HEISENBERG ISOPERIMETRIC PROBLEM. THE AXIAL CASE
ROBERTO MONTI

ABSTRACT. We prove Pansu’s conjecture about the Heisenberg isoperimetric prob-
lem in the class of axially symmetric sets. The result is based on a weighted re-
arrangement scheme in the half plane which is of independent interest.

1. INTRODUCTION

We identify the Heisenberg group H" with C" x R, n € N, endowed with the group

law

(2, )&, )= (z+ 2, t+t +2Imz-Z'), (1.1)

n —

where t,t' € R, z = z+iy, 2’ = 2'+iy’ € C" withz,y, 2’y € R and 2-Z' = ijl 2 Z;.
The group is non commutative and its center is Z = {(z,t) € H" : z = 0}. The Lie
algebra of left-invariant vector fields is spanned by

X]:aiz]‘FQy]%, Y}: %—QI]% and T = %, (12)
with 7 = 1,...,n. The distribution spanned by the vector fields X; and Yj, called
horizontal distribution, generates the Lie algebra by brackets. The maps J, : H* —

H*, A >0,
Sx(z,t) = (Az, A?), (1.3)

form a group of automorphisms of H" called dilations.

The natural volume in H" is the Haar measure, which, up to a positive factor,
coincides with Lebesgue measure £2"*1 in C* x R. Let 2 C H" be an open set. The
Heisenberg (horizontal) divergence of a vector field ¢ € C1(Q; R*") is

divip = Y {Xjp2j-1 + Yipo; ). (1.4)
j=1

The Heisenberg perimeter in Q of a £?"*!'-measurable set E C H" is
P(E;Q) = sup {/ divige(z,t) dzdt : ¢ € Cy (2 R*™), [|¢]loo < 1}. (1.5)
E

If P(E;Q) < 400, we say that E has finite Heisenberg perimeter in 2. In the case
Q = H", we let P(E) = P(E;H"). The structure of sets with finite Heisenberg
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perimeter is studied by Franchi, Serapioni and Serra Cassano in [FSSC2|. In this
article, among many other results, it is proved that for sets with boundary of class C*
perimeter equals the (2n + 1)-dimensional spherical Hausdorff measure of the bound-
ary constructed by means of the Carnot-Carathéodory metric. For sets with boundary
of class C?, perimeter also coincides with Minkowski content of the boundary [MSC].

Volume and perimeter are related through the Heisenberg isoperimetric inequality:
there exists a constant C,, > 0 such that for any £2"*!-measurable set £ C H"

min {£2(E), L2 (H" \ E)} < C,P(E)ii. (1.6)

This inequality was first proved by Pansu in [P1] and [P2] in the case n = 1 for
bounded smooth sets (with 3-Hausdorff measure replacing perimeter). In the general
form (1.6), the inequality is due to Garofalo and Nhieu [GN] (see also [FGW]). As
far as the exponents appearing in (1.6) is concerned, note that volume and perimeter
scale homogeneously with respect to dilations (1.3), and precisely, for any A > 0,

LT E\(E)) = X2 L Y E)  and  P(6(E)) = A" MP(E). (1.7)

Volume and perimeter are left invariant.

Denote by € the family of all £2"*l-measurable subsets E of H* such that 0 <
L2 (E) < 400, and consider the infimum

2n+2
Isop(S):inf{% :EE&’}. (1.8)

By (1.6), it is Isop(€) > 0. A set E € £ at which the infimum is attained is
called (Heisenberg) isoperimetric set. The existence of isoperimetric sets is proved
by Leonardi and Rigot in [LR]. The Heisenberg isoperimetric problem consists in
computing isoperimetric sets. In [P2], Pansu notes that the boundary of a smooth
isoperimetric set in H! has “constant mean curvature” and that a smooth surface
has “constant mean curvature” if and only if it is foliated by horizontal lifts of plane
circles with constant radius. Then he conjectures that an isoperimetric set in H', if
smooth, is obtained by rotating around the center of the group a geodesic joining two
points in the center. Recently, Pansu’s conjecture appeared again in [LM].

We prove the natural generalization of Pansu’s conjecture in H" for any n > 1
under an additional symmetry assumption on the sets.

Definition 1.1 (Axially symmetric set). We say that a set E C H" is axially sym-
metric if (z,t) € E implies that (¢, t) € E for all ( € C" such that || = |z|. The set
F C R =R" x R such that

E\Z={(zt) e H" : (|2],t) € F}

is called generating set of E.
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Denote by A the family of all sets ' € £ which are axially symmetric and consider

the infimum

7) ( E) 2n+2

Isop(A) = inf {W

NS .A} . (1.9)
Clearly, it is Isop(A) > Isop(£). A set E € A for which the infimum in (1.9) is
attained is called an axially symmetric isoperimetric set. Our main result is the
following

Theorem 1.2. The infimum Isop(A) is attained. Moreover, up to a dilation, a ver-
tical translation and a L?™'-negligible set, any azially symmetric isoperimetric set
coincides with

Eigop = {(z,t) € H" : |t < arccos|z| + |z|\/1 = 22, |2| < 1}. (1.10)

Here, by “vertical translation” we mean a left translation by some (0, %) € H". This
is actually an Euclidean vertical translation.

The boundary of the set (1.10) is obtained, for n = 1, by rotating around the
center of the group a Heisenberg geodesic for the Carnot-Carathéodory metric joining
the antipodal points (0,+7/2), i.e. the set (1.10) is the solution to problem (1.8)
conjectured by Pansu. The natural generalization of Pansu’s conjecture states that
FEisop is the unique solution of (1.8), up to group operations and negligible sets. There
is a wide evidence supporting this conjecture.

1. Resolution with azial symmetry and regularity ([RR1]). If the boundary of an
isoperimetric set in H" is of class C? then it has “constant mean curvature”, away from
the characteristic set of the boundary, where the curvature is not defined. Complete
constant mean curvature hypersurfaces which are rotationally invariant are classified
by Ritoré and Rosales in [RR1]. Among other results, the authors prove that the
unique compact rotationally invariant hypersurface of class C? with constant mean
curvature in H" is the boundary of the set (1.10), up to dilation and vertical transla-
tion.

2. Resolution with C? regqularity ((RR2]). If an isoperimetric set in H' has boundary
of class C?, then it is the set (1.10) with n = 1, up to dilation and left translation.
This theorem is due to Ritoré and Rosales [RR2]. The authors first describe the
structure of the characteristic set of the boundary using some results of [CHMY]
and then they determine the isoperimetric set using the ruling property (foliation by
geodesics) of constant mean curvature surfaces. The regularity issue, however, is a
delicate one: for instance, solutions to the Plateau problem in the Heisenberg group
are not, in general, of class C? (see e.g. [Pa]).
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3. Resolution with one spherical section and regularity ([DGN]). Consider the fam-

ily of sets £ C H" which satisfy the properties:

i) L27HEN{t>0}) =LY EN{t <0});

i) B = {(2,t) € " : —v(2) < t < u(z),|z] < 1}, for functions u,v which are
non negative and of class C? in {|z| < 1} and continuous on {|z| < 1} with
u(z) =v(z) =0 for |z| = 1;

iii) u(z) = v(z) = 0 implies |z| = 1.

In [DGN], Danielli, Garofalo and Nhieu prove that the isoperimetric problem re-

stricted to the class of sets satisfying i)—iii) has a unique solution which is the set
Eisop in (1.10).

4. Resolution with convezrity ((MR]). In the case n = 1, an isoperimetric set which
is convex has the form (1.10), up to dilation, left translation and an £3-negligible
set. This result is due to Rickly and the author ([MR]). Distributional solutions of
the Euler equation for the variational formulation of the problem are proved to have
Sobolev regularity. This enables to solve the equation along a regular Lagrangian
flow, thus establishing the “foliation by geodesics property” conjectured by Pansu.

5. Calibration argument ([R]). For r > 0 let B, = {(2,0) € H" : |2| < r} and
C, ={(z2,t) e H" : |2| < r}. Let E C H" be a bounded open set with finite perimeter
such that:

i) B, C E C C, for some r > 0;
ii) L2T(E) = L2 (Eisop), where Eigp, is the set in (1.10).

Then, it is P(Eiop) < P(E). In [R], Ritoré also discusses the equality case. The
proof of this result is based on a calibration argument. The calibration is constructed
using the horizontal unit normal to the boundary of Ejsp,. I would like to seize this
opportunity to thank M. Ritoré for sending me an early version of his paper.

6. Other contributions. Some observations on the Heisenberg isoperimetric problem
can be found in [M1] and [M2]. A 2-dimensional version of the problem is formulated
and solved by Morbidelli and the author in [MM]: in the Grushin plane, isoperimetric
sets coincide with the section of the set Fis,p, C H' with the y = 0 plane, properly
scaled and translated. Existence and uniqueness of p-area minimizers are studied
by Cheng, Hwang and Yang in [CHY]. The compact version of H' is the complex
sphere of C?: several results of [RR2] have been generalized to this setting by Hurtado
and Rosales [HR]. Finally, the monograph [CDST] is a detailed introduction to the
isoperimetric problem in the Heisenberg group.

By a rearrangement argument, we reduce Theorem 1.2 to a one dimensional prob-
lem which can be solved by elementary methods. The first step is the reduction of the
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Heisenberg isoperimetric problem with axial symmetry to an isoperimetric problem
in the half plane R2 = R* x R.

Let F' C R% be a measurable set and let D C R% be an open set. We define the
weighted perimeter of F' in D

Q(F; D) = sup {/ {0,(r*""ap1) + 2r*" 9o } drdt - b € Cy(D; R?), |90 < 1} .
F
(1.11)
In the case D =R?, we let Q(F;R?%) = Q(F).

Proposition 1.3 (Planar reduction). Let E C H" be a measurable azially symmetric
set with generating set F C R2, and let Q@ C H* be an azially symmetric open set
with generating set D C R%.. Then E has finite Heisenberg perimeter in Q if and only
if F' has finite weighted perimeter in D, and moreover

P(E;Q) = wo, 1Q(F; D), (1.12)

where wo, 1 = H?>"1(S?"~1) is the standard surface measure of the (2n — 1)-dimen-
stonal unit sphere.

Proposition 1.3 is proved in Section 4. Using spherical coordinates in C*, we find
the representation for the Lebesgue measure of an axially symmetric set £ C H"

L27(E) = wan 1 / P2 rdt = wy V(F), (1.13)
F

where the volume V(F) of the generating set F' is defined by the last equality.
By the isoperimetric inequality (1.6), from (1.12) and (1.13) it follows that there
exists a constant C}, > 0 such that

2n+42

min {V(F), V(RZ \ F)} < C),Q(F)+ (1.14)
for £2-measurable sets F' C ]R%r. We also have the relation
P(E)2n+2
W = wWop—11sop(F), (1.15)
where the isoperimetric ratio of F' is defined by
Q(F)2n+2

The infimum Isop(.A) in (1.9) is thus equal to

Isop(A) = wo,_1 inf {Isop(F) : F C R% L’-measurable with 0 < V(F) < +0c0} .
(1.17)

A set F C R% at which the infimum in (1.17) is attained is called Q-isoperimetric
set.
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We look for a rearrangement scheme which, starting from a set F' C R?, produces
a set F* C R% such that:

i) the sections F} = {r e R* : (r,t) € F*}, t € R, are intervals
of the form (0, g(¢)) for some g(t) > 0;
i) Q(F¥) < Q(F);
iii) V(F*) > V(F).

(1.18)

The coefficient 72" in front of the partial derivative 0, in the variational definition of
Q(F;-) in (1.11) makes it difficult to manage the contribution of “vertical” perimeter
under rearrangement. This is the reason why the standard (Steiner) decreasing re-
arrangement does not seem to work in similar situations (see, e.g. for Dirichlet-type
integrals, Theorem 2.13 in [K] and Theorem 1 in [B]).

Let us set the problem in a more general framework. We consider the following
perimeter of a £?-measurable set F' C R? in an open set D C R? :

R(F; D) = sup {/F {0:(ov1) + 0, (1¢02) } drdt - p € Ci(D;R?), [[¢]|oo < 1} - (1.19)

As usual, we let R(F;R%) = R(F). The functions g,7 : RZ — R are assumed to
satisfy the following properties:
1) o,7 € C(R%) and p,7 > 0 on R%;
2) for £L'-a.e. t € R, the function r +— o(r,t) is in Lipy,.(R")
1.20
and increasing, i.e. o(r1,t) < o(re,t) for 0 <7y < 7195 (1.20)
3) 7(r,t) = 71(r)e(t) with 7 € L(0,6), for all § > 0, and 7, € Lip,..(R).
By the Lipschitz regularity in 2) and 3), the integral in (1.19) is well defined. By 3),
the function © : R% — R*

@@@:AZ@@@ (1.21)

is defined for all (r,t) € R% and moreover, for any fixed ¢ € R, the function r — ©(r, t)
is strictly increasing, by 1). We denote by ©; " the inverse function of ©; = O(-,1).

Definition 1.4 (7-rearrangement). We say that a measurable set F' C R% is 7-
rearrangeable if the function f : R — [0, +-oc]

f@:éjm@m (1.22)

is in L. _(R). In this case, we let g(t) = ©;'(f(t)) and we call the set

Fr={(rt)eR% :0<r<g(t)} (1.23)

the T-rearrangement of F'.
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Related to Definition 1.4, we prove the main rearrangement result.

Theorem 1.5. Assume that o and T satisfy conditions (1.20). Let F C Ri be a
L?-measurable set which is T-rearrangeable and such that R(F) < +oo. Then its
T-rearrangement F f satisfies

R(FY) < R(F). (1.24)
Moreover, if R(F*) = R(F) then F = F* up to a L2-negligible set.

The proof of Theorem 1.5 is contained in Section 2. We explain how inequality (1.24)
is related to the notion of 7-rearrangement. If R(F) < +oo, the open sets map
D — R(F; D) extends to a finite Borel measure on R%. This measure is the total
variation of the vector valued Borel measure (”Rl(F i), Ra(F, )), where, for open sets
DCR:,

Ru(7:0) = sup { [ 0,00 drd: v < D) e <1} .

Rars ) =sup { [ (01(r0) drde: v € CY(D) Il < 1}

The search for a rearrangement F* of F such that Ro(F¥*; Rt x A) < Ry(F; Rt x A) for
any open set A C R lead us to Definition 1.4 (see Step 2 in the proof of Theorem 1.5).
On the other hand, the monotonicity of  — p(r, t) required in (1.20) guarantees that
Ri(F% R x A) < Ry (F;R* x A) for any open set A C R. As both partial perimeters
do not increase under 7T-rearrangement, the same holds for their total variation and
we get (1.24). The study of partial perimeters under Steiner symmetric decreasing
rearrangement is a key step in De Giorgi’s proof [DG] of the isoperimetric property of
the Euclidean ball in R in the class of sets with finite perimeter (see also the modern
version of the proof by Talenti [T]).

In order to complete the program sketched in (1.18), we need to control the change
of volume. Let us introduce a general volume in the half plane. We take a function
u: R% — Rt which satisfies the following properties:

1) uis L?-measurable and u > 0 on ]Ri;

sosoorl 1 (1.26)
2) r+— u(r,t) isin L (0,9) for all § > 0 and for L -a.e. t € R.

The function U : R2 — R

U(r,t) = /Oru(s,t) ds, (1.27)

is positive and moreover r ~ U(r,t) is strictly increasing, by 1). We denote by U;!
the inverse function of U, = U(-, 1).



8 ROBERTO MONTI

We define the volume of a £?-measureable set F' C R%

U(F) = / w(r, 1) drdt. (1.28)
F
The volume of F is finite if and only if u € L'(F).

Definition 1.6. We say that the volume U is non decreasing with respect to the
T-rearrangement if for any £!-measurable set A C RT we have

Ut_l(/Au(r,t) dr) < @t_l(/AT(r,t) dr), (1.29)

for Ll-ae. t € R

Condition (1.29) ensures that U(F*) > U(F) (see Proposition 2.4).

Then it remains to check that the compatibility condition is verified in the case we
are dealing with. In our case, we have 7(r,t) = 2r°" and u(r,t) = r»~! (see (1.13)).
For this pair of functions, the compatibility condition (1.29) is a consequence of the
elementary inequality

<(a+1) /A radr)"%“ < ((ﬁ+1) /A r/%h)ﬁ, (1.30)

for A C Rt L'-measurable, and —1 < a < 8 (Example 2.5).

If the coefficients p and 7 appearing in the divergence in (1.19) do not depend on
t, the Steiner rearrangement of a set in direction ¢ is standard (see Section 3). In
Section 5, we prove the following

Theorem 1.7. The infimum in (1.17) is attained and a Q-isoperimetric set F sat-
1sfies:
i) F=F* upto a L?-negligible set;
ii) the sections F, = {t € R : (r,t) € F} are equivalent to intervals, for L'-
a.e.r € RY;
iii) F' is contained in a bounded rectangle, and precisely

Fc{(rt) eR :0<r <, QF)s, |t —to| < dyQ(F)>"/V(F)™ 1}, (1.31)
for some ty € R and for dimensional constants c,,d, > 0.

Thanks to Theorem 1.7, the axial isoperimetric problem in the Heisenberg group
can be reduced to a one dimensional problem which can be solved by elementary
methods, thus proving Theorem 1.2.

Notation. We denote by |z| the usual norm of z = (2, ...,2,) € C* with z; =
z; +iy; = (zj,y;). J is the standard complex structure J(z) = iz. Rt = (0, +00) is
the positive open half line and R2 = R" x R is the open half plane. £* is Lebesgue
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measure in R¥, 2" is the 2n-dimensional Hausdorff measure in R?**! and H! is the
Hausdorff measure in the plane. By (-,-) we mean the standard inner product in R*.

2. WEIGHTED REARRANGEMENT IN THE HALF PLANE

2.1. Preliminaries on perimeters. Let Q@ C R*, &k > 2, be an open set and let
Viy ooy Vin € Lip (2 R™), m > 2, be vector fields in . We identify these vector
fields with the differential operators

k
0 .
V;(:E) :Zgij(x)%, 1=1,...,m,
j=1 J

where g;; € Lipjo.(2). We denote by V;* the adjoint operator of V; in L*(Q), i.e. the
operator defined by

/(p‘/;wdx:/w%*godx,
Q Q
for all ¢, € Cj(9).

We introduce the family of test functions
Fu(Q) = {¢ = (01, 0m) € Co(BR™) : i+ ..+ 7, <1in QF. (2.1)
Let F C Q be a L*-measurable set and let A C Q be an open set. For any i = 1, ..., m,
we define the ith partial perimeter of F' in A

Ri(F;A) = sup /Vi*godx. (2.2)
peFR(A)JF

By Riesz representation theorem, if R;(F;€) < +oo then the open sets function
A — R;(F;A) extends to a finite Radon measure u; in Q and there exists a Borel
function o; : 2 — R with |o;| = 1 p;-a.e. such that

/V;-*godac:/goa,-d,ui (2.3)
F Q

for all p € C§(Q2). We denote by = (u1, ..., bm) the vector valued Radon measure
in 2 whose ith component is the measure ;.

We introduce the formal divergence of a vector field ¢ = (1, ..., orn) € CH(; R™)
with respect to the frame of vector fields V = (14, ...,V},)

m
divyp = — Z V.
i=1

The V-perimeter in an open set A C Q of a L¥-measurable set F' C ) is

R(F;A) = sup /divvgodx. (2.4)
PEFm(A)JF
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By Riesz representation theorem, if R(F;€) < +oo then the open sets function
A — R(F;A) extends to a finite Radon measure v in Q. Moreover, there exists a
Borel map n : Q@ — R™ such that |n| = 1 v-a.e. and

/F divy dz = /Q (o) dv (2.5)

for all p € C3(Q; R™). Note that v(Q2) < +o0o implies 1;(Q) < oo for alli =1, ..., m.

The measures v and p;, ¢ = 1, ..., m, are finite Radon measure. In particular, they
are Borel regular and v is the total variation of u = (uy, ..., tm). Before sketching the
proof of this fact we recall the following definition.

Definition 2.1. The total variation of a vector valued Borel measure u = (1, ..., fim)
in © is the Borel measure |u| defined, for Borel sets E C €, by

+o0 +o0
|u|(E) = sup { Z |(Ej)| = (Ej)jen disj. sequence of Borel sets with E = U Ej}.
j=1 j=1
(2.6)

By Radon-Nikodym theorem it is p = n|u| where n :  — R™ is a Borel map such
that [n| = 1 |ul-a.e. in Q. From (2.3) and (2.5), we have for any ¢ € C}(Q2) and

1=1,...,m,
/wnidv=/Vz-*wdx=/swidm=/<p0mid|u|,
Q F Q Q

where n = (nq, ..., Ny ). By density, this identity holds for any characteristic function
¢ of any open set in ). Thus, we deduce that n;v = o;u; = o;m;|p|. The set
E ={z € Q: |o;(x)| # 1} has vanishing p; measure. It follows that 7;(z) = 0 for
|pu|-a.e. x € E, and then the Borel map 77 : © — R™ defined by 7); = o;n; satisfies
Il =1 |p|-a.e. in Q. For any Borel set B C €, we have

1l(B) = / (@, Aydlul = /B (7, nydv < v(B).

The same argument provides v(B) < |u|(B). This shows that v = |p|.

2.2. 7-Rearrangement. From now on, we work in the half plane RZ = R* x R
and we denote by (r,t) € R x R a generic point. Let p,7 : R2 — R be functions
satisfying (1.20) and consider the vector fields

0 0
Vi = o(r,t) Vo = 7(r, t)a

=, (2.7)
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According to (2.2) and (2.4), we define the following perimeters of a £2-measurable
set F' C R% in an open set D C R?

Ri1(F; D)= sup /&(gw)drdt,
JJF

YeFi(D (28)
Ro(F; D) = sup / Oy (TY) drdt,
YeF(D)JF
and the V-perimeter
R(F; D)= sup /{ar(gwl) + 0,(T1po) } drdt. (2.9)
YeEF (D) JF

We recall some standard facts in the following two propositions.

Proposition 2.2. Let A C R be an open set and let F C R be a L*-measurable set
such that R1(F; Rt x A) < +00. Then we have

Ri(FiR* x A) = / sup /F 0, (el 1y6(r) dr ) dt. (2.10)

A ( PeF (RT)

Here, Fy = {r € R" : (r,t) € F'} is the section of F' at level t € R.

Proof. Inequality < in (2.10) is elementary. We prove the converse inequality. By
Theorem 2.2.2 in [FSSC1], there exists a sequence of functions f; € C®(R* x A),
7 € N, such that:

1) f; = xr in L, (R x A) as j — +00;

2) we have

lim 0 fi(r,1)] o(r, t) drdt = R1(F; R" x A). (2.11)

J=100 Jr+xa

By 1), for L'-a.e. t € Rit is f;(-,t) = xr(-,t) in L

loc

(R*) as j — +o0. On the other

hand, by Fatou Lemma and by the lower semicontinuity of the total variation with

1
loc

jgr+noo/A/]R+ |anj(r,t)|g(r,t)drdtz/41}§3ng+ 0,55(r, )| ol ) dr dt

- /A liminf sup fi(r. )0 (o(r, )y (r)) drdt  (2.12)

I+ yeF (RY) JRF

respect to the L, -convergence, we have

> /A sup Oy (g(r, t)w(r)) dr dt.

YeR(RT) J Fy

From (2.11) and (2.12), we get inequality > in (2.10).
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Proposition 2.3. Let o; € Lip,,.(R") be a function such that o, > 0 in R, and let
E C R* be a L'-measurable set such that
sup /GT(Qlw) dr < +o0. (2.13)
E

PpeF (RT)
Then, up to a L'-negligible set we have E = |J;c7 Ei, where T C Z, E; = (a;,b;) is
an interval, 0 < a; < b; < +oo for all 1 € T and b; < a; fori,j € T with ¢ < j.
Moreover,

sup /Ear(gﬂ/;) dr = Z (Ql(a,') + Ql(bi)), (2.14)

YEF(RT) el

where we agree that p1(0) = p1(+00) = 0.

Proof. For any bounded open subset A C Rt there is a constant C' > 0 such that
01 > C on A. Thus, by (2.13) we have

sup /&wdr < o0,
YeF (A)JE

i.e. E has locally finite perimeter (unweighted perimeter) in R*. It follows that
E = ;e Ei as in the statement of the proposition (see e.g. [AFP] Section 3.2).
Moreover, for any % € Cy(R") we have

[ arteryar =3 (@:(t) - (@)v(e) (2.15)

1€l

Now, (2.14) follows from (2.15) on taking the supremum over 3 € F (R").

Before proving Theorem 1.5, we need a couple of observations.

Let f € BVioc(R) be a function of locally bounded variation in R. Upon modifying
f on a set of vanishing £'-measure, f is the difference of two increasing functions, by
Jordan theorem. Thus f has left and right limit at any point, and moreover they are
equal in the complement of an at most countable set N = {t, € R: k € K} for some
K C N Let

g(t) =0, (f(1)), (2.16)

where ©; ' is the inverse of the function ©; = O(-, ) defined in (1.21). The function g
has the same continuity properties as f. For k € K denote by Sy the closed segment
in R? with end-points (g(tk)_,tk) and (g(tk)+,tk), where g(tx)~ and g(tx)* are the
left and right limits of g at t;. The “graph” of ¢

T,=JSku{(g(t),t) eR*: t e R\ N} (2.17)
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is relatively closed in R? . The measure R(F¥; ) associated with the set F* = {(r,t) €
R2 : 0 <r <g(t)} is supported in I and in particular

R(F:EREN\T,) = 0. (2.18)

In fact, for any ¢ € F»(R% \ I}), by the divergence theorem it is

/Fﬁ {0:(011) + B,(14ps) }drdt = 0.

A second observation concerns the factorization property 7(r,t) = 71(r)72(¢) in
item 3) in (1.20). For some £2-measurable set F' C R?%, let

A(t) = /F 7 (r) dr. (2.19)

Then, the function f in (1.22) is of the form f(¢) = fi(t)72(¢) and definition (2.16) is
equivalent with

9(t)
/0 () dr = Fi (1), (2.20)

because 5 > 0.

Proof of Theorem 1.5. We introduce the Borel measures p; and po on R
,LLl(B) = Rl(F, R+ X B),

(2.21)
p12(B) = Ro(F;R" x B),
where B C R is a Borel set. Analogously, starting from F* we define
i — t. R+
M (B) - Rl(F aR X B):
' (2.22)

ph(B) = Ry(F; R x B).

Step 1. We claim that p!(B) < pi(B) for any Borel set B C R.

Since the measures are Borel regular, it is sufficient to prove the claim for an open
set B C R. By assumption R(F) < +oo and then R;(F;R%) < +oc. By Proposition
2.2, it follows that for £'-a.e. t € R we have

sup / O, (o(r, t)(r)) dr < 400,
peF (RT) J Fy
and then, by Proposition 2.3, possibly modifying F' in a £2-negligible set, it is

i€T(t)
where Z(t) C Z, 0 < a;(t) < b;(t) < +oo for i € Z(t) and b;(t) < a;(t) for i < j. Note
that b;(t) < 4oo for all ¢ € Z(t) and

#(t) = sup Z(t) < 400, (2.24)
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because F' is T-rearrangeable and r +— 7(r,t) is increasing. Moreover, the sum in
(2.14) is finite. Using (2.10) and (2.14), we get

ui(B) = sup / Oy (o(r, )y (r, t)) drdt

YeEF(RTXB)JF

-/ (wei?&ﬂ ar(g(r,t)w(r»dr) at (2.25)
/Z o(a;(t),t) + o(bi(t), 1)) dt.

In order to compute yf(B), recall that F* = {(r,t) e R%2 : 0 <7 < g(t)}, where
g(t) = ©;7'(f(t)) and, by (1.22) and (2.23),

)= [ e = 3 {0001 - Ofai(t) ).
1€Z(t)
Then, by (2.10) and (2.14), we have
(B) = [ olatt). 0. (226)
Because r — ©O(r,t) is increasing, we have
( > {e O(a i(t)’t)}) < by (1), (2.27)
1E€Z(t)

and we finally obtain the pointwise estimate
Q(g(t)at) < Q(bi“(t) (t)vt) < Z (Q(ai(t)’t) + Q(bi(t)at))v (2'28)
i€L(t)

which is a consequence of (2.27), because r — p(r,t) is increasing, as well. Now, the
claim of Step 1 follows from (2.25), (2.26) and (2.28).

Step 2. We claim that pl(B) < ps(B) for any Borel set B C R.

It is sufficient to consider open sets B C R. By property 3) in (1.20), restricting
the family of test functions and recalling (2.19) we get

u2(B) = sup / Oy (1(r, t)(r,t)) drdt

YeF (Rt xB)

> sup )/Fﬁ(r)at('rg(t)w(t)) drdt

YeEF (B

:¢§a‘ép3)/ (/ (W) 0, (1)) dt
= Ssup /f1 ()0 (T2 (t)(t)) dt

YEF1(B)

(2.29)
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Recall that f € L}
Let us define the total variation of f; in B with respect to the vector field 7(¢)

(R), because F is T-rearrangeable and thus f; € L{ (R), as well.

9
at

loc

| Do, f1[(B) = sup /fl ()0, (r2()9(t)) dt.

YeEF1(B)

With this notation, (2.29) reads ps(B) > |D., f1|(B). By the Coarea Formula (see
e.g. Theorem 4.2 in [MSC]), it holds

uz%ﬁuB)::A “wsup /Lw>}@(@@ﬁﬂﬂ)duk. (2.30)

€F(B)

Now we perform the change of variable
s :/ T1(r)dr, with ds = 7(0)do.
0

By (2.19)—(2.20), fi(t) > s is equivalent with ¢(t) > 0. Thus, we get

\D,, fi|(B) = /OOOTI(U) sup /{>}at(72( J¥(t)) dt do

YeF (B
+o00
sup / / 7(0,t)¢(0, 1)) dt do
11)6}'1(R+><B) {g>0} (2.31)
= sup / O (1 (0, t)¢(0,t)) dodt
YEeF (Rt xB) J Ft
= 5(B).

Now our claim follows from (2.29) and (2.31).

Denote by |u| and [uf| the total variation measures on R of the vector valued
measures = (1, o) and pf = (uf, 4b) respectively.

Step 8. We claim that |u|(E) < R(F;R* x E) and |i|(E) = R(F%; R x E) for
any Borel set F C R.

It is sufficient to prove the claim for an open set £ C R. Denote by |v*| = R(F*;")
the total variation of the vector valued measure vf = (1}, 1) = (R1(F¥; ), Ro(F¥; )
on R? . For any Borel partition (E;);en of E there is a Borel partition of product type
(R* x Ej)jen of RT x E. Tt follows that |p*|(E) < [*|(R" x E). The same argument
proves the claim in Step 3 concerning |u|.

In order to prove the converse inequality |v|(Rt x E) < |pf|(E), it is sufficient to
show that for any Borel partition (F});en of RT X E there exists a Borel partition of
product type (RT x Ej)peny of R x E such that

D IHEN <Y I (E). (2.32)

JEN heN
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By (2.29), fi € BVio(R) and the same holds for f, because 7o € Lip,,(R) is
positive. Let I, be the graph of g defined in (2.17) with N = {t, e R: k € K} as
in the discussion before formula (2.16). Let J C N be the set of all j € N such that
F;NT, # 0. By (2.18), we have

V(F;))=0 foralljeN\J. (2.33)

Letting shrink the open set A in (2.10) to one point, we see that /(R x {t}) =0
for all ¢ € R. Thus we have the countable additivity
(U By (1)) = 1B < (1), (2:34)
jEN jEN
for any sequence of pairwise disjoint Borel sets B; C R", j € N.
Denote by 7 : Ri — R, 7(r,t) = t, the standard projection onto the second
coordinate. Let (Ej)pen be the Borel covering of E made up by the sets 7(Fj) \ N
with j € J, together with {4}, £ € K such that ¢, € E. By (2.33) and (2.34), we

have
Z|Vﬂ(Fj)| =D _IA(E)
< {E R x N)|+ (B0 (R x )}
=) IR x (w(F)\N)[+ > AR x {t})]

JjeJ keEK tycFE

= Z |W*(En).

heN
This ends the proof of (2.32) and of Step 3.

From the Steps 1 and 2 and recalling definition (2.6), it follows that

|#|(B) < |ul(B) (2.35)
for any Borel set B C R. Now, (1.24) follows from Step 3. In fact,
R(FF) = 1| (R) < |ul(R) < R(F). (2.36)

Step 4. We claim that if R(F*) = R(F) then F = F* up to a £2-negligible set.

We have |pf|(R) = |u|(R), by (2.36), and thus |u*|(E) = |u|(E) for any Borel set
E C R, by (2.35). By Radon-Nikodym theorem it is pu* = n*|u| and p = n|u| for
Borel maps 7,7* : R — R? such that |p| =1 and || = 1 |u|-a.e. in R. On the other
hand, 77% < m and ng < my, by Steps 1 and 2. We deduce that n* = n |u|-a.e. in
R, and in particular we have pf(B) = ui(B) for any Borel set B C R. From (2.25)
and (2.26), we deduce that we have equalities in (2.27) and (2.28). This implies that
F, = (0,9(t)) for L'-a.e. t € R, up to a L'-negligible set of RT.

]
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2.3. 7-Rearrangement and volume.

Proposition 2.4. Assume that v : R%. — R satisfies (1.26) and (1.29). Let FF C R
be a L?-measurable set which is T-rearrangeable and such that U(F) < +oo. Then its
T-rearrangement F* satisfies

UFY > U(F). (2.37)

Proof. We have, by Fubini-Tonelli theorem,

U(F) = /R /F ) dr,
L{(Fﬂ):/R/Og(t)u(r,t)drdt:/U(g(t),t) dr dt,

R

(2.38)

where U is the function in (1.27) and

o(t) :@;1(/F (r) dr).

We have g(t) < +oo for L'-a.e. t € R, because F' is T-rearrangeable. For any such ¢,
condition (1.29) yields

Ulg(t), 1) > / w(r, 1) dr. (2.39)

F

Now our claim (2.37) follows from (2.38) and from the pointwise estimate (2.39).
U

Example 2.5. Let a, 8 € R be a pair of numbers such that —1 < a < 8 and consider
the functions u(r,t) = r® and 7(r,t) = r?, r > 0. We show that the volume U in
(1.27) does not decrease under 7-rearrangement. Precisely, we have to check condition
(1.29), which in the present case reduces to

((a+1) /A radr)#l < ((B+1) /A %h«)ﬁ, (2.40)

for £'-measurable A C R". It is sufficient to prove (2.40) when

is the finite union of £ € N disjoint intervals A; = (a;, b;) with 0 < a; < b; < a;11. The
case when A is a countable union of intervals is obtained by monotone convergence.
The general case follows upon approximating a £'-measurable set A C Rt by open
sets.
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For s > 0 let

k 1 k
P(s) = log (;s/A Ts_ldr)s = émg;(bg —a?).

Proving (2.40) for —1 < « < 3 is equivalent to showing that v is strictly increasing
for s > 0. The inequality 9'(s) > 0 is equivalent with

k k k

D (b logh; — ajloga) = (b —af) log > (b} —af) > 0. (2.41)
i=1

=1 i=1

We prove (2.41) by induction on k£ € N. For k = 1, letting b = z and aj = y, we
have to check that

L,(y) =xzlogz —ylogy — (x —y)log(x —y) >0 for 0 <y < .

This follows from L,(0) = L,(z) = 0 and
Lg(y):L<0 for 0 <y < x.
yly — )

Now assume that (2.41) holds for ¥ € N. We prove it for & + 1. Letting b} = x;
and a; = y;, we have to check that

k+1 k+1 k+1
L(yksr) = Y (wiloga; — yslogys) — Y (wi — yi) log Y (i — i) > 0
i=1 i=1 i=1

for xp < yxy1 < xxr1. We consider L as a function of y,; alone, for fixed z1, ..., xx 11
and yi, ..., yx. By the induction assumption, we have L(zy) > 0 and L(zg41) > 0.
The claim follows from

for z < yry1 < Thqa.

3. STEINER REARRANGEMENT IN THE VERTICAL DIRECTION

Let 9,7 € C(R%) be two functions which satisfy the following properties:

1) o(r,t) = o(r) is positive in RT and in Lip, (R"); -
3.1
=T

2) 7(r,t) (r) is positive.

The vector fields V' = (V,V3) are as in (2.7) and the perimeter R(F; D) of a £
measurable set F© C R% in an open set D C R? is defined in (2.9). The partial
perimeters R;(F; D), i = 1,2, are defined in (2.8).
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Definition 3.1 (Steiner symmetric decreasing rearrangement). We say that a mea-
surable set F' C R? is ¢-rearrangeable if the function h : Rt — [0, +o0]

h(r) = %cl(m) (3.2)

(RT). Here, F, = {t e R: (r,t) € F} is the section of F at level r € R". In
this case, we call the set

. . 1
is in Ly,

F*={(r,t) e R : [t| < h(r)} (3.3)
the Steiner symmetric decreasing rearrangement (simply, t-rearrangement) of F'.

Theorem 3.2. Assume that o and 7 satisfy conditions (3.1). Let F C R% be a
L?-measurable set which is t-rearrangeable and such that R(F) < +oo. Then its
t-rearrangement F™* satisfies

R(F*) < R(F). (3.4)
Moreover, if R(F*) = R(F) then F, C R is equivalent with a segment for L'-a.e. r €
R*.
Proof. We introduce the Borel measures u; and ps on RT

/,Ll(B) = Rl(F,B X R),

(3.5)
/,I,Q(B) = RQ(F,B X R),
where B C R is a Borel set. Analogously, starting from F*, we define
1i(B) = Ry(F*; B x R),
(3.6)

p5(B) = Ro(F™; B X R).
For any open set B C R", we have by Fubini-Tonelli theorem and by the Coarea
Formula (see (2.29)-(2.31))
m(B)>2 sup [ b, (elr)o(0) dr
YEFI(B) JRF
+o0
> 2/ sup / Or (o(r)(r))dr ds (3.7)
0 {h>s}

YeFi(B)
> pi(B).
On the other hand, as in the proof of Step 1 in Theorem 1.5 (see the argument
starting from formula (2.25)), it is

p2(B) = / 7'(7')( sup Oy (t) dt)dr,
B YER(R) JF,
with

sup Owp(t)dt > sup Oy (t) dt, (3.8)
YeF(R) JF, PeFL(R) J Fx
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because the right hand side can be either 0 (in which case the left hand side is also
0) or 2 (in which case the left hand side is equal or larger than 2). It follows that
po(B) > pi(B), with equality if and only if F, is equivalent to a segment for £!-
a.e.r € B.

Now, the claim (3.4) follows by the same argument as in (2.35)—(2.36). Moreover,
if R(F*) = R(F) then, arguing as in Step 4 of the proof Theorem 1.5, we deduce
that pe(B) = pi(B) for any Borel set B C R*. This implies that we have equality in
(3.8) for L'-a.e. r € RT. Thus F, is equivalent to a segment for L!-a.e. r € RT.

U

4. PROOF OF PROPOSITION 1.3

We first note that, by an easy approximation argument, we have P(E;) =
P(E;Q\ Z). Without loss of generality, we prove Proposition 1.3 in the case Q = H"
and D = R%. Let E C H" be an axially symmetric £>"*'-measurable set with
generating set F' C R? .

Step 1. We claim that we have the inequality

P(E) > wop—19Q(F). (4.1)

For any ¢ € 7 (R%) we define ¢ € F,(H") by letting
1
p(z,t) = m{wl(\zht)z—¢2(\Z\at)J(z)}- (4.2)

Here, z = (z1,...,2,) € C* = R*" with z; = (z;,y;) and J(z) = iz is the standard
complex structure. For z and J(z) are orthogonal, it is easy to check that ©? + ... +
@2 <1 is equivalent with 12 + 12 < 1. Moreover, we have

T

2 Y
S0+ Mo |

2| 2]

By, 25 = —%{ijl — 2t} + {zm + o — f—yfam}

2| |2 2|

X 1
Oz, p2j—1 = —ﬁ{xﬂh + yta} + Tl {1/11 +

2
2y,;0paj—1 = m{xjyjatwl + yf-(?twg}
2
—21;0p2; = m{ — x50 + x?@%},

and, summing up, we get the following expression for the Heisenberg divergence of ¢

2n —
E

divap(z,t) = 0,1 (2], 1) + S (2], 8) + 212(0sn(|2], 1) (4.3)

Letting B, = {# € C" : (z,t) € E} and F;, = {r € R" : (r,t) € F}, using
Fubini-Tonelli theorem and spherical coordinates (coarea formula) in C", we obtain
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by (4.3)
+00
/dichp(z, t) dzdt = / / divgy(z,t) dz dt
E -0 Et
+o0o p+oo
= / / / xe (2, t)divap(z, t) dH" ! dr dt
—oo J0 |z|=r

+00 _
= Woys / / {aﬂpl () + 2 L () + 200,00, t)}r2“—1 dr di
— 00 Ft

r

(4.4)

= Wop_1 / {GT (r"Yapi (1, ) + 2r°"Optho(r, t)} dr dt.
F
Taking the supremum over all ¢ € F(R%) we obtain (4.1).

Step 2. We claim that if £ C H" is an axially symmetric bounded open set with
finite perimeter and with boundary which is of class C* in H" \ Z, then we have

P(E) = Wop—1 Q(F) (45)

Denote by v = (v,, ;) € S* the exterior unit normal to 0E\ Z, and let (v, ;) € S*
be the exterior unit normal to OF (the boundary of F' in R? ). We have the relation
v,(2,t) = v.(|z],t)2z/|2| for z # 0. By the divergence theorem, we get from (4.4)

(o, v, — 2 J (2))dH*™ = wgn_l/ {1y + 2ripory }r*" 1A (4.6)
oF

O
Note that |v, — 21, J(z)| = 0 implies z = 0. The vector fields ¢ on OF and ¢ on
OF \ Z which make maximum the right respectively the left hand side of (4.6) with
the L* bound ||¢||oc <1 on OF and ||¢||oc <1 on 0E \ Z, are

by = vy Wy = 2ry,
P24 arm)2 TP (2 4 222
and
v, — 2 J(2) 1
= = — — PoJ .
? = sG] T

Note that ¢ is related to 1 according to (4.2). Indeed, we have |v, — 2v,J(2)]? =
v? 4+ 4r’v? because v, and J(z) are orthogonal. The vector fields ¢ and v can be
smoothly extended in a neighborhood of OF \ Z respectively of OF, with L*™ norms
bounded by 1. These extended vector fields can be uniformly approximated (near the

boundaries) by compactly supported smooth vector fields with the same L bound.
This finishes the proof of (4.5).

Step 3. We claim that we have the inequality

P(E) < wan-1Q(F). (4.7)
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We can assume that Q(F) < +4oco. By Theorem 2.2.2 and Corollary 2.3.6 in
[FSSC1], there exists a sequence (F})jen of open sets of R% with boundary of class
C* in R% and such that

i) .ligrn L?((F;AF) N K) = 0 for any compact set K C R?;

j—+o00
i) lim_Q(F) = Q(F).
For any j € N, denote by E; C H" the axially symmetric open set with boundary of
class C* in H" \ Z which has Fj as generating set. From i), it follows that for any
compact set K' C H" \ Z we have
lim £ ((E;AE)NK') =0
j_g_noo (( J ) ) )

1

and thus, by the lower semicontinuity of perimeter with respect to the L,

conver-

gence, it follows
P(E)=PE;H'\ Z) < lji_gjgofp(Ej;]HI" \ Z).
On the other hand, by the Step 2 and by ii), we see that we actually have a limit and
lim P(E;H"\ Z) = wZn_legloo Q(F;) = won—1Q(F).

j—+o0

This ends the proof of the Step & and of Proposition 1.3.

5. PROOF OF THEOREMS 1.7 AND 1.2

Let n € N and introduce the functions
o(r) = r2n=t T(r) = 22, v(r) = rn-t, (5.1)

The functions p and 7 satisfy both conditions (1.20) and (3.1), and the function v
satisfies conditions (1.26). For a £?-measurable set F' C R? , the volume

V(F) = /F o(r) drdt

is non decreasing with respect to the 7-rearrangement, i.e. condition (1.29) holds.
This follows from Example 2.5 with « = 2n — 1 and 8 = 2n.

Proof of Theorem 1.7. We divide the proof into three steps.

Step 1. Let FF C R% be a L2-measurable set such that 0 < V(F) < +oco and
Q(F) < +oo. Let F* be the Steiner symmetric decreasing rearrangment of F in
direction ¢ introduced in Definition 3.1. Note that the function A in (3.2) belongs to
L .(RT), because V(F) < +o0o. By Theorem 3.2, we have Q(F*) < Q(F). Moreover

V(F*) = V(F), because the density of the volume V, the function v in (5.1), does not
depend on ¢. Then we have

Isop(F™*) < Isop(F). (5.2)
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Assume that F' = F* and Q(F) < 4o00. The function f : R — [0, +oc] associated
with F' as in (1.22) is even and decreasing on (0, +00), because F' = F*. As in (2.29)
with B = (0,4+00) and 7 = 1, we have

sup [ 1000 de < Q(F) <+
PYeF(0,400) JR

ie. f € BV(0,+00), and in particular f is essentially bounded near ¢t = 0. Then

it is f € LL (R) and F is 7-rearrangeable, as required in Definition 1.4. Denote

loc

by F* the T-rearrangement of F. By Theorem 1.5 we have Q(F*) < Q(F), and by
Proposition 2.4 along with Example 2.5 we have V(F*) > V(F). Moreover, by (1.14)
it is V(F*) < 400, because V(R2 \ F*) = +o0. Then we have

Isop(F*) < Isop(F). (5.3)
Step 2. Assume that F* = F and that the sections F, are (equivalent to) intervals.
We claim that, possibly modifying F' in a £?-negligible set, we have
F C [0,¢,Q(F)771] x [tg — dyQ(F)™ /V(F)* "ty + dy Q(F)*" /V(F)*""], (5.4)
for some %, € R and for dimensional constants ¢, d,, > 0.
Up to a L2-negligible set, the set F is of the form
F={(rt)eR} :0<r<g(t),teR} (5.5)

for some function g : R — [0, +oc] which is decreasing on (tp, +00) and increasing on
(—o0, tp) for some ty € R. We let M = sup,cg g(t). As in (2.29)—(2.31), we have

Q(F)> sup /T(r)atw(r,t)drdt
yJF

YeFR (R%’_

+oc
> /0 #(r) sup /{gw}aﬂl)(t)dtdr (5.6)

YeFi(R)

M 2n+1
A4M
= 4/ rndr = .
0 2n+1

Then, we get the estimate
M < ((2n +1)Q(F)/4) 7+, (5.7)
The set F'in (5.5) is also of the form
F={(rt)eR} :k(r) <t <h(r),reR"}

for some functions k, h : Rt — [—00, +00] such that A and —k are decreasing, thanks
to ' = F*. Moreover, we can assume that h(r) = k(r) = t, for all r > M. Thus, as
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n (3.7), we have

Q(F) > sup / o ( r,t)) drdt
¢€f1(R2
> sup [ (ki) = k) (elr)ol0) dr
YeFi(RY) JRF (5.8)
> M** 1 sup (h(r) = k(r))O,(r) dr
PYeF (RT) JR+
> Mt lim (h(r) — k(r)).
From (5.8), we infer that
FCR:=1[0,M] x [to— Q(F)/M* " tg+ Q(F)/M*'], (5.9)
and from (5.9) we get an estimate from below for M
V(F) <V(R) = @M (5.10)

Finally, from (5.7), (5.9), and (5.10), we obtain the inclusion (5.4) with the dimen-
.
sional constants ¢, = ((2n +1)/4) ¥ and d,, = 1/n*""1.

Step 3. The infimum in (1.17) is attained.

Let (F})jen be a minimizing sequence for (1.17): F; C R are £>-measurable sets
such that 0 < V(F}) < +oo for all j € N and

lim Isop(F}) = Isop(A)

J—roo Won—1

> 0. (5.11)

By (5.2) and (5.3) in Step 1, we can without loss of generality assume that F; = F} =
Fli for all j € N. We can also assume that V(F;) =1 for all j € N. If this is not the
case, we replace F; with 6,(F;) where 6,(r,t) = (Ar, A%t) and A > 0 is fixed in such a
way that A2V (Fy) = V(6,(Fy)) = 1.

We have F; = {(r,t) € RZ : |t| < h;(t), r € R"} for functions h; : RT — [0, +o0]
which are decreasing on (0, +00). By Step 2, the functions h; are uniformly bounded
and moreover, by (5.4), there exists 7o > 0 such h;(r) = 0 for all » > r, and for
all j € N. By Helly theorem, possibly taking a subsequence, the sequence (h;) en
converges pointwise to a decreasing function A : R — [0, +00). Let

F={(rt)eR} : |t| <h(r),r e R"}.
By the dominated convergence theorem, we have

V(F) = lim V(F;) =1 (5.12)

j—+o0
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1

1o (R2). By the lower semicontinuity of the perime-

Moreover, x F; converges to xgin L
ter

9(F) < liminf Q(Fj). (5.13)

j—+oo
From (5.11), (5.12), and (5.13), it follows that Isop(F) = Isop(A)/way, 1.

Now, let F' be any Q-isoperimetric set. By Theorem 1.5, F satisfies F* = F.
Moreover, by Theorem 3.2, the sections F,. are intervals for £L'-a.e. r € RT. By Step
2, the set F satisfies the inclusion (1.31).

O

Proof of Theorem 1.2. Theorem 1.2 now follows from Theorem 1.7 and from the re-
sults of [R]. Here, we give a brief self contained proof leaving the details to the
reader.

By Theorem 1.7 and Proposition 1.3, the infimum in (1.9) is attained at a set
E € A. The generating set of F C R2 of E is a minimum for (1.17). After a
vertical translation, we can assume that ¢, = 0 in (1.31). Possibly modifying F' in a
L2-negligible set, we can assume that F C R? is open. The boundary 0F of F in R%
is rectifiable, and precisely it is the union of two 1-Lipschitz curves, by properties i)
and ii) of F' in Theorem 1.7. Then the perimeter of F' is

Q(F) = /6 i Y S £ A (5.14)

where v = (11, 112) is the exterior unit normal to OF, that is defined H'-a.e. on OF.
Formula (5.14) is obtained from (1.11), first transforming integrals into boundary in-
tegrals by the divergence theorem, and then taking the supremum over test functions.

The set F' minimizes Q(F) among sets with the same volume V(F'). Equiva-
lently, F' minimizes the isoperimetric ratio Isop(F’) in (1.16). Because the integrand
\/m r?"~1 ig elliptic away from the set 7 = 0, by standard regularity theory
we deduce that 9F NR% is a curve of class C™.

If v5(r,t) # O there is a neighborhood of (r,t) € OF in R% such that in this
neighborhood OF is the graph of a function ¢ = ¢(r) with v € C*(I), for some
maximal open interval I C R*. By the variational principle, the function 1) satisfies
the weak equation

V)Pr)  onr on1 _ (2n+1)Q(F)
[ ot K e K= S 619

for any ¢ € C§°(I). This can be obtained modifying the piece of boundary of F' given
by the graph of 1 with the graph of ¥ 4+ ey, ¢ € R, and using the fact that at e =0
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the isoperimetric ratio is a minimum. The weak equation (5.15) yields
d 2n—1,/1
_a T Y'(r) — Kyl (5.16)
dr P'(r)? + 4r?
Possibly replacing F' with a rescaled set, we can assume that K = 2n. It is either

1 < 0 or ¢ > 0. Assume that we are in the latter case: then we have ¢’ < 0.
Integrating equation (5.16) we get

2r(r* + H)
\/7.4an — (r2n + H)Q’
for some constant H € R. The function ¢ is defined in the interval I = {r € R" :

r?n=1 > |r?" 4 H|}. If H < 0 the derivative 1’ changes sign at r*® = —H. This is not
possible because it is ¢’ < 0 in I. The case H < 0 gives rise to rotational symmetric

Y(r) = (5.17)

constant mean curvature hypersurfaces (in the Heisenberg group) which are called
nodoids in [RR1].

If H > 0 then it is I = (rp,7,) for some 0 < 9 < r; and in particular ¢'(r) tends
to —oo as r — 1. Let J = ¢(I) = (s¢,51) and let x : J — I be the inverse function
of 1. This function solves the differential equation

P \/X4n—2 _ (X2n + H)2
X 2x(x» + H)

Squaring both sides, taking a derivative and simplifying x’, we get a second order

equation for x of the form x" = f(x) for some smooth function f, away from y = 0.
The graph of the solution to this equation for s € (sg, s1) with data x(s1) = ro and
X'(s1) = 0 is contained in OF. If x"(s1) = 0 then x is constant, which is not possible.
If x"(s1) # 0, i.e. x"(s1) > 0, then we contradict property ii) of F' in Theorem
1.7, because OF would be a strictly convex graph r = x(s) in a neighborhood of
(s1,x(s1)) € OF. The case H > 0 gives rise to rotational symmetric constant mean
curvature hypersurfaces which are called unduloids in [RR1]. Eventually, it must be
H =0, and from (5.17) we get the ordinary differential equation

2r?
For 0F NR? is of class C*™ it must be ¢(1) = 0. With this condition, the solution of
the equation is (r) = arccosr + rv/1 — 2, which gives formula (1.10).

P (r)=— re(0,1).

O
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