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Abstract

The aim of the present paper is to bridge the gap between the Bakry—Emery and
the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower
Ricci curvature bounds.

We start from a strongly local Dirichlet form & admitting a Carré du champ T in
a Polish measure space (X, m) and a canonical distance dg that induces the original
topology of X. We first characterize the distinguished class of Riemannian Enerqgy
measure spaces, where € coincides with the Cheeger energy induced by de and where
every function f with T'(f) < 1 admits a continuous representative.

In such a class we show that if € satisfies a suitable weak form of the Bakry—Emery
curvature dimension condition BE(K, 00) then the metric measure space (X,d, m)
satisfies the Riemannian Ricci curvature bound RCD(K, 0o0) according to [5], thus
showing the equivalence of the two notions.

Two applications are then proved: the tensorization property for Riemannian
Energy spaces satisfying the Bakry-Emery condition BE(K, N) (and thus the corre-
sponding one for RCD(K, o0) spaces without assuming nonbranching) and the sta-
bility of BE(K, N) with respect to Sturm-Gromov-Hausdorff convergence.
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1 Introduction

The aim of the present paper is to bridge the gap between the Bakry—Emery and the
Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci
curvature bounds.

The Bakry-Emery condition BE(K, N): Dirichlet forms and I'-calculus

The first approach is based on the functional I'-calculus developed by BAKRY-EMERY since
8], see [7, 9].

A possible starting point is a local and symmetric Dirichlet form € on the measure space
(X,B,m) with dense domain D(&) C L*(X,m), and the associated Markov semigroup
(P)i>o on L*(X,m) with generator Ag (general references are [18, 29, 12]). In a suitable
algebra A of functions dense in the domain D(Ag) of Ag one introduces the Carré du

champ
D(f.9) = 5 (BeFo) — fAeg — 9ef),  frg €A,

related to € by the local representation formula

E(f,9) = /Xf‘(f, g) dm for every f,g € A. (1.1)

One also assumes that A¢ is a diffusion operator, i.e., with the notation F(f) = F(f, f),
it holds

Ned(f) = ¢ (f)Aef +¢"(f)L(f) forevery f€A, ¢€ChR).

The model example is provided by a smooth Riemannian manifold (M¢, g) endowed with
the measure m := e~V Vol, for a given smooth potential V : M? — R. In this case one



typically chooses A = C°(M?) and
E(f,9) :/ (Vf.Vg)gdm,  sothat T(f) = [V and Ar = Ay — (VV. Vg (1.2)
Md

where A; is the usual Laplace-Beltrami operator on M. This fundamental example shows
that I' carries the metric information of M¢, since one can recover the Riemannian distance
dg in M¢ by the formula

dg(z,y) = sup {¢(y) —¢(z): Y e A, T(y) < 1} for every x,y € M®. (1.3)
A further iteration yields the I'y operator, defined by

Mo(f) = AeT(f) — 2T (f, Aef)  feA (1.4)

In the above example Bochner’s formula yields
Ta(f) = [[Hessg f||2 + (Ricg + Hessg V) (Vf, V f), (1.5)

and one obtains the fundamental inequality

Lo(f) > KI‘(f) + %(Agf)Q for every f € A, (1.6)

if the quadratic form associated to the tensor Ricg + HessgV" is bounded from below by
Kg+ ﬁVV ® VV for some K € R and N > d. When V = 0 it is possible to show that
(M? g) has Ricci curvature bounded from below by K iff (1.6) is satisfied for N > d.

It is then natural to use (1.6) as a definition of curvature-dimension bounds even in the
abstract setting: it is the so-called Bakry—Emery curvature-dimension condition, that we
denote here by BE(K, N).

One of the most remarkable applications of (1.6) is provided by pointwise gradient
estimates for the Markov semigroup (see e.g. [7, 9] for relevant and deep applications).

Considering here only the case N = oo, (1.6) yields
F(Ptf) < e 2Kt Pt(F(f)) for every f € A, (1.7)

a property that is essentially equivalent to BE(K, 00) (we refer to [43] for other formulations
of BE(K, N) for Riemannian manifolds, see also the next Section 2.2) and involves only
first order “differential” operators.

Up to the choice of an appropriate functional setting (in particular the algebra A and
the distance d associated to I' as in (1.3) play a crucial role), I'-calculus and curvature-
dimension inequalities provide a very powerful tool to establish many functional inequalities
and geometric properties, often in sharp form.



Lower Ricci curvature bounds by optimal transport: the CD(K, c0) condition

A completely different approach to lower Ricci bounds has been recently proposed by
STURM [39, 40] and LOTT-VILLANI [28]: here the abstract setting is provided by metric
measure spaces (X, d, m), where (X,d) is a separable, complete and length metric space
and m is a nonnegative o-finite Borel measure. Just for simplicity, in this Introduction
we also assume m(X) < oo, but the theory covers the case of a measure satisfying the
exponential growth condition m(B,(z)) < M exp(cr?) for some constants M, ¢ > 0.

The Lott-Sturm-Villani theory (LSV in the following) is based on the notion of displace-
ment interpolation [30], a powerful tool of optimal transportation that allows to extend the
notion of geodesic interpolation from the state space X to the space of Borel probability
measures P,(X) with finite quadratic moment. Considering here only the case N = oo, a
metric measure space (X,d, m) satisfies the LSV lower Ricci curvature bound CD(K, co)
if the relative entropy functional

Enty (@) := /Xflogfdm, = fm, (1.8)

is displacement K-convex in the Wasserstein space (P2(X), Ws) (see [42, 2] and the next
§3.1). This definition is consistent with the Riemannian case [41] and thus equivalent to
BE(K, 00) in such a smooth framework.

Differently from the Bakry—Emery’s approach, the LSV theory does not originally in-
volve energy functionals or Markov semigroups but it is intimately connected to the metric
d (through the notion of displacement interpolation) and to the measure m (through the
entropy functional (1.8)). Besides many useful geometric and functional applications of this
notion [27, 34, 19], one of its strongest features is its stability under measured Gromov-
Hausdorff convergence [17], also in the weaker transport-formulation proposed by STURM
[39].

Starting from the CD(K, 0o) assumption, one can then construct an evolution semi-
group (H;)¢;>p on the convex subset of &2(X) given by probability measures with finite
entropy [19]: it is the metric gradient flow of the entropy functional in 9% (X) [2]. Since
also Finsler geometries (as in the flat case of R? endowed with a non-euclidean norm) can
satisfy the CD(K,00) condition, one cannot hope in such a general setting that H, are
linear operators. Still, (H¢)¢>o can be extended to a continuous semigroup of contractions
in L?(X, m) (and in any L?(X, m)-space), which can also be characterized as the L?( X, m)-
gradient flow (P);>¢ of a convex and 2-homogeneous functional, the Cheeger energy [14],
(3, §4.1, Rem. 4.7]

Ch(f) = inf{lnginf%/ IDf,)?dm: f, € Lipy(X), f.— fin L2(X,m)} (1.9)
o X
(here |Df,| is the local Lipschitz constant, or slope, of the Lipschitz function f, see §3.1).
The remarkable identification between (H;):>o and (P;);>0 has been firstly proposed and
proved in Euclidean spaces by a seminal paper of JORDAN-KINDERLEHER-OTTO [23] and
then extended to Riemannian manifolds [16, 42|, Hilbert spaces [6], Finsler spaces [31],
Alexandrov spaces [21] and eventually to CD(K, co) metric measure spaces [3].
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Spaces with Riemannian Ricci curvature bounded from below: the RCD(K, o)
condition

Having the energy functional (1.9) and the contraction semigroup (P):>o at our disposal,
it is then natural to investigate when LSV spaces satisfy BE(K, 00). In order to attack this
question, one has of course to clarify when the Cheeger energy (1.9) is a Dirichlet (thus
quadratic) form on L?(X, m) (or, equivalently, when (P,);>¢ is a semigroup of linear oper-
ators) and when this property is also stable under Sturm-Gromov-Hausdorff convergence.

One of the most important results of [5] (see also [1] for general o-finite measures) is that
CD(K, o) spaces with a quadratic Cheeger energy can be equivalently characterized as
those metric measure spaces where there exists the Wasserstein gradient flow (H;);>¢ of the
entropy functional (1.8) in the EVIx-sense. This condition means that for all initial data
€ Po(X) with supp u C supp m there exists a locally Lipschitz curve ¢ — H;u € P5(X)
satisfying the Evolution Variational Inequality

2 H K
%Wg( QtM, v) + §W22(Ht,uu v) + Enty(Hip) < Enty(v)  for ace. t € (0,00) (1.10)

for all v € P5(X) with Enty,(v) < co.

Such a condition is denoted by RCD(K, 00) and it is stronger than CD(K, c0), since
the existence of an EVIx flow solving (1.10) yields both the geodesic K-convexity of the
entropy functional Enty, [15] and the linearity of (H;):;>o [5, Thm. 5.1], but it is still stable
under Sturm-Gromov-Hausdorff convergence. When it is satisfied, the metric measure
space (X,d,m) is called in [5] a space with Riemannian Ricci curvature bounded from
below by K.

In RCD(K, o0o)-spaces the Cheeger energy is associated to a strongly local Dirichlet form
Ecn(f, f) :== 2Ch(f) admitting a Carré du champ I'. With the calculus tools developed in
[5], it can be proved that T" has a further equivalent representation F( f ) = |Df|? in terms
of the minimal weak gradient |Df|, of f. The latter is the element of minimal L?*-norm
among all the possible weak limits of |Df,| in the definition (1.9).

It follows that Ecn can also be expressed by Ecn(f, f) = [y |Df]2 dm and the set of
Lipschitz functions f with [, [Df|*dm < oo is strongly dense in the domain of Ecy. In
fact, the Dirichlet form Ec¢p, enjoys a further upper-regularity property, common to every
Cheeger energy [4, §8.3]:

(a) for every f € D(E) there exist f,, € D(E€)NCy(X) and upper semicontinuous bounded
functions g, : X — R such that

F(fn) < g fn— fin L*(X,m), limsup/Xgde < &S, f)- (1.11)

n—o0

From RCD(K, ) to BE(K, c0)

The previous properties of the Cheeger energy show that the investigation of Bakry—Emery
curvature bounds makes perfectly sense in RCD(K, 00) spaces. One of the main results



of [5] connecting these two approaches shows in fact that RCD(K, 0o) yields BE(K, c0) in
the gradient formulation (1.7) for every f € D(Ecp).

In fact, an even more refined result holds [5, Thm. 6.2], since it is possible to control
the slope of P, f in terms of the minimal weak gradient of f

IDP,f|> < e P,(IDf|2) whenever f € D(Ech), |Df|w € L™(X,m), (1.12)
an estimate that has two useful geometric-analytic consequences:

(b) d coincides with the intrinsic distance associated to the Dirichlet form E¢p (introduced
in BIROLI-Mosco [10], see also [37, 38] and [36]), namely

d(z,y) = sup {Wy) —(x) 1 € D(Ec) NCy(X), T(¢) < 1} zyeX. (1.13)

(¢) Every function ¢ € D(Ecp) with I'(¢)) < 1 m-a.e. admits a continuous (in fact 1-
Lipschitz) representative 1;

From BE(K, c0) to RCD(K, c0)

In the present paper we provide necessary and sufficient conditions for the validity of the
converse implication, i.e. BE(K,00) = RCD(K, o).

In order to state this result in a precise way, one has first to clarify how the metric
structure should be related to the Dirichlet one. Notice that this problem is much easier
from the point of view of the metric measure setting, since one has the canonical way (1.9)
to construct the Cheeger energy.

Since we tried to avoid any local compactness assumptions on X as well as doubling
or Poincaré conditions on m, we used the previous structural properties (a,b,c) as a guide
to find a reasonable set of assumptions for our theory; notice that they are in any case
necessary conditions to get a RCD(K, 0o) space.

We thus start from a strongly local and symmetric Dirichlet form € on a Polish topo-
logical space (X, 7) endowed with its Borel o-algebra and a finite (for the scope of this
introduction) Borel measure m. In the algebra V., := D(€) N L*(X, m) we consider the
subspace G, of functions f admitting a Carré du champ T'(f) € L*(X,m): they are
characterized by the identity

8(f,fg0)—%8(f2,go):/XF(f)godm for every o € V.. (1.14)

We can therefore introduce the intrinsic distance de as in (b)

de(w,y) = sup {v(y) — V(@) : ¥ € GoNC(X), T(¥) <1} wyeX,  (L15)

and, following the standard approach, we will assume that d¢ is a complete distance on X
and the topology induced by de coincides with 7.

6



In this way we end up with Energy measure spaces (X, 7,m, &) and in this setting we
prove in Theorem 3.12 that € < E¢p, where E¢p is the Cheeger energy associated to de;
moreover, Theorem 3.14 shows that & = E¢, if and only if (a) holds (see [24, §5] for a
similar result in the case of doubling spaces satisfying a local Poincaré condition and for
interesting examples where £y, is not quadratic and € # E¢y,). It is also worth mentioning
(Theorem 3.10) that for this class of spaces (X, d¢) is always a length metric space, a result
previously known in a locally compact framework [38, 36].

The Bakry—Emery condition BE(K, 00) can then be stated in a weak integral form
(strongly inspired by [7, 9, 43]) just involving the Markov semigroup (P.):>o (see (2.55)
of Corollary 2.3 and (2.37), (2.38) for relevant definitions) by asking that the differential
inequality

2
8—2/(Pt_sf)2PSg0dm > 4K£/(Pt_sf)2Psgodm, 0<s<t, (1.16)
88 X 83 X

is fulfilled for any f € L?(X,m) and any nonnegative ¢ € L*NL>°(X, m). Notice that in the
case K = 0 (1.16) is equivalent to the convexity in (0,¢) of the map s — [, (P—f)*Ps dm.

If we also assume that BE(K, 00) holds, it turns out that (¢) is in fact equivalent
to a weak-Feller condition on the semigroup (P;);>0, namely P, maps Lip,(X) in Cy(X).
Moreover, (c¢) implies the upper-regularity (a) of € and the fact that every f € D(E) N
L*>*(X,m) admits a Carré du champ I" satisfying (1.14).

Independently of BE(K, 00), when properties (a) and (¢) are satisfied, we call (X, 7,m, €)
a Riemannian Energy measure space, since these space seem appropriate non-smooth ver-
sions of Riemannian manifolds. It is also worth mentioning that in this class of spaces
BE(K, 00) is equivalent to an (exponential) contraction property for the semigroup (H:):>o
with respect to the Wasserstein distance W; (see Corollary 3.18), in analogy with [25].

Our main equivalence Theorem 4.17 shows that a BE(K, 0co) Riemannian Energy mea-
sure space satisfies the RCD(K, 00) condition: thus, in view of the converse implication
proved in [5], BE(K, co) is essentially equivalent to RCD(K, 00). A more precise formula-
tion of our result, in the simplified case when the measure m is finite, is:

Theorem 1.1 (Main result). Let (X,7) be a Polish space and let m be a finite Borel
measure in X. Let & : L*(X,m) — [0,00] be a strongly local, symmetric Dirichlet form
generating a mass preserving Markov semigroup (P,)i>o in L?(X, m), let dg be the intrinsic
distance defined by (1.15) and assume that:

(i) de is a complete distance on X inducing the topology T and any function f € Gy
with T(f) < 1 admits a continuous representative;

(ii) the Bakry-Emery BE(K, 00) condition (1.16) is fulfilled by (P)o.
Then (X,de, m) is a RCD(K, 00) space.

) We believe that this equivalence result, between the “Eulerian” formalism of the Bakry-
Emery BE(K,00) theory and the “Lagrangian” formalism of the CD(K,c0) theory, is
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conceptually important and that it could be a first step for a better understanding of
curvature conditions in metric measure spaces. Also, this equivalence is technically useful.
Indeed, in the last section of this paper we prove the tensorization of BE(K, N) spaces.
Then, in the case N = oo, we can use the implication from BE(K,00) to RCD(K, c0)
to read this property in terms of tensorization of RCD(K, 00) spaces: this was previously
known, see [5], only under an apriori nonbranching assumption on the bases spaces (notice
that the CD(K, N) theory, even with N = oo, suffers at this moment the same limitation).
On the other hand, we use the implication from RCD(K, 00) to BE(K, o0), (1.17) below and
the strong stability properties which follow by the EVIy formulation to provide stability
of the BE(K, N) condition under a very weak convergence, the Sturm-Gromov-Hausdorff
convergence.

Plan of the paper

Section 2 collects notation and preliminary results on Dirichlet forms, Markov semigroups
and functional I'-calculus, following the presentation of [12], which avoids any topological
assumption. A particular attention is devoted to various formulations of the BE(K, N)
condition: they are discussed in §2.2, trying to present an intrinsic approach that does not
rely on the introduction of a distinguished algebra of functions A and extra assumptions on
the Dirichlet form &, besides locality. In its weak formulation (see (2.55) of Corollary 2.3
and (2.37), (2.38))
2
1o | PePipdm = S [ Bppipdm 5 [ (AR fipdm, (117

which is well suited to study stability issues, BE(K, N) does not even need a densely
defined Carré du Champ I, because only the semigroup (P.):>o is involved.

Section 3 is devoted to study the interaction between energy and metric structures.
A few metric concepts are recalled in §3.1, whereas §3.2 shows how to construct a dual
semigroup (H);>o in the space of probability measures &?(X) under suitable Lipschitz es-
timates on (P);>o. By using refined properties of the Hopf-Lax semigroup, we also extend
some of the duality results proved by KUWADA [25] to general complete and separable
metric measure spaces, avoiding any doubling or Poincaré condition.
§3.3 presents a careful analysis of the intrinsic distance de (1.15) associated to a Dirichlet
form and of Energy measure structures (X, 7,m, ). We will thoroughly discuss the rela-
tions between the Dirichlet form € and the Cheeger energy Ch induced by a distance d,
possibly different from the intrinsic distance d¢ and we will obtain a precise characteri-
zation of the distinguished case when d = d¢ and € = 2Ch: here conditions (a,b) play a
crucial role.
A further investigation when BE(K, 00) is also assumed is carried out in §3.4, leading to
the class of Riemannian Energy measure spaces.

Section 4 contains the proof of the main equivalence Theorem 1.1 between BE(K, 00)
and RCD(K,00). Apart the basic estimates of §4.1, the argument is split in two main
steps: §4.2 proves a first L logL regularization estimate for the semigroup (H;);>o, starting
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from arbitrary measures in % (X) (here we follow the approach of [43]). §4.3 contains
the crucial action estimates to prove the EVIx inequality (1.10). Even if the strategy of
the proof has been partly inspired by the geometric heuristics discussed in [15] (where the
Eulerian approach of [32] to contractivity of gradient flows has been extended to cover also
convexity and evolutions in the EVIg sense) this part is completely new and it uses in a
subtle way all the refined technical issues discussed in the previous sections of the paper.

In the last Section 5 we discuss the above mentioned applications of the equivalence
between BE(K, co) and RCD(K, 00).

Acknowledgement. We would like to thank Michel Ledoux for useful discussions on various
aspects of the theory of Dirichlet forms and I'-calculus.

2 Dirichlet forms, Markov semigroups, I'-calculus

2.1 Dirichlet forms and I'-calculus

Let (X,B) be a measurable space, let m : B — [0, 00] o-additive and let LP(X,m) be
the Lebesgue spaces (for notational simplicity we omit the dependence on B). Possibly
enlarging B and extending m we assume that B is m-complete. In the next sections 3,
4 we will typically consider the case when B is the m-completion of the Borel o-algebra
generated by a Polish topology 7 on X.

In all this paper we will assume that

& L*(X,m) — [0, 0] is a strongly local, symmetric Dirichlet form (2.1)
generating a Markov semigroup (P,);>o in L?(X, m); '

Let us briefly recall the precise meaning of this statement.
A symmetric Dirichlet form & is a L?*(X, m)-lower semicontinuous quadratic form
satisfying the Markov property

E(nof) <E(f) for every normal contraction n: R — R, (2.2)

i.e. a 1-Lipschitz map satisfying 7(0) = 0. We refer to [12, 18] for equivalent formulations
of (2.2). We also define

Vi=D(€)={f e L}(X,m): &(f) < oo}, Vi :i=D(E)NL®X,m). (2.3)

We also assume that V is dense in L*(X,m).
We still denote by £(-,-) : V. — R the associated continuous and symmetric bilinear
form

1
ef.9) =7 (ES+9)—€(f —9))- (2.4)
We will assume strong locality of &, namely

E(f,9) =0  whenever f, g € Vand (f +a)g =0 m-a.e. in X for some a € R. (2.5)
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It is possible to prove that V., is an algebra with respect to pointwise multiplication, so
that for every f € V,, the linear form on V

1
Lifie] = &(f fo) = 5E(f% ), ¢ € Vo, (2.6)
is well defined and for every normal contraction n : R — R it satisfies [12, Prop. 2.3.3]

0<Tno fio] <T[fi¢] < |lelle E(f) for every f,o € Vo, ¢ > 0. (2.7)

(2.7) shows that for every nonnegative ¢ € V, f — T[f;¢] is a quadratic form in V
which satisfies the Markov property and can be extended by continuity to V. We call G
the set of functions f € V such that the linear form ¢ +— T'[f; ] can be represented by a
an absolutely continuous measure w.r.t. m with density F( f ) € Ll (X, m):

feG < I'f;¢] :/ F(f)(pdm for every ¢ € V. (2.8)

X

Since € is strongly local, [12, Thm. 6.1.1] yields the representation formula

E(f, )= /}(F(f) dm for every f € G. (2.9)

It is not difficult to check that G is a closed vector subspace of V, the restriction of € to
G is still a strongly local Dirichlet form admitting the Carré du champ T defined by
(2.8) (see e.g. [12, Def. 4.1.2]): T" is a quadratic continuous map defined in G with values
in L (X, m). We will see in the next Section 2.2 that if € satisfies the BE(K, c0) condition
then G coincides with V and € admits a functional I'-calculus on the whole space V.

Since we are going to use ['-calculus techniques, we use the I' notation also for the
symmetric, bilinear and continuous map

O(fg) = (T +9) T —9)) €L'(Xm)  fgeG (210

which, thanks to (2.9), represents the bilinear form € by the formula

E(f,9) :/Xf‘(f,g) dm for every f,g € G. (2.11)

Because of Markovianity and locality F(‘, ) satisfies the chain rule [12, Cor. 7.1.2]

C(n(f),9) =1 (/)L (f.g) forevery f, g€ G, n e Lip(R), n(0)=0, (2.12)

and the Leibnitz rule:

F(fg,h) = fF(g, h) —|—gF(f, h) for every f, g, h € G := G N L>(X,m). (2.13)
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Notice that by [12, Theorem 7.1.1] (2.12) is well defined since for every Lebesgue measurable
set N C R (as the set where ¢ is not differentiable)

ZLYN)=0 = TI(f)=0 mae onf'(N) (2.14)

Among the most useful consequences of (2.14) and (2.12) that we will repeatedly use in
the sequel, we recall that for every f,g € G

I'(f—g)=0 m-ae on{f=g} (2.15)

and the following identities hold m-a.e.:

~JT(f) on{f <y}, _Jr(f) on{f =g},
r(f/\g)—{r(g) on (1> gl F(fvg)_{r(g) on {f < g). (2.16)

We conclude this section by stating the following lower semicontinuity result:

fa, F€G, fu—=f, \/T(fa) = Gin L*(X,m) = TI(f)<G® mae inX. (2.17)

It can be easily proved by using Mazur’s Lemma and the m-a.e. convexity of f > 4 /F( f)
namely

\/F 1—tf+tg 1—t\/F +t\/F(g) m-a.e. in X, for all t € [0, 1],

which follows since I' is quadratic and nonnegative.

The Markov semigroup and its generator

The Dirichlet form € induces a densely defined selfadjoint operator Ae : D(Ag) CV —
L?(X,m) defined by the integration by parts formula E(f, g) = — [, g A fdm forall g € V.
When G = V the operator A¢ is of “diffusion” type, since it satisfies the following
chain rule for every € C*R) with n(0) = 0 and bounded first and second derivatives
(see [12, Corollary 6.1.4] and the next (2.26)): if f € D(Ag) with I'(f) € L?(X,m) then
n(f) € D(Ag) with
Aen(f) =n'(FAef +n"(HT(f)- (2.18)
The heat flow P, associated to & is well defined starting from any initial condition
f € L*(X,m). Recall that in this framework the heat flow (P,);>¢ is an analytic Markov
semigroup and f; = P, f can be characterized as the unique C! map f : (0,00) — L*(X, m),
with values in D(A¢), satisfying

d
g ft = Aefe for t € (0,00),

T2
lgfgl fi=1rf in L*(X, m).

(2.19)
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Because of this, A¢ can equivalently be characterized in terms of the strong convergence
(Pf—f)/t = Aefin L*(X,m) as t | 0.

One useful consequence of the Markov property is the LP contraction of (P;);>¢ from
LP N L? to LP N L%, Because of the density of LP N L? in LP when p € [1, 00), this allows to
extend uniquely P, to a strongly continuous semigroup of linear contractions in LP(X, m),
p € [1,00), for which we retain the same notation. Furthermore, (P;);>¢ is sub-Markovian
(cf. [12, Prop. 3.2.1]), since it preserves one-sided essential bounds, namely f < C' (resp.
f>C) mae. in X for some C' >0 (resp. C' < 0) implies P.f < C (resp. P.f > C) m-a.e.
in X for all ¢t > 0.

We will mainly be concerned with the mass-preserving case i.e.

/ Ptfdm:/ fdm for every f € L'(X, m), (2.20)
X X

a property which is equivalent to 1 € D(€) when m(X) < oco. In the next session (see
Theorem 3.14) we will discuss a metric framework, which will imply (2.20).

The semigroup (P):>¢ can also be extended by duality to a weakly*-continuous semi-
group of contractions in L>(X, m), so that

/Ptfgpdm:/ fPedm forevery f € L®(X,m), p € L'(X, m). (2.21)
X X

It is easy to show that if f, € L? N L®(X, m) weakly* converge to f in L>(X, m) then
P.f, = P.fin L®(X,m).

The generator of the semigroup in L'(X,m)

Sometimes it will also be useful to consider the generator Ag) : D(A,(sl)) C LY(X,m) —
LY(X,m) of (P)so in L'(X,m) [33, §1.1]:

1
fe D(Ag)), Afgl)f =g lgjglz(ﬂf — f) =g strongly in L'(X,m). (2.22)
Thanks to (2.22) it is easy to check that

fen Ay = PRfrebDAY), AVRf=RAVf forallt>0, (2.23)
and, when (2.20) holds,

/ AV fdm=0 for every f € D(AM). (2.24)
X

The operator Ag) is m-accretive and coincides with the smallest closed extension of Ag to
LY(X,m): [12, Prop. 2.4.2]

g=207f

{an c D<AE) N Ll(X,m) with g, = A¢fy € Ll(Xam) : (2 25)

fu—f, gn— g strongly in L'(X, m).

12



Whenever f € D(Ag)) N L*(X,m) and A((gl)f € L*(X,m) one can recover f € D(A¢) by
(2.23), the integral formula P,f — f = fg PTAg)f dr and the contraction property of (P:):>o
in every LP(X,m), thus obtaining

fe DAY N2 X m), AVfFe L2 (X,m) = feD(Ay), Asf=ANf  (2.20)

Semigroup mollification

A useful tool to prove the above formula is given by the mollified semigroup: we fix a
nonnegative kernel k € C2°(0, 00) with / k(r)dr =1, (2.27)
0

and for every f € LP(X,m), p € [1,00], we set

hef = 1/oO P.fr(r/e)dr, &>0, (2.28)
0

£
where the integral should be intended in the Bochner sense whenever p < oo and by taking
the duality with arbitrary ¢ € L'(X, m) when p = .

Since A¢ is the generator of (P,)i>o in L?(X,m) it is not difficult to check [33, Proof of
Thm. 2.7] that if f € L* N LP(X, m) for some p € [1, 00| then

Ae(h®f) = é/ooo P.fr'(r/e)dr € L* N LP(X,m). (2.29)

The same holds for AL if f € L}(X, m):

1
=]

AV (e f) = /Ooo P.fr'(r/e)dr € L'(X,m). (2.30)

2.2 On the functional Bakry-Emery condition

We will collect in this section various equivalent characterizations of the Bakry—Emery
condition BE(K, N) given in (1.6) for the I'y operator operator (1.4). We have been strongly
inspired by [7, 9, 43]: even if the essential estimates are well known, here we will take a
particular care in establishing all the results in a weak form, under the minimal regularity
assumptions on the functions involved. We consider here the case of finite dimension as
well, despite the fact that the next sections 3 and 4 will be essentially confined to the case
N = oo. Applications of BE(K, N) with N < oo will be considered in the last Section 5.
Let us denote by T': (V,.)*> — R the multilinear map

Dol = 3 (E.09) + £ f0) —€(70.9)).  Tlfigl =TU figh (231)
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Recalling (2.7), one can easily prove the uniform continuity property

Voo 2fn = f, on = @ strongly in V| sup ||onllec <00 = I lim T[f,;0.] € R, (2.32)
n n—oo

which allows to extend I' to a real multilinear map defined in V x V x V,,, for which we
retain the same notation. The extension I' satisfies

L[f,g;0] = /XF(f,g)godm if f,geG. (2.33)
We also set )
Lolfie] = STlfi Ae] = Tlf, Acfivl. (f.0) € D(T) (2.34)
where
D(Ts) = {(f, ©) € D(Ae) X D(Ag) : Aef €V, ¢, Aegp € L=(X, m)} (2.35)

As for (2.33), we have

Tolfisl = [ (500) Aep ~T(f.Aef)i) dm i () € DT2). f,Acf €G. (230

Since (P,);>o is an analytic semigroup in L?(X,m), for a given f € L*(X,m) and ¢ €

L*N L>=(X, m), we can consider the functions

Af:l(s) = 5 /X (P—.f)’ Pupdm >0, 5€(0,d,  (237)
AALFrl(s) = %/X (AePof)’ Pupdm £50, s€(0,8),  (2.38)
Bilf; ¢(s) i= TP f: oy £>0,5€[0,0),  (239)

and, whenever Agp € L2 N L°°(X, m),

Cilfi0l(s) = Tao[R—s f; Pyl t>0, sel0,1). (2.40)
Notice that whenever A¢ f € L?(X, m)

ALLfil(s) = AAe f5 ] (s) t>0, s€l0t) (2.41)
Lemma 2.1. For every f € L*(X,m),p € L* N L>®(X,m) and every t > 0, we have:

(i) the function s — A[f; ¢](s) belongs to C°([0,t]) N C((0,t));

(ii) the function s — A2[f;¢](s) belongs to CL([0,t));
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(iii) the function s — By[f; ](s) belongs to C°((0,t)) N L>®(0,t) and

0
AL el() = BFiells) for cvery s € (0,1) (2.42)
Equation (2.42) and the regularity of A and B extend to s =t if f € V and to s =0

if o € V.
(iv) If ¢ is nonnegative, s — A[f;©](s) and s — AR[f;0](s) are nondecreasing.
(v) If Agp € L> N L=(X,m) then C belongs to C°([0,t)), B belongs to C1([0,t)), and

0

—Blf:¢l(s) = 2Cfi6l(s) for every s € [0,1). (2.43)

In particular A € C%([0,1)).

Proof. The continuity of A is easy to check, since s — (P,_,f)? is strongly continuous with
values in L'(X,m) and s — P,p is weakly* continuous in L°°(X, m). Analogously, the
continuity of B follows from the fact that s — P,_,f is a continuous curve in V whenever
s € [0,¢) thanks to the regularizing effect of the heat flow and (2.32). The continuity of C
follows by a similar argument, recalling the definition (2.34) and the fact that the curves
s AeP_sf and s — A¢Psp are continuous with values in V in the interval [0, ).

In order to prove (2.42) and (2.43), let us first assume that ¢ € D(Ag) with Agp €
L>*(X,m) and f € L? N L>*(X, m). Since

}llig(l) Pt_(SJrh)J; Pisf = —A¢P_sf strongly in V for s € [0,1),

Ps - Ps .
lim W = APy weakly” in L°(X,m) for s € [0, 1),
n

we easily get

0

1
SR = [ (= Poaf AePuf gt 5 (Peaf)*AcPip) dm

= 8<Pt—sf7 Pt—sf Psgp) - %8(('315_3.]0)2, Ps(p) = Bt[f; 30](8)7

by the very definition (2.6) of T, since P,_, f is essentially bounded and therefore (P,_,f)? €
Voo A similar computation yields (2.43).

In order to extend the validity of (2.42) and (2.43) to general f € L*(X,m) we can
approximate f by truncation setting f, ;== —nV f An, n € N, and we pass to the limit in
the integrated form

Alfns l(s2) = Al fus @l(s1) = /52 Bi[fn; l(s)ds  for every 0 <1 <55 <,

51
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observing that P,_,f, converge strongly to P,_,f in V as n — oo for every s € [0,t), so
that (2.32) yields the pointwise convergence of the integrands in the previous identity. A
similar argument holds for (2.43), since A¢P, f,, converges strongly to A¢P,f in V.
Eventually we extend (2.42) to arbitrary ¢ € L?* N L>(X, m) by approximating ¢ with
hep given by (2.28), (2.27). It is not difficult to check that Ps(h°¢) — Psp in V as e | 0
with uniform L> bound if s > 0 (and also when s = 0 if p € V). O

Lemma 2.2. Let us consider functions a € C1([0,1)), g € C°([0,1)) and a parameter v > 0.
The following properties are equivalent:

(i) a, g satisfy the differential inequality
" >2Ka +vg in2'(0,1), (2.44)
and pointwise in [0,t), whenever a € C2([0,1)).

(i) a’,g satisfy the differential inequality

L (ke (9)) > veHog(s) in 2'(0.1) (2.45)

(iii) For every 0 < sy < so < t and every test function ( € C?([sy, s9]) we have

_ [a (¢ + 2Kg)E > U/SQngs. (2.46)

S1

/ YA + 2K ds + [a’ g] "

S1 51

(iv) For every 0 < s; < so we have

52
e 2= 3 (55) > a(s1) + v / e g (s) ds. (247)

S1

The proof is straightforward; we only notice that (2.46) holds also for s; = 0 since a €
cl([0,1)).

The inequality (2.46) has two useful consequences, that we make explicit in terms of
the functions Ik and Ik y defined by

t eKt_l t eKt_Kt_l
IK(t) = / eKS ds = K s IKyQ(t) = / IK(S) ds = T, (248)
0 0

with the obvious definition for K = 0: Iy(t) = t, Iya(t) = t?/2.
Choosing s; =0, ss = 7 and

e2K(T—s) -1
C(s) :==Iag (T — 5) = ——r so that (' + 2K( =—-1, ((r)=0, (2.49)
we obtain
L (7r)a'(0) + V/T Lig(t —s)g(s)ds < a(r) —a(0) for every 7 € [0,t]. (2.50)
0
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Choosing

1— e—2Ks
C(s) =T 9k(s) = g sothat (' +2K¢=1, ¢(0)=0, (2.51)
we obtain
a(t) —a(0) + V/T I_5k(s)g(s)ds < a'(1)I_ak () for every 7 € [0,1). (2.52)
0

Corollary 2.3. Let & be a Dirichlet form in L*(X,m) as in (2.1), and let K € R and
v > 0. The following conditions are equivalent:

(i) For every (f,¢) € D(I'y), with ¢ > 0, we have
Laffi) = KTfigl 4 v [ (Aef)pdm (2.53)
be
(ii) For every f € L?(X,m) and every nonnegative ¢ € D(Ag) N L>®(X, m) with Agp €
L>(X,m) we have
Cilfsel(s) = KBlf;0)(s) + 20 A [f50](s)  for every 0 <'s <. (2.54)

(iii) For every f € L*(X,m), every nonnegative ¢ € L* N L>®(X,m), and t > 0

2

DAL Rl() 2 2K DAL A(s) + v R pl(s) i 7(0.1), (2.55)

(or, equivalently, the inequality (2.55) holds pointwise in [0,t) for every nonnegative
o € LPNL>(X,m) with Agp € L> N L>®(X,m).)

(iv) For every f € L*(X,m) and t > 0 we have P.f € G and

IQK(t)F(Ptf) + 2v Lo o(2) (AgPtf)2 < Pt(fQ) — %(F’tf)2 m-a.e. in X. (2.56)

N |

(v) G=YV and for every f € V
%Pt(fz) —%(Ptfﬁ+2v1-2K,z<t>(AePtf)2 < Loxo(®)PT(f) meae in X. (257)

(vi) G is dense in L*(X,m) and for every f € G and t > 0 P.f belongs to G with

T(Pf) + 20T ok (t) (AP f)* < e 2KRI(f) m-ae. in X. (2.58)

If one of these equivalent properties hods, then G =V (i.e. & admits the Carré du Champ
I'inV).
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Proof. The implication (i)=-(ii) is obvious. The converse implication is also true under the
regularity assumption of (i): it is sufficient to pass to the limit in (2.54) as s T ¢ and then
ast ] 0.

(il)=-(iii) by (2.43) when Agp € L? N L*°(X, m); the general case follows by approxi-
mation by the same argument we used in the proof of Lemma 2.1.

(iii)=-(iv): by applying (2.50) (with obvious notation) we get

L ()T[P.f; @] + 2v Lok 2 (1) /X

Ak pdm < 3 [ (R(F) = Rus)?)ipdm

for every nonnegative ¢ € V. Thus setting h := P,(f?) — (P.f)? € L1 (X, m), the linear
functional ¢ on V, defined by ¢(¢) := '[P, f; ¢] satisfies

0</{(p) < / heodm for every p € Vo, ¢ > 0. (2.59)
X
Since V is a lattice of functions satisfying the Stone property ¢ € V., = ¢ A1 € V and
clearly (2.59) yields ¢(¢,) — 0 whenever (¢,,)n>0 C Vi is a sequence of functions pointwise
decreasing to 0, Daniell construction [11, Thm. 7.8.7] and Radon-Nykodim Theorem yields
L[R.f;¢] = [y gpdm for some g € L} (X, m), so that P.f € G and (2.56) holds.

This argument also shows that G is invariant under the action of (P);>o and dense in
L?(X,m). A standard approximation argument yields the density in V (see, e.g. [5, Lemma
4.9]) and therefore G =V (since G is closed in V; see also [12, Prop. 4.1.3]).

Analogously, (iii)=(v) by (2.52) and (iii)=(vi) by (2.47).

Let us now show that (vi)=-(iii). Since G is dense in L*(X,m) and invariant with
respect to (P);>0, we already observed that G = V. Let us now write (2.58) with h > 0
instead of ¢t and with f := P_,v for some 0 < h < s < t. Multiplying by P;_,¢ and
integrating with respect to m, we obtain

Bi[v; ¢l(s — ) + 4v Lo (M)AL[v; 0] (s — h) < e 2" By[v; 9] ().

It is not restrictive to assume Agp € L? N L®(X, m) so that B is of class C! in (0,7). We
subtract B;[v; ¢](s) from both sides of the inequality, we divide by A > 0 and let h | 0
obtaining

%Bt[v; Pl(s) — 2KBy[v; 0](s) > 4v A2 [v; 0] (s)

ie. (2.55).
To show that (iv)=-(iii) we first write (2.56) at t = h > 0 in the form

1 1
ca(h) (K T(Pf) + 20 (AcPuf)”) < SR = 5 (Puf)” = hD(Puf),
obtaining by subtracting hF(Ph f) from both sides of the inequality. Then we choose
f = P_,_pv and we multiply the inequality by P,p, with ¢ € L? N L°°(X, m) nonnegative
and Agp € L? N L°°(X,m). We obtain
Tarca(h) (26 Bulvs 9](s) + 40 AR [v: ¢l(5) ) < Adlus gl (s + ) = Aylus ¢](s) — hByfw; ¢ (s).
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Since A is of class C? and A’ = B, dividing by h? > 0 and passing to the limit as h | 0 a
simple Taylor expansion yields

%a@—;At[v; ©](s) > %(2[( Bi[v; ¢l (s) + 4v AT [u; ‘sz))

A similar argument shows the last implication (v)=>(iii). O

Definition 2.4 (The condition BE(K, N)). Let K € R and v > 0. We say that a
Dirichlet form & in L*(X, m) as in (2.1) satisfies a functional BE(K, N) condition if one of
the equivalent properties in Corollary 2.3 holds with N :=1/v.

Notice that
BE(K,N) = BE(K',N') forevery K'<K, N'> N, (2.60)

in particular BE(K, N) = BE(K, c0).

Remark 2.5 (Carré du Champ in the case N = oo). If a strongly local Dirichlet form &
satisfies BE(K, 00) for some K € R, then it admits a Carré du Champ I"on V, i.e. G =V,
by (v) of Corollary 2.3; moreover the spaces

Vo ={p eV :T(p) e L®(X,m)}, VI2:={peVL, AcpeLl®X,m}. (261

are dense in V: in fact (2.58) shows that they are invariant under the action of (P;);>o and
(2.56) (possibly combined with a further mollification as in (2.28) in the case of V2) shows
that their closure in L*(X,m) contains L? N L>=(X, m).

3 Energy metric measure structures

In this section, besides the standing assumptions we made on €, we shall study the relation
between the measure/energetic structure of X and an additional metric structure. Our
main object will be the canonical distance de associated to the Dirichlet form &, that we
will introduce and study in the next §3.3. Before doing that, we will recall the metric
notions that will be useful in the following. Since many properties will just depend of a
few general compatibility conditions between the metric and the energetic structure, we
will try to enucleate such a conditions and state the related theorems in full generality..

Our first condition just refers to the measure m and a distance d and does not involve
the Dirichlet form &:

Condition (MD: Measure-Distance interaction). d is a distance on X x X such that:
(MD.a) (X,d) is a complete and separable metric space, B coincides with the completion
of the Borel o-algebra of (X, d) with respect to m, and supp(m) = X;

(MD.b) m(B,(z)) < oo for every x € X, r > 0.
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Besides the finiteness condition (MD.b), we will often assume a further exponential
growth condition on the measures of the balls of (X,d), namely that there exist xy €
X, M >0, ¢> 0 such that

m(B,(z0)) < Mexp(cr?) for every r > 0; (MD.exp)

in this case we will collectively refer to the above conditions (MD) and (MD.exp) as
(MD++exp).

3.1 Metric notions

In this section we recall a few basic definitions and results which are related to a metric
measure space (X,d, m) satisfying (MD).

Absolutely continuous curves, Lipschitz functions and slopes

ACP([a,b]; X), 1 < p < o0, is the collection of all the absolutely continuous curves 7 :
la,b] — X with finite p-energy: v € ACP([a, b]; X) if there exists v € LP(a,b) such that

d(v(s),v(t)) < / v(r)dr for every a < s <t <b. (3.1)

The metric velocity of v, defined by

(3.2)

exists for Z1-a.e. r € (a,b), belongs to LP(a,b), and provides the minimal function v
such that (3.1) holds. The length of an absolutely continuous curve «y is then defined by

S 131(r) dr.
(X,d) is a length space if

1
d(xg, 1) = inf {/ |¥|(r)dr : v € AC([0,1}; X), (i) = a:z} for every xg,z; € X. (3.3)
0

We denote by Lip,(X) the space of all Lipschitz and bounded function ¢ : X — R and
by Lip*(X) the subset of functions with Lipschitz constant less than 1. Every Lipschitz
function ¢ is absolutely continuous along any absolutely continuous curve; we say that a
bounded Borel function g : X — [0,00) is an upper gradient of ¢ € Lip,(X) if for any
curve v € AC([a, b]; X') the absolutely continuous map ¢ o 7 satisfies

d

&m(t»' < g O) () for Ll-ace. t € (ah). (3.4)
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Among the upper gradients of a function ¢ € Lip,(X) its slopes and its local Lipschitz
constant play a crucial role: they are defined by

(¢(y) — o()) p(y) — ()
D*pl|(z) := limsup = |D¢|(z) := limsup —L 2 3.5
ID™|(x) nst TR D () nSup e (3.5)

. . p(y) — ¢(2)
D*¢|(x) := limsup ————=, 3.6
ID*p|(x) veoed(y,z) (3.6)
and, whenever (X,d) is a length space
[D*p|(z) = limsup [De|(y),  Lip(e) = sup [Dy(z)| = sup [D*p(z)|.  (3.7)
Yy—T reX reX

In fact, (3.4) written for g := |D¢p| and the length condition (3.3) easily yield

[o(y) — ¢(2)| < d(y,z) sup Dy| ify, z€ B, (x) (3.8)

Bay ()
and provide the inequality |D*¢| < limsup |Dep|(y). The proof of the converse inequality
Yy—x
is trivial and a similar argument shows the last identity in (3.7).

The Hopf-Lax evolution formula

Let us suppose that (X,d) is a metric space; the Hopf-Lax evolution map @; : Cy(X) —
Cp(X), t > 0, is defined by

. d*(y, x)
Quf(w) = inf fly) + —5—- (3.9)
We introduce as in [3, §3] the maps
DT (z,s) := suplimsupd(z, y,), D™ (x,s) := inf liminf d(z, y,), (3.10)

=5
(ya) n un)

where the supremum and the infimum run among minimizing sequences for (3.9). We recall
that DT and D~ are respectively upper and lower semicontinuous, nondecreasing w.r.t. s,
and that D" (z,r) < D7 (z,s) < D"(x,s) whenever 0 < r < s. These properties imply
D~ (z,s) = sup,., D*(z,7). We shall need the inequality

Qs f(z) — Qsf(z) < W(é — %) s > s, (3.11)
as well as the pointwise properties
d* _ (D*(z,s))? DT (z, )
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(these are proved in Proposition 3.3 and Proposition 3.4 of [3]). Since

d*(z,y)

d(y,x) > 2sLip(f) = f(y)+ oy

we immediately find D (x, s) < 2sLip(f).
Since by (3.11) the map s — Q,f(x) is locally Lipschitz in (0, 00), integrating the first
identity of (3.14) in (e,t), ¢ > 0, and then letting € | 0 we get

o) - Q) = [ R ] [ (PR,

0 252 2 tr

> f(z) > Qs f(x),

Combining the above identity with the formula expressing the descending slope (see [2,
Lemma 3.1.5], which holds without coercivity assumptions on f)

D™ f|*(x) = 2lim sup @) = Quf ()

) t ’

we end up with
LDz, tr)\2
IDf(z) > |Df|2(a:):limsup/ (M) dr. (3.13)
tl0 0 tr

When (X, d) is a length space (Q;)s>0 is a semigroup and we have the refined identity [3,
Thm. 3.6]

d+t 1 (D™ (z,9))?
EQSJC@) = —§|Dst|2($) = oa (3.14)
(3.12) and the length property of X yield the a priori bounds
Lip(Q.f) < 2Lip(f),  Lip(Q.f(x)) <2 [Lip(f)]" (3.15)

The Cheeger energy
The Cheeger energy of a function f € L?(X,m) is defined as

Ch(f) = inf{liminf% i IDf,?dm: f, € Lipy(X), f.— fin L2(X,m)}. (3.16)

n—00

If f € L?(X,m) with Ch(f) < oo, then there exists a unique function |Df|, € L*(X, m),
called minimal weak gradient of f, satisfying the two conditions

Lipy(X)NL*(X,m) > f, = f, Dfa] = G in L*(X,m) = [Df|, <G

3.17
cni) = [ sz am. (3.17)

In the next section 3.3 we will also use a further approximation result proved in [4, §8.3]:
for every f € L*(X,m) with Ch(f) < oo

3f, €Lip,(X)NLAX,m):  fo.— f, |D*fu] = |Df|w strongly in L?*(X,m). (3.18)
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Wasserstein distances

The metric structure allows us to introduce the corresponding spaces &?(X) of Borel prob-
ability measures and #,(X) of Borel probability measures with finite p-th moment

/ d?(z, o) dp(z)< 00, o given in X. (3.19)
b

The LP-Wasserstein transport (extended) distance W, on Z(X) is defined by

WP (1, p2) = inf {/

XxX

AP (w1, o) e p € P(X x X), wip = M} (3.20)

where 7 : X x X 3 (x1,29) — z; is the coordinate map and for a Borel measure p €
Z(Y') on a metric space Y and every Borel map r : Y — X the push-forward measure
ryp € P(X) can be characterized by

ryp(B) := u(r~'B) for every Borel set B C X.

In particular, the competing measures p € & (X x X) in (3.20) have marginals p; and po
respectively.
We also introduce a family of bounded distances on (X)) associated to a

continuous, concave and bounded modulus of continuity g : [0, 00) — [0, c0),

with 0 = 5(0) < S(r) for every r > 0. (3:21)

As in (3.20) we set

Wig) (1, pi2) = inf{ Bd(z1,22))dp : p € P(X x X), mjp = ,ul-}; (3.22)

XxX

W) is thus the L'-Wasserstein distance induced by the bounded distance dg(x1,x2) :=
B(d(x1,22)). (P(X),Wg)) is then a complete and separable metric space, whose topology
coincides with the topology of weak convergence of probability measures.

Entropy and RCD(K, ) spaces

In the following we will fix o € X, z > 0, ¢ > 0 such that

f= e Vme P(X),  V(z) = ved(z, o). (3.23)

z

Notice that in the case m(X) < oo we can always take V = ¢ = 0 with z = m(X). When
m(X) = oo, the possibility to choose zo € X, z > 0, ¢ > 0 satisfying (3.23) follows from
(MD.exp) (possibly with a different constant ¢; it is in fact equivalent to (MD.exp)).
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If n: B — [0,00] is o-additive, the relative entropy Ent,(p) of a probability measure
p: B —[0,1] with respect to n is defined by

Jx flog fdn if p = fu;

] (3.24)
+00 otherwise.

Ent,(p) := {

The expression makes sense if n is a probability measure, and thanks to Jensen’s inequality
defines a nonnegative functional. More generally we recall (see [3, Lemma 7.2] for the simple
proof) that, when n = m and (3.23) holds, the formula above makes sense on measures
p = fm € P(X) thanks to the fact that the negative part of flog f is m-integrable.
Precisely, defining m € (X)) as in (3.23) above, the following formula for the change of
reference measure will be useful to estimate the negative part of Enty(p):

Entyn(p) = Enta(p) — /X Vi(x)dp(z) — log 2. (3.25)

Definition 3.1 (RCD(K, o) spaces). Let (X,d,m) be a metric measure space satisfy-
ing (MD+exp) and the length property (3.3). We say that (X,d, m) has Riemannian
curvature bounded from below by K € R if for all p € H5(X) there exists a solution
(Hip)iso € P2(X) of the EVIk-differential inequality starting from p, namely

H,p — p ast | 0 and (denoting by % the upper right derivative)

dt W2(H K
Ew + ?Wg(Htp, v) + Enty(Hip) < Enty(v) for every ¢t € (0,00)  (3.26)

for all v € Z5(X) with Enty(v) < co.

As we already quoted in the Introduction, among the properties of RCD (K, 00) spaces
proved in [5] we recall that the Cheeger energy

1
Ch is quadratic, i.e. Ch(f) = §8Ch(f) for a Dirichlet form Ecp, as in (2.1),
with [Df[2 =T(f) for every f € D(Ch) =V,

(QCh)

(in particular G = V and E¢, admits the Carré du Champ I' in V) and € satisfies the
BE(K, 00) condition. A further crucial property will be recalled in Section 3.3 below, see
Condition (ED) and Remark 3.8.

3.2 The dual semigroup and its contractivity properties

In this section we study the contractivity property of the dual semigroup of (P);>o in the
spaces of Borel probability measures.

Thus € is a strongly local Dirichlet form as in (2.1), (P,);>o satisfies the mass-preserving
property (2.20) and d is a distance on X satisfying condition (M D) (assumption (MD.exp)
is not needed here).

24



We see how, under the mild contractivity property
P.f € Lipy(X) and Lip(P.f) < C(t)Lip(f) for all f € Lip,(X) N L*(X,m), (3.27)

with C' bounded on all intervals [0, T, T > 0, a dual semigroup H; in &?(X) can be defined,
satisfying the contractivity property (3.31) below w.r.t. W and to W;. This yields also

the fact that P, has a (unique) pointwise defined version P,, canonically defined also on
bounded Borel functions, and mapping Cy(X) to Cy(X) (we will always identify P, f with
P.f whenever f € Cy(X)). Then we shall prove, following the lines of [25], that in length
metric spaces the pointwise Bakry—Emery—like assumption

IDPf2(x) < C*(t)PIDfP(x)  forall z € X, f € Lipy(X) N L*(X, m), (3.28)

with C' bounded on all intervals [0, 7], T > 0, provides contractivity of H; even w.r.t. Ws.
Notice that formally (3.28) implies (3.27), but one has to take into account that (3.28)
involves a pointwise defined version of the semigroup, which depends on (3.27).

A crucial point here is that we want to avoid doubling or local Poincaré assumptions on
the metric measure space. For the aim of this section we introduce the following notation:

Z is the collection of probability densities f € L (X, m),

3.29
X is the set of nonnegative bounded functions with bounded support. (3:29)

Proposition 3.2. Let € and (P.)i>o be as in (2.1) and (2.20) and let d be a distance on
X satisfying the condition (MD). If (3.27) holds then

1) The mapping Hy(fm) := (P.f)m, [ € Z, uniquely extends to a Wg)-Lipschitz map
)]
H,: Z2(X) — P(X) satisfying

Wig)(Hepe, Hyv) < (C’(t) V 1) Wigy (1, ) for every p, v € 2 (X), (3.30)
Wy (Hos, Ho) < C(OW (j1.0) for every p, v € P(X),  (331)

with C(t) given by (3.27).

(ii) Defining P.f(z) = [ fdH, on bounded or nonnegative Borel functions, P, maps
Cy(X) to Cy(X) and P, is a version of P, for all Borel functions f with [ [fldm < oo,
namely P.f(z) is everywhere defined and P,.f(x) = P.f(z) for m-a.e. x € X. In

addition, P, f is m-a.e. defined for every Borel function semi-integrable w.r.t. m.

(iii) Hy is dual to P, in the following sense:

/ fdH:u :/ Pfdu for all f: X — R bounded Borel, p € 2(X). (3.32)
X X

(iv) For every f € Cy(X) and x € X we have limyyoP.f(x) = f(z). In particular, for
every i € P(X) the map t — Hyp is weakly continuous in P (X).
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Proof. The concavity of 3 yields that j is subadditive, so that dg is a distance. Let us first
prove that P, maps dg-Lipschitz functions in dg-Lipschitz functions.
We use the envelope representation

B(r) = ( inga—I—br, B = {(a,b) € [0,00) x [0,00) : B(s) < a+ bs for every s > 0},
a,b)e

and the fact that a function ¢ : X — R is ¢-Lipschitz with respect to a distance d on X if
and only if
o(x) < Rpp(x) == in}f{ o(y) +d(z,y) for every z € X.
ye

It is easy to check that if ¢ is bounded, then Ry is bounded and satisfies

i&f(p < Ryp(x) < p(x) for every z € X, £ >0, (3.33)

so that in particular R, maps X in K. (3.27) then yields for every ¢ € Lip,(X)N L*(X, m)
with Lip(p) < b
P < Rewpn(Pp).

Let us now suppose that ¢ € X is dg-Lipschitz, with Lipschitz constant less than 1, so that
for every (a,b) € B

p(z) < ;g)f( o(y) + Bd(z,y)) < ;g)f( o(y) +a+bd(z,y) = a+ Ryp(z).

Since (P,):>0 is order preserving, we get for ¢ € K
Py < a+P(Ryp) < a+ Rowp(P(Rop)) < a+ Rowp(Py)

where we used the right inequality of (3.33) and the fact that Lip(Rpyp) < b. It follows
that for every x,y € X and every (a,b) € B

Pp(z) < Pp(y) +a+ C(t)bd(x,y), ie. Pwp(r)—PRep(y) < BC{H)d(z,Yy)).

By Kantorovich duality, for f, g € Z we get
Wigy(P.f m,P.,gm) = sup {/ P fdm— / ePgdm: o€ X, Lipg,(p) < 1}
X X

:sup{/XfPtgodm—/XgPtgodm: v e X, Lipdﬁ(gp)gl}
< (C(1) V1) Wig) (fm, gm).

Hence, (3.30) holds when p = fm, v = gm. By the density of {fm : f € Z} in Z(X)
w.r.t. Wi we get (3.30) for arbitrary p, v € &(X). A similar argument yields (3.31).

(ii) Continuity of z ~— P,f(z) when f € Cy(X) follows directly by the continuity of
z — H;0,. The fact that |5t f is a version of P, when f is Borel and m-integrable is a simple
consequence of the fact that P, is selfadjoint, see [5] for details.
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(iii) When f, g € Cp(X) N L*(X,m) and p = gm, the identity (3.32) reduces to the
fact that P, is selfadjoint. The general case can be easily achieved using a monotone class
argument.

(iv) In the case of € Lip,(X)N L*(X, m) it is easy to prove that Py (x) — ¢(z) for all
r e X ast |0, since Istgo are equi-Lipschitz, converge in L*(X,m) to ¢ and suppm = X.
By (3.32) it follows that

lim [ pdHu = lim/ Podu = / @du  for every ¢ € Lip,(X) N L*(X, m).
1o Jy 1o Jy X

By a density argument we obtain that the same holds on Lip,(X), so that ¢t — Hu
is weakly continuous. Since P,f(z) = [, fdH;0,, we conclude that P,f(z) — f(z) for
arbitrary f € Cy(X). O

Writing p = [ 0, dpu(x) and recalling the definition of P,, we can also write (3.32) in
the form

Hupt = /X Hdy du(z) Ve 2(X). (3.34)
In order to prove that (3.28) yields the contractivity property
Wa(Hep, Hev) < C(8) Wao(u,v)  for every p, v € 2(X), t >0, (Wa-cont)
we need the following auxiliary results.

Lemma 3.3. Assume that (u,) C P (X) weakly converges to p € Z(X), and that f, are
equibounded Borel functions satisfying

limsup f,(x,) < f(x) whenever x,, — x
n—oo

for some Borel function f. Then limsup,, fX frdp, < fX fdu.

Proof. Possibly adding a constant, we can assume that all functions f,, are nonnegative.
For all integers k£ and ¢ > 0 it holds

(Ut > 1) 2 i (U (> 1) 2 Bmswpp( (s > 1)

Taking the intersection of the sets in the left hand side and noticing that it is contained,
by assumption, in {f > t}, we get limsup,, u,({fn > t}) < u({f > t}). By Cavalieri’s
formula and Fatou’s lemma we conclude. O

Lemma 3.4. Assume (3.27), (3.28) and the length property (3.3). For all f € Lip,(X)
nonnegative and with bounded support Q. f is Lipschitz, nonnegative with bounded support

and it holds

P Q1 f(x) =P f(y)] < %C’z(t)dQ(x,y) for everyt >0, x, y € X. (3.35)
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Proof. Tt is immediate to check that Qsf(z) = 0 if f(x) = 0, so that the support of all
functions @ f, s € [0, 1], are contained in a given ball and Q,f are also equi-bounded.

The stated inequality is trivial for ¢ = 0, so assume ¢ > 0. By (3.14) for every s > 0,
setting 1y := s — 1/k 1 s, the sequence r7|DQ,, f|*(x) monotonically converges to the
function D~ (z, s); we can thus pass to the limit in the upper gradient inequality (which is
a consequence of (3.28))

1 ~
PiQnf 1) = P S o)l <€) [ /RIDQ fR( il ds

to get that the function C'(t)Gs, with Gy(z) :== s7'1/P, (D~ (, 5)?), is an upper gradient
for P,(Qsf). Moreover, combining (3.11) and (3.9) we obtain
Qsnf(zn) — Qsflan) _ 1 1

li < —1 —(D* < —— (D~ 2 3.36
1n;f.0up A S50 1H;¢SOUP (D™ (wn,8))" < 252< (,5)) ( )

along an arbitrary sequence z, — x.

Let v be a Lipschitz curve with v, = z and vy = y. We interpolate with a parameter
s € [0, 1], setting g(s) := P.Qsf(7s). Using (3.15) and (3.27) we obtain that g is absolutely
continuous in [0, 1], so that we need only to estimate ¢'(s). For h > 0, we write

g(s + h) - g(S) . Qs+hf B st Pthf(’Ys—&-h) - Pthf(’ys)
h _/); h dHt(SVerh + h

and estimate the two terms separately. The first term can be estimated as follows:

S — Ys 1 _ 1
limsup/ Qo =@l gps < L [ D spdrs, = —La2tn).  (337)
R0 X h 2s? Jx 2

Here we applied Lemma 3.3 with fi(z) = (Qsnf(z) — Qsf(x))/h, pn = Hi, ., and

= H;d,,, taking (3.36) into account.
The second term can be estimated as follows. By the upper gradient property of C'(t)G

for P(Qsf) we get

lim sup ‘Pthf(ﬁ)/s-i-h) - Pthf(’Ys)’ <

n 3 < Gu(1)C ) (3.38)

for a.e. s € (0,1), more precisely at any Lebesgue point of |¥| and of s — G(7s). Com-
bining (3.37) and (3.38) and using the Young inequality we get |P.Q1f(x) — P.f(y)| <
C’Q(t)% fol |7s]? ds. Minimizing with respect to vy gives the result. O

Theorem 3.5. Let € and (P)i>o be as in (2.1) and (2.20), and let d be a distance on X
under the assumptions (MD) and (3.3). Then (3.27) and (3.28) are satisfied by (P;)i>o if
and only if (Wa-cont) holds.
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Proof. We only prove the W5 contraction assuming that (3.27) and (3.28) hold, since the
converse implication have been already proved in [25] (see also [5, Theorem 6.2]) and it
does not play any role in this paper.

We first notice that Kantorovich duality provides the identity

%Wg(Htéw, Ht5y> = sup |Pt Qlf(x) o Ptf(y)‘

where the supremum runs in the class of bounded, nonnegative Lipschitz functions f with
bounded support. Therefore, Lemma 3.4 gives

W3 (Hi6y, Hedy) < C2(8)d? (2, y). (3.39)

Now, given u, v € P (X) with Wy(u,v) < oo and a corresponding optimal plan ~, we
may use a measurable selection theorem (see for instance [11, Theorem 6.9.2]) to select in
a y-measurable way optimal plans ~,, from Hj, to H;d,. Then, we define

Yo T / 7:cy d’)’(l‘,y)
XxX

and notice that, because of (3.34), 7, is an admissible plan from H;x to H;v. Since (3.39)
provides the inequality [ d*dvy, < C?*(t) [ d*dy we conclude. O

3.3 Energy measure spaces

In this section we want to study more carefully the interaction between the energy and the
metric structures, particularly in the case when the initial structure is not provided by a
distance, but rather by a Dirichlet form &.

Given a Dirichlet form & in L*(X,m) as in (2.1), assume that B is the m-completion
of the Borel og-algebra of (X,7), where 7 is a given topology in X. Then, under these
structural assumptions, we define a first set of “locally 1-Lipschitz” functions as follows:

c={veG:T() <lmacin X}, Lo=LNCOX). (3.40)

With this notion at hand we can generate canonically the intrinsic (possibly infinite)
pseudo-distance [10]:

de (1, 9) := sup |[(xg) —(x1)| for every xy, 25 € X. (3.41)
pele

We also introduce truncation functions Sy € C'(R) satisfying

1 ifr| <
S(r) = 1 <1, IS'"(r)| <1;  Sk(r) :=kS(r/k), reR, k>0. (3.42)
0 if |r| >3,

We have now all the ingredients to define the following structure.

29



Definition 3.6 (Energy measure space). Let (X, 7) be a Polish space, let m be a Borel
measure with full support, let B be the m-completion of the Borel o-algebra and let € be
a Dirichlet form in L?(X, m) satisfying (2.1) of Section 2.1. We say that (X,7,m, &) is a
Energy measure space if

(a) There exists a function

6 € C(X), 6 >0, such that ), := S, 0 6 belongs to £ for every k > 0.  (3.43)

(b) de is a finite distance in X which induces the topology 7 and (X, d¢) is complete.

Notice that if m(X) < oo and 1 € D(E) then (3.43) is always satisfied by choosing
0 = 0. In the general case condition (a) is strictly related to the finiteness property of the
measure of balls (MD.b). In fact, we shall see in Theorem 3.9 that (X, dg, m) satisfies the
measure distance condition (MD).

Remark 3.7 (Completeness and length property). Whenever de induces the topology 7
(and thus (X, d¢) is a separable space), completeness is not a restrictive assumption, since
it can always be obtained by taking the abstract completion X of X with respect to de.
Since (X, 7) is a Polish space, X can be identified with a Borel subset of X [11, Thm. 6.8.6]
and m can be easily extended to a Borel measure m on X by setting m(B) := m(BNX); in
particular X \ X is m-negligible and € can be considered as a Dirichlet form on L?(X,m)
as well. Finally, once completeness is assumed, the length property is a consequence of the
definition of the intrinsic distance de, see [38, 36] in the locally compact case and the next
Corollary 3.10 in the general case.

In many cases 7 is already induced by a distance d satisfying the compatibility condition
(MD), so that we are actually dealing with a structure (X,d, m, €). In this situation it is
natural to investigate under which assumptions the identity d = d¢ holds: this in particular
guarantees that (X, 7, m, £) is an Energy measure space according to Definition 3.6. In the
following remark we examine the case when € is canonically generated starting from d and
m, and then we investigate possibly more general situations.

Remark 3.8 (The case of a quadratic Cheeger energy). Let (X,d,m) be a metric mea-
sure space satisfying (MD) and let us assume that the Cheeger energy is quadratic (i.e.
(X,d, m) is infinitesimally Hilbertian according to [20]), Ecy := 2Ch. Then it is clear that
any 1-Lipschitz function f € L*(X, m) belongs to £¢, hence d¢ > d. It follows that d = d¢
if and only if every continuous function f € D(Ch) with |Df]|, <1 is 1-Lipschitz w.r.t. d.
In particular this is the case of RCD(K, c0) spaces.

If X = [0,1] endowed with the Lebesgue measure and the Euclidean distance, and if
m =) 2", , where (¢,) is an enumeration of Q N [0, 1], then it is easy to check that
Ch =0 (see [3] for details), hence d¢(z,y) = oo whenever = # y.

If d is a distance on X x X satisfying (MD), in order to provide links between the
Dirichlet form € and the distance d, we can also introduce a new set of Lipschitz functions

L= {9 € Lip(X,d) : supp(y)) is bounded, [Dy| < 1}, (3.44)

and the following condition:
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Condition (ED: Energy-Distance interaction). d is a distance on X x X such that (ED.a)
every function 1) € L¢ is 1-Lipschitz with respect to d;
(ED.b) every function ¢ € L belongs to L.

Theorem 3.9. If (X, 7,m, E) is an Energy measure space according to Definition 3.6 then
the canonical distance dg satisfies conditions (MD, ED).

Conversely, if € is a Dirichlet form as in (2.1) and d is a distance on X x X inducing
the topology T and satisfying conditions (MD, ED), then (X, 7, m, &) is an Energy measure
space and

d(zq1,x9) = de(xy,22) for every x1, x5 € X. (3.45)

Proof. Let us first assume that (X, 7,m, ) is an Energy measure space. (MD.a) is im-
mediate since dg is complete by assumption and 7 is separable. (ED.a) is also a direct
consequence of the definition of &€, since

[(22) — P(z1)| < de(z1,22) for every ¢ € L, z1,22 € X. (3.46)

Let us now prove (MD.b) and (ED.b).

We first observe that the function 6 of (3.43) is bounded on each ball B,.(y), y € X
and r > 0, otherwise we could find a sequence of points yx € B,(y), £ € N, such that
0(yr) > 3k and therefore 0y (yx) — Ox(y) > k whenever 0(y) < k. This contradicts the fact
that 0y, is 1-Lipschitz by (3.46). As a consequence, for every y € X and r > 0 there exists
k,.» € N such that

Op(x) =k for every o € B.(y), k> k. (3.47)

In particular, since 6, € L*(X,m), we get that all the sets B,(y) with y € X and r > 0
have finite measure, so that (MD.b) holds.
We observe that by the separability of X x X we can find a countable family (1,,) C L¢
such that
de (1, 22) = sup [thn(22) — Yn(x1)| for every a1, x5 € X. (3.48)

We set
(1, 2) = ((sup [t (w2) = (1)) A Oela),

observing that for every y € X the map x +— dj n(y, ) belongs to L. Passing to the limit
as N — o0, it is easy to check that di n(y, ) — dk(y,-) = d(y, ) A O pointwise in X and
therefore in L?(X, m), since 0y € L?(X, m). We deduce that di(y, ) € £ for every y € X
and k£ € N.

Let us now prove that every map f € L belongs to £; it is not restrictive to assume f
nonnegative. Since f is 1-Lipschitz it is easy to check that, setting fi. = f A 6y, it holds

fuolz) = ( inf (f(2) + de (2, x))) A Oy(z) = inf ((fk(z) +de(z,7)) A Hk(x)>

- (;g)f( (fe(2) + de(z,2) A ek(g;))) A Oy (z) = (Zig)f( (fu(2) + di(z, ;1:))) A O (z).
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Let (z;) be a countable dense set of X. The functions

Fonl(z) == ( min fi(z:) + iz x)) A O ()

1<q

belong to £, are nonincreasing with respect to n, and satisfy 0 < f;,, < 05. Since
{r e X :0k(z) >0} C{z € X : 03 (x) = 3k},

we easily see that m(supp(@k)) < 0. Passing to the limit as n 1 oo, since z +— di(z,x) is
continuous, they converge monotonically to

(inf (fu(2) + delz,2)) ) A O(@) = fela),

and their energy is uniformly bounded by m(supp(6y)). This shows that f, € £. Even-
tually, letting & 1 oo and recalling that supp(fx) C supp(f) and m(supp(f)) < oo by
(MD.a), we obtain f € L.
The converse implication is easier: it is immediate to check that (ED.a) is equivalent
to
d(x1,29) > de(x1, ) for every z1, 29 € X (3.49)

if (ED.b) holds and balls have finite measure according to (MD.b), we have z
Tr(d(y,z)) € L for every y € X, where Ty(r) := r A Sg(r). Since

d(zy, x9) = Tr(d(xe,x1)) — Tr(d(x2,22)) whenever k > d(xq, x2),

we easily get the converse inequality to (3.49), and therefore (3.45) and property (b) of
Definition (3.6). In order to get also (a) it is sufficient to take 0(x) := d(x,z¢) for an
arbitrary xg € X. Il

Theorem 3.10 (Length property of d¢). If (X, 7,m, &) is an Energy measure space then
(X,de) is a length metric space, i.e. it also satisfies (3.3).

Proof. We follow the same argument as in [38, 36]. Since (X,d) is complete, it is well
known (see e.g. [13, Thm. 2.4.16]) that the length condition is equivalent to show that
for every couple of points zg, 21 € X and € € (0,r) with r := de¢(zo,21) there exists an
e-midpoint y € X such that

de(y, x;) < g+€, 1=0,1.

We argue by contradiction assuming that B, s, .(x0) N Byja4-(21) = 0 and we introduce
the function

viw) = (

¥ is Lipschitz, has bounded support and it is easy to check that |Dy|(z) < 1 for every
x € X since B, jo.(20) and B, /o4. (1) are disjoint. It turns out that ¢ € L and therefore
it is 1-Lipschitz by (ED). On the other hand ¥ (z¢) — ¢¥(x1) = r + & > de(z0, 21). O

%(r +é)— dg($,$0))+ - <%(r +e)— da(I7$1)>+-
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We now examine some additional properties of Energy measure spaces.

Proposition 3.11. Let (X, 7,m, &) be an Energy measure space. Let f € G N Cy(X) and
let  : X — [0,00) be a bounded upper semicontinuous function such that F(f) < (? m-a.e.
in X. Then f is Lipschitz (with respect to the induced distance d¢) and |D*f| < (. In
particular ¢ is an upper gradient of f.

Proof. We know that (ED) holds, by the previous theorem, and we set for simplicity
d :=dg. Since ( is bounded, f is Lipschitz by (ED.a). We fix z € X and for every € > 0
we set G := supp_(,) (. The Lipschitz function

0() = [11) = F@)]V (G S5eld(y, )| A (GeS.(d(w,9)) (3.50)
belongs to V.,; moreover

U(y) = GS.(d(x,y)) ifd(y,z) > ¢

so that F(@/J) < G m-ae. in X. It follows that v is G.-Lipschitz and ¥ (y) < G.d(y, z) for
every y € X since ¢(z) = 0, so that

. fly) — f@)] _ .
IDf(x)] < hI;lj;lpW < hrgl_?;lp d(y, 2)

< G.. (3.51)

Since € > 0 is arbitrary and lim. o G. = ((x) we obtain |Df(z)| < {(x). Since ¢ is upper
semicontinuous and X is a length space, we also get |[D*f| < (. U

The following result provides a first inequality between € and Ch, in the case when a
priori the distances d and dg are different, and we assume only (ED.b).

Theorem 3.12. & be a Dirichlet form in L?(X,m) satisfying (2.1) of Section 2.1 and let
d be a distance on X x X satisfying condition (MD). Then condition (ED.b) is satisfied
if and only if for every Lipschitz function f € Lip(X) with bounded support we have

f€G, |IDff>T(f) wm-ae inX. (3.52)
In particular, if (MD) and (ED.b) hold, we have

2Ch(g) > &(g) for every g € L*(X,m),

3.53
D(Chyc GCV, |Dgl; >T(g) for everyge D(Ch). (3.33)

Proof. The implication (3.52)=-(ED.b) is trivial; let us consider the converse one.

Up to replacing f with (f + ¢) A Sg(d(zo,-)) with ¢ = supp,, (,)(—f V 0) (notice that
f is bounded) we can assume that f is nonnegative, bounded, with support contained in
Bsg(xo) for some k > 0 and zy € X.
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Recall the Hopf-Lax formula (3.9) for the map @Qy; if (z;) is a countable dense subset
of X we define

n _ 1 2
Q" f(z) —<1rgln f(z) + 5:d (z,-,:v)) A Si(d(zo, 7)), (3.54)
and we set I,,(z) = {i € {1,...,n} : 2, minimizes (3.54)}.
The locahty property and the fact that (f(zl-) + d?(z;, -)/2t) A Sk(d(xg,-)) € V yield
1
D(Qrf)(z) < An(z) == n rrlla(x)d(x ,2i) mea.e. in X.
1€ln (T

If we define z,(x) as the value z; that realizes the maximum for A,(z) with the lowest
index i € I,(x), the previous formula yields

A, (x) = %d(x, zn(x))  for every z € X, (3.55)

and it is not difficult to see that ( ) >0
since Q.f (z) < f(x) < Sg(d(zo,x)), we have

0<Quf(r) < QFf(x) < Sp(d(xo, ), QFf(x) L Quf(x) asnt oo,

is a minimizing sequence for Q;f(z): in fact,

and
S8 () F(en(2) > Quf(r) asm > oo,

It follows that )
lim sup A,,(x) = lim sup ;d(x, zn(x)) < DT (¢, ).

n—oo n—oo

Since @7 f is supported in a bounded set, it is uniformly bounded, and it pointwise con-
verges to Q;f. Considering any weak limit point G of @/F(Q? f) (z) in L*(X) we obtain
by (2.17) ,

L(Q:f)(z) < G?(z) < (D+(t+t)) m-a.e.
Since f is Lipschitz, it follows that DT (xz,t)/t is uniformly bounded. Integrating (3.13) on
an arbitrary bounded Borel set A and applying Fatou’s Lemma, we get

/|Df| )dm(z) > /Ahn;%up/ol <M>2d dm

D+ tr) !
> lim sup/ / a: r) dm dr > lim sup/ / F(Qtrf) (z) dmdr
0 Ja

t10 t10

> / ot ([ 0(Qu e )drz T am.

where in the last inequality we applied (2.17) once more. Since A is arbitrary we conclude.
O
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In order to conclude our analysis of the relations between € and Ch for Energy measure
spaces (X, 7,m, &) we introduce a further property.

Definition 3.13 (Upper regularity). Let (X, 7, m, £) be an Energy measure space. We say
that the Dirichlet form & is upper-regular if for every f in a dense subset of V there exist
fn € GNCy(X) and g, : X — R bounded and upper semicontinuous such that

I'(f,) < gn m-ace.,, f, — f strongly in L*(X,m), limsup/ g2dm < E(f). (3.56)
n—oo X

Theorem 3.14. Let (X,7,m, &) be an Energy measure space. Then the Cheeger energy
associated to (X, de, m) coincides with & i.e.

E(f) = 2Ch(f) for every f € L*(X,m), (3.57)
if and only iof € is upper-regular. In this case G =V, & admits a Carré du Champ I' and
I'(f) =|Df|2, m-a.e in X for every f € V. (3.58)

In particular, the space V N Lip,(X) is dense in V. If moreover (MD.exp) holds, then
(P)e>0 satisfies the mass preserving property (2.20).

Proof. Since Ch is always upper-regular by (3.18), the condition is clearly necessary. In
order to prove its sufficiency, by (3.53) of Theorem 3.12 we have just to prove that every f €
V satisfies the inequality 2Ch(f) < E(f). If f., gn are sequences as in (3.56), Proposition
3.11 yields that f,, are Lipschitz and

1 1
Dfal < g, Ch(fn)é—/ \Dfn|2dms—/92dm-
2 Jy 2 Jy

Passing to the limit as n — oo we obtain the desired inequality thanks to the lower-
semicontinuity of Ch in L?(X,m). The last statement of the Theorem follows by [3,
Thm. 4.20]. O

3.4 Riemannian Energy measure spaces and the BE(K, 0co) con-
dition

In this section we will discuss various consequences of the Energy measure space axiom-
atization in combination with BE(K, oc0). From now on it will be always be implicitly
assumed that an Energy measure space (X, 7,m, €) is metrized by its canonical distance
de.

Taking into account the previous section the Bakry—Emery condition BE(K, N) as
stated in Definition 2.4 makes perfectly sense for a Energy measure space (X, 7, m,¢).

In the next result we will show that under a weak-Feller property on the semigroup (P:):>o
we gain upper-regularity of &, the identifications & = 2Ch of Theorem 3.14 and £ = L¢.
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Theorem 3.15. Let (X, 7,m, &) be a Energy measure space satisfying the BE(K, 00) con-
dition. Then, its Markov semigroup (P,)i>o satisfies the weak-Feller property

felL = PRfeCyX) foreveryt>0 (w-Feller)

of and only iof
L =L, (3.59)

i.e. if every function f € L admits a continuous representative. In this case € is upper-
reqular and, as a consequence, (3.57), (3.58) hold.

Proof. The implication (3.59)=(w-Feller) is easy, since the Bakry-Emery condition
BE(K,00) (i.e. (2.58) with v = 0) and the bound I'(f) < 1 given by (ED.b) yields
KR f e L.

Now we prove the converse implication, from (w-Feller) to (3.59). The Bakry-Emery
condition BE(K, o0) in conjunction with (ED.b) and (w-Feller) yield eX!P,f € L for
every f € L and ¢t > 0, thus in particular e'P,f is 1-Lipschitz by (ED.a). Let us now
fix f € LN L>®(X,m) and let us consider a sequence of uniformly bounded functions f, €
Lip,(X) N L*( X, m) with bounded support converging to f in L*(X, m). By the previous
step we know that P, f, € Lip,(X) and the estimate (2.56) shows that I'(P.f,) < C/t for a
constant C' independent of n. (ED) then shows that Lip(P; f,,) < C/t; passing to the limit
as n — 0o, we can find a subsequence ny — oo such that limy_,o P.fy, (z) = P.f(z) for
every x € X \ N with m(N) = 0. Since P, f, are uniformly Lipschitz functions, also P, f is
Lipschitz in X \ N so that it admits a Lipschitz representative fyin X.

On the other hand, BE(K,00) and (ED) show that Lip(f;) < e ®*. Passing to the
limit along a suitable sequence ¢, | 0 and repeating the previous argument we obtain that
f admits a Lipschitz representative.

Let us prove now that & is upper regular, by checking (3.56) for every f € V. which
is dense in V. Observe that the estimate (2.56), (3.59) and (ED.a) yield that , for every
t > 0 and every function g € L?* N L>=(X,m), P.,g admits a Lipschitz, thus continuous, and

bounded representative g;. Choosing in particular g := ,/F( f) we obtain by (2.58)

I(Pf) <e?Xg, PBf— fin L*(X, m), lim e ?Klg2 dm = / g*dm = &(f). O
X X

According to the previous Theorem we introduce the natural, and smaller, class of
Energy measure spaces (X, 7,m, £), still with no curvature bound, but well adapted to the
Bakry—Emery condition. In such a class, that we call Riemannian Energy measure spaces,
the Dirichlet form & coincides with the Cheeger energy Ch associated to the intrinsic
distance dg and every function in £ admits a continuous (thus 1-Lipschitz, by the Energy
measure space axiomatization) representative.

Definition 3.16 (Riemannian Energy measure spaces). (X, 7, m, ) is a Riemannian En-
ergy measure space if the following properties hold:
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(a) (X,7,m, ) is a Energy measure space;
(b) € is upper regular according to Definition 3.13;
(c) every function in £ admits a continuous representative.

The next Theorem presents various equivalent characterizations of Riemannian Energy
measure spaces in connection with BE(K, 00).

Theorem 3.17. The following conditions are equivalent:
(i) (X,7,m,E) is a Riemannian Energy measure space satisfying BE(K, o).
(i) (X,7,m, &) is a Energy measure space satisfying (w-Feller) and BE(K, c0).
(i11) (X, 7,m, &) is a Energy measure space satisfying L = Lc and BE(K, 00).
)

() (X,7,m,&) is a Energy measure space with & upper reqular, and for every function
f e L*(X,m) N Lip,(X) with |Df| € L*(X, m)

P.f €Lip(X), [DRf]?<e*PR(IDf]*) m-ae. inX. (3.60)

(v) & is a Dirichlet form in L*(X,m) as in (2.1), d is a distance on X x X inducing
the topology T and satisfying conditions (MD,ED.b), and for every f € LsNL®(X)
andt >0

P.f € Lip,(X), [DRf|* <e *PRI(f) m-a.ce. in X. (3.61)

If one of the above equivalent conditions holds with (MD.exp), then (3.27) holds, the
semigroups (P)i>0 and (H¢)i>o are well defined according to Proposition 3.2, Hiy(u) < m
for everyt >0 and p € P(X), and the strong Feller property

P, maps L? N L®(X,m) into Lip,(X) (S-Feller)
holds with
IDP,f|? = F(Ptf) m-a.e. in X for everyt >0, f € L*NL>®(X,m). (3.62)
Eventually (recall (2.48) for the definition of Iok (t))
2y (t) |DP.f]? < P,f? for every t € (0,00), f € L*(X,m), (3.63)
and in particular

V 20k (t) Lip(Pf) < [[fllee(x,m) for every t € (0,00). (3.64)
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Proof. The equivalence (i)<(ii)<(iii) is just the statement of Theorem 3.15.

Let us first prove the implication (v) = (ii). Since L is contained in £¢ we immediately
get (w-Feller). (3.61) also yields the density of V,, in V and, thanks to (3.52), condition
(2.58) for BE(K,00). Since (P)i>o is order preserving, (3.52) and (v) yield (ED.a): if
f € Lc then (3.61) yields P,f Lipschitz with constant less then e %, Since along a
suitable vanishing sequence ¢, | 0 P, f — f m-a.e. as n 1 oo, arguing as in the proof of
Theorem 3.15 it is easy to check that f is 1-Lipschitz. We can thus apply Theorem 3.17
to get that (X, 7,m, &) is an Energy measure space with d = d¢. Since (ii) in particular
shows that € is upper-regular, we proved that (v) = (iv) as well.

The implication (iv) = (ii) is also immediate: by the density of VN Lip,(X) in D(Ch) =
V stated in Theorem 3.14 and the upper bound (3.52) we get (2.58) which is one of the
equivalent characterizations of BE(K, 00). Moreover, (3.60) clearly yields (w-Feller).

Let us now assume (i) and observe that the estimate (2.56) and the property £ C
Lip(X) yield that for every t > 0 and every function f € L? N L*®°(X,m) P.f admits a
Lipschitz representative satisfying (3.64). Moreover, if f is also Lipschitz, (2.58) yields the
estimate (3.27) with C(t) := e X%, We can then apply proposition 3.2 and conclude that
when f € C,(X) N L*(X,m) the Lipschitz representative of P,f coincides with P.f. Since
by definition

Pf () = / fdH;0, for all Borel f bounded from below
b's

we can use a monotone class argument to prove the identification of P, with the continuous
version of P, in the general case of bounded, Borel and square integrable functions. Notice
that we use (3.64) to convert monotone equibounded convergence of f, into pointwise
convergence on X of (the continuous representative of) P, f,,, t > 0.

Another immediate application of (3.64) is the absolute continuity of H;u w.r.t. m
for all 4 € 2(X) and t > 0. Indeed, if A is a Borel and m-negligible set, then P,y
is identically null (being equal to P,x 4, hence continuous, and null m-a.e. in X), hence
(3.32) gives Hyu(A) = 0. As a consequence, we can also compute P, f(z) for m-measurable
functions f, provided f is semi-integrable with respect to H;d,.

If now f € £ (2.58) then yields

T(Rf) <e?MPI(f) m-ae. in X, (3.65)

and Proposition 3.11 yields (3.61) since IStF( f ) is continuous and bounded. This concludes
the proof of the implication (i) = (v). A similar argument shows (3.63), starting from
(2.56).

Let us eventually prove (3.62). Since the inequality > is true by assumption, let us see
why (3.61) provides the converse one: we start from

IDP.f|> < e 2$¢P(T(P_.f)) for every e € (0,1).

Recalling that F(F’t,gf) converges strongly in L?(X, m) to F(Ptf) as € J 0, we get (3.62).
]
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Recalling Theorem 3.17, Theorem 3.5, the characterization (3.60), and the notation
(3.29), we immediately have

Corollary 3.18. Let (X, 7,m, &) be a Energy measure space satisfying the upper-reqularity
property (3.56) (in particular a Riemannian one) and (MD.exp).
Then BE(K, 00) holds if and only if the semigroup (P.)i>o satisfies the contraction property

Wa((Pf)m, (Pg)m) < e X' Wy(fm, gm) for every f,g € Z. (3.66)

4 Proof of the equivalence result

In this section we assume that (X, 7,m, €) is a Riemannian Energy measure space satisfying
(MD.exp) (relative to d¢) and the BE(K, co) condition, as discussed in Section 3.4. In
particular all results of the previous sections on existence of the dual semigroup (H;):>o,
its Wy-contractivity and regularizing properties of (P,);>o are applicable. Furthermore,
by Theorem 3.14, the Dirichlet form setup described in Section 2 and the metric setup
described in Section 3.1 are completely equivalent. In particular, we can apply the results
of [3].

4.1 Entropy, Fisher information, and moment estimates

Let us first recall that the Fisher information functional F : L1 (X, m) — [0, 00] is defined

by
F(f):=4€(\/f) VfeV, (4.1)
set equal to o0 if /f € L*(X,m) \ V. Since f, — f in L} (X, m) implies /f, — +/f in

L*(X,m), F is L'-lower semicontinuous.

Proposition 4.1. Let f € L1 (X, m). Then \/f € V if and only if fx := min{f,N} € V
for all N and fXF(f)/f dm < oco. If this is the case,

_ [ ¥
F(f) = /{M} L dm. (4.2)

In addition F is convex in L1 (X, m).

We refer to [3, Lemma 4.10] for the proof.

By applying the results of [3] we can prove that (H;);>¢ is a continuous semigroup in
P5(X) and we can calculate the dissipation rate of the entropy functional along it. Some
of the results below are very simple in the case m(X) < co.

Lemma 4.2 (Estimates on moments, Fisher information, metric derivative). For every
i€ Po(X) the map t — py := Hyji is a continuous curve in Po(X) with respect to Wi.
Moreover, for every T > 0 there exists Cr > 0 such that

/OTF(Psf)ds+/OT/sz Ptfdmdsg(jT(Entﬁ(ﬂ)Jr/szd@ (43)
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for all i = fm with Enty, (i) < co. In addition, if f € L*(X, m), it holds
lj1e)> < F(P.f) for a.e. t > 0. (4.4)

Proof. The estimate (4.3) follows [3, Thm. 4.20], thanks to the integrability condition
(3.23), when f € L?(X,m). In the general case it can be recovered by a truncation
argument, using the lower semicontinuity of F. The estimate (4.4) follows by [3, Lemma
6.1], which can be applied here since the Dirichlet form & coincides with the Cheeger energy
(Theorem 3.14).

Concerning the continuity of the map t — H; with respect to W5 for every g € P5(X),
it is a standard consequence of contractivity and existence of a dense set of initial conditions
(namely the set D(Enty,) := {v € P(X) : Enty(v) < oo}) for which continuity holds up
tot=0. U

Integration by parts for probability densities

We shall see now that assuming the Bakry—Emery BE(K, 00) condition, integration by
parts formulae for the Ag) operator can be extended to probability densities with finite

Fisher information, provided that the set of test functions ¢ is restricted to the spaces
VL, V2 defined in (2.61). Recall that V1 V2 are strongly dense in V and that

T(p.—¢) 20 inL®(X,m)ase 0 forevery p € VL, (4.5)

where @, are defined as in (2.28), since F(gps — <p) is uniformly bounded and converges to
0 in L'(X,m).

In the sequel we introduce an extension of the bilinear form F( f, g), denoted f( f, g),
which is particularly appropriate to deal with probability densities f with finite Fisher
information and test functions ¢ € V..

Definition 4.3 (Extension of T'(f,¢)). Let f = ¢* € L1 (X, m) with F(f) = 4&(g) < oc.
For all ¢ € V1 we define

L(f.¢) =29T(g,¢). (4.6)
The definition is well posed, consistent with the case when f € V, and it holds
= T . 1
F(f,gp) —]\}I_I}(l)or(f]v,@) in L'(X,m), (4.7)

thanks to (2.12) and to the fact that if F(f) < oco then fy = (gn)* € V, where gy :=
g A VN it follows that I‘(fN, gp) = 2gXnT (g, go), Xn being the characteristic function of
the set {f < N} and

SRR =T (g am =2 1ol (0. ) dm < (IR F) | fam)

thus proving the limit in (4.7). The same argument provides the estimate

[olEGalim< ER( [ o) sam) sevtivzo s
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Theorem 4.4 (Integration by partsof Ag)). If BE(K,00) holds, then for every f €
LY (X, m) with F(f) < oo we have

/ f(f, go) dm = —/ fAgpdm  for every p € V2. (4.9)
X X
In addition, if f € D(AY) it holds

/f(f,go) dm:—/ AVfodm  vpeVl, (4.10)
X X

Proof. Formula (4.9) follows by the limit formula in (4.7) simply integrating by parts before

passing to the limit as N — oo. Assuming now f € D(Ag)) we have

B (1) o b B T _
/XAa fsodm—lggt/x(f Ptf)swdm—ltlfgt/xf(so Pip) dm

:13%1/0t/XfA8(PS<p)dmdszlggl/ot/xf(f,a@)dmds:/Xf(f,go),

where the last limit follows by (4.8) and the fact that
I I
r<;/ Ppds — ) < ;/ T(Pp—p)ds 20 in L¥(X,m) ast|0. [
0 0

4.2 Log-Harnack and L logL estimates

Lemma 4.5. Let w : [0,00) — R be a function of class C?, let f € Lip,(X,m)NV and let
we P(X). The function

G(s) == / w(P—sf) dHyp s € 10,1, (4.11)
X
belongs to C°([0,t]) N CY(0,t) and for every s € (0,t) it holds

G'(s) = /Xw”(Ptsf)F(Ptsf) dH,p. (4.12)

Proof. Since Hyp are all probability measures is not restrictive to assume w(0) = 0. Con-
tinuity of G is obvious, since P,_, f are equi-Lipschitz, equi-bounded and the semigroup H,
is weakly-continuous. Let us first consider the case y = (m with ¢ € L' N L>®(X,m) (in
particular ¢ € L?(X,m)). Setting f;_, := P._,f and ¢, := P,(, we observe that a.e. in the
open interval (0,¢) the following properties hold:

- s+ (, is differentiable in L?(X, m);
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- s+ w(fi_s) is differentiable in L?( X, m), with derivative —w'(f;_s)Ae fi_s.
Therefore the chain rule (2.18) gives

G'(s) = — /X & (frs) e e dm + /X (fi ) AeCedm
— [ (P i) = Pl 6)) dm = [ (D (i) Gl

X

for a.e. s € (0,t). But, since the right hand side is continuous, the formula holds pointwise
in (0,¢). The formula for arbitrary measures p = (m € Z(X) then follows by monotone
approximation (i.e. considering (, = min{¢,n}/c, with ¢, 7 1 normalizing constants),
by using the uniform L> bounds on w”(f;—s) and on I'(f;—s) (and the formula (4.12) for
G’ still provides a continuous function). Finally, if u € (X)) we approximate u by the
absolutely continuous measures j. = H.p and, passing to the limit in the formula (where
we use the fact that P, is also selfadjoint in the canonical pairing between L' and L> and
the absolute continuity of Hgp)

d

& Xw(ftfs> stﬂsz/);wll<fts>F(fts) dHS,LLE:/)(PE(wH(ftS)F(fts)) st,u

we conclude. O

In order to prove the LlogL regularization we use the next lemma, which follows by a
careful adaptation to our more abstract context of a result by Wang [43, Theorem 1.1(6)].

Lemma 4.6 (Log-Harnack inequality). For every nonnegative f € L*(X, m)+ L>(X,m),
t>0,e€0,1], and z, y € X we have log(1 + f) € L' (X, H,6,) with

d*(z,y)
)+ on ()

Proof. In the following we set w.(r) := log(r + ¢), for > 0 and € € (0, 1]. Let us first
assume in addition that f € Lip,(X)NLY (X, m)NV, let v : [0,1] — X be a Lipschitz curve
connecting x to y in X, and, recalling the definition (2.48) of Ik, let

- ' Lo (r
Yr = Yo(r), With O(r) = 12;((@))’

We set f;_s := P._sf and, for r € [0,t] and s € (0,¢), we consider the functions

P.(log(f +¢))(y) <log (P.f(z) +e (4.13)

r e [0,t].

G(r,s) := /X w(fimy) dH,05, = Fu(3,) with  Fy(z) := P8<wa(ft_s)>(x). (4.14)

Notice that Lemma 4.5 with p = J, ensures that for every r € [0, t] the function s — G(r, s)
is continuous in [0, ] and continuously differentiable in (0,t), with

%G(r, 5) = /X (oD (fis) dHL5 (4.15)
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This gives immediately that G(r,-) are uniformly Lipschitz in [0,¢] for r € [0,¢]. On the
other hand, since 4 is Lipschitz, the map r +— Pyd5_ is Lipschitz in [0,¢] with respect to
the L'-Wasserstein distance W, uniformly w.r.t s € [0,¢]. Hence, taking also the fact that
w(fi—s) are equi-Lipschitz into account, it follows that also the maps G(-, s) are Lipschitz
continuous in [0, ¢] with Lipschitz constant uniform w.r.t. s € [0,¢]. These properties imply
that the map s — G(s, s) is Lipschitz in [0, ¢].

Since the chain rule and (3.61) (which can be applied since we can subtract the constant
we(0) from Fy without affecting the calculation of its slope) give

DA < 28R (Wi T (fims) )
we can use 0'(r) = 57 /I,x(t) to get the pointwise estimate

oK (s=7) lim sup |G(r + h,s) — G(r,s)| < /el(r)w—eKS IDF|(5)

o(r)|
hl0 h VIok (1)
/ H/@(T) |2 ’ 2
<)o+ [ )T R,

Applying the calculus lemma [2, Lemma 4.3.4] and using the identity w” = —(w’)?, the
previous inequality with = s in combination with (4.15) gives

d . G(s,s —h)—G(s,s) .. |G(s+ h,s) — G(s,s)|
— <
dsG(S’S) < 11%1 h +hmh¢soup h

An integration in (0,¢) and a minimization w.r.t. -y yield

d*(z,y)
Al (1)

If f € L*(X,m) we consider a uniformly bounded sequence (f,,) contained in Lip, (X, m)N
LY (X, m)NV converging to f pointwise m-a.e. Since w. > log(¢) and P, f, converges to P,f
pointwise, Fatou’s Lemma yields (4.16) also in this case. Finally, a truncation argument
extends the validity of (4.16) and (4.13) to arbitrary nonnegative f € L'(X, m)+L>®(X, m).
Passing to the limit as € | 0 we get (4.13) also in the case € = 0.

Finally, notice that (4.16) for € = 1 and the fact that P,f(x) is finite for m-a.e. z yield
the integrability of log f with respect to H.J,. O

/X () dHb, < w.(F)(x) + (4.16)

In the sequel we set

H/, = wfy]m, sothat P.f(y) :/ fu[y] dm (4.17)
X

for every m-measurable and semi-integrable function f.

43



Corollary 4.7. For everyt > 0 and y € X we have

d?(z,
/ u[y] log(ug[y]) dm < log (ux[y](z)) + (z.9) for m-a.e. x € X. (4.18)
In particular, when m is a probability measure,
d2
ugy](x) > exp ( _ 4@ y)) form-a.e. x € X. (4.19)
Alok (1)
Proof. Simply take f = w;[y] in (4.13) and notice that P,f(z) = ux[y](x) for m-a.e. z € X
by the semigroup property. Il

In the next crucial result, we will show that (4.18) yields Ent,(H;u) < oo for every
measure (1 € Po(X).

Theorem 4.8 (LlogL regularization). Let u € 5(X) and let f; € L'(X,m) be the
densities of Hypw € P5(X). Then

/Xft log f; dm < 212[1((75) <7“2 + /Xd2(x, o) du(x)) — log (m(B,(20))) (4.20)

for every xop € X and r, t > 0.

Proof. By approximation, it suffices to consider the case when p = fm with f € L?(X,m).
Let us fix 7o € X, r > 0 and set z=m(B,(xg)) and v = z"'mL B,(z,). Notice first that
we have the pointwise inequality

P08 () = ( [ wldan) g ([ wleldi) < [ bl 1os (w:10) du(o)

X

Since P, f = [t m-a.e., integrating with respect to m and using the symmetry property of
ug, (4.18), and Jensen’s inequality, we get

[ ostryan < [ ([ e log i) dmz)) duty)
= [ (] wlie) ozl dm(z)) dvle)duty)

< [ (1os (b)) + o) dvlelauty)

< log /X /X () dv () du(y) +m(r2+ /X & (2, 20) du(z)
21211(@ (+ /X (e, 20) du(x) ).

< —logz+

where we used the inequality

/X unly)(z) dv(z) = 1 /  uab](r) dm() <

_ 0 (4.21)

N | —
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We conclude with a further regularization and an integration by parts formula for A(El)
in a special case. Notice that thanks to the regularizing effect of H; we can extend h* to
measures (1 € Po(X), i.e. we set

1 o
= —/ frr(r/e)dr, fom=H,u forr >0, (4.22)
€Jo

obtaining a map h° : P»(X) — D(A(gl)).

Lemma 4.9. Let i € P5(X) and let f = bf as in (4.22). Then for every e,T > 0 there
exists a constant C'(e,T) such that

F(Pf) < O T)(1+ / N (4.23)
X
and, writing p; = P fm,
ful? < Ce, T) (1 + / Vidu)  for £'-a.e. te[0,T]. (4.24)
X

Moreover, for every bounded and nondecreasing Lipschitz function w : [0,00) — R such
that sup, rw'(r) < oo, we have

/Xw(f)Af;)fdm+4/Xfw'(f)r(\/7) dm < 0. (4.25)

Proof. Combining (4.3), (4.20), the commutation identity P.h* = h°P,, and the convexity of
F we get (4.23). We obtain immediately the Lipschitz estimate (4.24) from (4.23) and (4.4)
when f € L*(X, m) The general case follows by a truncation argument. Concerning (4.25),
if i = fm with f € L*(X, m), then f € L*(X,m), ((gl)f = A¢f € L*(X,m) and the stated
inequality is an equality, by the chain rule F(f, (f)) = w’(f)F(f) = 4fu'(f) F(\/f) In
the general case we approximate fi in &5(X) by a sequence of measures i, = fnm with
fn € L*(X,m) and we Consider fa = b%p,. By (2.30) we obtain that A(l fn — A (n f i
L'(X,m) while, setting ¢(s fo /2w (r?) dr, the lower semicontinuity of g +— fF( )
and the strong convergence of \/f, to \/_ f in L2(X m) give

4/){fw’(f)F(\/?) dm = /F(¢(\/?))dm<hm1nf/ \/ﬁ)) dm
= hmlnf/ o (f) T fn) dm. U

n—oQ

Motivated by the regularity assumptions needed in the next section, we give the fol-
lowing definition.

Definition 4.10 (Regular curve). Let p, = fim € £(X), s € [0,1]. We say that p is
regular if:
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a) p € AC*([0, 1]; (Z(X), Wa));

(a)

(b) Enty(ps) is bounded;
(c) feCH[0,1]; LN(X, m));
)

(d) There exists > 0 such that for all s € [0, 1] the function f; is representable in the
form b7 f, for some f, € L'(X,m); in addition ALY f € C([0,1]; L*(X, m)) and

sup{F(P.f,): s€[0,1], t€[0,T]} <o VT >0. (4.26)

In particular, if p; = fsm is a regular curve, for every T' > 0 there exist positive
constants My, Ep, F'r such that

/ V2dH,ps < My, Entw(Pps) < Er, F(RL) < Fr  s€[0,1), te[0,T]. (4.27)
X

Proposition 4.11 (Approximation by regular curves). For all p € AC?([0, 1]; (P5(X), W5))
there exist reqular curves p" such that p? — ps in Po(X) for all s € [0, 1] and

1 1
limsup/ |p"?ds < / |ps|? ds. (4.28)
n 0 0

Proof. First we extend p by continuity and with constant values in (—o0,0)U(1, 00). Then,
we define p™! := H, p,, with 7,1 € [n,2n]. By the contractivity properties of H;, we see
that p™! fulfills the first two requirements of the lemma and (4.28), but we need to check
regularity. Indeed, obviously condition (a) is fulfilled, while we gain absolute continuity
of p™! and sup, Enty,(p™') < oo by Theorem 4.8. In order to achieve condition (c¢) we do
an additional regularization, by averaging w.r.t. the s variable: precisely, denoting by f!
the densities of p™!, we set p™? := f™?m, where

fo2 :—/ff_’ls,xn(s’) ds’ (4.29)
R

and x, € C*(R) are standard convolution kernels convergent to the identity. By the
convexity properties of squared Wasserstein distance and entropy we see that properties
(a), (b) are retained and that the action does not increase. In addition, we clearly gain
property (c). In the last step we mollify using the heat semigroup, setting p? = fI'm,
where f" = h* f™? and €, | 0. By the same reasons used for p™?, properties (a), (b) are
retained by p" and the action does not increase. In addition, (c) is retained as well since
he is a continuous linear map from L'(X,m) to D(Ag)). Finally, (4.23) provides the sup
bound on Fisher information. U
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4.3 Action estimates

This section contains the core of the arguments leading to the equivalence Theorem 4.17.
We refer to [15] for the underlying geometric ideas in a smooth Riemannian context and
the role of the Bochner identity. Here we had to circumvent many technical difficulties
related to regularity issues, to the lack of ultracontractivity properties of the semigroup
(P)e=o (i.e. regularization from L' to L), and to the weak formulation of the Bakry-Emery
condition.

Since we shall often consider regular curves of measures p € AC?([0, 1]; (Z5(X), W2)),
representable in the form p = fm with f € C'([0,1]; L' (X, m)), we shall denote by fe
C([0,1]; L*(X, m)) the functional derivative in L'(X, m), retaining the notation |g| for the
metric derivative w.r.t. Wh.

We begin with a simple estimate of the oscillation of s — [ « ¥ dps along absolutely
continuous or C! curves.

Lemma 4.12. For all p € AC*([0, 1]; W3)) it holds

/ 1Ps / \D<p|2 dp, ds for every ¢ € V.. (4.30)

If moreover p = fm with f € C*([0,1]; L*(X,m)), for all p € VL it holds

sodm / pdp| <

. 1/2
/ fsgpdm’ < \ps]</ |D90|2d,03> for L1-a.e. s €(0,1). (4.31)
X X

Proof. Tt is easy to check that (4.30) can be obtained using the representation of py given
by Lisini’s theorem [26] (see [3, Lemma 5.15]).

Choosing now a Lebesgue point § both for s — [ps|> and [, |Dg|*dps, for all a > 0 we
can pass to the limit as h | 0 in the inequality

1 5+h ) 1 )
)e|” + — D
< 2h/ (a’ps‘ . /);‘ 90‘ dps> ds

and then minimize w.r.t. a, obtaining (4.31). O

Lemma 4.13. Let p = fm € AC*([0,1]; (P(X),Ws)) be a regular curve according to
Definition 4.10, and let ¥ : [0,1] — [0,1] be a C' function with 9(i) =i, i = 0,1. Define

e dpsin — / pdps| <
X

h

st = Hapos) = foum, s€[0,t], t>0.

Then, for every t > 0 the curve s v p,; belongs to AC*([0,1]; (Po(X), Ws)) and F(fs.)
is uniformly bounded. Moreover, for any ¢ € Lip,(X) with bounded support, setting o :=
Qsp, the map s — fX s dps s absolutely continuous in [0, 1] and

d . . 1 -
d_/ Ps dpt,s = 79(5>/ fsPstSOS dm — 5/ ‘D§03’2 dps,t - t/ F(fs,ta@s) dm (432)
S Jx X X X
for £'-a.e. s € (0,1).
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Proof. We only consider the case t > 0 and we set ps := py(s) = fsm. Notice that fs; = Py fs
and p, satisfies the same assumptions than p,. Since H; is a Wasserstein K-contraction

W2<p80,t7 p81,t> < eiKSOtWQ(ﬁSm H(Sl—so)tﬁsl) < C (W2 (/530, ﬁsl) + WQ(ﬁSU I_l(sl—so)tlasl)>7
and (4.24) and the regularity of p give
Wa(ps,, Hisi—so)ePs) < Cp, T)(s1 — so)t whenever (s; — so)t < T.

We conclude that s +— p,; belongs to AC?([0, 1]; (P(X), Ws)). Moreover, using the split-
ting

/ sy dpg, ¢ _/ Do Apso,t :/ sy Apsy i _/ Do Apsy i +/ Do Apsy i _/ Do Apsy i
X X X X X X

< H9081 - QOSOHOO + Lip(@So)W2<l58uﬁ80)

we immediately see that also s — [ + Ps dps,t 1s absolutely continuous. In order to compute
its derivative we write

/st—i-h dps+h,t _/ Ps dps,t - /905+h dps—i—h,t _/ Ps dps—i-h,t
X X
+ / P(erh)tSOs d(ﬁs—f—h - ﬁs)
+ /(Phtgos - @s) sttﬁs-
Now, the Hopf-Lax formula (3.14) and the strong convergence of fy.p; to fs; in L'(X,m)

yield
1 1
lﬁﬂ}ﬁ(/gps+h dszrh,t_/Xgps dps+h,t) = _§/X‘D908’2 dps,t~

The differentiability of p, in L'(X,m) yields

! / Pissnyee d(Pssn — ps) = 19(8)/ P fodm. (4.33)
b's
Finally, the next lemma yields
h /(Pht@s — ¢s) dPups — —t/ T(for s) dm. O (4.34)

X

Lemma 4.14. For all p € VL and all p = fm € P(X) with F(f) < oo it holds

lim mfdm——/f(f,w)dm
h p%

hlo J

48



Proof. We argue as in [5, Lemma 4.2], proving first that

Prp — _ P
e

Notice first that, possibly approximating ¢ with the functions ¢° := h*¢ whose laplacian
is in L>°(X, m), in the proof of (4.35) we can assume with no loss of generality that Agp €
L*>*(X,m). Indeed, (4.8) and the strong convergence in I norm of P.,¢° to P.,¢ ensure the
dominated convergence of the integrals in the right hand sides, while the convergence of
the left hand sides is obvious.

Assuming Agp € L*>(X, m), since

P . 1
/ngm:/ /gAgPrhgpdmdr
X 0o Jx

for all g € L?(X, m) we can consider the truncated functions gy = min{f, N} and pass to
the limit as N — oo to get that f satisfies the same identity. Since A¢P.,o = PrlAep €
L>(X,m) we can use (4.9) to obtain (4.35).

Having established (4.35), the statement follows using once more (4.8) and the strong
convergence of P, to ¢ in I' norm. O

Under the same assumptions of Lemma 4.13, the same computation leading to (4.32)
(actually with a simplification, due to the fact that ¢ is independent on s) and (4.10) give

d . .
[ o= [ OO+ Rar ),

(
X
for £-ae. s € (0,1) and all ¢ € VL. Here we used the fact that A (Pg) = P.ANg

whenever g € D(Ag)). Since Ag)f € C([0,1]; L' (X, m)), the right hand side is a continu-
ous function of s, hence

d ) .
—/ pdpst = / (D5 Py fs + 1 PStAél)fS)gp dm for every s € (0,1). (4.36)
ds X X
For € > 0, let us now consider the regularized entropy functionals
E.(p) := / e-(f)dm, where el(r):=log(e+rAec!) € Lip([0,00)), e-(0) = 0. (4.37)
b's

Since we will mainly consider functions f with finite Fisher information, we will also
introduce the function

pe(r) == e.(r?) —loge = log(e + r* Ae™!) — loge.
Since p. is also Lipschitz and p.(0) = 0, we have

feLl(Xm), F(f)<oo = e.(f)—loge=p.(v/f)€V.
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Lemma 4.15 (Derivative of E.). With the same notation of Lemma 4.13, if p is reqular
and t > 0 we have for g5, := pe(\/ fs:)

E.(p1¢) — Eo(pos) < /01 <_ t/X fs,tr(g;t) dm + 195 /X Pt (gi,t)fs dm) ds. (4.38)

Proof. The weak differentiability of s — fs, (namely, in duality with functions in V1)

given in (4.36) can, thanks to the continuity assumption made on A(El) fs, turned into
strong L'(X,m) differentiability, so that

d ) )
Tofor =0 Pufitt P.(Af)  in LY(X,m), for all s € (0,1). (4.39)

Since e, is of class CY!, it is easy to check that this implies the absolute continuity of
s — E.(ps:). In addition, the mean value theorem gives

d . s - Js
CB.(pur) = lim /X AT T G e 00)

Notice also that Lemma 4.9 with f = f,; and w = €. — loge gives (since e.(fs+) — loge =
Pe(1/fs+) is nonnegative and integrable and Pst(Ag) fs) = A((gl)(PSt fs) has null mean)

/ Pu(AL £)el (for) dm < —4 / Fore(fo) T(y/For) dm. (4.40)
b b
Now we use (4.39), (4.40) and conclude

d . ,

EEs(ps,t) < _t/X4fs,teIg/(fs,t)F(\/fT,t) dm+a95/X(e;(fs,t) —log e)P, fs dm.

On the other hand, since 4re”(r) > 4r? (6/6/(7“))2 = r(p;(\/F))Z, we get

—Afs e (f )T (VFet) < = Fot (0-(VTo)) T(V Fet) = = FoaD (0-(V/Fo))

and an integration with respect to s and the definition of g5, yield (4.38). U

Theorem 4.16 (Action and entropy estimate on regular curves). Let ps = fsm be a reqular
curve. Then, setting p1+ = Hypy, it holds

1
W2(po, p1e) + 2tEnty,(p14) < R (t) / |ps|? ds + 2tEnty(po). (4.41)
0

where
1.

RK(t) = = — ZfK 7é O, Ro(t)
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Proof. Set psy, fs¢ as in Lemma 4.13, p.(r) = e.(r?) — loge, g5, = p-(\/fs1) as in
Lemma 4.15, ¢-(r) = /r(2 — /rpL(y/7)), and ¢ := Qsp for a Lipschitz function ¢
with bounded support.

Notice that by (4.6)

f(fs,tu SOS) =2 fs,tr( fs,ta 908) = fs,tr (g;tu ()08) + qe(fs,t)r( fs,ta 905) .
Applying (4.32), (4.38) in the weaker form

1 t2 .
tE.(p11) — tE(pos) < / ( - E/ f&tF(gz,t) dm + t795/
X

0 X

P (92,) s dm) ds.

and eventually the Young inequality 2zy < az? + y%/a in (4.31) with a := 0,6 25 we
obtain

/ prdpry — / ©wodpo + t<E5(p1,t) - Ea(ﬂﬂ,f))
X X

! h - e 1 2 2 13
< /0 (193 /); fsPst (‘Ps + tgs,t) dm — 5 /X (‘Dgps’ +1 F(Qs,t)) dIOS,t
et T )
X X
L7, . 1
< / (195/ fspst <<Ps + tgg,t) dm — 5/ F<g05 + tg;t) dps7t
0 X X
- t/ Qk(fs,t)r( fs,t’ st) dm) dS
L7, ) . 1
< / (195/ JsPst (905 + tg;t) dm — _GQKSt/ F(PSt (SOS + tg:,t)) dps
0 X 2 X
+tA|Q€(fs,t)| }F( fs,ta(ps)‘dm> ds

S t t
S/ (—(795)% QKSt!ps|2+§5F(,OS¢)+%/ qj(fs,t)|Dgps|2dm> ds.
0 X

Now we pass first to the limit as e | 0, observing that p.(r) = 2r(e + 7?) "' X,2c.—1 gives

2
Er) =4r(1- =) Xoeer <4r, limgZ(r) =0,

e+r

and then as ¢ | 0; choosing

¢ :
V(s) := so that 9(s) = Ry (t)e™*,

we obtain
1 e
/ prdpis — / 0o dpo,s + t<Entm(,01,t) — EHtm(PO,t)) < §R%((t)/ |ps]? ds.
X X 0
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Eventually we take the supremum with respect to ¢, obtaining

1
EWS(th, po) + t(Entm(th) — Entm(pOt < R2 / |p5|2d3 O

Theorem 4.17 (BE(K, 00) is equivalent to RCD(K, 00)). If (X, 7,m, ) is a Riemannian
Energy measure space satisfying (MD.exp) relative to de and BE(K, 00), then (X,de, m)
is a RCD(K, 00) space.

Conversely, if (X,d,m) is a RCD(K, 00) space then, denoting by T the topology induced by
d and by € = 2Ch the Cheeger energy, (X, T,m, &) is a Riemannian Energy measure space
satisfying de = d, (MD.exp), and BE(K, c0).

Proof. Let p, v € P5(X) with finite entropy. We have to show that (3.26) holds with Hyp
precisely given by the dual semigroup. By the semigroup property, it is sufficient to prove
(3.26) at t = 0. For any p € AC?([0, 1]; (P5(X), Ws)) joining py := v to p; := p we find
regular curves p" as in Proposition 4.11 and apply the action estimate (4.41) to the curves
Pst = Hstpl to obtain

1
W2 (Hepl, o) + 2tEntm(Hip}) < R (1) / 16212 ds + 2tEnt (0}). (4.42)
0

We pass to the limit as n — oo and use the lower semicontinuity of W5 and of the entropy,
to get

1
W22(Htp, v) + 2tEnt, (Pp) < Ri(t)/ \p'SIQdS + 2tEnty, (v).
0

We can now minimize w.r.t. p and use the fact that (Z2(X), Ws) is a length space because
(X,d) is (this can be obtained starting from an optimal Kantorovich plan 7, choosing in a
mr-measurable way a e-optimal geodesic with constant speed as in the proof of Theorem 3.5),
getting
W3 (Hip,v) + 2tEntw(Pip) < Ri(£)W3(p, v) + 2tEnty (v).

After dividing by ¢ > 0, letting ¢ | 0 and using Rk (t) =1 — 5¢ + o(t) we obtain (3.26).

The converse implication, from RCD(K, o0) to BE(K, 00) has been proved in [5, Sec-
tion 6. O

We conclude with an immediate application of the previous result to metric measure
spaces: it follows by Theorem 3.17 and Corollary 3.18. Notice that for the Cheeger energy
condition (ED.b) and upper-regularity are always true.

Corollary 4.18. Let (X,d,m) be a metric measure space satisfying (MD-exp) with a
quadratic Cheeger energy Ch defining the Dirichlet form & = 2Ch as in (QCh). (X,d, m)
is a RCD(K, 00)-space if (and only if) at least one of the following properties hold:

(i) (P)i>0 satisfies property (3.61), i.e. for every function f € D(Ch) with |Df], <1
and every t > 0,

P.f € Lip,(X), [DRf]>?<e® PB(IDf}) m-a.e. in X. (4.43)
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(i) Conditions (ED.a), (w-Feller) (or £L = L¢), and BE(K, o0) hold.

(i1i) Condition (ED.a) holds and (H;);>0 satisfies the contraction property (3.66) (or
(Py)i>0 satisfies the Lipschitz bound (3.60)).

5 Applications of the equivalence result

In this section we present two applications of our equivalence result: in one direction we
can use it to prove that the RCD (K, 0o) condition is stable under tensorization, a property
proved in [5] only under a non branching assumption on the base spaces. We will also
prove the same property for Riemannian Energy measure spaces satisfying the BE(K, N)
condition, obtaining in particular the natural bound on the dimension of the product.

In the other direction, we shall prove a stability result for Riemannian Energy measure
spaces satisfying a uniform BE(K, N) condition under Sturm-Gromov-Hausdorff conver-
gence.

5.1 Tensorization

Let (X,dx,mx), (Y,dy,my) be RCD(K, co) metric measure spaces.
We may define a product space (Z,d, m) by

Z:=XxY, d((=y), ()= \/di(l‘,:v’) +di(y,y), mi=myxmy. (5.1)

Notice that also m satisfies the quantitative o-finiteness condition (MD.exp).
Denoting by €X', &Y the Dirichlet forms associated to the respective (quadratic) Cheeger
energies with domains VX, VY, we consider the cartesian Dirichlet form

e(f) == /Y EX () dmy (y) + /X EX(fydmy(e)  felXZm),  (5.2)

where for every f € L*(Z,m) and z = (z,y) € Z we set f* = f(z,-), f¥() = f(-,y). By
[5, Thm. 6.18] the proper domain V of € in L?(Z, m) is the Hilbert space

V= {f € L*(Z,m) :f* € V¥ for my-a.e. v € X, f¥ € V¥ for my-ae. y € Y

(5.3)

D k(y), DS |u(w) € L(Z,m) },

%8 coincides with the Cheeger energy Ch in (Z,d, m), and

IDf5 (. y) = T()(z,y) = DY) + DfYw(z)’ meae in Z. (5.4)

Even though the result in [5] is stated for finite metric measure spaces, the proof extends
with no difficulty to the o-finite case. Also, it is worthwhile to mention that the curvature
assumption on the base spaces plays almost no role in the proof, it only used to build, via
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the product semigroup, an operator with good regularization properties (specifically from
L> to Cy), see [5, Lemma 6.13]

It will be convenient, as in [5] and in the previous sections, to work with a pointwise
defined version of the semigroups in the base spaces, namely

PXu(x) := /u(x’) dH;*6,(2), P u(y) = /v(y’) dH) 6, (v)

forw : X - R and v : Y — R bounded Borel, where (H;¥);>o and (H});>o denote
the Wasserstein semigroups on the base spaces. These pointwise defined semigroups also
provide the continuous versions of (S-Feller) for the base spaces, see [5, Theorem 6.1(iii)].

Since the heat flows are linear, the tensorization (5.4) implies a corresponding ten-
sorization of the heat flows, namely for all g : Z — R bounded and Borel, m-a.e. in Z the
following identities hold:

Pg(z) = /X PY g(a, ) (y) AHE8,(2"),  Pug(z) = /Y PXg(,y) (@) dHY6,().  (5.5)

With these ingredients at hand, we can now prove the main tensorization properties.

Theorem 5.1. With the above notation, if (X,dx,myx) and (Y,dy,my) are RCD(K, c0)
spaces then the space (Z,d,m) is RCD(K, 00) as well.

Proof. According to the characterization of RCD(K, 00) given in point (i) of Corollary
4.18, since the Cheeger energy in Z satisfies (QCh) by the above mentioned result of [5], it
suffices to show that the length space property and (4.43) are stable under tensorization.
Stability of the length space property. This is simple to check, one obtains an almost
minimizing geodesic v : [0,1] — Z combining almost minimizing geodesics on the base
spaces with constant speed and parameterized on [0, 1].
Stability of (4.43). Let us first notice that P, maps bounded and Borel functions into
continuous ones, thanks of any of the two identities in (5.5) and (S-Feller).

Let f € Lip,(Z) N L*(Z,m). Keeping y initially fixed, the second identity in (5.5)
tells us that z — P f(z,y) = (P.f)¥(z) is the mean w.r.t. ¢/, weighted with HY d,, of the
functions PX f¥'(z). Hence, the convexity of the slope gives

DY) < | DR () aHY 5,0,

where gradients are understood with respect to the first variable. We can thus use the
Holder inequality to get

ID(P, / IDPX f¥'|2(z) dHY 6, (v/). (5.6)

Now, for my-a.e. 3 € Y we apply (4.43) in the space X to the functions f¥ and use
Fubini’s theorem to get

/ / 2
IDP* V' |*(z) < e 2Kt PX ‘ny (x) for my-a.e. ¥ €Y. (5.7)
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Combining (5.6) and (5.7) and using once more (5.5) with g(z,y) = |DfY[> (z) we get

DR P) < e [ RY [y

Repeating a similar argument with the first identity in (5.5) and adding the two inequalities
we obtain

2
() dHd, (y') = e >R D[;, (2).

ID(Pf)![*(2) + [D(PS)* P (y) < e 2P DI, (2, 9)-
We conclude that (4.43) holds using the calculus lemma [5, Lemma 6.2], which provides
the information that the square root of |D(P,f)¥|*(z) + |D(P.f)*|?(y) is an upper gradient
of P.f. It follows that e X%\ /P, |Df ‘12” is an upper gradient as well; being continuous, it
provides a pointwise upper bound for the slope. U

Let us now consider the corresponding version of the tensorization theorem for Rie-
mannian Energy measure spaces.

Theorem 5.2. Let (X, 7x, &5, my), (Y, 7y, &Y, my) be Riemannian Energy measure spaces
satisfying the Bakry-Emery conditions BE(K, Nx) and BE(K, Ny) respectively, and let us
consider the cartesian Dirichlet form & defined by (5.2) on Z = X XY endowed with the
product topology T = Tx ® Ty and the product measure m as in (5.1).

Then (Z,7,m, &) is a Riemannian Energy measure space, it satisfies the Bakry-Emery
condition BE(K, Nx + Ny) and the induced distance de on Z coincides with the product
distance defined in (5.1).

Proof. 1t is not restrictive to assume that Ny, Ny < oo; by the previous Theorem we
already know that (Z, 7, m, ) is a Riemannian energy measure space satisfying BE(K, co)
whose induced distance dg is given by (5.1); we want to prove that (2.58) holds with
vy = vxvy/(vx + vy) where vy := Ny' and vy := N,'. We argue as in (5.7), observing
that for my-a.e. ¥y € Y (2.58) and (3.62) yield
[DRX £ 4 2uxaea (1) (AxPX )" < e MR DY ], (5.8)
Integrating with respect to the measure H} 6, in 3’ and recalling (5.5) and (5.6), we get
ID(P* /)Y (2) + 2vx Lok 2 (£) (Ax (P f)Y)*(z) < e *X'P(IDfY]2)(z) m-ae. in Z, (5.9)

where we also used the Holder inequality

/ / 2
[ xR @ a0 2 ([ AP @ ana,w) = (xR )
% %
By repeating a similar argument inverting the role of X and Y we get
DR )7 Ia(y) + 2oy Lo (1) (Ay (PF))*(y) < e*MR(IDF7]7) (y) m-ace.in Z. (5.10)
Summing up (5.9) and (5.10), and recalling the elementary inequality

VxVy

(a+b)* for every a,b >0,
Vx + Vy

vxa® + vyb® >

we conclude thanks to the next simple Lemma. O
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Lemma 5.3. If f € V satisfies

fY € D(Ax), f*€ D(Ay) form-ae. (z,y) €Z, AxfY Ayf*eL*(Z,m). (5.11)
then f € D(Agz) and Az f(z,y) = Ax fY(x) + Ay f*(y) m-a.e. in Z.
Proof. 1f (5.11) holds, Fubini’s theorem and the very definition of Ay, Ay yield for every

peV
() = | 8
-~
-

5.2 Stability

We refer to [39, § 3.1], [5, §2.3] for the definition of Sturm-Gromov-Hausdorff convergence
of metric measure spaces. For the sake of simplicity, we restrict here to the case when m,, €
P5(X,). The general case of o-finite measures satisfying (MD.exp) could be attacked
by the techniques developed in [22], assuming that (MD.exp) holds uniformly along the
sequence.

X (19, ov) dmy (y) + /X £¥ (17, ") dmx ()

(/XAxfysoy dmx) dmy —/X </YAyfxso”” dmy) dmx
(AX FUr Ay fx> pdm. O

Theorem 5.4. Let (X,,T,, &, my,) be Riemannian energy measure spaces satisfying
BE(K, N) with m,, € P5(X,) and let us suppose that, denoting by d,, the corresponding
distances de,, (Xp,d,, m,) converge to (X,d, m) in the Sturm-Gromov-Hausdor{f sense.

If %8 is the Cheeger energy in the limit space and T the limit topology, then (X, ,m, )
is a Riemannian Energy measure space satisfying BE(K, N).

The proof is based on a general criterium of convergence, strongly related to the theory
of Young measures, for sequences of functions defined in L?-spaces associated to different
measures (see e.g. [2, §5.4]). We first make precise this notion of convergence and a few
simple properties.

Let us recall that by [5, Prop. 2.6] it is not restrictive to assume that

X, =X, d, = d and m,, are converging to m in Z5(X). (5.12)

(one has just to take care that in general m,, m could be not fully supported). We denote
by (P");>o the Markov semigroups in L?(X,m,,) with generators A,, := Agn.

Consider a sequence of vector valued functions f, € L*(X,m,;R*), k € N, and a
candidate limit f € L*(X, m;R¥). We say that f, converges to f as n — oo if

(i x £,)im, — (i x flyim  in Py(X x RF). (5.13)

We will use three properties:
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(i) (5.13) is equivalent to the convergence of each component fJ j=1,... k, to f7 (e.g.
by applying [2, Lemma 5.3.2]).

(ii) In the scalar case k = 1, if f,, satisfy

n—oo

lim [ f,pdm, —/ fodm  for every ¢ € Cy(X),
X X (5.14)

lim [ f>dm, = / f?dm,
then f,, converges to f according to (5.13). The proof follows the same arguments of
[2, Thm. 5.4.4] (the fact that the base space X is a general metric space instead of
an Hilbert space is not relevant here). A similar result holds if f, € L (X, m,) are
uniformly bounded probability densities satisfying

fom, = fm in Z2(X), lim [ f,logf,dm, = / flog fdm. (5.15)

(iii) Finally, if » : R¥ — R" is a continuous map with linear growth, and f,, converge to
f according to (5.13) then r o f,, converge to r o f.

Property (i) follows by the fact that a probability measure in R” is a Dirac mass if and only
if its coordinate projections are Dirac masses, while property (ii) follows by the fart that,
for strictly convex functions, equality holds in Jensen’s inequality only when the measure
is a Dirac mass. The proof of (iii) is straightforward.

Lemma 5.5. Under the same assumptions of Theorem 5.4 and (5.12), let us assume that
fn € L®(X,m,) converge to f € L®(X,m) according to (5.13), with uniformly bounded
L*> norm. Then P f, converge to P,f for every t > 0 and A, P f, converge to A¢P.f as
n — oo for every t > 0.

Proof. When f,, are probability densities the statement follows by applying (ii) and the
convergence results of [5, Theorem 6.11] (which shows that P f,,m,, converges to P,fm in
P5(X)) and [22] (which yields the convergence of the entropies Enty,, (f,m,) — Enty(fm)).

The case f, € L} (X, m) can be easily reduced to the previous one by a rescaling, since
[x fadm, — [, fdm by (5.13) and (P/*);>¢ is mass preserving.

The general case can be proved by decomposing each f,, into the difference f,7 — f, of
its positive and negative part, observing that fF converge to f* thanks to (iii). Thus, by
(i) it follows that (P f.F, P f") converge to (P.f,P.f7) and a further application of (iii)
yields the convergence result by the linearity of the semigroups.

In order to prove the convergence of A,P"f, we still apply (ii): recall that P are
analytic semigroups in L*(X,m,), AP f, = %Pt” fn, and the uniform estimates (see e.g.
[35, Page 75, step 2|)
&

+

< Ajll fallz2(xm,y for every t >0, neN (5.16)
L2(X,my)
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hold with universal constants A; for every ¢ > 0. Since we just proved that for every
¢ € Cy(X) the sequence of functions (,(t) := [, P"f, ¢dm, converge pointwise to the
corresponding ¢ as n — 0o, (5.16) yields that

lim ¢ (t) = lim | A.P"f,odm, =('(t) = / A¢Pf odm  for every ¢t > 0.
X X

n—oo n—oo
The same argument holds for

2
t s / (AP f,)*dm, = ld—2/ (P™f,)* dm,,. O
X 4dt” Jx

Proof of Theorem 5.4. The case N = oo follows by the identification Theorem 4.17 and
[5, Thm. 6.10]. In particular, the limit space endowed with the Cheeger energy and the
limit topology is a Riemannian Energy measure space.

We can thus consider the case N < oo. By [5, Lemma 6.12] and the previous point (ii),
for every f,p € L*(X,m), ¢ nonnegative, we can find sequences f,, p, € L=(X,m,), ¢,
nonnegative, converging to f, ¢ according to (5.13). We can also suppose that f,, ¢, are
uniformly bounded by some constant C' > 0.

Applying the previous Lemma 5.5 we get that P _f, converge to P._sf and Pl¢p,
converge to Psp as n — oo for every t > 0 and s € [0,t]. Applying (i) to the function
£ = (P" fn,P"p,) and choosing the test function v (x,r1,79) = rirySc(rs), (x,71,79) €
X x R? (with S defined in (3.42)), we obtain

lim | (B f) P dmy, = nli_)rrolo/wd(i X fo)pm, = /wd(i X f)ym = /X(Pt_sf)QPsgpdm.

n—oo

A similar argument yields

lim [ (AP, f.)*Plo, dm, = / (AeP,_ f)*Pipdm  for every t > 0, s € [0,1).
X

n—o0 X

We can then pass to the limit in the distributional characterization (2.55) of BE(K, N). The
case of general f € L?(X, m) can then be recovered by standard approximation. U
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