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Abstract. In this paper we define Maxwell’s equations in the setting
of the intrinsic complex of differential forms in Carnot groups intro-
duced by M. Rumin. It turns out that these equations are higher order
equations in the horizontal derivatives. In addition, when looking for a
vector potential, we have to deal with a new class of higher order evolu-
tion equations that replace usual wave equations of the Euclidean setting
and that are no more hyperbolic. We prove equivalence of these equa-
tions with the “geometric equations” defined in the intrinsic complex,
as well as existence and properties of solutions.
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1. Introduction

Consider the space-time R×R3 of special relativity, where we denote by
s ∈ R the time variable and by x ∈ R3 the space variable. If (Ω∗, d) is the de
Rham complex of differential forms in R×R3, classical Maxwell’s equations
can be formulated in their simplest form as follows: we fix the standard
volume form dV in R3, and we consider a 2-form F ∈ Ω2 (Faraday’s form),
that can be always written as F = ds ∧E +B, where E is the electric field
1-form and B is the magnetic induction 2-form. Then, if we assume for
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sake of simplicity all “physical” constants (i.e. magnetic permeability and
electric permittivity) to be 1, classical Maxwell’s equations become

(1) dF = 0 and d(∗MF ) = J .

Here ∗M is the Hodge-star operator associated with the space-time Minkow-
skian metric and the volume form ds ∧ dV in R× R3, and J = ds ∧ ∗J − ρ
is a closed 3-form in R × R3, where ∗J and ρ = ρ0dV are respectively the
current density 2-form and the charge density 3-form (here ∗ is the standard
Hodge-star operator in R3 associated with the Euclidean metric and the
volume form dV ). Since dF = 0, we can always assume that F = dA, where
A (the electromagnetic potential 1-form) can be written as A = AΣ + ϕds.
If in addition AΣ and ϕ satisfy suitable gauge conditions, then they satisfy
the wave equations

∂2AΣ

∂s2
= −∆AΣ − J(2)

∂2ϕ

∂s2
= −∆ϕ + ρ0,(3)

where ∆AΣ is the positive Hodge Laplacian on 1-forms ∆AΣ = (d∗d +
dd∗)AΣ.

It is well known that this theory has a natural extension in general rela-
tivity to Riemannian manifolds. The aim of the present paper is to extend
this theory, as much as possible, to space-time structures based on non Rie-
mannian spaces, looking for analogies with classical theory, but, first of all,
trying to detect new phenomena.

In this paper we carry on our program in the setting of Carnot groups,
that are, as we shall see, on several respect the first natural generalization
of Euclidean spaces. In the special case of the first Heisenberg group H1, a
Maxwell theory has been presented in [21].

A Carnot group G is a connected, simply connected, nilpotent Lie group
with stratified Lie algebra g. More precisely, this means that the Lie algebra
g has dimension n, and admits a step κ stratification, i.e. there exist linear
subspaces (so-called layers) V1, ..., Vκ such that

(4) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. Clearly, the Lie algebra g can be endowed with a scalar
product that makes the decomposition (4) orthogonal. We refer to the first
layer V1 as to the horizontal layer. It plays a key role in our theory, since it
generates the all of g by commutations.

Through exponential coordinates, the group G can be identified with
(Rn, ·), the Euclidean space Rn endowed with a (generally non-commutative)
group law.

One of the main properties of Carnot groups is that they are endowed with
two family of important transformations: the (left) translation τx : G → G
defined as z 7→ τxz := x·z, and the non-isotropic group dilations δλ : G→ G,
that are associated with the stratification of g and are automorphisms of the
group.
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It is well known that the Lie algebra g of G can be identified with the
tangent space at the origin e of G, and hence the horizontal layer of g can be
identified with a subspace HGe of TGe. By left translation, HGe generates
a subbundle HG of the tangent bundle TG, called the horizontal bundle. A
section of HG is called a horizontal vector field.

Obviously, Euclidean spaces are commutative Carnot groups, and, more
precisely, the only commutative Carnot groups.

It is well known that Carnot groups are endowed with an intrinsic geome-
try, the so-called Carnot-Carathéodory geometry (see for instance, choosing
in a wide literature, [8], [26] [17]). From now on, the adjective “intrin-
sic” is meant to emphasize a privileged role played by the horizontal layer
and by group translations and dilations. It is worth stressing that Carnot-
Carathéodory geometry is not Riemannian at any scale (see [41]).

In fact, Carnot groups can be seen as a particular case of more gen-
eral structures, the so-called sub-Riemannian spaces. It is worth describ-
ing shortly these structures, since this makes more perspicuous the role of
Carnot groups for our purposes.

Roughly speaking, a sub-Riemannian structure on a manifoldM is defined
by a subbundle H of the tangent bundle TM , that defines the “admissible”
directions at any point of M (typically, think of a mechanical system with
non-holonomic constraints). Usually, H is called the horizontal bundle. If
we endow each fiber Hx of H with a scalar product, there is a naturally
associated Carnot-Carathéodory distance d on M , defined as the Riemann-
ian length of the horizontal curves on M , i.e. of the curves γ such that
γ′(t) ∈ Hγ(t).

In the last few years, sub-Riemannian structures have been largely studied
in several respects, such as differential geometry, geometric measure theory,
subelliptic differential equations, complex variables, optimal control theory,
mathematical models in neurosciences, non-holonomic mechanics, robotics.

Clearly, Carnot groups fit in this more general picture, playing a privileged
role, akin to that of Euclidean spaces versus Riemannian manifolds, provid-
ing not only some of the most relevant examples, but also acting in some
sense as rigid “tangent” spaces to general sub-Riemannian spaces (rigid be-
cause they are invariant under left translations and group dilations). Thus,
they provide a natural setting for Maxwell’s equations, similar to that of
special relativity that is, roughly speaking, a “tangent theory” for general
relativity.

We want to stress preliminarily that, in spite of the number of various ap-
plications of Carnot groups to describe different phenomena in applications,
here we are not looking for any application modeling physical situations.
Our purpose is to carry on - through the study of Maxwell’s equations -
the investigation of the peculiar features of the geometry of Carnot groups.
Since we are interested in detecting non-Euclidean phenomena more than
in the analogies with the classical setting, it has been intriguing to discover
- as we shall see - that intrinsic Maxwell’s equations yield a new class of
“wave equations”, with new unexpected properties

In order to develop a theory of Maxwell’s equations in Carnot groups, we
need a complex of “intrinsic” differential forms. This setting is provided by
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Rumin’s complex (E∗0 , dc) of differential forms in a Carnot group G. Rumin’s
theory needs a quite technical introduction that is sketched in Section 3 to
make the paper self-consistent. For a more exhaustive presentation, we refer
to original Rumin’s papers [40] and [39], as well as to the presentation in [2].
The main properties of (E∗0 , dc) that we shall use through this paper can be
summarized in the following points:

• Intrinsic 1-forms are horizontal 1–forms, i.e. forms that are dual of
horizontal vector fields, where by duality we mean that, if v is a
vector field in Rn, then its dual form v\ acts as v\(w) = 〈v, w〉, for
all w ∈ Rn.
• The “intrinsic” exterior differential dc on a smooth function is its

horizontal differential (that is the dual operator of the gradient along
a basis of the horizontal bundle).
• The complex (E∗0 , dc) is exact and self-dual under Hodge ∗-duality.

The first two properties above clearly fit our request for an “intrinsic” the-
ory. However an even stronger evidence is provided by Theorem 3.16 that
proves what we can call the “weak naturality” of the complex under homo-
geneous homomorphisms of the group G. Indeed, let T be a homogeneous
homomorphism of G (where homogeneous means that T (δλx) = δλ(Tx)). In
exponential coordinates, T can be identified with linear map T : Rn → Rn.
Suppose now that also tT is a homogeneous homomorphism. Then the
pull-back T# maps E∗0 into E∗0 and the following diagram is commutative:

· · · dc−−−−→ Eh0
dc−−−−→ Eh+1

0
dc−−−−→ · · ·

T#

y T#

y
· · · dc−−−−→ Eh0

dc−−−−→ Eh+1
0

dc−−−−→ · · ·
Since the class of homogeneous homomorphisms (denoted by HL(G))

well reflects both the group structure and the stratification, the naturality
of dc under homogeneous homomorphisms shows the intimate connection
between the complex and the Carnot group. Indeed, homogeneous homo-
morphisms between Carnot groups appear naturally as Pansu differentials
of maps between Carnot groups ([37]). On the other hand, the “artificial
assumption” on tT is extensively discussed in Remarks 3.17 and 3.13 below,
and is basically motivated by the fact that we are working with classes of
“true differential forms” and not with quotient classes. Nevertheless, for the
purposes of the present paper, this “weak naturality” suffices, since it yields
the invariance of our Maxwell’s equations in G under the action of intrinsic
Lorentz transformations.

We stress also that in [1] it is proved that, despite its technical definition,
the complex appears naturally through a variational approach. Indeed, on
intrinsic 1-forms, the energy associated with dc, i.e. the functional

F (ω) =

∫
G
‖dcω‖2 dV,

is a suitable Γ-limit (see [11]) of “Riemannian” energies associated with the
usual de Rham’s exterior differential (this result is akin to some Γ-limit
results in elasticity).
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If we need to stress that the complex is built on a specific group G, we
shall denote it by (E∗0,G, dc,G), to avoid misunderstandings.

Below we shall go back to the structure of (E∗0 , dc), but we want to empha-
size here a key property of dc that will play later a crucial role in Maxwell’s
theory, yielding new unexpected phenomena: in general, dc is an operator
of higher order (i.e. greater than 1) in the horizontal derivatives (unlike
classical de Rham’s exterior differential), and also, in general, not even ho-
mogenous.

At this point, we can mimic classical formulation of Maxwell’s equations
as follows: starting from a Carnot group G, we define a space-time Carnot
group R×G, just by adding to the first layer of the Lie algebra the vector field
S = ∂/∂s, where s is the time variable, and by assuming that S commutes
with all the element of the Lie algebra g of G. To avoid misunderstandings,
we denote by a hat ˆ all objects related to the space-time R × G. Thus,
for instance, ĝ will denote its Lie algebra, and (Ê∗0 , d̂c) its intrinsic complex.

In Section 4, we write explicitly Ê∗0 (Lemma 4.4) and d̂c (Proposition 4.7),
and we define a group HO(G) of special homogeneous automorphisms of
R × G, that plays the role of Lorentz transformations. Again as in the

Euclidean setting,
∧h ĝ, the spaces of h-covectors in R×G, can be endowed

with a Minkowskian scalar product 〈·, ·〉M (see Definition 4.1). In turn,
if dV = θ1 ∧ · · · ∧ θn is the canonical volume form in G, the Minkowskian
scalar product together with the natural volume form ds∧dV define a Hodge
duality operator ∗M .

Once all this machinery is assembled, it is straightforward to write Max-
well’s equations in R×G as

(5) d̂cF = 0 and d̂c(∗MF ) = J .

Here F ∈ Ê2
0 is the unknown Faraday’s form, and J is a fixed closed intrinsic

n-form in R × G (a source form), that can be written as J = ds ∧ ∗J − ρ,
where J = J(s, ·) is an intrinsic 1-form on G and ρ(s, ·) = ρ0(s, ·) dV is a
volume form on G for any fixed s ∈ R.

However, we have to point out that the analogies with classical theory
basically stop here, and we are facing a series of new unexpected phenomena.

First of all, we notice that equations (5) are invariant under the action
of the Lorentz group HO(G), as we should expect, but the rigidity of the
structure of HL(R×G) substantially reduces the number of intrinsic Lorentz
transformations that are allowed. This is due to the fact that homogeneous
homomorphisms of a Carnot group G enjoy the contact property (see Theo-
rem 2.10). If we identify T ∈ HL(G) through exponential coordinates with
a linear map T : g→ g, this means basically that T must preserve the layers
of g (it is a block-matrix). As pointed out in Remark 4.15, this implies that,
with the exception of some special groups with a product structure, intrinsic
Lorentz transformations “do not mix space and time”.

However, the most interesting phenomena come from the fact that the ex-
terior differential d̂c is a non-homogeneous higher order differential operator.
In this perspective, let us give a gist of how non-homogeneous higher order
horizontal derivatives appear in d̂c (but we stress that they may already
appear when we restrict ourselves to the “stationary” dc acting on forms
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on G). To avoid cumbersome notations, let us consider a Carnot group M,
that can be both G or R×G, with Lie algebra m. We need now the notion
of weight of vectors in m and, by duality, of covectors (see [40]). Elements
of the j-th layer of m are said to have (pure) weight w = j; by duality, a
1-covector that is dual of a vector of (pure) weight w = j will be said to
have (pure) weight w = j.

This procedure can be extended to h-forms. Clearly, there are forms
that have no pure weight, but we can decompose Eh0,M in the direct sum of
orthogonal spaces of forms of pure weight, and therefore we can find a basis
of Eh0,M given by orthonormal forms of increasing pure weights. We refer to

such a basis as to a basis adapted to the filtration of Eh0,M induced by the
weight.

Then, once suitable adapted bases of h-forms and (h+1)-forms are chosen,
dc,M can be seen as a matrix-valued operator such that, if α has weight
p, then the component of weight q of dc,Mα is given by an homogeneous
differential operator in the horizontal derivatives of order q − p ≥ 1, acting
on the components of α.

In order to provide a concrete example of these phenomena, let us consider
as in [21] the specific case G = H1 ≡ R3, the first Heisenberg group, with
variables x, y, t. For sake of simplicity, we set X := ∂x− 1

2y∂t, Y := ∂y+ 1
2x∂t,

T := ∂t. The stratification of the algebra g is given by g = V1 ⊕ V2, where
V1 = span {X,Y } and V2 = span {T}. We have X\ = dx, Y \ = dy, T \ = θ
(the contact form of H1). In this case

E1
0,H1 = span {dx, dy};

E2
0,H1 = span {dx ∧ θ, dy ∧ θ};

E3
0,H1 = span {dx ∧ dy ∧ θ}.

The action of dc on E1
0,H1 is the following ([38], [20], [4]): let α = α1dx +

α2dy ∈ E1
0,H1 be given. Then

dc,H1α = (X2α2 − 2XY α1 + Y Xα1)dx ∧ θ
+ (2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ

:= P1(α1, α2)dx ∧ θ + P2(α1, α2)dy ∧ θ.
We see that dc,H1 is a homogeneous operator of order 2 in the horizontal
derivatives, since 2-forms have weight 3 and 1-forms have weight 1.

On the other hand, if

α = α13dx ∧ ds+ α23dy ∧ ds+ α14dx ∧ θ + α24dy ∧ θ ∈ E2
0,R×H1 ,

then, by Proposition 4.7 below,

dc,R×H1α = (Xα24 − Y α14) dx ∧ dy ∧ θ
+ (Sα14 − P1(α13, α23)) ds ∧ dx ∧ θ
+ (Sα24 − P2(α13, α23)) ds ∧ dy ∧ θ.

Here the operator dc,R×H1 is no more homogeneous: indeed, though all 3-
forms have weight 4, Xα24−Y α14, Sα14, and Sα24 are operators of order 1,
since both α14dx ∧ θ and α24dy ∧ θ have weight 3, whereas P1 and P2 have
order 2, coherently with the fact that they act on the coefficients of forms
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of weight 2. Incidentally, we notice that this lack of homogeneity always
appears in space-time Carnot groups (except in the commutative case).

Let us see now how this peculiarity of the intrinsic differential affects
Maxwell’s equations (beside to the obvious fact that they are no more first
order equations).

Since the complex (Ê∗0 , d̂c) is exact, if F ∈ Ê2
0 is a solution of (5), we can

write

F = d̂c(AΣ + ϕds),

where AΣ is an intrinsic 1-form on G (with coefficients depending also on
s), and ϕ is a scalar function of s and x. As in Euclidean setting, we can
proceed now to write explicitly the equations satisfied by AΣ and ϕ, under
suitable gauge conditions. For sake of simplicity, we assume here J = 0 and
ρ0 = 0. If we denote by δc the formal L2-adjoint of dc, using the explicit
form of d̂c provided by Proposition 4.7, an elementary computation shows
that

∂2AΣ

∂s2
= −δcdcAΣ + dc

∂ϕ

∂s
.

In the classical setting, if Lorenz gauge condition holds, we can replace the
right hand side by −(δcdc + dcδc)AΣ = −∆AΣ. Keeping also in mind that
the usual Hodge Laplacian on 1-forms is diagonal in Cartesian coordinates,
it follows that the Cartesian components of AΣ solve the classical wave
equation.

On the other hand, in our case, if we want to repeat a similar argument, we
face several difficulties. First of all, the “naif Hodge Laplacian” associated
with dc, i.e.

(6) δcdc + dcδc,

generally is not homogeneous (and therefore, as long as we know, we lack
Rockland type hypoellipticity results (see, e.g. [27]) and sharp a priori
estimates in a “natural” scale of Sobolev spaces). This because dc itself may
not be homogeneous, but mainly because the two terms in (6) may have
different orders. When dealing with intrinsic 1-forms, as in our case, we
can recover the homogeneity of dc with an additional assumption on G: we
assume that G is free (see Definition 5.8); then Theorem 5.9 below yields
that dc is an homogeneous differential operator of order κ (the step of the
group) in the horizontal derivatives when acting on 1-forms. However, even
if dc is homogeneous, such a “Hodge Laplacian” fails to be homogeneous.
For instance, on 1–forms, δcdc is an operator of order 2κ, while dcδc is a
2nd order one. This is due to the fact that the order of dc depends on
the order of the forms on which it acts on: dc on intrinsic 1–forms is an
operator of order κ, as well as its adjoint δc (which acts on 2–form), while
δc on intrinsic 1–forms is a first order operator, since it is the adjoint of
dc on 0–forms, which is a first order operator. To overcome this difficulty,
we remind that in H1 (where κ = 2), M. Rumin in [38] introduces a new
homogeneous 4th order operator δcdc + (dcδc)

2 that satisfies sharp a priori
estimates in intrinsic Sobolev spaces of order 4. We apply the same idea in
free groups of arbitrary step κ and we obtain an homogeneous operator of
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order 2κ in the horizontal derivatives acting on intrinsic 1-forms

∆G,1 = δcdc + (dcδc)
κ.

We prove in Theorem 5.10 that ∆G,1 satisfies sharp a priori estimates of
order 2κ and is self-adjoint (see Proposition 6.18). Assume now (as we can
always do) the higher order gauge condition

(7) (−∆G)κ−1δcAΣ +
∂ϕ

∂s
= 0.

where ∆G :=
∑m

j=1X
2
j is the usual subelliptic Laplacian in G. Then we

have:

(8)


∂2AΣ

∂s2
= −∆G,1AΣ

∂2ϕ

∂s2
= −(−∆G)κϕ ,

provided (7) holds (see Theorem 5.12).
Some remarks are now in order: first of all, the equation for AΣ cannot

be diagonalized, and has to be treated as a whole. But the main new
phenomenon is that the “wave equations” we obtain utterly differ even in the
scalar case from what one could imagine as “wave equations in the group”,
i.e.

(9)
∂2ϕ

∂s2
−∆Gϕ = 0.

Indeed, the equations we obtain are by no means hyperbolic equations, by
[29], Theorem 5.5.2, since they contain second order derivatives in s and
2κ-th order derivatives in x, so that their principal parts are (degenerate) el-
liptic. Thus, we should not expect any hyperbolic behavior, as, for instance,
finite speed of propagation like in (9) (see, e.g., [35], [25]). To retrieve a
suggestion of the possible behavior of our solutions, let us notice that the
scalar equation for ϕ can be written through the product of two Schrödinger
operators in G, since

∂2

∂s2
+ ∆2

G =
( ∂
∂s

+ i∆G
)( ∂
∂s
− i∆G

)
,

and it is natural to expect our equation to inherit intrinsic features of Schrö-
dinger operator that essentially differ from those of the classical wave oper-
ator.

Another interesting feature of “wave equations” (8) has been already
pointed out in [21]. In case of cylindrical symmetry in H1 (i.e. when dealing
with functions depending only on the horizontal variables), the components
of AΣ as well as ϕ all solve the equation

∂2u

∂s2
= −∆2u in R2,

with suitable Cauchy data at s = 0. If we consider this equation in a cylinder
Ω × R, where Ω is a (say) bounded open subset of Rm, we can impose
boundary conditions on ∂Ω. In this way, we recover a classical equation
of elasticity, the so-called Germain-Lagrange equation for the vibration of
plates (see e.g. [43], Section 9).
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We point out also another discrepancy with the Euclidean case, that arises
when we want to reverse our result and to derive solutions of Maxwell’s
equations from “wave equations” (8). This derivation is in fact possible,
but, unlike in the classical case, it is not just matter of straightforward
computations. Indeed (see Theorem 5.15), to achieve the proof we have to
rely on quite delicate Liouville type theorem for subelliptic Laplacians in
Carnot groups that are proved in [8].

We notice that one could legitimately ask at what extent equations (8)
are “natural”. Indeed, the operator ∆G,1 could be considered “artificial”,
since it is obtained by adding an “artificial” term (dcδc)

κ to the “natural”
term δcdc, just to obtain a Rockland type operator. However, we point out
that this term comes from our choice of the gauge condition, that is, by
its nature, arbitrary, precisely as in the usual choice of Lorenz gauge in R4

that yields the usual Hodge Laplace operator and the associated d’Alembert
equation.

Finally, as for the existence and regularity of solutions of our “wave equa-
tions”, in Section 6 we prove the existence of solutions in the natural Sobolev
spaces by means of the theory of the so-called abstract cosine functions for
second order evolution equations in Banach spaces (see Theorems 6.19 and
6.20). If we restrict ourselves to step 2 groups, we also prove in Theorem 6.1
the existence of plane wave solutions of our “wave equations”. Again, plane
wave has to be understood in the intrinsic sense of the group, since their
wave fronts are group hyperplanes (in the sense, e.g., of [18], [17], i.e. max-
imal subgroups that contain the center of G). Again, the non-Riemannian
character of the group geometry yields new different phenomena for plane
waves that are described in Proposition 6.14 and Remark 6.16.

2. Multilinear algebra in Carnot groups

Let (G, ·) be a Carnot group of step κ identified to Rn through exponential
coordinates (see [8] for details). By definition, the Lie algebra g has dimen-
sion n, and admits a step κ stratification, i.e. there exist linear subspaces
V1, ..., Vκ such that

(10) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. Set mi = dim(Vi), for i = 1, . . . , κ and hi = m1+· · ·+mi

with h0 = 0. Clearly, hκ = n.
We say that G is a free Carnot group if its algebra g is isomorphic the

free Lie algebra fm1,κ (see, for instance [8], Section 14.1).
Choose now a basis e1, . . . , en of g adapted to the stratification, i.e. such

that

ehj−1+1, . . . , ehj is a basis of Vj for each j = 1, . . . , κ.

Let X = {X1, . . . , Xn} be the family of left invariant vector fields such
that Xi(0) = ei, i = 1, . . . , n. The Lie algebra g can be endowed with a
scalar product 〈·, ·〉, making {X1, . . . , Xn} an orthonormal basis. If we are
dealing with free groups, choosing a Grayson-Grossman-Hall basis of g (see
[24] and [8], Theorem 14.1.10) makes several computations simpler.
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Since G is written in exponential coordinates, a point p ∈ G is identified
with the n-tuple (p1, . . . , pn) ∈ Rn and we we can identify G with (Rn, ·),
where the explicit expression of the group operation · is determined by the
Campbell-Hausdorff formula.

For any x ∈ G, the (left) translation τx : G→ G is defined as

z 7→ τxz := x · z.
For any λ > 0, the dilation δλ : G→ G, is defined as

(11) δλ(x1, ..., xn) = (λd1x1, ..., λ
dnxn),

where di ∈ N is called homogeneity of the variable xi in G (see [16] Chapter
1) and is defined as

(12) dj = i whenever hi−1 + 1 ≤ j ≤ hi.
The dilations δλ are group automorphisms, since

δλx · δλy = δλ(x · y).

We remind that the generating vector fields X1, . . . , Xm are homogeneous
of degree 1 with respect to group dilations.

As customary, we fix a smooth homogeneous norm | · | in G such that the
gauge distance d(x, y) := |y−1x| is a left-invariant true distance, equivalent
to the Carnot-Carathéodory distance in G (see [42], p.638). We set B(p, r) =
{q ∈ G; d(p, q) < r}.

The Haar measure of G = (Rn, ·) is the Lebesgue measure Ln in Rn. If
A ⊂ G is L-measurable, we write also |A| := Ln(A).

We denote by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑
i=1

i dim(Vi).

Since for any x ∈ G |B(x, r)| = |B(e, r)| = rQ|B(e, 1)|, Q is the Hausdorff
dimension of the metric space (G, d).

By (10), the subset X1, . . . , Xm1 generates by commutations all the other
vector fields. Therefore, the subbundle of the tangent bundle TG that is
spanned by X1, . . . , Xm1 plays a particularly important role in the theory,
and it is called the horizontal bundle HG; the fibers of HG are

HGx = span {X1(x), . . . , Xm1(x)}, x ∈ G.
From now on, for sake of simplicity, we set m := m1.

A subriemannian structure is defined on G, endowing each fiber of HG
with a scalar product 〈·, ·〉x making the basis X1(x), . . . , Xm(x) an orthonor-
mal basis. The sections of HG are called horizontal sections, and a vector
of HGx is an horizontal vector.

The Euclidean space Rn endowed with the usual (commutative) sum of
vectors provides the simplest example of Carnot group. It is a trivial exam-
ple, since in this case the stratification of the algebra consists of only one
layer, i.e. the Lie algebra reduces to the horizontal layer.

Following [16], we also adopt the following multi-index notation for higher-

order derivatives. If I = (i1, . . . , in) is a multi–index, we setXI = Xi1
1 · · ·Xin

n .
By the Poincaré–Birkhoff–Witt theorem (see, e.g. [9], I.2.7), the differential
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operators XI form a basis for the algebra of left invariant differential opera-
tors in G. Furthermore, we set |I| := i1 + · · ·+ in the order of the differential
operator XI , and d(I) := d1i1 + · · · + dnin its degree of homogeneity with
respect to group dilations. From the Poincaré–Birkhoff–Witt theorem, it
follows, in particular, that any homogeneous linear differential operator in
the horizontal derivatives can be expressed as a linear combination of the
operators XI of the special form above.

Let k be a positive integer, 1 ≤ p < ∞, and let Ω be an open set in G.

The Folland-Stein Sobolev space W k,p
G (Ω) associated with the vector fields

X1, . . . , Xm is defined to consist of all functions f ∈ Lp(Ω) with distribu-
tional derivatives XIf ∈ Lp(Ω) for any XI as above with d(I) ≤ k, endowed
with the natural norm. We keep the subscript G to avoid misunderstanding
with the usual Sobolev spaces W k,p(Ω).

Again following e.g. [16], we can define a group convolution in G: if, for
instance, f ∈ D(G) and g ∈ L1

loc(G), we set

(13) f ∗ g(p) :=

∫
f(q)g(q−1p) dq for p ∈ G.

We remind that, if (say) g is a smooth function and L is a left invariant
differential operator, then L(f ∗ g) = f ∗ Lg. In addition

(14) 〈f ∗ g|ϕ〉 = 〈g|vf ∗ ϕ〉 and 〈f ∗ g|ϕ〉 = 〈f |ϕ ∗ vg〉
for any test function ϕ. Suppose now f ∈ E ′(G) and g ∈ D′(G). Then, if
ψ ∈ D(G), we have (all convultions being well defined)

〈(XIf) ∗ g|ψ〉 = 〈XIf |ψ ∗ vg〉 = (−1)|I|〈f |ψ ∗ ((XI)∗ vg)〉

= (−1)|I|〈f ∗ v(XI)∗ vg|ψ〉.
(15)

We remind now the notion of kernel of order α. Following [15], a kernel
of order α is a homogeneous distribution of degree α − Q (with respect to
group dilations), that is smooth outside of the origin.

Proposition 2.1. Let K ∈ D′(Ω) be a kernel of order α.

i) vK is again a kernel of order α;
ii) X`K is a a kernel of order α− 1 for any horizontal derivative X`K,

` = 1, . . . ,m;
iii) If α > 0, then K ∈ L1

loc(Hn);
iv) if α = 0, then the map f → f ∗K is Lp.continuous for 1 < p <∞.

Proof. Assertions ii) and iii) are contained in [15]. Assertion i) follows since
δt(p

−1) = (δtp)
−1 for t > 0 and p ∈ G. As for iv), we refer to [15] Proposition

1.9, or to [32] �

The dual space of g is denoted by
∧1 g. The basis of

∧1 g, dual of the basis
X1, · · · , Xn, is the family of covectors {θ1, · · · , θn}. We indicate by 〈·, ·〉 also

the inner product in
∧1 g that makes θ1, · · · , θn an orthonormal basis. We

point out that, except for the trivial case of the commutative group Rn,
the forms θ1, · · · , θn may have polynomial (hence variable) coefficients. In
addition, if G is a free group, because of our choice of X1, . . . , Xn as in
Grayson-Grossman [24], we have θi = dxi, i = 1, . . . ,m.

11



Following Federer (see [14] 1.3), the exterior algebras of g and of
∧1 g are

the graded algebras indicated as
∧
∗
g =

n⊕
h=0

∧
h
g and

∧∗
g =

n⊕
h=0

∧h
g

where
∧

0 g =
∧0 g = R and, for 1 ≤ h ≤ n,∧
h
g := span{Xi1 ∧ · · · ∧Xih : 1 ≤ i1 < · · · < ih ≤ n},∧h
g := span{θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
∧
h g and

∧h g are called h-vectors and h-covectors.

We denote by Θh the basis {θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n} of∧h g.

The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with

∧h g.
The action of a h-covector ϕ on a h-vector v is denoted as 〈ϕ|v〉.

The inner product 〈·, ·〉 extends canonically to
∧
h g and to

∧h g making
the bases Xi1 ∧ · · · ∧Xih and θi1 ∧ · · · ∧ θih orthonormal.

Definition 2.2. We define linear isomorphisms (Hodge duality: see [14]
1.7.8)

∗ :
∧

h
g←→

∧
n−h

g and ∗ :
∧h

g←→
∧n−h

g,

for 1 ≤ h ≤ n, putting, for v, w ∈
∧
h g and ϕ,ψ ∈

∧h g

v ∧ ∗w = 〈v, w〉X1 ∧ · · · ∧Xn, ϕ ∧ ∗ψ = 〈ϕ,ψ〉θ1 ∧ · · · ∧ θn.

It is easy to see that

∗ ∗v = (−1)h(n−h)v, ∗ ∗ ϕ = (−1)h(n−h)ϕ,

〈∗ϕ|∗v〉 = 〈ϕ|v〉.
(16)

From now on, we refer to the n-form

dV := θ1 ∧ · · · ∧ θn
as to the canonical volume form in G.

Notice that, if v = v1 ∧ · · · ∧ vh is a simple h-vector, then ∗v is a simple
(n− h)-vector.

If v ∈
∧
h g we define v\ ∈

∧h g by the identity 〈v\|w〉 := 〈v, w〉, and

analogously we define ϕ\ ∈
∧
h g for ϕ ∈

∧h g.
To fix our notations, we remind the following definition (see e.g. [23],

Section 2.1).

Definition 2.3. If V,W are finite dimensional linear vector spaces and
L : V →W is a linear map, we define

ΛhL :
∧

h
V →

∧
h
W

as the linear map defined by

(ΛhL)(v1 ∧ · · · ∧ vh) = L(v1) ∧ · · · ∧ L(vh)

for any simple h-vector v1 ∧ · · · ∧ vh ∈
∧
h V , and

ΛhL :
∧h

W →
∧h

V

12



as the linear map defined by

〈(ΛhL)(α)|v1 ∧ · · · ∧ vh〉 = 〈α|(ΛhL)(v1 ∧ · · · ∧ vh)〉

for any α ∈
∧hW and any simple h-vector v1 ∧ · · · ∧ vh ∈

∧
h V .

Proposition 2.4. If V,W are finite dimensional linear vector spaces en-
dowed with a scalar product that is naturally extended to the associated
graded algebras. Let L : V →W be a linear map, then

i) if v ∈
∧

1 V and α ∈
∧1W , then (Λ1L)v = Lv and ((Λ1L)α)\ =

L∗(α\);

ii) if α ∈
∧kW and β ∈

∧hW , then (Λk+hL)(α ∧ β) = (ΛkL)α ∧
(ΛkL)β;

iii) if v ∈
∧
k V and w ∈

∧
h V , then (Λk+hL)(v∧w) = (ΛkL)v∧(ΛhL)w;

iv) t(ΛhL) = Λh( tL) and t(ΛhL) = Λh( tL);
v) if H is another finite dimensional linear vector space and G : H → V

is a linear map, then Λh(L ◦G) = (ΛhL) ◦ (ΛhG) and Λh(L ◦G) =
(ΛhG) ◦ (ΛhL);

vi) if L : V → V is a unitary linear operator, then ΛhL and ΛhL are
linear isometries. Moreover

∗((ΛhL)α) = (detL) · (ΛhL) ∗ α.

We can define now two families of vector bundles (still denoted by
∧
∗ g

and
∧∗ g over G), by putting

(17)
∧

h,p
g := (Λhdτp)(

∧
h,e

g
)

and, respectively,

(18)
∧h

p
g := (Λhdτp−1)(

∧h

e
g
)

for any p ∈ G and h = 1, . . . , n, where we have chosen∧
h,e

g ≡
∧

h
g and

∧h

e
g ≡

∧h
g.

If, for instance, Θh is a basis of
∧h g, then Θh

p := (Λhdτp−1)(Θh) is a basis

of the fiber
∧h
p g of

∧h g over p ∈ G. We refer to the section p→ Θh
p of

∧h g

as to the left invariant moving frame associated with Θh.

The inner products 〈·, ·〉 on
∧
h g and

∧h g induce inner products on each

fiber
∧
h,p g and

∧h
p g by the identity

〈Λhdτp(v),Λhdτp(w)〉p := 〈v, w〉
and

〈Λhdτp−1(α),Λhdτp−1(β)〉p := 〈α, β〉.

Lemma 2.5. If p, q ∈ G, then

Λhdτq :
∧

h,p
g→

∧
h,qp

g

and

Λhdτq−1 :
∧h

p
g→

∧h

qp
g

are isometries onto.
13



In general, a subbundle N of
∧
h g is said to be left-invariant if

Np = (Λhdτp)(Ne
)

for all p ∈ G. Analogously, a subbundle N of
∧h g is said to be left-invariant

if

Np := (Λhdτp−1)(Ne
)

for all p ∈ G.
From now on, if U ⊂ G is an open set and h = 0, 1, . . . , n we denote by

Ωh(U) and Ωh(U) the sets of all sections of
∧
h g and

∧h g, respectively. If

U = G we write only Ωh and Ωh. We refer to elements of Ωh as to fields of
h-vectors and to elements of Ωh as to h-forms.

If X is a vector field and α is a h-form, we denote by iXα the contraction
of α with X given by (iXα)(v1 ∧ · · · ∧ vh−1) := α(X ∧ v1 ∧ · · · ∧ vh−1).

If d is the usual De Rham’s exterior differential, we denote by δ = d∗ its
formal adjoint in L2(G,Ω∗). We remind that, when acting on h-forms

(19) δ = (−1)n(h+1)+1 ∗ d ∗ .

As customary, if f : G→ G is a continuously differentiable map, then the
pull-back f#ω of a form ω ∈ Ωh(G) is defined by

f#ω(x) :=
(
Λh(dfx)

)
ω(f(x)).

If v ∈ Ωh(G), we set also

f#v(y) :=
(
Λh(df−1

f(y))
)
v(f(y)).

We have

(20) 〈f#ω|f#v〉 = 〈ω|v〉 ◦ f.

A h-form α on G is said left-invariant if τ#
p α = α for any p ∈ G. If in

particular x ∈ G is arbitrary and we take p = x−1, we get

(21) α(x) = (Λhdτx−1)α(e).

Lemma 2.6. Let ξ ∈
∧h g ≡

∧h
e g be given. If x ∈ G, we set Iξ(x) :=

(Λhdτx−1)ξ. Then

i) the map x→ Iξ(x) belongs to Ωh and is left-invariant;

ii) any left-invariant form α ∈ Ωh has the form α = Iα(e);

Proof. By (18), Iξ(x) ∈
∧h
x g and therefore the map x → Iξ(x) is a section

of
∧h g. Take now p ∈ G. Keeping in mind Proposition 2.4, vi), we have

(τ#
p Iξ)(x) = (Λhdτp)Iξ(p · x) = (Λhdτp) ◦ (Λhdτx−1·p−1)ξ

= (Λh(dτx−1·p−1 ◦ dτp))ξ = Λh(dτx−1)ξ

= Iξ(x).

This proves that Iξ is left-invariant. The second assertion follows from (21).
�
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Remark 2.7. In the sequel, we use also another notation, that has to be
clarified to avoid misunderstandigs: let (for instance) α be a differential
form in G, and let ϕ : G → G be a (say) continuous map. Once a basis
Θ∗ of

∧∗ g (and hence a “moving frame” of the fiber bundle
∧∗ g) is fixed,

we denote by α ◦ ϕ the section of
∧∗ g with coefficients with respct to Θ∗x

coinciding with those of α(ϕ(x)) with respect to Θ∗ϕ(x).

Let G and M be two Carnot groups, and let g = ⊕κ1
i=1Vi and m = ⊕κ2

i=1Wi

be their Lie algebras (respectively n-dimensional and N -dimensional).

We denote by ê1, . . . , êN an adapted basis of m, and by X̂1, . . . , X̂N the
corresponding family of vector fields.

Definition 2.8. A map L : G → M is said to be H-linear (and we write
L ∈ HL(G,M)) if

i) it is a group homomorphism;
ii) it is homogeneous, i.e. δr(Lx) = L(δrx) for all r > 0.

A H-linear map induces an algebra homomorphism (that we still denote by
L) between g and m by taking ln ◦L ◦ exp. In particular the induced map L
is linear.

Since we are using exponential coordinates in G and M, the map L itself
from G to M can be written as N × n real matrix, and we still denote
by HL(G,M) the set of associated matrices. Finally, if M = G, we write
HL(G) := HL(G,G).

In addition, we denote by HUR(G) ⊂ HL(G) the subgroup of the unitary
real n× n matrices satisfying i) and ii).

Definition 2.9. Let G and M be Carnot groups with Lie algebras g and m.
A linear map L : g→ m is said to have the contact property if

(22) L(Vi) ⊂Wi i = 1, . . . , κ1.

If the groups G and M are written in exponential coordinates in Rn and
RN respectively, and the map L : g → m has the contact property, then L
can be seen as a linear map from Rn to RN (that in general fails to be an
homomorphism).

Theorem 2.10 ([34], Corollary 3.15 and [36]). Let L : G→M be a H-linear
map. Then L enjoys the contact property (22).

Remark 2.11. If a linear map L is a contact map, we have also

tL(Wi) ⊂ Vi i = 1, . . . , κ2.

In other words, tL is again a contact map.
Indeed, take j 6= i and α ∈ Vj . If θ ∈Wi, then 〈tL(θ), α〉 = 〈θ, L(α)〉 = 0,

since L(α) ∈Wj , by Theorem 2.10.

Example 2.12. In H1, H-linear maps are associated with 3×3 real matrices
of the form (see [36], [31]) a11 a12 0

a21 a22 0
0 0 a44,

 , with a44 = det

(
a11 a12

a21 a22

)
.
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More generally, if we denote by J the symplectic (2N × 2N)-matrix

J :=

(
0N×N IN×N
−IN×N 0N×N

)
,

then the real (2N + 1)× (2N + 1) real matrix

A :=

(
A2N×2N 02N×1

01×2N a

)
belongs to HL(HN ) if and only if

tAJA = aJ.

If a > 0, then the above condition reads as

1√
a
A belongs to the symplectic group SpN (R).

For characterizations and properties of SpN (R) we refer to [7], Section 1.2.

Example 2.13. Later on, we have to deal with a space-time group like
R × H1. In this case, a H-linear map L : R × H1 → R × H1 has the two
following possible structures:

i) either the associated matrix L has the form

L =


0

L0 0
0

0 0 0 0

 ,

where L0 is a 3× 3 real matrix with the last two row linearly depen-
dent,

ii) or the associated matrix L has the form

L =


a00 a01 a02 0
0 a11 a12 0
0 a21 a22 0
0 0 0 a11a22 − a12a21

 ,

with a11a22 − a12a21 6= 0.

More generally, let G be a step 2 group. First of all, a matrix A ∈ HL(G)
has a block structure of the form

A :=

(
A

(1)
m1×m1

0m1×m2

0m2×m1 A
(2)
m2×m2

)
.

Denote a point x ∈ G as x = (x′, x′′), with x′ ∈ Rm1 and x′′ ∈ Rm2 ; then
(x · y)′ = x′ + y′ and

(x · y)j = xj + yj + 〈Qjx′, y′〉Rm1 , j = m1 + 1, . . .m2,

where the Qj ’s are m1×m1 real matrices (see e.g. [17], Proposition 2.1). If

we denote now by a
(2)
ij the entries of A

(2)
m2×m2

, a direct computation shows

that A ∈ HL(G) if and only if

tA
(1)
m1×m1

QiA
(1)
m1×m1

=
∑
j

a
(2)
ij Qj .
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3. Weights of forms and Rumin’s complex

Definition 3.1. If α ∈
∧1 g, α 6= 0, we say that α has pure weight k, and

we write w(α) = k, if α\ ∈ Vk. More generally, if α ∈
∧h g, we say that α

has pure weight k if α is a linear combination of covectors θi1 ∧· · ·∧θih with
w(θi1) + · · ·+ w(θih) = k.

Remark 3.2. If α, β ∈
∧h g and w(α) 6= w(β), then 〈α, β〉 = 0. Indeed,

it is enough to notice that, if w(θi1 ∧ · · · ∧ θih) 6= w(θj1 ∧ · · · ∧ θjh), with
i1 < i2 < · · · < ih and j1 < j2 < · · · < jh, then for at least one of the indices
` = 1, . . . , h, i` 6= j`, and hence 〈θi1 ∧ · · · ∧ θih , θj1 ∧ · · · ∧ θjh〉 = 0.

We have ([2], formula (16))

(23)
∧h

g =

Mmax
h⊕

p=Mmin
h

∧h,p
g,

where
∧h,p g is the linear span of the h–covectors of weight p and Mmin

h ,
Mmax
h are respectively the smallest and the largest weight of left-invariant

h-covectors.
Keeping in mind the decomposition (23), we can define in the same way

several left invariant fiber bundles over G, that we still denote with the same

symbol
∧h,p g.

We notice also that the fiber
∧h
x g (and hence the fiber

∧h,p
x g) can be

endowed with a natural scalar product 〈·, ·〉x.
We denote by Ωh,p the vector space of all smooth h–forms in G of pure

weight p, i.e. the space of all smooth sections of
∧h,p g. We have

(24) Ωh =

Mmax
h⊕

p=Mmin
h

Ωh,p.

The following crucial property of the weight follows from Cartan identin-
tity: see [40], Section 2.1:

Lemma 3.3. We have d(
∧h,p g) ⊂

∧h+1,p g, i.e., if α ∈
∧h,p g is a left

invariant h-form of weight p with dα 6= 0, then w(dα) = w(α).

Proposition 3.4. If L enjoys the contact property (22), then

ΛhL :
∧h,p

g→
∧h,p

g

for h = 1, . . . , n and Mmin
h ≤ p ≤Mmax

h .

Proof. Let θi1 ∧ · · · ∧ θih be an element of the basis Θh,p of
∧h,p g. Since

ΛhL(θi1 ∧ · · · ∧ θih) = (Λ1L)θi1 ∧ · · · ∧ (Λ1L)θih ,

we have only to show that w((Λ1L)θ`) = w(θ`) for ` = 1, . . . , n. But this
follows straightforwardly from Theorem 2.10, since, by Proposition 2.4, i),

((Λ1L)θ`)
\ = tL(X`) ∈ Vw(θ`),

by Remark 2.11. �
17



Definition 3.5. Let now α =
∑

θhi ∈Θh,p αi θ
h
i ∈ Ωh,p be a (say) smooth form

of pure weight p. Then we can write

dα = d0α+ d1α+ · · ·+ dκα,

where
d0α =

∑
θhi ∈Θh,p

αidθ
h
i

does not increase the weight,

d1α =
∑

θhi ∈Θh,p

m1∑
j=1

(Xjαi)θj ∧ θhi

increases the weight by 1, and, more generally,

diα =
∑

θhi ∈Θh,p

∑
Xj∈Vi

(Xjαi)θj ∧ θhi ,

when i = 0, 1, . . . , κ. In particular, d0 is an algebraic operator.

Lemma 3.6. d2
0 = 0, i.e. (Ω∗, d0) is a complex.

Proof. Take α ∈ Ωh,p, and write the identity d2α = 0, gathering all terms
according their weights. Since terms with different weights are orthogonal,
this yields that all groups of given weight vanish. But the group of weight
p is precisely d2

0α, and we are done.
�

Lemma 3.7. Let α ∈ Ωh be left-invariant. We have:

i) dα = d0α;
ii) d0α is left-invariant.

Proof. The first assertion is straightforward by Lemma 3.3. As for ii), if
p ∈ G we have

τ#
p (d0α) = τ#

p (dα) = d(τ#
p α) = dα = d0α.

�

We denote by δi the formal L2-adjoint of di for i = 0, . . . , κ. We stress
that also δ0 is an algebric operator.

Proposition 3.8. If h = 0, 1, . . . , n, Mmin
h ≤ p ≤Mmax

h−1 , and i = 0, 1, . . . , κ,

i ≤ p−Mmin
h−1, we have

δi(Ω
h,p) ⊂ Ωh−1,p−i and δi = (−1)n(h+1)+1 ∗ di ∗ .

Proof. If α ∈ Ωh,p and β ∈ Ωh−1, then∫
〈δ1α, β〉dV =

∫
〈α, d1β〉dV 6= 0 only if β ∈ Ωh−1,p−i.

This proves the first assertion. As for the second assertion, by (19),

δ0 + δ1 + · · · = δ = (−1)n(h+1)+1 ∗ d∗

= (−1)n(h+1)+1 ∗ d0 ∗+(−1)n(h+1)+1 ∗ d1 ∗+ · · · ,
and the assertion follows since both decompositions are orthogonal. �
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The following definition of intrinsic covectors (and therefore of intrinsic
forms) is due to M. Rumin ([40], [39]).

Definition 3.9. If 0 ≤ h ≤ n we set

Eh0 := ker d0 ∩ ker δ0 = ker d0 ∩ (Im d0)⊥ ⊂ Ωh

In the sequel, we refer to the elements of Eh0 as to intrinsic h-forms on G.
Since the construction of Eh0 is left invariant, this space of forms can be

seen as the space of sections of a fiber subbundle of
∧h g, generated by left

translation and still denoted by Eh0 . In particular Eh0 inherits from
∧h g the

scalar product on the fibers.
Moreover, there exists a left invariant orthonormal basis Ξh0 = {ξj} of Eh0

that is adapted to the filtration (23).
Since it is easy to see that E1

0 = span {θ1, . . . , θm}, without loss of gener-
ality, we can take ξj = θj for j = 1, . . . ,m.

Finally, we denote by Nmin
h and Nmax

h respectively the lowest and highest

weight of forms in Eh0 .

We define now a (pseudo) inverse of d0 as follows (see [2], Lemma 2.11):

Lemma 3.10. If β ∈
∧h+1 g, then there exists a unique α ∈

∧h g∩(ker d0)⊥

such that

δ0d0α = δ0β. We set α := d−1
0 β.

In particular

α = d−1
0 β if and only if d0α− β ∈ ker δ0 = R(d0)⊥.

In addition, d−1
0 preserves the weights.

Proof. The first statement follows by an easy linear algebra argument. As for

the second statement, suppose β ∈
∧h+1,p g, and, by (23), write α =

∑
i αi,

with αi ∈
∧h,i g. We have

∑
i d0αi = β + ξ, with ξ ∈ R(d0)⊥. Keeping in

mind that covectors of different weights are orthogonal, and that d0 preserves
the weights, if j 6= p, we get

‖d0αj‖2 =
∑
i

〈αi, d0αj〉 = 〈β, d0αj〉+ 〈ξ, d0αj〉 = 0.

Therefore αj ∈ ker d0 ⊥ α for j 6= p, and hence

‖αj‖2 = 〈α, αj〉 = 0

if j 6= p. This proves the assertion. �

The following theorem summarizes the construction of the intrinsic dif-
ferential dc (for details, see [40] and [2], Section 2) .

Theorem 3.11. The de Rham complex (Ω∗, d) splits in the direct sum of
two sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) +R(dd−1

0 ).

We have
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i) Let ΠE be the projection on E along F (that is not an orthogonal

projection). Then for any α ∈ Eh,p0 , if we denote by (ΠEα)j the
component of ΠEα of weight j, then

(ΠEα)p = α

(ΠEα)p+k+1 = −d−1
0

( ∑
1≤`≤k+1

d`(ΠEα)p+k+1−`
)
.(25)

ii) ΠE is a chain map, i.e.

dΠE = ΠEd.

iii) Let ΠE0 be the orthogonal projection from Ω∗ on E∗0 , then

(26) ΠE0 = Id− d−1
0 d0 − d0d

−1
0 , ΠE⊥0

= d−1
0 d0 + d0d

−1
0 .

Notice that, since d0 and d−1
0 are algebraic, then formulas (26) hold

also for covectors.
iv) ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE.

Set now

dc = ΠE0 dΠE : Eh0 → Eh+1
0 , h = 0, . . . , n− 1.

We have:

v) d2
c = 0;

vi) the complex E0 := (E∗0 , dc) is exact;
vii) with respect to the bases Ξ∗, the intrinsic differential dc can be seen

as a matrix-valued operator such that, if α has weight p, then the
component of weight q of dcα is given by an homogeneous differential
operator in the horizontal derivatives of order q − p ≥ 1, acting on
the components of α.

Remark 3.12. Let us give a gist of the construction of E. The map d−1
0 d

induces an isomorphism from R(d−1
0 ) to itself. Thus, since d−1

0 d0 = Id on

R(d−1
0 ), we can write d−1

0 d = Id+D, where D is a differential operator that

increases the weight. Clearly, D : R(d−1
0 ) → R(d−1

0 ). As a consequence
of the nilpotency of G, Dk = 0 for k large enough, and therefore the Neu-
mann series of d−1

0 d reduces to a finite sum on R(d−1
0 ). Hence there exist a

differential operator

P =

N∑
k=1

(−1)kDk, N ∈ N suitable,

such that

Pd−1
0 d = d−1

0 dP = IdR(d−1
0 ).

We set Q := Pd−1
0 . Then ΠE is given by

ΠE = Id−Qd− dQ.

If more Carnot groups are involved, to avoid misunderstandings we write
also (E∗0,G, dc,G), whereas the usual exterior differential is denoted by dG.
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Remark 3.13. Our definition of the complex (E∗0 , dc) is not fully intrinsic,
since it depends not only on the group structure of G and on the stratifica-
tion of its Lie algebra, but also on the scalar product we have fixed rather
arbitrarily at the very beginning. In fact, the elements of E∗0 should better
be defined intrinsically as quotient classes, by putting

Ẽ∗0 = ker d0/R(d0),

and then by defining coherently the intrinsic differential as an operator be-
tween classes.

As pointed out in [40], Section 2.2.2, the choice of the orthogonal com-
plement of R(d0) as a representative of the quotient space makes possible
to work with “true forms” instead of equivalence classes. Obviously, this
advantage must have some negative counterpart. In particular, when we are
interested in the invariance of (E∗0 , dc) under the pull-back, we are forced
to add supplementary and “non natural” assumptions related to the scalar
product (see Remark 3.17).

The following “integration by parts” formula (that is not a straightforward
consequence of Stokes theorem as in Rn) is proved in [2], Remark 3.18.
Indeed, the identity dc(α ∧ β) = dcα ∧ β − α ∧ dcβ fails to hold for intrinsic
forms, as pointed out in [4], Proposition A.7, since α ∧ β cannot be defined
in a coherent way.

Proposition 3.14. If α ∈ D(G, Eh0 ) and β ∈ D(G, Ek0 ) with k+ h+ 1 = n,
we have ∫

G
dcα ∧ β = (−1)h+1

∫
G
α ∧ dcβ.

We denote by δc = δc,G = d∗c = d∗c,G the formal adjoint of dc in L2(G, E∗0).
Thanks to Proposition 3.14, the following assertion holds.

Proposition 3.15. We have

δc = (−1)n(h+1)+1 ∗ dc ∗ .

Proof of Proposition 3.15. Let α ∈ Eh0 and β ∈ Eh−1
0 be smooth compactly

supported forms. Then∫
G
〈δcα, β〉 dV =

∫
G
〈α, dcβ〉 dV

=

∫
G
dcβ ∧ ∗α = (−1)h

∫
G
β ∧ ∗ ∗ dc (∗α)

= (−1)n(h+1)+1

∫
G
β ∧ ∗ ∗ dc (∗α)

= (−1)n(h+1)+1

∫
G
〈β, ∗ dc ∗ α〉 dV.

�

The following theorem states the so-called naturality of the exterior dif-
ferential dc. Since homogeneous homomorphisms of G appear naturally as
intrinsic differentials (Pansu differentials: see [37]) of maps between Carnot
groups, we can expect the invariance of (E∗0 , dc) under pull-back associated
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with maps in HL(G). However, our statement is weaker than one could
wish, and the reason is illustrated below in Remark 3.16.

Theorem 3.16. If both L and tL belong to HL(G), then

i) L# : E∗0 → E∗0 ;
ii) for any intrinsic h-form α ∈ Eh0

dc(L
#α) = L#(dcα);

Proof. The proof is divided in several steps.
Step 1. We prove that, if α ∈ Ωh is left-invariant, then both L#α and
tL#α are left invariant. We prove the assertion for L#α. Take p ∈ G. We
notice preliminarily that L ◦ τp = τLp ◦L. Thus, by Proposition 2.4, vi), we
have

τ#
p (L#α) = (L ◦ τp)#α = (τLp ◦ L)#α = L#τ#

Lpα = L#α.

Step 2. For any h-form ω ∈ Ωh we have d0(L#ω) = L#(d0ω) (again the
same assertion still holds for tL#). Indeed, suppose ω has pure weight p, i.e.
suppose ω ∈ Ωh,p. We can write now

d(L#ω) = d0(L#ω) + d1(L#ω) + · · · ,
and, at the same time, by linearity

d(L#ω) = L#(dω) = L#(d0ω) + L#(d1ω) + · · · .

But both di(L
#ω) and L#(diω) belong to Ωh+1,p+i for i = 0, 1, . . . , since the

pull back preserves the weights, by Proposition 3.4. Keeping in mind that
Ωh+1,r is orthogonal to Ωh+1,s for r 6= s, it follows that di(L

#ω) = L#(diω)
for i = 0, 1, . . . .
Step 3. Suppose ω ∈ Ωh is left-invariant. Combining Steps 1 and 2, and
keeping in mind that d0 preserves the left-invariance, we obtain that d0(L#ω)
and L#(d0ω) are left-invariant. If we write the identity d0(L#ω) = L#(d0ω)
at 0, keeping in mind that Le = e, we obtain

d0

(
(ΛhL)ω(0)

)
= (ΛhL)(d0ω(0)),

since
Step 4. Suppose ω ∈ Ωh is left-invariant. Then d−1

0 L#ω = L#(d−1
0 ω).

Since both terms are left-invariant, by Step 1, keeping in mind that d−1
0 is

algebraic, we need only to prove the assertion at 0, i.e to prove that

d−1
0 ((ΛhL)ω(0)) = (ΛhL)(d−1

0 ω(0)),

since Le = e. Set now ω0 := ω(0); by the very definition of d−1
0 , this is

equivalent to show that

(a) (ΛhL)(d−1
0 ω0) ⊥ ker d0;

(b) d0

(
(ΛhL)(d−1

0 ω0)
)
− (ΛhL)ω0 ∈ R(d0)⊥.

To prove (a), take ξ ∈ ker d0. We notice that d0Iξ = Id0ξ, since both
d0Iξ and Id0ξ are left-invariant (Lemma 3.7) and coincide at 0 (since d0 is
algebraic).

By Proposition 2.4, we obtain

〈(ΛhL)(d−1
0 ω0), ξ〉 = 〈d−1

0 ω0, (Λ
h tL)ξ〉.
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On the other hand, keeping in mind Lemma 2.6,

d0(Λh tL)ξ = d0

(
tL#Iξ(0)

)
= d0

(
tL#Iξ

)
(0)

=
(
tL#(d0Iξ)

)
(0) (by Step 3) =

(
tL#(Id0ξ)

)
(0) = 0.

Therefore 〈d−1
0 ω0, (Λ

h tL)ξ〉 = 0, since d−1
0 ω0 is normal to ker d0, by its very

definition. This proves (a).
To prove (b), take ξ = d0η ∈ R(d0). Arguing as above, we obtain

〈d0

(
(ΛhL)(d−1

0 ω0)
)
− (ΛhL)ω0, ξ〉

= 〈(ΛhL)(d0d
−1
0 ω0)− (ΛhL)ω0, ξ〉 = 〈d0d

−1
0 ω0 − ω0, (Λ

h tL)ξ〉.

On the other hand, d0η = (d0Iη)(0), and hence

(Λh tL)ξ =
(
tL#(d0Iη)

)
(0) =

(
d0( tL#Iη)

)
(0)

= d0(Λh−1 tLη) ∈ R(d0).

Thus 〈d0d
−1
0 ω0 − ω0, (Λ

h tL)ξ〉 = 0, by the very definition of d−1
0 ω0 and (b)

follows.
Step 5. By Steps 3 and 4, L# commutes with both d0 and d−1

0 and
therefore

L#ΠE0 = L#(Id− d0d
−1
0 − d

−1
0 d0) = ΠE0L

#.

In particular, i) follows.
Step 6. In order to prove ii), we have but to show that the pull back
commutes with ΠE .

Following now the notations of Lemma ??, L# commutes with D =
d−1

0 d0 − Id, and hence with P =
∑

k(−1)kDk, and finally with Q. Thus
it commutes with ΠE = Id − Qd − dQ. This achieves the proof of the
theorem.

�

Remark 3.17. The statement of Theorem 3.16 is not as natural as we could
wish, though sufficient for our purposes when dealing later with Maxwell’s
equations. This because of the assumption on tL. However, as we already
pointed out in Remark 3.13, this is due to the fact that we are not working
with the natural complex (Ẽ∗0 , d̃c), but with an isomorphic complex of “true
forms”, that depends on the choice of a scalar product in g. Indeed, we could
get rid of the “non natural” assumption by working on quotient spaces as
sketched in Remark 3.13, and keeping in mind that, by Step 2 of our previous
proof, if L ∈ HL(G), then d0L

# = L#d0. Thus the map

L̃# : ker d0/R(d0) −→ ker d0/R(d0)

given by

L̃#[α] := [L#α]

is well defined without further assumption on L.

If Ω ⊂ G is an open set, 0 ≤ h ≤ n, k ∈ N and 1 ≤ p ≤ ∞, then we denote

by W k,p
G (Ω, Eh0 ) the space of all forms in Eh0 with coefficients in W k,p

G (Ω),
endowed with its natural norm. It is easy to see that this definition is

independent of the basis of
∧h g we have chosen. The spaces Lp(Ω, Eh0 ) and
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D(Ω, Eh0 ) are defined analogously starting from Lp(Ω) and from the space
of test functions D(Ω), respectively.

Definition 3.18. If Ω ⊂ G is an open set and 1 ≤ h ≤ n, we say that T is
a h-current on Ω if T is a continuous linear functional on D(Ω, Eh0 ) endowed
with the usual topology. We write T ∈ D′(Ω, Eh0 ).

Any (usual) distribution T ∈ D′(Ω) can be identified canonically with an

n-current T̃ ∈ D′(Ω, En0 ) through the formula

(27) 〈T̃ |α〉 := 〈T |∗α〉

for any α ∈ D(Ω, En0 ). Reciprocally, by (27), any n-current T̃ can be iden-
tified with an usual distribution T ∈ D′(Ω).

Following [14], 4.1.7, we give the following definition.

Definition 3.19. If T ∈ D′(Ω, En0 ), and ϕ ∈ E(Ω, Ek0 ), with 0 ≤ k ≤ n, we

define T ϕ ∈ D′(Ω, En−k0 ) by the identity

〈T ϕ|α〉 := 〈T |α ∧ ϕ〉

for any α ∈ D(Ω, En−k0 ).

We notice that, when ϕ ∈ E(Ω, Ek0 ) and α ∈ D(Ω, En−k0 ), then the wedge
product α ∧ ϕ belongs to D(Ω, En0 ), since En0 = Ωn.

The following result is taken from [3], Propositions 5 and 6, and Definition
10, but we refer also to [12], Sections 17.3 17.4 and 17.5.

Let Ω ⊂ G be an open set. If 1 ≤ h ≤ n, If Ξh0 = {ξh1 , . . . ξhdim Eh0
} is

a left invariant basis of Eh0 and T ∈ D′(Ω, Eh0 ), then there exist (uniquely
determined) T1, . . . , Tdim Eh0

∈ D′(Ω) such that

T =
∑
j

T̃j (∗ξhj ).

It is well known that currents can be seen as forms with distributional co-
efficients in the following sense: if α ∈ E(Ω, Eh0 ), then α can be identified
canonically with a h-current Tα through the formula

(28) 〈Tα|ϕ〉 :=

∫
Ω
∗α ∧ ϕ

for any ϕ ∈ D(Ω, Eh0 ). Moreover, if α =
∑

j αjξ
h
j then

Tα =
∑
j

α̃j (∗ξhj )

The notion of convolution can be extended by duality to currents.

4. Space-time Carnot groups

From now on, we denote by x a “space” point in the Carnot group G,
and by s ∈ R the “time”, and we choose in R × G the canonical volume
form ds ∧ dV , where dV = θ1 ∧ · · · ∧ θn is the canonical volume form in G.
Moreover, we denote by (Ω∗G, dG) and (Ω∗R×G, dR×G) the de Rham complex
of forms on G and on R×G, respectively. For sake of brevity, we write

Ω∗ := Ω∗G and Ω̂∗ := Ω∗R×G,
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d := dG and d̂ := dR×G,

δ := d∗G and δ̂ := d∗R×G.

Analogously, we write

di := dG,i and d̂i := dR×G,i,

δi := d∗G,i and δ̂i := d∗R×G,i,

i = 0, . . . , κ (see Definition 3.5).
When dealing with intrinsic forms, we denote by (E∗0,G, dc,G) and (E∗0,R×G, dc,R×G)

the complex of intrinsic forms on G and on R×G, respectively. For sake of
brevity, we write

E∗0 := E∗0,G and Ê∗0 := E∗0,R×G,

as well as

dc := dc,G and d̂c := dc,R×G,

δc := d∗c,G and δ̂c := d∗c,R×G.

Denote by S the vector field ∂
∂s . The Lie group R×G is a Carnot group;

its Lie algebra ĝ admits the stratification

(29) ĝ = V̂1 ⊕ V2 ⊕ · · · ⊕ Vκ,

where V̂1 = span {S, V1}. Since the adapted basis {X1, . . . , Xn} has been
already fixed once and for all, the associated orthonormal fixed basis for ĝ
will be

{S,X1, . . . , Xm1 , . . . , Xn} := {X0, . . . , Xn},
where we have set X0 := S. Coherently, we write also θ0 := ds. Consider
the Lie derivative LS along S. If fθi1 ∧ · · · ∧ θih is a h-form in G, 1 ≤ i1 <
· · · < ih ≤ n, we have LS(fθi1 ∧ · · · ∧ θih) = (Sf)θi1 ∧ · · · ∧ θih . Indeed

• if h = 0, by definition LSf = iSdf =
∑n

j=0(Xjf)θj(X0) = Sf ;

• if fθi1 ∧ · · · θih is a h-form in G, h ≥ 1, then LS(fθi1 ∧ · · · ∧ θih) =
(Sf)θi1 ∧ · · · ∧ θih + fLS(θi1 ∧ · · · ∧ θih). But LS(θi1 ∧ · · · ∧ θih) is
a sum of terms of the form θi1 ∧ · · · ∧ LSθi` ∧ · · · ∧ θih = 0, since
LSθi` = 0.

Thus, when acting on h-forms α in G, without risk of misunderstandings,
we write Sα for LSα.

We point out that S commutes with d, the exterior differential in G.
Indeed, if α =

∑n
j=1 αjθ

h
j , then

Sdα =

n∑
j=1

n∑
`=1

(SX`αj)θ` ∧ θhj =
n∑
j=1

n∑
`=1

(X`Sαj)θ` ∧ θhj = d(Sα).

Moreover, if α ∈ Ωh and its coefficients depend on s and x (and is identified

with a h-form in Ω̂h), then

(30) d̂α = dα+ ds ∧ (Sα).

As in special relativity, the space-time R × G can be endowed with a
Minkowskian scalar product as follows.
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Definition 4.1. We denote by G = (gij)i,j=0,...,n the (n+1)×(n+1)-matrix
in HL(R × G,R × G) such that gij = 0 if i 6= j, gii = 1 if i > 0, g00 = −1,
i.e. we set

G =



−1 0 0 0
0 1 0 0

. . . 0 0
0 0 1 0
0 0 0 1

1 0

0
. . . 0

0 1

0 0
. . .



.

We can define now “Minkowskian” scalar products 〈·, ·〉M in
∧
∗ ĝ and

∧∗ ĝ
by

〈v, v′〉M = 〈(ΛhG)v, v′〉 if v, v′ ∈
∧
h ĝ

and

〈α, α′〉M = 〈(ΛhG)α, α′〉 if α, α′ ∈
∧h ĝ.

Notice that the bilinear form 〈·, ·〉M is nondegenerate.

Definition 4.2. We denote by ∗M the Hodge operator ∗M :
∧h ĝ→

∧n−h ĝ
associated with the Minkowskian scalar product in

∧∗ ĝ and with the volume
form ds ∧ dV by

α ∧ ∗Mβ = 〈α, β〉Mds ∧ dV.

Definition 4.3. If 1 ≤ h ≤ n, we denote by δ̂Mc the codifferential δ̂Mc :

Ω̂h → Ω̂h−1 associated with the Minkowskian scalar product by∫
G
〈δ̂Mc α, β〉M ds ∧ dV =

∫
G
〈α, d̂cβ〉M ds ∧ dV

for α ∈ D(G, Êh0 ) and β ∈ D(G, Êh−1
0 ).

By Proposition 3.14, we have

δ̂Mc = (−1)(n+1)(h+1)+1 ∗M d̂c ∗M .

Let us state preliminarily a structure lemma for intrinsic forms in R ×
G. The result is proved in [5], but we sketch the proof here for sake of
completeness.

Lemma 4.4. If 1 ≤ h ≤ n, then a h-form α belongs to Êh0 if and only if it
can be written as

(31) α = ds ∧ β + γ,

where β ∈ Eh−1
0 and γ ∈ Eh0 are respectively intrinsic (h − 1)-forms and

h-forms in G with coefficients depending on x and s.
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Proof. Without loss of generality, we can restrict ourselves to prove an
analogous decomposition for covectors (identified with left invariant forms)

α ∈
∧h ĝ, γ ∈

∧h g and β ∈
∧h−1 g, where, as usual, we identify

∧h g with

a linear subspace of
∧h ĝ.

First of all, notice that, if σ ∈
∧h g is arbitrary, then d0(ds ∧ σ) =

d(ds∧σ) = ds∧dσ = ds∧d0σ. Thus, if d0β = 0 and d0γ = 0, then d0α = 0.

On the other hand, let α′ = ds ∧ β′ + γ′ be arbitrarily given in
∧h−1 ĝ.

Then, keeping in mind that covectors in
∧` g are orthogonal in

∧h ĝ to

covectors of the form ds ∧ σ with σ ∈
∧`−1 g, by the very definition of the

scalar product, we have

〈α, d0α
′〉 = 〈β, d0β

′〉+ 〈γ, d0γ
′〉 = 0,

since both β and γ belong to E∗0,G and hence are orthogonal to the range of

d0. Thus also α is orthogonal to the range of d0 and eventually α ∈ Êh0 .

Suppose now α belongs to Êh0 . We can always write it as α = ds∧ β + γ,

with β ∈
∧h−1 g and γ ∈

∧h g, and 0 = d0α = ds∧ d0β+ d0γ. But ds∧ d0β

and d0γ are orthogonal, and hence d0β = 0 and d0γ = 0. Let now γ′ ∈
∧h g

be given. Since d0γ
′ is orthogonal to any h-covector of the form ds∧β′ with

β′ ∈
∧h−1 g, we have 0 = 〈α, d0γ

′〉 = 〈ds ∧ β + γ, d0γ
′〉 = 〈γ, d0γ

′〉, i.e. γ
is orthogonal to the range of d0 and then γ ∈ Eh0,G. Analogously, if β′ ∈∧h−1 g, then 0 = 〈α, d0(ds ∧ β′)〉 = 〈α, ds ∧ d0β

′〉 = 〈ds ∧ β, ds ∧ d0β
′〉 +

〈γ, ds ∧ d0β
′〉 = 〈β, d0β

′〉. Thus β is orthogonal to the range of d0 and then

β ∈ Eh−1
0,G . �

Remark 4.5. If 1 ≤ ` ≤ n, by Lemma 4.4, keeping in mind that forms in Ê`0
are orthogonal to the forms ds ∧ σ with σ ∈ E`−1

0 , we have

〈ds ∧ β + γ, ds ∧ β′ + γ′〉M := 〈γ, γ′〉 − 〈β, β′〉.

Remark 4.6. If α = ds ∧ β + γ ∈ Êh0 , then

∗Mα = (−1)hds ∧ ∗γ − ∗β.

Indeed, if α′ = ds ∧ β′ + γ′ ∈ Êh0 , by Lemma 4.4 we have

(ds ∧ β′ + γ′) ∧ ((−1)hds ∧ ∗γ − ∗β)

= −ds ∧ β′ ∧ ∗β + (−1)hγ′ ∧ ds ∧ ∗γ
(since γ′ ∧ ∗β vanishes, being a (n+ 1)-form in G)

= −ds ∧ β′ ∧ ∗β + ds ∧ γ′ ∧ ∗γ
= 〈α, α′〉M ds ∧ dV.

Proposition 4.7. If 1 ≤ h ≤ n, and α = ds ∧ β + γ ∈ Êh0 , then

(32) d̂cα = ds ∧ (Sγ − dcβ) + dcγ.

and

(33) δ̂Mc α = −ds ∧ δcβ + δcγ + Sβ.

Proof. The proof will be articulated in several lemmata. �
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Lemma 4.8. If α = ds ∧ β + γ ∈ Ω̂h, then

(34) d̂α = ds ∧ (Sγ − dβ) + dγ.

Proof. By (30) we have:

d̂α = −ds ∧ d̂β + d̂γ = −ds ∧
(
dβ + ds ∧ (Sβ)

)
+ dγ + ds ∧ (Sγ)

= ds ∧ (Sγ − dβ) + dγ.

�

Lemma 4.9. If α = ds ∧ β + γ ∈ Êh0 , then

(35) d̂1α = ds ∧ (Sγ − d1β) + d1γ,

and

(36) d̂iα = −ds ∧ diβ + diγ for i 6= 1.

Proof. Suppose α has weight p, i.e. suppose β has weight p − 1 and γ has
weight p. By Lemma 4.8, and keeping in mind that Sγ has weight p too, we
can write

d̂α = ds ∧ (Sγ − dβ) + dγ

= ds ∧ (Sγ − d0β − d1β − · · · ) + d0γ + d1γ + · · ·
= {−ds ∧ d0β + d0γ}+ {ds ∧ (Sγ − d1β) + d1γ}
+ {−ds ∧ d2β + d2γ}+ · · · .

This proves the assertion.
�

Lemma 4.10. If α = ds ∧ β + γ ∈ Êh0 , then

(37) d̂−1
0 α = −ds ∧ d−1

0 β + d−1
0 γ.

Proof. To prove the assertion, by the very definition of d−1
0 , we have to show

that −ds∧ d−1
0 β+ d−1

0 γ ⊥ ker d̂0 and d̂0(−ds∧ d−1
0 β+ d−1

0 γ)−α ∈ R(d̂0)⊥.

Thus, take first ds ∧ σ + τ ∈ ker d̂0. Then d0σ = 0, d0τ = 0, and hence,
〈−ds ∧ d−1

0 β + d−1
0 γ, ds ∧ σ + τ〉 = 〈d−1

0 β, σ〉+ 〈d−1
0 γ, τ〉 = 0, since d−1

0 β ⊥
σ, and d−1

0 γ ⊥ τ , by definition.

Take now ds ∧ σ + τ ∈ Ω̂h−1. By (36), d̂0(−ds ∧ d−1
0 β + d−1

0 γ) − α =

ds ∧ (d0d
−1
0 β − β) + (d0d

−1
0 γ − γ), so that

〈d̂0(−ds ∧ d−1
0 β + d−1

0 γ)− α, d0(ds ∧ σ + τ)〉
= −〈d0d

−1
0 β − β, d0σ〉+ 〈d0d

−1
0 γ − γ, d0τ〉 = 0,

since, by definition, both d0d
−1
0 β − β ⊥ R(d0) and d0d

−1
0 γ − γ ⊥ R(d0).

�

We want to express the lifting operator ΠE and the orthogonal projection
ΠE0 in Ω̂∗ in terms of its counterpart in Ω∗G. We denote by Ê and F̂ the

complexes E and F in Ω̂∗. These notations are coherent with our previous
notations when we had to distinguish between R×G and G.

Lemma 4.11. If α = ds ∧ β + γ ∈ Êh0 , then

(38) ΠÊα = ds ∧ΠEβ + ΠEγ.
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Proof. The proof consists of two steps: first we shall prove that

(39) d̂−1
0 (ds ∧ΠEβ + ΠEγ) = 0

and

(40) d̂−1
0 d̂(ds ∧ΠEβ + ΠEγ) = 0

This proves that ds ∧ ΠEβ + ΠEγ ∈ Ê. The second step will consist of
showing that

(41) α− (ds ∧ΠEβ + ΠEγ) ∈ R(d̂−1
0 ) +R(d̂d̂−1

0 ) = F̂ .

Clearly, (39), (40), and (41) yield (38).
Now, by (35),

d̂−1
0 (ds ∧ΠEβ + ΠEγ) = −ds ∧ d−1

0 ΠEβ + d−1
0 ΠEγ = 0,

i.e. (39). As for (40), by (34) (keeping in mind that S commutes with ΠE ,
since ΠE is a linear differential operator on G)

d̂(ds ∧ΠEβ + ΠEγ) = ds ∧ (−dΠEβ + ΠESγ) + dΠEγ.

Therefore

d̂−1
0 d̂(ds ∧ΠEβ + ΠEγ)

= ds ∧ (d−1
0 dΠEβ − d−1

0 ΠESγ) + d−1
0 dΠEγ = 0,

since ΠEβ ∈ E ⊂ ker(d−1
0 d), ΠESγ ∈ E ⊂ ker(d−1

0 ), and ΠEγ ∈ E ⊂
ker(d−1

0 d). This proves (40).
In order to prove (41), we write

α− (ds ∧ΠEβ + ΠEγ) = ds ∧ (β −ΠEβ) + (γ −ΠEγ).

We know that

β −ΠEβ = ΠFβ = d−1
0 σ1 + dd−1

0 σ2

for suitable σ1 ∈ Ωh
G and σ2 ∈ Ωh−1

G , and

γ −ΠEγ = ΠFγ = d−1
0 τ1 + dd−1

0 τ2

for suitable τ1 ∈ Ωh+1
G and τ2 ∈ Ωh

G.
We show that

d̂−1
0 (ds ∧ (−σ1 + Sτ2) + τ1) + d̂d̂−1

0 (ds ∧ σ2 + τ2)

= ds ∧ (β −ΠEβ) + (γ −ΠEγ).

This will achieve the proof of (41). By Lemmata 4.10 and 4.8, and keeping
into account that S commutes with d−1

0 that is a linear algebraic operator,
we have

d̂−1
0 (ds ∧ (−σ1 + Sτ2) + τ1) + d̂d̂−1

0 (ds ∧ σ2 + τ2)

= ds ∧ (d−1
0 σ1 − d−1

0 Sτ2) + d−1
0 τ1 + d̂(−ds ∧ d−1

0 σ2 + d−1
0 τ2)

= ds ∧ d−1
0 σ1 − ds ∧ d−1

0 Sτ2 + d−1
0 τ1

+ ds ∧ dd−1
0 σ2 + ds ∧ Sd−1

0 τ2 + dd−1
0 τ2

= ds ∧ (d−1
0 σ1 + dd−1

0 σ2) + d−1
0 τ1 + dd−1

0 τ2

= ds ∧ (β −ΠEβ) + (γ −ΠEγ).
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This achieves the proof of the lemma.
�

Lemma 4.12. If α = ds ∧ β + γ ∈ Êh0 , then

(42) ΠÊ0
α = ds ∧ΠE0β + ΠE0γ.

Proof. By Lemma 4.4, ds∧ΠE0β+ΠE0γ belongs to Êh0 . On the other hand,

if ds ∧ σ + τ ∈ Êh0 , then

〈α− ds ∧ΠE0β −ΠE0γ, ds ∧ σ + τ〉
= 〈ds ∧ (β −ΠE0β) + γ −ΠE0γ, ds ∧ σ + τ〉
= 〈β −ΠE0β, σ〉+ 〈γ −ΠE0γ, τ〉 = 0,

since β−ΠE0β ⊥ Eh−1
0 , γ−ΠE0γ ⊥ Eh0 , and, again by Lemma 4.4, σ ∈ Eh−1

0

and τ ∈ Eh0 .
�

End of the proof of Proposition 4.7. By Lemma 4.4, if α = ds∧β+γ ∈ Êh0 ,

then β ∈ Eh−1
0 and γ ∈ Eh0 . Moreover, by Lemma 4.11, keeping in mind

that S commutes with ΠE , since ΠE is a linear differential operator on G,
and that S(Eh0 ) ⊂ Eh0 , since S acts only on the coefficients of a form in Eh0 ,
we have

d̂ΠÊα = d̂
(
ds ∧ΠEβ + ΠEγ

)
= ds ∧ (−dΠEβ + SΠEγ) + dΠEγ

= ds ∧ (−dΠEβ + ΠEΠE0Sγ) + dΠEγ.

Thus, by Lemma 4.12 and Theorem 3.11, iv),

ΠÊ0
d̂ΠÊα = ds ∧ (−ΠE0dΠEβ + ΠE0ΠEΠE0Sγ)

+ ΠE0dΠEγ

= ds ∧ (−dcβ + Sγ) + dcγ.

This proves (32).

Let us now prove (33). Take α = ds ∧ β + γ ∈ D(R × G, Êh0 ), α′ =

ds ∧ β′ + γ′ ∈ D(R×G, Êh−1
0 ). We have∫

R×G
〈δ̂Mc α, α′〉M ds ∧ dV :=

∫
R×G
〈α, d̂cα′〉M ds ∧ dV

=

∫
R×G
〈α, ds ∧ (Sγ′ − dcβ′) + dcγ

′〉M ds ∧ dV

=

∫
R×G

[
〈γ, dcγ′〉 − 〈β,−dcβ′ + Sγ′〉

]
ds ∧ dV

=

∫
R×G

[
〈δcγ, γ′〉 − 〈−δcβ, β′〉+ 〈Sβ, γ′〉

]
ds ∧ dV

=

∫
R×G
〈−ds ∧ δcβ + δcγ + Sβ, α′〉M ds ∧ dV.

�
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Definition 4.13. We denote by HO(G) the group of all (n + 1) × (n + 1)
matrices L ∈ HL(R×G,R×G) such that tLGL = G, where G is defined in
Definition 4.1.

We refer to HO(G) as to the contact Lorentzian group of G. If L ∈
HO(G), then detL = ±1. In particular, L is an homogeneous automor-
phism.

Example 4.14. As in Example 2.12, consider the first Heisenberg group.
A matrix as in i) does not belong to HO(G), since it has zero determinant.
Thus, a matrix L belongs to HO(G) if and only if it has the form

L =


±1 0 0 0
0 a11 a12 0
0 a21 a22 0
0 0 0 detA

 ,

where

A :=

(
a11 a12

a21 a22

)
is a unitary matrix.

Remark 4.15. The previous example shows that, due to the rigidity of the
contact structure in H1, Lorentz transformations in H1 “do not mix space
and time”. In fact, it turns out that this phenomenon is not peculiar to
Heisenberg groups, but is common to most of the non-commutative Carnot
groups. For instance, in the case of free Carnot groups, this property is
not at all unexpected, keeping into account the lack of homogeneity of the
associated “wave equation” (see Theorem 5.12 below).

Theorem 4.16. If L ∈ HO(G), then

i) L# : Ê∗0 → Ê∗0 ;

ii) d̂cL
# = L#d̂c;

iii) ∗ML# = (detL) · L#(∗M ).

Proof. Assertions i) and ii) are already contained in Theorem 3.16, since
tL = GL−1G is an homogeneous automomorphism. Indeed, both L−1 and
G are both homogeneous automomorphisms. As for iii), given a h-forma α,
we have but to show that

(43) β ∧ L#(∗Mα) = (detL) · 〈β, L#α〉Mds ∧ dV
for any (n+ 1− h)-form β. Indeed

β ∧ L#(∗Mα) = L#
(
(L−1)#β ∧ ∗Mα

)
= (detL) ·

(
(L−1)#β ∧ ∗Mα

)
◦ L

= (detL) · 〈(ΛhG)(ΛhL−1)β, α ◦ L〉 ds ∧ dV

= (detL) · 〈β, (ΛhL)α ◦ L〉 ds ∧ dV

= (detL) · 〈β, L#α〉Mds ∧ dV.
�

5. Maxwell’s equations

Let J be a fixed closed intrinsic n-form in R × G (a source form). By
Lemma 4.4, J = ds ∧ ∗J − ρ, where J = J(s, ·) is an intrinsic 1-form on G
and ρ(s, ·) = ρ0(s, ·) dV is a volume form on G for any fixed s ∈ R.
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If F ∈ Ê2
0 , we call Maxwell’s equations in G the system

(44) d̂cF = 0 and d̂c(∗MF ) = J
(for sake of simplicity, we assume all “physical” constants to be 1). This
system corresponds to a particular choice of the so-called constitutive rela-
tions.

Remark 5.1. The source form J is closed; thus, by Proposition 4.7,

0 = d̂cJ = ds ∧ (−Sρ− dc(∗J))− dcρ
= −ds ∧ (Sρ+ dc(∗J)) (since ρ is a volume form in G)

= −(Sρ0)ds ∧ dV − ds ∧ ∗ ∗ dc(∗J) (by (16))

= −(Sρ0 − δcJ)ds ∧ dV (by Proposition 3.15),

that is equivalent to the continuity equation

(45)
∂ρ0

∂s
− δcJ = 0.

Since J is an intrinsic 1-form in G, we can assume J = ( ~J )\, where ~J is a
horizontal vector field. Thus, equation (45) takes the more familiar form of
the continuity equation

∂ρ0

∂s
+ divG ~J = 0.

Remark 5.2. For sake of simplicity, Maxwell’s equations, as they appear
in (44), are formulated for smooth forms, though their natural formulation
should be given in the sense of distributions, or, better, in the sense of intrin-
sic currents. Indeed, differential operators among intrinsic forms naturally
extend by duality to differential operators among currents. Nevertheless,
in this note we do not really need to deal with these equations in such a
generality; therefore, to avoid cumbersome notations, whenever it is possible
we write our equations in terms of differential forms.

Let us clarify the meaning of the last statement: our equations derive
their intrinsic character from their formulation (44), but can be written
alternatively “in coordinates”; to this end, we remind that we have fixed
once for all a basis of g, i.e. a system of coordinates in G, so that, by
Theorem 3.11, vii), the system (44) can be read as a system of differential
equations for the coefficients of the differential form F . On the other hand,
by duality, this system for a current F can be read as the same system for
the distributional coefficients of F .

A crucial property of Maxwell’s equations relies in their invariance under
the action of Lorentz group. The same property holds in Carnot groups:
thanks to Theorem 4.16, equations (44) are invariant under the action of
HO(G), i.e.

Theorem 5.3. If L ∈ HO(G), F satisfies (44), and we set

F̃ := L#F and J̃ := (detL) · L#J
then

(46) d̂c(F̃ ) = 0 and d̂c(∗M F̃ ) = J̃ .
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Remark 5.4. We stress that, by Theorem 4.16, ii), J̃ is a closed form.

The following equivalence is well known in classical Maxwell’s theory, and
has been proved in Heisenberg groups in [5].

Theorem 5.5. An intrinsic 2-form F ∈ Ê2
0 , F = ds∧E +B (with E ∈ E1

0

and B ∈ E2
0) satisfies (44) if and only if

(47)
∂(∗B)

∂s
= ∗dcE , δc(∗B) = 0

and

(48)
∂E

∂s
= (−1)n ∗ dc(∗B)− J , δcE = −ρ0.

Remark 5.6 (see [5]). In H1 (as well as in R3) let ~E, ~B and ~J be horizontal

vector fields. Set E = ( ~E)\, −B = ∗( ~B)\ and J = ( ~J)\. Moreover, as in

[20], [5], if ~V is a horizontal vector field, define curlH ~V := (∗dc(~V )\)\. Then
equations (47), (48) take the more familiar form

∂ ~B

∂s
= −curlH ~E , divH ~B = 0

and
∂ ~E

∂s
= curlH ~B − ~J , divH E = ρ0.

Remark 5.7. By Proposition 3.15, (48) can be written also as

(49)
∂E

∂s
= −δcB − J , δcE = −ρ0.

Proof of Theorem 5.5. Suppose F satisfies (44). Keeping in mind Proposi-
tion 4.7, the first equation in (44) can be written as

(50) ds ∧ (SB − dcE) + dcB = 0,

that is equivalent to

∂(∗B)

∂s
= ∗dcE and δc(∗B) = 0.

Analogously, by Remark 4.6, the second equation in (44) can be written as

ds ∧ ∗J − ρ0dV = d̂c(ds ∧ (∗B)− ∗E)

= ds ∧
(
− ∗SE − dc(∗B)

)
− dc(∗E),

that is equivalent (by (16) and Proposition 3.15) to

∂E

∂s
= (−1)n ∗ dc(∗B)− J and δcE = −ρ0.

The reverse implication can be proved in the same way. �

If F is a solution of (44), then it is in particular a closed form. Therefore
it admits a vector potential

A := AΣ + ϕds ∈ Ê1
0 such that d̂cA = F.

We want to show that, under suitable gauge conditions, AΣ and ϕ satisfy
intrinsic “wave equations”. To this end, we must restrict ourselves to a
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particular class of Carnot groups, i.e. to the class of the so-called free
groups. Let us remind the following definition.

Definition 5.8. Let m ≥ 2 and κ ≥ 1 be fixed integers. We say that fm,κ
is the free Lie algebra with m generators x1, . . . , xm and nilpotent of step κ
if:

i) fm,κ is a Lie algebra generated by its elements x1, . . . , xm, i.e. fm,κ =
Lie(x1, . . . , xm);

ii) fm,κ is nilpotent of step κ;
iii) for every Lie algebra n nilpotent of step κ and for every map ϕ from

the set {x1, . . . , xm} to n, there exists a (unique) homomorphism of
Lie algebras Φ from fm,κ to n which extends ϕ.

The Carnot group G is said free if its Lie algebra g is isomorphic to a free
Lie algebra.

The technical reason for restricting ourselves to the class of free groups
relies in the following property.

Theorem 5.9. Let G be a free group of step κ with m generators (m > 1).
Then all forms in E1

0 have weight 1 and all forms in E2
0 have weight κ+ 1.

In particular, the differential dc : E1
0 → E2

0 can be identified, with re-
spect to the adapted bases Ξ1

0 and Ξ2
0, with a homogeneous matrix-valued

differential operator of degree κ in the horizontal derivatives.

Proof. The first assertion is well known, since E1
0 = span {θ1, . . . , θm}. On

the other hand, the last assertion follows by [2], Theorem 2.15, iii). Let now
α ∧ β 6= 0 be a left-invariant 2-forms with w(α) = pα, w(β) = pβ, pα ≤ κ,
pβ ≤ κ. First of all, we can assume without loss of generality that

(51) β ⊥ α.

Indeed, we can write β = λα + β′, with β′ ⊥ α, and, obviously, β′ 6= 0,
since, if β′ = 0, α ∧ β = λα ∧ α = 0, being α of degree 1. Thus, for the
same reason, α ∧ β = α ∧ β′, proving (51). Suppose now pα + pβ ≤ κ; we

can show that α ∧ β /∈ (Im d0)⊥. Indeed, remember first d0 when acting on
left-invariant forms coincides with d (see [2], Lemma 2.8 or [40], Section 2.1).
Put X := [α\, β\] and ξ := X\. The left-invariant vector field X belongs
to the layer Vpα+pβ and does not vanishes since pα + pβ ≤ κ and the group
G is free. By Cartan’s Lemma ([28], identity (1) p.136, with a different
normalization), we have

〈d0ξ, α ∧ β〉 = 〈dξ, α ∧ β〉 = 〈dξ|α\ ∧ β\〉 = −〈ξ|X〉 = −〈X,X〉 6= 0.

This shows that α ∧ β /∈ (Im d0)⊥ and therefore that α ∧ β /∈ E2
0 .

Assume now that pα + pβ > 1 + κ. We want to show that

(52) d0(α ∧ β) = d(α ∧ β) 6= 0

This will imply that α ∧ β /∈ E2
0 , achieving the proof of the theorem.

To prove (52), suppose κ ≥ pα ≥ pβ. Since pα+pβ > κ+ 1, we know that

pβ > 1, so that we can write β\ = [W3,W1], with W3 ∈ V1 and W1 ∈ Vpβ−1.

We set also W2 := α\.
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Again by Cartan’s identity

〈d0(α ∧ β)|W1 ∧W2 ∧W3〉 = 〈d(α ∧ β)|W1 ∧W2 ∧W3〉

= −
{
〈α ∧ β|[W1,W2] ∧W3〉+ 〈α ∧ β|[W2,W3] ∧W1〉

+ 〈α ∧ β|[W3,W1] ∧W2〉
}

:= −
{
I1 + I2 + I3

}
.

Notice now that [W1,W2] ∈ Vpα+pβ−1 = {0}, since pα + pβ − 1 > κ. Thus
I1 = 0. On the other hand

I2 = det

(
〈α|[W2,W3]〉 〈α|W1〉
〈β|[W2,W3]〉 〈β|W1〉

)
.

But 〈β|W1〉 = 〈β\,W1〉 = 0, since W1 ∈ Vpβ−1 and β\ ∈ Vpβ . More-

over, [W2,W3] ∈ Vpα+1 and β\ ∈ Vpβ . But pα + 1 > pα ≥ pβ, so that

〈β|[W2,W3]〉 = 〈β\, [W2,W3]〉 = 0 and then I2 = 0.
Finally

I3 = det

(
〈α|β\〉 〈α|W2〉
〈β|β\〉 〈β|W2〉

)
.

But 〈α|β\〉 = 〈α, β〉 = 0, 〈β|β\〉 = 〈β, β〉 = |β2| 6= 0, and 〈α|W2〉 = 〈α|α\〉 =
〈α, α〉 = |α2| 6= 0, so that I3 = |α2||β2| 6= 0.

This shows that (52) eventually holds. �

We need now a Hodge-Laplace operator on intrinsic forms. We already
discussed extensively in the Introduction the problem of the lack of homo-
geneity of the “naif Laplacian” dcδc+ δcdc, showing that the homogeneity of
the exterior differential dc in a free group G stated in Theorem 5.9 enables
us to build a good “homogeneous Hodge Laplacian” on intrinsic 1-forms on
G.

Theorem 5.10. Let G be a Carnot group. Suppose Nmax
2 = Nmin

2 := N2,
i.e. suppose all intrinsic 2-forms have the same weight N2 (by Theorem
5.9 this holds true for any free group G, but also for all Heisenberg groups
Hn with n ≥ 1). Set N2 − 1 := r. Denote by ∆G,1 := δcdc + (dcδc)

r the
homogeneous Hodge Laplacian on intrinsic 1-forms in G. Then the following
result holds: if θ1, . . . θm is the fixed left invariant orthonormal basis of E1

0 ,
then for j = 1, . . . ,m there exists

(53) Kj =
∑
i

K̃ij (∗θi) ∈ D′(G, E1
0) ∩ E(G \ {0}, E1

0),

with Kij ∈ D′(G), i, j = 1, . . . ,m such that

i) ∆G,1Kj = δ̃ (∗θj), j = 1, . . . ,m;
ii) If 2r < Q, then the Kij’s are kernels of type 2r in the sense of

[15], for i, j = 1, . . . , N (i.e. they are smooth functions outside of
the origin, homogeneous of degree 2r − Q, and hence belonging to
L1

loc(G), by Corollary 1.7 of [15]). If 2r = Q, then the Kij’s satisfy
the logarithmic estimate |Kij(p)| ≤ C(1+ | ln ρ(p)|) and hence belong
to L1

loc(G). Moreover, their horizontal derivatives (i.e. X`Kij for
` = 1, . . . ,m) are kernels of type Q− 1 in the sense of [15].

35



iii) When α ∈ D(Hn, E1
0), if we set

(54) Kα :=
∑
ij

(αj ∗ K̃ij) (∗ξi),

then ∆G,1Kα = α.
iv) If 2r < Q, also K∆G,1α = α. If 2r = Q, then for any α ∈ D(G, E1

0)
there exists a “constant coefficient form” βα ∈ E1

0 , such that

K∆G,1α− α = βα.

v) ∆G,1 is maximal subelliptic, i.e. there exists C > 0 such that for any
multi–index I with d(I) = r

(55) ‖XIα‖L2(G,E1
0) ≤ C

(
〈∆G,1α, α〉L2(G,E1

0) + ‖α‖L2(G,E1
0)

)
for any α ∈ D(G, E1

0).
vi) If 1 < p < ∞ is fixed, then there exists C > 0 such that for any

multi–index I with d(I) = 2r we have

(56) ‖XIα‖Lp(G,E1
0) ≤ C

(
‖∆G,1α‖Lp(G,E1

0) + ‖α‖Lp(G,E1
0)

)
for any α ∈ D(G, E1

0) (if p = 2 this means that ∆G,1 is maximal
hypoelliptic in the sense of [27]),.

If we replace G by a bounded open set Ω ⊂ G, then, by Poincaré inequality
([30]), in (56) and in (55)), we can replace d(I) = 2r by d(I) ≤ 2r and
d(I) = r by d(I) ≤ r, respectively.

Proof. If we prove that ∆G,1 is hypoelliptic, then the statements follow by
[6], Theorems 3.1 (see also [4], Theorem 4.7). We notice that statements v)
and vi) are proved in [6] with constants depending on supp α. But we can
easily get rid of this dependence taking the assertion for supp α ⊂ U(e, 1)
and by applying a rescaling argument.

On the other hand, the proof of the (maximal) hypoellipticity of ∆G,1 fol-
lows verbatim the scheme of that of [40], Theorem 2.5. Let π be a nontrivial
irreducible unitary representation of G. Without loss of generality, if Sπ is
the space of C∞ vectors of the representation, we may assume that

Sπ = S(Rk),

for a suitable k ∈ N.
First of all, we remind that, for any m ∈ N, ∆m

G is maximal hypoelliptic,
and therefore π(∆m

G ) is injective on Sπ. Indeed, since ∆m
G is a left invari-

ant G-homogeneous differential operator, it is enough to notice that ∆m
G is

hypoelliptic (see, e.g., [6]).
Since we have already fixed two bases of E∗0 , all differential operators

among intrinsic forms (and ∆G,1 in particular) can be seen as a matrix-
valued differential operators. Thus, by [27] (see also [10], p. 63, Remark
5), the hypoellipticity of ∆G,1 is equivalent to the injectivity of π

(
∆G,1

)
on

SN1
π .

Let now u ∈
(
S(Rk)

)N1 be such that

π(dc)
∗π(dc)u+

(
π(dc)π(dc)

∗)
)r
u = 0.
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Integrating by parts, we get

(57) π(dc)u = 0

and

π(d∗cdc) · · ·π(d∗cdc)π(d∗c)u

= π((−∆G)h)π(d∗c)u = 0 if r = 2h+ 1 is odd
(58)

or

π(dc)π(d∗cdc) · · ·π(d∗cdc)π(d∗c)u

= π(dc)π((−∆G)h)π(d∗c)u = 0 if r = 2h+ 2 is even.
(59)

By [40], proof of Theorem 5.2, there exists X ∈ g such that, for any v ∈(
S(Rk)

)N1 ,

(60) v = QXπ(dc)v + π(dc)QXv,

where

QX := π(ΠE0ΠE)PXiXπ(ΠEΠE0).

Here PX is the inverse of π(LX), LX being the Lie derivative along X.
Replacing (57) in (60), we get

(61) u = π(dc)QXu.

Thus, if r is odd, we replace (61) in (58) and we get

π((−∆G)h+1)QXu = 0,

yielding eventually u = 0, since (−∆G)h+1 is maximal hypoelliptic in the
sense of [27] and then π((−∆G)h+1) is injective. ThusQXu = 0 and therefore
u = 0, by (61). On the other hand, if r is even, we replace (61) in (59) and
we apply π(d∗c) to both sides of the identity we obtain in this way. We get

π((−∆G)h+2)QXu = 0,

and we conclude in the same way. �

Remark 5.11. The previous result was proved in [38] and [4] when G = Hn,
n ≥ 1.

Now we can define our intrinsic “wave equations” for Carnot groups sat-
isfying the assumptions of Theorem 5.10.

Theorem 5.12. Let G be a Carnot group satisfying the assumption of The-
orem 5.10. Suppose F ∈ Ê2

0 satisfies (44). Then F = d̂cA with A =∑m
j=1Ajθj + ϕds := AΣ + ϕds ∈ Ê1

0 , where

∂2AΣ

∂s2
= −∆G,1AΣ − J(62)

∂2ϕ

∂s2
= −(−∆G)rϕ + (−∆G)r−1ρ0,(63)

where ∆G :=
∑m

j=1X
2
j (= −∆G,0) is the usual subelliptic Laplacian in G,

provided the following gauge condition holds:

(64) δc(dcδc)
r−1AΣ +

∂ϕ

∂s
= 0.
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Notice condition (64) can also be written as

(65) (−∆G)r−1δcAΣ +
∂ϕ

∂s
= 0.

Remark 5.13. The gauge condition (64) is always satisfied if we replace A

by A+ d̂cf , with f satisfying

∂2f

∂s2
= −(−∆G)rf −

(
δc(dcδc)

r−1AΣ +
∂ϕ

∂s

)
(see for instance Section 6.3 for abstract existence results for this equation).

Proof of Theorem 5.12. As in Theorem 5.5, we can write F = ds ∧ E + B,
with dcB = 0 (by (50)), so that B := dcAΣ. Again by (50)

dc
(∂AΣ

∂s

)
− dcE =

∂B

∂s
− dcE = 0,

so that we can write

(66)
∂AΣ

∂s
= E + dcϕ

for a suitable scalar function ϕ. Thus, by Proposition 4.7 we have

(67) F = d̂c(AΣ + ϕds)

Combining now (49) and (66) we get

∂2AΣ

∂s2
= −δcdcAΣ + dc

∂ϕ

∂s
− J,

and, eventually, by (64)

∂2AΣ

∂s2
= −δcdcAΣ − (dcδc)

r − J

= −∆G,1AΣ − J,
i.e. (62).

On the other hand, by (66) and the second equation in (48),

δc
(∂AΣ

∂s
− dcϕ

)
= −ρ0,

i.e.

(68) −δc
∂AΣ

∂s
= −δcdcϕ + ρ0.

Differentiating now (64) with respect to s we get

(69) δc(dcδc)
r−1∂AΣ

∂s
+
∂2ϕ

∂s2
= 0.

If r = 1 we can replace (68) in (69) and we get

∂2ϕ

∂s2
= −δcdcϕ + ρ0,

i.e.
∂2ϕ

∂s2
= ∆Gϕ + ρ0.

On the other hand, if r > 1 we can write (69) as

(70) (δcdc)
r−1δc

∂AΣ

∂s
+
∂2ϕ

∂s2
= 0.
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Replacing again (68) in (70), we get

∂2ϕ

∂s2
= −(δcdc)

rϕ + (δcdc)
r−1ρ0,

i.e
∂2ϕ

∂s2
= −(−∆G)rϕ + (−∆G)r−1ρ0.

This proves (63).
�

Proposition 5.14. Let G be a Carnot group satisfying the assumption of
Theorem 5.10, and let AΣ ∈ E1

0 and ϕ satisfy (62), (63) and (64). Then

V := δc
∂AΣ

∂s
+ ∆Gϕ+ ρ0

is independent of s ∈ R.

Proof. We take the s-derivative of V and we replace (62) in
∂V

∂s
. We get

∂V

∂s
= δc

∂2AΣ

∂s2
+ ∆G

∂ϕ

∂s
+
∂ρ0

∂s

= δc(−δcdcAΣ − (dcδc)
rAΣ)− δcJ +

∂ρ0

∂s
+ ∆G

∂ϕ

∂s

= δc(−δcdcAΣ − (dcδc)
rAΣ) + ∆G

∂ϕ

∂s
(by the continuity equation (45))

= −(−∆G)rδcAΣ + ∆G
∂ϕ

∂s
(since δ2

c = 0)

= ∆G
(
(−∆G)r−1δcAΣ +

∂ϕ

∂s

)
= 0

by the gauge condition (65).
�

Theorem 5.15. Let G be a Carnot group satisfying the assumption of The-
orem 5.10, and let AΣ ∈ E1

0,H1 and ϕ satisfy (62), (63) and (64).

If r > 1, suppose in addition

i) V ∈ S ′(G);
ii) there exists m0 ∈ [0, 2r − 1) such that

V (x) = O(‖x‖m0
G ) as ‖x‖G →∞.

Then

i) if r = 1, then V ≡ 0;
ii) if r > 1, then V is a polynomial of homogeneous degree at most [m0],

and there exist a 1-form G0 ∈ E1
0,G with polynomial coefficients of

homogeneous degree at most 2r − 1 such that, if we set G := sG0,
then

F = dcA := dc(AΣ +G+ ϕds)

satisfies (44).
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In addition, if

(71) V = o(1) as ‖x‖G →∞,

(therefore in particular when r = 1, by i))

F = dcA := dc(AΣ + ϕds).

Proof. By (65) in (63), we get

(−∆G)r−1
(
δcSAΣ + ∆Gϕ+ ρ0

)
= 0.

If r = 1, this yields δcSAΣ + ∆Gϕ+ ρ0 ≡ 0. Suppose now r > 1. By [22], V
is an homogeneous polynomial, that, arguing as in the proof of [8], Theorem
5.8.8, has homogeneous degree at most [m0] ≤ 2r − 2. Let G0 ∈ E1

0,G be a
1-form such that δcG0 = V . We can choose G0 with polynomial coefficients
of homogeneous degree at most 2r−1. Set now G := sG0. We have (keeping
in mind that dc∗ = ∗δc on 2-forms)

d̂c∗M d̂c
(
AΣ + ϕds+G

)
= d̂c ∗M

(
ds ∧ (S(AΣ +G)− dcϕ) + dc(AΣ +G)

)
= d̂c

(
ds ∧ (∗dc(AΣ +G))− ∗(S(AΣ +G)− dcϕ)

)
= −ds ∧

(
dc ∗ dc(AΣ +G)− S(∗(dcϕ)) + S2(∗(AΣ +G))

)
+
(
dc ∗ dcϕ− dcS(∗(AΣ +G))

)
= −ds ∧

(
∗
(
δcdc(AΣ +G)− S(dcϕ+ S2(AΣ +G)

))
+
(
dc ∗ dcϕ− dcS(∗(AΣ +G))

)
= −ds ∧

(
∗
(
δcdcAΣ − dcSϕ+ S2AΣ

))
+
(
dc ∗ dcϕ− dcS(∗(AΣ +G))

)
,

since S2G = 0 and δcdcG = 0. Now, by gauge condition (64)

δ∗cdcAΣ − dc(Sϕ) + S2AΣ

= (∆H,1 + S2)AΣ

= (∆H,1 + S2)AΣ = −J.

On the other hand,

dc ∗ dcϕ− dcS(∗(AΣ +G))

= ∗
(
∗ dc ∗ dcϕ− ∗dc ∗ SAΣ − ∗dc ∗ (g1xdx+ g2ydy)

)
= ∗
(
∆Hϕ+ δ∗cSAΣ + δcG0

)
= ∗
(
V − ρ0 + δcG0

)
= −ρ0 dV.

Thus

d̂c ∗M d̂c
(
AΣ + ϕds+G

)
= J .

This achieves the proof of the theorem, since the last statement is trivial:
indeed, an homogeneous polynomial vanishing at infinity must be identically
zero, and therefore we can choose G0 ≡ 0.

�
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Remark 5.16. Assumption (71) can be replaced by alternative assumptions
that guarantee that a polynomial vanishes identically. For instance, we could
replace (71) by

(72) V ∈ Lp(G) for some p ∈ [1,∞).

Indeed, suppose (72) holds and V 6≡ 0. We denote by V0 the homogeneous
part of V with deg V0 = deg V , then there exists x0 ∈ G with ‖x0‖G = 1
such that (say) V (x) ≥ c > 0 for x ∈ U ∩ {‖x‖G = 1}, where U is a small
neighborhood of x0. Thus, if δ1/‖x‖Gx ∈ U and ‖x‖G is sufficiently large,

then V (x) ≥ c
2‖x‖

deg V
G , yielding a contradiction, and the assertion follows.

Remark 5.17. Assumptions (71) can be better formulated when we associate
with (62) and (63) a Cauchy problem. Suppose V ∈ S(G). Keeping in mind
Proposition 5.14, for the Cauchy problem

(73)

{
AΣ|s=0 = AΣ,0,

∂AΣ
∂s |s=0

= 0;

ϕ|s=0 = ϕ0,
∂ϕ
∂s |s=0

= 0,

(71) becomes

(74) ∆Hϕ0 + ρ0 = o(1) as ‖x‖G →∞
and (72) becomes (for instance)

(75) ∆Gϕ0 + ρ0 ∈ L2(G),

whereas, for the Cauchy problem

(76)

{
AΣ|s=0 = 0, ∂AΣ

∂s |s=0
= AΣ,1;

ϕ|s=0 = 0, ∂ϕ
∂s |s=0

= ϕ1,

(71) becomes

(77) δcAΣ,1 + ρ0 = o(1) as ‖x‖G →∞
and (72) becomes (for instance)

(78) δcAΣ,1 + ρ0 ∈ L2(G).

6. Solutions of wave equations

6.1. Plane waves. Let G be a free Carnot group of step 2 (but see also
Remark 6.13 below). As in the Euclidean case, we can consider here suitable
“plane waves”. Assume J ≡ 0 and ρ0 ≡ 0. Since intrinsic hyperplanes in G
are “vertical planes” (i.e. laterals of subgroups M of the form

M = exp({ξ ∈ g, 〈ξ,K〉 = 0}),
where K = (k1, . . . , km, 0, . . . , 0) ∈ V1: see e.g. [18], [19]), we look for
solutions of the wave equations of the form

A(s, x) = ei(ωs−k·x)A0 + ei(ωs−k·x)ϕ0 ds := AΣ + ϕds,

where

• ω (the angular frequency) is a real number;
• k = exp(K) =

∑m
j=1 kjXj and k · x :=

∑m
j=1 kjxj

• A0 :=
∑m

j=1A0,j θj is a (complex coefficients) intrinsic 1-covector of
G;
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• ϕ0 is a complex number.

Theorem 6.1. Let G be a free group of step 2 (but see also Remark 6.13
below). If we choose ω = ±|k|2 and ϕ0 = ∓〈A0|k〉, then A satisfies (62),
(63) and (64).

In addition

F := d̂cA

satisfies (44).

Proof. The proof requires an explicit computation of ∆G,1e
i(ωs−k·x)A0 that

in turn relies on several technical lemmata. This computation will be post-
poned to Subsection 6.2, and the explicit form of ∆G,1e

i(ωs−k·x)A0 appears
in Theorem 6.12 below. If we assume for a while Theorem 6.12 holds, we
have

∆G,1AΣ =
m∑
j=1

(∆2
Rme

i(ωs−k·x))A0,j dxj

=

m∑
j=1

(|k|4ei(ωs−k·x))A0,j dxj = |k|4AΣ.

On the other hand
∂2AΣ

∂s2
= −ω2AΣ,

and (62) holds. The proof of (63) is straightforward since the group Lapla-
cian on scalar functions depending only on the first m variables is nothing
but the usual Euclidean Laplacian in Rm. As for (64), we have

−∆GδcAΣ = ∆Rm(
m∑
j=1

(Xje
i(ωs−k·x))A0,j)

= −i∆Rm(
m∑
j=1

kje
i(ωs−k·x)A0,j) = i|k|2ei(ωs−k·x)〈A0|k〉,

wheras
∂ϕ

∂s
= iωei(ωs−k·x)ϕ0,

and the gauge condition is satisfied. Finally (44) is satisfied by F since the
function V := δcSAΣ + ∆Gϕ of Proposition 5.14 vanishes identically. �

6.2. Forms depending only on horizontal variables. In this section,
we look for an explicit form of ∆G,1e

i(ωs−k·x)A0 that in turn relies on several
technical lemmata.

A simple property of free groups that will be crucial in the sequel is
that, according to our choices of the scalar producy in g, {[Xi, Xj ], Xi, Xj ∈
V1, i < j} provides an (orthonormal) Hall basis of V2.

Lemma 6.2. Let G be a Carnot group of any step. If Xi, Xj ∈ V1 with

i < j, then d0([Xi, Xj ]
\) = −θi ∧ θj.
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Proof. If X,Y ∈ g, we want to show that

〈d0([Xi, Xj ]
\)|X ∧ Y 〉 = −〈θi ∧ θj |X ∧ Y 〉.

Since d0 preserves the weights, we may assume that X ∧ Y has weight 2.
Therefore, without loss of generality, we can take X = Xk, Y = Xh, with
Xk, Xh ∈ V1. Therefore

〈d0([Xi, Xj ]
\)|Xk ∧Xh〉 = 〈d([Xi, Xj ]

\)|Xk ∧Xh〉

= −〈[Xi, Xj ]
\|[Xk, Xh]〉 = −〈[Xi, Xj ], [Xk, Xh]〉.

On the other hand, 〈[Xi, Xj ], [Xk, Xh]〉 = 0 if {i, j} 6= {k, h}, 〈[Xi, Xj ], [Xk, Xh]〉 =
1 if (i, j) = (k, h), and 〈[Xi, Xj ], [Xk, Xh]〉 = −1 if (i, j) = (h, k), whereas

〈θi ∧ θj |Xk ∧Xh〉 = det

(
〈θi|Xk〉 〈θi|Xh〉
〈θj |Xk〉 〈θj |Xh〉

)
.

�

Lemma 6.3. If g is a free algebra of step 2, then

(1) d0(
∧1 g) =

∧2,2 g;

(2) if θi ∧ θj ∈
∧2,2 g, then d−1

0 (θi ∧ θj) = −[Xi, Xj ]
\;

(3) if θi ∧ θj ∈
∧1,2 g, then d0d

−1
0 (θi ∧ θj) = θi ∧ θj;

(4) if θi ∧ θj ∈
∧2,3 g or θi ∧ θj ∈

∧2,4 g then d−1
0 (θi ∧ θj) = 0, so that

again d−1
0 (θi ∧ θj) = −[Xi, Xj ]

\.

Proof. Assertions (1) and (2) follow from previous lemma since d0(
∧1,1 g) =

{0}. As for (3), we have but to notice that d0d
−1
0 (θi ∧ θj) − θi ∧ θj ∈

R(d0)⊥ ∩
∧2,2 g = {0}, by (1). Finally, assertion (4) holds since, by (1), any

2-form of weight greater than 2 is orthogonal to the range of d0. �

Remark 6.4. We point out that Lemma 6.3 basically relies on the fact that,
when κ = 2, the basis Θ1,2 of

∧1,κ g is carried by d0 onto the dual basis Θ2,2

of
∧2,κ g. If we consider a free group with 2 generators of step 3, the same

assertion holds, in the sense that

d0(Θ1,i) = Θ2,i, i = 2, 3 (3 = κ).

The same property fails to hold for more complicated free groups because
of Jacobi identity.

Lemma 6.5. Let G be a Carnot group of any step. If β =
∑

i,j βijθi ∧ θj ∈
Ω2,2(G), then

(d−1
0 )∗d−1

0 β = β.

Proof. Since we are dealing with algebraic operators, we have but to show
that

〈(d−1
0 )∗d−1

0 (θi ∧ θj), θk ∧ θh〉 = 〈θi ∧ θj , θk ∧ θh〉
for any choice of (i, j) and (k, h) with i < j and k < h. Moreover, since
(d−1

0 )∗d−1
0 (θi ∧ θj) has still weight 2, then it is enough to assume w(θh) =

w(θk) = 1. By Lemma 6.3, we have

〈(d−1
0 )∗d−1

0 (θi ∧ θj), θk ∧ θh〉 = 〈d−1
0 (θi ∧ θj), d−1

0 (θk ∧ θh)〉

= 〈[Xi, Xj ]
\, [Xk, Xh]\〉 = 〈[Xi, Xj ], [Xk, Xh]〉.
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Thus, the assertion follows since {[Xi, Xj ], Xi, Xj ∈ V1, i < j} is an or-
thonormal Hall basis of V2. �

We say that a h-form α =
∑

j αjθ
h
j ∈ Ωh(G) depends only on the hori-

zontal variables and we write α ∈ Ωh
H(G) if its coefficients depend only on

x1, . . . , xm. The classes Ωh
H(G) are invariant under Hodge duality. Moreover

(79) d
(
Ωh
H(G)

)
⊂ Ωh+1

H (G).

Since
∧hRm can be identified with a subspace of

∧h g, any h-form α ∈
Ωh(Rm),

α =
∑

1≤i1<i2<···<ih≤m
αi1,i2,··· ,ih(x1, . . . , xm)dxi1 ∧ · · · ∧ dxih

can be identified with a form in Ωh
H(G) (remember θi = dxi, i = 1, . . . ,m

because of our choice of the basis of g). Notice the reciprocal is false, but,
trivially,

(80) Ω0(Rm) = Ω0
H(G) ∩ E0

0 and Ω1(Rm) = Ω1
H(G) ∩ E1

0 .

If α =
∑

j αjθ
h
j ∈ Ωh

H(G), then

d1α =
∑
j

m∑
i=1

(Xiαj)θi ∧ θhj ,

and

d2α = 0, . . . , dκα = 0.

Moreover, if α ∈ Ωh
H(G) ∩ Eh0 , then we have also d0α = 0, so that, if we set

δ1 := (d1)∗, keeping in mind Lemma 3.8 and the invariance of both Ω∗H(G)
and E∗0 under Hodge duality, we have

(81) d1α = dα and δ1α = δα if α ∈ Ωh
H(G) ∩ Eh0 .

Take now α ∈ Ω1
H(G) ∩ E1

0 identified with Ω1(Rm). Since the horizontal
vector fields on Ω0

H(G) reduce to usual derivatives (see e.g. [17], Propositions
2.2), by (81)

(82) d1α = dRmα and δ1α = δRmα.

Moreover, the following assertion follows straightforwardly by direct com-
putation.

Lemma 6.6. If f ∈ Ω0(Rm) and α =
∑m

j=1 αjdxj ∈ Ω1(Rm) are identified

with forms in E0
0 and E1

0 , respectively, that depend only on the horizontal
variables, then

(1) d1f = dcf ;
(2) δ1α = δcα.

Lemma 6.7. Let G be a Carnot group of any step. If β =
∑

i,j βijθi ∧ θj ∈
Ω2(G), then

δ1β = −
n∑
h=1

m∑
k=1

Xk(βkh − βhk)θh.
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Proof. Take α = α`θ` with compact support, 1 ≤ ` ≤ n. We have∫
〈
n∑
h=1

( m∑
k=1

(Xk(βkh − βhk))
)
θh, α〉dV =

m∑
k=1

∫
(Xk(βk` − β`k))α` dV

= −
m∑
k=1

∫
(βk` − β`k)(Xkα`) dV.

On the other hand∫
〈β, d1α〉dV =

m∑
k=1

∫
〈β, (Xkα`)θk ∧ θ`〉dV

=
m∑
k=1

∫
(βk` − β`k)(Xkα`)dV,

and the assertion is proved. �

Remark 6.8. Notice in particular

δ1(b θi ∧ θj) = (Xjb)θi − (Xib)θj .

Remark 6.9. Notice in particular that, whenever β ∈ Ω2(Rm) = Ω2
H(G) ∩

Ω2,2(G)

δ1β = δRmβ.

Finally, we have:

Lemma 6.10. Let G be a Carnot group of any step. If p ∈ N and α ∈
Ω1
H(G) ∩ E1

0 , then

(δ1d1 + d1δ1)pα =
(
(δ1d1)p + (d1δ1)p

)
α.

Proof. We notice first that, keeping in mind that Xi, Xj commute on func-
tions depending only on x1, . . . , xm, then d2

1f = 0 when f ∈ Ω0
M . Analo-

gously, keeping in mind Remark 6.8, then δ2
1β = 0 when β ∈ Ω2

H .
We argue now by induction on p. The assertion is trivial if p = 1. Suppose

it holds for p ∈ N. We have

(δ1d1 + d1δ1)p+1α = (δ1d1 + d1δ1)(δ1d1 + d1δ1)pα

= (δ1d1 + d1δ1)
(
(δ1d1)p + (d1δ1)p

)
α

=
(
(δ1d1)p+1 + δ1d1(d1δ1)p + d1δ1(δ1d1)p + (d1δ1)p+1

)
α

=
(
(δ1d1)p+1 + (d1δ1)p+1

)
α.

�

Lemma 6.11. Let G be a Carnot group of step 2. If α =
∑

j αjθj ∈ Ω1
H(G),

then

δ1d1d
−1
0 d1α = d−1

0 d1δ1d1α.
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Proof. Using repeatedly the fact that the coefficients of α depend only on
the horizontal variables, we have:

d−1
0 d1δ1d1α =

m∑
i=1

n∑
j=1

d−1
0 d1δ1((Xiαj)θi ∧ θj) =

n∑
i=1

n∑
j=1

d−1
0 d1δ1((Xiαj)θi ∧ θj)

= −
n∑
j=1

n∑
i=1

d−1
0 d1((X2

i αj)θj − (XjXiαj)θi) (by Remark 6.8)

= −d−1
0 (

m∑
`=1

n∑
i=1

n∑
j=1

(X`X
2
i αj)θ` ∧ θj) + d−1

0 (

m∑
`=1

n∑
i=1

n∑
j=1

(X`XjXiαj)θ` ∧ θi)

= −d−1
0 (

n∑
`=1

n∑
i=1

n∑
j=1

(X`X
2
i αj)θ` ∧ θj) + d−1

0 (

n∑
`=1

n∑
i=1

n∑
j=1

(X`XjXiαj)θ` ∧ θi).

We notice now that the second summand in the last line above vanishes.
Indeed, let j = 1, . . . , n be fixed. Remember that the vector fields Xk, k =
1, . . . , n commute on functions depending only on the horizontal variables,
since their commutators [Xk, Xh] belong at least to the second layer of the
algebra. Since all the indices run from 1 to n, the term

n∑
`=1

n∑
i=1

(X`XjXiαj)θ` ∧ θi

can then be written as

n∑
`=1

n∑
i=1

(X`Xi(Xjαj))θ` ∧ θi =
∑
`<i

{
X`Xi(Xjαj)−XiX`(Xjαj)

}
θ` ∧ θi = 0,

again by the commutativity of X` and Xi. Thus eventually (by Lemma 6.3)

d−1
0 d1δ1d1α = −d−1

0 (
n∑
`=1

n∑
i=1

n∑
j=1

(X`X
2
i αj)θ` ∧ θj)

=
n∑
i=1

n∑
`=1

n∑
j=1

(X`X
2
i αj)[X`, Xj ]

\.

(83)
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On the other hand, by Lemma 6.3 we have

δ1d1d
−1
0 d1α =

m∑
i=1

n∑
j=1

δ1d1d
−1
0 ((Xiαj)θi ∧ θj) =

n∑
i=1

n∑
j=1

δ1d1d
−1
0 ((Xiαj)θi ∧ θj)

= −
n∑
i=1

n∑
j=1

δ1d1((Xiαj)[Xi, Xj ]
\) = −

m∑
k=1

n∑
i=1

n∑
j=1

δ1((XkXiαj)θk ∧ [Xi, Xj ]
\)

= −
n∑
k=1

n∑
i=1

n∑
j=1

δ1((XkXiαj)θk ∧ [Xi, Xj ]
\)

=

n∑
k=1

n∑
i=1

n∑
j=1

{
(X2

kXiαj)[Xi, Xj ]
\ − ([Xi, Xj ]XkXiαj)θk

}
(by Remark 6.8)

=
n∑
k=1

n∑
i=1

n∑
j=1

(X2
kXiαj)[Xi, Xj ]

\ (since the αj ’s depend only on the horizontal variables)

=
n∑
i=1

n∑
`=1

n∑
j=1

(X2
iX`αj)[X`, Xj ]

\ (just renaming the indices)

Combining this identity with (83) and keeping in mind again the commuta-
tivity of all our vector fields on functions depending only on the horizontal
variables, we achieve the proof of the lemma.

�

Theorem 6.12. Let G be a Carnot group of step 2. If α =
∑m

j=1 αj dxj ∈
E1

0 ∩ Ω1
H(G) (therefore identified with a form in Ω1(Rm)), then(

δcdc + (dcδc)
2
)
α = ∆2

Rm,1α =

m∑
j=1

((−∆Rm)2αj) dxj .

Proof. Take α = αjdxj = αjθj , j = 1, . . . ,m, that has weight 1. Then

(ΠEα)1 = α,

(ΠEα)2 = −d−1
0 (d1α),

so that we can take

(ΠEα)2 =
m∑
i=1

(Xiαj)[Xi, Xj ]
\.

Thus
ΠEα = α− d−1

0 (d1α),

and hence (since d0α = 0 and d2Ω∗H = {0})
d(ΠEα) = (d0 + d1)(ΠEα)

= −d0d
−1
0 (d1α) + d1α− d1d

−1
0 (d1α)

= −d1α+ d1α− d1d
−1
0 (d1α) = d1d

−1
0 (−d1α),

by Lemma 6.3 (3), since d1α is a 2-form of weight 2.
We want to show that d1d

−1
0 (d1α) belongs to E2

0 ; this would yield

dcα = d1d
−1
0 (−d1α).

47



First of all, d1d
−1
0 (d1α) has weight 3, and hence, by Lemma 6.3, is orthogonal

to the range of d0. Let us prove now that d0d1(−d−1
0 d1)α = 0. Keeping in

mind that X1, . . . , Xn commute on αj , we have

d0d1(−d−1
0 d1)α

= d0

( m∑
k1,k2=1

(Xk2Xk1αj)θk2 ∧ [Xk1 , Xj ]
\
)

=
m∑

k1,k2=1

(Xk2Xk1αj)d0(θk2 ∧ [Xk1 , Xj ]
\) (since d0 is algebraic)

= −
m∑

k1,k2=1

(Xk2Xk1αj)θk2 ∧ d0[Xk1 , Xj ]
\

(since both θk2 ∧ [Xk1 , Xj ]
\ and [Xk1 , Xj ]

\ are left invariant)

= −
( m∑
k1,k2=1

(Xk2Xk1αj)θk2 ∧ θk1

)
∧ θj

(by Lemma 6.3, since both Xk1 and Xj belong to V1)

= 0,

since, by the commutativity of Xk1 and Xk2 on a function depending only
on the horizontal variables, then Xk2Xk1αj multiplies both θk1 ∧ θk2 and
θk2 ∧ θk1 .

This proves that d1(−d−1
0 d1)α ∈ E2

0 . Thus

(84) δcdcα = δ1(d−1
0 )∗δ1d1d

−1
0 d1α.

Keep in mind that d−1
0 , (d−1

0 )∗, d1, δ1 preserve the class of forms that depend
only on the horizontal variables. If we apply Lemmata 6.11 and 6.5 to (84)
(taking into account that d1δ1d1α has weight 2, by Proposition 3.8), we get

δcdcα = δ1(d−1
0 )∗d−1

0 d1δ1d1α

= δ1d1δ1d1α

= (δ1d1)2α.

(85)

We notice now that (dcδc)
2α = (d1δ1)2α. Indeed dcδcα ∈ E1

0 ∩ Ω1
H , so that,

by Lemma 6.6, dcδcdcδcα = d1δ1dcδcα = d1δ1d1δ1α.
Eventually we have:(

δcdc + (dcδc)
2
)
α =

(
(δ1d1)2 + (dcδc)

2
)
α (by (85))

=
(

(δ1d1)2 + (d1δ1)2
)
α (by Lemma 6.6)

= (δ1d1 + d1δ1)2α (by Lemma 6.10)

= (δd+ dδ)2α = ∆2
Rm,1α

by (81), (82), and Remark 6.9. �

Remark 6.13. As in Remark 6.4, a theorem akin to Theorem 6.12 can be
proved for the Carnot group G of step 3 defined therein. More precisely, if
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α = α1dx1 + α2dx2 ∈ E1
0(G) ∩ Ω1

H(G) (therefore identified with a form in
Ω1(R2)), then(

δcdc + (dcδc)
3
)
α = ∆3

R2,1α = −(∆3
R2α1)dx1 − (∆3

R2α2)dx2.

Again, as in Theorem 6.1, we can obtain plane waves of the form

A(s, x) = ei(ωs−k·x)A0 + ei(ωs−k·x)ϕ0 ds := AΣ + ϕds,

where

• k = exp(K) = (k1, k2, 0, 0, 0), with K ∈ V1;
• ω = ±|k|3;
• ϕ0 = ∓|k|〈A0|k〉.

Proposition 6.14. Let G, A = AΣ + ϕds be as in Theorem 6.1. For sake
of simplicity, assume ω = |k|2 and ϕ0 = −〈A0|k〉. If

ds ∧ E +B := d̂cA,

then (with the notations of [14], 1.5.1)

i) 〈E|k〉 ≡ 0;
ii) B\ E ≡ 0.

Moreover, if k and A\0 commute, then

iii) B\ k\ ≡ 0.

On the other hand

iv) B ∧ k\ ≡ 0,

and, if k and A\0 commute, then

v) B ∧ E ≡ 0.

Proof. By Proposition 32

E = iei(ωs−k·x)
m∑
j=1

(
|k|2A0,j − kj〈A0|k〉

)
θj

and

B = ei(ωs−k·x)
m∑

`,λ,h=1

khk`A0,λ θh ∧ [X`, Xλ]\.

Now

〈E|k〉 = iei(ωs−k·x)
m∑
j=1

(
|k|2A0,j − kj〈A0|k〉

)
kj

= iei(ωs−k·x)
(
|k|2〈A0|k〉 − |k|2〈A0|k〉

)
= 0,

proving i). On the other hand

B\ E = ie2i(ωs−k·x)
m∑

`,λ,h=1

khk`A0,λ(|k|2A0,h − kh〈A0|k〉)[X`, Xλ]

= ie2i(ωs−k·x)
m∑

`,λ=1

k`A0,λ

( m∑
h=1

kh(|k|2A0,h − kh〈A0|k〉)
)

[X`, Xλ] = 0,
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proving ii). Analogously

B\ k\ = ei(ωs−k·x)
m∑

`,λ,h=1

khk`A0,λkh[X`, Xλ]

= ei(ωs−k·x)|k|2
m∑
`,λ

k`A0,λ[X`, Xλ] = ei(ωs−k·x)|k|2[k,A\0],

proving iii). To prove iv) we notice that

B ∧ k\ = ei(ωs−k·x)
m∑

`,λ,h,i=1

khk`A0,λki θi ∧ θh ∧ [X`, Xλ]\

= ei(ωs−k·x)
m∑

`,λ=1

k`A0,λ

( m∑
h,i=1

khki θi ∧ θh
)
∧ [X`, Xλ]\ = 0.

On the other hand, arguing as above,

B ∧ E = ie2i(ωs−k·x)
m∑

`,λ,h,j=1

khk`A0,λ

(
|k|2A0,j − kj〈A0|k〉

)
θj ∧ θh ∧ [X`, Xλ]\

= ie2i(ωs−k·x)
m∑

`,λ,h,j=1

khk`A0,λ|k|2A0,j θj ∧ θh ∧ [X`, Xλ]\

= ie2i(ωs−k·x)A0 ∧ k\ ∧ [X`, Xλ]\ = 0

if (and only if) [X`, Xλ] = 0.
�

Remark 6.15. Notice that ii) and iii) could be derived from iv) and v) arguing
as in [14], 1.5.3, keeping in mind i) and that B has weight 3 (Theorem 5.9).

Remark 6.16. Plane waves in groups may exhibit totally unexpected phe-
nomena if we keep in mind classical Maxwell’s theory in the Euclidean space.

For instance, if G = H1, with the notations of Remark 5.6, ~E ⊥ k, ~B ⊥ k,

so that ~E and ~B(that are horizontal vector fields as well as k) cannot be or-
thogonal as in the classical setting, since the first layer of H1 has dimension
2.

Remark 6.17. The arguments of this subsection enable us to study another
class of special solutions, that we may call “cylindrical waves”, discovering
also some unexpected relationships with the equations of classical elasticity.
For sake of simplicity, let us restrict ourselves to the case G = H1. Keeping
in mind the characterization of the homogeneous group homomorphisms of
H1 given in [31], we see that the only homogeneous homomorphisms of H1

preserving the sublaplacian ∆H are the rotations around the t-axis. Thus
it is natural to look for cylindrically symmetric waves, i.e. for cylindrically
symmetric solutions of (62) and (63). For sake of simplicity we restrict
ourselves to consider the case of zero charges, i.e. we assume ρ0 ≡ 0 and
J ≡ 0. But cylindrically symmetric solutions do not depend on the central
variables, and thus we can start by attacking the case AΣ and ϕ independent
of central variables.
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By Theorem 6.12, in case of cylindrical symmetry, the components of AΣ

as well as ϕ all solve the equation

(86)
∂2u

∂s2
= −∆2u,

with suitable Cauchy data at s = 0. If we consider this equation in a cylin-
der Ω × R, where Ω is a (say) bounded open subset of R2, we can impose
suitable Dirichlet conditions on ∂Ω. In this way, we recover a classical elas-
ticity equation, the so-called Germain-Lagrange equation for the vibration
of plates (see e.g. [43], Section 9). We refer to [43], Section 9 and to the
references of that chapter for explicit solutions adapted to particular choices
of Ω, and in particular for cylindrically symmetric solutions when we choose
Ω to be an open disk of the plane (see Section 9.4).

6.3. An abstract theory of wave equations in a Carnot group. In
this section, we prove an abstract existence result for our wave equation by
means of the well established theory of second order differential equations
in Banach spaces, as presented for instance in [13].

Proposition 6.18. Let G be a Carnot group satisfying the assumption of
Theorem 5.10. The unbounded operator in L2(G, E1

0)

−∆G,1 with domain W 2r,2
G (G, E1

0)

is self-adjoint and nonpositive.

Proof. Clearly, ∆G,1 is densely defined, since D(G, E1
0) ⊂ W 2r,2

G (G, E1
0)

is dense in L2(G, E1
0). In addition, it is symmetric. Indeed, if α, β ∈

W 2r,2
G (G, E1

0) and (αn)n∈N is a sequence in D(G,E1
0) converging to α in

W 2r,2
G (G, E1

0), then

〈∆G,1β, α〉L2(G,E1
0) = lim

n→∞
〈∆G,1β, αn〉L2(G,E1

0)

= lim
n→∞

〈β,∆G,1αn〉L2(G,E1
0) = 〈β,∆G,1α〉L2(G,E1

0).

This shows that (∆G,1)∗ is an extension of ∆G,1. Thus, arguing as in [13],
Chapter IV, Lemma 1.1, to achieve the proof it is enough to show that
1 ∈ ρ(∆G,1). Consider now the quadratic form in W r,2

G (G, E1
0) defined by

Q(α, β) :=〈dcα, dcβ〉L2(G,E1
0) + 〈(dcδc)r/2α, (dcδc)r/2β〉L2(G,E1

0)

+ 〈α, β〉L2(G,E1
0) if r is even,

and

Q(α, β) :=〈dcα, dcβ〉L2(G,E1
0) + 〈δc(dcδc)(r−1)/2α, δc(dcδc)

r−1/2β〉L2(G,E1
0)

+ 〈α, β〉L2(G,E1
0) if r is odd.

If α ∈ D(G, E1
0), then

Q(α, α) = 〈∆G,1α, α〉L2(G,E1
0) + ‖α‖2L2(G,E1

0).

Therefore, thanks to the density of D(G, E1
0) in W r,2

G (G, E1
0), by Theorem

5.10, Q is coercive on W r,2
G (G, E1

0). Then, by Lax-Milgram theorem, if γ ∈
L2(G, E1

0) there exists αγ ∈W r,2
G (G, E1

0) satisfying Q(αγ , β) = 〈γ, β〉L2(G,E1
0)

for any β ∈W r,2
G (G, E1

0). In particular, ∆G,1αγ = γ − αγ := γ0 ∈ L2(G, E1
0)
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in the sense of distributions. We write γ0 =
∑

j γ0,jθj . To achieve the

proof, we have but to show that αγ ∈W 2r,2
G (G, E1

0). To this end, let I be a
multi-index with d(I) = 2r, and take ϕ =

∑
j ϕjθj ∈ D(G, E1

0). We have

(87) 〈XIαγ |ϕ〉S′,S = 〈αγ |(XI)∗ϕ〉S′,S = 〈αγ |∆G,1K((XI)∗ϕ)〉S′,S .

On the other hand,

(88) K((XI)∗ϕ) =
∑
ij

((XI)∗ϕj ∗ K̃ij) (∗ξi).

Notice now that (XI)∗ϕj ∗Kij = ϕj ∗
(

v(XI)∗vKij

)
belongs to S(G). Indeed,

by Proposition 2.1, v(XI)∗vKij is a Folland kernel of order 0, that is L2-

continuous. Hence, if X̃J
` is an arbitrary right invariant monomial, then

X̃J
`

(
ϕj ∗

(
v(XI)∗vKij

))
∈ L2(G). Therefore, ϕj ∗

(
v(XI)∗vKij

)
∈ Wm,2(G)

for any m ∈ N, and eventually belongs to S(G). Thus, by Proposition 28,
we can write (88) as

(89) K((XI)∗ϕ) =
∑
ij

(
ϕj ∗

(
v(XI)∗vKij

))
θj ,

that, together with (87) yields

〈XIαγ |ϕ〉S′,S = 〈∆G,1αγ |
∑
ij

(
ϕj ∗

(
v(XI)∗vKij

))
θj〉S′,S

=
∑
ij

〈γ0,j , ϕj ∗
(

v(XI)∗vKij

)
〉L2,L2

≤ C‖γ0‖L2(G,E1
0)‖ϕ‖L2(G,E1

0),

(90)

again by Proposition 2.1. This achieves the proof of the proposition. �

By [13], Chapter II and Exercise 5 in particular, the following result
follows easily from Proposition 6.18.

Theorem 6.19. The homogeneous Cauchy problem

(91)

{
∂2α
∂s2

= −∆G,1 for t > 0,

α|s=0 = α0,
∂α
∂s |s=0

= α1

is uniformly well posed in L2(Ω, E1
0). The propagators are explicitly given

by

C(s) =

∫ 0

−∞
cos(s|λ|1/2) dE(λ)

and

S(s) =

∫ 0

−∞
|λ|−1/2 sin(s|λ|1/2) dE(λ),

where dE(λ) is the spectral measure associated with −∆G,1.
Suppose now the map s → J(·, s) is continuously differentiable from R

to L2(Ω, E1
0). By Lemma 5.1 of [13], Chapter II, if α0, α1 ∈ W 2r,2

G (G, E1
0),

then

α(s) := C(s)α0 + S(s)α1 +

∫ s

0
S(s− σ)J(σ) dσ
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is a strong solution of

(92)

{
∂2α
∂s2

= −∆G,1 + J for t > 0,

α|s=0 = α0,
∂α
∂s |s=0

= α1,

i.e. is a twice continuously differentiable function from (0,∞) to L2(G, E1
0)

such that α(s) ∈W 2r,2(G, E1
0) for all s > 0.

Arguing as in [13], Chapter IV, we can obtain the following stronger
statement.

Theorem 6.20. Let α0 ∈ W r,2
G (G, E1

0) and α1 ∈ L2(G, E1
0) be given. Then

all strong solutions of the homogeneous Cauchy problem

(93)

{
∂2α
∂s2

= −∆G,1 for t > 0,

α|s=0 = α0,
∂α
∂s |s=0

= α1

have the form

(94)

[
u(s)
u′(s)

]
=

[
C(s) S(s)

−∆G,1S(s) C(s)

] [
α0

α1.

]
Proof. In fact, the proof of the theorem can be carried out by repeating
verbatim the arguments of [13], Chapter IV, provided we prove that

Dom ((I + ∆G,1)1/2) = W r,2(G, E1
0).

To this end, if α =
∑

j αjθj ∈ E1
0 , we denote by BG,r the diagonal selfadjoint

operator

BG,rα =
∑
j

((I −∆G)r/2αj)θj .

By [15], Proposition 4.1, Dom (BG,r) = W r,2(G, E1
0). In addition, again by

[15], Proposition 4.1 and by Proposition 6.18

Dom (B2
G,r) = W 2r,2(G, E1

0) = Dom (I + ∆G,1).

Therefore, by a classical interpolation argument ([33])

Dom ((I + ∆G,1)1/2) = [Dom (I + ∆G,1), L2(G, E1
0)]1/2

= [Dom (B2
G,r), L

2(G, E1
0)]1/2 = Dom (BG,r)

= W r,2(G, E1
0).

This achieves the proof of the theorem. �
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