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Abstract. Within the setting of linear elastodynamics of simple bodies, we

prove that the discrete action functional obtained by following the scheme
of asynchronous variational integrators converges in time. The convergence

in space is assured by standard arguments when the finite element mesh is

progressively refined. Our strategy exploits directly the action functional. In
particular, we show that, if the asynchronicity of time steps and nodal initial

data satisfy a boundedness condition, any sequence of stationary points of the

discrete action functional is pre-compact in the weak−∗ W 1,∞ topology and
all its cluster points are stationary points for the continuous (in time) action.

In this sense our proof is new with respect to existing ones.

1. A convergence theorem

A simple elastic body undergoing infinitesimal deformations occupies a regular
region B of the three-dimensional ambient space. The differentiable map (x, t) 7−→
u := u (x, t) ∈ Rn, with x ∈ B, t ∈ [t0, tf ], n = 1, 2, 3, represents the displacement
field. The map (x, t) 7−→ ε := sym∇u (x, t) associates the standard measure ε
of infinitesimal deformations to each point at a given instant. In linear elastic
constitutive setting and infinitesimal deformation regime, the dynamics of a simple
body is governed by the action functional

(1.1) A (B, [t0, tf ] ;u) :=
∫ tf

t0

(∫
B

1
2
ρ |u̇|2 dx− V (B, u, t)

)
dt

where ρ is the density of mass and

(1.2) V (B, u, t) :=
∫
B

1
2

(Cε) · ε dx−
∫
B
b · u dx−

∫
∂Bt

t · u dHn−1

the potential, with C the standard elastic constitutive tensor, b and t bulk and
surface conservative forces respectively, the latter applied over a part ∂Bt of the
boundary ∂B. The fields x 7−→ b (x) and x 7−→ t (x) belong to L2

(
B,R3

)
and

L2
(
∂B,R3

)
, respectively. Initial conditions are given by regular fields (x, t0) 7−→

u0 (x, t0) and (x, t0) 7−→ u̇0 (x, t0).
To find approximate solutions for some boundary value problems for A, one

needs to select first a suitable tessellation T of B of finite elements and, for each
element K of it, a discrete time set

ΘK =
{
t0 = t1K < ... < tNK−1

K < tNKK = tf

}
.

We indicate by Θ the entire time set for [t0, tf ] defined by Θ := ∪K∈T ΘK , saying
that it has time size h when the difference between two arbitrary subsequent instants
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in Θ is lesser or equal to h. When appropriate, we write then Θh to underline the
time size. As a measure of asynchronicity of Θ, we consider the ratio MΘ between
the time size and the minimum of the differences between subsequent instants in
Θ.

A reasonable way to construct computational schemes is based on the direct
discretization of the action both in space and time. The sole space discretization
leads to an action AT defined by

(1.3) AT ([t0, tf ] ;u) :=
∑
K∈T

∫ tf

t0

A (K;uK (t)) dt,

where, for each K ∈ T ,

A (K;uK (t)) :=
∑
a∈K

mK,a

2
|u̇a (t)|2 − VK (uK (t)) ,

with mK,a the nodal mass associated with the node a in K endowed with velocity
u̇a (t) and

VK (uK (t)) :=
∫
K

1
2

(C∇uK (x, t)) · ∇uK (x, t) dx

−
∫
K

b(x) · uK (x, t) dx−
∫
∂K∩∂Bt

t(x) · uK (x, t) dHn−1,

with uK (x, t) the restriction of u (x, t) to K. When we select also a time discretiza-
tion, a discrete action sum

(1.4) AT ,Θ (u, I) :=
∑
K∈T

∑
{j|[tjK ,tj+1

K ]⊆I}
Aj (K;uK)

arises. Here uK indicates the nodal displacements in the element K, I any open
interval in (t0, tf ), and Aj (K;uK) is defined by

Aj (K;uK) :=
∑
a∈K

∑
{i|tia∈[tjK ,t

j+1
K )}

1
2
mK,a

(
ti+1
a − tia

) ∣∣u̇a (tia)∣∣2
−(tj+1

K − tjK)VK(uK(tj+1
K )),

with VK(uK(tj+1
K )) the value at tj+1

K of VK (uK (t)) presented above.
Roughly, this is the way in which one constructs asynchronous variational inte-

grators (AVIs).
For ordinary and partial differential equations, a recursive rule that allows one

to calculate discrete trajectories starting from initial data is called variational in-
tegrator if it is the discrete Euler-Lagrange equation of some discrete Lagrangian.
For a detailed treatment of variational integrators see [11], [12], the former work, in
particular, introduces them in the multisymplectic description of partial differential
equations.

When the total potential energy can be additively subdivided into the energy
of subsystems, such as finite elements, as usual in mechanics of solids, or groups
of particles in molecular dynamics, asynchronous time discretization can be then
assigned to each subsystem.

The resulting AVIs have been introduced in [7] and further developed in [8].
Their structure has non trivial features. Some of them are summarized below;
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sometimes their are not only peculiar of AVIs but are also common to variational
integrators in general. Details and pertinent comments can be found in [7] and [8].

• The determination of individual trajectories displays problems analogous to
those of traditional algorithms. On the contrary, the evaluation of statistical
quantities (in the sense of time averages for example) is substantially better
with respect to traditional algorithms.
• A version of Noether theorem assures that the natural link between symme-

tries and conserved quantities in the continuous formulation is still present
between the discrete action and the corresponding integrator.
• If one chooses in each subsystem (different) constant time steps, the en-

ergy is nearly conserved because the algorithm ‘preserves’ the symplectic
nature of the original (continuos) variational formulation. Artificial numer-
ical damping is not introduced. Advantages in tracking the error decay
follow.
• The Courant condition (which estimates the stability limit) provides the

way to evaluate the time steps. However, in practice, solving for the time
steps is not necessary. For non-costant time steps, the energy evaluated
numerically oscillates around the average value. The absolute value of the
residual energy (the fluctuation in a sense) is small with respect to the
overall energy of each finite element (at least for the tests for a neo-Hookian
material presented in [8]). In this sense in the item above we write that the
energy is nearly preserved.
• Examples developed in [8] show that the computational cost of AVIs is low

with respect to the cost in other methods (such as an explicit Newmark
condition) for a desired error value.

AVIs share many features in common with subcyclic methods introduced in [3],
[4]. Analogies with other methods used in molecular dynamics can be found (see
comparisons in [8]).

The utility of AVIs for engineering purposes is evident from the list of their
features. They can be used profitably for both solids and fluids. The dynamics of
structures and, above all, the fluid-structure interaction can be appropriate field of
applications.

In the dynamics of continuous simple bodies, convergence in time of AVIs for
a fixed space discretization has been proven in [8] for potentials having uniformly
bounded second derivative, substantially potentials with quadratic growth. Such a
condition is sufficient for assuring that the integrator is a Lipschitz map. The proof
in [8] exploits the discrete version of Euler-Lagrange equations and a recursive use
of Gronwall’s inequality.

In the case of zero-dimensional oscillators, the convergence of the discrete dy-
namics to the continuous counterpart has been proven in [13] via Γ-convergence
arguments. Assumptions of technical nature have been removed in [9].

The aim of this paper is to discuss further the convergence of AVIs. Stability of
AVIs is not treated here.

We start from the work in [13] and, for the linear elastodynamics of simple
bodies, we develop a new proof for the convergence of AVIs in time, once a spatial
discretization is fixed.

• We analyze directly the discrete action rather than the discrete Euler-
Lagrange equations. In this sense our proof is eminently variational and
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exploits the intrinsic structure of the action functional. Of course, the con-
vergence we find is weaker than the one in [8] but it includes cluster points
that satisfy the Euler-Lagrange equations only in the weak form.
• Although we restrict the treatment to linear elastodynamics of simple con-

tinuous bodies, the proof can be extended to the non-linear case involving
potentials with quadratic growth, differences resting only in additional tech-
nical details related to estimates. The basic difficulty would be related to
the control of the growth of the determinant of the gradient of deformation.
• We consider the trajectory of each node to be piecewise affine in time. Our

choice is justified by the sake of simplicity. More general time approx-
imations can be used in principle, paying their presence with additional
non-trivial technical difficulties in the path that we follow here.
• The removal of the homogeneous boundary condition on the displacement

field is possible, paying it with the introduction of additional technicalities.
The main result of our work is the theorem below.

Theorem 1. (Convergence in time.) Let Θh be entire time sets for [t0, tf ] indexed
by the time size h. Let also uh (t0) and u̇h (t0) be initial conditions satisfying

sup
h

(MΘh + |uh (t0)|+ |u̇h (t0)|) < +∞.

Then any sequence (uh), with uh a stationary point of the discrete action AT ,Θh ,
is pre-compact in the weak-∗ W 1,∞ ((t0, tf ) ,RN

)
topology and all its cluster points

are stationary points for the action AT .

In the statement above N is the total number of nodal degrees of freedom in
the tessellation T , and MΘh is a quantity controlling the asynchronicity of Θh (see
(3.5) for the definition).

The theorem above can be extended to the linear elastodynamics of complex bod-
ies, provided that the manifold of substructural shapes is embedded isometrically
in a linear space (the paradigmatic case of quasicrystals is treated in [6]; for qua-
sicrystals the standard Cauchy balance is augmented by a balance of substructural
actions of parabolic type, both equations arising from a d’Alembert-Lagrange-type
variational principle).

2. A summary of linear elastodynamics of simple bodies

Although our results hold generally in Rn, we restrict (only formally) the de-
velopments below to the three-dimensional ambient space R3 in which the region
occupied by a body is always denoted by B. By assumption B is a bounded domain
with boundary ∂B of finite two-dimensional measure, a boundary where the out-
ward unit normal is defined to within a finite number of corners and\or edges. On
B the displacement field is defined by x 7−→ u := u (x) ∈ R3, x ∈ B, and is assumed
to be differentiable. The field x 7−→ u (x) + x is also one-to-one and orientation
preserving in the sense that det (∇u+ I) > 0 at each x, with I the second-rank
unit tensor. When |∇u| << 1, the natural measure of infinitesimal deformations is
given at each point by the value of the field x 7−→ ε (x) := sym∇u (x) assigning at
each point the strain ε.

In a time interval [t0, tf ], a standard motion is described by

(x, t) 7−→ u := u (x, t) ∈ Rn, x ∈ B, t ∈ [t0, tf ],
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a field twice differentiable in time.
The (contact) interaction, power conjugated with the velocity u̇ := d

dtu (x, t)
on any virtual smooth surface in the body (Cauchy cut), oriented pointwise by the
normal n, is the tension t which depends linearly on n through Cauchy stress tensor
σ, namely t = σn. A tensor field (x, t) 7−→ σ = σ(x, t) ∈ Hom

(
R3,R3

)
is then

defined over B and is assumed to be differentiable. Hom
(
R3,R3

)
is the space of

linear operators from R3 to itself. Really, the stress tensor maps R3 onto its dual
because the tension t is intrinsically a co-vector (that is a force), but here we make
tacit use of the isomorphism between R3 and its dual.

The invariance with respect to isometric changes in observers of the external
power of bulk and surface actions on any subset b of B with non-vanishing volume
measure and the same regularity of B itself allows one to get pointwise balances
between bulk and contact actions. Moreover, the inertial parts of the body forces
are identified by making use of the balance between the rate of the kinetic energy
and the power of inertial forces. As a result one gets the standard balance equations

(2.1) b+ divσ = ρü,

(2.2) skwσ = 0,

where ρ is the mass density conserved in time. Natural boundary conditions are
given by the prescription of the traction t on a part ∂Bt of the boundary ∂B and
of the displacement u on another part ∂Bu provided that ∂Bt ∩ ∂Bu = ∅ and
∂Bt ∪ ∂Bu = ∂B. Precisely, here it is assumed that u = 0 along ∂Bu.

When the material is homogeneous and displays a linear hyperelastic behavior
one gets

(2.3) σ = Cε,
with C a constant fourth-rank tensor with minor and major symmetries. In partic-
ular it is assumed that

C (ξ ⊗ η) · (ξ ⊗ η) > 0
for any pair of vectors ξ and η. Such a condition implies that the balance equations
above generate a quasi-contractive semigroup in H1 × L2 (see, e.g., [1], [10]).

Under the mixed boundary conditions mentioned above and the constitutive
structure (2.3), the balance equation (2.1) can be also obtained by imposing that
the first variation of the action functional (1.1) vanishes. From the geometrical
aside, the action (1.1) is a fuctional defined on a first jet bundle. In fact, consider a
fiber bundle Y with basis the space-time tube B × [t0, tf ] and canonical projection
π : Y → B × [t0, tf ], such that the prototype fiber is given by π (x, t) = R3.
Sections η : B × [t0, tf ] → Y determined by means of the map x 7−→ u (x), take
then values η (x, t) := (x, t, u (x)). They admit first prolongations j1η (x, t) :=
(x, t, u (x, t) , u̇ (x, t) ,∇u (x, t)), each one being an element of the first jet bundle
J1Y of Y. The action (1.1) is then a functional defined over J1Y. The symplectic
structure1 associated with the action (1.1) is assured by Betti’s reciprocity theorem

1We remind that a symplectic manifold is a pair (M, ω) where M is a manifold and ω a

closed weakly non-degenerate two-form on M. At each point ν of M, the form ω defines an

isomorphism between the tangent space TνM and its dual. Hamiltonian vector fields over M
consist of canonical transformations. Precisely, if (M1, ω1) and (M2, ω2) are symplectic manifolds,

a smooth mapping f :M1 →M2 is called canonical (or symplectic) if ω1 is the pull-back of ω2
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(see [10]) which implies the existence of closed weakly non-degenerate two-form.
Symplecticity is the source of the property that the energy is nearly preserved by
the AVI discretization of the action functional.

3. Space-time discretization of the action functional

As anticipated above, a way to obtain algorithms preserving the symplectic struc-
ture of the linear elastodynamics of simple bodies consists in constructing a direct
discretization of the action functional (1.1) in space and time and attributing dif-
ferent discrete time sequences to each spatial finite element. This is the scheme of
asynchronous variational integrators introduced in [7] and further developed in [8].

Discretization in space is obtained by means of standard finite elements given
by a tessellation T of B, a simple triangulation, for example, chosen to be consis-
tent with the partition of the boundary ∂B into ∂Bt and ∂Bu (see, e.g., [3]). By
adopting a triangulation, for the sake of simplicity, we assume that B is endowed
with polyhedral shape, a shape compatible with a regular ‘triangulation’. For each
K ∈ T a finite number of points are selected as integration nodes, the generic one
being indicated by a. Here we choose as nodes the vertexes of the elements of the
triangulation. We consider then the space PA (T ) of linear polynomials on each
K ∈ T and are interested in a vector subspace VT of PA (T ) ⊗ H1

(
(t0, tf ) ,R3

)
containing all displacement mappings satisfying u |x∈∂Bu = 0. Any u ∈ VT is then
of the form

(3.1) u(x, t) =
∑
a∈T
Na(x)ua(t).

For each finite element K, Na(x) is the nodal shape function corresponding to the
node a ∈ K and ua(t) is the value of the displacement at the generic node a at time
t. Of course ua (t) ≡ 0 if a ∈ T ∩ ∂Bu. As usual, shape functions are selected in a
way that they form an orthonormal family in L2 (B). When restricted to a generic
finite element K, the map u (x, t) in (3.1) is indicated by uK (x, t).

With a slight abuse of notation, we denote by u (t) a vector in RN , with N the
number of degrees of freedom of all nodal placements at time t, relative to the map
u (·, t). Specifically, N = 3M , with M the total number of nodes in T . Analogously
uK (t) indicates a vector in R12 with components the displacements of all nodes of
the generic element K.

It is possible to check that there exists a constant c, depending only on the
tessellation T , such that

(3.2) sup
B
|∇u (·, t)| ≤ c |u (t)| .

The spatial discretization AT of A is obtained simply by restricting to VT the
proper domain of A. More precisely, if E denotes the class of open intervals I ⊆

in M1 along f . In particular, if dimM1 = dimM2, f is volume preserving and is a local

diffeomorfism. For the linear elastodynamics of a simple body (say for simplicity a body that

occupies the whole R3), the two-form ω is defined over H1
`
R3,R3

´
× L2

`
R3,R3

´
by

ω ((u1, u̇1) , (u2, u̇2)) :=

Z
R3
ρ (u̇2 · u1 − u̇1 · u2) dx

with suitable decay properties at infinity. Linear elastodynamics is Hamiltonian in the sense

it generates a Hamiltonian flow. The fact that ω is closed is evidently associated with Betti’s
reciprocity.
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(t0, tf ), AT : PA (T )⊗H1
(
(t0, tf ) ,R3

)
× E → [0,+∞] is then defined by

AT (u, I) :=
{
A (u, I) u ∈ VT
+∞ otherwise .

Notice that the vector of nodal placements u(·) belongs to H1
(
(t0, tf ) ,RN

)
for

every map u ∈ VT . Hence, the expansion in (3.1) allows to regardAT as a functional
defined over H1

(
(t0, tf ) ,RN

)
× E . We agree to do that in the sequel.

By means of a straightforward computation one gets (1.3) where, for each K ∈ T ,
we rewrite

(3.3) A (K;uK (t)) :=
∑
a∈K

mK,a

2
|u̇a (t)|2 − VK (uK (t)) ,

and

VK (uK (t)) :=
∫
K

1
2

(C∇uK (x, t)) · ∇uK (x, t) dx

−
∫
K

b(x) · uK (x, t) dx−
∫
∂K∩∂Bt

t(x) · uK (x, t) dH2.(3.4)

We call stationary point for AT any map u ∈ H1
(
(t0, tf ) ,RN

)
satisfying for any

time interval I ∈ E , any node a in T , and any wa ∈ ua + H1
0

(
I,R3

)
the weak

balance∫
I

mau̇a (t) · ẇa (t) dt =
∫
I

∑
{K|a∈K}

(∫
K

(C∇uK (x, t))∇Na (x) dx

)
· wa (t) dt

−
∫
I

∑
{K|a∈K}

(∫
K

Na (x) b (x) dx+
∫
∂K∩∂Bt

Na(x)t (x) dH2

)
· wa (t) dt,

where ma :=
∑
{K|a∈K}mK,a.

Standard results about finite elements imply the theorem below (see [5]).

Theorem 2. Consider a family (Tm) of regular triangulations of B, with m > 0 the
mesh size of Tm. Let also um ∈ VTm be a stationary point for ATm . The sequence
(um) converges in H1

(
B × (t0, tf ) ,R3

)
to a stationary point of A.

The discretization of the time interval follows the guidelines indicated in the first
section. A partition Θ := {ti}i=0,...,NΘ

of [t0, tf ] with tNΘ = tf is selected. Its size
is the value maxi (ti+1 − ti) . Each K ∈ T is endowed with an elemental time set
which is an ordered subset ΘK of Θ. By relabeling the elements we write

ΘK =
{
t0 = t1K < ... < tNK−1

K < tNKK = tf

}
.

We assume Θ = ∪K∈T ΘK and, for the sake of simplicity, we presume also that
ΘK ∩ ΘK′ 6= ∅ for any K, K ′ ∈ T with K 6= K ′. We denote also by TΘ the
maximum of the elemental time sizes, namely

TΘ := max
K

max
ΘK

(tj+1
K − tjK).

The circumstance that each finite element can be endowed with a different time
set is the basic characteristic of asynchronous variational integrators as mentioned
in Section 1: if one imposes appropriate choices of elemental time sets, one may
prove conservation of energy in discrete time (in the sense specified above). Take
note that in principle such choices could not exist (see relevant comments in [7]).
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For a node a in T , elemental time sets define also the nodal time set Θa by

Θa :=
⋃

{K | a∈K}

ΘK =
{
t0 = t1a < ... < tNa−1

a < tNaa = tf
}
,

by relabeling the elements.
To measure the asynchronicity of Θ, we consider the ratio

(3.5) MΘ :=
maxK∈T

(
maxΘK

(
tj+1
K − tjK

))
minK∈T

(
minΘK

(
tj+1
K − tjK

)) .
Then notice that 2

(3.6) TΘ ≤ Card(T )MΘh,

where h denotes the size of Θ.
Amid possible choices, we assume that each node a ∈ T follows a linear trajec-

tory within each time interval with end points that are consecutive instants in Θa.
Such a choice characterizes the class of AVIs we analyze here. Then we denote by
YΘ the subspace of functions in L2

(
(t0, tf ) ,RN

)
which are continuous and with

piecewise constant time rates in the intervals in Θa. Thus, for each u ∈ YΘ, a ∈ T ,
tia ∈ Θa and t ∈

[
tia, t

i+1
a

)
we have

u̇a (t) =
ua
(
ti+1
a

)
− ua

(
tia
)

ti+1
a − tia

.

Then, by following [7], the discrete action sums in time is defined for u ∈ YΘ by
(1.4), that is

AT ,Θ (u, I) :=
∑
K∈T

∑
{j|[tjK ,tj+1

K ]⊆I}
Aj (K;uK)

where, for the displacements uK of the generic finite element K, Aj (K;uK) is
defined also by

Aj (K;uK) :=
∑
a∈K

∑
{i|tia∈[tjK ,tj+1

K )}

1
2
mK,a

(
ti+1
a − tia

) ∣∣u̇a (tia)∣∣2
−(tj+1

K − tjK)VK(uK(tj+1
K )),

with VK given by (3.4) and I ∈ E . Such a choice gives rise to explicit integrators
of central-difference type and is only one of the possible schemes that can be used.

It is convenient to define all action sums on the same function space to avoid to
link the function space itself to the choice of Θ. For this reason we extend AT ,Θ
to +∞ on Y \YΘ, where Y = L2

(
(t0, tf ) ,RN

)
is endowed with the usual metric.

2Indeed, by definition of time size we have tf − t0 ≤ Card(Θ)h, and since

Card (Θ) min
K∈T

(min
ΘK

(tj+1
K − tjK)) ≤ Card (T ) (tf − t0)

we infer that

min
K∈T

(min
ΘK

(tj+1
K − tjK)) ≤ Card (T )h.

Inequality (3.6) then follows by definition of MΘ (see (3.5)).
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Namely, by recalling (1.4) (i.e. the definition of AT ,Θ (u, I) rewritten above), with
a little abuse of notation, we put

(3.7) AT ,Θ (u, I) =
{
AT ,Θ (u, I) for u ∈ YΘ

+∞ for u ∈ Y \YΘ

The discrete variational principle

δAT ,Θ = 0,

with δ indicating the first variation, implies that for all a ∈ T \∂Bu and tia ∈ (t0, tf ]
discrete Euler-Lagrange equations have to be satisfied. They read

ma

(
u̇a
(
ti−1
a

)
− u̇a

(
tia
))

= (tj+1
K − tjK)

∫
K

(
C∇uK

(
x, tj+1

K

))
∇Na (x) dx

−(tj+1
K − tjK)

(∫
K

Na (x) b (x) dx+
∫
∂K∩∂Bt

Na (x) t (x) dH2

)
,(3.8)

where K is the sole element in T for which tia ∈ ΘK and tia = tj+1
K .

Given initial conditions u (t0) and u̇ (t0), the discrete Euler-Lagrange equations
(3.8) define inductively a trajectory u piecewise affine in time, a trajectory which
is a (discrete) stationary point for AT ,Θ.

Extensions of AVIs are possible: their possibility generates open problems. As
regards this aspect, in [8] the possible formulation of implicit AVIs and the parallel
implementation of AVI methods are mentioned as possible extensions of the actual
proposals (some details are also given). Briefly, here we may add the indication of
some other possible paths. AVIs seem to be a useful tool for analyzing problems
with multiple time scales, such as chemical reactions. Also, they could be profitably
used in circumstances in which defects or phase interfaces have their own dynamics
relative to the rest of the body. From the numerical analysis aside, a non-trivial
point could be the construction of AVIs for the dynamics of maps taking values in
the unit sphere S2 (a related mechanical example is the dynamics of bodies with
magnetic spins). As regards the application of AVIs to the dynamics of complex
bodies3, application mentioned amid potentialities even in [7] (at the beinning of
Section 5 there), we mention that in general the peculiar kinetic energy of material
microstructure could not have in principle the standard simple quadratic form in
(1.1) (in general it can be considered as a Finsler metric over the manifold of sub-
structural shapes). This last circumstance may generate additional computational
difficulties in special cases.

4. Proof of Theorem 1

4.1. Strategy. To prove the convergence of asynchronous variational integrators in
linear elastodynamics, we adapt here the strategy used in [13] and [9] for analyzing
the convergence of variational integrators for the zero-dimensional oscillator (a mass
point connected to an elastic massless spring). The essential structure is listed
below.

3We remind that bodies are called complex when their material texture at various scales (sub-

structure) prominently influences the gross mechanical behavior by means of interactions power-
conjugated with substuctural changes. Liquid crystals, quasicrystals, ferroelectrics, polymeric

bodies are common examples used in engineering applications.
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(i): First we need to establish a priori L∞ estimates for the velocity of sta-
tionary points of the discrete actions. Of course here stationarity does not
mean independence of time.

(ii): Then we show that stationary points of the discrete action sums are
minimizers in short-time intervals.

(iii): Finally we analyze the convergence of such stationary points in the limit
h→ 0+, that is as the time size of the discretization goes to zero.

4.2. Preliminary results. In the developments below we find inequalities involv-
ing constants that depend on the data of the problem, on the tessellation T of finite
elements selected and are independent of the time set Θ. Since it is not essential
to distinguish from one specific constant to another, we indicate all of them by the
same letter c, leaving understood that c changes from one inequality to another.

As suggested in [9], L∞ estimates on the velocity of stationary points can be
derived by exploiting directly the discrete Euler-Lagrange equations and the growth
conditions of the potential energy density.

Proposition 1. Given initial conditions u (t0) and u̇ (t0), there exists a constant
k > 0 depending on the initial conditions themselves and on the data of the problem
such that, for every entire time set Θ and u ∈ YΘ solution to the discrete Euler-
Lagrange equations, it satisfies the inequality

(4.1) ‖u̇‖L∞((t0,tf ),RN ) ≤ k exp (kMΘ) .

Proof. Fix a node a in the tessellation T and a nodal time tia ∈ Θa. By assumption
there exists a unique K ∈ T such that tia ∈ ΘK , with tia = tj+1

K . Moreover, the
definition of nodal time set yields tia = t

i(α)
α ∈ Θα for all the other nodes α ∈ K.

Thus the discrete Euler-Lagrange equations (3.8) entail

ma|u̇a
(
tia
)
− u̇a

(
ti−1
a

)
| ≤ c(tj+1

K − tjK)(
∑
α∈K
|uα(ti(α)

α )|+ 1).

By taking into account that the maps uα are piecewise affine in time, it is easy to
get∣∣u̇a (tia)− u̇a (ti−1

a

)∣∣
≤ c(tj+1

K − tjK)
∑
α∈K

(|uα (t0)|+
i(α)−1∑
l=0

(
tl+1
α − tlα

) ∣∣u̇α (tlα)∣∣) + c(tj+1
K − tjK)

≤ c(tj+1
K − tjK)

∑
a∈K

(|uα (t0)|+ (tf − t0) ‖u̇α‖L∞
“

[t0,t
i(α)−1
α ],RN

”) + c(tj+1
K − tjK).

By recalling that Θ := {tl}, l = 1, ..., NΘ, and assuming tia = ts+1 ∈ Θ, the latter
inequality yields

(4.2) ‖u̇α‖L∞((t0,ts+1),R3) ≤ c(t
j+1
K − tjK) + (1 + c(tj+1

K − tjK)) ‖u̇‖L∞((t0,ts),RN ) .

In particular, by setting βl := ‖u̇‖L∞((t0,tl),RN ), we infer from (4.2)

βs+1 ≤ cTΘ + (1 + cTΘ)βs.
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By iterating such an inequality we obtain

βs+1 ≤ cTΘ

s∑
i=0

(1 + cTΘ)i + β0 (1 + cTΘ)s+1

≤ (1 + β0) (1 + cTΘ)s+1 ≤ c (1 + cTΘ)Card(Θ)
,(4.3)

where Card (·) denotes the cardinality of the relevant set.
Eventually, since Card (Θ) ≤ Card (T ) (tf − t0)MΘ/TΘ, with MΘ defined in

(3.5), the inequality (4.3) implies

‖u̇‖L∞((t0,tf ),RN ) = βCardΘ ≤ c (1 + cTΘ)Card(T )(tf−t0)MΘ/TΘ ,

and (4.1) follows. �

Proposition 2. There exists a constant κ > 0 depending only on the tessellation T
such that given initial conditions u (t0), u̇ (t0), for every entire time set Θ and u ∈
YΘ solution to the discrete Euler-Lagrange equations, u is a local minimizer of the
functional AT ,Θ (·, I), namely AT ,Θ (u, I) ≤ AT ,Θ (v, I) for any v ∈ u+H1

0

(
I,RN

)
,

provided that I ∈ E satisfies L1(I) ≤ κ.

Proof. Fix an interval I = (t1, t2) ∈ E and define for any K ∈ T the time interval
IΘ
K = ∪j

{
[tjK , t

j+1
K ]|[tjK , t

j+1
K ] ⊆ I

}
. We consider local perturbations v = u + w

with w ∈ YΘ ∩ H1
0

(
I,RN

)
. For w ∈ H1

0

(
I,RN

)
\YΘ, the action AT ,Θ (u+ w, I)

would be infinite (see (3.7)).
Since u ∈ YΘ satisfies the Euler-Lagrange equations (3.8), a direct computation

yields

AT ,Θ (u+ w, I)−AT ,Θ (u, I) =
1
2

∑
K∈T

∫
IΘ
K

∑
a∈K

mK,a |ẇa (t)|2 dt

−
∑
K∈T

∑
{j|[tjK ,tj+1

K ]⊆I}
(tj+1
K − tjK)

∫
K

(C∇wK(x, tj+1
K )) · ∇wK(x, tj+1

K ) dx.

Furthermore, once an element K in T and a node a in K are selected, by taking
into account that wa is piecewise affine and belongs also to H1

0

(
I,R3

)
, we have

that wa vanishes outside IΘ
K . The reason is that I\int(IΘ

K), with int(IΘ
K) the set of

interior points of IΘ
K , does not contain any closed interval with endpoints in ΘK .

By taking into account that supB |∇w (·, t)| ≤ c |w (t)|, Hölder inequality gives∫
K

(C∇wK(x, tj+1
K )) · ∇wK(x, tj+1

K ) dx ≤ c (t2 − t1)
∫
IΘ
K

|ẇK (t)|2 dt,

with ẇK the vector of nodal velocities for nodes in K.
In turn the last inequality implies for m := mina∈T mK,a

AT ,Θ (u+ w, I)−AT ,Θ (u, I) ≥
∑
K∈T

∫
IΘ
K

(
m

2
− c (t2 − t1)2) |ẇK (t)|2 dt.

The statement of Proposition 2 then follows provided that (t2 − t1)2 ≤ m
2c . �

Before giving the proof of Theorem 1 we need to establish some technical results.
The first one is an easy consequence of Lemma 4.3 in [13].
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Lemma 1. Let Θh be any entire time sets for [t0, tf ] with time size h. For any
I ∈ E and u ∈ H1

(
I,RN

)
there exists uh ∈ H1

(
I,RN

)
∩ YΘh such that uh → u

strongly in H1
(
I,RN

)
as h goes to zero.

Lemma 2. Given entire time sets Θh for [t0, tf ] indexed by the time size h and
characterized by suphMΘh < +∞, for every sequence (uh) such that uh ∈ YΘh ,
|u̇h|2 is weakly convergent in L1

(
I,RN

)
, and suph ‖uh‖L∞(I,RN ) < +∞, one gets

lim
h→0+

(AT (uh, I)−AT ,Θh (uh, I)) = 0.

Proof. Let Θ be a generic time set with maximum elemental time size TΘ. For
every K ∈ T consider the interval IΘ

K := ∪j
{

[tjK , t
j+1
K ]|[tjK , t

j+1
K ] ⊆ I

}
, and notice

that L1
(
I\IΘ

K

)
≤ 2TΘ.

For any u ∈ YΘ we have

|AT (u, I)−AT ,Θ (u, I)| ≤
∑
K∈T

∫
I\IΘ

K

(
∑
a∈K

mK,a

2
|u̇a (t)|2 + VK (uK (t))) dt

+
∑
K∈T

∑
{j|[tjK ,tj+1

K ]⊆I}

∫ tj+1
K

tjK

∣∣∣VK (uK (t))− VK(uK(tj+1
K ))

∣∣∣ dt =: J1 + J2.

A direct computation and (3.2), namely supB |∇u(·, t)| ≤ c |u (t)|, yield

(4.4) J1 ≤ c
∑
K∈T

(
‖u̇K‖2L2(I\IΘ

K ,R12) + 2TΘ ‖uK‖2L∞(I,R12)

)
.

For what the term J2 is concerned notice that by using Hölder inequality we have
for every t ∈ [tjK , t

j+1
K ]∣∣∣VK (uK(t))− VK(uK(tj+1

K ))
∣∣∣ ≤ c‖uK‖L∞(I,R12)|uK(t)− uK(tj+1

K )|

≤ c(tj+1
K − t)1/2‖uK‖L∞((tjK ,t

j+1
K ),R12)‖u̇K‖L2((tjK ,t

j+1
K ),R12).

Integrating over (tjK , t
j+1
K ) and summing on j give

(4.5) J2 ≤ c
∑
K∈T

(
T

1/2
Θ L1(IΘ

K) ‖uK‖L∞(I,R12) ‖u̇K‖L2(I,R12)

)
.

The conclusion follows straightforward from (4.4) and (4.5) when we choose
sequences (Θh) and (uh) as those in the statement of the lemma by taking into
account that (3.6) implies the convergence of (TΘh) to zero as the time size h
vanishes if suphMΘh < +∞. �

4.3. Proof of Theorem 1. Pre-compactness of (uh) inW 1,∞ ((t0, tf ) ,RN
)

follows
easily from Proposition 1 since the ratios MΘh are bounded uniformly with respect
to h by assumption. Then denote by u ∈ W 1,∞ ((t0, tf ) ,RN

)
a cluster point of

(uh). By Ascoli-Arzelà theorem we may suppose uh → u uniformly on [t0, tf ] up
to a subsequence not relabeled for convenience.

The proof that u is a stationary point for AT follows by showing that, for every
I = (t1, t2) ∈ E with L1(I) ≤ κ, κ the constant in Proposition 2, one gets

(4.6) AT (u, I) ≤ AT (w, I) ,

for any w ∈ u+H1
0

(
I,RN

)
.



CONVERGENCE OF AVIS 13

Take note first that AT (·, I) is lower semicontinuous under weak−∗ convergence
in W 1,∞. As a consequence, the weak−∗ convergence in W 1,∞ (I,RN) of (uh) and
Lemma 2 imply

(4.7) AT (u, I) ≤ lim inf
h→0+

AT (uh, I) = lim inf
h→0+

AT ,Θh (uh, I) .

Furthermore, Lemma 1 provides a sequence (wh), with wh ∈ YΘh , converging to w
strongly in H1

(
I,RN

)
. Consequently the action AT (·, I) is continuous along the

sequence (wh). Then the use of Lemma 2 implies

(4.8) AT (w, I) = lim
h→0+

AT (wh, I) = lim
h→0+

AT ,Θh (wh, I) .

Thus, if wh − uh ∈ H1
0

(
I,RN

)
, the result in Proposition 2, the estimate (4.7) and

the limit (4.8) imply

AT (u, I) ≤ lim inf
h→0+

AT ,Θh (uh, I) ≤ lim
h→0+

AT ,Θh (wh, I) = AT (w, I) .

To cover cases in which the boundary values are not matched on ∂I, notice that,
in view of Sobolev embedding, uh − wh → 0 uniformly on Ī, hence there exists ph
vectors, with components that are linear polynomials, such that uh = wh + ph on
∂I and also ph → 0 strongly in W 1,∞ (I,RN). Such a circumstance and (4.8) imply

(4.9) AT (w, I) = lim
h→0+

AT ,Θh (wh, I) = lim inf
h→0+

AT ,Θh (wh + ph, I) .

By Proposition 2 and by collecting (4.7) and (4.9), it follows that

AT (u, I) ≤ lim inf
h→0+

AT ,Θh (uh, I)

≤ lim
h→0+

AT ,Θh (wh + ph, I) = AT (w, I) ,

which concludes the proof. �
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