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Abstract. We study the nonlinear fractional equation (−∆)su = f(u) in Rn, for

all fractions 0 < s < 1 and all nonlinearities f . For every fractional power s ∈ (0, 1),

we obtain sharp energy estimates for bounded global minimizers and for bounded

monotone solutions. They are sharp since they are optimal for solutions depending

only on one Euclidian variable.

As a consequence, we deduce the one-dimensional symmetry of bounded global

minimizers and of bounded monotone solutions in dimension n = 3 whenever 1/2 ≤
s < 1. This result is the analogue of a conjecture of De Giorgi on one-dimensional

symmetry for the classical equation −∆u = f(u) in Rn. It remains open for n = 3

and s < 1/2, and also for n ≥ 4 and all s.

1. Introduction and results

In this paper we establish energy estimates for some bounded solutions of the

fractional nonlinear equation

(−∆)su = f(u) in Rn, (1.1)

for every 0 < s < 1, where f : R→ R is a C1,γ function for some γ > max(0, 1− 2s).

In [4], we considered the case s = 1/2 and established sharp energy estimates

for bounded global minimizers in every dimension n, and for bounded monotone

solutions in dimension n = 3. As a consequence, we deduced one-dimensional (or

1-D) symmetry for these types of solutions in dimension n = 3.

This result about 1-D symmetry is the analogue of a conjecture of De Giorgi for

the Allen-Cahn equation −∆u = u − u3 in Rn. More precisely, in 1978 De Giorgi

conjectured that the level sets of every bounded solution of the Allen-Cahn equation

which is monotone in one direction must be hyperplanes, at least if n ≤ 8. That is,

such solutions depend only on one Euclidean variable. The conjecture was proven to

be true in dimension n = 2 by Ghoussoub and Gui [16] and in dimension n = 3 by
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Ambrosio and the first author [3]. For 4 ≤ n ≤ 8, if ∂xnu > 0, and assuming the

additional condition

lim
xn→±∞

u(x′, xn) = ±1 for all x′ ∈ Rn−1,

it has been established by Savin [23]. More recently, a counterexample to the conjec-

ture for n ≥ 9 has been found by Del Pino, Kowalczyk, and Wei [13].

In this paper (see Theorem 1.5 below), we establish the one-dimensional symmetry

of bounded global minimizers and of bounded monotone solutions of (1.1) in dimen-

sion n = 3 for every 1/2 ≤ s < 1. This is the analogue of the conjecture of De

Giorgi for the operator (−∆)s. Our result applies to all nonlinearities f ∈ C1,γ,

γ > max{0, 1− 2s}.
In dimension n = 3, in [4] we proved the same result for s = 1/2. For n = 3 and

0 < s < 1/2 the question remains open, as well as for n ≥ 4 and any 0 < s < 1.

For n = 2 and s = 1/2, the one-dimensional symmetry of bounded stable solutions

of (1.1) was proven by the first author and Solà-Morales [7]. The same result in

dimension n = 2 for every fractional power 0 < s < 1 has been established by the

first author and Sire [6] and by Sire and Valdinoci [28]. Recall that the class of stable

solutions includes all global minimizers, as well as all monotone solutions.

The existence of 1-D monotone solutions (also called “layers”) has been established

by the first author and Sire in [5, 6] for all nonlinearities f (not necessarily odd) for

which its primitive (up to a sign) is a potential of “double-well type”. In fact, [5, 6]

establish that this is a necessary and sufficient condition on f for a 1-D monotone

solution to exist. Our 1-D symmetry result for monotone solutions in R3 will use

both the 1-D symmetry result in R2 of [6] and (since it applies to all nonlinearities

f) the necessary conditions on f proved in [5] for a monotone solution in R to exist.

As in [4], a crucial ingredient in the proof of 1-D symmetry is a sharp energy

estimate for bounded global minimizers and for bounded monotone solutions. These

are Theorems 1.2 and 1.4. Our estimates are sharp since they are optimal for solutions

depending only on one Euclidian variable.

The classical connection between the Allen-Cahn equation and minimal surfaces (or

the perimeter functional) is the motivation behind the conjecture of De Giorgi. The

following are some results in this direction but concerning the fractional Laplacian. In

[17] M.d.M. González proved that an energy functional related to fractional powers s

of the Laplacian (for 1/2 < s < 1) Γ-converges to the classical perimeter functional.

The same result for s = 1/2 had been proven by Alberti, Bouchitté, and Seppecher

in [2]. In [10] Caffarelli and Souganidis prove that scaled threshold dynamics-type

algorithms corresponding to fractional Laplacians converge to certain moving fronts.
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More precisely, when 1/2 ≤ s < 1 the resulting interface moves by a weighted mean

curvature, while for 0 < s < 1/2 the normal velocity is nonlocal of fractional-type.

Later, Caffarelli, Roquejoffre, and Savin [8] set up the theory of nonlocal s-minimal

surfaces for 0 < s < 1/2. Palatucci, Savin, and Valdinoci [22, 24, 25] have established

precise relations between s-minimal surfaces and the interfaces of semilinear phase

transition equations driven by the fractional Laplacian. See Remark 1.6 for more

comments on s-minimal surfaces.

To study the nonlocal problem (1.1), we will realize it as a local problem in Rn+1
+

with a nonlinear Neumann condition. More precisely, Caffarelli and Silvestre [9]

proved that u is a solution of problem (1.1) in Rn if and only if v, defined on Rn+1
+ =

{(x, λ) : x ∈ Rn, λ > 0}, is a solution of the problemdiv(λ1−2s∇v) = 0 in Rn+1
+ ,

−ds limλ→0 λ
1−2s∂λv = f(v) on Rn,

(1.2)

where v(x, 0) = u(x) on Rn = ∂Rn+1
+ and

ds = 22s−1 Γ(s)

Γ(1− s)

is a positive constant. The fact that this constant does not depend on n is already

shown in section 3.2 of [9]. Its precise value has been computed in several papers;

see, e.g., [15, 29]. Using that sΓ(s) = Γ(s + 1) and (1 − s)Γ(1 − s) = Γ(2 − s) we

deduce, respectively, that

ds
(2s)−1

→ 1 as s→ 0 and
ds

2(1− s)
→ 1 as s→ 1.

Thus, ds blows-up as s→ 0 and ds tends linearly to zero as s→ 1.

In the sequel, the extension v of u in Rn+1
+ which satisfies div(λ1−2s∇v) = 0 will be

named “the s-extension of u”.

Observe that for every 0 < s < 1, we have that −1 < 1−2s < 1 and thus the weight

λ1−2s which appears in (1.2) belongs to the Muckenhoupt class A2. As a consequence,

the theory developed by Fabes, Kenig, and Serapioni [14] applies to problem (1.2)

and thus a Poincaré inequality, a Harnack inequality, and Hölder regularity hold for

solutions of our problem. As shown by the first author and Sire [5], solutions to (1.2)

are Cβ(Rn+1
+ ) for some β ∈ (0, 1). But in general they have no further regularity in

λ; note that λ2s (even that it is unbounded) solves (1.2) with f identically constant.

The trace u(·, 0) on {λ = 0} of a bounded solution of (1.2) is however a C2,β(Rn)

function; see [5]. We will also use some gradient estimates from [5] which apply to
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solutions of (1.2) (see Remark 1.10 below) and that will be important in the proof of

our energy estimates.

Problem (1.2) associated to the nonlocal equation (1.1) allows to introduce a notion

of energy and global minimality for a solution u of problem (1.1).

Consider the cylinder

CR = BR × (0, R) ⊂ Rn+1
+ ,

where BR is the ball of radius R centered at 0 in Rn, and the energy functional

Es,CR(v) = ds

∫
CR

1

2
λ1−2s|∇v|2dxdλ+

∫
BR

G(v(x, 0))dx, (1.3)

where G′ = −f and thus G is defined up to an additive constant. Observe that Es,CR
is the energy functional associated to problem (1.2). We can now give the following

definition. Let us denote, for Ω ⊂ Rn+1
+ , the Sobolev space H1(Ω, λ1−2s) made of

functions v with λ1−2s(v2 + |∇v|2) ∈ L1(Ω).

Definition 1.1. a) We say that a bounded Cβ
loc(R

n+1
+ ) ∩H1

loc(R
n+1
+ , λ1−2s) func-

tion v is a global minimizer of (1.2) if, for all R > 0,

Es,CR(v) ≤ Es,CR(w),

for every H1(CR, λ
1−2s) function w such that v ≡ w in ∂CR \ {λ = 0}.

b) We say that a bounded C1 function u in Rn is a global minimizer of (1.1) if

its s-extension v is a global minimizer of (1.2).

c) We say that a bounded function u is a layer solution of (1.1) if u is a solution,

it is monotone increasing in one of the x-variables, say ∂xnu > 0 in Rn, and

lim
xn→±∞

u(x′, xn) = ±1 for every x′ ∈ Rn−1. (1.4)

We recall that every layer solution is a global minimizer (see [6]). This is proved

using the sliding method. Note that the weight λ1−2s does not depend on the hori-

zontal variables x1, ..., xn, and hence problem (1.2) is invariant under translations in

the directions x1, ..., xn.

Our first result is the following energy estimate for global minimizers of problem

(1.1). In particular it applies also to layer solutions. Given a nonlinearity f and a

bounded function u defined on Rn, set

G(u) =

∫ 1

u

f and

cu = min{G(s) : inf
Rn
u ≤ s ≤ sup

Rn
u}. (1.5)
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Theorem 1.2. Let s ∈ (0, 1), f be any C1,γ nonlinearity with γ > max{0, 1 − 2s},
and let u : Rn → R be a bounded global minimizer of (1.1). Let v be the s-extension

of u in Rn+1
+ .

Then, for all R > 2,

Es,CR(v) = ds

∫
CR

1

2
λ1−2s|∇v|2dxdλ+

∫
BR

{G(u)−cu}dx ≤ CRn−2s

∫ 1

1/R

ρ−2sdρ, (1.6)

where cu is defined by (1.5), and C is a positive constant depending only on n, s,

||f ||C1,γ([infRn u,supRn u]), and ||u||L∞(Rn).

As a consequence, for some constant C depending on the same quantities as before,

we have

Es,CR(v) ≤ CRn−2s if 0 < s < 1/2, (1.7)

Es,CR(v) ≤ CRn−1 logR if s = 1/2, (1.8)

Es,CR(v) ≤ CRn−1 if 1/2 < s < 1. (1.9)

For s = 1/2, the estimate was proved in our previous paper [4]. For s ∈ (0, 1) they

were announced in the second author Ph.D. Thesis [12]. More recently the estimates

have been proven with a different method (without using the extension problem) by

Savin and Valdinoci [24]. While their proof is simpler than ours, we develope further

results which are of independent interest. More precisely, an extension result (The-

orem 1.7) and a phase transition estimate (Theorem 1.9) both involving fractional

Sobolev norms with weights.

Remark 1.3. The energy estimate (1.7) is sharp. Indeed, for every bounded solution of

problem (1.1) the energy is also bounded below by c1R
n−2s for some constant c1 > 0.

This is a consequence of a monotonicity formula (Proposition 3.2) that we prove in

section 3.

Moreover, also when 1/2 ≤ s < 1 the energy estimates (1.8) and (1.9) are sharp

since they are optimal for 1-D layer solutions, in the sense that for these solutions the

energy is also bounded below by c2R
n−1 logR (if s = 1/2) and c2R

n−1 (if s > 1/2),

for some constant c2 > 0, when they are seen as solutions in Rn. When s > 1/2,

this follows immediately from Fubini’s theorem. Indeed, if v = v(xn, λ) is a 1-D layer
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solution of (1.2) then, for R > 1 we have (note that G(u)− cu ≥ 0 in Rn)

Es,C√nR(v) ≥ Es,(−R,R)n×(0,R)(v) = ds

∫
(−R,R)n×(0,R)

1

2
λ1−2s|∇v(xn, λ)|2dxdλ+

+

∫
(−R,R)n

{G(v(xn, 0))− cu}dx

= Rn−1

{
ds

∫ R

0

dλ

∫ R

−R

1

2
λ1−2s|∇v|2dxn +

∫ R

−R
{G(v(xn, 0))− cu}dxn

}
≥ Rn−1ds

∫ 1

0

dλ

∫ 1

−1

1

2
λ1−2s|∇v(xn, λ)|2dxn = CRn−1.

In our next result we establish that in dimension n = 3 the energy estimate (1.6)

holds also for bounded monotone solutions without the limit assumption (1.4). These

solutions can only be guaranteed to be minimizers among a certain class of functions

(see Proposition 6.2), but could fail to be global minimizers as defined before.

Theorem 1.4. Let n = 3, f be any C1,γ nonlinearity with γ > max{0, 1 − 2s} and

u be a bounded solution of (1.1) such that ∂eu > 0 in R3 for some direction e ∈ R3,

|e| = 1. Let v be the s-extension of u in R4
+.

Then, v satisfies the energy estimate (1.6) with n = 3.

In dimension n = 3 and for every 1/2 ≤ s < 1, Theorems 1.2 and 1.4 lead to the

1-D symmetry of bounded global minimizers and of bounded monotone solutions of

problem (1.1). For s = 1/2 this was proved in our previous paper [4].

Theorem 1.5. Assume that n = 3 and 1/2 ≤ s < 1. Let f be any C1,γ nonlinearity

with γ > max{0, 1 − 2s} and u be either a bounded global minimizer of (1.1), or a

bounded solution of (1.1) which is monotone in some direction e ∈ R3, |e| = 1, i.e.,

it satisfies ∂eu > 0 in R3.

Then, u depends only on one variable, i.e., there exists a ∈ R3 and g : R → R,

such that u(x) = g(a · x) for all x ∈ R3. Equivalently, the level sets of u are planes.

Remark 1.6. In [8] Caffarelli, Roquejoffre, and Savin introduced and developed a

regularity theory for nonlocal minimal surfaces. These surfaces, defined for 0 < s <

1/2, can be interpreted as a non-infinitesimal version of classical minimal surfaces and

arise when minimizing in an appropriate way the Hs-norm of the indicator function.

Note that when 0 < s < 1/2 the indicator functions belong to Hs and the extension

problem (1.2) is a well posed problem for indicator functions. The authors also proved

a sharp energy estimate CRn−2s related to ours in some sense: our equation is the

Allen-Cahn approximation of these nonlocal minimal surfaces. The flatness of any
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s-minimal surface in all Rn is only known in dimension n = 2 by a recent result of

Savin and Valdinoci [26] (this is the analogue statement to that of the conjecture of

De Giorgi). The same statement for s sufficiently close to 1/2 and n ≤ 7 had been

proved by Caffarelli and Valdinoci [11].

To prove 1-D symmetry, we use a Liouville type argument which requires an ap-

propriate estimate for the Dirichlet energy. By a result of Moschini [19], if the energy

estimate ∫
CR

|∇v|2dxdλ ≤ CR2 logR

holds (note the exponent 2 in R2 logR), then one may use such Liouville type result

and deduce 1-D symmetry in Rn for global minimizers and for solutions which are

monotone in one direction. Now, by Theorems 1.2 and 1.4, we have that∫
CR

1

2
λ1−2s|∇v|2dxdλ ≤ CR2 logR

holds for n = 3 and every 1/2 ≤ s < 1. Instead, if 0 < s < 1/2, the sharp estimate is∫
CR

1

2
λ1−2s|∇v|2dxdλ ≤ CR3−2s.

Since 3− 2s > 2 when 0 < s < 1/2, one can not use the Liouville argument. This is

the reason why we can prove 1-D symmetry only for n ≤ 3, and in case n = 3 only

for 1/2 ≤ s < 1.

We have two different proofs of our energy estimate (1.6).

The first one is simple but applies only to bistable nonlinearities (such as the

Allen-Cahn nonlinearity f(u) = u − u3) and to monotone solutions satisfying the

limit assumption (1.4) or the more general (2.3) below. We present this very simple

proof in section 2. It was found by Ambrosio and the first author [3] to prove the

optimal energy estimate for −∆u = u − u3 in Rn. In this specific case of bistable

nonlinearities and monotone solutions satisfying (2.3), our energy estimate is uniform

as s ↑ 1. On the contrary, the energy estimate for global minimizers and general f

(as stated in Theorem 1.2) is not uniform as s ↑ 1. Instead, the estimate in [24] is

uniform as s ↑ 1, even if not stated in that paper.

Our second proof applies in more general situations and will lead to Theorems 1.2

and 1.4. It is based on controlling the weighted H1(CR, λ
1−2s)-norm of the solution

v by certain weighted fractional Sobolev norms of the trace of v on ∂CR.

Let us recall the definition of the Hs(A)-norm of a function for 0 < s < 1, where A

is either a bounded Lipschitz domain of Rn, or A = ∂Ω and Ω is a bounded Lipschitz
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domain of Rn+1. It is given by

||w||2Hs(A) = ||w||2L2(A) +

∫
A

∫
A

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z),

where dHn denotes the n-dimensional Hausdorff measure. In the sequel we will use

it for Ω = C1 = B1 × (0, 1) ⊂ Rn+1 and A = ∂C1.

To prove Theorem 1.2, we use the following comparison argument. We construct a

comparison function w which takes the same values of v on ∂CR ∩ {λ > 0} and thus,

by minimality of v,

ECR(v) ≤ ECR(w).

Then, it is enough to estimate the energy of w.

For simplicity, consider the case of the Allen-Cahn nonlinearity. We define the

function w(x, λ) in CR in the following way. First we define w(x, 0) on the base of

the cylinder as a smooth function g(x) which is identically equal to 1 in BR−1 and

g(x) = v(x, 0) for |x| = R; then we define w(x, λ) as the unique solution of the

Dirichlet problem 
div(λ1−2s∇w) = 0 in CR

w(x, 0) = g(x) on BR × {λ = 0}
w(x, λ) = v(x, λ) on ∂CR ∩ {λ > 0}.

(1.10)

Since by definition w ≡ 1 on BR−1 × {0}, then the potential energy is bounded by

C|BR \BR−1| = CRn−1. Thus, it remains to estimate the Dirichlet energy.

To do this we proceed in two steps. First, after rescaling, we apply Theorem 1.7

below, to control the Dirichlet norm of w1 (where w1 is the rescaled version of w) in

C1 by some fractional Sobolev norms of its trace on ∂C1. Then, we use Theorem 1.9

below to give an estimate of these fractional norms.

We recall that in the proof of the estimate for the Dirichlet energy for s = 1/2

a crucial point was an extension theorem which let us control the H1(C1)-norm of

a function by the H1/2(∂C1)-norm of its trace. Here we are in a more complicated

situation, since we need to control the weighted H1(C1, λ
1−2s)-norm, with a weight

which degenerates or blows-up on a subset of ∂C1 (its bottom).

We introduce some notation. Let A be either a bounded Lipschitz domain in Rn or

A = ∂Ω where Ω is a bounded domain of Rn+1 with Lipschitz boundary. Let M ⊂ A

be an open set (relative to A) with Lipschitz boundary (relative to A) Γ = ∂M . We
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define the following two sets:

Bfrac =

A× A if 0 < s ≤ 1/2

M ×M if 1/2 < s < 1,
(1.11)

and

Bweig =

(A \M)× (A \M) if 0 < s ≤ 1/2

(A \M)× A if 1/2 < s < 1.
(1.12)

For every z, we denote dM(z) the Euclidean distance (either in Rn or in Rn+1) from

the point z to the set M . Set

a := 1− 2s ∈ (−1, 1).

In Theorem 1.7 we establish that, for any given function w defined on all ∂Ω, there

exists an extension w̃ of w to Ω whose H1(Ω, daM)-norm is controlled by a combination

of a Hs-norm and a H1/2(·, daM)-norm of its trace w. If h is a weight (that is, a

nonnegative function here), we indicate with Hs(∂Ω, h) the weighted Sobolev space

of functions w such that∫
∂Ω

h(z)w(z)2dHn(z) +

∫
∂Ω

∫
∂Ω

h(z)
|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z) < +∞.

Later we will apply our results in the case

Ω = C1, A = ∂C1, M = B1×{0}, and h = d1−2s
M (x, λ) = dist1−2s((x, λ),M) = λ1−2s.

For a general domain the result is the following.

Theorem 1.7. Let Ω be a bounded domain of Rn+1 with Lipschitz boundary ∂Ω and

M ⊂ ∂Ω an open subset (relative to ∂Ω) with Lipschitz boundary (relative to ∂Ω).

For z ∈ Rn+1, let dM(z) denote the Euclidean distance from the point z to the set M .

Let s ∈ (0, 1).

Then, for every w ∈ C(∂Ω) there exists an extension w̃ of w defined in Ω which

belongs to C1(Ω) ∩ C(Ω) and such that

∫
Ω

dM(z)1−2s|∇w̃|2dz ≤

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bfrac

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z) (1.13)

+C

∫ ∫
Bweig

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z),
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where Bfrac and Bweig are defined, respectively, in (1.11) and (1.12) with A = ∂Ω, and

C denotes a positive constant depending only on Ω, M , and s.

We have used the notations Bfrac and Bweig to indicate, respectively, the set in

which we compute the Hs-norm of w and the set in which we compute the weighted

H1/2(·, daM)-norm of w.

Remark 1.8. We denote by w the s-extension of w in Ω. Since w is the extension of

w in Ω which minimizes the quantity∫
Ω

dM(z)1−2s|∇w̃|2dz,

then inequality (1.13) holds, in particular, with w̃ replaced by w.

In two articles [20, 21], Nekvinda treated some extension and trace problems for

functions belonging to fractional Sobolev spaces, but his results are not applicable in

our situation. In [21], the author proved an extension theorem for functions belonging

to Hs(M), where M is, as before, a subset of ∂Ω. More precisely he proved that if

w ∈ Hs(M) then there exists an extension w̃ of w in Ω such that∫
Ω

dM(z)1−2s|∇w̃|2dz ≤ C||w||2Hs(M).

Notice that this theorem gives an extension for a function defined only on M . There

is no control on the extension near ∂Ω \ M —a control that we require. Instead,

in [20], he considered the case of a function w defined on ∂Ω \M and established

that there exists an extension w̃ of w in Ω with H1(·, daM)-norm controlled by some

weighted fractional norm of w in ∂Ω \M . In our situation, we need an extension

result to all of Ω for functions w defined on all of ∂Ω.

We conclude giving a key result in the proof of Theorem 1.2 on energy estimates

for minimizers. It will give control on the Hs double integrals above on A := ∂Ω

knowing the following assumptions on the function w defined on A.

Let A, M ⊂ A, Γ = ∂M , Bfrac, and Bweig be as in (1.11) and (1.12). Let D

denote all tangential derivatives to A and dΓ(z) denote the Euclidean distance from

the point z to the set Γ (either in Rn or in Rn+1). Note that here we deal with the

distance dΓ = d∂M to Γ = ∂M , in contrast with the distance dM to M appearing in

the weighted energies (1.13) above and (1.17) below.

In what follows we will assume that, for some constant cs, w satisfies these condi-

tions:
10



• for s ∈ (0, 1/2],

|Dw(z)| ≤


cs
ε

(
dΓ(z)

ε

)2s−1

if z ∈ A and dΓ(z) ≤ ε

cs
dΓ(z)

if z ∈ A and dΓ(z) > ε;
(1.14)

• for s ∈ (1/2, 1),

|Dw(z)| ≤


cs
ε

if z ∈ A and dΓ(z) ≤ ε
cs

dΓ(z)
if z ∈ A and dΓ(z) > ε.

(1.15)

Later we will use this result with

A = ∂C1, M = B1 × {λ = 0}, and Γ = ∂B1 × {λ = 0}.

In more general geometries the result is the following.

Theorem 1.9. Let A be either a bounded Lipschitz domain in Rn or A = ∂Ω where

Ω is a bounded domain of Rn+1 with Lipschitz boundary. Let M ⊂ A be an open set

(relative to A) with Lipschitz boundary (relative to A) Γ = ∂M . Let ε ∈ (0, 1/2) and

s ∈ (0, 1).

Suppose that, for some constant cs, w : A→ R is a Lipschitz function such that

|w(z)| ≤ cs (1.16)

and that w satisfies (1.14) and (1.15) for almost every z ∈ A.

Then,

Ψs(w) := ||w||2L2(A) +

∫ ∫
Bfrac

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z) ≤ C

∫ 1

ε

ρ−2sdρ,

(1.17)

where the sets Bfrac and Bweig are defined in (1.11) and (1.12), and C denotes a

positive constant depending on A, M , n, s, and cs.

As a consequence, for some constant C depending on the same quantities as before,

we have

Ψs(w) ≤


C if 0 < s < 1/2,

C| log ε| if s = 1/2,

Cε1−2s if 1/2 < s < 1.

In our case (A = ∂C1, M = B1 × {λ = 0}, Γ = ∂B1 × {λ = 0}), the constant C in

(1.17) only depends on n, s, and cs.
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Remark 1.10. In the proof of Theorem 1.2 the following gradient estimates for every

bounded solution v of problem (1.2) will be of utmost importance. Let f ∈ C1,γ for

some γ > max{0, 1− 2s}. Then, every bounded solution v of (1.2) satisfies, for some

constant cs, 
|∇xv(x, λ)| ≤ cs for every x ∈ Rn and λ ≥ 0;

|∇v(x, λ)| ≤ cs/λ for every x ∈ Rn and λ > 0;

|λ1−2s∂λv| ≤ cs for every x ∈ Rn and λ > 0.

(1.18)

For the bound |∇xv(x, 0)| ≤ cs for x ∈ Rn, see Silvestre [27], Lemmas 2.8 and 2.9 in

[27]. In this inequality the constant cs is uniformly bounded for s away from zero,

but not as s→ 0. For this reason the constant C in our energy estimate (1.6) is not

uniform for s close to zero. Using the maximum principle we can extend the bound

|∇xv(x, 0)| ≤ cs to every λ > 0 and deduce |∇xv(x, λ)| ≤ cs for every x ∈ Rn and

λ ≥ 0; see Proposition 4.6 of [5].

The bound |∇v(x, λ)| ≤ cs/λ for every x ∈ Rn and λ > 0 follows, after rescaling,

by interior elliptic estimates, since equation (1.2) is uniformly elliptic for λ > 0; see

Proposition 4.6 of [5]. In this bound the constant cs is also bounded as s ↑ 1.

Finally, the last bound |λ1−2s∂λv(x, λ)| ≤ cs for every x ∈ Rn and λ ≥ 0 is estab-

lished using that the function ṽ = λ1−2s∂λv satisfies the dual problem (with Dirichlet

boundary condition) div(λ2s−1∇ṽ) = 0 in Rn+1
+

ṽ = −f(u)

ds
on ∂Rn+1

+ ;

see also Proposition 4.6 of [5]. In this last gradient estimate, the constant cs is

uniformly bounded for s away from 1 but not as s → 1 (since ds/(1 − s) → 1 as

s → 1). For this reason, the constant C in our energy estimate (1.6) blows up for s

close to 1.

The paper is organized as follows:

• In section 2 we prove the energy estimate for layer solutions of bistable type

equations, using a simple argument introduced by Ambrosio and the first

author [3].

• In section 3 we establish a monotonicity formula for the energy functional

associated to problem (1.2).

• In section 4 we give the proof of the extension Theorem 1.7 and of the key

Theorem 1.9.

• In section 5 we prove Theorem 1.2.
12



• In section 6 we establish energy estimates for bounded monotone solutions in

R3 (Theorem 1.4).

• In section 7 we prove the 1-D symmetry result, that is Theorem 1.5.

2. Energy estimate for monotone solutions of bistable equations

In this section we consider potentials G(u) =
∫ 1

u
f satisfying the following hypoth-

esis:

G ≥ 0 = G(±1) in R and G > 0 in (−1, 1). (2.1)

An example is G(u) = 1
4
(1 − u2)2. In this case the nonlinearity is given by f(u) =

u−u3. In [5, 6] it is proved the existence of a 1-D layer solution for every nonlinearity

satisfying (2.1).

In the sequel we consider the energy

Es,CR(v) = ds

∫
CR

1

2
λ1−2s|∇v|2dxdλ+

∫
BR

G(v(x, 0))dx.

In the following theorem we establish energy estimates for monotone solutions of

(1.1) such that limxn→+∞ u(x′, xn) = 1 for all x′ ∈ Rn−1, assuming that the potential

G satisfies (2.1). We point out that here the constant appearing in our energy estimate

is uniformly bounded as s ↑ 1 (but not as s ↓ 0). Recall that we have defined the

cylinder CR = BR× (0, R), where BR is the ball centered at 0 and of radius R in Rn.

Theorem 2.1. Let f be a C1,γ function, with γ > max{0, 1 − 2s}. Suppose that

G(u) =
∫ 1

u
f satisfies (2.1). Let u be a solution of problem (1.1) in Rn, with |u| < 1,

and let v be the s-extension of u in Rn+1
+ .

Given any s0 ∈ (0, 1/2), assume that s0 < s < 1.

Suppose that

uxn > 0 in Rn (2.2)

and

lim
xn→+∞

u(x′, xn) = 1 for all x′ ∈ Rn−1. (2.3)

Then, v satisfies the energy estimate (1.6) for every R > 2, where the constant

C depends only on n, s0, and ||f ||C1,γ([−1,1]). In particular, for some constant C

depending on these three quantities, we have

Es,CR(v) ≤ C

1− 2s
R3−2s if s0 < s < 1/2 (2.4)

Es,CR(v) ≤ CR2 logR if s = 1/2 (2.5)

Es,CR(v) ≤ C

2s− 1
R2 if 1/2 < s < 1. (2.6)

13



Proof. As in [4], the proof uses an argument found by Ambrosio and the first author [3]

to prove an energy estimate for layer solutions of the analogue problem −∆u = f(u).

This method is based on sliding the function v in the direction xn. Consider the

function

vt(x, λ) := v(x′, xn + t, λ)

defined for (x, λ) = (x′, xn, λ) ∈ Rn+1
+ and t ∈ R. For each t we havediv(λ1−2s∇vt) = 0 in Rn+1

+ ,

−dsλ1−2s∂λv
t = f(vt) on Rn = ∂Rn+1

+ .
(2.7)

Now we use the first two gradient estimates in (1.18) for the solution v of problem

(1.2). We have that for every t, |vt| < 1 and

|∇xv
t(x, λ)| ≤ cs for every x ∈ Rn and λ ≥ 0, (2.8)

|∇vt(x, λ)| ≤ cs
λ

for every x ∈ Rn and λ > 0, (2.9)

where the constant cs is uniformly bounded for s away from 0 (see Remark 1.10).

In fact, cs depends only on n, s0, and ||f ||C1,γ([−1,1]) (see Proposition 4.6 of [5]). In

addition (see Lemma 4.8 of [5])

lim
t→+∞

{
|vt(x, λ)− 1|+ |∇vt(x, λ)|

}
= 0 (2.10)

for all x ∈ Rn and all λ ≥ 0.

Note that hypothesis (2.2) and the maximum principle lead to vxn > 0 in Rn+1
+ .

Thus, denoting the derivative of vt(x, λ) with respect to t by ∂tv
t(x, λ), we have

∂tv
t(x, λ) = vxn(x′, xn + t, λ) > 0 for all x ∈ Rn, λ ≥ 0.

By (2.10), we have that

lim
t→+∞

Es,CR(vt) = 0. (2.11)

Next, we bound the derivative of Es,CR(vt) with respect to t. Recall that we have

set a = 1 − 2s. We use that vt is a bounded solution of problem (1.2), the bounds

(2.8), (2.9) for the derivatives of vt, and the crucial fact that ∂tv
t > 0. Let ν denote

the exterior normal to the lateral boundary ∂BR × (0, R) of the cylinder CR.
14



We have

∂tEs,CR(vt) = ds

∫ R

0

dλ

∫
BR

dxλa∇vt · ∇(∂tv
t) +

∫
BR

dxG′(vt(x, 0))∂tv
t(x, 0)

= ds

∫ R

0

dλ

∫
∂BR

dHn−1λa
∂vt

∂ν
∂tv

t + ds

∫
BR×{λ=R}

dxλa
∂vt

∂λ
∂tv

t(x,R)

≥ −Cds
∫ R

0

dλ
λa

1 + λ

∫
∂BR

dHn−1∂tv
t − CdsR−2s

∫
BR×{λ=R}

dx∂tv
t(x,R),

where in the last inequality we have used both gradient bounds (2.8) and (2.9) for

the first term (since ∂vt

∂ν
is a horizontal derivative) and the bound (2.9) for the second

term. We recall that here C is a constant uniformly bounded for s away from 0.

Hence, for every T > 0, we have

Es,CR(v) = Es,CR(vT )−
∫ T

0

∂tEs,CR(vt)dt

≤ Es,CR(vT ) + Cds

∫ T

0

dt

∫ R

0

dλ
λa

1 + λ

∫
∂BR

dHn−1∂tv
t

+CdsR
−2s

∫ T

0

dt

∫
BR×{λ=R}

dx∂tv
t(x,R)

= Es,CR(vT ) + Cds

∫
∂BR

dHn−1

∫ R

0

dλ
λa

1 + λ

∫ T

0

dt∂tv
t(x, λ)

+CdsR
−2s

∫
BR×{λ=R}

dx

∫ T

0

dt∂tv
t(x,R)

= Es,CR(vT ) + Cds

∫
∂BR

dHn−1

∫ R

0

dλ
λa

1 + λ
(vT − v0)(x, λ)

+CdsR
−2s

∫
BR×{λ=R}

dx(vT − v0)(x,R)

≤ Es,CR(vT ) + CdsR
n−1

∫ R

0

λa

1 + λ
dλ+ CdsR

n−2s

≤ Es,CR(vT ) + CdsR
n−1

(∫ 1

0

λ1−2sdλ+

∫ R

1

λ−2sdλ

)
+ CdsR

n−2s.

Using the change of variables λ = ρR, we have
∫ 1

0
λ1−2sdλ +

∫ R
1
λ−2sdλ = 1

2(1−s) +

R1−2s
∫ 1

1/R
ρ−2sdρ. Thus, using that ds ≈ 2(1 − s) as s ↑ 1 and distinguishing the
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three cases s0 < s < 1/2, s = 1/2, and 1/2 < s < 1, we conclude

Es,CR(v) ≤ Es,CR(vT ) + CRn−1 + C(1− s)Rn−2s

∫ 1

1/R

ρ−2sdρ+ C(1− s)Rn−2s

≤ Es,CR(vT ) + CRn−2s

∫ 1

1/R

ρ−2sdρ.

Letting T → +∞ and using (2.11), we obtain the desired estimate. �

3. Monotonicity formula

In this section we establish a monotonicity formula for the energy functional asso-

ciated to problem (1.2). More precisely, we prove that for every solution v of problem

(1.2) the quantity EB̃+
R

(v)/Rn−2s is nondecreasing in R, where B̃+
R is the positive half

ball in Rn+1
+ centered at 0 and of radius R. From this result we deduce that our

energy estimate (1.7) is sharp when 0 < s < 1/2 (see Remark 3.3)

In the following lemma we prove a Pohozaev identity for solutions of problem

(1.2) which will be important in the proof of our monotonicity formula. We use the

following notation:

B̃+
R = {(x, λ) ∈ Rn+1

+ : |(x, λ)| < R} and ∂+B̃+
R = ∂B̃+

R ∩ {λ > 0}.

Lemma 3.1. Let s ∈ (0, 1), f be any C1,γ nonlinearity with γ > max{0, 1− 2s}, and

suppose that v is a bounded solution of problem (1.2).

Then, for every R > 0

n− 2s

2

∫
B̃+
R

λ1−2s|∇v|2dxdλ+ n

∫
BR×{0}

d−1
s G(v)dx =

=
R

2

∫
∂+B̃+

R

λ1−2s|∇v|2dHn −R
∫
∂+B̃+

R

λ1−2s

(
∂v

∂ν

)2

dHn +

+R

∫
∂BR×{0}

d−1
s G(v)dHn−1,

where dHn−1 and dHn denote respectively the (n−1)-dimensional and n-dimensional

Hausdorff measures and ∂v
∂ν

denotes the outer normal derivative of v on ∂+B̃+
R .

Proof. Set z = (x, λ). Multiplying the equation div(λ1−2s∇v) = 0 by 〈z,∇v〉 =

〈(x, λ),∇v〉, we have

0 = div(λ1−2s∇v)〈z,∇v〉

= div(λ1−2s∇v〈z,∇v〉)− λ1−2s

{
|∇v|2 + 〈z,∇

(
|∇v|2

2

)
〉
}
.
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Now, observe that

λ1−2s〈z,∇
(
|∇v|2

2

)
〉 = div

{
λ1−2sz

(
|∇v|2

2

)}
−λ1−2s(n+ 1)

|∇v|2

2
− (1− 2s)λ1−2s |∇v|2

2

= div

{
λ1−2sz

(
|∇v|2

2

)}
− n+ 2− 2s

2
λ1−2s|∇v|2.

Thus, we obtain

div

{
λ1−2s

(
∇v〈z,∇v〉 − z |∇v|

2

2

)}
+
n− 2s

2
λ1−2s|∇v|2 = 0.

Next, we integrate by parts on B̃+
R :∫

∂+B̃+
R

λ1−2s〈ν,∇v〉〈z,∇v〉dHn +

∫
BR×{0}

−λ1−2s∂λv〈x,∇xv〉dx

−1

2

∫
∂+B̃+

R

λ1−2s|∇v|2〈z, ν〉dHn +
n− 2s

2

∫
B̃+
R

λ1−2s|∇v|2dxdλ = 0,

where ν denotes the outer unit normal vector to ∂+B̃+
R .

Now, we use that z = Rν on ∂+B̃+
R and −dsλ1−2s∂λv = f(v) on BR, to get

R

∫
∂+B̃+

R

λ1−2s

(
∂v

∂ν

)2

dHn +

∫
BR×{0}

d−1
s f(v)〈x,∇xv〉dx

−R
2

∫
∂+B̃+

R

λ1−2s|∇v|2dHn +
n− 2s

2

∫
B̃+
R

λ1−2s|∇v|2dz = 0.

We conclude the proof, observing that, on {λ = 0},∫
BR

f(v)〈x,∇xv〉dx = −
∫
BR

〈x,∇xG(v)〉dx =

∫
BR

(−div(xG(v)) + nG(v)) dx

= n

∫
BR

G(v)dx−R
∫
∂BR

G(v)dHn−1.

�

We can now prove the monotonicity formula.

Proposition 3.2. Let s ∈ (0, 1), f be any C1,γ nonlinearity with γ > max{0, 1−2s},
and suppose that v is a bounded solution of problem (1.2), and that G(t) ≥ 0 for every

t ∈ R.
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Then, the function

φ(R) =
1

Rn−2s

{
ds
2

∫
B̃+
R

λ1−2s|∇v|2dxdλ+

∫
BR×{0}

G(v)dx

}
is a nondecreasing function of R > 0.

Proof. We have that

φ′(R) = −(n− 2s)ds
2Rn−2s+1

∫
B̃+
R

λ1−2s|∇v|2dxdλ+
ds

2Rn−2s

∫
∂+B̃+

R

λ1−2s|∇v|2dHn

− n− 2s

Rn−2s+1

∫
BR×{0}

G(v)dx+
1

Rn−2s

∫
∂BR×{0}

G(v)dHn−1.

Using the Pohozaev identity of Lemma 3.1, we get

φ′(R) =
ds

Rn−2s

∫
∂+B̃+

R

λ1−2s

(
∂v

∂ν

)2

dHn +
2s

Rn−2s+1

∫
BR×{0}

G(v)dx ≥ 0.

�

Remark 3.3. Since

EB̃+
R

(v) ≤ ECR(v),

Proposition 3.2 gives that, for every bounded solution v of problem (1.2) which is not

identically zero, the following lower bound holds:

ds

∫
CR

1

2
λ1−2s|∇v|2dxdλ+

∫
BR

{G(u)− cu}dx ≥ c1R
n−2s, (3.1)

for some constant c1 > 0 depending on v. Note that Theorem 1.2 establishes ECR(v) ≤
CRn−2s for every s ∈ (0, 1/2). Thus, this bound is sharp as a consequence of (3.1).

4. Hs estimate

In this section we recall some definitions and properties of the spaces Hs(Rn) and

Hs(∂Ω), where Ω is a bounded subset of Rn+1 with Lipschitz boundary ∂Ω (see [18]).

Hs(Rn) is the space of functions u ∈ L2(Rn) such that∫
Rn

∫
Rn

|u(x)− u(x)|2

|x− x|n+2s
dxdx < +∞,

equipped with the norm

||u||Hs(Rn) =

(
||u||2L2(Rn) +

∫
Rn

∫
Rn

|u(x)− u(x)|2

|x− x|n+2s
dxdx

) 1
2

.
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As in section 3 of [4], using a family of charts and a partition of unity, we can define

the space Hs(∂Ω), where Ω is a bounded subset of Rn+1 with Lipschitz boundary.

We use the same notations of [4].

Consider an atlas {(Oj, ϕj), j = 1, ...,m} where {Oj} is a family of open bounded

sets in Rn+1 such that {Oj ∩ ∂Ω; j = 1, ...,m} cover ∂Ω. The functions ϕj are

corresponding bilipschitz diffeomorphisms such that

• ϕj : Oj → U := {(y, µ) ∈ Rn+1 : |y| < 1, −1 < µ < 1},
• ϕj : Oj ∩ Ω→ U+ := {(y, µ) ∈ Rn+1 : |y| < 1, 0 < µ < 1}, and

• ϕj : Oj ∩ ∂Ω→ {(y, µ) ∈ Rn+1 : |y| < 1, µ = 0}.
Let {αj} be a partition of unity on ∂Ω such that 0 ≤ αj ∈ C∞c (Oj),

∑m
j=1 αj = 1

on ∂Ω. If u is a function on ∂Ω, decompose u =
∑m

j=1 uαj and define the function

(uαj) ◦ ϕ−1
j (y, 0) := (uαj)(ϕ

−1
j (y, 0)), for every (y, 0) ∈ U ∩ {µ = 0}.

Since αj has compact support in Oj, the function (uαj) ◦ ϕ−1
j (·, 0) has compact

support in U ∩ {µ = 0} and therefore we may consider ((uαj) ◦ ϕ−1
j )(·, 0) to be

defined in Rn extending it by zero out of U ∩ {µ = 0}. Now we define

Hs(∂Ω) := {u | (uαj) ◦ ϕ−1
j (·, 0) ∈ Hs(Rn), j = 1, ...,m}

equipped with the norm

(
m∑
j=1

||(uαj) ◦ ϕ−1
j (·, 0)||2Hs(Rn)

) 1
2

.

Independently of the choice of the system of local maps {Oj, ϕj} and of the partition

of unity {αj}, these norms are all equivalent to

||u||Hs(∂Ω) :=

(
||u||2L2(∂Ω) +

∫
∂Ω

∫
∂Ω

|u(z)− u(z)|2

|z − z|n+2s
dHn(z)dHn(z)

) 1
2

.

We can give now the proof of Theorem 1.7.

Proof of Theorem 1.7. Let s ∈ (0, 1).

Case 1: Ω = Rn+1
+ . We first consider the case of a half space Ω = Rn+1

+ and

M = {(x′, xn) ∈ Rn : xn < 0}. Let ζ be a bounded function belonging to C(Rn).

Following the first part of the proof of Proposition 3.1 in [4], we consider a C∞ function

K(x), defined on Rn with compact support in B1 and such that
∫
Rn K(x)dx = 1.

Define K̃(x, λ) on Rn+1
+ in the following way:

K̃(x, λ) :=
1

λn
K
(x
λ

)
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and finally define the extension ζ̃ as

ζ̃(x, λ) =

∫
Rn
K̃(x− x, λ)ζ(x)dx. (4.1)

Note that, since
∫
Rn K̃(x, λ)dx = 1, we have

||ζ̃(·, λ)||L2(Rn) ≤ ||ζ||L2(Rn) for every λ ≥ 0, (4.2)

and thus ∫ 1

0

dλ λ1−2s

∫
Rn
dx|ζ̃(x, λ)|2 ≤ 1

2(1− s)
||ζ||2L2(Rn). (4.3)

In [4] (see the proof of Proposition 3.1), a simple calculation led to the following

estimate for the gradient of ζ̃:

|∇ζ̃(x, λ)|2 ≤ C

∫
{|x−x|<λ}

|ζ(x)− ζ(x)|2

λn+2
dx, (4.4)

where ∇ denotes the gradient with respect to x and to λ, and C depends only on n.

Since M = {(x′, xn) ∈ Rn : xn < 0}, we have dM(x, λ) = ((xn)2
+ + λ2)1/2, where as

usually (xn)+ = max{xn, 0}.
Consider now, separately, the two cases 0 < s ≤ 1/2 and 1/2 < s < 1.

If 0 < s ≤ 1/2 then a = 1 − 2s ∈ [0, 1) and we have that daM(x, λ) ≤ (xn)a+ + λa.

In the following computations C will denote different positive constants which may

depend on s. Using (4.4), we have∫
Rn+1
+

daM(x, λ)|∇ζ̃(x, λ)|2dxdλ ≤
∫
Rn+1
+

((xn)a+ + λa)|∇ζ̃(x, λ)|2dxdλ

≤ C

∫ +∞

0

dλ

∫ ∫
{|x−x|<λ}

dxdx
(xn)a+ + λa

λn+2
|ζ(x)− ζ(x)|2

≤ C

∫ +∞

0

dλ

∫ ∫
{|x−x|<λ}

dxdx
1

λn+2−a |ζ(x)− ζ(x)|2

+C

∫ +∞

0

dλ

∫ ∫
{|x−x|<λ}

dxdx
(xn)a+
λn+2

|ζ(x)− ζ(x)|2

≤ C

∫
Rn

∫
Rn
dxdx|ζ(x)− ζ(x)|2[λ−n−1+a]

|x−x|
+∞

+C

∫
Rn

∫
Rn
dxdx (xn)a+|ζ(x)− ζ(x)|2[λ−n−1]

|x−x|
+∞

≤ C

∫
Rn

∫
Rn

|ζ(x)− ζ(x)|2

|x− x|n+2s
dxdx

+C

∫
Rn

∫
Rn

(xn)1−2s
+

|ζ(x)− ζ(x)|2

|x− x|n+1
dxdx.
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Next, we observe that, in this bound, the last integral can be computed only on the

set {(x, x) ∈ Rn×Rn : |x−x| < (xn)+/2}, which is contained in (Rn \M)× (Rn \M).

Indeed ∫ ∫
{|x−x|≥ (xn)+

2
}
(xn)1−2s

+

|ζ(x)− ζ(x)|2

|x− x|n+1
dxdx

≤ 21−2s

∫ ∫
{|x−x|≥ (xn)+

2
}

|ζ(x)− ζ(x)|2

|x− x|n+2s
dxdx,

which can be absorbed in the first integral of the above bound.

Thus, if 0 < s ≤ 1/2, we have∫
Rn+1
+

dM(x, λ)1−2s|∇ζ̃(x, λ)|2dxdλ

≤ C

∫
Rn

∫
Rn

|ζ(x)− ζ(x)|2

|x− x|n+2s
dxdx+ C

∫
Rn\M

∫
Rn\M

dM(x)1−2s |ζ(x)− ζ(x)|2

|x− x|n+1
dxdx.

If 1/2 < s < 1, set

b = −a = 2s− 1 > 0.

In this case we use that dM(x, λ) ≥ max{(xn)+, λ}, which leads to

daM(x, λ) = 1/dbM(x, λ) ≤ 1/(max{(xn)+, λ})b.

In what follows we will use daM(x, λ) ≤ 1/λb if (xn)+ = 0 and daM(x, λ) ≤ 1/(xn)b+ if

(xn)+ > 0. We have∫
Rn+1
+

daM(x, λ)|∇ζ̃(x, λ)|2dxdλ ≤

≤ C

∫ +∞

0

dλ

∫
{(xn)+=0}

∫
{|x−x|<λ}

dxdx
|ζ(x)− ζ(x)|2

λn+2+b

+C

∫ +∞

0

dλ

∫
{(xn)+>0}

∫
{|x−x|<λ}

dxdx
|ζ(x)− ζ(x)|2

(xn)b+λ
n+2

≤ C

∫
{(xn)+=0}

dx

∫
Rn
dx
|ζ(x)− ζ(x)|2

|x− x|n+2s

+C

∫
{(xn)+>0}

dx

∫
Rn
dx

1

(xn)b+

|ζ(x)− ζ(x)|2

|x− x|n+1

≤ C

∫
{(xn)+=0}

dx

∫
{(xn)+=0}

dx
|ζ(x)− ζ(x)|2

|x− x|n+2s
(4.5)

+C

∫
{(xn)+>0}

dx

∫
Rn
dx

1

(xn)b+

|ζ(x)− ζ(x)|2

|x− x|n+1
. (4.6)
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Observe that the integral in (4.5) is computed only on the set {(x, x) ∈ Rn ×
Rn|(xn)+ = 0, (xn)+ = 0}. Indeed the set L := M × (Rn \ M) = {(x, x) ∈
Rn × Rn | (xn)+ = 0, (xn)+ > 0} ⊆ {(x, x) ∈ Rn × Rn | (xn)+ ≤ |x − x|}. Then

if (x, x) ∈ L
1

|x− x|n+1+b
≤ 1

(xn)b+
· 1

|x− x|n+1

and hence we have that∫
{(xn)+=0}

dx

∫
{(xn)+>0}

dx
|ζ(x)− ζ(x)|2

|x− x|n+2s
≤ C

∫
{(xn)+>0}

dx

∫
Rn
dx

1

(xn)b+

|ζ(x)− ζ(x)|2

|x− x|n+1
,

which is equal to the integral in (4.6). This concludes the proof in the case of the half

space.

Case 2: Let Ω ⊂ Rn+1 be a bounded domain with Lipschitz boundary A = ∂Ω,

and let w ∈ C(∂Ω).

Let Γ be the boundary (relative to A = ∂Ω) of M and let B̃ri = B̃ri(pi) ⊂ Rn+1 be

the ball centered at pi ∈ ∂Ω and of radius ri. We set Ari := B̃ri ∩ ∂Ω. Let Q1 denote

the unite cube in Rn.

Since ∂Ω is compact, we can consider a finite open covering of ∂Ω,

m⋃
i=1

Ari :=
m⋃
i=1

(B̃ri ∩ ∂Ω),

such that for every i there exists a bilipschitz function ϕi : B̃ri → Q1× (−1, 1) which

satisfies

ϕi(B̃ri ∩ Ω) = Q1 × (0, 1) and ϕi(Ari) = Q1 × {0}. (4.7)

Moreover we may require that

• if Γi = Ari ∩ Γ 6= ∅, then

ϕi(Γi) = {x ∈ Q1 : xn = 0}; (4.8)

ϕi(M ∩ Ari) = {x ∈ Q1 : xn < 0} = Q−1 ; (4.9)

• if Ari ∩M = ∅, then

ri =
1

3
dM(pi),

where pi and ri are respectively the center and the radius of the ball B̃ri .

Observe that the number m of sets Ari which cover ∂Ω, and the Lipschitz constants

of ϕi, depend only on ∂Ω and Γ.

We consider a partition of unity {αi}i=1,...,m relative to the covering {B̃ri}i=1,...,m,

where αi ∈ C∞c (B̃ri) and
∑m

i=1 αi = 1 on ∂Ω.
22



If w is a function defined on ∂Ω, we write

w =
m∑
i=1

wαi =
m∑
i=1

wi.

Using the bilipschitz map ϕi, we define

ζi(y) := wi(ϕ
−1
i (y, 0)) for every y ∈ Q1.

Then ζi has compact support in Q1 and we extend it by 0 outside Q1 in all Rn.

Next, we consider ζ̃i, the extension of ζi in Rn+1
+ defined by the convolution in (4.1).

Since αi ∈ C∞c (B̃ri), there exists a function βi ∈ C∞c (B̃ri) such that βi ≡ 1 in the

support of αi. Thus w̃i := βi(ζ̃i ◦ ϕi), extended by zero outside of B̃ri , is well defined

as a function in Ω and agrees with wαi = βiwαi on ∂Ω. We now define

w̃ =
m∑
i=1

w̃i =
m∑
i=1

βi(ζ̃i ◦ ϕi) in Ω,

which agrees with w on ∂Ω.

Observe that, since ϕi is a bilipschitz map and αi, βi ∈ C∞c (B̃ri) for every i =

1, ...,m, we have

|∇w̃i| ≤ C
{
|∇βi||ζ̃i ◦ ϕi|+ |βi||(∇ζ̃i) ◦ ϕi|

}
,

and thus ∫
B̃ri∩Ω

d1−2s
M (z)|∇w̃i|2dz ≤ C

∫
B̃ri∩Ω

d1−2s
M (z)|ζ̃i ◦ ϕi|2dz

+C

∫
B̃ri∩Ω

d1−2s
M (z)|(∇ζ̃i) ◦ ϕi|2dz.

Observe that when 0 < s ≤ 1/2, we have that d1−2s
M is uniformly bounded in Ω, and

thus using (4.2) we get∫
B̃ri∩Ω

d1−2s
M (z)|ζ̃i ◦ ϕi|2dz ≤ C

∫
B̃ri∩Ω

|ζ̃i ◦ ϕi|2dz

≤ C||ζ||2L2(Rn) ≤ C||w||2L2(∂Ω).

On the other hand, when 1/2 < s < 1, we use (4.3), to obtain∫
B̃ri∩Ω

d1−2s
M (z)|ζ̃i ◦ ϕi|2dz ≤ C

∫ 1

0

∫
Q1

λ1−2s|ζ̃i(x, λ)|2dxdλ

≤ C||ζ||2L2(Rn) ≤ C||w||2L2(∂Ω).
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Thus∫
B̃ri∩Ω

d1−2s
M (z)|∇w̃i|2dz ≤ C||w||2L2(∂Ω) + C

∫
B̃ri∩Ω

d1−2s
M (z)|(∇ζ̃i) ◦ ϕi|2dz. (4.10)

Using this bound we can prove the following

Claim: (1.13) holds with w̃ and w replaced by w̃i and wi, which have compact support

in B̃ri ∩ Ω and Ari respectively.

It is enough to prove the claim to conclude the proof. Indeed, note first that∫
Ω

dM(z)1−2s|∇w̃|2dz ≤ C
m∑
i=1

∫
B̃ri∩Ω

dM(z)1−2s|∇w̃i|2dz.

Moreover, for every i = 1, ...,m,∫ ∫
Bfrac

|wi(z)− wi(z)|2

|z − z|n+2s
dHn(z)dHn(z)

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bfrac

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z).

Indeed,∫ ∫
Bfrac

|(wαi)(z)− (wαi)(z)|2

|z − z|n+2s
dHn(z)dHn(z)

=

∫ ∫
Bfrac

|(wαi)(z)− w(z)αi(z) + w(z)αi(z)− (wαi)(z)|2

|z − z|n+2s
dHn(z)dHn(z)

≤ 2

∫ ∫
Bfrac

|αi(z)− αi(z)|2|w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+2

∫ ∫
Bfrac

|w(z)− w(z)|2|αi(z)|2

|z − z|n+2s
dHn(z)dHn(z)

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bfrac

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z),

where C denotes different positive constants depending on Ω and s. To get the bound

C||w||2L2(∂Ω) for the first term, we have used spherical coordinates centered at z and

that αi is Lipschitz.

Arguing in the same way, we deduce∫ ∫
Bweig

dM(z)1−2s |wi(z)− wi(z)|2

|z − z|n+1
dHn(z)dHn(z)

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bweig

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z).
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Indeed, using spherical coordinates centered at z, that αi is Lipschitz, and the defi-

nition (1.12) of Bweig, we deduce (after flattening the boundary)

∫ ∫
Bweig

dM(z)1−2s |(wαi)(z)− (wαi)(z)|2

|z − z|n+1
dHn(z)dHn(z)

≤ 2

∫ ∫
Bweig

dM(z)1−2s |αi(z)− αi(z)|2|w(z)|2

|z − z|n+1
dHn(z)dHn(z)

+2

∫ ∫
Bweig

dM(z)1−2s |w(z)− w(z)|2|αi(z)|2

|z − z|n+1
dHn(z)dHn(z)

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bweig

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z).

Next, we prove the claim.

Observe that we have three different cases, depending on the relative positions

between the sets Ari and M .

Case a). First, consider the case Γi = Ari ∩ Γ 6= ∅. By (4.10), we have that

∫
B̃ri∩Ω

dM(z)1−2s|∇w̃i|2dz

≤ C||w||2L2(∂Ω) + C

∫
Rn+1
+

((xn)+ + λ)1−2s|∇ζ̃i|2dxdλ. (4.11)

Then, using the result in case 1, applied to ζ̃i, we get

∫
B̃ri∩Ω

dM(z)1−2s|∇w̃i|2dz

≤ C||w||2L2(∂Ω) + C

∫
Rn+1
+

((xn)+ + λ)1−2s|∇ζ̃i|2dxdλ

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bfrac

|ζi(x)− ζi(x)|2

|x− x|n+2s
dxdx

+C

∫ ∫
Bweig

(xn)1−2s
+

|ζi(x)− ζi(x)|2

|x− x|n+1
dxdx,

where Bfrac and Bweig are defined as in (1.11) and (1.12) with A = Rn and M =

{(x′, xn) ∈ Rn : xn < 0}.
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Using the bilipschitz map ϕ−1
i , we have∫

B̃ri∩Ω

dM(z)1−2s|∇w̃i|2dz

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bfrac

|wi(z)− wi(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+C

∫ ∫
Bweig

dM(z)1−2s |wi(z)− wi(z)|2

|z − z|n+1
dHn(z)dHn(z),

where now, Bfrac and Bweig are defined as in (1.11) and (1.12) with A = ∂Ω.

Case b). Second, consider the case Ari ⊂M . In this case, the claim follows exactly

as in case a), with (xn)+ = 0 in (4.11).

Case c). Finally, consider the case Ari ⊂ ∂Ω \M .

We recall that, by construction Ari = B̃ri ∩ ∂Ω where B̃ri is the ball centered at

pi ∈ ∂Ω \M and of radius ri =
1

3
dM(pi).

Thus, for every z ∈ B̃ri ∩ Ω, we have that

2

3
dM(pi) ≤ dM(z) ≤ 4

3
dM(pi).

Then, for every i = 1, ...,m∫
B̃ri∩Ω

dM(z)1−2s|∇w̃i|2dz ≤ CdM(pi)
1−2s

∫
B̃ri∩Ω

|∇w̃i|2dz.

Observe that the integral on the right-hand side does not contain weights. Moreover,

we recall that the extension w̃i is defined as for the case s = 1/2. Thus, applying the

extension result given in [4] for s = 1/2, we get∫
B̃ri∩Ω

dM(z)1−2s|∇w̃i|2dz

≤ C||w||2L2(∂Ω) + CdM(pi)
1−2s

∫ ∫
Bweig

|wi(z)− wi(z)|2

|z − z|n+1
dHn(z)dHn(z)

≤ C||w||2L2(∂Ω) + C

∫ ∫
Bweig

dM(z)1−2s |wi(z)− wi(z)|2

|z − z|n+1
dHn(z)dHn(z),

where Bfrac and Bweig are defined as in (1.11) and (1.12) with A = ∂Ω. This concludes

the proof of the claim. �

We give now the proof of Theorem 1.9.

Proof of Theorem 1.9. Let s ∈ (0, 1). When s = 1/2 the theorem was proved in our

previous work [4], Theorem 1.5. Here we will prove it for 0 < s < 1/2 and 1/2 < s < 1.
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The proof differs in each of these two cases, they also differ from the one for s = 1/2

in which there is a | log ε| appearing in the final bound.

Step 1. Suppose that A = Q1 = {x ∈ Rn : |x| < 1} is the unit cube in Rn. Let,

as before, (x′, xn) ∈ Rn. As in the proof of Theorem 1.7, we consider M = Q−1 =

{x ∈ Q1 : xn < 0} and Γ = {x ∈ Q1 : xn = 0}. In the following computations C will

denote different positive constants which depend on n, s, and cs.

Case 0 < s < 1/2. By hypothesis |w(x)| ≤ cs and by (1.14) we have

|Dw(x)| ≤


cs
ε

(
dΓ(x)

ε

)2s−1

=
cs
ε

(
|xn|
ε

)2s−1

in A ∩ |xn| ≤ ε}
cs

dΓ(x)
=

cs
|xn|

in A ∩ {|xn| > ε}.
(4.12)

Let Q+
1 = {x ∈ Q1 : xn > 0}. Following (1.11) and (1.12) we must consider the

quantity

I :=

∫
Q1

∫
Q1

|w(x)− w(x)|2

|x− x|n+2s
dxdx

+

∫
Q+

1

∫
Q+

1

(xn)1−2s
+

|w(x)− w(x)|2

|x− x|n+1
dxdx.

Since hypothesis (4.12) is symmetric in xn and −xn, we simply bound I by

I ≤
∫
Q1

∫
Q1

|w(x)− w(x)|2

|x− x|n+2s
dxdx+

∫
Q1

∫
Q1

|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
dxdx. (4.13)

Observe that, in the set {|x− x| < |xn|/2}, we have

|w(x)− w(x)|2

|x− x|n+2s
≤ 22s−1|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
,

while the reverse inequality holds in {|x− x| ≥ |xn|/2}. We deduce that

I ≤ C

∫
Q1

∫
Q1∩{x:|x−x|>|xn|/2}

|w(x)− w(x)|2

|x− x|n+2s
dxdx

+C

∫
Q1

∫
Q1∩{x:|x−x|<|xn|/2}

|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
dxdx =: I1 + I2.

(4.14)

We bound I1 using the L∞ estimate for w and spherical coordinates centered at x:∫
Q1

∫
Q1∩{x:|x−x|>|xn|/2}

|w(x)− w(x)|2

|x− x|n+2s
dxdx ≤ C

∫
Q1

dx

∫ 2
√
n

|xn|/2
dr

1

r2s+1

≤ C

∫ 1

−1

1

|xn|2s
dxn ≤ C. (4.15)
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Next, we consider I2. By symmetry between xn and −xn we can suppose x ∈ Q+
1 .

Using the gradient bounds (4.12) for w and spherical coordinates centered at x, we

get

I2 ≤ C

∫
Q+

1

∫
Q1∩{x:|x−x|<xn/2}

x1−2s
n

|w(x)− w(x)|2

|x− x|n+1
dxdx

≤ C

∫ ε/2

0

dxnx
1−2s
n

∫ xn/2

0

dr
1

ε2

(
|yn(x, x)|

ε

)2(2s−1)

+C

∫ 1

ε/2

dxnx
1−2s
n

∫ xn/2

0

dr
1

y2
n(x, x)

,

where y(x, x) ∈ Bxn/2(x) is a point of the segment joining x and x. In the first integral

in the last bound, we have used that yn(x, x) ≤ xn + xn/2 ≤ 2xn ≤ ε. In the second

integral we have used that, in case yn(x, x) ≤ ε, C
ε

(
yn(x,x)

ε

)2s−1

≤ C
yn(x,x)

in (4.12).

Since y(x, x) ∈ Bxn/2(x), we have that yn(x, x) ≥ xn/2 and thus we deduce that∫
Q+

1

∫
{x∈Q1:|x−x|<xn/2}

x1−2s
n

|w(x)− w(x)|2

|x− x|n+1
dxdx

≤ C

∫ ε/2

0

dxnx
1−2s
n

∫ xn/2

0

dr
1

ε2

(xn
ε

)2(2s−1)

+ C

∫ 1

ε/2

dxnx
1−2s
n

∫ xn/2

0

dr
1

x2
n

≤ C
1

ε4s

∫ ε/2

0

x2s
n dxn + C

∫ 1

ε/2

x−2s
n dxn

≤ Cε1−2s + C

∫ 1

ε/2

x−2s
n dxn ≤ C

∫ 1

ε

x−2s
n dxn. (4.16)

Using (4.14), (4.15), and (4.16), we conclude that

I ≤ C

∫ 1

ε

x−2s
n dxn.

Case 1/2 < s < 1. By (1.11) and (1.12) we must consider now the quantity

Ĩ :=

∫
Q−1

∫
Q−1

|w(x)− w(x)|2

|x− x|n+2s
dxdx+

∫
Q+

1

∫
Q1

x1−2s
n

|w(x)− w(x)|2

|x− x|n+1
dxdx.

We recall that in this case, by (1.15) we have

|Dw(x)| ≤


cs
ε

in A ∩ {|xn| ≤ ε}
cs
|xn|

in A ∩ {|xn| > ε}.
(4.17)
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We have that

Ĩ ≤
∫
Q1

∫
Q1

|w(x)− w(x)|2

|x− x|n+2s
dxdx

+

∫
Q1

∫
Q1

|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
dxdx

≤ C

∫
Q1

∫
Q1∩{x:|x−x|≤|xn|/2}

|w(x)− w(x)|2

|x− x|n+2s
dxdx

+C

∫
Q1

∫
Q1∩{x:|x−x|>|xn|/2}

|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
dxdx

≤ C

∫
Q1

∫
Q1∩{x:|x−x|≤|xn|/2}

|w(x)− w(x)|2

|x− x|n+2s
dxdx

+C

∫
Q1

∫
Q1∩{x:|xn|/2<|x−x|≤max{ε/2,|xn|/2}}

|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
dxdx

+C

∫
Q1

∫
Q1∩{x:|x−x|≥max{ε/2,|xn|/2}}

|xn|1−2s |w(x)− w(x)|2

|x− x|n+1
dxdx

= Ĩ1 + Ĩ2 + Ĩ3.

We first bound Ĩ1. We have

Ĩ1 ≤ C

∫
Q1

∫
Q1∩{x:|x−x|≤|xn|/2}

|Dw(y(x, x))|2

|x− x|n−2+2s
dxdx,

where y(x, x) ∈ B|xn|/2(x) is a point of the segment joining x and x. Now, the gradient

bound (4.17) reads |Dw(y)| ≤ cs min{ε−1, |yn|−1} for a.e. y ∈ Q1. Since y(x, x) ∈
B|xn|/2(x), we have |yn(x, x)| ≥ |xn|/2 and |Dw(y(x, x))| ≤ cs min{ε−1, |yn(x, x)|−1} ≤
cs min{ε−1, 2|xn|−1}. Using spherical coordinates centered at x, we get

Ĩ1 ≤ C

∫
Q1

dx

∫ |xn|/2
0

drr1−2s min

{
1

ε2
,

1

|xn|2

}
≤ C

∫ 1

−1

dxn min

{
1

ε2
,

1

|xn|2

}
|xn|2−2s

≤ C

∫ ε

0

1

ε2
x2−2s
n dxn + C

∫ 1

ε

x−2s
n dxn ≤ C

∫ 1

ε

x−2s
n dxn.

Consider now Ĩ2. Here |xn| < ε (if not {|xn|/2 < max{|xn|/2, ε/2}} = ∅). Us-

ing that Ĩ2 is symmetric in xn and −xn, the gradient bound (4.17) and spherical

coordinates centered at x as for Ĩ1, we get

Ĩ2 ≤ C

∫ ε

0

dxnx
1−2s
n

∫ ε/2

xn/2

dr
1

ε2
≤ Cε1−2s.
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Finally, using that |w| ≤ cs in Q1 and spherical coordinates centered at x, we get

the following bound for Ĩ3:

Ĩ3 ≤ C

∫
Q1

dxn|xn|1−2s

∫ 2
√
n

max{|xn|/2,ε/2}
dr

1

r2

≤ C

∫ 1

−1

dxn|xn|1−2s min

{
1

|xn|
,
1

ε

}
≤ C

∫ ε

0

1

ε
x1−2s
n dxn + C

∫ 1

ε

x−2s
n dxn

≤ Cε1−2s + C

∫ 1

ε

x−2s
n dxn ≤ C

∫ 1

ε

x−2s
n dxn.

We conclude that

Ĩ ≤ C

∫ 1

ε

x−2s
n dxn.

Step 2. Suppose now that A is a Lipschitz subset of Rn or A = ∂Ω, where Ω is an

open bounded subset of Rn+1 with Lipschitz boundary.

We consider a finite open covering {Ari/2}i=1,...,m = {Bri/2 ∩ A}i=1,...,m, where now

Bri/2 is the ball centered at pi (as in the proof of Theorem 1.7, case 2) but of radius

ri/2. Here, for sake of simplicity, Bri denotes both the ball in Rn or Rn+1.

Let Γ be the closure of Γ in Rn or Rn+1. Only in the case A ⊂ Rn, it may happen

that Γ \ Γ 6= ∅. In such case, for pi ∈ Γ \ Γ, there exists a radius ri and a bilipschitz

diffeomorphism ϕi : Bri(pi) → (−3, 1) × (−1, 1)n−1 such that ϕi(pi) = (−1, 0, ..., 0)

and ϕi satisfies properties (4.7), (4.8), and (4.9). We set ε0 = min{ri/2, 1/2}.
If z and z are two points belonging to A such that |z − z| < ε0, then there exists a

set Ari = Bri ∩ A such that both z and z belong to Ari . Hence

{(z, z) ∈ A× A : |z − z| < ε0} ⊂
m⋃
i=1

Ari × Ari .

Let L > 1 be a bound for the Lipschitz constants of all functions ϕ1, ..., ϕm, ϕ
−1
1 , ..., ϕ−1

m .

Let us first treat the case 0 < ε ≤ 1/(2L).
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We write∫ ∫
Bfrac

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z)

=

∫ ∫
Bfrac∩{z:|z−z|<ε0}

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bfrac∩{z:|z−z|>ε0}

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig∩{z:|z−z|<ε0}

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z)

+

∫ ∫
Bweig∩{z:|z−z|>ε0}

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z).

Since w is bounded and
∫
Bweig

dM(z)1−2sdz ≤ C for every 0 < s < 1, using spherical

coordinates centered at z as before, we have that∫ ∫
Bfrac∩{z:|z−z|>ε0}

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig∩{z:|z−z|>ε0}

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z) ≤ C.

On the other hand, by the previous consideration,∫ ∫
Bfrac∩{z:|z−z|<ε0}

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig∩{z:|z−z|<ε0}

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z)

≤
m∑
i=1

∫ ∫
Bfrac∩(Ari×Ari )

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+
m∑
i=1

∫ ∫
Bweig∩(Ari×Ari )

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z).

If Ari ∩ Γ 6= ∅ or Ari ⊂ M then, by the construction of the open covering {Ari},
there exists a bilipschitz map ϕi : Bri → Q1 × (−1, 1) such that ϕi(Ari) = Q1.

Moreover, if Ari ∩ Γ 6= ∅, we have also ϕi(Ari ∩M) = {x ∈ Q1 : xn < 0}. We use the

bilipschitz map ϕi to flatten the sets Bfrac ∩ (Ari × Ari) and Bweig ∩ (Ari × Ari), and

we set vi = w ◦ ϕ−1
i . Given x ∈ Q1, let y = ϕ−1

i (x) ∈ Ari . Recalling that L > 1 is

a bound for the Lipschitz constants of all functions ϕ1, ..., ϕm, ϕ
−1
1 , ..., ϕ−1

m , we have
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that (1/L)dΓ(y) ≤ |xn| ≤ LdΓ(y) and |Dvi(x)| ≤ L|Dw(y)|. Therefore the gradient

estimates (1.14) and (1.15) lead to the following bounds for |Dvi|:

• for every s ∈ (0, 1/2],

|Dvi(x)| ≤ L|Dw(y)| ≤


L
cs
ε

(
dΓ(y)

ε

)2s−1

if y ∈ A and dΓ(y) ≤ ε

L
cs

dΓ(y)
if y ∈ A and dΓ(y) > ε

≤


L
cs
ε

(
|xn|
Lε

)2s−1

if x ∈ Q1 and |xn| ≤ Lε

L2 cs
|xn|

if x ∈ Q1 and |xn| > Lε

• for every s ∈ (1/2, 1),

|Dvi(x)| ≤ L|Dw(y)| ≤

L
cs
ε

if y ∈ A and dΓ(y) ≤ ε

L
cs

dΓ(y)
if y ∈ A and dΓ(y) > ε

≤

L
cs
ε

if x ∈ Q1 and |xn| ≤ Lε

L2 cs
|xn|

if x ∈ Q1 and |xn| > Lε.

Thus we can apply the result proven in Step 1, with ε replaced by εL (note that

we have εL ≤ 1/2, as in Step 1), to the function vi/(1 + L2). Using the Lipschitz

property of ϕ−1, we restate the conclusion for w and we get

∫ ∫
Bfrac∩(Ari×Ari )

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig∩(Ari×Ari )

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z) ≤ C

∫ 1

ε

ρ−2sdρ.

Last, we consider the case Ari ∩M = ∅. We recall that, in this case ri =
1

3
dM(pi),

where ri and pi are respectively the radius and the center of the ball Bri . Then,

for every z ∈ Ari , we have that dΓ(z) ≥ dM(z) ≥ ri ≥ ε0 and thus we have that

|Dw(z)| ≤ cs
ε0

.
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Using this gradient bound to have |Dw(y(z, z))| ≤ C, where y(z, z) is a point of

the segment joining z and z, and using also spherical coordinates, we get∫ ∫
Bfrac∩(Ari×Ari )

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+

∫ ∫
Bweig∩(Ari×Ari )

dM(z)1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z)

≤ C

∫
Ari

dHn(z)

∫ ri

0

dr
1

r2s−1
+ C

∫
Ari

dHn(z)dM(z)1−2s

∫ ri

0

dr ≤ C.

Summing over i = 1, ...,m, we conclude the proof in case ε ≤ 1/(2L).

Finally given ε ∈ (0, 1/2) with ε > 1/(2L), since (1.14) and (1.15) hold with such

ε, they also hold with ε replaced by 1/(2L). By the previous proof with ε taken to

be 1/(2L), the energy is bounded by

C

∫ 1

1/(2L)

ρ−2sdρ ≤ C ≤ C

∫ 1

ε

ρ−2sdρ.

�

5. Energy estimate for global minimizers

In this section we give the proof of Theorem 1.2, which is based on a comparison

argument. Let v be a global minimizer of (1.2). The proof consists of 3 steps:

i) solving a Dirichlet problem, we construct an appropriate bounded comparison

function w which takes the same values as v on ∂CR ∩ {λ > 0} and thus, by

minimality of v,

Es,CR(v) ≤ Es,CR(w);

ii) we apply the extension Theorem 1.7 in the cylinder of radius R and height R

to deduce∫
CR

λ1−2s|∇w|2dxdλ ≤ C||w||2L2(∂CR)+

+ C

∫ ∫
Bfrac

|w(z)− w(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+ C

∫ ∫
Bweig

λ1−2s |w(z)− w(z)|2

|z − z|n+1
dHn(z)dHn(z),

(5.1)

where z ∈ ∂CR, w is the trace of w on ∂CR and Bfrac and Bweig are defined as

in (1.11) and (1.12), with A = ∂CR and M = BR × {0}.
iii) we prove, rescaling and using Theorem 1.9, that the quantity in the right-hand

side of (5.1) is bounded by CRn−2s
∫ 1

1/R
ρ−2sdρ.
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Proof of Theorem 1.2. Let v be a bounded global minimizer of (1.2). Let u be its

trace on ∂Rn+1
+ . Let τ ∈ [inf u, supu] be such that G(τ) = cu, where cu as defined as

in (1.5).

Throughout the proof, C will denote positive constants depending only on n, s,

||f ||C1,γ and ||u||L∞(Rn). As explained in (1.18), v satisfies the following bounds:

|∇xv(x, λ)| ≤ cs for every x ∈ Rn and λ ≥ 0 (5.2)

|∇v(x, λ)| ≤ cs
λ

for every x ∈ Rn and λ > 0 (5.3)

|λ1−2s∂λv| ≤ cs for every x ∈ Rn and λ > 0. (5.4)

We recall (see Remark 1.10) that the constants cs in (5.2) and (5.4) are not uniformly

bounded for s close to 0 and s close to 1 respectively.

We estimate the energy Es,CR(v) of v using a comparison argument. We define a

function w = w(x, λ) in CR in the following way. First we define w(x, 0) on the base

of the cylinder to be equal to a smooth function g(x) which is identically equal to τ

in BR−1 and g(x) = v(x, 0) for |x| = R. The function g is defined as follows:

g = τηR + (1− ηR)v(·, 0), (5.5)

where ηR is a smooth function depending only on r = |x| such that ηR ≡ 1 in BR−1

and ηR ≡ 0 outside BR. Then we define w(x, λ) as the unique solution of the Dirichlet

problem 
div(λ1−2s∇w) = 0 in CR

w(x, 0) = g(x) on BR × {λ = 0}
w(x, λ) = v(x, λ) on ∂CR ∩ {λ > 0}.

(5.6)

Since v is a global minimizer of Es,CR and w = v on ∂CR × {λ > 0}, then

ds

∫
CR

1

2
λ1−2s|∇v|2dxdλ+

∫
BR

{G(u(x, 0))− cu}dx

≤ ds

∫
CR

1

2
λ1−2s|∇w|2dxdλ+

∫
BR

{G(w(x, 0))− cu}dx.

We prove now that

ds

∫
CR

1

2
λ1−2s|∇w|2dxdλ+

∫
BR

{G(w(x, 0))− cu}dx ≤ CRn−2s

∫ 1

1/R

ρ−2sdρ.

First of all, observe that the potential energy is bounded by CRn−1. Indeed, by

definition w(x, 0) = τ in BR−1, and therefore
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∫
BR

{G(w(x, 0))− cu}dx =

∫
BR\BR−1

{G(w(x, 0))− cu}dx

≤ C|BR \BR−1| ≤ CRn−1. (5.7)

Thus, we need to bound the Dirichlet energy. First of all, rescaling, we set

w1(x, λ) = w(Rx,Rλ),

for (x, λ) ∈ C1 = B1 × (0, 1). Moreover, if we set ε = 1/R then

w1(x, 0) =

τ for |x| < 1− ε
v(Rx, 0) for |x| = 1.

We observe that

ds

∫
CR

λ1−2s|∇w|2dxdλ = dsR
n−2s

∫
C1

λ1−2s|∇w1|2dxdλ.

Thus, it is enough to prove that

ds

∫
C1

λ1−2s|∇w1|2dxdλ ≤ C

∫ 1

ε

ρ−2sdρ. (5.8)

Applying Theorem 1.7 (and Remark 1.8) with Ω = C1 and M = B1 × {0}, we have

that

ds

∫
C1

λ1−2s|∇w1|2dxdλ

≤ C||w1||2L2(∂C1) + C

∫ ∫
Bfrac

|w1(z)− w1(z)|2

|z − z|n+2s
dHn(z)dHn(z)

+C

∫ ∫
Bweig

dM(z)1−2s |w1(z)− w1(z)|2

|z − z|n+1
dHn(z)dHn(z),

where Bfrac and Bweig are defined as in (1.11) and (1.12) with A = ∂C1 and M =

B1 × {0}.
To bound the two double integrals above, we apply Theorem 1.9 to w1|∂C1

in A =

∂C1, taking Γ = ∂B1 × {λ = 0}. Since |w1| ≤ C, we only need to check the gradient

bounds (1.14) and (1.15) in ∂C1. In the bottom boundary, M = B1 × {0}, this is

simple. Indeed w1 ≡ τ in B1−ε, and thus we need only to control |∇w1(x, 0)| =

ε−1|∇g(Rx)| ≤ Cε−1 for |x| > 1 − ε, where g is defined in (5.5). We have used

estimate (5.2) on v. Here dΓ(x) < ε, and one can deduce that (1.14), (1.15) hold

here.
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Next, to verify (1.14) and (1.15) in ∂C1 ∩ {λ > 0} we use that w = v here and we

know that v satisfies (5.2), (5.3), and (5.4). Thus the tangential derivatives of w1 in

∂C1 ∩ {λ > 0} satisfy

|∇xw1(x, λ)| ≤ csR =
cs
ε

for (x, λ) ∈ ∂C1 ∩ {λ > 0} (5.9)

|∇w1(x, λ)| ≤ csR

Rλ
=
cs
λ

for (x, λ) ∈ ∂C1 ∩ {λ > 0} (5.10)

and

|λ1−2s∂λw1(x, λ)| ≤ csR

R1−2s
=

cs
ε2s

for (x, λ) ∈ ∂C1 ∩ {λ > 0}. (5.11)

Estimate (5.10) is used on the top boundary B1×{λ = 1} to verify in this set (1.14)

and (1.15). Note that here dΓ((x, λ)) is comparable to λ = 1 up to multiplicative

constants. (5.9), (5.10), and (5.11) also lead to (1.14) and (1.15) on the lateral

boundary ∂B1× (0, 1), where dΓ((x, λ)) = λ. Hence, w1|∂C1
satisfies the hypothesis of

Theorem 1.9. We conclude that the estimate for the Dirichlet energy (5.8) holds. �

6. Energy estimate for monotone solutions in R3

In section 5 of [4], we proved two technical lemmas which led to the energy estimate

for monotone solutions (without limit assumption) and s = 1/2 in dimension n =

3. Here we give analogue results but for every fractional power 0 < s < 1 of the

Laplacian.

The first lemma concerns the stability property of the limit functions

v(x1, x2, λ) := lim
x3→−∞

v(x, λ) and v(x1, x2, λ) := lim
x3→+∞

v(x, λ),

and some properties of the potential G in relation with these functions. The second

proposition establishes that monotone solutions are global minimizers among a suit-

able class of functions which in turn allows us to apply a comparison argument to

obtain energy estimates.

Lemma 6.1. Let f be a C1,γ function, for some γ > max{0, 1 − 2s}, and u be a

bounded solution of equation (1.1) in R3, such that ux3 > 0. Let v be the s-extension

of u in R4
+.

Set

v(x1, x2, λ) := lim
x3→−∞

v(x, λ) and v(x1, x2, λ) := lim
x3→+∞

v(x, λ).

Then, v and v are solutions of (1.2) in R3
+, and each of them is either constant

or it depends only on λ and on one Euclidian variable in the (x1, x2)−plane. As a

consequence, each u = v(·, 0) and u = v(·, 0) is either constant or 1-D.

Moreover, set m = inf u ≤ m̃ = supu and M̃ = inf u ≤M = supu.
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Then, G > G(m̃) = G(m) in (m, m̃), G′(m̃) = G′(m) = 0 and G > G(M̃) = G(M)

in (M̃,M), G′(M̃) = G′(M) = 0.

Proof. The proof is the same as in the case of the half-Laplacian (see [4]). We do not

supply all details and just recall the two main steps:

(1) show that the functions v and v are stable solutions of problem (1.2) in R3
+

and thus their trace in R2 is 1-D by the one-dimensional symmetry result of

the first author and Sire, Theorem 2.12 of [6];

(2) apply Theorem 2.2 (i) of the first author and Sire [5], which gives necessary

conditions on the nonlinearities f for which there exists an increasing solution

to (1.2) in dimension n = 1. This leads to the conditions on G stated at the

end of the lemma.

�

Proposition 6.2. Let f be any C1,γ nonlinearity, for some γ > max{0, 1− 2s}. Let

u be a bounded solution of (1.1) in Rn such that uxn > 0, and let v be the s-extension

of u in Rn+1
+ .

Then,

ds

∫
CR

1

2
λa|∇v(x, λ)|2dxdλ +

∫
BR

G(v(x, 0))dx

≤ ds

∫
CR

1

2
λa|∇w(x, λ)|2dxdλ+

∫
BR

G(w(x, 0))dx,

for every H1(CR, λ
a) function w such that w = v on ∂+CR = ∂CR ∩ {λ > 0} and

v ≤ w ≤ v in CR, where v and v are defined by

v(x′, λ) := lim
xn→−∞

v(x′, xn, λ) and v(x′, λ) := lim
xn→+∞

v(x′, xn, λ).

Proof. As in the case of the half-Laplacian, this property of local minimality of mono-

tone solutions w such that v ≤ w ≤ v follows from the following two results:

i) Uniqueness of the solution to the problem
div(λa∇w) = 0 in CR,

w = v on ∂+CR = ∂CR ∩ {λ > 0},
−dsλa∂λw = f(w) on BR,

v ≤ w ≤ v in CR.

(6.1)

Thus, the solution must be w ≡ v. This is the analogue of Lemma 3.1 of [7]

for s = 1/2, and below we comment on its proof. In this fractional case, it is

stated in Lemma 5.1 of [6].
37



ii) Existence of an absolute minimizer for (6.1), that is, for Es,CR in the set

Cv = {w ∈ H1(CR, λ
a) |w ≡ v on ∂+CR, v ≤ w ≤ v in CR}.

The statement of the proposition follows from the fact that by i) and ii), the

monotone solution v, by uniqueness, must agree with the absolute minimizer in CR.

To prove points i) and ii), we proceed exactly as in [6]. For this, it is important

that v and v are respectively, a strict subsolution and a strict supersolution of the

Dirichlet-Neumann mixed problem (6.1). We make a short comment about these

proofs.

i) The proof of uniqueness is based on sliding the function v(x, λ) in the direction

xn. We set

vt(x1, ..., xn, λ) = v(x1, ..., xn + t, λ) for every (x, λ) ∈ CR.

Since vt → v as t → +∞ uniformly in CR and v < w < v (here we use that

w solves (6.1) and that v is a subsolution to guarantee v < w), then w < vt

in CR, for t large enough. We want to prove that w < vt in CR for every

t > 0. Suppose that s > 0 is the infimum of those t > 0 such that w < vt

in CR. Then by applying maximum principle and Hopf’s lemma we get a

contradiction, since one would have w ≤ vs in CR and w = vs at some point

in CR \ ∂+CR.

ii) To prove the existence of an absolute minimizer for ECR in the convex set Cv,

we proceed exactly as in Lemma 4.1 of [6], substituting −1 and +1 by the

subsolutions and supersolution v and v, respectively.

�

We give now the proof of the energy estimate in dimension 3 for monotone solutions

without the limit assumptions.

Proof of Theorem 1.4. We follow the proof of Theorem 5.2 of [1]. We need to prove

that the comparison function w, used in the proof of Theorem 1.2, satisfies v ≤ w ≤
v. Then we can apply Proposition 6.2 to make the comparison argument with the

function w (as for global minimizers). We recall that w is the solution of
div(λ1−2s∇w) = 0 in CR

w(x, 0) = g(x) on BR × {λ = 0}
w(x, λ) = v(x, λ) on ∂CR ∩ {λ > 0},

(6.2)

where g = τηR + (1 − ηR)v(·, 0) as in (5.5). Recall that τ is such that G(τ) = cu =

min{G(s) : infRn u ≤ s ≤ supRn u}. Thus, if we prove that we van take τ such that
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sup v ≤ τ ≤ inf v, then v ≤ g ≤ v and hence v and v are respectively, subsolution

and supersolutions of (6.2). It follows that v ≤ w ≤ v, as desired.

To show that sup v ≤ τ ≤ inf v, let m = inf u = inf u and M = supu = supu,

where u and u are defined in Lemma 6.1. Set m̃ = supu and M̃ = inf u; obviously m̃

and M̃ belong to [m,M ]. By Lemma 6.1, u and u are either constant or monotone

1-D solutions, moreover

G > G(m) = G(m̃) in (m, m̃) (6.3)

in case m < m̃ (i.e. u not constant), and

G > G(M) = G(M̃) in (M̃,M) (6.4)

in case M̃ < M (i.e. u not constant).

In all four possible cases (that is, each u and u is constant or one-dimensional), we

deduce from (6.3) and (6.4) that m̃ ≤ M̃ and that there exists τ ∈ [m̃, M̃ ] = [sup v =

supu, inf v = inf u] such that G(τ) = cu (recall that cu is the infimum of G in the

range of u), as desired. �

7. 1-D symmetry in R3

To prove Theorem 1.5 we follow the argument, used by Ambrosio and the first

author [3] in their proof of the conjecture of De Giorgi in dimension n = 3. It relies

on a Liouville type theorem. We recall an adapted version of this result for the

fractional case, given by the first author and Sire (Theorem 4.10 in [5]).

Theorem 7.1. ([5]) Let a ∈ (−1, 1), ϕ ∈ L∞loc(R
n+1
+ ) be a positive function and

suppose that σ ∈ H1
loc(R

n+1
+ , λa) is a solution of−σdiv(λaϕ2∇σ) ≤ 0 in Rn+1

+

−σλa ∂σ
∂λ
≤ 0 on ∂Rn+1

+

(7.1)

in the weak sense. Moreover assume that for every R > 1,∫
CR

λa(ϕσ)2dxdλ ≤ CR2, (7.2)

for some constant C independent of R.

Then, σ is constant.

We can now give the proof of our one-dimensional symmetry result.

Proof of Theorem 1.5. We follow the proof of Theorem 1.4 in [4], where the result

was established for s = 1/2. Hence, here we may assume s > 1/2.
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First of all observe that both global minimizers and monotone solutions are stable.

Thus, in both cases (see Lemma 6.1 of [6]), there exists a Hölder continuous function

ϕ in R4
+ such that ϕ > 0 in R4

+, ϕ ∈ H1
loc(R4

+, λ
a), and div(λa∇ϕ) = 0 in R4

+

−dsλa∂λϕ = f ′(v)ϕ on ∂R4
+.

Note that, if u is a monotone solution in the direction x3, say, then we can choose

ϕ = vx3 , where v is the s-extension of u in the half space. For i = 1, 2, 3 fixed, consider

the function:

σi =
vxi
ϕ
.

We prove that σi is constant in R4
+ using the Liouville type Theorem 7.1 and our

energy estimate.

We have that

div(λaϕ2∇σi) = 0 in R4
+.

Moreover −λa∂λσi is zero on ∂R4
+. Indeed

λaϕ2∂λσi = λaϕvλxi − λavxiϕλ = 0

since both vxi and ϕ satisfy the same boundary condition

−dsλa∂λvxi − f ′(v)vx1 = 0, −dsλa∂λϕ− f ′(v)ϕ = 0.

By Theorems 1.2 and 1.4, v satisfies the energy estimate (1.9). Since G(u)−cu ≥ 0

in R3, we deduce∫
CR

λ1−2s(ϕσi)
2 ≤

∫
CR

λ1−2s|∇v|2 ≤ CR2, for every R > 2 and 1/2 < s < 1.

Thus, using Theorem 7.1, we deduce that σi is constant for every i = 1, 2, 3. We get

vxi = ciϕ for some constant ci, with i = 1, 2, 3.

We conclude the proof observing that if c1 = c2 = c3 = 0 then v is constant. Otherwise

we have

civxj − cjvxi = 0 for every i 6= j,

and we deduce that v depends only on λ and on the variable parallel to the vector

(c1, c2, c3). Thus u(x) = v(x, 0) is 1-D. �
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[3] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in R3 and a con-

jecture of De Giorgi, Journal Amer. Math. Soc. 13 (2000), 725–739.

[4] X. Cabré and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving

the half-Laplacian, Discrete Contin. Dyn. Syst. 28 (2010), 1179–1206.
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