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NEW GRADIENT ESTIMATES FOR PARABOLIC EQUATIONS

PAOLO BARONI AND JENS HABERMANN

ABSTRACT. We prove sharp Lorentz- and Morrey-space estimates for the gradient of so-
lutions u to nonlinear parabolic equations of the type

ut − div a(z,Du) = g, on ΩT = Ω× (−T, 0),

where the vector field a is assumed to satisfy classical growth and ellipticity conditions
and where the inhomogeneity g is only assumed to be integrable to some power γ > 1.
In particular we investigate the case where γ stays below the exponent allowing for weak
solutions u ∈ L2(−T, 0;W 1,2(Ω)).

1. INTRODUCTION AND RESULTS

In this paper we investigate regularity properties of solutions to Cauchy-Dirichlet prob-
lems {

ut − div a(z,Du) = g in ΩT ,
u = 0 on ∂parΩT .

(1.1)

We assume that Ω ⊂ Rn is a bounded open subset, n ≥ 2 and T > 0. Here, ΩT :=
Ω × (−T, 0) denotes the usual parabolic cylinder. The vector-field a : ΩT × Rn → Rn
is assumed to be a Carathéodory map which satisfies the following classical growth and
monotonicity conditions:{

ν|w1 − w2|2 ≤ 〈a(z, w1)− a(z, w2), w1 − w2〉
|a(z, w)| ≤ L(1 + |w|)

(1.2)

for every choice of z ∈ ΩT , w1, w2 ∈ Rn. In particular z 7→ a(z, w) is a measurable map
for every w ∈ Rn and w 7→ a(z, w) is continuous for a.e. z ∈ ΩT . Unless otherwise stated
the structure constants ν and L are assumed to fulfill

0 < ν ≤ 1 ≤ L. (1.3)

We will focus mainly on the situation g ∈ Lγ(ΩT ), γ > 1 in which the right hand side
does not necessarily belong to the Lebesgue space which allows to obtain existence of
energy solutions u ∈ L2(−T, 0;W 1,2

0 (Ω)) to problem (1.1). However, a by now clas-
sical approach towards “subdual” problems as mentioned above is to set up a suitable
approximation scheme to obtain a unique so-called SOLA (Solution Obtained by Limits
of Approximations, see Section 2.1) for which holds u ∈ L1(−T, 0;W 1,1

0 (Ω)). Starting
from such a unique solution, we are interested in finding optimal integrability estimates for
solutions to equations of the type (1.1) depending on the regularity of the inhomogeneity.
A by now classical result of Boccardo, Dall’Aglio, Gallouët and Orsina [9, Theorem 1.9]
asserts the existence of a (unique) solution

u ∈ Lq(−T, 0;W 1,q
0 (Ω)) with q =

Nγ

N − γ
to the Cauchy-Dirichlet problem (1.1) under the assumption (1.2), provided the datum g
satisfies

g ∈ Lγ(ΩT ) for some 1 < γ <
2N

N + 2
.
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Here N := n+ 2 denotes the homogeneous dimension. Moreover, the solution u belongs
to Lσ(ΩT ) with σ given by σ = Nγ

N−2γ . This result is optimal in the scale of Lebesgue
spaces. However, one may ask for a more accurate scale to describe regularity of Du in
dependence on the inhomogeneity g. Let us focus for a moment on elliptic equations. For
those ones, Mingione presented in his paper [48] a non-linear potential theory version of
the fundamental papers of Adams [4] and Adams & Lewis [5], giving optimal regularity
results on the Morrey and also Lorentz-Morrey scale. Since we are dealing in this paper
with equations with linear growth, we recall the results of [48] not in their whole generality
but only for the special case p = 2. Mingione proved for solutions u ∈W 1,1

0 (Ω) of elliptic
equations that

g ∈ Lγ,θ(Ω) =⇒ Du ∈ L
θγ
θ−γ ,θ

loc (Ω), 1 < γ ≤ 2θ

θ + 2
, 2 < θ ≤ n,

and where the definition of the (elliptic) Morrey spaces Lγ,θ(Ω) can be adapted from (1.6),
by replacing parabolic cylinders CR ⊂ ΩT of radius R > 0 by balls BR ⊂ Ω. Note at this
stage that Lγ,n ≡ Lγ and therefore the mentioned result covers the classical implication

g ∈ Lγ(Ω) =⇒ Du ∈ L
nγ
n−γ
loc (Ω), 1 < γ ≤ 2n

n+ 2
, (1.4)

going back to Talenti [56] and in the non-linear situation p 6= 2 to Boccardo & Gallouët
[10]. In fact, the above mentioned implication is a special case of the more general result
in [48] which provides estimates on the scale of Lorentz-Morrey spaces of the type

g ∈ Lθ(γ, q) =⇒ Du ∈ Lθ
(
θγ
θ−γ ,

θq
θ−γ

)
locally in Ω, (1.5)

for exponents 1 < γ ≤ 2θ
θ+2 , 2 < θ ≤ n and 0 < q ≤ ∞. For the definition of the

Lorentz-Morrey spaces we refer the reader to Section 3 and we mention again that the
elliptic version of the spaces can be obtained by replacing in the parabolic definition the
cylinders CR ⊂ ΩT by balls BR ⊂ Ω.

On the other hand, classical counter examples show that even in the linear case (1.4)
fails for the borderline choice γ = 1. Indeed imposing some further L logL-integrability
on the inhomogeneity, the sharp implication

g ∈ L1,θ(Ω) ∩ L logL(Ω) =⇒ Du ∈ L
θ
θ−1

loc (Ω),

holds true (see [10, 48]), where the space L logL(Ω) is defined analogously to the para-
bolic one in (3.5).

The aim of this paper is to extend the above mentioned results to the situation of non-
linear parabolic equations of the type (1.1) fulfilling structure conditions of the form
(1.2) and therefore in particular to provide a non-linear parabolic analogue of the classical
Theorems of Adams [4] and Adams & Lewis [5]. Our results in detail will be presented
in the following section. As we already mentioned, we finally point out that the results
presented in this paper hold for SOLAs, and therefore by writing of weak solution to (1.1)
we will always mean the solution obtained via the approximation procedure described in
Section 2. It is therefore natural to wonder whether these results can be extended to some
other notion of solutions to (1.1). This becomes trivially true for the notions of solutions to
measure data problems holding uniqueness in the case of L1 data. In particular, in [51] a
suitable definition of renormalized solution is given for nonlinear parabolic problems with
measure data, and this definition provides uniqueness in the case of data in L1. All our
regularity results could therefore also be stated in terms of renormalized solution.

1.1. Morrey space estimates. We start by considering a Morrey-type condition of the
form

Rθ−N
∫
CR
|g|γ dz ≤Mγ and θ ∈ [2, N ], (1.6)
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whenever CR ⊂ ΩT is a parabolic cylinder with radius R. For the definition of parabolic
cylinders see Section 2 below. Functions g satisfying (1.6) are said to belong to the Morrey-
space Lγ,θ(ΩT ) and one sets

‖g‖γ
Lγ,θ(ΩT )

:= sup
CR⊂ΩT

Rθ−N
∫
CR
|g|γ dz.

The range of exponents on which we will put our main focus in the sequel is

1 < γ ≤ 2θ

θ + 2
, and 2 < θ ≤ N . (1.7)

Our first result is concerned with Morrey-space regularity for Du and it represents the
parabolic counter part (for p = 2) of [48, Theorem 1]. The theorem is a special case of
Theorem 6.1 which is the main theorem of our paper and is concerned with the more gen-
eral Lorentz-Morrey space regularity, the parabolic extension of (1.5). Indeed, Theorem
1.1 follows from Theorem 6.1 by the special choice q = γ.

Theorem 1.1 (Non-linear parabolic Adams theorem). Under the assumptions (1.2) and
g ∈ Lγ,θ(ΩT ) with γ, θ as in (1.7) the solution u ∈ L1(−T, 0;W 1,1

0 (Ω)) to the Cauchy-
Dirichlet problem (1.1) is such that

Du ∈ L
θγ
θ−γ ,θ

loc (ΩT ,Rn).

Moreover, the quantitative local estimate

‖Du‖
L

θγ
θ−γ ,θ(CR/2)

≤ c R
θ−γ
γ −N‖1 + |Du|‖L1(CR) + c ‖g‖Lγ,θ(CR)

holds for any parabolic cylinder CR ⊂ ΩT with a constant c = c(n,L, ν, γ).

Here we note that the special choice θ = N in the above theorem – by the identity
L

Nγ
N−γ ,N ≡ L

Nγ
N−γ – gives back the classical result of Boccardo, Dall’Aglio, Gallouët and

Orsina [9] on the Lebesgue scale. On the other hand, Theorem 1.1 fails in the borderline
case γ = 1. Here, analogously to the elliptic case we have to impose some further L logL
integrability on the inhomogeneity g and we obtain the following

Theorem 1.2 (Borderline parabolic Adams theorem). Under the assumptions (1.2) and
g ∈ L1,θ(ΩT ) ∩ L logL(ΩT ) with 2 ≤ θ ≤ N , the solution u ∈ L1(−T, 0;

W 1,1
0 (Ω)) to the Cauchy-Dirichlet problem (1.1) is such that

Du ∈ L
θ
θ−1

loc (ΩT ,Rn).

Moreover, the quantitative local estimate[ ∫
CR/2
|Du|

θ
θ−1 dz

] θ−1
θ

≤ c
∫
CR

(1 + |Du|) dz

+ c ‖g‖
1
θ

L1,θ(CR)

[ ∫
CR
|g| log

(
e+

g

−
∫
CR |g(z̃)| dz̃

)
dz

] θ−1
θ

,

(1.8)

holds for any parabolic cylinder CR ⊂ ΩT with a constant c = c(n,L, ν).

Indeed, also Theorem 1.2 can be seen as the particular case θ = N of the more general
Theorem 6.5 which provides Morrey-space regularity of the following type

g ∈ L logLθ(ΩT ), 2 ≤ θ ≤ N =⇒ Du ∈ L
θ
θ−1 ,θ

loc (ΩT ,Rn).

Moreover we mention that the particular choice θ = 2 is allowed in the above theorem,
since we are in the case γ = 1. With this particular choice we reach the maximal regularity,
that is g ∈ L1,2(ΩT ) ∩ L logL(ΩT ) =⇒ Du ∈ L2

loc(ΩT ,Rn).
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Remark 1.3. In the case we don’t impose a L logL condition on g, still an estimate in
Marcinkiewicz spaces holds true:

g ∈ L1,θ(ΩT ), 2 ≤ θ ≤ N =⇒ Du ∈M
θ
θ−1

loc (ΩT ,Rn).

This is the parabolic analogue of [46, Theorem 1.8].

On the other hand, in the case of γ > 2θ
θ+2 the techniques applied for Theorems 1.1 and

1.2 also provide Morrey-Gehring regularity in the following sense:

Theorem 1.4 (Morrey-Gehring regularity). Under the assumptions (1.2) and with g ∈
Lγ,θ(ΩT ) for γ, θ satisfying 2θ

θ+2 < γ and 2 ≤ θ ≤ N the solution u ∈ L1(−T, 0;

W 1,1
0 (Ω)) to the Cauchy-Dirichlet problem (1.1) is such that

Du ∈ Lh,θloc (ΩT ,Rn) for some h = h(n,L, ν, γ, θ) > 2. (1.9)

Moreover, for a constant c = c(n,L, ν, γ) the quantitative local estimate

‖Du‖Lh,θ(CR/2) ≤ c R
θ
h−N‖1 + |Du|‖L1(CR) + c ‖g‖Lγ,θ(CR) (1.10)

holds for any parabolic cylinder CR ⊂ ΩT with radius R ≤ 1.

1.2. Lorentz-Morrey space regularity. As we have already mentioned above, the results
of Theorems 1.1 to 1.4 are particular cases of more general results in Lorentz-Morrey
spaces. For the further discussion in this section let us briefly give the definitions of the
involved spaces. A more detailed discussion on these spaces involving also basic properties
and embeddings we refer the reader to Section 3. Letting ΩT := Ω× (−T, 0) be the space
time cylinder, where Ω ⊂ Rn (n ≥ 2) denotes a bounded open subset, a measurable map
g : ΩT → Rk is said to belong to the Lorentz space L(p, q)(ΩT ,Rk), with 1 ≤ p < ∞
and 0 < q <∞, iff

‖g‖q
L(p,q)(ΩT ,Rk)

:= p

∫ ∞
0

(
λp
∣∣{z ∈ ΩT : |g(z)| > λ}

∣∣) qp dλ
λ
<∞.

Here we refer also to Section 3 for the definition in the case q = ∞. The parabolic
Lorentz-Morrey spaces are then defined in the following way: We say that a measurable
function g : ΩT → Rk belongs to Lθ(p, q)(ΩT ,Rk) for 1 ≤ p < ∞, 0 < q < ∞ and
θ ∈ [0, N ], iff

‖g‖Lθ(p,q)(ΩT ,Rk) := sup
C%⊂ΩT

%
θ−N
p ‖g‖L(p,q)(C%,Rk) <∞.

The main theorem of our paper – which contains also Theorem 1.1 for a particular choice
of the parameters – is Theorem 6.1 and asserts the following implication for solutions
u ∈ L1(−T, 0;W 1,1(Ω)) of the Cauchy-Dirichlet problem (1.1) under the structural as-
sumptions (1.2) and for exponents γ, θ as in (1.7):

g ∈ Lθ(γ, q)(ΩT ), 0 < q ≤ ∞ =⇒ |Du| ∈ Lθ
(
θγ
θ−γ ,

θq
θ−γ

)
locally in ΩT .

For the special choice q = γ, having in mind that Lθ(p, p)(ΩT ) ≡ Lp,θ(ΩT ), we obtain
the statement of Theorem 1.1. Moreover, in the borderline case θ = N , we arrive at
the following sharp estimate in Lorentz spaces, which is the content of Theorem 6.6: For
exponents 1 < γ ≤ 2N

N+2 and 0 < q ≤ ∞ the following implication holds for the solution
u ∈ L1(−T, 0;W 1,1

0 (Ω)) of the problem (1.1) under the condition (1.2):

g ∈ L(γ, q)(ΩT ) =⇒ |Du| ∈ L
(
Nγ
N−γ , q

)
locally in ΩT .
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1.3. Equations with more regular coefficients. We would now like to focus on the sit-
uation where the vector-field a(z, w) in (1.1) satisfies stronger assumptions, especially
more regularity with respect to the variable z. We therefore consider weak solutions
u ∈ L1(−T, 0;W 1,1(Ω)) to the equation (1.1) under either one of the following two set-
tings:

• The vector-field a(z, w) = a(x, t, w) satisfies the structure assumptions
|a(x, t, w)|+ (1 + |w|)|∂wa(x, t, w)| ≤ L(1 + |w|)

〈∂wa(x, t, w)w̃, w̃〉 ≥ ν|w̃|2

|a(x, t, w)− a(x0, t, w)| ≤ Lω (|x− x0|) (1 + |w|) ,
(1.11)

for any choice of x, x0 ∈ Ω, t ∈ (−T, 0) and w, w̃ ∈ Rn. Moreover we assume
that the structure constants ν, L satisfy (1.3). Finally, we assume that ω : [0,∞)→
[0,∞) is a bounded, concave modulus of continuity satisfying lim%↓0 ω(%) =
0 = ω(0) and ω ≤ 2 on [0,∞), and that (x, t, w) 7→ a(x, t, w) and (x, t, w) 7→
∂wa(x, t, w) are Carathéodory maps.
• The vector-field has the structure a(z, w) = a(x, t, w) := c(x)ā(t, w), where
ā : (−T, 0)× Rn → Rn satisfies the growth and ellipticity conditions:{
|ā(t, w)|+ (1 + |w|)|∂wā(t, w)| ≤ L(1 + |w|)

〈∂wā(t, w)w̃, w̃〉 ≥ ν|w̃|2 ,
(1.12)

for any choice of t ∈ (−T, 0) and w, w̃ ∈ Rn. For the structure constants ν, L we
assume (1.3) and we also assume that (t, w) 7→ ā(t, w) and (t, w) 7→ ∂wā(t, w)
are Carathéodory maps. For the function c : Ω→ R we shall assume that

0 < ν ≤ c(x) ≤ L <∞ , ∀ x ∈ Ω , (1.13)

and VMO-regularity, which means that the function c satisfies

lim
R↓0

ω(R) = 0 , where ω(R) := sup
B%bΩ

0<%≤R

∫
B%

|c(x)− (c)B% | dx . (1.14)

For solutions u ∈ L1(−T, 0;W 1,1
0 (Ω)) to the Cauchy-Dirichlet problem (1.1) under one of

the above mentioned settings, i.e. either the structure assumptions (1.11) or the conditions
(1.12) to (1.14) the implication

g ∈ Lθ(γ, q)(ΩT ) =⇒ |Du| ∈ Lθ
(
θγ
θ−γ ,

θq
θ−γ

)
locally in ΩT ,

holds true for all 0 < q ≤ ∞ and all pairs of exponents (θ, γ) satisfying the condition

1 < γ < θ ≤ N. (1.15)

The concrete statement is the content of Theorem 6.7 and the proof can be performed us-
ing the same technique as in the case of Theorems 1.1, 6.1, respectively but exploiting the
stronger estimates, proved by Duzaar, Mingione & Steffen [28] for solutions to homoge-
neous equations, fulfilling the structure conditions (1.11) or (1.12) to (1.14).

1.4. Integrability of u. The technique of establishing Calderón-Zygmund type estimates
for the maximal function for the spatial gradient Du of the solution leading to the state-
ments of Theorems 1.1 and 6.1 can also be applied on the level of the solution u itself and
provides – under certain modifications – also Lorentz-Morrey space estimates for the so-
lution u. More precisely, in Theorem 7.1 we prove for solutions u ∈ L1(−T, 0;W 1,1

0 (Ω))
to the problem (1.1) under the conditions (1.2) the implication

g ∈ Lθ(γ, q)(ΩT ) =⇒ u ∈ Lθ
(

θγ
θ−2γ ,

θq
θ−2γ

)
locally in ΩT ,

for all 0 < q ≤ ∞ and all pairs of (θ, γ) satisfying the conditions

1 < γ < θ
2 , 2 < θ ≤ N. (1.16)
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Also here, we may establish a “borderline” estimate in Lorentz spaces, coming up in the
special case θ = N , in the sense that

g ∈ L(γ, q)(ΩT ) =⇒ u ∈ L
(

Nγ
N−2γ , q

)
locally in ΩT ,

for any 0 < q ≤ ∞ and 1 < γ < N
2 . On the other hand, the borderline case γ = θ/2, q =

∞ provides the following BMO-estimate for the solution u ∈ L1(−T, 0;W 1,1
0 (Ω)) of

(1.1) under the structure assumptions (1.2):

g ∈Mθ/2,θ(ΩT ), 2 < θ ≤ N =⇒ u ∈ BMOloc(ΩT ).

HereMθ/2,θ(ΩT ) ≡ Lθ(θ/2,∞)(ΩT ) denotes the Marcinkiewicz-Morrey space and the
above statement is the content of Theorem 7.4.

1.5. Some notes about the techniques of the proofs. The proof of our theorems is based
on the method developed in [48] for elliptic equations, which we carry over to the frame-
work of parabolic equations. The key point to the proof of Theorem 6.1 is an estimate
which allows to control the level set of the Hardy-Littlewood maximal function of the spa-
tial gradient |Du| locally by the level sets of a suitable parabolic Riesz potential operator.
More precisely (see (6.20) together with Lemma 4.3 for the exact estimate) we establish
for some exponent χ > 1 an estimate of the type∣∣{M(|Du|) ≥ Tλ}

∣∣ . T−2χ
∣∣{M(|Du|) ≥ λ}

∣∣+ c(T )
∣∣{I1(|g|) ≥ λ}

∣∣, (1.17)

where M(|Du|) denotes the maximal operator of |Du|, λ is a number large enough and
T � 1 is a constant. Here, the parabolic Riesz potential operator for β ∈ (0, N) is defined
as

Iβ(|g|)(z) :=

∫
Rn+1

|g(z̃)|
dpar(z, z̃)N−β

dz̃, z ∈ Rn+1.

and dpar denotes the parabolic metric (see (4.3)). The precise definitions of the other
involved quantities can be found in Section 4.1. All the Lorentz- and Lorentz-Morrey es-
timates and also the borderline cases can then be derived with the help of (1.17). In order
to prove the decay estimate (1.17), we apply the classical Calderón-Zygmund covering
Lemma in the parabolic setting to suitable level sets of the maximal function. Indeed, to
verify the conditions necessary to apply the Calderón-Zygmund Lemma in our setting, we
take use of a comparison strategy to the solution v to an associated homogeneous prob-
lem. For the solution to homogeneous problems, well known Hölder continuity and higher
integrability results coming up from the De Giorgi-Nash-Moser theory provide suitable
reference estimates. Since u is merely found to be of the class L1(−T, 0;W 1,1

0 (Ω)), com-
parison estimates have to be established on the level of L1-norms, involving not more than
the L1-norm of the inhomogeneity. The proof of such a comparison estimate is established
via certain truncation techniques, which already go back to the contributions of Boccardo
& Gallouët [10] and are used also in the more recent papers [26, 7].

In the case of general equations, as (1.1), fulfilling the structure conditions (1.2), the
decay estimate of the type (1.17) can be established for some fixed exponent χ > 1, de-
pending on the data of the equation. This, in turn leads to restrictions on the range of
exponents which are allowed in the Lorentz and Lorentz-Morrey estimates, and we come
up with the desired estimates for exponents fulfilling (1.7). On the other hand, assuming
more regularity on the data, especially having certain continuity conditions on the vector-
field a(x, t, w) with respect to the space variable x, integrability and Hölder continuity
estimates for solutions to homogeneous equations have been established by Duzaar, Min-
gione & Steffen in [28] in a stronger form (in particular there holds Hölder continuity to
any exponent α ∈ (0, 1)) and therefore the decay estimate (1.17) can be found to hold
true for any exponent χ > 1. As a consequence, we derive Lorentz and Lorentz-Morrey
estimates in this case for the full range of exponents, as in (1.15).
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Concerning the level of the solution u itself, the decay estimate (1.17) can be substituted
by an estimate of the form∣∣{M(u) ≥ Tλ}

∣∣ . T−2χ
∣∣{M(u) ≥ λ}

∣∣+ c(T )
∣∣{I2(|g|) ≥ λ}

∣∣,
which holds for any λ large enough and T � 1, and for any exponent χ > 1. Here, instead
of the Riesz potential I1(|g|), we have the potential I2(|g|) involved on the right hand side.
This finally allows to establish the desired Lorentz-Morrey estimate for u for the range of
exponents declared in (1.16).

1.6. Other recent developments on measure data problems. Let us finally focus on
further developments which have recently been made concerning regularity for equations
with right hand sides below the duality exponent. In very recent contributions, Duzaar &
Mingione [26] established for elliptic and also parabolic equations with measure data right
hand side pointwise estimates for the spatial gradient Du of solutions. The results extend
the well known potential estimates by Kilpeläinen & Malý [40] for solutions to the gradient
of solutions. The authors in [26] prove their results under slightly stronger assumptions
on the vector field a(t, x, w) and they involve a local version of the Riesz potential of
the measure µ on the right hand side. In this way, for equations satisfying these slightly
stronger structural assumptions, our results can be recovered naturally from their pointwise
results. See also [43] for an overview on recent potential results for parabolic equations.

2. PRELIMINARIES, NOTATION

Throughout the paper we denote by c a general constant that may vary from line to line.
In general we shall have c ≥ 1. Peculiar dependencies on parameters will be emphasized
in parentheses when needed. Special constants will be denoted by c̃, c0, c1 . . . . Points in
Euclidean n-space Rn are denoted by x = (x1, . . . , xn), while points in Rn+1 are denoted
by z = (x, t) ∈ Rn × R. With x0 ∈ Rn we denote by BR(x0) = B(x0, R) := {x ∈ Rn :
|x − x0| < R} respectively QR(x0) = Q(x0, R) := {x ∈ Rn : maxi |xi − x0,i| < R}
the open ball and cube, respectively, with center x0 and radius R, respectively sidelength
2R in the case of the cube. We shall often use the short hand notation BR = B(x0, R) and
QR = Q(x0, R), when no ambiguity will arise and all the balls/cubes considered have the
same center. With z0 = (x0, t0) ∈ Rn+1, we denote by

CR(z0) = C(z0, R) := B(x0, R)× (t0 −R2, t0 +R2)

the open (symmetric) parabolic cylinder with center z0 having a ball with center x0 of
radius R as horizontal slice and height 2R2, while

QR(z0) = Q(z0, R) := Q(x0, R)× (t0 −R2, t0 +R2)

denotes the open parabolic cylinder with center z0 having a cube Q(x0, R) with center
x0 of sidelength 2R as horizontal slice and height 2R2. Moreover, with B and Q being
balls and cubes respectively, by γB, γQ we shall denote the concentric balls and cubes
with radius/sidelength scaled by a non-negative factor γ > 0. Finally, with C and Q
being parabolic cylinders with horizontal slice being a ball or cube respectively we shall
denote by γC and γQ the concentric parabolic cylinders scaled by the factor γ > 0; i.e.
γC(z0, R) = B(x0, γR)× (t0− (γR)2, t0 + (γR)2) and γQ(z0, R) = Q(x0, γR)× (t0−
(γR)2, t0 +(γR)2). Throughout the paper all the cubes considered will have sides parallel
to the coordinate axes in Rn and will have positive sidelength.

For a measurable set A ⊂ Rk with finite positive measure and an integrable function
g : A→ R` the average of g over A is

(g)A =

∫
A

g(x) dx :=
1

|A|

∫
A

g(x) dx .
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2.1. Regularized problems, and solvability of (1.1). By a solution u to (1.1) we under-
stand a function u ∈ L1(−T, 0;W 1,1

0 (Ω)) solving (1.1)1 in the distributional sense∫
ΩT

(
uϕt − a(z,Du)Dϕ

)
dz = −

∫
ΩT

gϕ dz , ∀ ϕ ∈ C∞0 (ΩT ) . (2.1)

The existence of such a solution is obtained in [9, 10] by an approximation argument,
which is by now standard in the theory of measure data problems. For convenience of the
reader we briefly sketch the strategy: One considers a sequence gk ∈ L∞(ΩT ), k ∈ N,
such that gk → g in L1(ΩT ) when k →∞. Then by standard monotonicity arguments one
finds, for each fixed k, a unique solution uk ∈ C0([−T, 0];L2(Ω))∩L2(−T, 0;W 1,2

0 (Ω))
to the Cauchy-Dirichlet problem{

(uk)t − div a(z,Duk) = gk in ΩT ,
uk = 0 on ∂parΩT .

(2.2)

The arguments from [9, 10] yield the existence of a solution u ∈ L1(−T, 0;

W 1,1
0 (Ω)) such that for a not relabeled subsequence

uk → u strongly in L1(−T, 0;W 1,1
0 (Ω)) and a.e.

and (1.1) is solved in the distributional sense (2.1). For the rest of the paper we understand
by {uk} ⊂ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2

0 (Ω)) the sequence obtained by solving
(2.2) for the specific choice

gk(z) := max{−k,min{g(z), k}}, k ∈ N. (2.3)

2.2. Calderón-Zygmund coverings, inner and outer parabolic cylinders. Let Q0 =
Q(z0, R) = Q(x0, R)×(t0−R2, t0 +R2) be a parabolic cylinder in Rn+1 with horizontal
cross section being a cube. By D(Q0) we shall denote the class of all dyadic parabolic
cylinders obtained from Q0 by a finite number of dyadic subdivisions. The construction
of a dyadic subdivision is as follows: If Q0 is as above then we subdivide Q0 into 2n

congruent sub-cubes Q′ having sides parallel to Q0 and (t0 − R2, t0 + R2) into four
disjoint intervals I ′ of equal length R2/2. Then, the set of all parabolic sub-cylinders
obtained by this dyadic subdivision consist of all cylinders of the form Q′ × I ′. The total
number of sub-cylinders obtained from a parabolic cylinder Q by one dyadic subdivision
is 2N , N = n + 2. We note that Q0 6∈ D(Q0). For later use we mention a few simple
facts of the class D(Q0): First, if Q1,Q2 ∈ D(Q0) then either Q1 ∩ Q2 = ∅, or one
of the parabolic cylinders contains the other one, i.e. Q1 ⊂ Q2 or Q2 ⊂ Q1. We shall
denote Q̃ ∈ D(Q0) the predecessor of Q if Q has been obtained by exactly one dyadic
subdivision from the parabolic cylinder Q̃. The following is a Calderón-Zygmund-Krylov-
Safanov type covering lemma in the parabolic setting; for the elliptic (classical) version we
refer to [14].

Proposition 2.1. Let Q0 ⊂ Rn+1 be a parabolic cylinder. Assume that X ⊂ Y ⊂ Q0 are
measurable sets such that the following properties (i) and (ii) hold:

(i) there exist δ > 0 such that |X| < δ|Q0|;
(ii) if Q ∈ D(Q0), then |X ∩ Q| > δ|Q| implies Q̃ ⊂ Y , where Q̃ denotes the

predecessor of Q.

Then there holds |X| < δ|Y |.

The proof of the preceding proposition can be inferred using arguments from [14]. For
convenience of the reader we give the simple adaptation to our parabolic set up. The
starting point is the following version of the classical Calderón-Zygmund type covering
lemma.
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Lemma 2.2. Let Q0 ⊂ Rn+1 be a parabolic cylinder and X a measurable subset of Q0

satisfying
0 < |X| < δ|Q0|

for some 0 < δ < 1. Then there exists a sequence (Qi)i∈N of disjoint dyadic sub-cylinders
of Q0 such that there holds:

(i)
∣∣X \⋃∞i=1Qi

∣∣ = 0,
(ii) |X ∩Qi| ≥ δ|Qi| and

(iii) |X ∩ Q̃| < δ|Q̃| if Q̃ ∈ D(Q0) and Qi $ Q̃.

Proof. We divide Q0 into 2N dyadic sub-cylinders Q(j)
1 and select those satisfying∣∣X ∩Q(j)

1

∣∣ ≥ δ∣∣Q(j)
1

∣∣.
Now, we take those cylinders that were not chosen, divide each of them again into 2N

dyadic sub-cylinders and repeat the selection argument from above. Proceeding iteratively
in this way we obtain a sequence of disjoint dyadic cylinders Qi ∈ D(Q0), i ∈ N. By
construction each of these cylinders satisfies (ii) and (iii). For z ∈ Q0 \

⋃∞
i=1Qi we have

a sequence of dyadic cylinders Pk with |Pk| → 0 as k → ∞, each of them containing z,
such that

|Pk ∩X| < δ|Pk|,
or equivalently ∫

Pk
χX(z̃) dz̃ =

|Pk ∩X|
|Pk|

< δ < 1.

By Lebesgue’s differentiation theorem the left-hand side of the preceding inequality con-
verges to χX(z) for a.e. z as k → ∞, and therefore we have z ∈ Q0 \ X for a.e.
z ∈ Q0 \

⋃∞
i=1Qi. Hence

∣∣X \⋃∞i=1Qi
∣∣ = 0, proving finally (i). �

Proof of Proposition 2.1. We apply Lemma 2.2 to have a sequence of disjoint dyadic cylin-
ders (Qi)i∈N covering almost all of X . By (ii) of Lemma 2.2 we have |X ∩ Qi| > δ|Qi|;
therefore by assumption (ii) the predecessor Q̃i of Qi is contained in Y . Now, from the
sequence of predecessors (Q̃i)i∈N we can extract a sub-covering (Q̃i)i∈K of X , where the
Q̃i are pairwise disjoint and K ⊂ N. Then, using Lemma 2.2, (iii), the fact that Q̃i ⊂ Y ,
as well as the disjointness of the Q̃i for i ∈ K we obtain

|X| ≤
∑
i∈K

|X ∩ Q̃i| < δ
∑
i∈K

|Q̃i| ≤ δ|Y |,

proving the claim of Proposition 2.1. �

For a given ball B ⊂ Rn we denote by Qinn(B) and Qout(B) the largest and the
smallest cubes with sides parallel to the coordinate axes concentric to B contained in B
or containing B, respectively; i.e. if B = B(x0, R) we have Qinn(B) = Q(x0, R/

√
n)

and Qout(B) = Q(x0, R). These cubes we shall call inner and outer cubes. Moreover,
for a given parabolic cylinder C = B(x0, R) × (t0 − R2, t0 + R2) ⊂ Rn+1 we will
denote by Qout(C) the smallest parabolic cylinder with horizontal cross section a cube
with sides parallel to the coordinate axes containing C, i.e. Q(x0, R)× (t0−R2, t0 +R2).
Similarly, the largest parabolic cylinder with cross section a cube contained in C is denoted
by Qinn and given by Q(x0, R/

√
n)× (t0 − (R/

√
n)2, t0 + (R/

√
n)2). Note that due to

the parabolic scaling we have to decrease the time interval in the case ofQinn(C). Without
abuse of confusion we will callQinn(C) andQout(C) inner and outer parabolic cylinder
(associated to C). Finally, we mention the following classical iteration lemma:

Lemma 2.3. Let ϕ : [0, R0]→ [0,∞) be a non-decreasing function such that

ϕ(%) ≤ A
[( %
R

)δ0
+ ε

]
ϕ(R) + BRδ1 for every 0 < % ≤ R ≤ R0, (2.4)
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where A,B ≥ 0 and 0 < δ1 < δ0. Then there exist ε0 = ε0(δ0, δ1, A) > 0 and c1 =
c1(δ0, δ1, A) such that whenever (2.4) holds for some 0 < ε ≤ ε0 then

ϕ(%) ≤ c1
[( %
R

)δ1
ϕ(R) + B%δ1

]
for every 0 < % ≤ R ≤ R0.

3. FUNCTION SPACES

3.1. Parabolic spaces measuring size. Throughout this section Ω denotes a bounded
open subset in Rn and T > 0. By ΩT we denote the space time cylinder Ω × (−T, 0).
A measurable map g : ΩT → Rk is said to belong to the Lorentz-space L(p, q)(ΩT ,Rk)
with 1 ≤ p <∞ and 0 < q ≤ ∞ iff

‖g‖q
L(p,q)(ΩT ,Rk)

:= p

∫ ∞
0

(
λp|{z ∈ ΩT : |g(z)| > λ}|

) q
p dλ

λ
<∞, (3.1)

when q <∞, while for q =∞ it is imposed that

sup
λ>0

λp|{z ∈ ΩT : |g(z)| > λ}| =: ‖g‖pMp(ΩT ,Rk)
<∞ . (3.2)

The latter is the so called Marcinkiewicz-, or weak-Lp-space. Since we always assume Ω
to have finite measure the spaces L(p, q)(ΩT ,Rk) decrease in the first parameter p, which
means that for 1 ≤ p̃ < p ≤ ∞ and 0 < q ≤ ∞ we have a continuous embedding
L(p, q)(ΩT ) ↪→ L(p̃, q)(ΩT ) with the estimate ‖g‖L(p̃,q)(ΩT ) ≤ |ΩT |

1
p̃−

1
p ‖g‖L(p,q)(ΩT ).

On the other hand the Lorentz-spaces increase in the second parameter q, i.e. we have for
0 < q < q̃ ≤ ∞ the continuous embedding L(p, q)(ΩT ) ↪→ L(p, q̃)(ΩT ) with the estimate
‖g‖L(p,q̃)(ΩT ) ≤ c(p, q, q̃)‖g‖L(p,q)(ΩT ).

The so-called parabolic Lorentz-Morrey-spaces are obtained by coupling definition
(3.1) with a density condition in the following sense: A measurable map g : ΩT → Rk
belongs to Lθ(p, q)(ΩT ,Rk) for 1 ≤ p <∞, 0 < q <∞ and θ ∈ [0, N ] iff

‖g‖Lθ(p,q)(ΩT ,Rk) := sup
C%⊂ΩT

%
θ−N
p ‖g‖L(p,q)(C%,Rk)

= sup
C%⊂ΩT

[
p

∫ ∞
0

(
λp%θ−N |{z ∈ C% : |g(z)| > λ}|

) q
p dλ

λ

] 1
q

<∞ ,

(3.3)

while g ∈ Lθ(p,∞)(ΩT ,Rk) =Mp,θ(ΩT ,Rk) iff

‖g‖Mp,θ(ΩT ,Rk) := sup
C%⊂ΩT

%
θ−N
p ‖g‖Mp(C%,Rk)

= sup
C%⊂ΩT

%
θ−N
p sup

λ>0

(
λp|{z ∈ C% : |g(z)| > λ}|

) 1
p

<∞ . (3.4)

Note that the supremum is taken over all parabolic cylinders C% = C(z0, %) contained in
ΩT .

Remark 3.1. By Fubini’s Theorem we have

‖g‖pLp(ΩT ) = p

∫ ∞
0

λp|{z ∈ ΩT : |g(z)| > λ}| dλ
λ

= ‖g‖pL(p,p)(ΩT ) ,

so that Lp(ΩT ) = L(p, p)(ΩT ). As an immediate consequence we also have Lp,θ(ΩT ) =
Lθ(p, p)(ΩT ) with ‖g‖Lp,θ(ΩT ) = ‖g‖Lθ(p,p)(ΩT ).

A measurable map g defined on ΩT belongs to the space L logL(ΩT ) iff

‖g‖L logL(ΩT ) := inf

{
λ > 0 :

∫
ΩT

∣∣∣ g
λ

∣∣∣ log
(
e+

∣∣∣ g
λ

∣∣∣) dz ≤ 1

}
<∞ . (3.5)
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Note that we have incorporated in the preceding definition a dependence on the measure
|ΩT |, by considering an averaged integral in (3.5). The reason for this will become clear
in few lines, when we introduce a Morrey-type variant of the L logL-spaces. Due to a
remarkable result by T. Iwaniec we have

‖g‖L logL(ΩT ) ≈ |g|L logL(ΩT ) :=

∫
ΩT

|g| log
(
e+

g

−
∫

ΩT
|g(z̃)| dz̃

)
dz . (3.6)

The constant connecting the Luxemburg-norm ‖ · ‖L logL with | · |L logL is independent of
ΩT and g. Moreover, and this is the striking fact of Iwaniec’s result, | · |L logL defines a
true norm on L logL(ΩT ).

In the light of Definition (3.3) for θ ∈ [0, N ] (3.3) the parabolic Morrey-Orlicz-space
L logLθ(ΩT ) is defined as the space of measurable function g defined on ΩT satisfying

‖g‖L logLθ(ΩT ) := sup
C%⊂ΩT

%θ‖g‖L logL(C%)

≈ sup
C%⊂ΩT

%θ−N
∫
C%
|g| log

(
e+

g

−
∫
C% |g(z̃)| dz̃

)
dz <∞ . (3.7)

The following Lemma concerning the scaling properties of ‖ · ‖Lθ(p,q) respectively ‖ ·
‖L logLθ is an immediate consequence of the definitions (3.3) resp. (3.7).

Lemma 3.2. Let g ∈ Lθ(p, q)(C(z0, %)) with 1 ≤ p <∞ and 0 < q ≤ ∞. Then, the map
g̃(y, τ) := g(x0 + %y, t0 + %2τ), (y, τ) ∈ C1 = C(0, 1), belongs to Lθ(p, q)(C1) and

‖g̃‖Lθ(p,q)(C1) = %−
θ
p ‖g‖Lθ(p,q)(C(z0,%)).

Similarly, if g ∈ L logLθ(C(z0, %)) then g̃ ∈ L logLθ(C1) and

‖g̃‖L logLθ(C1) = %−θ‖g‖L logLθ(C(z0,%)) .

3.2. Lower semi-continuity of quasi-norms. As we have pointed out before the quantity
‖ · ‖Lθ(p,q)(ΩT ) is only a quasi-norm. Nevertheless, the mapping g 7→ ‖g‖Lθ(p,q)(ΩT ) is
lower semi-continuous with respect to a.e. convergence. This can be seen as follows: Take
gk ∈ Lθ(p, q)(ΩT ) with gk(z) → g(z) a.e. on ΩT as k → ∞. Then by Fatou’s Lemma
we have

|{z ∈ ΩT : |g(z)| > λ}| ≤ lim inf
k→∞

|{z ∈ ΩT : |gk(z)| > λ}|, (3.8)

whenever λ ≥ 0. For q <∞ we use (3.8) and again Fatou’s Lemma in (3.1) to have that

‖g‖L(p,q)(ΩT ) =

[
p

∫ ∞
0

(
λp|{z ∈ ΩT : |g(z)| > λ}|

) q
p dλ

λ

] 1
q

≤
[
p

∫ ∞
0

(
λp lim inf

k→∞
|{z ∈ ΩT : |gk(z)| > λ}|

) q
p dλ

λ

] 1
q

= lim inf
k→∞

[
p

∫ ∞
0

(
λp|{z ∈ ΩT : |gk(z)| > λ}|

) q
p dλ

λ

] 1
q

= lim inf
k→∞

‖gk‖L(p,q)(ΩT ).

When q = ∞ we recall the definition of the Marcinkiewicz norm, i.e ‖g‖Mp(ΩT ) =

supλ>0

(
λ|{z ∈ ΩT : |g(z)| > λ}|

) 1
p . Hence, by (3.8) for fixed λ > 0 each of the

functionals g 7→
(
λ|{z ∈ ΩT : |g(z)| > λ}|

) 1
p is lower semi-continuous with respect

to a.e. convergence. The lower semi-continuity of the Mp-norm now follows from the
general fact that the supremum of an arbitrary family of lower semi-continuous functionals
is still lower semi-continuous. The same argument also implies the lower semi-continuity
of the quantities ‖·‖Lθ(p,q)(ΩT ) and ‖·‖L logLθ(ΩT ) since they are defined as the supremum
over a family of balls of lower semi-continuous functionals.
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3.3. Additivity of quasi-norms. The following elementary inequality holds( m∑
i=1

ai

)β
≤ max{1,mβ−1}

m∑
i=1

aβi (3.9)

whenever β > 0 and ai, i = 1, . . . ,m are non-negative numbers. We assume now that
ΩT ⊂

⋃m
i=1 ωi, where ωi = Ωi × (τi, ti). Then, from (3.1) and (3.9) we infer that

‖g‖L(p,q)(ΩT ,Rk) ≤ G(m, p, q)

m∑
i=1

‖g‖L(p,q)(ωi,Rk), (3.10)

holds for every 0 < q ≤ ∞, where G(m, p, q) = 1 if 1 ≤ q ≤ p or q = ∞, while
G(m, p, q) = m1/p−1/q if q > p and G(m, p, q) = m1/p−1 if 0 < q < 1.

4. PARABOLIC MAXIMAL OPERATORS AND RIESZ POTENTIALS

4.1. Maximal Operators. For fixed β ∈ [0, N ] we consider the (restricted) fractional
maximal function operator relative to a symmetric parabolic cylinder Q0 = Q(z0, R) ⊂
Rn+1 which is defined by

M∗β,Q0
(f)(z) := sup

Q⊂Q0, z∈Q
|Q|

β
N

∫
Q
|f(z̃)| dz̃ , (4.1)

where the sup is taken with respect to all parabolic cylinders Q contained in Q0 having
sides parallel to those ofQ0 and containing the point z. When β = 0 we writeM∗Q0

instead
of M∗β,Q0

. Moreover, in the case Q0 = Rn+1 we abbreviate Mβ ≡ M∗β,Rn+1 respectively
M ≡ M∗Rn+1 . Completely similar definitions and notations are given when cylinders with
a cube as horizontal slice are replaced by those ones with a ball as horizontal slices:

M∗β,C0(f)(z) := sup
C⊂C0, z∈C

|C|
β
N

∫
C
|f(z̃)| dz̃ ,

where C0 = C(z0, R) is a fixed parabolic cylinder and C is any other parabolic cylinder
contained in C0 containing the point z. From [13, 32] we recall the boundedness of the
maximal operators in Marcinkiewicz spaces, i.e. if g ∈ Lq(Q0) then

|{z ∈ Q0 : M∗Q0
(g)(z) ≥ λ}| ≤ c0(n, q)

λq

∫
Q0

|g|q dz (4.2)

holds for every λ > 0 and q ≥ 1. Moreover, we premise the following standard Hölder
type inequality for Marcinkiewicz spaces.

Lemma 4.1. Let g ∈ Mp(A) with p > 1 and A ⊂ Rn+1 a measurable subset with finite
measure |A| <∞. Then g ∈ Lq(A) for any 1 ≤ q < p. Moreover, we have the estimate

‖g‖Lq(A) ≤
(

p

p− q

) 1
q

|A|
1
q−

1
p ‖g‖Mp(A) .

The next theorem is a standard embedding theorem for the maximal function in Lorentz
spaces. It can be easily inferred from [48, Theorem 7].

Theorem 4.2. Let β ∈ [0, N) and p > 1 such that βp < N ; moreover let q ∈ (0,∞] and
C a parabolic cylinder in Rn+1. Then there exists a constant c = c(n, p, β, q) such that for
every map g ∈ L(p, q)(C) there holds

‖M∗β,C(g)‖L( Np
N−βp ,q)(C) ≤ c ‖g‖L(p,q)(C) .
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4.2. Parabolic Riesz Potentials. For β ∈ (0, N) the fractional integral operator Iβ(·),
also called parabolic Riesz potential, is the linear operator defined by

Iβ(g)(z) :=

∫
Rn+1

g(z̃)

dpar(z, z̃)N−β
dz̃ , z ∈ Rn+1, (4.3)

for all measurable functions g : Rn+1 → R. This specializes the definition given in [39,
p.24, (31)] for a doubling metric space (X, d, µ), i.e.

Iβ(g)(z) :=

∫
X

g(z̃)dβ(z, z̃)

µ(B(z, d(z, z̃)))
dz̃ , z ∈ X,

to the case (Rn+1, dpar,PN ). We recall that for z = (x, t), z̃ = (y, s) ∈ Rn+1 we have
set

dpar(z, z̃) := max
{
|x− y|,

√
|t− s|

}
.

Moreover, the parabolic Hausdorff-measure PN is equivalent to the Lebesgue measure
in Rn+1. The following Lemma is an immediate consequence of the definitions of the
fractional Riesz potential and the fractional maximal operators.

Lemma 4.3. For every non-negative measurable function g defined on Rn+1 there holds

Iβ(g)(z) ≥ 2β−N |Q(0, 1)|1−
β
NMβ(g)(z) for every z ∈ Rn+1.

Proof. Let Q(z0, %) ⊂ Rn+1 be an arbitrary but fixed symmetric parabolic cylinder con-
taining the point z. Then Q(z0, %) ⊂ Q(z, 2%) and therefore

Iβ(g)(z) ≥
∫
Q(z,2%)

g(z̃)

dpar(z, z̃)N−β
dz̃

≥ (2%)β−N
∫
Q(z0,%)

g(z̃) dz̃

= 2β−N |Q(0, 1)|1−
β
N |Q(z0, %)|

β
N

∫
Q(z0,%)

g(z̃) dz̃ .

Taking the sup with respect to all parabolic cylindersQ(z0, %) containing z then yields the
result. �

Lemma 4.4. Let 0 < β < N , p ≥ 1, θ > 0 be such that β < θ/p ≤ N , and let g be a
non-negative measurable function on Rn+1. Then the pointwise estimate

Iβ(g)(z) ≤ c[Mθ/p(g)(z)]
βp
θ [M(g)(z)]1−

βp
θ

holds for every z ∈ Rn+1 with a constant c = c(n, p, θ, β).

Proof. Without loss of generality we may assume that g 6≡ 0. Let z ∈ Rn+1. For δ > 0 to
be chosen later we decompose Rn+1 into Q(z, δ) and Rn+1 \Q(z, δ) and write

Iβ(g)(z) =

∫
Q(z,δ)

. . . dz̃ +

∫
Rn+1\Q(z,δ)

. . . dz̃ =: I1 + I2,

with the obvious meaning of I1 and I2. Moreover, for k ∈ Z we let

Ak(z) := {z̃ ∈ Rn+1 : 2kδ ≤ dpar(z̃, z) < 2k+1δ} .
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We first treat the integral I1:

I1 ≤
∞∑
k=1

∫
A−k(z)

g(z̃)

dpar(z̃, z)N−β
dz̃

≤
∞∑
k=1

(2−kδ)β−N
∫
Q(z,2−k+1δ)

g(z̃)dz̃

≤
∞∑
k=1

(2−kδ)β−N |Q(z, 2−k+1δ)|
∫
Q(z,2−k+1δ)

g(z̃)dz̃

≤ α(n)δβ
∞∑
k=1

2−βkM(g)(z)

=
α(n)

2β − 1
δβM(g)(z) .

On the other hand we have for the integral I2:

I2 ≤
∞∑
k=0

∫
Ak(z)

g(z̃)

dpar(z̃, z)N−β
dz̃

≤
∞∑
k=0

(2kδ)β−N |Q(z, 2k+1δ)|
∫
Q(z,2k+1δ)

g(z̃)dz̃

≤
∞∑
k=0

(2kδ)β−N |Q(z, 2k+1δ)|1−
θ
NpMθ/p(g)(z)

= [2N+1α(n)]1−
θ
Np δβ−

θ
p

∞∑
k=0

2k(β− θp )Mθ/p(g)(z)

=
[2N+1α(n)]1−

θ
Np

1− 2β−
θ
p

δβ−
θ
pMθ/p(g)(z) .

Having arrived at this stage we choose

δ = δ(z) :=

[
Mθ/p(g)(z)

M(g)(z)

] p
θ

,

and finally obtain

Iβ(g)(z) ≤ c
[(

Mθ/p(g)(z)

M(g)(z)

) βp
θ

M(g)(z) +

(
Mθ/p(g)(z)

M(g)(z)

) p
θ (β− θp )

Mθ/p(g)(z)

]
≤ 2c [Mθ/p(g)(z)]

βp
θ [M(g)(z)]1−

βp
θ ,

where c = c(n, p, θ, β). �

Remark 4.5. We note that the constant in Lemma 4.4 blows up either when β ↓ 0 - the
case of singular integrals - or when βp ↑ θ - the limiting case in the Sobolev-embedding.
This settles in a certain sense the dependencies of the constants in all following results.
Moreover, as an immediate consequence of Lemma 4.4 we obtain that for any measurable
function g defined on Rn+1 the pointwise Hedberg-type-estimate

Iβ(|g|)(z) ≤ c [Mθ/p(g)(z)]
βp
θ [M(g)(z)]1−

βp
θ

holds true for every z ∈ Rn+1 with a constant c = c(n, p, θ, β).
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Corollary 4.6. Let 0 < β < N , 0 < θ ≤ N , 1 < p < θ
β , 1 ≤ q ≤ ∞, g ∈ Lp(Rn+1),

E ⊂ Rn+1 and Mθ/p(g) ∈ Lq(E). Then

‖Iβ(g)‖Lr(E) ≤ c ‖Mθ/p(g)‖
βp
θ

Lq(E)‖g‖
1− βpθ
Lp(Rn+1),

where

1

r
=

1

p
− β

θ
+
βp

θq
. (4.4)

Proof. The case q < ∞: Integrating the Hedberg-Type inequality from Lemma 4.4 over
E, using Hölder’s inequality and (4.4) we infer∫

E

[Iβ(|g|)]r dz ≤ c
∫
E

[Mθ/p(g)]r
βp
θ [M(g)]r(1−

βp
θ ) dz

≤ c
(∫

E

[Mθ/p(g)]q dz

) rβp
θq
(∫

E

[M(g)]r
1−βp/θ

1−rβp/θq dz

)1− rβpθq

≤ c ‖Mθ/p(g)‖
rβp
θ

Lq(E)

(∫
Rn+1

[M(g)]p dz

)1− rβpθq
.

This leads to the estimate(∫
E

[Iβ(|g|)]r dz
) 1
r

≤ c ‖Mθ/p(g)‖
βp
θ

Lq(E)

(∫
Rn+1

[M(g)]p dz

) 1
r−

βp
θq

≤ c ‖Mθ/p(g)‖
βp
θ

Lq(E)‖g‖
1− βpθ
Lp(Rn+1),

where we have used the boundedness of the maximal operator between Lp-spaces and the
identity (4.4). This proves Iβ(|g|) ∈ Lr(E) and the desired estimate follows easily.

In the case q = ∞, instead of using Hölder’s inequality in the first step, we have the
trivial estimate∫

E

[Iβ(|g|)]r dz ≤ c ‖Mθ/p(g)‖
rβp
θ

L∞(E)

∫
Rn+1

[M(g)]p dz

and we immediately obtain the desired estimate, taking into account (4.4) and βp
θq = 0. �

Lemma 4.7. Let 0 < β < N , p ≥ 1 such that βp < N , and assume g ∈ Lp(Rn+1). Then(∫
Rn+1

|Iβ(g)|
Np

N−βp dz

)N−βp
Np

≤ c(n, p, β)

(∫
Rn+1

|g|p dz
) 1
p

,

i.e. Iβ : Lp(Rn+1) ↪→ L
Np

N−βp (Rn+1) is a continuous embedding.

Proof. We apply Corollary 4.6 with E ≡ Rn+1, θ = N and q =∞. Note that

Mθ/p(g)(z) = MN/p(g)(z) = sup
Q⊂Rn+1, z∈Q

|Q|
1
p

∫
Q
|g(z̃)| dz̃

≤ sup
Q⊂Rn+1, z∈Q

(∫
Q
|g(z̃)|p dz̃

) 1
p

≤ ‖g‖Lp(Rn+1),

so that ‖MN/p(g)‖L∞(Rn+1) ≤ ‖g‖Lp(Rn+1). Moreover, 1/r = 1/p − β/N = N−βp
Np .

Inserting this in the estimate of Corollary (4.6) then yields the result. �
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Remark 4.8. The preceding lemma yields in combination with the pointwise estimate
from Lemma 4.3 that also the fractional maximal operator Mβ is a continuous embedding
from Lp(Rn+1) into L

Np
N−βp (Rn+1). Moreover, we have the estimate(∫

Rn+1

|Mβ(g)|
Np

N−βp dz

)N−βp
Np

≤ c(n, p, β)

(∫
Rn+1

|g|p dz
) 1
p

,

whenever 0 < β < N and p ≥ 1 such that βp < N .

Lemma 4.9. Let g ∈ Lθ(p, q)(Rn+1) and CR ⊂ Rn+1 be a parabolic cylinder with radius
R > 0. Then, for any s > 1 there holds

‖gχCR‖Lθ(p,q)(Rn+1) ≤ max
{

1,
[
(s− 1)/2

] θ−N
p
}
‖g‖Lθ(p,q)(CsR) .

Proof. We consider C% such that C% ∩ CR 6= ∅ and remark that

|{z ∈ C% : |(gχCR)(z)| > λ}| ≤ |{z ∈ C% : |g(z)| > λ}| .

In the case C% ⊂ CsR we have

%θ−N‖gχCR‖
p
L(p,q)(C%) =

[
p

∫ ∞
0

(
λp%θ−N |{z ∈ C% : |(gχCR(z)| > λ}|

) q
p dλ

λ

] p
q

≤
[
p

∫ ∞
0

(
λp%θ−N |{z ∈ C% : |g(z)| > λ}|

) q
p dλ

λ

] p
q

≤
[
p

∫ ∞
0

(
λp%θ−N |{z ∈ CsR : |g(z)| > λ}|

) q
p dλ

λ

] p
q

≤ ‖g‖p
Lθ(p,q)(CsR)

.

In the remaining case C% 6⊂ CsR (taking also into account C% ∩ CsR 6= ∅) we have 2% >
(s− 1)R. This implies

%θ−N |{z ∈ C% : |(gχCR)(z)| > λ}| ≤ [(s− 1)/2]θ−NRθ−N |{z ∈ CR : |g(z)| > λ}| ,

and similarly to the first case this leads us now to the estimate

%θ−N‖gχCR‖
p
L(p,q)(C%) ≤ [(s− 1)/2]θ−N‖g‖p

Lθ(p,q)(CR)
.

Combining the two cases yields the desired estimate. �

Remark 4.10. Let C% be a parabolic cylinder with radius % > 0. Then, from the definition
of the Lorentz-Morrey-norm (see (3.3)) we infer the bound

‖g‖L(p,q)(C%) = %
N−θ
p

[
p

∫ ∞
0

(
λp%θ−N |{z ∈ C% : |g(z)| > λ}|

) q
p dλ

λ

] 1
q

≤ max
{

1, %
N−θ
p
}
‖g‖Lθ(p,q)(C%) .

Lemma 4.11. Let C be a parabolic cylinder in Rn+1. Then for every g ∈ L logL(C) with
support in C we have∫

C
M(g) dz ≤ c(n)‖g‖L logL(C) ≈ c(n)|g|L logL(C) .

Proof. We define

h :=
g

‖g‖L logL(C)
.

Then, we have ‖h‖L logL(C) = 1 and therefore∫
C
|h| log

(
e+ |h|

)
dz ≤ 1 .
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Applying (the parabolic analogue of) [21, Theorem 2.15] we conclude∫
C
M(h) dz ≤ c(n)|C|+ c(n)

∫
C
|h| log

(
e+ |h|

)
dz ≤ c(n)|C| ,

so that −
∫
CM(h) dz ≤ c(n). Re-scaling back from h to g then yields the desired estimate.

�

Theorem 4.12. Let 0 < β < θ ≤ N , C a parabolic cylinder in Rn+1 and s > 1. Then
there exists a constant c = c(n, β, θ, s) such that the estimate

‖M∗β,C(g)‖
L

θ
θ−β (C)

≤ c |C|1−
β
θ ‖g‖

β
θ

L1,θ(sC)‖g‖
1− βθ
L logL(C)

holds, whenever g : sC → R is measurable.

Proof. Without loss of generality we may assume that g ≥ 0. Then, Iβ(g) ≥ 0. Let
g̃ = gχC . Applying Lemma 4.4 with p = 1 we obtain that

[Iβ(g̃)(z)]
θ

θ−β ≤ c [Mθ(g̃)(z)]
β
θ−βM(g̃)(z) ≤ c ‖g̃‖

β
θ−β
L1,θ(Rn+1)

M(g̃)(z)

holds for every z ∈ Rn+1. Here we have also used the obvious estimate Mθ(g̃)(z) ≤
c ‖g̃‖L1,θ(Rn+1) which follows directly from the definitions of the fractional maximal oper-
ators given in (4.1) and the usual one of a Morrey-space. Using the pointwise bound from
below for Iβ(g̃) from Lemma 4.3 we infer that

[Mβ(g̃)(z)]
θ

θ−β ≤ c ‖g̃‖
β
θ−β
L1,θ(Rn+1)

M(g̃)(z)

holds for every z ∈ Rn+1. Integrating the preceding inequality on C and using Lemma
4.11 yields

‖Mβ(g̃)‖
θ

θ−β

L
θ

θ−β (C)
≤ c |C|‖g̃‖

β
θ−β
L1,θ(Rn+1)

∫
C
M(g̃) dz ≤ c |C|‖g̃‖

β
θ−β
L1,θ(Rn+1)

‖g̃‖L logL(C) .

Recalling the obvious inequality M∗β,C(g) ≤Mβ(g̃) in order to estimate the left-hand side
from below and Lemma 4.9 to estimate the right-hand side from above, i.e. the fact that
‖g̃‖L1,θ(Rn+1) ≤ c‖g‖L1,θ(sC), we conclude the assertion of the lemma. �

Theorem 4.13. Let β, θ ∈ (0, N ], p > 1, such that βp < θ, and let q ∈ (0,∞]. Fur-
thermore, let C be a parabolic cylinder in Rn+1 and s > 1. Then there exists a constant
c = c(n, p, q, β, θ, s) such that

‖M∗β,C(g)‖L( θp
θ−βp ,

θq
θ−βp )(C) ≤ c ‖g‖

βp
θ

Lθ(p,q)(sC)‖g‖
1− βpθ
L(p,q)(C)

holds whenever g is a measurable map defined on sC. Moreover, if |sC| ≤ 100N we have

‖M∗β,C(g)‖L( θp
θ−βp ,

θq
θ−βp )(C) ≤ c ‖g‖Lθ(p,q)(sC) .

The constant c blows up, i.e. c→∞, when q ↓ 0 or p ↓ 1.

Proof. In the case q =∞ we let θq
θ−βp :=∞. Once again we may assume without loss of

generality that g ≥ 0. We define g̃ := gχC . Then for CR ⊂ Rn+1 we have∫
CR
|g̃| dz ≤ p

p− 1
|CR|1−

1
p ‖g̃‖Mp(CR) =

cp

p− 1
RN(1− 1

p )‖g̃‖Mp(CR)

=
cp

p− 1
RN−

θ
pR

θ−N
p ‖g̃‖Mp(CR) ≤

cp

p− 1
RN−

θ
p ‖g̃‖Mp,θ(Rn+1),

where c = c(n, p). This implies in particular that Mθ/p(g̃)(z) ≤ cp
p−1‖g̃‖Mp,θ(Rn+1) holds

for every z ∈ Rn+1. Using this in the Hedberg-type inequality from Lemma 4.4 yields

[Iβ(g̃)(z)]
θ

θ−βp ≤ c [Mθ/p(g̃)(z)]
βp
θ−βpM(g̃)(z) ≤ c ‖g̃‖

βp
θ−βp
Mp,θ(Rn+1)

M(g̃)(z) ,
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for every z ∈ Rn+1. In the preceding inequality we want to replace the Marcinkiewicz-
norm of g̃ by an appropriate Lorentz-Morrey norm. For this we recall that for q > 0 we
have ‖g̃‖Mp(CR) ≤ (q/p)

1
q ‖g̃‖L(p,q)(CR) , so that ‖g̃‖Mp,θ(Rn+1) ≤ c ‖g̃‖Lθ(p,q)(Rn+1).

Inserting this above we immediately find

[Iβ(g̃)(z)]
θ

θ−βp ≤ c ‖g̃‖
βp
θ−βp
Lθ(p,q)(Rn+1)

M(g̃)(z) ,

which leads after integrating in an appropriate way over Rn+1 to

‖[Iβ(g̃)]
θ

θ−βp ‖
θ−βp
θ

L(p,q)(Rn+1) ≤ c ‖g̃‖
βp
θ

Lθ(p,q)(Rn+1)
‖M(g̃)‖1−

βp
θ

L(p,q)(Rn+1) . (4.5)

Using definition (3.1) and a simple change-of-variable argument we find for the left-hand
side of (4.5) the identity

‖[Iβ(g̃)]
θ

θ−βp ‖L(p,q)(Rn+1)

=

[
p

∫ ∞
0

(
λp|{z ∈ Rn+1 : [Iβ(g̃)(z)]

θ
θ−βp > λ}|

) q
p dλ

λ

] 1
q

=

[
p

∫ ∞
0

(
λp|{z ∈ Rn+1 : Iβ(g̃)(z) > λ

θ−βp
θ }|

) q
p dλ

λ

] 1
q

=

[
θp

θ−βp

∫ ∞
0

(
µ

θp
θ−βp |{z ∈ Rn+1 : Iβ(g̃)(z) > µ}|

) θq/(θ−βp)
θp/(θ−βp) dµ

µ

] 1
q

= ‖Iβ(g̃)‖
θ

θ−βp

L( θp
θ−βp ,

θq
θ−βp )(Rn+1)

. (4.6)

On the other hand the boundedness of the maximal operator in Lorentz-spaces allows us to
estimate the second term on the right-hand side of (4.5) from above; to be precise we have

‖M(g̃)‖L(p,q)(Rn+1) ≤ c(n, p, q)‖g̃‖L(p,q)(Rn+1) .

Using this and (4.6) in (4.5) we arrive at

‖Iβ(g̃)‖L( θp
θ−βp ,

θq
θ−βp )(Rn+1) ≤ c ‖g̃‖

βp
θ

Lθ(p,q)(Rn+1)
‖g̃‖1−

βp
θ

L(p,q)(Rn+1) .

The first term in the right-hand side of the preceding inequality is estimated by Lemma 4.9,
i.e ‖g̃‖Lθ(p,q)(Rn+1) ≤ c(s) ‖g‖Lθ(p,q)(sC), while the second term is equal to ‖g‖L(p,q)(C).
On the other hand from Lemma 4.3 and the definition of the restricted maximal operator
in (4.1) we infer the pointwise estimate c−1Iβ(g̃)(z) ≥ Mβ(g̃)(z). Inserting this above
yields

‖Mβ(g̃)‖L( θp
θ−βp ,

θq
θ−βp )(C) ≤ c ‖g‖

βp
θ

Lθ(p,q)(sC)‖g‖
1− βpθ
L(p,q)(C) .

Combining this with Mβ(g̃)(z) ≥ Mβ,C(g)(z), z ∈ C, leads to the first asserted esti-
mate of the theorem. In order to obtain the second assertion we use Remark 4.10 and the
assumption |sC| ≤ 100N to estimate the right-hand side from above. �

5. BASIC REGULARITY

5.1. L1-regularity for regularized problems. In this section we will consider

u ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) ,

defined as the unique solution to the regularized Cauchy-Dirichlet problems{
ut − div a(z,Du) = g ∈ L∞(ΩT ) in ΩT ,

u = 0 on ∂parΩT ,
(5.1)

for some fixed g. Associated to a fixed symmetric parabolic cylinder CR = C(z0, R) ⊂ ΩT
we consider the unique solution

v ∈ C0([t0 −R2, t0 +R2];L2(BR(x0))) ∩ L2(t0 −R2, t0 +R2;W 1,2(BR(x0)))
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to the following homogeneous Cauchy-Dirichlet problem:{
vt − div a(z,Du) = 0 in CR,

v = u on ∂parCR.
(5.2)

Remark 5.1. At certain points in the proofs of our results it is useful to scale from an
arbitrary parabolic cylinder C(z0, R) to C = C(0, 1) via the following scaling procedure:
For z̃ = (y, s) ∈ C we define{

ũ(z̃) := R−1u(x0 +Ry, t0 +R2s), ṽ(z̃) := R−1v(x0 +Ry, t0 +R2s),

ã(z̃, w) := a(x0 +Ry, t0 +R2s, w), g̃(z̃) := Rg(x0 +Ry, t0 +R2s).

Then it is easy to verify that ũs − div ã(z̃, Dũ) = g̃ and ṽs − div ã(z̃, Dṽ) = 0 in C, and
ũ = ṽ on ∂parC. Furthermore it is easy to check that the new vector field ã satisfies the
growth and and monotonicity properties described in (1.2).

The following comparison lemma can be inferred from [26, Lemma 4.1], see also [7,
Lemma 6.4].

Lemma 5.2. Let u ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) be a solution to (5.1)
under the assumption (1.2) and C(z0, R) a parabolic cylinder in ΩT . Moreover, let v ∈
C0([t0−R2, t0 +R2];L2(BR(x0)))∩L2(t0−R2, t0 +R2;W 1,2(BR(x0))) be a solution
to the Cauchy-Dirichlet problem (5.2). Then there exists a constant c = c(n) such that∫

C(z0,R)

R−1|u− v|+ |Du−Dv| dz ≤ c ν−1 R

∫
C(z0,R)

|g| dz . (5.3)

Lemma 5.3. Let u ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) be a solution to (5.1)
where the structure conditions (1.2) are in force and CR = C(z0, R) a parabolic cylin-
der in ΩT . Moreover, let v ∈ C0([t0 − R2, t0 + R2];L2(BR(x0))) ∩ L2(t0 − R2, t0 +
R2;W 1,2(BR(x0))) be the unique solution to the Cauchy-Dirichlet problem (5.2) in C(z0, R)
and g ∈ Lθ(γ, q)(CR) for some γ > 1. Then there exists a constant c = c(n, ν, γ) such
that ∫

C(z0,R)

R−1|u− v|+ |Du−Dv| dz ≤ c RN−
θ−γ
γ ‖g‖Lθ(γ,q)(C(z0,R)) . (5.4)

Proof. Using Lemma 4.1 and the embedding ‖g‖Mγ(CR) ≤ (q/γ)
1
q ‖g‖L(γ,q)(CR) we can

conclude for the right-hand side in (5.3) that

R

∫
CR
|g| dz ≤ c

(
γ

γ − 1

)
R1+N(1− 1

γ )‖g‖Mγ(CR)

≤ c
(

γ

γ − 1

)(
q

γ

) 1
q

R1+N(1− 1
γ )‖g‖L(γ,q)(CR)

≤ c RN−
θ−γ
γ R

θ−N
γ ‖g‖L(γ,q)(CR)

≤ c RN−
θ−γ
γ ‖g‖Lθ(γ,q)(CR),

where c = c(n, ν, γ). Using the preceding inequality in (5.3) yields the result. �

Lemma 5.4. Let u ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) be a solution to (5.1)
where the structure conditions (1.2) are in force and CR = C(z0, R) a parabolic cylin-
der in ΩT . Moreover, let v ∈ C0([t0 − R2, t0 + R2];L2(BR(x0))) ∩ L2(t0 − R2, t0 +
R2;W 1,2(BR(x0))) be the unique solution to the Cauchy-Dirichlet problem (5.2) in C(z0, R)
and g ∈ L1,θ(CR). Then there exists a constant c = c(n, ν, γ) such that∫

C(z0,R)

R−1|u− v|+ |Du−Dv| dz ≤ c RN−(θ−1)‖g‖L1,θ(C(z0,R)) . (5.5)

Proof. For the proof it is sufficient to note that ‖g‖L1(CR) ≤ RN−θ‖g‖L1,θ(CR). �
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5.2. Homogeneous problems. The results of this chapter summarize the basic Hölder
regularity results from the De Giorgi-Nash-Moser theory of solutions to non-linear, homo-
geneous parabolic equations as well as the higher integrability theory.

Theorem 5.5. Let v ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) be a weak solution to
the parabolic equation

vt − div a(z,Dv) = 0 in ΩT , (5.6)

under the assumptions

|a(z, w)| ≤ L(1 + |w|) , ν|w|2 − L2/ν ≤ 〈a(z, w), w〉, (5.7)

for every choice of z ∈ ΩT and w ∈ Rn where 0 < ν ≤ 1 ≤ L <∞ and a : ΩT × Rn →
Rn is a Carathéodory vector field. Then, there exists α ∈ (0, 1

2 ] depending only on n and
L/ν, such that for every q ∈ (0, 2] there exists a constant c = c(n,L, ν, q) such that the
following holds: Whenever CR ⊂ ΩT and 0 < % ≤ R there holds∫

C%
(|Dv|q + 1) dz ≤ c

( %
R

)N−q+αq ∫
CR

(|Dv|q + 1) dz (5.8)

and ∫
C%

(|v|q + %q) dz ≤ c
( %
R

)N ∫
CR

(|v|q +Rq)dz . (5.9)

Furthermore, there exists χ = χ(n,L, ν) > 1 such that Dv ∈ L2χ
loc(ΩT ,Rn) and(∫

CR/2
(|Dv|+ 1)2χ dz

) 1
2χ

≤ c
(∫
CR

(|Dv|+ 1)q dz

) 1
q

(5.10)

holds for every q ∈ (0, 2], while for every χ0 > 1 there holds(∫
CR/2

(|v|+R)2χ0 dz

) 1
2χ0

≤ c
(∫
CR

(|v|+R)q dz

) 1
q

. (5.11)

In both (5.10) and (5.11) we have the following dependence of the constant c from the
structural constants: c = c(n,L, ν, q)

Proof. The statement is a direct consequence of De Giorgi-Nash-Moser’s theory. We give
a very brief hint how to retrieve the estimates (5.8) to (5.11). (5.10) for q = 2 can be
inferred for instance from [50], and we refer the reader also to [12, Lemma 3.1], where the
statement is directly proved at the boundary. From this, the reduction of the exponent 2 on
the right hand side to any exponent q ∈ (0, 2] follows by a standard result on reverse Hölder
inequalities. For details, we refer the reader for example to [26, Chapter 4] and Lemma 3.1.
The estimates (5.8), (5.9) and also (5.11) with q = 2 follow for instance from [45], Chapter
6, where De Giorgi’s proof is performed in the parabolic setting. Then, again the arguments
of [26] allow to reduce the exponent 2 on the right hand side to any exponent q ∈ (0, 2].
Note here, that the arguments in [45] are worked out for linear parabolic equations, but as
mentioned in the notes in Chapter 6, the linearity of the equation is actually irrelevant for
the estimates and they hold also for quasi-linear equations fulfilling the structure conditions
(5.7). �

Remark 5.6. Theorem 5.5 actually holds for a much larger class of equations, involving
also p-growth conditions with exponent p 6= 2, and possibly being degenerate. Indeed the
estimates can be retrieved also from [19, Chapter III,V].

The next theorem is the homogeneous case of a much more general result concerning
Calderón-Zygmund estimates for weak solutions to non-linear parabolic equations (sys-
tems); see [28, Theorem 1.8, 1.9] for the specific form of the statement. We consider weak
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solutions v ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) to the following homogeneous
non-linear parabolic equation

vt − div a(z,Dv) = 0 in ΩT , (5.12)

where the vector-field a(z, w) satisfies either the structure conditions (1.11) or the vector
field has the special form a(z, w) = a(x, t, w) = c(x)ā(t, w), where c(x) and ā(t, w)
satisfy the conditions (1.12), (1.13) and (1.14). Then the following theorem holds:

Theorem 5.7. Let v ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2(Ω)) be a weak solution
to the homogeneous non-linear parabolic equation (5.12) where either the structure as-
sumptions (1.11) or the conditions (1.12) to (1.14) are in force. Then for any α ∈ (0, 1)
and q ∈ (0, 2] there exists a constant c = c(n,L, ν, α, q) such that the following holds:
Whenever CR ⊂ ΩT and 0 < % ≤ R there holds∫

C%
(|Dv|q + 1) dz ≤ c

( %
R

)N−q+αq ∫
CR

(|Dv|q + 1) dz . (5.13)

Furthermore, Dv ∈ L2χ0

loc (ΩT ,Rn) for any χ0 > 1. Moreover, for any given χ0 > 1 and
q ∈ (0, 2] there exits a constant c = c(n, ν, L, χ0, ω(·), q) such that for any CR b ΩT
there holds(∫

CR/2
(|Dv|+ 1)2χ0 dz

) 1
2χ0

≤ c
(∫
CR

(|Dv|+ 1)q dz

) 1
q

. (5.14)

Proof. Estimate (5.14) is the statement of [28, Theorems 1.8, 1.9]. Then, once having
(5.13) for the case q = 2, the general estimate for q ∈ (0, 2] can be retrieved by a sim-
ple application of Hölder’s inequality to pass from exponent q < 2 to exponent 2, then
exploiting (5.13) for q = 2, and subsequently using (5.14) to reduce the exponent 2 again
to exponent q < 2. However, (5.13) for the special case q = 2 is a consequence of the
Hölder continuity to any Hölder exponent α ∈ (0, 1) for solutions to parabolic equations
with linear growth. On the other hand, Hölder continuity to every exponent α ∈ (0, 1) is a
standard consequence of the fact that the vector field a is sufficiently regular with respect
to x. In this case, Hölder continuity can be shown via suitable comparison procedures to
differentiable or constant coefficient equations (see [28, Chapter 8] for comparison esti-
mates in the case of VMO-regular vector fields as well as continuous ones). We note here,
that actually the estimates in [28] are shown for much more general possibly degenerate
p growth equations and systems. Standard references for Hölder regularity in the constant
coefficient case are for example [44, 45]. �

Remark 5.8. In the estimates (5.10) and (5.14) we can replace R/2, R by σR,R for any
σ ∈ [ 1

2 , 1) as long as we enlarge the constant by factor ≈ (1 − σ)N( 1
2χ−

1
q ). This can be

inferred along the arguments form [36, Remark 6.12]. On the other hand inequalities (5.8)–
(5.14) continue to hold when replacing the parabolic cylinders C with a ball as horizontal
slice by the cylinders Q having a cube as horizontal cross section.

6. INTEGRABILITY OF Du

6.1. Parabolic Lorentz space estimates. Theorem 6.1 below can be considered as as the
non-linear parabolic analogue of a classical result of Adams & Lewis [5]. The correspond-
ing non-linear elliptic version has been obtained in [48]. Moreover the Proof of Theorem
1.1 follows directly from the more general Theorem 6.1 by the choice q = γ.

Theorem 6.1. Let u ∈ L1(−T, 0;W 1,1
0 (Ω)) be the solution to (1.1) where the structure

conditions (1.2) are in force. Moreover, assume g ∈ Lθ(γ, q)(ΩT ) with γ, θ as in (1.7) and
0 < q ≤ ∞. Then

|Du| ∈ Lθ
(
θγ
θ−γ ,

θq
θ−γ

)
locally in ΩT . (6.1)
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Furthermore, we have the local estimate

‖Du‖Lθ( θγ
θ−γ ,

θq
θ−γ )(CR/2) ≤ c R

θ−γ
γ −N‖1 + |Du|‖L1(CR) + c‖g‖Lθ(γ,q)(CR), (6.2)

for any parabolic cylinder CR ⊂ ΩT , where the constant c depends only on n,L, ν, γ, q.

Proof. The proof is divided into several steps.

Step 1: Level sets decay. On a fixed parabolic cylinder Q0 satisfying n2Q0 b ΩT and
|Q0| ≤ 1 we consider the following maximal operators

M∗ := M∗0,n2Q0
= M∗n2Q0

and M∗1 := M∗1,n2Q0
.

For the definitions of these restricted maximal function operators we refer the reader to
Section 4.1, especially to (4.1).

Lemma 6.2. Let u(= uk) ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2
0 (Ω)) be a weak solu-

tion to (5.1) where the assumptions (1.2) are in force and g ∈ L∞(ΩT ). Then, for every
S > 1 there exists a constant ε = ε(n,L, ν, S) ∈ (0, 1) such that if λ > 1 and Q is a
dyadic sub-cylinder of Q0 such that∣∣Q∩ {z ∈ Q0 : M∗(1 + |Du|)(z) > ASλ and M∗1 (g) ≤ ελ

}∣∣ > |Q|
S2χ

, (6.3)

then the predecessor Q̃ of Q satisfies

Q̃ ⊂
{
z ∈ Q0 : M∗(1 + |Du|)(z) > λ

}
. (6.4)

Here χ = χ(n,L/ν) > 1 is the higher integrability exponent introduced in Theorem 5.5,
while A = A(n,L/ν) > 1 is an absolute constant.

Proof of Lemma 6.2. We shall prove the assertion of the lemma by a contradiction argu-
ment. Therefore we assume that (6.3) holds but (6.4) fails. Hence we can find z̃ such that
there holds

M∗(1 + |Du|)(z̃) ≤ λ and z̃ ∈ Q̃ . (6.5)

Since Q̃ ⊂ 3Q ⊂ n2Q0, and trivially z̃ ∈ 3Q we have∫
3Q

(1 + |Du|) dz ≤M∗(1 + |Du|)(z̃) ≤ λ . (6.6)

Moreover, from (6.3) we infer the existence of z̄ satisfying

M∗1 (g)(z̄) ≤ ελ and z̄ ∈ Q . (6.7)

Now, let C denote – in the sense of Section 2.2 – the unique parabolic cylinder having 3Q
as inner cylinder, i.e.Qinn(C) = 3Q. IfQ = Q(x1, %)× (t1− %2, t1 + %2) then C is given
by B(x1, 3

√
n%) × (t1 − (3

√
n%)2, t1 + (3

√
n%)2). It is easy to check that C ⊂ n2Q0.

Next we denote by

v ∈ C0
(
[t1 − (3

√
n%)2, t1 + (3

√
n%)2];L2(B(x1, 3

√
n%)
)

∩ L2
(
t1 − (3

√
n%)2, t1 + (3

√
n%)2;W 1,2(B(x1, 3

√
n%)
)

the unique solution to the homogeneous Cauchy-Dirichlet problem (5.2){
vt − div a(z,Dv) = 0 in C,

v = u on ∂parC.
(6.8)

We consider the outer parabolic cylinder to C, i.e. Qout(C) = Q(x1, 3
√
n%) × (t1 −

(3
√
n%)2, t1 +(3

√
n%)2), which satisfies alsoQout(C) ⊂ n2Q0. Then the definition of the

fractional maximal operator M∗1 and (6.7), i.e. z̄ ∈ Q ⊂ Qout(C) and M∗1 (g)(z̄) ≤ ελ,
yield that

|C| 1N
∫
C
|g| dz ≤

(
|Qout(C)|
|C|

)1− 1
N

|Qout(C)|
1
N

∫
Qout(C)

|g| dz ≤ c(n)ελ. (6.9)
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Combining (6.9) with the universal comparison estimate from (5.3) we obtain∫
3Q
|Du−Dv| dz ≤

∫
C
|Du−Dv| dz ≤ c ν−1|C| 1N

∫
C
|g| dz ≤ c ελ|C|,

for a constant c = c(n)/ν. Using |C| = c(n)|3Q| in the preceding inequality we arrive at∫
3Q
|Du−Dv| dz ≤ c(n, ν)ελ. (6.10)

Next, we observe that the hypothesis of Theorem 5.5 are fulfilled for the solution v to the
homogeneous Cauchy-Dirichlet problem (5.2) on C. Therefore, we have the local higher
integrability of Dv on 2Q ⊂ 3Q ⊂ C with the estimate(∫

2Q
(1 + |Dv|)2χ dz

) 1
2χ

≤ c(n, ν, L)

∫
3Q

(1 + |Dv|) dz, (6.11)

where χ = χ(n, ν, L) is the higher integrability exponent introduced in Theorem 5.5.
Using the comparison estimate (6.10), (6.6) and 0 < ε ≤ 1 the right-hand side of the
preceding inequality is estimated as follows:∫

3Q
(1 + |Dv|) dz ≤

∫
3Q

(1 + |Du|) dz +

∫
3Q
|Du−Dv| dz ≤ λ+ c ελ ≤ c λ ,

with a constant c = c(n, ν). Combining the preceding estimate with (6.11) yields∫
2Q

(1 + |Dv|)2χ dz ≤ c(n, ν, L)λ2χ . (6.12)

In order to proceed further we use the restricted maximal operator on 2Q and here we
abbreviate M∗∗ := M∗0,2Q. Using (4.2) twice, (6.12) and (6.10) we obtain∣∣{z ∈ Q : M∗∗(1 + |Du|)(z) > ASλ}

∣∣
≤
∣∣{z ∈ Q : M∗∗(1 + |Dv|)(z) > 1

2
ASλ}

∣∣
+
∣∣{z ∈ Q : M∗∗(|Du−Dv|)(z) > 1

2
ASλ}

∣∣
≤ c(n, χ)

(ASλ)2χ

∫
2Q

(1 + |Dv|)2χ dz +
c(n)

ASλ

∫
2Q
|Du−Dv| dz

≤ c(n, ν, L)

(AS)2χ
|2Q|+ c(n, ν)ε

AS
|3Q|

=
[c1(n, ν, L)

(AS)2χ
+
c2(n, ν)ε

AS

]
|Q|. (6.13)

Having arrived at this stage we perform the following choices of A and ε: We first choose
A = A(n, ν, L) > 1 such that

A = 4 · 10N
[
1 + c1(n, ν, L)

]
=⇒ c1

(AS)2χ
≤ 1

4S2χ
. (6.14)

Then we the choose ε = ε(n,L, ν, S) ∈ (0, 1) such that

ε =
1

4S2χ−1[1 + c2]
=⇒ c2ε

AS
≤ 1

4S2χ
. (6.15)

Using these choices in (6.13) we find that∣∣{z ∈ Q : M∗∗(1 + |Du|)(z) > ASλ}
∣∣ < S−2χ|Q| . (6.16)

At this stage it remains to replace in (6.16) the restricted maximal operator M∗∗ = M∗0,2Q
by the restricted maximal operator M∗ = M∗0,n2Q0

. Let ` = 2% be the side-length of Q
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and z ∈ Q arbitrary. Moreover, let Q̂ denote an arbitrary parabolic cylinder with side-
length ˆ̀= 2%̂ contained in n2Q0 and containing the point z. We distinguish two cases: In
the case ˆ̀≤ 1

2
` we have Q̂ ⊂ 2Q ⊂ n2Q0 and therefore∫

Q̂
(1 + |Du|) dz ≤M∗∗(1 + |Du|)(z) . (6.17)

In the other case 2ˆ̀> ` or equivalently 2%̂ > %, it is possible to enlarge the cylinder Q̂
to another cylinder Q′ in such that Q̂ ⊂ Q′ ⊂ n2Q0, |Q′| ≤ 5N |Q̂| and finally Q̃ ⊂ Q′,
where Q̃ is the predecessor of Q. In particular we have z̃ ∈ Q′. Therefore, we find∫

Q̂
(1 + |Du|) dz ≤ 5N

∫
Q′

(1 + |Du|) dz ≤ 5Nλ,

where we have also used (6.6). Since Q̃ is an arbitrary cylinder in n2Q0 we have shown

M∗(1 + |Du|)(z) ≤ max
{
M∗∗(1 + |Du|)(z), 5Nλ

}
∀ z ∈ Q.

Combining the preceding inequality with (6.16) and the particular choice of A in (6.14)
leads us to the estimate∣∣{z ∈ Q : M∗(1 + |Du|)(z) > ASλ}

∣∣ < S−2χ|Q|, (6.18)

which contradicts (6.3) and therefore proves the assertion of the Lemma. �

Step 2: Application of Proposition 2.1. Let Q0 as in Step 1. Then, we define

λ0 := 2c0(n)n2NS2χ

∫
n2Q0

(1 + |Du|) dz , (6.19)

where c0 is taken from (4.2). Obviously we have that λ0 > 0. The strategy of proof is
now to apply Lemma 6.2 for the choice λ := (AS)kλ0 for k ∈ N0. We first show that the
hypotheses of Lemma 6.2 are fulfilled for every k ∈ N0. Using (4.2) and (6.19) we infer
that ∣∣{z ∈ Q0 : M∗(1 + |Du|)(z) > (AS)kλ0}

∣∣
≤
∣∣{z ∈ Q0 : M∗(1 + |Du|)(z) > λ0}

∣∣
≤ c0(n)

λ0

∫
Q0

(1 + |Du|) dz < S−2χ|Q0| .

In the light of Lemma 6.2 we can therefore apply Proposition 2.1 with δ := S−2χ,

X :=
{
z ∈ Q0 : M∗(1 + |Du|)(z) > (AS)k+1λ0 and M∗1 (g)(z) ≤ (AS)kελ0

}
and

Y :=
{
z ∈ Q0 : M∗(1 + |Du|)(z) > (AS)kλ0

}
.

The application of Proposition 2.1 and the definition of X and Y yield that∣∣{z ∈ Q0 : M∗(1 + |Du|)(z) > (AS)k+1λ0

}∣∣
≤ S−2χ

∣∣{z ∈ Q0 : M∗(1 + |Du|)(z) > (AS)kλ0

}∣∣
+
∣∣{z ∈ Q0 : M∗1 (g)(z) > (AS)kελ0

}∣∣ (6.20)

holds for every k ∈ N0. With

µ1(H) :=
∣∣{z ∈ Q0 : M∗(1 + |Du|)(z) > H

}∣∣,
µ2(H) :=

∣∣{z ∈ Q0 : M∗1 (g)(z) > H
}∣∣,

the preceding inequality turns into

µ1

(
(AS)k+1λ0

)
≤ S−2χµ1

(
(AS)kλ0

)
+ µ2

(
(AS)kελ0

)
. (6.21)
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Multiplying (6.21) by (AS)
(k+1)θγ
θ−γ λ

θγ
θ−γ
0 we find

(AS)
(k+1)θγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)k+1λ0

)
≤ A

θγ
θ−γ S

θγ
θ−γ−2χ(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

)
+
(
AS/ε

) θγ
θ−γ (AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

)
. (6.22)

Note that γ < θ by (1.7) and therefore θγ
θ−γ > 0. On the other hand, condition (1.7)1, i.e.

γ ≤ 2θ
θ+2 , is equivalent to require θγ

θ−γ ≤ 2, and therefore, since χ > 1, we have

d := 2χ− θγ

θ − γ
≥ 2(χ− 1) > 0. (6.23)

We now choose

S :=
[
4A

θγ
θ−γ

] 1
d

, (6.24)

where A has been determined in (6.14). Note that y
θγ
θ−γ ≤ y2, whenever y ≥ 1, and

therefore S ≤
[
4A2

] 1
d ≤

[
4A2

] 1
2(χ−1) = [2A]

1
χ−1 . Recalling the dependencies of A and

χ, i.e. A = A(n,L, ν) and χ = χ(n,L, ν) we easily infer that S from (6.24) is bounded
by a universal constant depending on n,L, ν. On the other hand, we have the estimate

AS/ε = 4 [1 + c2]AS2χ ≤ 2 [1 + c2](2A)1+ 2χ
χ−1 = 1

2c∗(n,L, ν) ,

so that
(
AS/ε

) θγ
θ−γ ≤ (c∗/2)

θγ
θ−γ . Using this and (6.24) in (6.22) we conclude that

(AS)
(k+1)θγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)k+1λ0

)
≤ 1

4
(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

)
+
(
c∗
2

) θγ
θ−γ (AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

)
(6.25)

holds for every k ∈ N0.

Step 3: Parabolic Lorentz spaces estimates on level sets. We take τ ∈ (0,∞) and raise
the terms appearing in (6.25) to the power τ(θ−γ)

θγ . This leads us to

[
(AS)

(k+1)θγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)k+1λ0

) ] τ(θ−γ)θγ

≤ max
{

(1/4)
τ(θ−γ)
θγ , (1/2)

}[
(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

) ] τ(θ−γ)θγ

+ cτ∗

[
(AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

) ] τ(θ−γ)θγ

.

We note that here we have also used that 1
2 ≤

θ−γ
θγ < 1 and therefore 2

τ(θ−γ)
θγ −1 ≤ 2τ

in order to obtain the constant cτ∗ in the second term. Now, we sum up the preceding

inequality for k = 0, . . . ,H and finally add the quantity λτ0 |Q0|
τ(θ−γ)
θγ to both sides. In

this way we obtain:

I1(H) ≤ λτ0 |Q0|
τ(θ−γ)
θγ + max

{
(1/4)

τ(θ−γ)
θγ , (1/2)

}
I1(H) + cτ∗I2(∞) ,
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where we have defined

I1(H) :=

H+1∑
k=0

[
(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

) ] τ(θ−γ)θγ

and

I2(∞) :=

∞∑
k=0

[
(AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

) ] τ(θ−γ)θγ

.

We note that I2 = I2(∞) is finite since g(= gk) ∈ L∞(ΩT ), but this fact is not needed
here. Re-absorbing the second therm appearing in the right-hand side of the preceding
inequality on the left and then letting H →∞ yields

I1(∞) ≤ c1cτ∗
[
λτ0 |Q0|

τ(θ−γ)
θγ + I2(∞)

]
, (6.26)

where we have abbreviated

c1 :=
[
1−max

{
(1/4)

τ(θ−γ)
θγ , (1/2)

}]−1

.

Using the fact γ ≤ 2θ
θ+2 we see that (1/4)

τ(θ−γ)
θγ ≤ (1/2)τ so that the constant c1 in

(6.26) can be replaced by the larger quantity [1 − max{(1/2)τ , (1/2)}]−1. This implies
in particular that c1cτ∗ can be replaced by a constant of the form cτ where c(n,L, ν, τ) :=
c∗[1−max{(1/2)τ , (1/2)}]−1/τ . We note that c is a decreasing function of τ with c→∞
when τ ↓ 0 and c→ c∗ when τ →∞. Therefore, c = c(τ) stays bounded on any interval
[τ0,∞) with τ0 > 0. We will keep this kind of dependence for the rest of the proof. Now,
if k ≥ 0 and λ ∈ [(AS)kλ0, (AS)k+1λ0) then

λ
θγ
θ−γ µ1(λ) ≤ (AS)

(k+1)θγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

)
, (6.27)

and similarly when k ≥ 1 and λ ∈ [(AS)k−1ελ0, (AS)kελ0) we have

(AS)
(k−1)θγ
θ−γ (ελ0)

θγ
θ−γ µ2

(
(AS)kελ0

)
≤ λ

θγ
θ−γ µ2(λ) . (6.28)

Using (6.27) we find∫ ∞
0

[
λ

θγ
θ−γ µ1(λ)

] τ(θ−γ)
θγ dλ

λ

=

∫ λ0

0

. . .
dλ

λ
+

∞∑
k=0

∫ (AS)k+1λ0

(AS)kλ0

. . .
dλ

λ

≤ λτ0
τ
|Q0|

τ(θ−γ)
θγ + (AS)τ log(AS)

∞∑
k=0

[
(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

) ] τ(θ−γ)θγ

=
λτ0
τ
|Q0|

τ(θ−γ)
θγ + (AS)τ log(AS)I1(∞) ,

and similarly using (6.28) and the fact that we have chosen ε ≤ 1 we infer that

I2(∞) = (λ0ε)
τ |Q0|

τ(θ−γ)
θγ +

∞∑
k=1

[
(AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

) ] τ(θ−γ)θγ

≤ λτ0 |Q0|
τ(θ−γ)
θγ +

(AS)τ

log(AS)

∞∑
k=1

∫ (AS)kελ0

(AS)k−1ελ0

[
λ

θγ
θ−γ µ2(λ)

] τ(θ−γ)
θγ dλ

λ

= λτ0 |Q0|
τ(θ−γ)
θγ +

(AS)τ

log(AS)

∫ ∞
0

[
λ

θγ
θ−γ µ2(λ)

] τ(θ−γ)
θγ dλ

λ
.
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Combining the preceding estimates with (6.26) we conclude∫ ∞
0

[
λ

θγ
θ−γ µ1(λ)

] τ(θ−γ)
θγ dλ

λ

≤ λτ0
τ
|Q0|

τ(θ−γ)
θγ + cτ (AS)τ log(AS)

[
λτ0 |Q0|

τ(θ−γ)
θγ + I2(∞)

]
=
[1

τ
+ cτ (AS)τ log(AS)

]
λτ0 |Q0|

τ(θ−γ)
θγ + cτ (AS)τ log(AS)I2(∞)

≤ cτ2λτ0 |Q0|
τ(θ−γ)
θγ + cτ2

∫ ∞
0

[
λ

θγ
θ−γ µ2(λ)

] τ(θ−γ)
θγ dλ

λ
, (6.29)

where we have abbreviated c2 = max
{[

1
τ + 2cτ (AS)τ log(AS)

] 1
τ , c (AS)2

}
. As for the

constant c the constant c2 = c2(n,L, ν, τ) blows up when τ ↓ 0, while c2 remains bounded
when τ is bounded away from zero. Taking into account the definition (3.1) and (3.9) the
preceding inequality turns into

‖M∗(1 + |Du|)‖L( θγ
θ−γ ,τ)(Q0)

=

(
θγ

θ − γ

∫ ∞
0

[
λ

θγ
θ−γ µ1(λ)

] τ(θ−γ)
θγ dλ

λ

) 1
τ

≤
[
θγ

θ − γ
cτ2λ

τ
0 |Q0|

τ(θ−γ)
θγ +

θγ

θ − γ
cτ2

∫ ∞
0

[
λ

θγ
θ−γ µ2(λ)

] τ(θ−γ)
θγ dλ

λ

] 1
τ

≤ c(τ)c2

[(
θγ
θ−γ

) 1
τ

λ0|Q0|
θ−γ
θγ +

(
θγ

θ − γ

∫ ∞
0

[
λ

θγ
θ−γ µ2(λ)

] τ(θ−γ)
θγ dλ

λ

) 1
τ
]

≤ c(τ)c2

[
λ0|Q0|

θ−γ
θγ + ‖M∗1 (g)‖L( θγ

θ−γ ,τ)(Q0)

]
,

where c(τ) = 41/τ . Here we have used in the last line that
(
θγ
θ−γ

) 1
τ ≤ 21/τ . With the

obvious inequality |Du(z)| ≤ M∗(1 + |Du|)(z) for almost every z ∈ Q0 we conclude
from the preceding inequality that

‖Du‖L( θγ
θ−γ ,τ)(Q0) ≤ cλ0|Q0|

θ−γ
θγ + c‖M∗1 (g)‖L( θγ

θ−γ ,τ)(Q0), (6.30)

where c = c(n,L, ν, τ) stays bounded as long τ is bounded away from zero, and c → ∞
when τ ↓ 0. For 0 < q <∞ the choice τ = θq

θ−γ in (6.30) yields

‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(Q0) ≤ cλ0|Q0|

θ−γ
θγ + c‖M∗1 (g)‖L( θγ

θ−γ ,
θq
θ−γ )(Q0) . (6.31)

Having arrived at this stage we can apply Theorem 4.13 with β = 1 and p = γ (note
that βp = γ < θ) passing to the outer parabolic cylinder C, i.e. Qinn(C) = Q0 and
choosing s = 2. Note that, if Q0 = QR × (−R2, R2) then C = B√nR × (−nR2, nR2)

and 2C = B2
√
nR × (−4nR2, 4nR2) ⊂ Qn2R × (−n4R2, n4R2) = n2Q0. Furthermore,

|Q0| ≤ 1 impliesR < 1, so that
√
nR <

√
n. Hence, the application of Remark 4.10 at the

end of the proof of Theorem 4.13 yields a constant max{1,
√
n}(N−θ)

θ−γ
θγ ≤

√
n
n(θ−γ)
θγ ≤

c(n, γ). Applying Theorem 4.13 with the choice of the parameters described before leads
to

‖M∗1 (g)‖L( θγ
θ−γ ,

θq
θ−γ )(Q0) ≤ c(n, γ, q)‖g‖Lθ(γ,q)(n2Q0). (6.32)

Combining (6.32) and (6.19), i.e. the choice of λ0, with (6.31) and noting that S2χ ≤
c(n,L, ν) by the choice in (6.24), we finally arrive at

‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(Q0) ≤ c

(∫
n2Q0

(1 + |Du|) dz
)
|Q0|

θ−γ
θγ + c‖g‖Lθ(γ,q)(n2Q0),

(6.33)
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where c = c(n,L, ν, γ, q).
We now show how the previous inequality, i.e. (6.33), can be extended to the case

q =∞. We proceed as follows: We first go back to (6.25) and obtain for H ∈ N that

I3(H) := sup
0≤k≤H+1

(AS)
kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

)
≤ λ

θγ
θ−γ
0 |Q0|+

1

4
I3(H) + c2∗ sup

k≥0
(AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

)
.

Here we have used that c
θγ
θ−γ
∗ ≤ c2∗, since θγ

θ−γ ≤ 2 and c∗ ≥ 1. Re-absorbing as usual
1
4I3(H) in the left-hand side, and then letting H →∞ we deduce

I3(∞) ≤ (4/3)λ
θγ
θ−γ
0 |Q0|+ c sup

k≥0
(AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

)
≤ (4/3)λ

θγ
θ−γ
0 |Q0|+ c sup

λ>0
λ

θγ
θ−γ µ2(λ).

Here we have used (6.28) in the last line. On the other hand using (6.27) we can bound the
left-hand side of the preceding inequality from below and obtain

sup
λ>0

λ
θγ
θ−γ µ1(λ) ≤ λ

θγ
θ−γ
0 |Q0|+ (AS)

θγ
θ−γ I3(∞) .

We note that (AS)
θγ
θ−γ can be bounded by a constant c = c(n,L, ν). Combining the last

two inequalities we have

sup
λ>0

λ
θγ
θ−γ µ1(λ) ≤ c λ

θγ
θ−γ
0 |Q0|+ c sup

λ>0
λ

θγ
θ−γ µ2(λ) ,

where c = c(n,L, ν). Taking into account the definition of the Marcinkiewicz space from
(3.2) and again the obvious a.e. estimate |Du(z)| ≤M∗(1 + |Du|)(z) we conclude that

‖Du‖
M

θγ
θ−γ (Q0)

≤ c λ
θγ
θ−γ
0 |Q0|+ c ‖M∗1 (g)‖

M
θγ
θ−γ (Q0)

. (6.34)

Similarly to (6.32) we use Theorem 4.13, now with the choice q =∞, in order to get

‖M∗1 (g)‖
M

θγ
θ−γ (Q0)

≤ c(n, γ) ‖g‖Mγ,θ(n2Q0).

Connecting the last two inequalities and recalling the choice of λ0 from (6.19) we infer
that (6.33) extends to the case q =∞.

Proof of Remark 1.3. Note that (6.34) holds also for γ = 1, when θ ≥ 2. In this case it is
enough to estimate the Marcinkiewicz norm on the right-hand side with the same norm of
I1(g) and then recall the classical result of Adams [3]: I1 : L1,θ →M

θ
θ−1 . See also Step

6. �

Step 4: Intermediate parabolic Morrey-space regularity of Du.

Proposition 6.3. Let u(= uk) ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2
0 (Ω)) be a weak

solution to (5.1) where the assumptions (1.2) are in force and let g ∈ Lθ(γ, q)(ΩT ) with
2 < 2γ ≤ θ ≤ N . Then, for every pair of concentric parabolic cylinders Cσ b C% ⊂ ΩT
there holds

‖1 + |Du|‖
L

1,
θ−γ
γ (Cσ)

≤ c (%− σ)
θ−γ
γ −N‖1 + |Du|‖L1(C%) + c‖g‖Lθ(γ,q)(C%),

(6.35)

where c = c(n,L, ν, γ, q).
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Proof. Let Cσ b C% ⊂ ΩT be two fixed concentric cylinders and let z0 be a point in
Cσ . Moreover let CR(z0) be a parabolic cylinder with 0 < R ≤ dpar(z0, ∂C%), i.e.
C(z0, R) ⊂ C%. Moreover, let v ∈ C0([t0 − R2, t0 + R2];L2(BR(x0)) ∩ L2(t0 −
R2, t0 +R2;W 1,2(BR(x0)) be the unique solution to the Cauchy-Dirichlet problem (5.2)
in CR(z0). Then, using (5.8) for the choice q = 1 we infer that for any 0 < r ≤ R we
have ∫

C(z0,r)
(1 + |Du|) dz ≤

∫
C(z0,r)

(1 + |Dv|) dz +

∫
C(z0,R)

|Du−Dv| dz

≤ c
( r
R

)N−1+α
∫
C(z0,R)

(1 + |Dv|) dz +

∫
C(z0,R)

|Du−Dv| dz ,

where c = c(n,L, ν) and α = α(n,L, ν) ∈ (0, 1/2]. Now, the second integral appearing
on the right-hand side of the preceding inequality is estimated by (5.4) from Lemma 5.3,
i.e. we have ∫

C(z0,R)

|Du−Dv| dz ≤ c RN−
θ−γ
γ ‖g‖Lθ(γ,q)(C(z0,R)),

where c = c(n, ν, γ). Inserting this above yields∫
C(z0,r)

(1 + |Du|) dz

≤ c
( r
R

)N−1+α
∫
C(z0,R)

(1 + |Du|) dz + c ‖g‖Lθ(γ,q)(C%)R
N− θ−γγ ,

for any choice of 0 < r ≤ R. We remark that 2γ ≤ θ implies θ−γ
γ ≥ 1 and therefore

N − θ−γ
γ ≤ N − 1 < N − 1 + α. This allows us to apply the iteration Lemma 2.3 with

ϕ(r) :=

∫
C(z0,r)

(1 + |Du|) dz, A := c, B := c ‖g‖Lθ(γ,q)(C%),

R0 := dpar(z0, ∂C%) and

δ0 := N − 1 + α > N − θ − γ
γ

=: δ1.

Applying (2.4) and taking the choice R = R0 > %− σ we obtain in particular∫
C(z0,r)

(1 + |Du|) dz

≤ c
[
(%− σ)

θ−γ
γ −N

∫
C%

(1 + |Du|) dz + ‖g‖Lθ(γ,q)(C%)

]
rN−

θ−γ
γ ,

(6.36)

whenever C(z0, r) ⊂ Cσ , and with a constant c = c(n,L, ν, γ). Here we have used the
dependence α = α(n,L, ν). Inequality (6.36) immediately implies (6.35), and this com-
pletes the proof of the Lemma. �

Remark 6.4 (Extensions). Proposition 6.3 holds under the assumption 2γ ≤ θ and this
is implied by the assumptions of Theorem 6.1. In fact, γ ≤ 2θ

θ+2 and 2 < θ ≤ N imply
that 2γ < θ. Therefore, the assumption 2γ ≤ θ can be replaced by the weaker assumption
γ(2 − α

2 ) < θ, where α > 0 is the exponent from (5.8). This condition serves for θ−γγ >

1 − α
2 and therefore also for δ1 = N − θ−γ

γ < N − 1 + α
2 < N − 1 + α = δ0, which

was needed in the proof of Proposition 6.3. When γ = 1 the proof of Proposition 6.3 still
works, provided 2 ≤ θ ≤ N and that we use the comparison estimate (5.5) instead of (5.4).
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Note that in this case N − 1 + α > N − (θ − 1). The final outcome is instead of (6.36)
the following estimate:∫

Cr
(1 + |Du|) dz

≤ c
[
(%− σ)θ−1−N

∫
C%

(1 + |Du|) dz + ‖g‖L1,θ(C%)

]
rN−(θ−1) , (6.37)

where now c = c(n,L, ν).
With respect to u (instead of Du) we have a statement similar to (6.35), assuming

1 < γ <
θ

2
and 2 < θ ≤ N

instead of (1.7). This can be seen as follows: Keeping in mind the notation introduced at
the beginning of the proof of Proposition 6.3 we obtain using (5.9) instead of (5.8) and
again (5.4) the following decay estimate:∫

C(z0,r)
(r + |u|) dz

≤ c
( r
R

)N ∫
C(z0,R)

(R+ |u|) dz + c ‖g‖Lθ(γ,q)(C%)R
N− θ−2γ

γ ,

for any 0 < r ≤ R. We note that 2γ < θ implies that θ−2γ
γ > 0. Therefore we can apply

Lemma 2.3 to the quantity ϕ(r) :=
∫
C(z0,r)(r + |u|) dz. The final outcome, that follows

along the lines of the proof of (6.36), is

‖u‖
L

1,
θ−2γ
γ (Cσ)

≤ c (%− σ)
θ−2γ
γ −N‖%+ |u|‖L1(C%) + c ‖g‖Lθ(γ,q)(C%). (6.38)

We note that c→∞ when γ ↑ θ/2.

Step 5: Full Morrey space regularity of Du. In this section we prove (6.2) for the approxi-
mating solutions u = uk. We consider a parabolic cylinder C% ⊂ ΩT and scale the problem
as in Remark 5.1 to C1 = C(0, 1), switching from u, g, a to ũ, g̃, ã. Applying (6.33) with
ũ, g̃ with Q0 := Q1/n4 (note, with this choice of Q0 we have n2Q0 = Q1/n2 ⊂ C1/n) we
conclude that

‖Dũ‖L( θγ
θ−γ ,

θq
θ−γ )(C1/n4 ) ≤ c ‖1 + |Dũ|‖L1(Q1/n2 ) + c ‖g̃‖Lθ(γ,q)(Q1/n2 )

≤ c ‖1 + |Dũ|‖L1(C1/n) + c ‖g̃‖Lθ(γ,q)(C1/n)

≤ c ‖1 + |Dũ|‖
L

1,
θ−γ
γ (C1/n)

+ c ‖g̃‖Lθ(γ,q)(C1/n)

≤ c ‖1 + |Dũ|‖
L

1,
θ−γ
γ (C9/10)

+ c ‖g̃‖Lθ(γ,q)(C1).

At this stage we scale back to C% and find

‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(C%/n4 ) ≤ c(n,L, ν, γ, q) Ψ(C%)%(N−θ) θ−γθγ , (6.39)

where we have defined

Ψ(C%) := ‖1 + |Du|‖
L

1,
θ−γ
γ (C9%/10)

+ ‖g‖Lθ(γ,q)(C%)

for every choice of C% ⊂ ΩT . For a general parabolic cylinder CR ⊂ ΩT we conclude
the proof by means of a covering argument. Let C% ⊂ CR/2 be a parabolic cylinder not
necessary concentric to CR. If Cn4% ⊂ CR/2 then applying (6.39) we have

%(θ−N) θ−γθγ ‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(C%) ≤ c Ψ(Cn4%) ≤ c Ψ(CR/2).

On the other hand, if Cn4% 6⊂ CR/2 we cover C% with a finite number of parabolic cylinders
Ci of radius %/(8n4) and center in C%. Note, that the total number of these cylinders is



NEW GRADIENT ESTIMATES FOR PARABOLIC EQUATIONS 31

bounded by a constant m(n) independently on the radius %. Moreover, for each i we have
n4Ci ⊂ C3R/4. Therefore, (3.10) and (6.39) imply

%(θ−N) θ−γθγ ‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(C%) ≤ c(n, q)

∑
i

%(θ−N) θ−γθγ ‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(Ci)

≤ c(n,L, ν, γ, q)
∑
i

Ψ(n4Ci) ≤ c mΨ(C3R/4).

Together the last two inequalities (recall definition (3.3)) imply that

‖Du‖Lθ( θγ
θ−γ ,

θq
θ−γ )(CR/2) ≤ c(n,L, ν, γ, q) Ψ(C3R/4)

= c
[
‖1 + |Du|‖

L
1,
θ−γ
γ (C27R/40)

+ ‖g‖Lθ(γ,q)(C3R/4)

]
.

(6.40)

It remains to estimate the first term on the right-hand side of (6.40). For this we proceed
by applying (6.35), i.e. Proposition 6.3 (note that the conditions imposed in (1.7), i.e.
1 < γ ≤ 2θ

θ+2 and 2 < θ ≤ N , yield 1 < γ < θ
2 so that the hypothesis 2γ ≤ θ from

Proposition 6.3 is fulfilled) with σ := 27R/40 and % := R and conclude that

‖1 + |Du|‖
L

1,
θ−γ
γ (C27R/40)

≤ c R
θ−γ
γ −N‖1 + |Du|‖L1(CR) + c‖g‖Lθ(γ,q)(CR),

and inserting this into (6.40) yields

‖Du‖Lθ( θγ
θ−γ ,

θq
θ−γ )(CR/2) ≤ c R

θ−γ
γ −N‖1 + |Du|‖L1(CR) + c‖g‖Lθ(γ,q)(CR),

where c = c(n,L, ν, γ, q). Recalling that in the preceding estimate we have u ≡ uk, g ≡
gk, where uk is the approximating solution from (2.2) with right-hand side gk ∈ L∞(ΩT )
we see that we have established

‖Duk‖Lθ( θγ
θ−γ ,

θq
θ−γ )(CR/2) ≤ c R

θ−γ
γ −N‖1 + |Duk|‖L1(CR) + c‖gk‖Lθ(γ,q)(CR) ,

with a constant c = c(n,L, ν, γ, q) independent of k. Since the right-hand side gk ∈
L∞(ΩT ) of the approximating problems is constructed in such a way that it satisfies |gk| ≤
|g|we have ‖gk‖Lθ(γ,q)(CR) ≤ ‖g‖Lθ(γ,q)(CR) (see (2.3)). Therefore the preceding estimate
can be replaced by

‖Duk‖Lθ( θγ
θ−γ ,

θq
θ−γ )(CR/2) ≤ c R

θ−γ
γ −N‖1 + |Duk|‖L1(CR) + c‖g‖Lθ(γ,q)(CR),

(6.41)

and this is exactly the estimate for the approximating solutions we were looking for.

Step 6: Approximation and conclusion. The proof of (6.2) and therefore the one of Theo-
rem 6.1 follows by the use of the lower semi-continuity of the Lorentz-Morrey-norm with
respect to a.e. convergence. In fact, the approximating solutions uk converge as k → ∞
to the solution u in L1(−T, 0;W 1,1

0 (Ω)) and a.e. on ΩT (see Section 2.1). Therefore, we
can pass to the limit k → ∞ in (6.41) using the lower semi-continuity of the Lorentz-
Morrey-norms from Section 3.2. This finishes the proof of Theorem 6.1 and therefore also
of Theorem 1.1. �

Proof of Theorem 1.4. We first recall that γ = 2θ
θ+2 is equivalent to θγ

θ−γ = 2. Since θ ≥ 2

we have 2θ
θ+2 ≤

θ
2 <

θ
2−α/2 . Therefore the assumption 2θ

θ+2 < γ yields the existence of γ0

such that
2θ

θ + 2
< γ0 ≤ min

{
γ,

θ

2− α/2

}
and d := 2χ− θγ0

θ − γ0
≥ χ− 1, (6.42)
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where χ = χ(n,L, ν) > 1 is the higher integrability exponent from Theorem 5.5 and
α = α(n,L, ν) ∈ (0, 1

2 ] is the Hölder exponent from the same Theorem. Using Hölder’s
inequality we easily obtain the following embedding for parabolic Morrey spaces:

‖g‖Lγ0,θ(CR) ≤ c(n)R
θ(γ−γ0)
γγ0 ‖g‖Lγ,θ(CR) (6.43)

for any parabolic cylinder CR ⊂ ΩT . With these preliminaries we proceed along the lines
of the proof of Theorem 6.1 taking into account the following changes: We replace γ by
γ0 and choose q = γ0. Then everything can be carried out, since (6.23) holds with d
defined in (6.42). Moreover, from the definition of γ0 we see that γ0(2 − α

2 ) ≤ θ, so
that (6.37) is applicable with γ0 instead of γ (see Remark 6.4). On the other hand we
can also apply Theorem 4.13 in this setting with p = γ0 and β = 1 as in (6.32), since
βp = γ0 ≤ θ

2−α/2 < θ by (6.42). Having arrived at this stage we let

h :=
θγ0

θ − γ0
,

and note that by (6.42) we have h > 2. Then (1.9) follows from (6.1) specialized to
γ = q = γ0, and the quantitative estimate (1.10) follows from (6.2) and (6.43) for radii
R ≤ 1 as follows:

‖Du‖Lh,θ(CR/2) ≤ c R
θ−γ0
γ0
−N‖1 + |Du|‖L1(CR) + c‖g‖Lγ0,θ(CR)

≤ c R
θ−γ0
γ0
−N‖1 + |Du|‖L1(CR) + c R

θ(γ−γ0)
γγ0 ‖g‖Lγ,θ(CR)

≤ c R θ
h−N‖1 + |Du|‖L1(CR) + c ‖g‖Lγ,θ(CR).

This completes the proof of Theorem 1.4. �

6.2. Borderline estimates. Here we consider the cases that g ∈ L logL(ΩT ), resp. g ∈
L logLθ(ΩT ). We start with the case g ∈ L1,θ(ΩT ) ∩ L logL(ΩT ) and the

Proof of Theorem 1.2. We proceed as in the proof of Theorem 6.1 taking γ = 1; we note
that the proof works with this choice up to (6.29), i.e.∫ ∞

0

[
λ

θγ
θ−γ µ1(λ)

] τ(θ−γ)
θγ dλ

λ
≤ cτ2λτ0 |Q0|

τ(θ−γ)
θγ + cτ2

∫ ∞
0

[
λ

θγ
θ−γ µ2(λ)

] τ(θ−γ)
θγ dλ

λ
.

Taking τ = θ
θ−1 and recalling that γ = 1 the preceding inequality turns into the following

analogue of (6.30):∫
Q0

|Du|
θ
θ−1 dz ≤

(
c2λ0

) θ
θ−1 |Q0|+ c

θ
θ−1

2

∫
Q0

|M∗1 (g)|
θ
θ−1 dz.

In order to bound the integral appearing on the right-hand side of the preceding inequality
we argue as in the proof of Theorem 6.1 (the paragraph before (6.32)) passing to the outer
parabolic cylinder C and then applying Theorem 4.12 for the choice β = 1 and s = 2
instead of Theorem 4.13. Proceeding in this way we have

‖M∗1 (g)‖
θ
θ−1

L
θ
θ−1 (Q0)

≤ c
θ
θ−1 |C| ‖g‖

1
θ−1

L1,θ(2C)‖g‖L logL(C)

≤ c
θ
θ−1 |n2Q0| ‖g‖

1
θ−1

L1,θ(n2Q0)
‖g‖L logL(n2Q0)

≤ c
θ
θ−1 |Q0| ‖g‖

1
θ−1

L1,θ(n2Q0)
‖g‖L logL(n2Q0),
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where c = c(n,L, ν) ≥ 1. Inserting this in the second last inequality and recalling the
definition of λ0 from (6.19) we find(∫

Q0

|Du|
θ
θ−1 dz

) θ−1
θ

≤
[(
c2λ0

) θ
θ−1 + (c2c)

θ
θ−1 ‖g‖

1
θ−1

L1,θ(n2Q0)
‖g‖L logL(n2Q0)

] θ−1
θ

≤ c
[
λ0 + ‖g‖

1
θ

L1,θ(n2Q0)
‖g‖

θ−1
θ

L logL(n2Q0)

]
≤ c

∫
n2Q0

(1 + |Du|) dz + c ‖g‖
1
θ

L1,θ(n2Q0)
‖g‖

θ−1
θ

L logL(n2Q0), (6.44)

with a constant c = c(n,L, ν). Apart from the fact that the preceding estimate (6.44) holds
for the approximating solutions u = uk on the concentric parabolic cylinders Q0, n2Q0,
having in mind (3.6), it has exactly the structure of (1.8) from Theorem 1.2. Therefore,
all assertions of Theorem 1.2 follow by a standard covering argument combined with the
usual approximation argument. �

Theorem 6.5. Assume that (1.2) and g ∈ L logLθ(ΩT ) with 2 ≤ θ ≤ N hold. Then the
solution u ∈ L1(−T, 0;W 1,1

0 (ΩT )) to (1.1) satisfies

Du ∈ L
θ
θ−1 ,θ

loc (ΩT ,Rn).

Moreover, the local quantitative estimate

‖Du‖
L

θ
θ−1

,θ
(CR/2)

≤ c Rθ−1−N‖1 + |Du|‖L1(CR) + ‖g‖L logLθ(CR)

holds for every parabolic cylinder CR ⊂ ΩT , with a constant c = c(n,L, ν).

Proof. Since g ∈ L logLθ(ΩT ) we have g ∈ L1,θ(ΩT ) ∩ L logL(ΩT ). Therefore, the
arguments from the proof of Theorem 1.2 apply and we initially end up with (6.44) from
above. At this stage we go on using the strategy from the proof of Theorem 6.1, Step 5, and
scale everything back to C1. Using the thereby introduced notation, in particular passing
to inner and outer parabolic cylinders, we obtain for the re-scaled function ũ the following
estimate:

‖Dũ‖
L

θ
θ−1 (C1/n4 )

≤ c ‖1 + |Dũ|‖L1(Q1/n2 ) + c ‖g̃‖
1
θ

L1,θ(Q1/n2 )
‖g̃‖

θ−1
θ

L logL(Q1/n2 )

≤ c ‖1 + |Dũ|‖L1(C9/10) + c ‖g̃‖
1
θ

L1,θ(C1)
‖g̃‖

θ−1
θ

L logL(C1)

≤ c ‖1 + |Dũ|‖L1,θ−1(C9/10) + c ‖g̃‖
1
θ

L1,θ(C1)
‖g̃‖

θ−1
θ

L logL(C1)

≤ c ‖1 + |Dũ|‖L1,θ−1(C9/10) + c ‖g̃‖L logLθ(C1) ,

where c = c(n,L, ν). Here we have used the simple fact that ‖g̃‖L1,θ(C1) . ‖g̃‖L logLθ(C1)

in the last line. Scaling back to C% we have

‖Du‖
L

θ
θ−1 (C%/n4 )

≤ c(n,L, ν) Ψ(C%)%(N−θ) θ−1
θ ,

where this time we have defined

Ψ(C%) := ‖1 + |Du|‖L1,θ−1(C9%/10) + ‖g‖L logLθ(C%).

Having arrived at this stage we can use the covering argument from the proof of Theorem
6.1, Step 5; more precisely, the argument leading us to (6.40) now yields

‖Du‖
L

θ
θ−1

,θ
(CR/2)

≤ c(n,L, ν) Ψ(C3R/4)

= c
[
‖1 + |Du|‖L1,θ−1(C27R/40) + ‖g‖L logLθ(CR)

]
, (6.45)
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whenever CR ⊂ ΩT is a parabolic cylinder. Now, as observed in Remark 6.4 Proposition
6.3 works also when γ = 1 and g ∈ L1,θ(ΩT ). Therefore, we apply (6.37) with σ :=
27R/40 and % := R in order to bound ‖1 + |Du|‖L1,θ−1(C27R/40). This leads us to the
estimate

‖1 + |Du|‖L1,θ−1(C27R/40) ≤ c
[
Rθ−1−N‖1 + |Du|‖L1(CR) + ‖g‖L1,θ(CR)

]
≤ c

[
Rθ−1−N‖1 + |Du|‖L1(CR) + ‖g‖L logLθ(CR)

]
,

where we have used once again the trivial bound ‖g̃‖L1,θ(C1) . ‖g̃‖L logLθ(C1) in the
second line. Using the preceding inequality in (6.45) we finally arrive at

‖Du‖
L

θ
θ−1

,θ
(CR/2)

≤ c
[
Rθ−1−N‖1 + |Du|‖L1(CR) + ‖g‖L logLθ(CR)

]
, (6.46)

with a constant c = c(n,L, ν). Note that in the preceding inequality we have u ≡ uk,
where uk are the approximating solutions from (2.2) with right-hand side gk ∈ L∞(ΩT )
satisfying |gk| ≤ |g|. From the definition of the L logLθ-norm we easily have that
‖gk‖L logLθ(ΩT ) ≤ ‖g‖L logLθ(ΩT ), so that (6.46) turns into

‖Duk‖
L

θ
θ−1

,θ
(CR/2)

≤ c
[
Rθ−1−N‖1 + |Duk|‖L1(CR) + ‖g‖L logLθ(CR)

]
,

where again c = c(n,L, ν). This is the desired estimate for the approximating solutions
we were looking for and the final result follows again by passing to the limit k →∞ in the
right-hand side and the lower-semicontinuity on the left-hand side. �

6.3. Further estimates in parabolic Lorentz spaces and a borderline case.

Theorem 6.6. Assume that (1.2) and g ∈ L(γ, q)(ΩT ) with 1 < γ ≤ 2N
N+2 and 0 < q ≤ ∞

hold. Then the solution u ∈ L1(−T, 0;W 1,1
0 (ΩT )) to (1.1) satisfies

|Du| ∈ L
( Nγ

N − γ
, q
)

locally in ΩT .

Moreover, the local quantitative estimate

‖Du‖L( Nγ
N−γ ,q)(CR/2) ≤ c R

N−γ
γ −N‖1 + |Du|‖L1(CR) + ‖g‖L(γ,q)(CR) (6.47)

holds for every parabolic cylinder CR ⊂ ΩT , with a constant c = c(n,L, ν, γ, q).

Proof. Once again we refer to the proof of Theorem 6.1. We start with (6.30) with the
choices τ = q and θ = N and obtain

‖Du‖L( Nγ
N−γ ,q)(Q0) ≤ cλ0|Q0|

N−γ
Nγ + c‖M∗1 (g)‖L( Nγ

N−γ ,q)(Q0), (6.48)

with λ0 from (6.19). The second term appearing on the right-hand side of (6.48) is treated
via Theorem 4.2 (again switching to outer and inner cylinders)

‖M∗1 (g)‖L( Nγ
N−βγ ,q)(Q0) ≤ c ‖g‖L(γ,q)(n2Q0).

Combining this with (6.48) and recalling the definition (6.19) of λ0 yields the following
analogue of (6.33):

‖Du‖L( Nγ
N−γ ,q)(Q0) ≤ c

(∫
n2Q0

(1 + |Du|) dz
)
|Q0|

N−γ
Nγ + c‖g‖L(γ,q)(n2Q0).

Modulo a standard covering argument and the additivity of quasi-norms from Remark 3.3
the preceding inequality is essentially equivalent to (6.47). The conclusion of the Theorem
then follows by approximation. �
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6.4. Parabolic equations with more regular coefficients. In this section we consider
parabolic equations where the vector field a satisfies either the structure assumptions (1.12)
to (1.14) – the VMO-case – or (1.11) – the case of a continuous vector-field. In these cases
we can weaken the assumption (1.7). As we will see below, we can assume that

1 < γ < θ ≤ N (6.49)

holds. The reason for this comes from the fact that the corresponding solutions to homo-
geneous Cauchy-Dirichlet problems satisfy reverse Hölder-type inequalities for arbitrarily
large integrability exponents; see Theorem 5.7.

Theorem 6.7. Let u ∈ L1(−T, 0;L1(Ω)) be the solution to (1.1) where either the structure
conditions (1.12) to (1.14) or (1.11) are in force. Moreover, assume g ∈ Lθ(γ, q)(ΩT ) with
γ, θ as in (6.49) and 0 < q ≤ ∞. Then

|Du| ∈ Lθ
(
θγ
θ−γ ,

θq
θ−γ

)
locally in ΩT .

Furthermore, we have the local estimate

‖Du‖Lθ( θγ
θ−γ ,

θq
θ−γ )(CR/2)c R

θ−γ
γ −N‖1 + |Du|‖L1(CR) + c‖g‖Lθ(γ,q)(CR),

for any parabolic cylinder CR ⊂ ΩT , where the constant c depends only on n, L, ν, θ, γ,
q.

Since the ideas in the proof of Theorem 6.7 are very close to the ones of Theorem 6.1 we
confine ourselves to sketch the necessary modifications. We deal with the approximating
solutions u ≡ uk introduced in Section 2.1, where g ≡ gk ∈ L∞(ΩT ). Keeping in mind
the notation introduced in the proof of Theorem 6.1 we must replace Lemma 6.2 by

Lemma 6.8. Let u(= uk) ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2
0 (Ω)) be a weak so-

lution to (5.1) where the assumptions (1.2) are in force and g ∈ L∞(ΩT ). Then, for
every choice of χ0, S > 1 there exist constants ε ∈ (0, 1) and A > 1 depending on
n,L, ν, ω(·), S and χ0 such that if λ > 1 and Q a dyadic sub-cylinder of Q0 such that if∣∣Q∩{z ∈ Q0 : M∗(1 + |Du|)(z) > ASλ and M∗1 (g) ≤ ελ

}∣∣ > |Q|
S2χ0

, (6.50)

then the predecessor Q̃ of Q satisfies

Q̃ ⊂
{
z ∈ Q0 : M∗(1 + |Du|)(z) > λ

}
.

Proof. Due to the fact that we are dealing with parabolic equations with more regular
vector-fields we can use the better higher integrability result from Theorem 5.7 instead
of the ones from Theorem 5.5. Again we shall prove the assertion by a contradiction
argument. We proceed as in the proof of Lemma 6.2 until (6.10). Having arrived at this
stage we observe that the hypothesis of Theorem 5.7 are fulfilled for the solution v of the
homogeneous Cauchy-Dirichlet problem (6.8) (see (5.12)) on C. Therefore, we have the
local higher integrability (5.14) of Dv on 2Q ⊂ 3Q ⊂ C. This means that for any given
χ0 > 1 there exist a constant c = c(n,L, ν, ω(·), χ0) such that the estimate(∫

2Q
(1 + |Dv|)2χ0 dz

) 1
2χ0

≤ c
∫

3Q
(1 + |Dv|) dz,

holds. Exactly as in the proof of Lemma 6.2 this leads us to∫
2Q

(1 + |Dv|)2χ0 dz ≤ c(n,L, ν, ω(·), χ0) λ2χ0 .
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We proceed further using again the restricted maximal operatorM∗∗ := M∗0,2Q on 2Q and
obtain the following analogue of (6.13):∣∣{z ∈ Q : M∗∗(1 + |Du|)(z) > ASλ}

∣∣
≤
[c1(n,L, ν, ω(·), χ0)

(AS)2χ0
+
c2(n, ν)ε

AS

]
|Q|. (6.51)

Now we perform the following choices of A and ε: first we choose A = A(n,L, ν,
ω(·), χ0) > 1 such that

A = 4 · 10N
[
1 + c1

]
=⇒ c1

(AS)2χ0
≤ 1

4S2χ0
, (6.52)

and then choose ε = ε(n, ν, S, χ0) ∈ (0, 1) accordingly to

ε =
1

4S2χ0−1[1 + c2]
=⇒ c2ε

AS
≤ 1

4S2χ0
.

These choices in (6.51) yield the following analogue of (6.16):∣∣{z ∈ Q : M∗∗(1 + |Du|)(z) > ASλ}
∣∣ < S−2χ0 |Q|.

Having arrived at this stage we can argue exactly as in the proof of Proposition 6.2 after
(6.16) to derive the analogue of (6.18), i.e.∣∣{z ∈ Q : M∗(1 + |Du|)(z) > ASλ}

∣∣ < S−2χ0 |Q|,

which contradicts (6.50). This proves the assertion of the proposition. �

To proceed with the proof of Theorem 6.7 we choose λ0 accordingly to

λ0 := 2c0(n)n2NS2χ0

∫
n2Q0

(1 + |Du|) dz.

With the arguments form the proof of Theorem 6.1, Step 3, replacing χ by χ0 everywhere
we arrive at the following proper version of (6.22) (the only change here is the replacement
of χ by χ0):

(AS)
(k+1)θγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)k+1λ0

)
≤ A

θγ
θ−γ S

θγ
θ−γ−2χ0(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

)
+
(
AS/ε

) θγ
θ−γ (AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

)
.

Since γ < θ by assumption, the quantity θγ
θ−γ can be arbitrarily large. Nevertheless, since

χ0 > 0 is at our disposal, we can choose χ0 large enough to have

d := 2χ0 −
θγ

θ − γ
> 0, (6.53)

a relation playing the same role as (6.23) before. Note, that here we really need the possibil-
ity of taking χ0 large. This fixes χ0 = χ0(θ, γ) (for example we could choose χ0 = θγ

θ−γ ),
d = d(θ, γ) and also A = A(n,L, ν, ω(·), θ, γ) by (6.52). Having fixed χ0 we choose

S :=
[
4A

θγ
θ−γ

] 1
d

, (6.54)

where A has been determined in (6.52). Then S admits the same dependencies as A, i.e.
S = S(n,L, ν, ω(·), θ, γ), and therefore we can write AS/ε =: c∗(n,L, ν, ω(·), θ, γ). In
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view of (6.53) and (6.54) we find that the analogue of (6.25), i.e.

(AS)
(k+1)θγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)k+1λ0

)
≤ 1

4
(AS)

kθγ
θ−γ λ

θγ
θ−γ
0 µ1

(
(AS)kλ0

)
+
(
c∗
2

) θγ
θ−γ (AS)

kθγ
θ−γ
(
ελ0

) θγ
θ−γ µ2

(
(AS)kελ0

)
, (6.55)

holds for every k ∈ N0 with a constant c∗. The preceding estimate for the level sets allows
us to proceed as in the proof of Theorem 6.1 after (6.25); i.e. we first sum up (6.55) upon
k ∈ N and then re-absorb the intermediate sum in the left-hand side. Arguing exactly as in
(6.25)–(6.33) we arrive at the following analogue of (6.33):

‖Du‖L( θγ
θ−γ ,

θq
θ−γ )(Q0) ≤ c

(∫
n2Q0

(1 + |Du|) dz
)
|Q0|

θ−γ
θγ + c‖g‖Lθ(γ,q)(n2Q0),

(6.56)

where now c = c(n,L, ν, θ, γ, q). In the next step we have to replace Proposition 6.3 by an
appropriate version valid under the weaker assumption 1 < γ < θ ≤ N . This is achieved
in the following

Proposition 6.9. Let u(= uk) ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2
0 (Ω)) be a weak

solution to (5.1) where either the structure conditions (1.12) to (1.14) or the condition
(1.11) are in force and g ∈ Lθ(γ, q)(ΩT ) with 1 < γ ≤ θ ≤ N . Then, for every pair of
concentric parabolic cylinders Cσ ⊂ C% ⊂ ΩT there holds

‖1 + |Du|‖
L

1,
θ−γ
γ (Cσ)

≤ c (%− σ)
θ−γ
γ −N‖1 + |Du|‖L1(C%) + c‖g‖Lθ(γ,q)(C%),

where c = c(n,L, ν, γ, θ, q).

Proof. We first note that by Proposition 6.3 we only have to treat the case γ ∈ (θ/2, θ).
Let z0 be a point in Cσ and C(z0, R) a parabolic cylinder with 0 < R ≤ dpar(z0, ∂C%),
i.e. C(z0, R) ⊂ C%. Moreover, let v ∈ C0([t0 − R2, t0 + R2];L2(BR(x0)) ∩ L2(t0 −
R2, t0 +R2;W 1,2(BR(x0)) be the unique solution to the Cauchy-Dirichlet problem (6.8)
in C(z0, R). Then, using (5.13) for the choice q = 1 and with α ∈ (0, 1) to be fixed later
we infer by the argument from the beginning of the proof of Proposition 6.3 that∫

C(z0,r)
(1 + |Du|) dz

≤ c
( r
R

)N−1+α
∫
C(z0,R)

(1 + |Du|) dz + c

∫
C(z0,R)

|Du−Dv| dz,

holds for any 0 < r ≤ R where c = c(n,L, ν, α). Using (5.4) from Lemma 5.3 the
previous inequality leads us to∫

C(z0,r)
(1 + |Du|) dz

≤ c
( r
R

)N−1+α
∫
C(z0,R)

(1 + |Du|) dz + c ‖g‖Lθ(γ,q)(C%)R
N−1+(1− θ−γγ ) ,

where c = c(n,L, ν, q, α). At this stage we remark that γ ∈ (θ/2, θ) yields 1 − θ−γ
γ ∈

(0, 1). Therefore we choose α ∈ (0, 1) such that 1 > α > 1 − θ−γ
γ > 0. Note, that here

we really need the possibility of taking α close to 1 at our disposal. For example we could
choose α := 1 − θ−γ

2γ , fixing α = α(θ, γ). Now, we can finish the proof exactly as in the
proof of Proposition 6.3 by the application of Lemma 2.4. �
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Having arrived at this stage the local Lorentz integrability of Du from (6.56) can be
turned into the desired Lorentz-Morrey space estimate via the scaling argument along the
lines of the proof of Theorem 6.1, Step 5, combined with the intermediate Morrey space
information for Du from Proposition 6.9.

7. INTEGRABILITY OF u

Theorem 7.1. Under the assumptions (1.2), g ∈ Lθ(γ, q)(ΩT ) with 0 < q ≤ ∞ and

1 < γ <
θ

2
and 2 < θ ≤ N, (7.1)

the solution u ∈ L1(−T, 0,W 1,1
0 (Ω)) to (1.1) is such that

u ∈ Lθ
( θγ

θ − 2γ
,

θq

θ − 2γ

)
locally in ΩT .

Moreover, the following quantitative estimate

‖u‖
Lθ
(

θγ
θ−2γ ,

θq
θ−2γ

)
(CR/2)

≤ c R
θ−2γ
γ −N‖|u|+R‖L1(CR) + c ‖g‖Lθ(γ,q)(CR) (7.2)

holds for any CR ⊂ ΩT , where c = c(n,L, ν, γ, θ, q).

Theorem 7.2. Under the assumptions (1.2) and being g ∈ L(γ, q)(ΩT ) with 1 < γ < N
2 ,

0 < q ≤ ∞, then the solution u ∈ L1(−T, 0,W 1,1
0 (Ω)) to (1.1) is such that

u ∈ L
( Nγ

N − 2γ
, q
)

locally in ΩT .

Moreover, the following quantitative estimate

‖u‖
L
(

Nγ
N−2γ ,q

)
(CR/2)

≤ c R
N−2γ
γ −N‖|u|+R‖L1(CR) + c ‖g‖L(γ,q)(CR)

holds for any CR ⊂ ΩT , where c = c(n,L, ν, γ, q).

Since the proofs of Theorems 7.1, 7.2 are very close to the one of Theorem 6.1 we
confine ourselves to outline the necessary modifications only. Again, we deal with the
approximating solutions u ≡ uk defined in Section 2.1, abbreviating again g ≡ gk. Now,
we go back to the proof of Theorem 6.1 and keep in mind the notation introduced thereby.
Then, Lemma 6.2 must be replaced by

Lemma 7.3. Let u(= uk) ∈ C0([−T, 0];L2(Ω)) ∩ L2(−T, 0;W 1,2
0 (Ω)) be a weak so-

lution to (5.1) where the assumptions (1.2) are in force and g ∈ L∞(ΩT ). Then, there
exists an absolute constant A = A(n,L, ν) > 1 such that: For every S > 1 and χ0 > 1
there exists a constant ε = ε(n,L, ν, S, χ0) ∈ (0, 1) such that if λ > 1 and Q a dyadic
sub-cylinder of Q0 such that∣∣Q∩ {z ∈ Q0 : M∗(1 + |u|)(z) > ASλ and M∗2 (g) ≤ ελ

}∣∣ > |Q|
S2χ0

, (7.3)

then the predecessor Q̃ of Q satisfies

Q̃ ⊂
{
z ∈ Q0 : M∗(1 + |u|)(z) > λ

}
.

The main changes in the statement of Lemma 7.3 are essentially the replacement of
M∗1 (g) = M∗1,n2Q0

(g) by M∗2 (g) = M∗2,n2Q0
(g) and the introduction of the parameter

χ0 > 1 which is at our disposal, i.e. χ0 can be picked large at will, while the quantity χ
in Lemma 6.2 was fixed. In principle, the proof of Lemma 7.3 follows the one of Lemma
6.2 replacing M∗(1 + |Du|), M∗1 (g) by M∗(1 + |u|), M∗2 (g). But for convenience of the
reader we describe the main differences. Since we are dealing with M∗2 (g), (6.7) has to be
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replaced by M∗2 (g)(z̄) ≤ ελ for some z̄ ∈ Q, yielding in turn the following analogue of
(6.9):

|C| 2N
∫
C
|g| dz ≤ c(n)ελ.

Therefore, by (5.3) we have∫
3Q
|u− v| dz ≤ c(n, ν)|C| 2N

∫
C
|g| dz ≤ c(n, ν)ελ.

At this stage the proof proceeds exactly along the lines of Lemma 6.2, starting with the
preceding inequality instead of (6.9). This leads us to the following analogue of (6.12):∫

2Q
(1 + |v|)2χ0 dz ≤ c(n,L, ν) λ2χ0 .

Here we have taken into account that the side-length of the cylinders is bounded by 1. Now,
as in the proof of Lemma 6.2 we compare the level set of M∗∗(1 + |u|) in the cylinder Q
with the one of M∗∗(1 + |v|), where M∗∗ := M∗0,2Q. This procedure implies that∣∣{z ∈ Q : M∗∗(1 + |u|)(z) > ASλ}

∣∣ ≤ [c1(n,L, ν)

(AS)2χ0
+
c2(n, ν)ε

AS

]
|Q|.

The choices ofA and ε are performed exactly as in (6.14), (6.15), but everywhere replacing
χ by χ0. This fixes A = A(n,L, ν) > 1 and ε = ε(n,L, ν, S, χ0) ∈ (0, 1) and leads first
to the analogue of (6.16), and secondly with the arguments from the proof of Lemma 6.2
to the following analogue of (6.18):∣∣{z ∈ Q : M∗(1 + |u|)(z) > ASλ}

∣∣ < S−2χ0 |Q| ,
contradicting (7.3). This completes the proof of Lemma 7.3.

We now proceed with the proof of Theorem 7.1 along the lines of Theorem 6.1, starting
at Step 2. We initially choose

λ0 := 2c0(n)n2NS2χ0

∫
n2Q0

(1 + |u|) dz , (7.4)

and define µ1(·), µ2(·) by

µ1(H) :=
∣∣{z ∈ Q0 : M∗(1 + |u|)(z) > H

}∣∣,
and

µ2(H) :=
∣∣{z ∈ Q0 : M∗2 (g)(z) > H

}∣∣,
respectively, for H ≥ 0. At this stage we start replacing θ

θ−γ by θ
θ−2γ everywhere. Ap-

plying Lemma 7.3 and Proposition 2.1 at levels H = (AS)k+1λ0, (AS)kλ0 for k =
0, 1, 2, . . . we arrive at the following analogue of (6.22):

(AS)
(k+1)θγ
θ−2γ λ

θγ
θ−2γ

0 µ1

(
(AS)k+1λ0

)
≤ A

θγ
θ−2γ S

θγ
θ−2γ−2χ0(AS)

kθγ
θ−2γ λ

θγ
θ−2γ

0 µ1

(
(AS)kλ0

)
+
(
AS/ε

) θγ
θ−2γ (AS)

kθγ
θ−2γ

(
ελ0

) θγ
θ−2γ µ2

(
(AS)kελ0

)
. (7.5)

We observe that this time we can choose χ0 large enough to have 2χ0 − θγ
θ−2γ > 0; see

(6.23) for the corresponding relation in the proof of Theorem 6.1. Note also that at this
stage we need the possibility for choosing χ0 large at will, since 2γ can be arbitrarily close
θ making θγ

θ−2γ large. This motivates the following definitions

d := 2χ0 −
θγ

θ − 2γ
> 0, S :=

[
4A

θγ
θ−2γ

] 1
d

,

so that A
θγ
θ−2γ S

θγ
θ−2γ−2χ0 ≤ 1

4 . Using this in (7.5) allows us to proceed as in the proof of
Theorem 6.1 after (6.25); i.e. we first sum up (7.5) upon k ∈ N and then re-absorb the
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intermediate sum in the left-hand side. Arguing exactly as in (6.25)–(6.30) we arrive at the
following analogue of (6.30):

‖u‖L( θγ
θ−2γ ,τ)(Q0) ≤ cλ0|Q0|

θ−2γ
θγ + c‖M∗2 (g)‖L( θγ

θ−2γ ,τ)(Q0), (7.6)

which holds for every τ > 0, and where c = c(n,L, ν, γ, θ, τ). At this stage we take
τ = θq

θ−2γ in (7.6) and apply Theorem 4.13 with β = 2 and p = γ (note that βp = 2γ < θ

by assumption (7.1)); this leads us to

‖M∗2 (g)‖L( θγ
θ−2γ ,

θq
θ−2γ )(Q0) ≤ c ‖g‖Lθ(γ,q)(n2Q0).

It is worth to remark that this is exactly the point where we use the fact that M∗2 admits
a higher regularizing effect then M∗1 . Combining the preceding inequality with (7.6) and
recalling the definition of λ0 from (7.4) we obtain

‖u‖L( θγ
θ−2γ ,

θq
θ−2γ )(Q0) ≤ c

(∫
n2Q0

(1 + |u|) dz
)
|Q0|

θ−2γ
θγ + c ‖g‖Lθ(γ,q)(n2Q0).

Having arrived at this stage the local Lorentz integrability of u can be turned into the
desired Lorentz-Morrey space estimate via a scaling argument along the lines of the proof
of Theorem 6.1, Step 5, combined with the intermediate Morrey space information for u
from Remark 6.4, (6.38). Consider C% ⊂ ΩT . Scaling back to C1 as in Remark 5.1 and
arguing along the lines of Step 5 we find

‖ũ‖L( θγ
θ−2γ ,

θq
θ−2γ )(C1/n4 ) ≤ c ‖1 + |ũ|‖

L
1,
θ−2γ
γ (C9/10)

+ c ‖g̃‖Lθ(γ,q)(C1) .

Scaling back to C% via Lemma 3.2, we find for every parabolic cylinder C% ⊂ ΩT that

‖u‖L( θγ
θ−2γ ,

θq
θ−2γ )(C%/n4 ) ≤ c Ψ(C%) %(N−θ) θ−2γ

θγ ,

where this time we have set

Ψ(C%) := ‖%+ |u|‖
L

1,
θ−2γ
γ (C9%/10)

+ ‖g‖Lθ(γ,q)(C%).

Having arrived at this stage we follow exactly the proof of Theorem 6.1, Step 5, after
(6.39). The only difference occurs when using the intermediate Morrey-space estimate
(6.38) instead of (6.35). The desired estimate (7.2) then follows by the approximation
argument from the proof of Theorem 6.1, Step 6.

The proof of Theorem 7.2 follows similarly to the one of Theorem 6.6, taking into
account Theorem 4.2 for the choice β = 2.

Theorem 7.4. Under the assumption (1.2) and g ∈ Mθ/2,θ(ΩT ) with 2 < θ ≤ N the
solution u ∈ L1(−T, 0;W 1,1

0 (Ω)) to (1.1) belongs to BMOloc(ΩT ). Moreover, there
exists a constant c = c(n,L, ν, θ) such that for any parabolic cylinder CR ⊂ ΩT holds

[u]BMO(CR/4) ≤ c R1−N‖1 + |Du|‖L1(CR) + c ‖g‖Mθ/2,θ(ΩT )(CR)

Proof. Once again we consider the approximating solutions u ≡ uk ∈ C0([−T, 0];L2(Ω))∩
L2(−T, 0;W 1,2

0 (Ω)) to (2.2). From [11, Lemma 4.3] we recall that the following Poincaré-
type inequality holds∫

C%/2
|u− (u)C%/2 | dz ≤ c %

∫
C%
|Du| dz + c %2

∫
C%
|g| dz,

for any parabolic cylinder C% ⊂ ΩT , with a constant c = c(n,L, ν). Therefore, we have

[u]BMO(CR/4) = sup
C%⊂CR/4

∫
C%
|u− (u)C% | dz

≤ c
[
‖Du‖L1,1(CR/2) + sup

C%⊂CR/2
%2

∫
C%
|g| dz

]
.
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The first term appearing on the right-hand side of the preceding inequality can be estimated
with Proposition 6.3 for the choice γ = θ/2 and q = ∞ (note that θ−θ/2θ/2 = 1); we infer
that

‖Du‖L1,1(CR/2) ≤ c R1−N‖1 + |Du|‖L1(CR) + c ‖g‖Mθ/2,θ(CR),

where c = c(n,L, ν, θ). On the other hand, the second term can be treated by use of
Lemma 4.1 as follows:

%2

∫
C%
|g| dz ≤ θ/2

θ/2− 1
|C%|−2/θ%2‖g‖Mθ/2(C%)

≤ θ/2

θ/2− 1
[2α(n)]−2/θ%

θ−N
θ/2 ‖g‖Mθ/2(C%)

= c(n, θ)%
θ−N
θ/2 ‖g‖Mθ/2(C%).

Therefore, we have

sup
C%⊂CR/2

%2

∫
C%
|g| dz ≤ c(n, θ)‖g‖Mθ/2,θ(CR/2).

Combining the preceding estimates leads us to

[u]BMO(CR/4) ≤ c R1−N‖1 + |Du|‖L1(CR) + c ‖g‖Mθ/2,θ(CR),

where c = c(n,L, ν, θ) we note that the constant c blows up, i.e. c → ∞, when θ ↓ 2.
Again the desired result follows by approximation. �
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[2] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems. Duke Math. J., 136:285–320,
2007.

[3] R.A. Adams, Sobolev Spaces. Academic Press, New York, 1978.
[4] D.R. Adams, A note on Riesz potentials. Duke Math. J., 42:765-778, 1975.
[5] D.R. Adams, J. L. Lewis, On Morrey-Besov inequalities. Studia Math., 74:169–182, 1982.
[6] A.A. Arkhipova, On a partial regularity up to the boundary of weak solutions to quasilinear parabolic sys-

tems with quadratic growth. Zap. Nauchn. Semin. POMI, 249(5):20–39, 1997.
[7] P. Baroni, J. Habermann, Calderón-Zygmund estimates for parabolic measure data equations. J. Differential

Equations, 252 (1):412–447, 2012.
[8] L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case. Manuscr.

Math., 123(4):453–491, 2007.
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