
EXISTENCE OF ISOPERIMETRIC REGIONS IN Rn WITH DENSITY
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Abstract. We prove the existence of isoperimetric regions in Rn with density under various
hypotheses on the growth of the density. Along the way we prove results on the boundedness
of isoperimetric regions.
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1. Introduction

There has been a recent surge of interest in Riemannian manifolds with a positive “density”
function that weights volume and area (see [11, 12]) and in particular in the isoperimetric
problem of minimizing weighted perimeter for given weighted volume. Whether isoperimetric
regions exist in Rn with density depends on the density. We present the following:

Conjecture 7.1. Let f be a radial, increasing density on Rn. Then isoperimetric sets exist for
all volumes.

Proposition 5.3 gives a non-radial increasing density for which existence fails.
Following more restrictive results of Rosales et al. [15], our Theorem 3.3 proves the conjecture

if the density approaches infinity, even if not increasing. Propositions 3.1 and 3.2 provide
examples to show that neither hypothesis can be simply deleted.

If the density approaches a finite limit a at infinity, we do not need to assume f radial, but
we need some assumption on the growth (Theorems 7.9, 7.11, 7.13) and some condition to make
isoperimetric regions bounded (Corollary 5.11). Our results cover all the standard examples
(Remark 7.16).

The growth hypotheses are of two types. Theorems 7.9 and 7.11 assume that the density
approaches the limiting value slowly in some sense. Theorem 7.13 assumes an averaging condition
on the density, weaker than superharmonicity (Corollary 7.14).

We prove boundedness for increasing C1 densities in three cases. Proposition 5.1 handles
R2 without assuming the density radial. Proposition 5.8 shows by example that in general
dimensions, further hypotheses are necessary. Proposition 5.9 handles Rn with radial density.
Proposition 5.10 instead assumes the density to be Lipschitz.
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The proofs. The main step of the existence proofs (Proposition 7.4) is to show that there
are balls arbitrarily far from the origin with “mean density” at most a. Given that, the proof
of the existence of an isoperimetric region of prescribed volume proceeds as follows. Take a
minimizing sequence converging to a limit F . The problem is that some volume may be lost to
infinity, with mean density a. Since F is bounded, the missing volume may be replaced by a ball
far from the origin of mean density a. The hardest part is to find the right growth conditions
to provide the distant balls with mean density at most a.

Section 6 discusses the convexity of isoperimetric sets. Section 7 gives our main existence
results, and Section 8 collects some open problems.

This paper focuses on Rn for n ≥ 2. In R1, most of our questions are trivial and much finer
results are already known (see e.g. [15]).

2. Preliminaries

Let us first set some notation and list some known results. We confine attention to Euclidean
space Rn. For a background on geometric measure theory, see Giusti [6] or Morgan [10]. The
ball and the sphere of radius r are denoted respectively by

B(r) :=
{
x ∈ Rn : |x| ≤ r

}
, S(r) :=

{
x ∈ Rn : |x| = r

}
= ∂B(r) .

The letter f will always denote the density (lower-semicontinuous positive function on Rn) that
we use to calculate perimeters and volumes. Hence, given any set E of locally finite perimeter,
we will denote its volume and perimeter by∣∣E∣∣

f
:=
ˆ
E
f(x) dx , Pf (E) :=

ˆ
∂E
f(x) dH n−1(x) .

By ∂E we denote the essential boundary of E, which coincides with the usual boundary of E if
it is a smooth or piecewise affine set. For a given positive volume V > 0, we set

If (V ) := inf
{
Pf (E) : |E|f = V

}
.

The function If is usually referred to as the isoperimetric function or isoperimetric profile, while
an isoperimetric set is any set E such that Pf (E) = If

(
|E|f

)
. We will avoid the subscript f

when there is no risk of confusion. The following regularity result is known; see for instance [9,
Proposition 3.5, Corollary 3.8].

Theorem 2.1. Let f be a smooth (resp., Lipschitz and Ck−1,α for some k ≥ 1) density on
Rn. Then the boundary of an isoperimetric set is a smooth (resp., Ck,α with any 0 < α < 1)
submanifold except on a singular set of Hausdorff dimension at most n− 8.

Given a set of finite perimeter E, for H n−1-a.e. x ∈ ∂E the outer normal νE(x) is well
defined. Sometimes, when there is no risk of confusion, we will simply write ν(x). For x ∈ ∂E,
let H0(x,E) denote the inward Euclidean mean curvature, defined if E is twice differentiable at
x. For convenience, we take the mean curvature to be the sum rather than the average of the
principal curvatures, so that it is n − 1 rather than 1 for the unit sphere in Rn. If E ⊆ R2 is
locally the region above the graph of a function τ , twice differentiable at x, then the (upward)
mean curvature is given by

H0

(
(x, τ(x)

)
=

τ ′′(x)(
1 + τ ′(x)2

)3/2 .
(see [8, p. 6]). A twice differentiable connected planar set is convex if and only if its boundary
has nonnegative (inward) mean curvature. A twice differentiable connected subset of Rn is called
mean-convex if it has nonnegative mean curvature.
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We now present a classical first variation formula and the notion of curvature in the case of
Euclidean space Rn with a density f (for more details, see [15, Sect. 3]). To start, we define the
function v : R2 → Rn such that the density f can be expressed as

f(x) = ev(x) .

A careful computation yields the following first order expansion formulae for perimeter and
volume.

Lemma 2.2 (First variation formulae). Let the density f be C1, and let E ⊆ Rn be C2. For
any C2 function u : ∂E → R and a small positive number ε, consider the set Eε such that

∂Eε =
{
x+ εu(x)ν(x) : x ∈ ∂E

}
.

Then the following first-order expansions for volume and perimeter of Eε hold,

d
∣∣Eε∣∣f
dε

(ε = 0) =
ˆ
∂E
u(x)f(x) dH n−1(x) , (2.1)

dPf
(
Eε
)

dε
(ε = 0) =

ˆ
∂E

(
H0(x,E) +

∂v

∂νE(x)
(x)
)
u(x)f(x) dH n−1(x) . (2.2)

In view of the above expansions, it is natural to give the following definition.

Definition 2.3. Let E be a set of finite perimeter, and assume f to be C1. For any x ∈ ∂E
such that νE(x) exists (hence, for H n−1−a.e. x ∈ ∂E), we define the generalized curvature
with respect to the density f = ev as

Hf (x,E) := H0(x,E) +
∂v

∂νE(x)
(x) . (2.3)

Again, when there is no risk of confusion, we will simply write Hf (x), or even H(x).

Remark 2.4. As a consequence of the above definition, if E is a C2 subset of Rn then (2.2)
can be rewritten as

dPf
(
Eε
)

dε
(ε = 0) =

ˆ
∂E
Hf (x,E)u(x)f(x) dH n−1(x) . (2.4)

In general, if E is an isoperimetric set then the ratio between d
∣∣Eε∣∣f/dε and dPf

(
Eε
)
/dε must be

constant over all smooth u. In particular, if E is C2, this implies that the generalized curvature
is constant. If E is not smooth enough, this provides a weak extension of the generalized mean
curvature after Allard [10, Sect. 11.2].

To conclude this introduction, we recall the following results.

Theorem 2.5 ([15, Theorem 3.10]). Consider a radial density f = ev on Rn. If v is convex,
then balls about the origin are stable, while if v is strictly concave, then balls are unstable. More
precisely, the second variation of perimeter for fixed volume for the ball B(r) has the same sign
as v”(r).

Example 2.6 ([3, Theorems 3.23, 3.20]). Consider R2 with density 0 < λ < 1 inside the unit
ball and density 1 outside the ball. This density is radial and nondecreasing (although neither
log-concave nor log-convex), but it admits some isoperimetric sets which are not convex or which
do not contain the origin, as in the first line of Figure 1. In particular, for prescribed volume
slightly greater than λπ, the isoperimetric profile satisfies

I(λπ + ε) ≈ 2λπ + cλ
√
ε .

Alternatively, consider R2 with density 1 inside the open unit ball and density 0 < λ < 1 outside
the ball. This density is radial and nonincreasing, but again admits some isoperimetric sets
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Figure 1. The first row shows isoperimetric sets for density λ < 1 inside the
ball and density 1 outside the ball; the second row for density 1 inside the ball
and density λ < 1 outside the ball (Example 2.6). Some of these sets are nei-
ther symmetric nor convex. Figures courtesy Cañete, Miranda, and Vittone [3,
Figures 17 and 13]; all rights reserved.

which are not convex or which do not contain the origin, as in the second line of Figure 1. For
prescribed volume slightly less than π, the isoperimetric profile satisfies

I(π − ε) ≈ 2λπ + cλ
√
ε ;

in particular, it is sometimes decreasing.

3. Existence of isoperimetric sets

Notice that, due to the different scaling of perimeter and volume, in regions with constant
density the perimeter of a ball of given volume is larger when the density is larger. Hence,
roughly speaking, isoperimetric sets try to go where the density is low. As a consequence, we
can expect that a sequence of sets minimizing the perimeter stays close to the origin if the
density diverges, while they wander far from the origin if the density tends to 0. Therefore,
for a density which decreases to 0, isoperimetric sets often fail to exist. More generally, for a
density which decreases to any limit, isoperimetric sets often fail to exist. On the other hand,
one naively expects that existence should hold when the density is increasing, and in particular if
the density diverges to infinity. Unfortunately, this is not true for some bumpy densities (see [15,
Example 2.6]).

Proposition 3.1. There exists a smooth density f on Rn approaching infinity at infinity for
which no isoperimetric set exists. Indeed, the infimum perimeter to enclose every volume V > 0
is I(V ) = 0.

Proof. Let us start with any radial and increasing smooth density f0 which is diverging to
infinity. Then, take countably many disjoint balls Bi moving away from the origin and such
that Pf0(Bi) = 1/i2. Observe that the radii of these balls decrease to 0 and the volumes

∣∣Bi∣∣f0
of these balls converge to 0 faster than 1/i2. For any ball Bi, with i big enough, it is possible
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to increase the density in the interior of the ball, still remaining smooth, in such a way that
the volume of the ball increases up to 1/i. Applying this procedure for all the balls, we find a
smooth diverging density f ≥ f0 such that for each i ∈ N big enough one has

Pf (Bi) =
1
i2
,

∣∣Bi∣∣f =
1
i
.

Countable unions of such balls provide sets of arbitrary volume and arbitrarily small perimeter.
�

Proposition 3.2. There exists a smooth radial density f on Rn for which no isoperimetric set
exists.

Proof. It is sufficient to consider a smooth radial density f such that f(r) = 1/r for r large
enough, which is then decreasing to 0 at infinity. Consider a ball BR,D centered at distance
D � 1 from the origin, and with radius 1� R� D. The volume and the perimeter of this ball
are approximatively∣∣BR,D∣∣f ≈ ωnR

n

D
, Pf

(
BR,D

)
=
nωnR

n−1

D
.

Therefore, for any given volume V > 0 and for any distance D big enough, it is possible
to take some R ≈ (DV )1/n such that the ball BR,D has exactly volume V . This ball has
perimeter Pf

(
BR,D

)
≈ V

n−1
n /D

1
n , which is then arbitrarily small up to take D big enough. As

a consequence, I(V ) = 0 for any V > 0, that is, no isoperimetric sets exist. �

Dı́az et al. [4, Prop. 7.3] show that no isoperimetric set exists in Rn with density r−p for
0 < p ≤ n. Our Proposition 5.3 will provide a non-decreasing density on Rn for which there is
no isoperimetric set of unit volume.

We can now show a positive result, stating that isoperimetric sets exist for all volumes if the
density is radial and diverging. This result was known before only in R2 [15, Theorem 2.5], or
under additional hypotheses in Rn [15, Theorem 2.1]. The counterexamples of Propositions 3.1
and 3.2 ensure that both assumptions are necessary.

Theorem 3.3. Assume that f is a (lower-semicontinuous) radial density on Rn which diverges
to infinity. Then there exist isoperimetric sets for all volumes.

Proof. The basic idea of the proof is that if some volume goes off to infinity, there must be lots
of tangential or radial perimeter.

Fix a volume V > 0. By approximation, there is a sequence of smooth sets Ej with volume
|Ej |f = V and with Pf (Ej) ↘ I(V ). By the standard compactness results for sets (see for
instance [1, 10]), we can extract a subsequence converging to a limit set E with |E|f = V as
soon as

lim
R→∞

lim sup
j→∞

∣∣Ej \B(R)
∣∣
f

= 0 . (3.1)

Since by lower semicontinuity one has Pf (E) ≤ lim inf Pf (Ej) = I(V ), this means that I(V )
is in fact a minimum whenever condition (3.1) holds. As a consequence, if the result were not
true, there would be then some ε > 0 such that, for each R > 0 (and up to a subsequence)∣∣Ej \B(R)

∣∣
f
≥ ε (3.2)

for all j large enough (depending on R, of course!).
Let us then fix a sufficiently big number R, to be specified later, and fix also an index j for

which (3.2) holds. Call Sj(r) the area of the slice of Ej at distance r from the origin, that is,

Sj(r) := H n−1
(
Ej ∩ S(r)

)
.
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Hence, (3.2) reads as ˆ +∞

R
f(r)Sj(r) dr ≥ ε . (3.3)

If we call

Mj = max{Sj(r) : r ≥ R} , f− = min{f(r) : r ≥ R} ,
then of course

Pf
(
Ej
)
≥Mjf− . (3.4)

Since we can choose R in such a way that f− is arbitrarily big, it is admissible to assume that
Mj is small. In particular, for each r ≥ R the slice Ej ∩ S(r) is a small portion of the sphere
S(r). Hence, denoting by pj(r) the relative perimeter of Ej in the slice Ej ∩ S(r), i.e.,

pj(r) := H n−2
(
∂
(
Ej ∩ S(r)

))
,

the standard isoperimetric inequality on the sphere Sn−1 says that

pj(r) ≥ cnSj(r)
n−2
n−1 ∀ r ≥ R ,

where cn is a suitable dimensional constant. By Vol’pert Theorem (see [16], or [1, Theo-
rem 3.108]), we know that the equality

∂
(
Ej ∩ S(r)

)
=
(
∂Ej

)
∩ S(r)

holds H n−2-a.e. for almost all r; hence by co-area formula (see [1, 10]) one has

Pf (Ej) ≥
ˆ ∞
R

pj(r)f(r) dr ≥ cn
ˆ ∞
R

Sj(r)
n−2
n−1 f(r) dr ≥ cn

M
1

n−1

j

ˆ ∞
R

Sj(r)f(r) dr ≥ cn

M
1

n−1

j

ε ,

thanks to (3.3). Using now (3.4), we derive

Pf (Ej)
n
n−1 ≥ cn f

1
n−1
− ε ,

which gives a contradiction with the optimality of the sequence Ej , since ε > 0 is given while
f− can be taken arbitrarily big if R� 1. �

4. On the monotonicity of I

Let us consider now another question which seems quite reasonable, that is, is it true that
the isoperimetric profile I is increasing? In other words, is it true that to enclose more volume
one needs more perimeter? Theorem 4.3 will give an affirmative answer for increasing densities.
On the other hand, the answer is negative in the case of a finite total measure V =

´
f < ∞,

for which I(V − V ) = I(V ) because a set and its complement have the same perimeter.
In view of this observation, it may seem reasonable to guess that the isoperimetric function

I is increasing if the total volume of Rn is infinite, or at least if the density f is diverging at
infinity. Such a guess is wrong.

Proposition 4.1. There exists a smooth, diverging density f on Rn such that I(1) = 0 and
I(t) ≥ |1− t|(n−1)/n for all 1/2 ≤ t ≤ 3/2.

Proof. The result will be achieved with a modification of the argument of Proposition 3.1. We
start with a smooth, radial, increasing and diverging density f0 ≥ 2 for which

If0(t) ≥ 4t(n−1)/n ∀ 0 ≤ t ≤ 2 . (4.1)

(Notice that this is clearly possible, since for the standard Euclidean density fE ≡ 1 one has
IfE (t) = C(n)t(n−1)/n, and then it is enough to select f0 big and diverging slowly enough). Let
us also select a sequence of open balls Bi = Int

(
B(xi, ri)

)
far from each other and from the
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origin, and with Pf0(Bi) = 1/i. Notice that, since f0 is diverging, each ball Bi can be chosen to
have a volume much smaller than 1/i2, and a radius ri much smaller than 1/i. Call r+i =

√
ri,

so that ri � r+i � 1, and let us also call Ai = Int
(
B(xi, r+i )

)
\ B(xi, ri) the open annulus of

radii ri and r+i , and B̃i = B(xi, r+i ) the ball with the same center as Bi and radius r+i .
Let now Ki be a big constant such thatˆ

Bi

f0 +Ki = 1 ,

and define the density

f̃(x) =
{
f0(x) +Ki if ri 6= |x− xi| < r+i ,
f0(x) otherwise

(notice that f̃ is well-defined since the balls B̃i are disjoint). By construction, |Bi|f̃ = 1 for
every i, while Pf̃ (Bi) = Pf0(Bi) = 1/i, thus If̃ (1) = 0. We aim to show that, for a generic set
E ⊆ Rn with |E|f̃ ∈ (0, 2), one has

Pf̃ (E) ≥ 2 min
{
t(n−1)/n, |1− t|(n−1)/n

}
, (4.2)

since the thesis will then directly follow just by substituting f̃ with a very similar but smooth
density f satisfying f = f̃ on every ∂Bi.

We take then a set E ⊆ Rn with |E|f̃ ∈ (0, 2), and we want to prove (4.2). Let us define

Ei1 := E ∩Bi , Ei2 := E ∩Ai , E3 := E \ ∪i
(
Ei1 ∪ Ei2

)
.

Since the balls B̃i are far enough from each other, one has

H n−1
(
∂E \ ∪iB̃i

)
≥ 1

3
H n−1

(
∂E3

)
;

in particular, since f0 is diverging slowly enough and f̃ = f0 out of ∪iB̃i, by (4.1) we haveˆ
∂E\∪i eBi f̃(x) dH n−1(x) ≥ 1

4
Pf̃ (E3) =

1
4
Pf0(E3) ≥ |E3|(n−1)/n

f̃
. (4.3)

Consider now Ei2 for a generic i: since r+i � ri and since |E2|f̃ ≤ 2� |Ai|f̃ , one has

H n−1
(
∂E ∩Ai

)
≥ 1

3
H n−1

(
∂Ei2

)
.

Hence, exactly as before we deduceˆ
∂E∩Ai

f̃(x) dH n−1(x) ≥ 1
4
Pf0+Ki(E

i
2) ≥ |Ei2|

(n−1)/n
f0+Ki

= |Ei2|
(n−1)/n

f̃
, (4.4)

where the second inequality comes from the fact that f0 is almost constant in Ai (say, f0 ≈ Ci
in Ai) and then by (4.1) we have

Pf0+Ki(E
i
2) ≈ Ci +Ki

Ci
Pf0(Ei2) ≥ Ci +Ki

Ci
4
(
|Ei2|f0

)(n−1)/n

≈ Ci +Ki

Ci
4
(

Ci
Ci +Ki

|Ei2|f0+Ki

)(n−1)/n

=
(
Ci +Ki

Ci

)1/n

4
(
|Ei2|f0+Ki

)(n−1)/n

.

Finally, let us consider a generic Ei1. Recalling that |Bi|f̃ = 1, one has

H n−1
(
∂E ∩Bi

)
≥ 1

3
min

{
H n−1

(
∂Ei3

)
, H n−1

(
∂
(
Bi \ Ei3

))}
;
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hence, arguing exactly as in (4.3) and (4.4), we obtainˆ
∂E∩Bi

f̃(x) dH n−1(x) ≥ min
{(
|Ei3|f̃

)(n−1)/n
,
(
1− |Ei3|f̃

)(n−1)/n
}
. (4.5)

This concludes the proof, because (4.2) follows by (4.3), (4.4) and (4.5) since clearly

Pf̃ (E) =
ˆ
∂E
f̃ dH n−1 ≥

ˆ
∂E\∪i eBi f̃ dH

n−1 +
∑
i

(ˆ
∂E∩Ai

f̃ dH n−1 +
ˆ
∂E∩Bi

f̃ dH n−1

)
.

�

We conclude this section with our positive result, which says that I is increasing if the
density f is non-decreasing in the sense of the following definition.

Definition 4.2. Given a density f , not necessarily radial, we say that f is non-decreasing if
for any θ ∈ Sn−1 the function t 7→ f(tθ) is non-decreasing in R+.

Theorem 4.3. Let f be a density on Rn which is non-decreasing (but not necessarily radial).
Then the isoperimetric profile I is non-decreasing. Moreover, if isoperimetric sets exist for all
volumes, then I is strictly increasing. Indeed, if there exists an isoperimetric set of volume V ,
then I(V ′) < I(V ) for all V ′ < V .

Proof. Take any set E of finite perimeter Pf (E) and of volume |E|f = V . For any r > 0 such
that E 6⊆ B(r), define

E(r) := E ∩B(r) ( E .

The main observation of the proof is the validity of

Pf
(
E(r)

)
< Pf (E) . (4.6)

To show this inequality, consider the projection α : ∂E \ B(r) → S(r). It is immediate that α
is strictly 1−Lipschitz, and moreover the image I(α) of α satisfies

I(α) ⊇
(
∂E(r) \ ∂E

)
, (4.7)

(which in turn is contained in S(r)). The validity of (4.7) is trivial if E is bounded, but it is
true even if E is unbounded. Indeed, let

H =
(
∂E(r) \ ∂E

)
\ I(α) ,

and notice that E containes the whole cone

C =
{
λx : λ ≥ 1, x ∈ H

}
.

Since the density f is increasing, the cone C has infinite volume, and so does E, unless
H n−1(H) = 0, which then ensures us that the inclusion (4.7) is true up to measure 0.

As a consequence, by co-area formula [1, 10] and the fact that f is increasing, one has

Pf
(
E(r)

)
=
ˆ
∂E∩B(r)

f(|x|) dH n−1(x) +
ˆ
∂E(r)\∂E

f(θ) dH n−1(θ)

<

ˆ
∂E∩B(r)

f(|x|) dH n−1(x) +
ˆ
∂E\B(r)

f
(
α(x)

)
dH n−1(x)

≤
ˆ
∂E
f(|x|) dH n−1(x) = Pf (E) ,

so that (4.6) has been established. Now, for every 0 < V ′ < V one has the existence of some
r(V ′) with the property that ∣∣E(r(V ′))

∣∣
f

= V ′ ,
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hence
I(V ′) ≤ P

(
E(r(V ′))

)
< Pf (E) . (4.8)

Our conclusions now follow quickly. Indeed, if there exists an isoperimetric set E of volume
|E|f = V , then inequality (4.8) yields

I(V ′) < Pf (E) = I(V ) .

This proves the second and the third claim of the theorem. Concerning the first one, for any
ε > 0 we can take a set E such that

|E|f = V , Pf (E) ≤ I(V ) + ε .

Hence, (4.8) tells us
I(V ′) < Pf (E) ≤ I(V ) + ε ,

for any V ′ < V , and since ε was arbitrary one gets the inequality I(V ′) ≤ I(V ) for all V ′ <
V . �

5. Boundedness of isoperimetric sets

In this section we consider another property which seems reasonable. Assume that there
exists some isoperimetric set: is it then obvious that it must be bounded? It appears reasonable
that it should be so, at least when the density is increasing in the sense of Definition 4.2. In fact,
we can show that this is what always happens in the two-dimensional case (Proposition 5.1),
but that this is false in dimension n ≥ 3 (Proposition 5.3). However, the result is true for any
dimension if we consider an increasing density which is also radial (Theorem 5.9). The plan of
the section is then the following: first we show the two-dimensional result, then we present our
“fundamental brick” for the following constructions. Then, we show with two counterexamples,
Propositions 5.3 and 5.8, that the two-dimensional result is too strong to hold in dimension n.
Finally, we give the general n−dimensional results, Theorems 5.9 and 5.10.

Let us state and prove our result concerning the two-dimensional case.

Proposition 5.1 (Boundedness in R2). Let f be a C1 density in R2 which either is non-
decreasing (in the sense of Definition 4.2) or approaches a finite limit a > 0 at infinity. Then
every isoperimetric set is bounded.

Proof. Suppose that E ⊆ R2 is an isoperimetric set, and let Ei be its closed connected compo-
nents. First of all, we claim that every connected component Ei is bounded: indeed, since f is
bounded below by some constant c > 0 by assumption,

+∞ > Pf (Ei) ≥ cPeucl(Ei) ≥ cdiamEi . (5.1)

As a consequence, we can assume that E has infinitely many connected components; otherwise
the claim is already proven. Moreover, each connected component is isolated by definition.

Fix now a connected component, say E1. Making small variations of E1, and keeping in
mind formulae (2.1) and (2.4), we can consider suitable variations Eε1 of E1 for all 0 < ε < ε̄
which do not intersect any of the other Ei’s and such that∣∣Eε1∣∣f =

∣∣E1

∣∣
f

+ ε , Pf
(
Eε1
)
≈ Pf

(
E1

)
+ εHf (E) ≤ Pf

(
E1

)
+ ε
(
Hf (E) + 1

)
, (5.2)

where Hf (E) is the generalized mean density of E, which is constant since E is isoperimetric.
Let us now consider another component Ej , and distinguish two cases.

The first case is when f approaches a finite limit a > 0 at infinity. It is admissible to assume
that Ej has distance at least R from the origin, and that it has volume smaller than ε̄ (because
E has infinitely many connected components). This implies

ε :=
∣∣Ej∣∣f ≤ (a+ δ)

∣∣Ej∣∣eucl
, Pf

(
Ej
)
≥ (a− δ)Peucl

(
Ej
)
,
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and by the smallness of the volume of Ej we can assume∣∣Ej∣∣f ≤ 1
Hf (E) + 2

Pf (Ej) . (5.3)

Call now Ẽ the set we get from E by removing Ej and replacing E1 by Eε1: by construction∣∣Ẽ∣∣
f

=
∣∣E∣∣

f
, and thanks to (5.2) and (5.3) we also have

Pf
(
Ẽ
)

= Pf
(
E
)

+ Pf
(
Eε1
)
− Pf

(
E1

)
− Pf

(
Ej
)
≤ Pf

(
E
)
− ε < Pf

(
E
)
,

contradicting the minimality property of E.
The second case is when f is nondecreasing. We will argue in a similar way as in the first

case: writing for brevity ρeiθ = (ρ cos θ, ρ sin θ), for all relevant θ let

ρ−(θ) := inf
{
ρ > 0 : ρeiθ ∈ Ej

}
, ρ+(θ) := sup

{
ρ > 0 : ρeiθ ∈ Ej

}
,

ρm := min
{
ρ−(θ)

}
, ρM := max

{
ρ+(θ)

}
.

We are then in the position of evaluating the perimeter and volume of Ej . Concerning the
volume, one has

ε : =
∣∣Ej∣∣f =

ˆ ˆ ρ+(θ)

ρ−(θ)
f
(
ρeiθ

)
χ

Ej

(
ρeiθ

)
ρdρ dθ

≤ ρM
ˆ
f
(
ρ+(θ)eiθ

) ˆ ρ+(θ)

ρ−(θ)
χ

Ej

(
ρeiθ

)
dρ dθ ≤ ρML

ˆ
f
(
ρ+(θ)eiθ

)
dθ ,

(5.4)

where

L := max
ˆ ρ+(θ)

ρ−(θ)
χ

Ej

(
ρeiθ

)
dρ

is the (weighted) length of the maximal radial slice of Ej . Concerning the perimeter, let

∂E+
j :=

{
ρ+(θ)eiθ : ρ+(θ) > 0

}
⊆ ∂Ej ,

and let H 1
f denote the Hausdorff one-dimensional measure on R2 with density f . We can then

evaluate

Pf
(
Ej
)

= H 1
f

(
∂Ej

)
≥H 1

f

(
∂E+

j

)
≥
ˆ
f
(
ρ+(θ)eiθ

)
ρ+(θ) dθ ≥ ρm

ˆ
f
(
ρ+(θ)eiθ

)
dθ . (5.5)

Hence, putting together (5.4) and (5.5), we find

Pf
(
Ej
)
≥ 1
L

ρm
ρM

∣∣Ej∣∣f . (5.6)

Recall now that the volumes and diameters of the components Ej go to 0. From this, we can
assume that ε ≤ ε̄, as well as that

1
L

ρm
ρM

> Hf (E) + 2 . (5.7)

Consequently, if we call Ẽ the set we get from E by removing Ej and replacing E1 by Eε1, we
have that

∣∣Ẽ∣∣
f

=
∣∣E∣∣

f
, and thanks to (5.2), (5.6) and (5.7) we also have

Pf
(
Ẽ
)

= Pf
(
E
)

+ Pf
(
Eε1
)
− Pf

(
E1

)
− Pf

(
Ej
)
≤ Pf

(
E
)
− ε < Pf

(
E
)
,

contradicting the assumption that E is an isoperimetric set. �
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Proposition 5.3 will show with a counterexample that Proposition 5.1 is no longer true in
dimension n > 2. The dimension n = 2 played a crucial role in (5.1) when we estimated the
perimeter of a connected set by its diameter. Such an estimate fails in dimension n ≥ 3, since
thin tentacles can have large diameter and small perimeter.

Let us now introduce the fundamental brick for our future examples of this section. We
work in R3 for simplicity, but the same construction works for any dimension n ≥ 3. Let us use
spherical coordinates ρ, φ, θ. This means that, for any ρ ≥ 0, 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ π we
denote by (ρ, θ, φ) the point whose standard Euclidean coordinates are(

ρ cosφ, ρ sinφ cos θ, ρ sinφ sin θ
)
.

Definition 5.2 (The fundamental brick). Let R1 < R2 be positive big numbers, let φ0 > 0
be a small angle, and let 1� N �M �W be three big numbers. Let us define the set E ⊆ R3,
as shown in Figure 2: since our whole construction does not depend on θ, the drawing shows
just the plane where θ = 0 or θ = π. The boundary of E is given by

∂E :=
{
φ = φ0, R1 ≤ ρ ≤ R2

}
∪
{

0 ≤ φ ≤ φ0, ρ = R2

}
∪ Γ ,

where Γ is a spherical cap of radius 1 containing the circle {ρ = R1, φ = φ0}. Let γ : (0, φ0)→
R+ be the function such that

Γ =
{

(ρ, θ, φ) : 0 < φ < φ0, ρ = γ(φ)
}
.

Finally, we can define the density f as

Figure 2. The fundamental brick E for our examples of nonexistence and nonboundedness.

ρ = R1 ρ = R2Γ

φ = φ0

φ = φ0

f
(
ρ, θ, φ

)
:=



N if φ > φ0 , ρ ≤ R1 ,
M if φ > φ0 , R1 < ρ ≤ R2 ,
N if φ = φ0, ρ ≤ R2 ,
N if φ < φ0, ρ ≤ γ(φ) ,
M if φ < φ0, γ(φ) < ρ ≤ R2 ,
W if ρ > R2 .

This density is non-decreasing and not radial. The set E is clearly a good candidate to be
isoperimetric, since it lies in a zone where the density has the huge value M , but most of its
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boundary lies where the density has the value N �M , namely, all the boundary except the part
where ρ = R2. Let us now fix a small number ε > 0 and set φ0, R1 and R2 so that

R1 =
1
ε2
, R2 = R1 +

1
ε
, R2 sinφ0 = ε5/3 . (5.8)

A simple evaluation of the perimeter and volume of E gives∣∣E∣∣
f
≈M ε7/3 , Pf

(
E
)
≈ N ε2/3 +M ε10/3 . (5.9)

We are now already ready to prove the non-existence result.

Proposition 5.3 (Non-existence). For n ≥ 3, there exists a non-decreasing density on Rn

such that general existence of isoperimetric sets fails. Indeed, I(1) = 0.

Proof. We work in R3 for simplicity; the same argument works in all higher dimensions as well.
Let us take a sequence εj ↘ 0: correspondingly, as described in Definition 5.2 we take sequences
R1,j , R2,j and φ0,j fulfilling (5.8) and we have the corresponding densities fj and sets Ej in R3.
Recalling (5.9) we can choose Nj and Mj of order

Nj ≈ ε−1/3
j , Mj ≈ ε−7/3

j ,

in such a way that∣∣Ej∣∣fj = 1 , Pfj
(
Ej
)
≈ ε3j + ε

1/3
j + εj → 0 .

Let Wj = Nj+1. Provided εj is chosen sufficiently rapidly decreasing to 0, we have

R2,j � R1,j+1 , Mj �Wj = Nj+1 .

Finally, we can define a single density f on R3 just setting

f ≡ fj on B
(
R2,j

)
\B
(
R2,j−1

)
,

so that f is non-decreasing and diverging. In this way, all the sets Ej are disconnected (and
very far from each other), and the density around each Ej coincides with fj . As a consequence,
all the sets Ej have unit volume, but their perimeters are going to 0. In particular, I(1) = 0
and there is no isoperimetric set of volume 1. �

Our next goal is to show an example of non-boundedness of an isoperimetric set. This
cannot be done, of course, with the very same construction as in the preceding example, since
in that case there was no isoperimetric set at all! We will present a slight modification of the
argument, where the isoperimetric set will intersect all the sets Ej . To show its optimality, we
will need to use the following Propositions 5.4 and 5.7.

Proposition 5.4. Let ε be a small positive number, let φ0, R1, R2 be according to (5.8), and
let W � M � N � 1 be so that the corresponding fundamental brick E and density f of
Definition 5.2 satisfy |E|f ≤ 1. There exists a universal constant c > 0 such that, for any set
F ⊆ R3 with |F |f ≤ 1, one has

Pf (F )− Pf (F ∩ E) ≥ c
∣∣F \ E∣∣

f
. (5.10)

The proof will use the following two lemmas, the first of which we state without proof.

Lemma 5.5. If C ⊆ Rn is a convex set, then the projection π : Rn \ C → C, which associates
to any x /∈ C the closest point π(x) ∈ C, is 1−Lipschitz.

Lemma 5.6. Let B(r) be a ball of radius r and S(r) its boundary, and let F ⊆ Rn \B(r) be a
set of volume |F |eucl ≤ 1. Then there exists a constant c(r), depending on r but not on F , such
that

|F |eucl ≤ c(r)
(
H n−1

(
∂F \ S(r)

)
−H n−1

(
∂F ∩ S(r)

))
.
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Proof. Let F be as in the claim, and define G = F ∪B(r). By the isoperimetric inequality,

nω
1
n
n

(
|G|eucl

)n−1
n ≤ Peucl

(
G
)

= Peucl(F ) + Peucl

(
B(r)

)
− 2H n−1

(
∂F ∩ S(r)

)
= nωnr

n−1 + H n−1
(
∂F \ S(r)

)
−H n−1

(
∂F ∩ S(r)

)
.

Hence,

H n−1
(
∂F \ S(r)

)
−H n−1

(
∂F ∩ S(r)

)
≥ nω

1
n
n

(
|G|eucl

)n−1
n − nωnrn−1

= nω
1
n
n

(
ωnr

n + |F |eucl

)n−1
n − nωnrn−1 ≥ (n− 1)

(
rn +

1
ωn

)− 1
n

|F |eucl ,

so that the result follows by taking

c(r) =
1

n− 1

(
rn +

1
ωn

) 1
n

.

�

Having these two lemmas in hand, we are ready to prove Proposition 5.4.

Figure 3. The sets F1, F2 and F3 for Proposition 5.4.

F1

F2

F3

Proof of Proposition 5.4. Given a set F ⊆ R3, let F+ = F \ E, and write F+ = F1 ∪ F2 ∪ F3,
where

F1 = F+ ∩B(R1) , F2 = F+ ∩
(
B(R2) \B(R1)

)
, F3 = F+ \B(R2) .

For simplicity, we start assuming that the closures of the three sets are disjoint. The situation
is depicted in Figure 3. Defining, for i = 1, 2, 3,

∂F+
i = ∂Fi \ ∂E , ∂F−i = ∂Fi ∩ ∂E ,

one readily observes that

Pf (F )− Pf
(
F ∩ E

)
≥H 2

f

(
∂F+

1 ∪ ∂F
+
2 ∪ ∂F

+
3

)
−H 2

f

(
∂F−1 + ∪∂F−2 ∪ ∂F

−
3

)
. (5.11)

Consider now F1: Lemma 5.6 immediately tells us that∣∣F1

∣∣
f

= N |F1|eucl ≤ Nc
(
H 2

(
∂F+

1

)
−H 2

(
∂F−1

))
= c
(
H 2

f

(
∂F+

1

)
−H 2

f

(
∂F−1

))
. (5.12)
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Let us then study F2. Since |F2|f ≤ 1, the isoperimetric inequality tells us that

Peucl

(
F2

)
≥ c|F2|

2
3
eucl . (5.13)

Moreover, since the projection of ∂F+
2 on E contains ∂F−2 , by Lemma 5.5 we have

H 2
(
F+

2

)
≥H 2

(
F−2
)

;

hence by (5.13) we get

H 2
f

(
∂F+

2

)
−H 2

f

(
∂F−2

)
= MH 2

(
∂F+

2

)
−NH 2

(
∂F−2

)
≥ (M −N)H 2

(
∂F+

2

)
≥ M −N

2
Peucl

(
F2

)
≥ c M −N

2
|F2|

2
3
eucl ≥ c

M −N
2M

2
3

∣∣F2

∣∣
f
.

(5.14)

The very same argument works also for F3; hence we also have

H 2
f

(
∂F+

3

)
−H 2

f

(
∂F−3

)
≥ c W −M

2W
2
3

∣∣F3

∣∣
f
. (5.15)

Inserting (5.12), (5.14) and (5.15) into (5.11), and recalling that 1� N �M �W , we have

Pf (F )− Pf (F ∩ E) ≥ c
∣∣F+

∣∣
f
,

that is, (5.10).

We now consider the general case, where F1, F2 and F3 might have common boundary. In
this case, of course (5.12), (5.14) and (5.15) still hold, but (5.11) is no longer true and a little
more care is needed. Let us define

J := ∂F+
1 ∩ ∂F

+
2 , K := ∂F+

2 ∩ ∂F
+
3 ,

so that (5.11) becomes

Pf (F )− Pf
(
F ∩ E

)
≥

H 2
f

(
∂F+

1 ∪ ∂F
+
2 ∪ ∂F

+
3

)
−H 2

f

(
∂F−1 + ∪∂F−2 ∪ ∂F

−
3

)
− 2H 2

f (J)− 2H 2
f (K) .

(5.16)

Observe now that the projection of ∂F+
2 \J on ∂B(R1) (resp. E) contains J (resp. ∂F−2 ); hence

H 2
(
∂F+

2 \ J
)
≥H 2(J) , H 2

(
∂F+

2 \ J
)
≥H 2

(
∂F−2

)
.

As a consequence, (5.14) can be improved to

H 2
f

(
∂F+

2

)
−H 2

f

(
∂F−2

)
− 2H 2

f (J) = MH 2
(
∂F+

2 \ J
)
−NH 2

(
∂F−2

)
−NH 2(J)

≥
(
M − 2N

)
H 2

(
∂F+

2 \ J
)
≥ M − 2N

3
Peucl

(
F2

)
≥ c M − 2N

3M
2
3

∣∣F2

∣∣
f
.

(5.17)

In the very same way, (5.15) becomes

H 2
f

(
∂F+

3

)
−H 2

f

(
∂F−3

)
− 2H 2

f (K) ≥ c W − 2M

3W
2
3

∣∣F2

∣∣
f
. (5.18)

Hence, inserting (5.12), (5.17) and (5.18) into (5.16), we get the general validity of (5.10). Notice
that the constant c coincides with c(1) in Lemma 5.6, hence it does not depend on the choice of
R1, R2, φ0, N , M or W . �
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Proposition 5.7. Consider a set E and a density f as in Definition 5.2, and suppose that

Pf (E) ≤ c

4
|E|f , (5.19)

where c is the constant of Proposition 5.4. There exists a set G ⊆ E such that |G|f ≥ |E|f/2
and that, for any other F ⊆ E, one has

Pf (F )− Pf (G) ≥ c

2

(
|F |f − |G|f

)
. (5.20)

Moreover, the inequality is strict for any F ⊆ E such that |F |f < |E|f/2.

Proof. By lower semicontinuity of the density and by compactness, for any 0 < V ≤ |E|f there
exists a set FV ⊆ E minimizing the perimeter among all the subsets of E with volume V .

Let us then consider the continuous function IE :
[
0, |E|

]
→ R+ defined by IE(V ) =

Pf
(
FV
)
, let

λ := min
{

IE(V )− c

2
V : 0 ≤ V ≤ |E|f

}
,

and let
V := max

{
0 ≤ V ≤ |E|f : IE(V )− c

2
V = λ

}
.

We claim that G := FV is as required.
First of all, notice that V ≥ |E|/2, due to the fact that for any V < |E|f/2 by (5.19) we get

λ ≤ IE
(
|E|f

)
− c

2
|E|f = Pf (E)− c

2
|E|f ≤ −

c

4
|E|f ≤ IE(V )− c

4
|E|f < IE(V )− c

2
V . (5.21)

We only have then to check that (5.20) holds. To this aim, take any set F ⊆ E and suppose
without loss of generality that F = FV for some V . Hence, to show (5.20) one just has to notice
that

Pf (F )− Pf (G) ≥ c

2

(
|F |f − |G|f

)
⇐⇒ IE(V )− IE(V ) ≥ c

2
(
V − V

)
,

which is in turn true by the definition of V . To conclude, we observe that inequality (5.20) holds
strictly whenever |F |f < |E|f/2 thanks to (5.21). �

We are finally ready to show our example of a non-bounded isoperimetric set. Notice that
the Proposition 5.8 below is false for n = 2 thanks to Proposition 5.1, and it is also trivially
false for n = 1.

Proposition 5.8 (Non-boundedness). For each n ≥ 3, there exist a non-decreasing density
on Rn and a volume V such that there exist isoperimetric sets of volume V , but none of them
is bounded.

Proof. We treat the case n = 3; the other cases are the same. We will divide the proof into
three steps.
Step I. The geometrical setting.
We will again use the fundamental brick E of Definition 5.2 and Figure 2. As in Proposition 5.3,
we take a rapidly decreasing sequence εj ↘ 0 and sequences R1,j , R2,j and φ0,j fulfilling (5.8).
This defines correspondingly densities fj and sets Ej ⊆ R3, so having (5.9) in mind we take Nj

and Mj of order

Nj ≈
ε
−1/3
j

2j
, Mj ≈

ε
−7/3
j

2j
,

in such a way that∣∣Ej∣∣fj =
1
2j
,

Pfj
(
Ej
)∣∣Ej∣∣fj ≈ ε3j + ε

1/3
j + εj −−−−→

j→∞
0 . (5.22)
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Defining Wj = Nj+1, we observe that

R2,j � R1,j+1 , Mj �Wj = Nj+1 ,

and we define the density
f ≡ fj on B

(
R2,j

)
\B
(
R2,j−1

)
on R3, which is nondecreasing and diverging.

By (5.22), it is admissible to assume that

Pf (Ej) <
c

4

∣∣Ej∣∣f
for all j; hence by Proposition 5.7 we can also define the sets Gj having volume Vj ≥ |Ej |/2
in such a way that (5.20) holds true. Here, and in the rest of the proof, c is the constant of
Proposition 5.4. Finally, we set E := ∪jEj and G := ∪jGj . We will show that G, which by
construction is not bounded, is an isoperimetric set of volume

V :=
∑
j

Vj ∈
[

1
2
, 1
]
.

Step II. Removing the external part.
Let us take a generic set F of volume |F |f = V , and call F ext = F \E. Our goal in this step is
to show that

Pf (F )− Pf (F ∩ E) ≥ c

2

∣∣F \ E∣∣
f
, (5.23)

that is, (5.10) still holds with a worse constant. To this aim, for any j ∈ N let us consider the
region

F ∩B
(
R2,j +R1,j+1

2
+

8
c

)
\B
(
R2,j +R1,j+1

2
− 8
c

)
,

take
R2,j +R1,j+1

2
− 8
c
≤ ρj ≤

R2,j +R1,j+1

2
+

8
c

to minimize H 2
(
F ∩ S(ρ)

)
, and define

Fj = F ext ∩B
(
ρj
)
\B
(
ρj−1

)
.

As in Proposition 5.4, for any j, let

∂F+
j = ∂Fj \ ∂Ej , ∂F−j = ∂Fj ∩ ∂Ej .

We can observe that

Pf (F )− Pf (F ∩ E) ≥
∑
j

H 2
f

(
∂F+

j

)
−H 2

f

(
∂F−j

)
− 2H 2

f

(
F ext ∩ S

(
ρj
))
, (5.24)

and Proposition 5.4 ensures us that for any j

H 2
f (∂F+

j )−H 2
f (∂F−j ) ≥ c

∣∣Fj∣∣f . (5.25)

Let us now consider more closely the slice F ext ∩ S
(
ρj
)
. If one has that

ρj ≤
R2,j +R1,j+1

2
,

then by definition we have ∣∣Fj+1

∣∣
f
≥ 8
c

H 2
f

(
F ext ∩ S

(
ρj
))
.

On the other hand, if

ρj ≥
R2,j +R1,j+1

2
,
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then for the same reason we get ∣∣Fj∣∣f ≥ 8
c

H 2
f

(
F ext ∩ S

(
ρj
))
.

In any case, we can then conclude that

H 2
f

(
F ext ∩ S

(
ρj
))
≤ c

8

(∣∣Fj∣∣f +
∣∣Fj+1

∣∣
f

)
,

and adding up this implies that

2
∑
j

H 2
f

(
F ext ∩ S

(
ρj
))
≤ c

2

∑
j

∣∣Fj∣∣f .
Inserting this last inequality into (5.24) and recalling (5.25) for the last time, we get (5.23).
Step III. Conclusion.
We are now ready to conclude the proof. Take a general set F with |F | = V . By Step II we
know that (5.23) holds. Let F int = F ∩ E, and write F int = ∪jFj where

Fj := F int ∩ Ej .
Thanks to (5.20), we know that

Pf
(
Fj
)
− Pf

(
Gj
)
≥ c

2

(∣∣Fj∣∣f − ∣∣Gj∣∣f) (5.26)

for all j. If we add up this inequality for all j, we find

Pf
(
F int

)
− Pf

(
G
)
≥ c

2

(∣∣F int∣∣
f
−
∣∣G∣∣

f

)
,

and adding this to (5.23) we get

Pf (F )− Pf
(
G
)
≥ c

2

(∣∣F int∣∣
f
−
∣∣G∣∣

f
+
∣∣F \ E∣∣

f

)
= 0 .

Since F was arbitrary, we have finally proved that G is an isoperimetric set of volume V , and it
is unbounded by construction. It remains to be shown that any isoperimetric set of volume V
is unbounded. Suppose then that F is an isoperimetric set of volume V , so that all the above
inequalities are equalities. The fact that (5.26) is an equality implies, by Proposition 5.7, that
|Fj | ≥ |Ej |/2. This tells us that F intersects each Ej , and in turn this ensures that F is not
bounded. �

We can now show the result about the boundedness of an isoperimetric set in dimension
n ≥ 3. This result is weaker than the two-dimensional result but, thanks to Proposition 5.8, it
is also sharp.

Theorem 5.9 (Boundedness in Rn, I). Consider a radial, non-decreasing C1 density f on
Rn. Then every isoperimetric set is bounded.

Proof. Let E be an isoperimetric set and assume that it is not bounded. Let

E(r) := E ∩B(r) ( E , Er := E ∩ S(r) ,

P (r) := H n−1
f

(
∂E \B(r)

)
, V (r) := H n

f

(
E \B(r)

)
;

that is, E(r) is the part of E inside the ball B(r), Er is the slice of E at distance r from the origin,
and P (r) and V (r) are the perimeter and the volume of E outside of the ball B(r). Recall that,
with the same assumptions and notation, in Theorem 4.3 we proved that Pf

(
E(r)

)
< Pf (E), in

equation (4.6). Since
Pf
(
E(r)

)
= Pf (E)− P (r) + H n−1

f

(
Er
)
,

the last estimate can be rewritten as

P (r) > H n−1
f

(
Er
)
. (5.27)
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Considering only radii r ≥ 1, the standard isoperimetric inequality in the sphere tells us that
for any subset Er of the sphere S(r) having area at most half of the sphere, one has

H n−2
(
∂Er

)
≥ c
(
H n−1

(
Er
))n−2

n−1
,

where ∂Er denotes the boundary of Er inside S(r). And in turn, if E has bounded perimeter,
than H n−1

(
Er
)
≤ 1

2H n−1
(
S(r)

)
for all r big enough. Recalling that in S(r) the density has

the constant value f(r), the last inequality is equivalent to

H n−2
f

(
∂Er

)
≥ c
(
H n−1

f

(
Er
))n−2

n−1
f(r)

1
n−1 ,

which in turn by (5.27) leads to

H n−2
f

(
∂Er

)
≥ cP (r)

−1
n−1 H n−1

f

(
Er
)
, (5.28)

where we have also used the fact that f is bounded from below (notice that the positive constant
c may decrease from line to line).

Now, observe that

−∂P (r)
∂r

=
∣∣∣∣∂P (r)
∂r

∣∣∣∣ ≥H n−2
f

(
∂Er

)
,

and that

H n−1
f (Er) = −∂V

∂r
(r) ,

hence (5.28) can be further rewritten as

− ∂

∂r

(
P (r)

n
n−1

)
≥ −c ∂

∂r

(
V (r)

)
.

Recalling that both P (r) and V (r) converge to 0 when r goes to +∞, an integration over r
yields

P (r)
n
n−1 ≥ cV (r) .

Arguing exactly as in (5.2), we can pick R ∈ R such that E ∩ B(R) 6= ∅ and observe that for
0 < ε < ε̄ it is possible to define a set Eε such that

Eε \B(R) = E \B(R) ,
∣∣Eε∣∣f =

∣∣E∣∣
f

+ ε , Pf
(
Eε
)
≤ Pf (E) + ε

(
H(E) + 1

)
.

If we take then r > R such that ε = V (r) < ε̄, and we define Ẽ = Eε ∩ B(r), then of course∣∣Ẽ∣∣
f

= |E|f , and moreover

Pf
(
Ẽ
)

= Pf
(
Eε
)
− P (r) + H n−1

f (Er) ≤ Pf (E) + ε
(
H(E) + 1

)
− c ε

n−1
n + H n−1

f (Er) .

Since we can have ε arbitrarily small up to take r � 1, and since E is an isoperimetric set, we
deduce that for all r � 1 one has

H n−1
f (Er) ≥ c ε

n−1
n ,

that is,

−∂V
∂r

(r) ≥ c V (r)
n−1
n ,

or, equivalently,

− ∂

∂r

(
V (r)

1
n

)
≥ c .

This last estimate gives a contradiction with the assumption V (r) > 0 for all r, and the proof
is complete. �

We now give our last result on the boundedness of isoperimetric sets.
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Theorem 5.10 (Boundedness in Rn, II). Let f be a C1 density on Rn such that |Df | ≤ Cf
for some constant C > 0. Then every isoperimetric set is bounded.

Proof. Let E be an isoperimetric set. Note that mean curvature and generalized mean curvature
differ by a derivative of the log of the density, which is bounded by hypothesis. Since the
generalized mean curvature is constant by Remark 2.4, the mean curvature is bounded. As
a consequence, the perimeter of E inside a unit ball centered at points of ∂E is bounded by
below by a strictly positive constant: this comes from the so-called monotonicity of the mass
ratio, see [10, Chapt. 9 and 11.2]. Since the set has finite perimeter, it readily follows that it is
bounded. �

Let us conclude by collecting in a single corollary our three boundedness results, namely,
Proposition 5.1, Theorem 5.9 and Theorem 5.10.

Corollary 5.11. Let E be an isoperimetric set in Rn with C1 density f . Then E is bounded if
any of the following three hypotheses hold:

(1) n = 2 and f is increasing, or
(2) f is radial and increasing, or
(3) |Df | ≤ Cf .

6. Geometric properties of isoperimetric sets

In this section, we want to discuss some geometric properties of isoperimetric sets, namely,
whether or not they are radial, or convex, and whether or not they contain the shortest paths
between their points. We point out that the results of Section 7 do not depend on those of the
present section.

We start with spherical symmetrication (cf. [2, Sect. 9.2], [13, Remark 4]).

Definition 6.1. Let E ⊆ Rn. For any ρ > 0, define AE(ρ) as the area of the section E ∩ S(ρ).
Define the spherical symmetrization of E the set E∗ ⊆ Rnsuch that AE∗ ≡ AE, and such that
E∗ ∩ S(ρ) is a spherical cap centered at (ρ, 0, . . . , 0).

The operation of symmetrization has the great advantage of simplifying the set, while main-
taining volume and reducing perimeter. The proof of this fact is quite similar to the standard
proof for Steiner symmetrization (see [7]), so we will just give a sketch for it.

Theorem 6.2. Let f be a radial density on Rn and let E be a set of finite volume. Then the
spherical symmetrization E∗ satisfies∣∣E∗∣∣

f
=
∣∣E∣∣

f
, Pf

(
E∗
)
≤ Pf (E) . (6.1)

Suppose further that E is an open set of finite perimeter, and let ν(x) denote the normal vector
at any x ∈ ∂E. If

H n−1

(
x ∈ ∂E : ν(x) = ± x

|x|

)
= 0 , (6.2)

and the set
IE :=

{
ρ > 0 : 0 < H n−1

(
E ∩ S(ρ)

)
< H n−1

(
S(ρ
)}

is an interval, then equality holds in (6.1) if and only if E = E∗ up to rotation about the origin.

Proof. First of all, notice that the volume of any set E can be expressed as∣∣E∣∣
f

=
ˆ +∞

r=0
f(r)AE(r) dr ,

so |E∗|f = |E|f simply because by definition AE∗ ≡ AE .
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Concerning the inequality for the perimeter, recall that spherical caps are the (unique)
isoperimetric sets on spheres. Hence, the inequality Pf (E∗) ≤ Pf (E) follows by integrating in
the radial variable and by using Jensen’s inequality, exactly as in [5, Lemma 3.3].

Let us finally consider the case in which the equality Pf (E∗) = Pf (E) holds: by the equality
case of the isoperimetric inequality on the sphere, we deduce that each section E ∩ S(r) must
be a spherical cap centered at some rθ(r) for θ(r) ∈ Sn−1. Moreover, by the equality case in
Jensen’s inequality, one derives also that the radial component ν(x) · x/|x| of the normal vector
ν(x) is constant on every section E ∩S(r). Together with (6.2) and the hypothesis that IE is an
interval, this implies that the function r 7→ θ(r) is constant, so E = E∗ up to a rotation about
the origin. �

Remark 6.3. Observe that something more precise than the claim of Theorem 6.2 can be
said. In fact, as the proof shows, if E is an isoperimetric set then the function r 7→ θ(r) which
associates to any ρ the “center” of the spherical slice E ∩ S(r) whenever it is not trivial, is
locally constant. Thus, in particular, we derive that an isoperimetric set E without tangential
boundary –that is, for which (6.2) holds– must coincide with its spherical symmetrization up
to a rotation if both E and ∂E are connected. More generally, we can say that each connected
component Ei of E for which also ∂Ei is connected must coincide up to a rotation with the
corresponding component of E∗ if (6.2) holds. Indeed, if Ei and Ej are two distinct connected
components of E, then E∗i ∩E∗j = ∅, since otherwise there are radial slices which are not spheres,
against the isoperimetric property of E.

Corollary 6.4. Assume that the density f is smooth and radial, and let E be an isoperimetric
set with connected boundary and being equal to the closure of its interior. Then E = E∗ up to
a rotation about the origin.

Proof. By the classical regularity theorems (see Theorem 2.1), ∂E is a smooth hypersurface
except for a singular set of dimension at most n− 8. Since ∂E is connected, then so are E and
IE . Thus, if (6.2) holds true, then the thesis directly follows from Theorem 6.2. It remains to
consider the case when (6.2) does not hold, thus ∂E is tangential on a set of positive area. At a
smooth point of density of such points, ∂E is tangential and E has the same extrinsic curvature
and hence the same generalized curvature as the sphere S about the origin. Since both ∂E and
S have the same constant generalized curvature, by uniqueness of solutions to elliptic partial
differential equations we obtain ∂E = S, hence E is a ball and then E = E∗ as desired. �

Next we show under suitable assumptions that isoperimetric sets are mean-convex.

Theorem 6.5 (Mean-convexity). Let f be a smooth, radial, log-convex density on Rn, n ≥ 2.
Then every bounded connected isoperimetric set is mean-convex at every regular point (thus,
convex if the dimension is n = 2).

Proof. Let E be an isoperimetric set, and let z be the point of ∂E of greatest distance from the
origin. By Theorem 2.1, H is a smooth at z (since the oriented tangent cone lies in a halfspace,
it must be a hyperplane). In particular, the classical mean curvature H0 satisfies

H0(z) ≥ 0 . (6.3)

Writing f(x) = ev(|x|), for any regular point x ∈ ∂E we have

∂v

∂ν
(z) = v′

(
|z|
)
≥ v′

(
|x|
)
≥ ∂v

∂ν
(x) .

Recalling that the curvature Hf = H0 + ∂v/∂ν is constant on ∂E because E is isoperimetric, as
pointed out in Section 2, we get

H0(x) ≥ H0(z) ,
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so from (6.3) we get that E is mean-convex, as required. In particular, if n = 2 (where every
boundary point is regular), then E is convex. �

Similar mean-convexity holds if the isoperimetric profile I is non-decreasing, as shown by
the following well-known result.

Theorem 6.6. Let E be an isoperimetric set of volume |E|f = V in Rn with density f . At
every C2 point of the boundary of E where the density is C1, the generalized mean curvature H,
the upper right derivative I′+, and the lower left derivative I′− satisfy

I′+(V ) ≤ Hf (x,E) ≤ I′−(V ) (6.4)

(in particular, if I′(V ) exists, then Hf (x,E) = I′(V )). As a consequence, whenever I is nonde-
creasing the set E is mean-convex at every regular point.

Proof. This is an easy consequence of the first variation formulae (2.1) and (2.4). Indeed, choose
any continuous function u : ∂E → R with compact support such thatˆ

∂E
u(x)f(x) dH n−1(x) = 1 .

The ε expansions Eε (|ε| � 1) as in Lemma 2.2 satisfy∣∣Eε∣∣f = |E|f + ε+ o(ε) , Pf
(
Eε
)

= Pf (E) + εH(E) + o(ε) .

As a consequence, since clearly I(V + ε) ≤ Pf (Eε), we can immediately deduce

I′+(V ) = lim sup
ε↘0

I(V + ε)− I(V )
ε

≤ H(E) ,

as well as
I′−(V ) = lim inf

ε↗0

I(V + ε)− I(V )
ε

≥ H(E) .

This establishes (6.4), and in particular the fact that H(E) = I′(V ), provided the latter exists.
Finally, if I is increasing, then I′+(V ) ≥ 0, thus H(E) ≥ 0. �

Remark 6.7. Notice that (6.4) in particular says that I′+(V ) < +∞ whenever there is an
isoperimetric set of volume V of finite mean curvature. On the other hand, I′+(V ) = +∞ in
some situations where there is no isoperimetric set of volume V . Simple examples of this fact
are R with density 1 on the unit interval and 2 outside, or Example 2.6 in dimension 2. A more
involved example is the one that we gave in Proposition 4.1, where I′+(1) =∞ and there are no
isoperimetric sets of volume 1.

Let us now consider another question, which is in fact a generalization of convexity to Rn

with density: that a set contain all shortest paths between pairs of points. Throughout the rest
of this section, we will work only in R2 and weight distance by the density. It is important to
notice that, in general, both the existence and the uniqueness of shortest paths between two
given points may fail. For instance, in Gauss space the existence of shortest paths is not true
for all pairs of points, since some shortest paths pass through infinity. Our main results are
Lemma 6.11 and Proposition 6.10, which regard the shape of shortest paths between pairs of
points and the question of whether a shortest path between two points inside an isoperimetric
set entirely lies inside the set. For the sake of clarity, we start with the following result, which
is a particular case of Proposition 6.10 but whose proof elucidates the idea for the more general
result.

Lemma 6.8. Let f be a smooth or Lipschitz radial density on R2 such that the isoperimetric
profile I is non-decreasing, and let E be an open connected isoperimetric set. Moreover, suppose
that x, y ∈ E and y = λx with λ > 0. Then the segment xy is contained in E.
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E

y

F

γ1

x

Figure 4. The situation in Lemma 6.8.

Proof. Assume that the result is not true. Then, we can take two points x, y ∈ ∂E with y = λx,
λ > 0, and with the open segment xy entirely contained in R2 \ E. For simplicity, assume
that x =

(
|x|, 0

)
and y =

(
|y|, 0

)
. Let us then consider the curve ∂E: it is the union of two

curves, γ1 and γ2, having x and y as endpoints. Let F be the open bounded subset of R2 whose
boundary is γ1 ∪ xy, where γ1 is chosen in such a way that F ∩ E = ∅ as in Figure 4. Finally,
let E+ = E ∪ F , so that

∂E+ = ∂E ∪ xy \ γ1 .

Let α : γ1 → R2 be the function α(z) =
(
|z|, 0

)
. Notice that by radiality f(z) = f(α(z)) for

all z ∈ γ1, and moreover α is 1−Lipschitz and α(γ1) ⊇ xy. By the very same argument as in
Theorem 4.3, we get that ˆ

γ1

f(z) dH 1(z) >
ˆ
xy
f(z) dH 1(z) ,

from which it immediately follows that

Pf (F ) < Pf (E) , |F |f > |E|f .

This is a contradiction of the assumption that I is increasing, since we would get

I
(
|F |f

)
≤ Pf (F ) < Pf (E) = I

(
|E|f

)
.

�

The following consequence is trivial but interesting.

Corollary 6.9. With the same hypotheses as in Lemma 6.8, if moreover O ⊆ E, then E is
star-shaped in O. In other words, ∂E is a polar graph.

We can now give the more general result.

Proposition 6.10. Let f be a smooth or Lipschitz density on R2 such that the isoperimetric
function I is nondecreasing. Let E be a connected open isoperimetric set, and γ be a shortest
path connecting two points x, y ∈ E. Then one has γ ⊆ E if
(A) I is strictly increasing, or
(B) γ is the unique shortest path connecting x and y.

Proof. If the assertion were not true, we could take two points x, y ∈ ∂E and a shortest path
γ between x and y, with the property that γ lies entirely outside E. Then, as in the proof of
Lemma 6.8, notice that ∂E is a closed curve, and it is the union of two curves connecting x and
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y. Let γ̃ be one of these two curves such that γ ∪ γ̃ is the boundary of a set F with E ∩ F = ∅.
Letting E+ = E ∪ F , one has that |E+|f > |E|f , while

I
(
|E+|f

)
≤ Pf (E+) = Pf (E) + `(γ)− `(γ̃) ≤ Pf (E) = I

(
|E|f

)
,

where

`(τ) :=
ˆ 1

0
f
(
τ(s)

)∣∣τ ′(s)∣∣ dx
denotes the length of any Lipschitz curve τ : (0, 1)→ R2 . The contradiction is then found either
because I is strictly increasing (in case (A)), or because `(γ̃) > `(γ) (in case (B)). �

We conclude with a simple general result about the shape of shortest paths with a radial
non-decreasing density (notice that if the density is radial and non-decreasing then there always
exists at least one shortest path between any two given points).

Lemma 6.11. Let f be a smooth or Lipschitz radial non-decreasing density on R2, let P 6= Q
be two points in R2, and let γ be a shortest path between P and Q. Then γ lies entirely in the
closed Euclidean triangle OPQ.

Proof. Let H ⊆ R2 be an open half-space which does not contain the origin O, and whose
boundary contains both P and Q. Of course, there are two half-spaces whose boundary contains
P and Q, and exactly one of them does not contain the origin, unless the line PQ contains O,
in which case both the half-spaces have this property. We divide the proof into three steps.
Step I. γ does not intersect H.
Let α : R2 → R2 \ H be the function given by α(x) = x if x ∈ R2 \ H, while otherwise α(x)
is the orthogonal projection of x on ∂H. The function α is 1−Lipschitz, and since f is radial
and increasing one has f

(
α(x)

)
≤ f(x) for all x ∈ R2. The path α ◦ γ between P and Q then

satisfies
`
(
α ◦ γ

)
=
ˆ
f
(
α ◦ γ(t)

)∣∣(α ◦ γ)′(t)
∣∣ dt ≤ ˆ f

(
γ(t)

)∣∣γ′(t)∣∣ = `
(
γ
)
. (6.5)

This implies that α ◦ γ also is a shortest path, and moreover a quick look at the equality cases
above ensures that the inequality (6.5) is strict unless α ◦ γ = γ, which means that γ cannot
intersect the half-space H. The first step is complete. In particular, if P is a positive multiple of
Q, that is, the line PQ contains O, then the segment PQ is the unique shortest path connecting
P and Q.
Step II. γ does not cross the segments OP and OQ.
We want now to show that γ cannot cross the segment OP (the same argument, of course,
will apply also to OQ). This means that, if the image of γ contains two points P1 = γ(t1)
and P2 = γ(t2) in the segment OP , then γ

(
[t1, t2]

)
is the segment P1P2. This is an immediate

consequence of Step I, since the restriction of γ to [t1, t2] is a shortest path connecting P1 and
P2, one of which is a multiple of the other by definition.
Step III. Conclusion.
We are now ready to conclude the proof. We may assume that neither P nor Q is a multiple
of the other, since otherwise the lemma already has been established. By Steps I and II, γ
cannot intersect the half-space H, nor cross the segments OP and OQ. There are then only
two possibilities, namely, either γ is entirely contained in the closed triangle OPQ, or γ has an
empty intersection with the open triangle OPQ. In the first case, we have the result, so let us
assume that the second case holds. If O belongs to the path γ then we are done, because by
Step I we deduce that γ is the union of the segments PO and OQ, which violates regularity. On
the other hand, if O does not belong to the path γ, then by construction there must be a point
P ′ = γ(t) on γ such that P ′ = λP for some λ < 0. But this would imply, again by Step I, that
the first part of γ is a segment between P and P ′, which is a contradiction of the assumption
that O does not belong to the image of γ. The proof is complete. �
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7. The main existence results

In this last section we study existence for increasing densities on Rn. As we discussed in
Section 3, one may expect that existence holds true for non-decreasing densities, but Proposi-
tion 5.3 showed that this is not always the case. Existence probably holds, however, for radial
increasing densities.

Conjecture 7.1. Let f be a radial, increasing density on Rn. Then isoperimetric sets exist for
all volumes.

Other open problems are collected in Section 8. We will prove this conjecture under a
technical condition (Theorem 7.4) implied by various conditions on the growth of the density
(Theorems 7.9, 7.11, and 7.13). Note that by Theorem 3.3, Conjecture 7.1 holds if the density
goes to infinity.

Lemma 7.2. Consider Rn endowed with a density approaching a limit a > 0 at infinity. For
any V > 0, the isoperimetric profile satisfies

I(V ) ≤ n
(
ωna

) 1
n V

n−1
n . (7.1)

Moreover, one has
I(V )

V
n−1
n

−−−−−−→
V→∞

n
(
ωna

) 1
n . (7.2)

To prove this lemma, the following definition is quite useful.

Definition 7.3. Given a ball B in Rn with density, we will say that its mean density is the
number ρ such that

Pf (B) = n
(
ωnρ

) 1
n
∣∣B∣∣n−1

n
f

. (7.3)

The reason for the choice of the name is very easy to understand: if a ball B of radius r lies
in a region where the density is constantly ρ, then its volume and perimeter are

|B|f = ρωnr
n , Pf (B) = ρnωnr

n−1 ,

so by (7.3) we get that the mean density of B is ρ. If we call ρmin and ρsup the minimum and the
supremum of f inside B, it is not true in general that the mean density satisfies ρmin ≤ ρ ≤ ρsup.
What is true is that

ρnmin

ρn−1
sup
≤ ρ ≤

ρnsup

ρn−1
min

; (7.4)

both the inequalities are sharp, the extreme cases being when ρ ≡ ρsup inside B and ρ ≡ ρmin

on ∂B, or when ρ ≡ ρmin inside B and ρ ≡ ρsup on ∂B (this latter is only a limiting case since
the density would not be lower semicontinuous). To prove (7.4), just note that

ρminωnr
n ≤ |B|f ≤ ρsupωnr

n , ρminnωnr
n−1 ≤ Pf (B) ≤ ρsupnωnr

n−1 .

We can now give the proof of Lemma 7.2.

Proof of Lemma 7.2. Fix a volume V > 0, fix ε > 0, and let B be a ball with volume |B|f = V .
If we call, as before, ρmin and ρsup the minimum and the maximum of f inside B, then we can
assume that

ρmin ≥ a− ε , ρsup ≤ a+ ε ,

provided that the ball is taken sufficiently far from the origin. Hence, by (7.4) we have that the
mean density ρ of B satisfies

ρ ≤ (a+ ε)n(
a− ε

)n−1 ≤ a+ 3nε ,
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provided that ε is small enough, and thus

I(V ) ≤ Pf (B) = n
(
ωnρ

) 1
n |B|

n−1
n

f ≤ n
(
ωn(a+ 3nε)

) 1
n V

n−1
n .

Since ε > 0 was arbitrary, we get (7.1).
Let us now concentrate on (7.2). To show its validity, fix an arbitrary ε > 0 and take a

big radius R = R(ε) such that a − ε ≤ f ≤ a + ε out of the ball B(R). Consider now a set F
of huge volume V = |F |f . Then, the Euclidean volume |F |eucl is very big, thus the standard
isoperimetric inequality ensures us that

Peucl

(
F \B(R)

)
≥ nω

1
n
n

(
|F \B(R)|eucl

)n−1
n ≥ nω

1
n
n

(
|F |eucl − ωnRn

)n−1
n
.

By the definition of R we deduce

Pf (F ) =
ˆ
∂F
f(x) dH n−1(x) ≥ (a− ε) H n−1

(
∂F \B(R)

)
≥ (a− ε)

(
Peucl

(
F \B(R)

)
− nωnRn

)
≥ (a− ε)

(
nω

1
n
n

(
|F |eucl − ωnRn

)n−1
n − nωnRn

)
≥ (a− ε)

(
nω

1
n
n

(V − ∣∣B(R)
∣∣
f

a+ ε
− ωnRn

)n−1
n

− nωnRn
)
≥ (a− 3ε)

1
nnω

1
n
n V

n−1
n ,

where the last inequality holds provided V � R. Since F was an arbitrary set of volume V , we
deduce that

I(V ) ≥ (a− 3ε)
1
nnω

1
n
n V

n−1
n

and finally, since ε was arbitrary, also recalling (7.1) we get (7.2). �

We can now show that Conjecture 7.1 holds true if a particular technical condition holds.
Recall that, thanks to Theorem 3.3, if a density f is radial then we may assume that it approaches
a finite limit at infinity.

Proposition 7.4. Let f be a density on Rn approaching a finite limit a > 0 at infinity, and
assume that isoperimetric sets are bounded (see Corollary 5.11). Let V > 0 and suppose that,
for any 0 < Ṽ ≤ V , there exists a ball of volume Ṽ arbitrarily far from the origin and having
mean density at most a. Then there exists an isoperimetric set of volume V .

In the proof of the above proposition, we will need the following simple useful result, which
holds without any assumptions on the density f .

Lemma 7.5. Let f be any density on Rn and V > 0. Let Fi be a sequence of sets of volume

V such that P (Fi) → I(V ), and such that χ
Fi

L1
loc−−−→ χ

F
for some set F . Then, F is an

isoperimetric set of volume |F |f . In addition, if f approaches a limit a > 0 at infinity, then the
following estimate holds,

I(V ) ≥ Pf (F ) + n
(
ωna

) 1
n
(
V − |F |f

)n−1
n . (7.5)

Proof. Take some positive number r > 0, let F+ = B(F, r) be the r−neighborhood of F , and
for any i ∈ N define

Gi = Fi ∩ F+ , Hi = Fi \ F+ .

Since
∣∣Fi \ F ∣∣→ 0 for i→∞, for all r > 0 except at most countably many one has

H n−1
f

(
Fi ∩ ∂F+

)
→ 0 . (7.6)

Observe now that
Pf
(
Fi
)

= Pf
(
Gi
)

+ Pf
(
Hi

)
− 2H n−1

f

(
Fi ∩ ∂F+

)
. (7.7)
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Since χ
Gi

L1
loc−−−→ χ

F
we have by lower semicontinuity

Pf (F ) ≤ lim inf Pf (Gi) . (7.8)

Assume that F is not an isoperimetric set of volume |F |f . Then there exists a bounded set E
with |E|f > |F |f and Pf (E) < Pf (F ). Take now r > 0 satisfying (7.6) and big enough so that
E ⊂⊂ F+, and let

F̃i =
(
Fi \ F+

)
∪ E = Hi ∪ E .

By construction,
∣∣F̃i∣∣f > V for all i � 1. Using the fact that E ⊂⊂ F+, Theorem 4.3, (7.7)

and (7.8), one then finds

I(V ) ≤ lim inf Pf
(
F̃i
)

= lim inf
(
Pf
(
Hi) + Pf (E)

)
= lim inf

(
Pf
(
Fi
)
− Pf

(
Gi
)

+ 2H n−1
f

(
Fi ∩ ∂F+

))
+ Pf (E) = I(V )− Pf (F ) + Pf (E)

< I(V ) .

This contradiction shows that F is isoperimetric.
Let us show now the second part of the claim. To do so, assume that the density f approaches

a limit a at infinity, and fix some ε > 0. If we take r big enough, depending on ε, then it is
admissible to assume that f ≥ a − ε outside B(F, r). Arguing exactly as in the proof of (7.4)
we can then immediately deduce that

lim inf Pf (Hi) ≥ n
(
ωn(a− ε)

) 1
n
(
V − |F |f

)n−1
n . (7.9)

Inserting (7.8) and (7.9) into (7.7), recalling that P (Fi) → I(V ), and assuming without loss of
generality that (7.6) holds for r, we immediately get that

I(V ) ≥ Pf (F ) + n
(
ωn(a− ε)

) 1
n
(
V − |F |f

)n−1
n .

Since ε > 0 was arbitrary, the validity of (7.5) follows. �

We now obtain Proposition 7.4 as an easy corollary.

Proof of Proposition 7.4. Let us start by taking a sequence of sets Fi such that |Fi|f = V and

Pf (Fi) → I(V ). Up to subsequences, there exists a set F such that χ
Fi

L1
loc−−−→ χ

F
, hence we

can apply Lemma 7.5. If |F |f = V , then we are done, since F is an isoperimetric set of volume
V . Otherwise, assume that Ṽ = V − |F |f > 0, and recall that F is bounded by assumption.
Therefore, we can take a ball B of volume Ṽ having mean density smaller than a and not
intersecting F . Hence by (7.5)

Pf
(
B ∪ F

)
= Pf (B) + Pf (F ) ≤ n

(
ωna

) 1
n |B|

n−1
n

f + Pf (F ) ≤ I(V ) .

Thus B ∪ F is an isoperimetric set of volume V , and the proof is complete. �

A similar argument shows that Conjecture 7.1 is true if the volume V is sufficiently small.

Proposition 7.6. Let f be a continuous density on Rn approaching a finite limit a > 0 at
infinity, and such that f(x̂) < a for some x̂ ∈ Rn. Then there exist isoperimetric sets for all
small volumes. In other words, there is some V0 > 0 such that there exists an isoperimetric set
of volume V for each 0 < V < V0.

Proof. Let us start arguing exactly as in Proposition 7.4: let F be the L1
loc limit of a sequence

of sets of volume V minimizing the perimeter, which is an isoperimetric set by Lemma 7.5. Let
Ṽ = V − |F |f , and assume that Ṽ > 0 since otherwise F is already the required isoperimetric
set. By the assumption f(x̂) < a and by the continuity of f , there exist some δ > 0 and r > 0
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such that every ball B contained in B(x̂, r) has mean density smaller than a− δ. Let then η > 0
be a small constant to be determined later: if V is small compared to

∣∣B(x̂, r)
∣∣
f
, there exists

some ball B ⊆ B(x̂, r) such that∣∣F ∪B∣∣
f

= V ,
∣∣F ∩B∣∣

f
≤ η .

Recalling (7.5), if η is small enough compared to δ we can estimate

I(V ) ≤ Pf
(
F ∪B

)
≤ Pf (F ) + Pf (B) ≤ Pf (F ) + n

(
ωn(a− δ)

) 1
n |B|

n−1
n

f

≤ Pf (F ) + n
(
ωn(a− δ)

) 1
n
(
Ṽ + η

)n−1
n < Pf (F ) + n

(
ωna

) 1
n Ṽ

n−1
n < I(V ) ,

which gives a contradiction. Therefore, we deduce that necessarily Ṽ = 0, so that the existence
of an isoperimetric set is given by F itself. �

Remark 7.7. Notice that in the above proof we showed something stronger than the existence
of isoperimetric sets for small volume V . In fact, we have proved that for every minimizing
sequence there is no mass vanishing at infinity.

When the density is smooth, we can now strengthen Proposition 7.6 to conclude that small
isoperimetric sets are C1 close to round balls.

Proposition 7.8. Let f be a smooth density on Rn approaching a finite limit a > infRn f at
infinity. Then for small volume isoperimetric sets exist and are smoothly close to round balls
near a point of minimum density.

Proof. Let F be an isoperimetric set of sufficiently small volume, which exists by Proposition 7.6.
The proof that F is C∞ close to a round ball follows the argument in [14, Sect. 2], which we now
summarize and which may be consulted for details and further references. By Heinze-Karcher,
the classical mean curvature of ∂F is bounded by C1Pf (F )/|F |f , which in turn is less than

C2|F |
− 1
n

f . By monotonicity, the surface area inside a ball of radius |F |
1
n
f about a point of the

surface is at least C3|F |
n−1
n

f . Since Pf (F ) ≤ C4|F |
n−1
n

f , we get that ∂F and hence F is contained

inside C5 balls of radius C6|F |
1
n
f . Let |F |f approach 0 and scale up each ball by |F |−

1
n

f . The limit
is an isoperimetric region in C5 copies of Rn each with constant density, hence itself is made by
C5 sets which are either balls or empty sets. Since the limit is an isoperimetric set, it must be
a single ball and C5− 1 empty sets. Since mean curvature is bounded, C1,α convergence follows
by Allard’s regularity theorem. Higher order convergence follows by Schauder estimates (also
see [9, Prop. 3.3]). An easy computation shows that it is best for the set to be near a point of
minimum density. �

We now give our first major existence theorem, under a hypothesis that the density ap-
proaches the limiting value slowly.

Theorem 7.9. Let f be a density on Rn approaching a finite limit a > 0 at infinity, and assume
that the isoperimetric sets are bounded (see Corollary 5.11). Suppose that, for every Ṽ > 0 and
for every R0 > 0, there is some ball B of volume Ṽ at distance from the origin at least R0 such
that

sup
x∈B

f(x) ≤ a
1
n

(
inf
x∈B

f(x)
)n−1

n
. (7.10)

Then there exist isoperimetric sets of all volumes.

Proof. Fix a volume V , and let

τ = 3
(
V

ωna

) 1
n

.
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Since the density approaches a at infinity, for some Rmin any ball of volume V at distance at least
Rmin from the origin has diameter less than τ . Let us then fix 0 < Ṽ ≤ V , and let R0 ≥ Rmin

be arbitrarily big. Thanks to Proposition 7.4, it suffices to find a ball of volume Ṽ at distance
bigger than R0 from the origin with mean density at most a.

By assumption, there exists a ball B of volume Ṽ such that (7.10) holds. As explained
above, we conclude by checking that the mean density ρ of B is at most a, which follows since
by (7.10) one has

ρ ≤
ρnsup

ρn−1
min

=

(
supx∈B f(x)

)n
(

infx∈B f(x)
)n−1 ≤ a .

�

Remark 7.10. Notice that, in the particular case when f is radial and nondecreasing,
then (7.10) can be rewritten in the following particularly useful way. For any R0 > 0 and
any τ > 0, there exists R > R0 such that

f(R+ τ) ≤ a
1
n f(R)

n−1
n . (7.11)

Proof. Assume first that (7.10) holds. Fix any τ > 0 and any R0 > 0, and let Ṽ = aωn(τ/2)n.
By assumption, there exists some ball B = B(x̄, r) having distance from the origin bigger than
R0 and such that (7.10) is true. Since f is nondecreasing and converging to a, one has that
r > τ/2. Therefore, calling R = |x̄| − r > R0, one finds

f(R+ τ) ≤ f(R+ 2r) = sup
x∈B

f(x) ≤ a
1
n

(
inf
x∈B

f(x)
)n−1

n = a
1
n f(R)

n−1
n ,

that is, (7.11).
Conversely, assume that (7.11) is true. Given any Ṽ > 0 and any R0 > 0, we let

τ = 3
(

Ṽ

aωn

) 1
n

.

By assumption, there exists some R > R0 such that (7.11) holds. Let then r > 0 be such that,
calling x̄ any point having distance R + r from the origin, and denoting B = B(x̄, r), one has
|B| = Ṽ . Of course there is exactly one such r, and since the density is converging to a then one
has r < τ/2 provided R is big enough. Hence, recalling again that f is radial and nondecreasing,
one gets

sup
x∈B

f(x) = f(R+ 2r) ≤ f(R+ τ) ≤ a
1
n f(R)

n−1
n = a

1
n

(
inf
x∈B

f(x)
)n−1

n
,

that is, (7.10). �

We now give our second existence result. Although it follows from Theorem 7.9, its hypoth-
esis is generally easier to check.

Theorem 7.11. Let f be a C1 radial, nondecreasing density on Rn approaching a finite limit
a > 0 at infinity, and assume that, for any c > 0 and any ρ > 0, there exists some R ≥ ρ such
that

f(R) ≤ a− e−cR . (7.12)
Then, there exist isoperimetric regions of every volume.

Proof. We will obtain the result as consequence of Theorem 7.9 (which can be used thanks to
Theorem 5.9 because f is C1). Indeed, suppose that there exists some volume for which no
isoperimetric set exists.
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Then by Theorem 7.9 and Remark 7.10, there must be some τ > 0 and some R0 > 0 such
that for all R ≥ R0 one has

f(R+ τ) > a
1
n f(R)

n−1
n .

Applying this inequality to R = R0 + τ , which is of course bigger than R0, one finds

f(R0 + 2τ) > a
1
n f(R0 + τ)

n−1
n > a

1
n

(
a

1
n f(R0)

n−1
n

)n−1
n

= a
1
n

+n−1

n2 f(R0)
(
n−1
n

)2
,

and an immediate induction argument gives, for any positive integer k,

f(R0 + kτ) > a1−
(
n−1
n

)k
f(R0)

(
n−1
n

)k
,

which can be rewritten as

f(R0 + kτ)
a

>

(
f(R0)
a

)(n−1
n

)k
> 1 +

(
n− 1
n

)k
ln
f(R0)
a

. (7.13)

Take now any R� R0, and call R′ the biggest number smaller than R of the form R′ = R0 +kτ
for some k ∈ N, so that R− τ < R′ ≤ R. Applying (7.13) we find that

f(R) ≥ f(R′) > a+ a

(
n− 1
n

)R′−R0
τ

ln
f(R0)
a

> a+ a

(
n− 1
n

)R−τ−R0
τ

ln
f(R0)
a

> a− e−cR ,

(7.14)

where the last equality holds for any

0 < c < − 1
τ

ln
n− 1
n

provided R is big enough. The validity of (7.14) for every large R contradicts (7.12), completing
the proof. �

Corollary 7.12. Let f be a radial, nondecreasing density on Rn approaching a finite limit a > 0
at infinity, and assume that f is of class C1 outside some ball B(Rmin). Suppose moreover that

f ′(R) = o
(
a− f(R)

)
(7.15)

for R→∞. Then there exist isoperimetric sets of all volumes.

Proof. This follows directly by Theorem 7.11, just observing that (7.15) implies (7.12). �

We finally give our last major existence theorem, under a hypothesis that the average
density around the boundary of some balls is not much greater than the average over the balls
themselves.

Theorem 7.13. Let f be a density on Rn approaching a finite limit a > 0 at infinity, and assume
that the isoperimetric sets are bounded (see Corollary 5.11). Suppose that, for any V > 0, there
exist balls B of volume V arbitrarily far from the origin satisfying the mean inequality

−
ˆ
∂B
f ≤ a

1
n

(
−
ˆ
B
f

)n−1
n

. (7.16)

Then there exist isoperimetric sets of all volumes.
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Proof. This is again an easy consequence of Proposition 7.4. It is enough to show that the mean
density of a ball B for which (7.16) holds true is less than a. Indeed, letting r denote the radius
of B, one has

Pf (B) = nωnr
n−1−
ˆ
∂B
f ≤ nωnrn−1a

1
n

(
−
ˆ
B
f

)n−1
n

= nωnr
n−1a

1
n

(
|B|
ωnrn

)n−1
n

= n
(
ωna

) 1
n |B|

n−1
n

f ,

which by Definition 7.3 yields that the mean density of B is less than a. �

Corollary 7.14. Let f be a density on Rn approaching a finite limit a > 0 at infinity, and
assume that the isoperimetric sets are bounded. If f is of class C2 and superharmonic (at least
far from the origin), then there exist isoperimetric sets of all volumes.

Proof. It suffices to observe that, if B is a ball on which f is superharmonic, then

−
ˆ
∂B
f ≤ −
ˆ
B
f ≤ a

1
n

(
−
ˆ
B
f

)n−1
n

,

and thus the result follows directly from Theorem 7.13. �

Remark 7.15. If f is a C2 radial density, then superharmonicity corresponds to

f ′′(r) ≤ − n− 1
r

f ′(r) ,

which is a bit stronger than the concavity f ′′(r) ≤ 0. It is an open question whether concavity
suffices (see Open Problem 8.5).

Remark 7.16. Our results cover all the standard examples. Densities such as 1− r−α (α > 0)
approach a = 1 slowly enough to be covered by Theorem 7.11. The density 1 − e−r grows too
fast for Theorem 7.11 but it is covered by Corollary 7.14, which also handles 1− e−er and so on
for faster growth, although it does not work with slow growth such as 1− r−α if α < n− 2.

Our results may not, however, cover uneven growth. For example, take a density that
approaches 1 rapidly, such as f(r) = 1 − e−r, so that all of our slow growth theorems do not
apply (but this density is covered by Corollary 7.14). Then make a smooth perturbation which
alters only slightly f and f ′ but makes big changes in f ′′, so that superharmonicity fails in all
balls of a given radius and Corollary 7.14 does not apply. It is not clear to us whether or not
Theorem 7.13 will apply.

8. Open problems

In this last section, we briefly collect some interesting open problems which are strictly
related to the results of this paper.

Open Problem 8.1. Is Conjecture 7.1 true? Or, at least, is it true in the particular case
n = 2?

Open Problem 8.2. Is Theorem 3.3 true, for dimension n = 2, without the assumption that
f is radial, or that f diverges? Of course, a positive result would be much stronger than Open
Problem 8.1 for the case n = 2. On the other hand, in the proof of Theorem 3.3 for n = 2 the
divergence assumption played a very minor role.

Open Problem 8.3. Is it true for a radial density plus some reasonable further assumption that
the origin must be contained in every isoperimetric region? Recall that the radial assumption is
not enough by Example 2.6.
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Open Problem 8.4. Is it possible, in some of the existence results of Section 7, to remove the
assumption that isoperimetric regions must be bounded?

Open Problem 8.5. Is it true that isoperimetric regions exist whenever the density is radial
and concave (that is, f(x) = g(|x|) for a concave function g)?
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[7] B. Kawohl, On the isoperimetric nature of a rearrangement inequality and its consequences for some varia-

tional problems, Arch. Rational Mech. Anal. 94 (1986), 227–243.
[8] F. Morgan, Riemannian Geometry: a Beginner’s Guide, A. K. Peters, 2nd ed., 1998.
[9] F. Morgan, Regularity of isoperimetric hypersurfaces in Riemannian manifolds, Trans. AMS 355 (2003),

5041–5052.
[10] F. Morgan, Geometric Measure Theory: a Beginner’s Guide, Academic Press, 4th edition, 2009.
[11] F. Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), 853–858.
[12] F. Morgan, Manifolds with density, http://sites.williams.edu/Morgan/2010/03/15/manifolds-with-density .
[13] F. Morgan, S. Howe, N. Harman, Steiner and Schwarz symmetrization in warped products and fiber bundles

with density, Revista Mat. Iberoamericana 27 (2011), 909–918.
[14] F. Morgan, D.L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ.

Math. J., 49 (2000), no. 3, 1017–1041.
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