property of Maxwell’s equations relies in their invariance under
the action of Lorentz group. The same property holds in Carnot groups:
thanks to Theorem 4.16, equations (44) are invariant under the action of
HO(G), i.e.

Theorem 5.3. If L € HO(G), F satisfies (44), and we set
F:=L*F and J:=(detL) -L*J
then
(46) de(F) =0 and dy(xy F)=J.
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Remark 5.4. We stress that, by Theorem 4.16, ii), J is a closed form.

The following equivalence is well known in classical Maxwell’s theory, and
has been proved in Heisenberg groups in [5].

Theorem 5.5. An intrinsic 2-form F € E3, F = ds NE+ B (with E € E}
and B € E}) satisfies (44) if and only if

0(xB)

and
E
(48) 66—8 =(—1)"xd.(«xB)—J , 0.E=—po.

and .J be horizontal

—

)i. Moreover, as in

(xdo(V)%)?. Then

Remark 5.6 (see [5]). In H' (as well as in R3) let E, B
vector fields. Set F = (E)u, —-B = >|<(B‘)u and J = (
[20], [5], if V is a horizontal vector field, define curlg V
equations (47), (48) take the more familiar form

o5
0s

= —curly E , divyg B=0
and
OF S
25 = curly B—-J , divg E = po.
s

Remark 5.7. By Proposition 3.15, (48) can be written also as
0FE
(49) g = _5CB —J , 5CE = —p0-

Proof of Theorem 5.5. Suppose F' satisfies (44). Keeping in mind Proposi-
tion 4.7, the first equation in (44) can be written as

(50) ds A\ (SB —d.E)+d.B =0,
that is equivalent to
J(xB)
Js

Analogously, by Remark 4.6, the second equation in (44) can be written as
ds A\ «J — podV = d.(ds A (xB) — *E)
=ds A (—*SE — dc(*B)) — dc(+E),
that is equivalent (by (16) and Proposition 3.15) to

=xd.E and d.(xB)=0.

OFE
g = (_1)n * dc(*B) —J and 6.F = —00-
The reverse implication can be proved in the same way. O

If F' is a solution of (44), then it is in particular a closed form. Therefore
it admits a vector potential

A:=As+ pds € Eé such that d.A = F.

We want to show that, under suitable gauge conditions, As; and ¢ satisfy
intrinsic “wave equations”. To this end, we must restrict ourselves to a
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particular class of Carnot groups, i.e. to the class of the so-called free
groups. Let us remind the following definition.

Definition 5.8. Let m > 2 and x > 1 be fixed integers. We say that f,, .

is the free Lie algebra with m generators x1, ..., x,, and nilpotent of step k
if:
i) fm,x is a Lie algebra generated by its elements x1, ..., Zpm, i.€. fmx =
Lie(z1,...,xm);

ii) fm, is nilpotent of step x;

iii) for every Lie algebra n nilpotent of step x and for every map ¢ from
the set {x1,..., 2} to n, there exists a (unique) homomorphism of
Lie algebras ® from f,, . to n which extends ¢.

The Carnot group G is said free if its Lie algebra g is isomorphic to a free
Lie algebra.

The technical reason for restricting ourselves to the class of free groups
relies in the following property.

Theorem 5.9. Let G be a free group of step k with m generators (m > 1).
Then all forms in E& have weight 1 and all forms in Eg have weight k4 1.
In particular, the differential d. : E} — EZ2 can be identified, with re-

spect to the adapted bases =} and E(Q), with a homogeneous matriz-valued
differential operator of degree k in the horizontal derivatives.

Proof. The first assertion is well known, since E} = span{fy,...,0,,}. On
the other hand, the last assertion follows by [2], Theorem 2.15, iii). Let now
a A B # 0 be a left-invariant 2-forms with w(a) = pa, w(B) = pg, Pa < K,
pg < K. First of all, we can assume without loss of generality that

(51) g La.

Indeed, we can write 8 = Ao + £/, with 8’ L «, and, obviously, 5’ # 0,
since, if 3 =0, a A = Aa A« = 0, being a of degree 1. Thus, for the
same reason, o A = a A (', proving (51). Suppose now p, + pg < k; we
can show that o A 3 ¢ (Im dg)*. Indeed, remember first dy when acting on
left-invariant forms coincides with d (see [2], Lemma 2.8 or [40], Section 2.1).
Put X := [of, 8% and ¢ := X" The left-invariant vector field X belongs
to the layer V;,,+p, and does not vanishes since p, + pg < x and the group
G is free. By Cartan’s Lemma ([28], identity (1) p.136, with a different
normalization), we have

(do&, a0 A B) = (d€, o A B) = (d€|a” A B7) = —(£]X) = —(X, X) # 0.

This shows that a A 8 ¢ (Im dp)* and therefore that a A B ¢ E2.
Assume now that p, +pg > 1+ x. We want to show that

(52) do(a N B) = d(aAP) #0

This will imply that a A 8 ¢ Eg, achieving the proof of the theorem.

To prove (52), suppose k > po > pg. Since po +pg > £+ 1, we know that
pg > 1, so that we can write B = [Ws, W], with W3 € V; and Wy € Vig—1-
We set also Wy := af.
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Again by Cartan’s identity
<d0(0£ VAN ,8)|W1 AWy A W3> = <d(Oé AN ﬁ)‘Wl AWy A Wg)

_ —{<a/\ BI[W1, Wa] A Wa) 4 (a A B|[Wa, W3] A W)
+ (oA BI[Ws, Wi) A W) }

= —{Il —|—IQ —|—13}

Notice now that [W1, Wa] € V,,1p,—1 = {0}, since po +pg — 1 > k. Thus
I; = 0. On the other hand

b_m<wwmm>wmw_

(B|[Wa, W3])  (B|W1)

But (8|W1) = (8%, Wi) = 0, since Wi € V,,_1 and 8% € V,,. More-
over, [Wy, W3] € V, 41 and B e Vps- But po +1 > pa > pg, so that
(BI[Wa, W3]) = (B%, [Wa, W3]) = 0 and then I = 0.

Finally
_ (alB%) (| W) )
@‘w(ww>mm>'
But (a]8%) = (o, 8) = 0, (8]8%) = (8, 8) = |67 # 0, and (a|W>) = (a]a®) =
(o, a) = |a?| # 0, so that I3 = |a?||3?] # 0.
This shows that (52) eventually holds. O

We need now a Hodge-Laplace operator on intrinsic forms. We already
discussed extensively in the Introduction the problem of the lack of homo-
geneity of the “naif Laplacian” d.d.+ 6.d., showing that the homogeneity of
the exterior differential d. in a free group G stated in Theorem 5.9 enables
us to build a good “homogeneous Hodge Laplacian” on intrinsic 1-forms on

G.

Theorem 5.10. Let G be a Carnot group. Suppose N3 = NIM .= Ny,
i.e. suppose all intrinsic 2-forms have the same weight No (by Theorem
5.9 this holds true for any free group G, but also for all Heisenberg groups
H" with n > 1). Set Na — 1 := r. Denote by Ag1 = 6cdc + (dcde)” the
homogeneous Hodge Laplacian on intrinsic 1-forms in G. Then the following
result holds: if 01, ...0,, is the fized left invariant orthonormal basis of Eé,
then for j =1,...,m there exists

(53) Kj =Y KijL(x6;) € D'(G, Ej) N E(G\ {0}, Ey),

with K;; € D'(G), i,j =1,...,m such that

i) AgaK; =L (x0;), j=1,...,m;

ii) If 2r < Q, then the K;;’s are kernels of type 2r in the sense of
[15], for i,7 = 1,...,N (i.e. they are smooth functions outside of
the origin, homogeneous of degree 2r — @, and hence belonging to

L} (G), by Corollary 1.7 of [15]). If 2r = Q, then the K;;’s satisfy

the logarithmic estimate | K;;(p)| < C(14|1Inp(p)|) and hence belong

to Ll .(G). Moreover, their horizontal derivatives (i.e. X¢K;; for

¢=1,...,m) are kernels of type Q — 1 in the sense of [15].
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iii) When o € D(H", E}), if we set
(54) Ka = Z(aj * Kij) L(x&),

]
then Ag 1Ko = a.
iv) If 2r < @, also KAg 1o = . If 2r = Q, then for any a € D(G, E})
there exists a “constant coefficient form” B, € E}, such that

KAg1a — o= B,.

v) Ag,1 is mazimal subelliptic, i.e. there exists C > 0 such that for any
multi—index I with d(I) =r

(55)  IX7alle.my < € ((B6100 @) ey + ol e

for any a € D(G, E}).
vi) If 1 < p < oo is fized, then there exists C > 0 such that for any
multi—index I with d(I) = 2r we have

(56) HXICV”LP(G,E(%) <C (||AG,104||LP(<G,E5) + HO‘HLP(G,E(}))

for any o € D(G,E}) (if p = 2 this means that Ag 1 is mazimal
hypoelliptic in the sense of [27]),.

If we replace G by a bounded open set 2 C G, then, by Poincaré inequality
(130]), in (56) and in (55)), we can replace d(I) = 2r by d(I) < 2r and
d(I)=r by d(I) <r, respectively.

Proof. If we prove that Ag is hypoelliptic, then the statements follow by
[6], Theorems 3.1 (see also [4], Theorem 4.7). We notice that statements v)
and vi) are proved in [6] with constants depending on supp a. But we can
easily get rid of this dependence taking the assertion for supp o C U(e, 1)
and by applying a rescaling argument.

On the other hand, the proof of the (maximal) hypoellipticity of Ag ; fol-
lows verbatim the scheme of that of [40], Theorem 2.5. Let 7 be a nontrivial
irreducible unitary representation of G. Without loss of generality, if S is
the space of C* vectors of the representation, we may assume that

S. = S(R¥),

for a suitable k£ € N.

First of all, we remind that, for any m € N, Afl is maximal hypoelliptic,
and therefore 7(Af) is injective on Sr. Indeed, since Af is a left invari-
ant G-homogeneous differential operator, it is enough to notice that A’ is
hypoelliptic (see, e.g., [6]).

Since we have already fixed two bases of Ef, all differential operators
among intrinsic forms (and Ag; in particular) can be seen as a matrix-
valued differential operators. Thus, by [27] (see also [10], p. 63, Remark
5), the hypoellipticity of Ag; is equivalent to the injectivity of W(AGJ) on
M.

Let now u € (S(Rk))Nl be such that

m(de)*m(de)u + (m(de)m(de)*)) u = 0.
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Integrating by parts, we get

(57) m(de)u=0
and
m(dide) - - - m(dide)m(d})u
(58) By g . :
=n((—Ag)")m(d})u=0 if r=2h+11is odd
m(de)m(dede) - - m(dede)m(de)u
(59)

= 7(d)m((—Ag))m(d)u =0 if r = 2h + 2 is even.
By [40], proof of Theorem 5.2, there exists X € g such that, for any v €
(S®)™,
(60) v = Qxm(de)v + m(de)Qxv,
where
Qx = (g IIg)Pxixm(Ilgllg,).
Here Py is the inverse of w(Lx), Lx being the Lie derivative along X.
Replacing (57) in (60), we get
(61) u = 7(d.)Qxu.
Thus, if r is odd, we replace (61) in (58) and we get

m((—=A¢)"Qxu =0,

yielding eventually u = 0, since (—Ag)"*! is maximal hypoelliptic in the
sense of [27] and then 7((—Ag)"*1) is injective. Thus @ xu = 0 and therefore
u =0, by (61). On the other hand, if r is even, we replace (61) in (59) and
we apply 7(d}) to both sides of the identity we obtain in this way. We get

T((—=A¢)"*)Qxu =0,

and we conclude in the same way. O

Remark 5.11. The previous result was proved in [38] and [4] when G = H",
n > 1.

Now we can define our intrinsic “wave equations” for Carnot groups sat-
isfying the assumptions of Theorem 5.10.

Theorem 5.12. Let G be a Qarnot group satisfying the assumption of The-
orem 5.10. Suppose F € E3 satisfies (44). Then F = d.A with A =
Y Ajly +pds = As + pds € E}, where

0%A
(62) 78822 = —Ag1Ax—J

02 . .
(63) aisf = —(=Ag)"¢ + (=Ag)" " po,

where Ag = Z;n:l X?(: —Ag) is the usual subelliptic Laplacian in G,
provided the following gauge condition holds:

0
(64) 5c(dcéc)T_1AE + ﬁ =0.

Os
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Notice condition (64) can also be written as

op

ds
Remark 5.13. The gauge condition (64) is always satisfied if we replace A
by A+ d.f, with f satisfying
Pf Iy
— = —(=Ag)"f — (6c(d.0,) LA —
052 (—Ac)'f ( (dede) > 35)

(see for instance Section 6.3 for abstract existence results for this equation).

Proof of Theorem 5.12. As in Theorem 5.5, we can write F'=ds A E + B,
with d.B = 0 (by (50)), so that B := d.Ay. Again by (50)

(65) (—Ag) 16, As + 0.

0Ay, 0B
A (2 g 5= _4E=o0,
( 0s ) ds 0
so that we can write
0Ax,
66 =FE+d,.
(66) Ep +dep
for a suitable scalar function ¢. Thus, by Proposition 4.7 we have
(67) F = d.(As + ¢ ds)
Combining now (49) and (66) we get
0?As, Oy
——— = —0.d Ay + de— — J,
0s? »t 0s
and, eventually, by (64)
0% Ax, ,
W - _6CdCAZ - (dc5c) - J
= _AG,IAE - Ja
i.e. (62).
On the other hand, by (66) and the second equation in (48),
0Ay,
5:( T2 — dug) = —po,
( Js 80) PO
i.e.
0Ay,
—0e—— = —d.d, .
(68) P ® + po
Differentiating now (64) with respect to s we get
104y, 9%
69 Se(dede) ' ==+ =% = 0.
(69) (dede)"™ =+ 53
If r = 1 we can replace (68) in (69) and we get
32
aisf = _5cdc§0 =+ po,
ie. o2
14
Bs2 Ay + po-
On the other hand, if » > 1 we can write (69) as
. 0As 9%
Sede) "t + —L = 0.
(70) (0cde) 55 " 5s2 =
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Replacing again (68) in (70), we get
O — 0oy + (0 o
ie
00— (here +(-e) 0
This proves (63).
U

Proposition 5.14. Let G be a Carnot group satisfying the assumption of
Theorem 5.10, and let As, € E} and ¢ satisfy (62), (63) and (64). Then

0A
V=6 + Agp + po
Os

1s independent of s € R.

Proof. We take the s-derivative of V' and we replace (62) in %V We get
s

oV 82142 a(p 6p0
95 g Thehs Ty
Idpo Dy
— Oc\—0¢ cA - ccTA — Uc A
de(—0cd.Asy, — (deoe)" Ax) (SJ—i-aS—l- G og

= 0c(—0cd.As; — (dede)" Ay) + AG(Z? (by the continuity equation (45))

= —(—Ag)"d:Ax + AGE;O (since 62 = 0)
s
Iy

= A(G,((—A(G,)Tfl(scflz + s

) =0

by the gauge condition (65).
O

Theorem 5.15. Let G be a Carnot group satisfying the assumption of The-
orem 5.10, and let Ay, € Eé m and o satisfy (62), (63) and (64).
If r > 1, suppose in addition
i) VeSG);
ii) there exists mg € [0,2r — 1) such that
V(z) =O(llz]g°) as|lzlle — oo

Then

i) if r =1, then V =0;

ii) if r > 1, then V is a polynomial of homogeneous degree at most [my],

and there exist a 1-form Go € E(%G with polynomial coefficients of

homogeneous degree at most 2r — 1 such that, if we set G := sGy,
then

F=d.A:=d.(As + G+ ¢ds)

satisfies (44).
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In addition, if
(71) V=o(l) as allc — oo,
(therefore in particular when r =1, by 1))
F =d.A:=d.(As + ¢ ds).
Proof. By (65) in (63), we get
(—=Ag) ' (6:5As + Agp + po) = 0.

If r = 1, this yields .S Ax, + Agp + po = 0. Suppose now r > 1. By [22], V
is an homogeneous polynomial, that, arguing as in the proof of [8], Theorem
5.8.8, has homogeneous degree at most [mg] < 2r — 2. Let Gy € E} be a
1-form such that 6.Gg = V. We can choose Gy with polynomial coefficients
of homogeneous degree at most 2r — 1. Set now G := sGy. We have (keeping
in mind that d.x = *d. on 2-forms)

dexrrde(As + pds + Q)
= d.*a1 (ds A (S(As + G) — dep) + de(As; + G))
= d.(ds A (xd.(As + G)) — %(S(As + G) — dei))
= —ds A (de * de(As + G) — S(x(deyp)) + S*(%(As + G)))
+ (dc * dep — doS(x(Axp + G)))
= —ds A (* (0cdo(As + G) — S(dep + S*(As + G)))
+ (de * detp — deS(x(As + G)))
= —ds A (* (0cdcAs — d.Sp + S*Ay))
+ (dc x dep — d.S(x(Ax + G))),
since S2G = 0 and 6.d.G = 0. Now, by gauge condition (64)
6rd.As — de(Sy) + S*Ax
= (Ag1 + S?)Ax
= (Ag1 + S Ay = —J.
On the other hand,
de xdep —d:.S(x(Ax + GQ))
= x(*de* dep — #de % SAy, — *d. * (grzdz + goydy))
= «(Amp + 6:SAs; + 5.Go)
«(V = po + 0.Go) = —po dV.

Thus
d. *pg JC(Ag +<,0d5+G) =J.

This achieves the proof of the theorem, since the last statement is trivial:
indeed, an homogeneous polynomial vanishing at infinity must be identically
zero, and therefore we can choose Gy = 0.
O
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Remark 5.16. Assumption (71) can be replaced by alternative assumptions
that guarantee that a polynomial vanishes identically. For instance, we could
replace (71) by

(72) V e LP(G) for some p € [1,00).

Indeed, suppose (72) holds and V' # 0. We denote by Vj the homogeneous
part of V with degVj = degV, then there exists xg € G with [|zg|lc = 1

such that (say) V(z) > ¢ > 0 for x € U N {||z||g = 1}, where U is a small
neighborhood of xg. Thus, if 6y /,,* € U and ||zg is sufficiently large,

then V(z) > %HxH((d}egv, yielding a contradiction, and the assertion follows.
Remark 5.17. Assumptions (71) can be better formulated when we associate

with (62) and (63) a Cauchy problem. Suppose V' € S(G). Keeping in mind
Proposition 5.14, for the Cauchy problem

As|s=0 = Ax0, %‘ o =0
(73) Op =
Pls=0 = ¥0, Bs |s=0 =Y
(71) becomes
(74) Ao +po=0(1) as |lzflc = oo
and (72) becomes (for instance)
(75) Ao + po € L*(G),
whereas, for the Cauchy problem
0A .
(76) AZ|S=O = 07 Tglszo = AE,L
Pls=0 = 0, 87f|s:0 = ¥1,
(71) becomes
(77) deAs 1+ po=o0(1) as |zl — o0
and (72) becomes (for instance)
(78) 5.As1 + po € LA(G).

6. SOLUTIONS OF WAVE EQUATIONS

6.1. Plane waves. Let G be a free Carnot group of step 2 (but see also
Remark 6.13 below). As in the Euclidean case, we can consider here suitable
“plane waves”. Assume J = 0 and pg = 0. Since intrinsic hyperplanes in G
are “vertical planes” (i.e. laterals of subgroups M of the form

M = eXp({é~ €y <€7K> = O})a
where K = (ki,...,km,0,...,0) € Vi: see e.g. [18], [19]), we look for
solutions of the wave equations of the form
A(s,z) = elws=k@) g 4 eHws=k) o0 ds = As + o ds,
where

e w (the angular frequency) is a real number;
o k=exp(K)=>" kjX;and k-z:=3"", kjz;
o Ag:=3""" Ao;0;is a (complex coefficients) intrinsic 1-covector of

)
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® g is a complex number.

Theorem 6.1. Let G be a free group of step 2 (but see also Remark 6.13
below). If we choose w = *|k|? and po = F(Ao|k), then A satisfies (62),
(63) and (64).
In addition
F .= CZCA
satisfies (44).

Proof. The proof requires an explicit computation of AG’lei(‘“S_k‘x)Ao that
in turn relies on several technical lemmata. This computation will be post-
poned to Subsection 6.2, and the explicit form of AGJe"(‘“S*k'x)AO appears
in Theorem 6.12 below. If we assume for a while Theorem 6.12 holds, we
have
m
AGJAE = Z(A[ngei(w‘s_km))Ao’j dl‘j
j=1
m
Z |k"4 i(ws— kx) Aojd% |k2’ As.
j=1
On the other hand

and (62) holds. The proof of (63) is straightforward since the group Lapla-
cian on scalar functions depending only on the first m variables is nothing
but the usual Euclidean Laplacian in R™. As for (64), we have

—AgbeAy = Apm (D (Xje"@F) Ag ;)
j=1

= —iAgm (Z kjei(ws—k-r) AO,j) _ ,L-|k|2ei(ws—k.x) <A0|k§>,
j=1
wheras

i(ws—k-x)

98 _ el
68 = we 0,
and the gauge condition is satisfied. Finally (44) is satisfied by F since the
function V := §.5Ax, + Agp of Proposition 5.14 vanishes identically. O

6.2. Forms depending only on horizontal variables. In this section,
we look for an explicit form of A(leei(“s*k“) Ap that in turn relies on several
technical lemmata.

A simple property of free groups that will be crucial in the sequel is
that, according to our choices of the scalar producy in g, {{X;, X;], X;, X; €
Vi,i < j} provides an (orthonormal) Hall basis of V5.

Lemma 6.2. Let G be a Carnot group of any step. If X;, X; € Vi with
1 < j, then do([Xi,Xj]u) = —0; N0,
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Proof. If XY € g, we want to show that
(do([Xi, X, X AY) = —(6; NG| X AY).

Since dy preserves the weights, we may assume that X AY has weight 2.
Therefore, without loss of generality, we can take X = X, Y = X}, with
X, Xy, € V1. Therefore

(do([ X7, X519 X5 A Xn) = (d([ X5, X;]7)| Xk A Xp)

= — (X4, X311 (X, X)) = —([Xi, X1, [ X, Xa])-
On the other hand, (X1, X;], [Xp, Xa]) = 03 {4, 3} 2 {k, h}, ([Xo, X;], [ X, Xn)) =
Lif (i, §) = (k, ), and (X, X;], [Xes Xn]) = —L if (i, §) = (h, k), whereas

)
o =an (GGl o))

Lemma 6.3. If g is a free algebra of step 2, then
(1) do(A'g) = A** g;
(2) if 0: AO; € N2 g, then dy(6; A0;) = —[ X, X;]%;
(3) if 0: AO; € N2 g, then dody ™ (6; A0;) = 0; A 0;
(4) if 6; NO; € N*Pg or 0; AO; € N> g then dyt(6; A 6;) = 0, so that
again dy* (0; A 0;) = —[Xi, X,]F.

Proof. Assertions (1) and (2) follow from previous lemma since do(A" g) =

{0}. As for (3), we have but to notice that dody'(6; A 0;) — 6; A 0; €
R(do)= N A\**g = {0}, by (1). Finally, assertion (4) holds since, by (1), any
2-form of weight greater than 2 is orthogonal to the range of dj. O

Remark 6.4. We point out that Lemma 6.3 basically relies on the fact that,
when x = 2, the basis ©12 of /\1’“ g is carried by dy onto the dual basis 62?2
of /\2’” g. If we consider a free group with 2 generators of step 3, the same
assertion holds, in the sense that

do(©Y) =02, =23 (3=k).
The same property fails to hold for more complicated free groups because
of Jacobi identity.
Lemma 6.5. Let G be a Carnot group of any step. If B = Zi,j Bii0; NOj €
022(G), then
(dg')*dg '8 = 5.
Proof. Since we are dealing with algebraic operators, we have but to show

that
<(d51)*d0_1(6, A 9]‘), O A\ Op) = (6; A\ 9]‘, O N Op,)
for any choice of (i,7) and (k,h) with ¢ < j and k& < h. Moreover, since
(dgt)*dy*(6; A 0;) has still weight 2, then it is enough to assume w(6),) =
w(fy) = 1. By Lemma 6.3, we have
(o) dy (0 A 0), 0k A On) = (do (0 A 0;), dg " (O A )

= ([X3, X%, [Xu, Xn)*) = ([Xi, X1, [ X5, Xn)-
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Thus, the assertion follows since {[X;, X;], X;, X; € Vi, < j} is an or-
thonormal Hall basis of V5. U

We say that a h-form a = >, aﬂ? € Q"(G) depends only on the hori-
zontal variables and we write o € Q% (G) if its coefficients depend only on

T1,...,Zm. The classes Q% (G) are invariant under Hodge duality. Moreover
(79) d(Q(G))  QF(G).

Since /\h R™ can be identified with a subspace of /\h g, any h-form o €
Q" R™),

o= E iy g e iy (T15 - oy T )diy A -+ Adxy,
1<) <t < <tp <m

can be identified with a form in Q% (G) (remember ¢; = dz;, i = 1,...,m
because of our choice of the basis of g). Notice the reciprocal is false, but,
trivially,

(80) QOR™) = Q% (G)NE] and QYR™) =Q4L(G)NE}.

fa=3, aﬂ? € Q" (G), then

dia = Z i(XiOZj)ai A 9?7
j =1

and
doa=0, ..., dea=0.
Moreover, if o € Q?{(G) N E(’)‘, then we have also dga = 0, so that, if we set

01 := (d1)*, keeping in mind Lemma 3.8 and the invariance of both 7},(G)
and Ej under Hodge duality, we have

(81) dia =da and &a=da ifacQl(G)nEL.

Take now a € QL (G) N E} identified with Q'(R™). Since the horizontal
vector fields on Q% (G) reduce to usual derivatives (see e.g. [17], Propositions
2.2), by (81)

(82) dio = dgma and b1 = dgmav.

Moreover, the following assertion follows straightforwardly by direct com-
putation.
Lemma 6.6. If f € Q°(R™) and o = >y ajdry € QYR™) are identified
with forms in E8 and Eol, respectively, that depend only on the horizontal
vartables, then
(1) dif =def;
(2) ha = dea.

Lemma 6.7. Let G be a Carnot group of any step. If B = z” Bii0i N0 €
O2%(G), then

018 == Xi(Brn — Bii)On-
h=1k=1
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Proof. Take oo = oy, with compact support, 1 < £ < n. We have

/Z > (Xk(Brn — Brk)) b, a)dV = Z/Xk (Bre — Ber) ) AV
h=1 k=1

= - Z /(/Bké = Bu) (Xpowg) dV.
k=1

On the other hand

/(B,d1a>dV = Z/w, (Xnag)0x A 0g)dV
k=1

=> /(ﬁu = B ) (Xpog)dV,
k=1

and the assertion is proved.
Remark 6.8. Notice in particular

51(()@‘ VAN 9]') = (X]b)gl — (le)ﬂj

Remark 6.9. Notice in particular that, whenever 8 € Q?(R™) =

022(G)
018 = dgm 3.

Finally, we have:

0%(G)n

Lemma 6.10. Let G be a Carnot group of any step. If p € N and o €

QL (G)NEL, then

(51d1 + dlél)pa = ((61d1)p + (d151)p)a.

Proof. We notice first that, keeping in mind that X;, X; commute on func-

tions depending only on 1,...,%y,, then dif = 0 when f € QF,.
gously, keeping in mind Remark 6.8, then 678 = 0 when 8 € Q.
We argue now by induction on p. The assertion is trivial if p = 1. Suppose

it holds for p € N. We have

(61dy 4 d161)P oo = (81dy + d161)(01dy + d161)Pax
= (61d1 + d161) ((61d1)P + (d161)P)

= ((51d1)p+1 + 01dy (d151)p + d161 (51d1)p + (d151)p+1)a

= ((61d1)PT + (d161)PT ).

Lemma 6.11. Let G be a Carnot group of step 2. If o = Zj a;b; € QL (G),

then

(Sldldaldla = daldléldla.
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Proof. Using repeatedly the fact that the coefficients of a depend only on
the horizontal variables, we have:

dy dldldla—ZZdo d161((Xia;)0; A 6;) ZZdO 181 ((Xi0;)0; A 0;)

=1 j=1 =1 j=1

=— ZZdO Y1 (X2ay)0; — (X;X;a;)0;)  (by Remark 6.8)

]111
ZZZ X X72a;)0, A 0;) +dyt ZZZ XoX;Xi)00 A 0;)
l=1 i= 1]1 (=1 i= 1]1
ZZZ X X7a;)0, A 0;) +dyt ZZZ XoX; Xi0)00 N 6;).
(=1 i=1 j=1 /=1 i=1 j=1

We notice now that the second summand in the last line above vanishes.
Indeed, let j = 1,...,n be fixed. Remember that the vector fields X, k =
1,...,n commute on functions depending only on the horizontal variables,
since their commutators [ X}, X] belong at least to the second layer of the
algebra. Since all the indices run from 1 to n, the term

n n

> (XeX; Xi05)6, A O
/=1 i=1

can then be written as

n

ZZ XgX X Ozj))eg NO; = Z {X@XZ‘(X]'O&]') — XZ‘XAXJ'O@)}Q@ NO; =0,
(=1 i1=1 1<

again by the commutativity of X, and X;. Thus eventually (by Lemma 6.3)

n n n

dytdidrdia = —dy *( (XeX2)00 A 0;)
(83) o (=1 i=1 j=1
=> (XeX7o)[Xp, X"

i=1 £=1 j=1
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On the other hand, by Lemma 6.3 we have

(51d1d61d10& = Z Z 51d1d51((Xiaj)9i VAN QJ) = Z Z 51d1d51((Xiaj)9i VAN HJ)
=1 j=1 =1 j=1

==Y > adi(Xay)[Xi, X1 = =03 " ai(XkXia)0k A [ X, X))

=1 j=1 k=1 i=1 j=1
n n n
T Z Z Z 01 (X Xi05) 0k N[ X, Xj]h)
k=1 i=1 j=1

=> D {(XRXi05)[Xs, Xj)" = (X3, X;] X Xi05)6 ) (by Remark 6.8)
k=1 i=1 j=1

n n n

= Z Z Z(X%Xiaj)[Xi, Xj]u (since the «;’s depend only on the horizontal variables)

k=1 i=1 j=1
n n n

= Z Z(XfXgaj)[Xg, X;)* (just renaming the indices)

i=1 f=1 j=1

Combining this identity with (83) and keeping in mind again the commuta-

tivity of all our vector fields on functions depending only on the horizontal

variables, we achieve the proof of the lemma.

O

Theorem 6.12. Let G be a Carnot group of step 2. If a = Z;”Zl ajdrj €
E}NQL(G) (therefore identified with a form in QY(R™)), then

(5ch n (dcéc)z)a = A3 o= i((—ARm)Qaj) dz;.

j=1
Proof. Take o = ajdxj = jfl;, j = 1,...,m, that has weight 1. Then
(HECK)l = Q,

(Mpa); = —dy* (dia),

so that we can take
m

(Mpa)y = > (Xiay)[Xi, X%
1=1

Thus
Mpa =a—dy'(dia),
and hence (since dpov = 0 and d2Q}; = {0})
d(HEOt) = (d(] + dl)(HEOz)

= —dody* (d1) + dyo — didy * (dy )

= —dloz + dloz - dldal(dla) = dldal(—dla),
by Lemma 6.3 (3), since dj« is a 2-form of weight 2.

We want to show that didy ' (dia) belongs to E3; this would yield

deae = dydy H(—dr@).
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First of all, d1dy ! (d1) has weight 3, and hence, by Lemma 6.3, is orthogonal
to the range of dy. Let us prove now that dgdl(—daldl)a = 0. Keeping in

mind that X,...,X,, commute on «;, we have
dody (—dytdy)ax
m
= do( D (Xky Xpy )0k, A [kaXj]h)
k1,ka=1
m
= Z (X oy Xy ;)do(Bry A [ Xy, X5]7)  (since dy is algebraic)
k1,ko=1
m
== > (Xt Xk, )0y A do[ X, , X"
k1,ko=1

(since both g, A [Xk,, X" and [Xj,, X;]* are left invariant)

m

= _< Z (szXklaj)ekz N Hkl) A 0j
k1,ko=1

(by Lemma 6.3, since both X, and X; belong to V)
=0,
since, by the commutativity of X, and X}, on a function depending only
on the horizontal variables, then Xj, X}, o; multiplies both 0, A 0, and
91@ VAN 9k1-
This proves that di(—dy'd1)a € E2. Thus

(84) Sedea = 61(dy 1) *61drdy Hds .

Keep in mind that d, L (dy 1Y% dy, 61 preserve the class of forms that depend
only on the horizontal variables. If we apply Lemmata 6.11 and 6.5 to (84)
(taking into account that djd;d;« has weight 2, by Proposition 3.8), we get

Sedec = 61(dg M) dy tdrd1drax
(85) = 01d101dr v
= (51(11)20[.

We notice now that (d.6.)%a = (d161)%a. Indeed d.S.a € EL N Q1 so that,
by Lemma 6.6, d.d.d:.0.a0 = d101d.0.c0 = d101d10710.
Eventually we have:

(dede + (de00)? ) = ((8100)? + (dede)? ) (by (85))
- ((51d1)2 + (d161)2)a (by Lemma 6.6)
= (61dy + d161)*a  (by Lemma 6.10)
= (6d + db)%a = Adm 10
by (81), (82), and Remark 6.9. O

Remark 6.13. As in Remark 6.4, a theorem akin to Theorem 6.12 can be
proved for the Carnot group G of step 3 defined therein. More precisely, if
48



a = apdry + asdrs € EF(G) N Q}{(G) (therefore identified with a form in
Q! (R?)), then

(5cdc + (dcéc)?’)oz = A]?Q?,la = 7(A%20{1)d$1 - (Aigag)dazg.

Again, as in Theorem 6.1, we can obtain plane waves of the form

A(S,.’,U) — ei(ws—k~x)A0 + ez(ws—kx)spo ds = AE + (pdS’

where
o k=exp(K) = (k1,k2,0,0,0), with K € Vi;
o w= :i:’k|3;

* o = F|k[(Ao|k).
Proposition 6.14. Let G, A = Ax + pds be as in Theorem 6.1. For sake
of simplicity, assume w = |k|* and ¢o = —(Aplk). If
dsNE+ B := cicA,
then (with the notations of [14], 1.5.1)
i) (E|k) =0;
ii) BILE =0.
Moreover, if k and Ag commute, then
iii) BPLE? = 0.
On the other hand

iv) BAK' =0,
and, if k and Ag commute, then
v) BAE=0.

Proof. By Proposition 32

Dy (k[P Ao, — kji(Aolk))6;
7=1

and
B = el N7 gk Ao O A [Xe, Xo
e\ h=1

Now

m

(E|k) = iels) Z (Ik[? Ao, — kj(Aolk)) k;
Jj=
zws k-x) (’kQ Ao‘k ‘k‘|2<A0“€>) _

proving i). On the other hand

BILE = je?ilws—ka) Z knke Ao\ ([k|* Ao p — ki (Aolk))[Xe, X\

¢ h=1
= ie?i(ws—kw) Z k@A(),)\(Z kh(‘MQAO,h — kh<A0‘k>)> [Xg, X)\] =0,
=1 h—1
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proving ii). Analogously

BIL kb = ¢ilws—hz) Z knkeAoxkn[Xe, X)]
e h=1

= /RN B2 "y Ag A [ X, Xn] = €@ TR0 k2[R, Af],
I\

proving iii). To prove iv) we notice that

B Ak = ¢ilws—k2) Z knkeAo ki 0; A Oy A [Xe, X))
e hi=1

_ pilws—k-) Z ke Ao ( Z knk; 0; A 6y) A [Xe, X5)* = 0.
2,A=1 hyi=1

On the other hand, arguing as above,

BAE =ie®@sh0) Nk A (k[2 Aoy — ki(Aolk)) 0 A O A [Xe, X
e hg=1

= ieZi(wsfk-z) Z khkgA07)\’k‘2Ao7j 6]‘ A Oy A [Xg, Xw,\]h
e R =1

_ ieQi(wsfk-z)AO A kh A [X[,X)\]h =0

if (and only if) [X,, X,] = 0.
(]

Remark 6.15. Notice that ii) and iii) could be derived from iv) and v) arguing
as in [14], 1.5.3, keeping in mind i) and that B has weight 3 (Theorem 5.9).

Remark 6.16. Plane waves in groups may exhibit totally unexpected phe-
nomena if we keep in mind classical Maxwell’s theory in the Euclidean space.
For instance, if G = H', with the notations of Remark 5.6, E 1 k, Bl k,
so that E and B(that are horizontal vector fields as well as k) cannot be or-
thogonal as in the classical setting, since the first layer of H' has dimension
2.

Remark 6.17. The arguments of this subsection enable us to study another
class of special solutions, that we may call “cylindrical waves”, discovering
also some unexpected relationships with the equations of classical elasticity.
For sake of simplicity, let us restrict ourselves to the case G = H!. Keeping
in mind the characterization of the homogeneous group homomorphisms of
H! given in [31], we see that the only homogeneous homomorphisms of H*
preserving the sublaplacian Ay are the rotations around the t-axis. Thus
it is natural to look for cylindrically symmetric waves, i.e. for cylindrically
symmetric solutions of (62) and (63). For sake of simplicity we restrict
ourselves to consider the case of zero charges, i.e. we assume pyg = 0 and
J = 0. But cylindrically symmetric solutions do not depend on the central
variables, and thus we can start by attacking the case Ay, and ¢ independent
of central variables.
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By Theorem 6.12, in case of cylindrical symmetry, the components of Ay
as well as ¢ all solve the equation

0%u

(86) 7z — A%y,

with suitable Cauchy data at s = 0. If we consider this equation in a cylin-
der Q x R, where Q is a (say) bounded open subset of R?, we can impose
suitable Dirichlet conditions on 9€2. In this way, we recover a classical elas-
ticity equation, the so-called Germain-Lagrange equation for the vibration
of plates (see e.g. [43], Section 9). We refer to [43], Section 9 and to the
references of that chapter for explicit solutions adapted to particular choices
of €, and in particular for cylindrically symmetric solutions when we choose
2 to be an open disk of the plane (see Section 9.4).

6.3. An abstract theory of wave equations in a Carnot group. In
this section, we prove an abstract existence result for our wave equation by
means of the well established theory of second order differential equations
in Banach spaces, as presented for instance in [13].

Proposition 6.18. Let G be a Carnot group satisfying the assumption of
Theorem 5.10. The unbounded operator in L*(G, E})

—Ag,1 with domain Wér’Q(G,Eé)

1s self-adjoint and nonpositive.
Proof. Clearly, Ag, is densely defined, since D(G, E}) © WZ2(G, E})
is dense in L?(G, E}). In addition, it is symmetric. Indeed, if o, 3 €
WéT’Z(G,Eé) and (o )nen is a sequence in D(G, E}) converging to « in
Wér’2(G,Eé), then

(Ae18, ) 126,55 = M (A5, an) 2 5Y)

= lim (8, Ag1an)r2c,58) = (B, A610) 12(c,BY)-

This shows that (Ag,1)* is an extension of Ag . Thus, arguing as in [13],
Chapter IV, Lemma 1.1, to achieve the proof it is enough to show that
1 € p(Ag,1). Consider now the quadratic form in W5*(G, E}) defined by

Q(a, B) :=(deat, deB) 12, p3) + ((debe) P, (dede) " B) 26,
+ {(a, 5>L2(G,E3) if r is even,
and
Q(a, B) = =(dca, dCB>L2((G7Eé) + <5c(d05c)(r_1)/204, 5c(dc5c)r_1/2ﬁ>L2(G7Eé)
+ (. B)r2,pyy i 7 is odd.
If a € D(G, E}), then
Q(a,0) = (o0 ) pa ) + ol -

Therefore, thanks to the density of D(G, E}) in Wé’Q(G,Eé), by Theorem
5.10, @ is coercive on Wé’2(G, E}). Then, by Lax-Milgram theorem, if v €
L*(G, E}) there exists a, € W&?(G, E}) satisfying Q (o, 8) = (7, ﬂ>L2(G7E(1))

for any 5 € Wé’2(G, E}). In particular, Ag oy, =7 — ay := vy € L*(G, E})
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in the sense of distributions. We write vy = Zj 7,;0;. To achieve the

proof, we have but to show that a, € WéT’Z(G, E}). To this end, let I be a
multi-index with d(I) = 2r, and take p = 3. ¢;0; € D(G, E}). We have

(87) (X', lp)srs = (| (XT)*0)sr s = (ay|Ac 1 K(XT) 0))sr.s-
On the other hand,

(s8) KX ) = SO 5 5 i) L(560).
ij

Notice now that (X1)*¢;*K;; = ¢j*(Y(X!)*VK,;) belongs to S(G). Indeed,
by Proposition 2.1, V(X?)*VK;; is a Folland kernel of order 0, that is L
continuous. Hence, if X lzi is an arbitrary right invariant monomial, then
)N(g(gpj x (Y(XT)*VK,;)) € L*(G). Therefore, ¢; * (Y(X!)*VK;;) € W™2(G)
for any m € N, and eventually belongs to S(G). Thus, by Proposition 28,
we can write (88) as

(89) K(X1H)*p) = § (¢; * (V(XT)™Kij))0;,
ij
that, together with (87) yields

(X oy lp)s s = (Agion > (5 (F(X)VE;;))05)s s
ij

(90) = (0405 % ((X)VKy)) 22
(]

< C”’YO”LQ(G,E(%)||90HL2(G,E01)7
again by Proposition 2.1. This achieves the proof of the proposition. O

By [13], Chapter II and Exercise 5 in particular, the following result
follows easily from Proposition 6.18.

Theorem 6.19. The homogeneous Cauchy problem

{gig‘:—A@,,l for t>0,

(91) Oa
a|320 = @0, %|s:0 =

is uniformly well posed in L*(Q, EY). The propagators are explicitly given

by
0

C(s):/ cos(s|A|Y2) dE(N)
and .
S)= [N 2sin(sn ) B
where dE()) is the spectral measure associated with —Ag 1.
Suppose now the map s — J(-,s) is continuously differentiable from R
to L*(Q, E}). By Lemma 5.1 of [13], Chapter II, if ap,a; € WéT’Q(G,Eé),
then

a(s) :=C(s)ag + S(s)ar + /OSS(S —o0)J(o)do
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is a strong solution of

{ %:—AG71+J for t>0,

_ da _
As=0 = X0 s |s=0 = A1

(92)

i.e. is a twice continuously differentiable function from (0,00) to L*(G, E})
such that a(s) € W*2(G, E}) for all s > 0.

Arguing as in [13], Chapter IV, we can obtain the following stronger
statement.

Theorem 6.20. Let o € Wé’2(G, E}) and a1 € L*(G, E}) be given. Then
all strong solutions of the homogeneous Cauchy problem

{gig:AG,l for t>0,

_ da _
Ys=0 = Q05 Js|s=0 = ¥

(93)
have the form
o[]S &) (]

Proof. In fact, the proof of the theorem can be carried out by repeating
verbatim the arguments of [13], Chapter IV, provided we prove that

Dom ((I + Agq)'?) = W2(G, Ej).

To thisend, if a = ;0 0; € E}, we denote by Bg , the diagonal selfadjoint
operator
Bera=> ((I-Ag)"%a;)0;.
J
By [15], Proposition 4.1, Dom (Bg ) = W"?(G, E}). In addition, again by
[15], Proposition 4.1 and by Proposition 6.18

Dom (Bg,) = W?*(G, Ey) = Dom (I + Ag).
Therefore, by a classical interpolation argument ([33])
Dom ((I + Ag1)'/?) = [Dom (I + Ac ), L*(G, Ey)l1/a
— [Dom (B2,), L*(G, E})}1/> = Dom (Bg,,)
= W"(G, E}).
This achieves the proof of the theorem. O
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