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Abstract. The mathematical analysis to achieve everywhere regularity in the interior of weak
solutions to nonlinear elliptic systems usually starts from their local boundedness. Having in mind
De Giorgi’s counterexamples, some structure conditions must be imposed to treat systems of partial
differential equations. On the contrary, in the scalar case of a general elliptic single equation a
well established theory of regularity exists. In this paper we propose a unified approach to local
boundedness of weak solutions to a class of quasilinear elliptic systems, with a structure condition
inspired by Ladyzhenskaya-Ural’tseva’s work for linear systems, as well as valid for the general
scalar case. Our growth assumptions on the nonlinear quantities involved are new and general
enough to include anisotropic systems with sharp exponents and the p, q−growth case.

1. Introduction

The study of regularity for generalized solutions of second order quasilinear (i.e., linear with
respect to second derivatives) elliptic systems has been strongly motivated and at the same time
conditioned by the De Giorgi’s example of existence of the nonsmooth weak solution

u (x) =
x

|x|γ
, x = (x1, x2, . . . , xn) ∈ Rn, (1.1)

to the linear elliptic system

n∑
i,j=1

∂

∂xi

 n∑
β=1

aαβij (x) uβxj

 = 0 , ∀α = 1, 2, . . . , n.

Here n ≥ 3 and the measurable coefficients aαβij are bounded discontinuous at x = 0. The exponent

γ in (1.1) is given by

γ =
n

2

1− 1√
(2n− 2)2 + 1


and, being greater than one, the solution u in (1.1) is unbounded around the origin. De Giorgi’s
example was published in [9], while a modification of it, due by Giusti and Miranda [18], deals

with continuous (in fact analytic) coefficients aαβij (u) depending on u instead than of x. We also

mention the extensions due to Frehse [11], [12], Nečas [36], Hildebrant-Widman [20], up to the
recent contribution by Šverák-Yan [40]. For a description of this lack of regularity and related
questions we also refer the reader to Giaquinta [16] and Giusti [17].

Motivated by these examples we find in the mathematical literature at least two directions of
research about regularity of generalized solutions of elliptic systems: (i) partial regularity, i.e.,
smoothness of solutions up to a set of zero measure, or up to a better mathematically characterized
set, see Mingione [34] for a detailed discussion; (ii) everywhere regularity in the interior of the given
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domain Ω of Rn, starting − as usual in this context − from the local boundedness of the solution.
In the last case, having in mind the above counterexamples, some structure assumptions must be
considered to treat systems of partial differential equations, in contrast with the scalar case of a
single equation, where a well established theory of regularity exists since the work of De Giorgi,
Moser, Morrey, Nash, Serrin and many others.

Ladyzhenskaya and Ural’tseva ([23], Chapter 7) first proposed the local boundedness of solutions
u =

(
u1, u2, . . . , um

)
to the linear elliptic system

n∑
i=1

∂

∂xi

 n∑
j=1

aij (x) uαxj +

m∑
β=1

bαβi (x) uβ + fαi (x)


+

n∑
i=1

m∑
β=1

cαβi (x) uβxi +

m∑
β=1

dαβ (x) uβ = fα (x) , ∀α = 1, 2, . . . ,m,

(1.2)

with bounded measurable coefficients aij , b
αβ
i , cαβi , dαβ and given functions fαi , f

α. Here the struc-
ture condition is stated in terms of the positive definite n× n matrix (aij), which does not depend
on α, β.

Meier [33] extended these results to a class of quasilinear elliptic systems, introducing a struc-
ture condition based on a so called indicator function and assuming natural growth conditions
on the quantities involved; i.e., assuming polynomial p−growth on the nonlinear coefficients (in-
stead of p = 2). Quasilinear elliptic equations have been previously studied by Serrin [37], [38].
Meier’s motivations were based on some related researches by the Bonn school in pde’s, mainly by
Hildebrandt-Widman [20], [21] and Frehse [12]. More recently sufficient conditions for boundedness
of weak solutions have been given by Landes in [24], [25] and by Krömer in [22]. In the nonlinear
case one is led to consider W 1,p ∩ L∞ as the natural Sobolev class where to start to get regularity
of weak solutions; see for example Hildebrandt [21] (see also [3], [26], [27]).

In this paper we consider a generalization of the linear case by Ladyzhenskaya and Ural’tseva in
(1.2) to quasilinear elliptic systems of the form

n∑
i=1

∂

∂xi

 n∑
j=1

aij (x, u,Du) uαxj + bαi (x, u,Du)

 = fα (x, u,Du) , ∀α = 1, 2, . . . ,m. (1.3)

It is worth remarking that systems of this type, even with a linear principal part as in (1.2), arise in
many problems in differential geometry such as harmonic mappings between manifolds or surfaces
of prescribed mean curvature; see for instance [16]. Contrary to many papers in the mathematical
literature about regularity for systems, the elliptic scalar case m = 1 is included in full generality
in our context. A relevant example for m > 1 which enters in our analysis is given by the Euler’s
first variation of integrals of the calculus of variations such as, for instance, below in (1.10).

Let us enter in more details about our assumptions. Here we allow some general growth condi-
tions, which we list in this introduction in a simplified version, for the sake of simplicity. Precisely,
we assume that there exist exponents p1, p2, . . . , pn ∈ (1,+∞) and positive constants M1 ,M2 such
that, for almost every x ∈ Ω ⊂ Rn and for every u ∈ Rm, ξ ∈ Rm×n, ξ = (ξi)i=1,...,n = (ξαi ) i=1,...,n

α=1,...,m
,

and λ = (λi)i=1,...,n ∈ Rn,

n∑
i,j=1

aij(x, u, ξ)λiλj ≥M1

n∑
i=1

λ2
i

(
m∑
α=1

(ξαi )2

) pi−2

2

, (1.4)
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n∑
j=1

aij (x, u, ξ) ξαj

∣∣∣∣∣∣ ≤M2


n∑
j=1

|ξj |pj + |u|γ + 1


1− 1

pi

, ∀ i, α,

|bαi (x, u, ξ)| ≤M2


n∑
j=1

|ξj |pj(1−ε) + |u|γ + 1


1− 1

pi

, ∀ i, α,

|fα (x, u, ξ)| ≤M2


n∑
j=1

|ξj |pj (1−δ) + |u|γ−1 + 1

 , ∀α,

for suitable γ, ε and δ. Note that (1.4) is a weaker assumption with respect to the usual ellipticity
and it reduces to the ordinary ellipticity condition only if p1 = p2 = . . . = pn = 2.

Our analysis unifies the scalar case (one single equation) and the vector valued one (system of
pde’s) with special structure. In fact, as we already said, the elliptic scalar case m = 1 is a special
case which enters in the above assumptions. More precisely this means that we can consider a
general quasilinear elliptic equation of the form

n∑
i=1

∂

∂xi
(ai (x, u,Du)) = f (x, u,Du) , (1.5)

with ai of class C1 in the gradient variable. In fact we have

ai (x, u,Du)− ai (x, u, 0) =

∫ 1

0

d

dt
ai (x, u, tDu) dt

=

∫ 1

0


n∑
j=1

∂ai
∂ξj

(x, u, tDu) uxj

 dt =
n∑
j=1

uxj

∫ 1

0

∂ai
∂ξj

(x, u, tDu) dt .

Therefore, if we pose

bi(x, u) = ai (x, u, 0) , aij(x, u, ξ) =

∫ 1

0

∂ai
∂ξj

(x, u, t ξ) dt ,

then the pde in (1.5) becomes a particular case of the system in (1.3) and the ellipticity assumption
(1.4) on aij , in terms of the vector field (ai)i=1,2,...,n , is satisfied, with constant M1 · min{ 1

pi−1 :

i = 1, ..., n}, when
n∑

i,j=1

∂ai
∂ξj

(x, u, ξ)λiλj ≥M1

n∑
i=1

|ξi|pi−2 λ2
i . (1.6)

Corollary 2.4 below gives specific conditions in order to get local boundedness of weak solutions to
the equation (1.5) with anisotropic growth.

Let us go back to the general system (1.3). We need a restriction on the exponents {pi} to
achieve the local boundedness of the solutions. Let us denote by p the harmonic average of the
{pi} and by p∗ the Sobolev exponent of p; i.e.,

1

p
:=

1

n

n∑
i=1

1

pi
, p∗ :=

{ np
n−p if p < n

any µ > p if p ≥ n.
(1.7)
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Theorem 1.1. Under the previous assumptions, if

max {p1, p2, . . . , pn} < p∗, 1 < γ < p∗, 0 < ε < 1,
1

p∗
< δ < 1, (1.8)

then every weak solution u to the quasilinear elliptic system (1.3) is locally bounded and for every
R such that BR(x0) ⊂ Ω there exist constants c and θ ≥ 0 such that

sup
BR/2(x0)

|u| ≤ c

{∫
BR(x0)

(|u|+ 1)p
∗
dx

} 1+θ
p∗

. (1.9)

Assumption (1.8) is sharp, in the sense that even in the scalar case m = 1 (and n large)
is possible to produce examples of unbounded generalized solutions when the reverse inequality
max {pi : i = 1, 2, . . . , n} > p∗ is satisfied; see Giaquinta-Marcellini [15], [28], [29], [30]. In the case
of a single equation (m = 1) the local boundedness of weak solutions has been widely investigated;
see for instance [4], [6], [13], [14], [29], [30], [39], [41] and, more recently, [7]. About partial regularity
for systems (m > 1) see for instance [1], [5], [10], [34], [35]. In the last years there has been a large
amount of papers dealing with the regularity under p, q−growth and we refer the interested reader
to the survey by Mingione [34].

We emphasize that systems under consideration include the first variation of integrals of the
calculus of variations of the form ∫

Ω
g (x, u, |Du|) dx (1.10)

and the local boundedness result of Theorem 1.1 can be applied to the minimizers. In fact they
are weak solutions to the system (1.3) when we define

aij (x, u, ξ) =
1

|ξ|
∂g (x, u, |ξ|)

∂ |ξ|
δij , ∀ i, j = 1, 2, . . . , n,

and as usual for the lower order terms. Under a nonstandard growth condition the local bound-
edness of minimizers of vectorial integral functionals as in (1.10) has been studied by Dall’Aglio-
Mascolo [8] when g = g(x, |Du|) is a N -function in the ∆2-class. For Lipschitz and higher regularity
see [31], [32].

Finally in the last section we deal with systems satisfying a p, q−growth condition. We assume
ellipticity and growth conditions of p, q−type, see (4.5), (4.6) for precise assumptions. We prove
that weak solutions u ∈W 1,q to (1.3) satisfy an a priori estimate as in (1.9).

2. The anisotropic growth

Let us consider the nonlinear system of pde’s

n∑
i,j=1

∂

∂xi

(
aij (x, u,Du) uαxj + bαi (x, u,Du)

)
= fα (x, u,Du) , ∀α = 1, 2, . . . ,m (2.1)

on an open set Ω of Rn, n ≥ 2, m ≥ 1. We assume that aij : Ω × Rm × Rm×n → R and
bi, f : Ω× Rm × Rm×n → Rm are Carathéodory functions, i, j = 1, ..., n.
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We need some notations. If ξ ∈ Rm×n we write ξ = (ξ1, ..., ξn), where ξi = (ξ1
i , ..., ξ

m
i ) ∈ Rm for

i = 1, ..., n. In particular, Du = (ux1 , ..., uxn) and uxi = (u1
xi , ..., u

m
xi). Analogously, bi = (b1i , ..., b

m
i )

and similarly for f . Given p1, ...., pn exponents greater than 1, we define

p := min{p1, ..., pn} and q := max{p1, ..., pn}.

As usual p′ is the conjugate exponent of p; i.e., 1/p+1/p′ = 1. Moreover, p stands for the harmonic
average of {pi} and p∗ is the Sobolev exponent of p as defined in (1.7).

We assume the following conditions for almost every x ∈ Ω and for every u ∈ Rm, ξ ∈ Rm×n and
λ = (λi)i=1,...,n ∈ Rn,

(H1) (ellipticity condition)

n∑
i,j=1

aij(x, u, ξ)λiλj ≥M1

n∑
i=1

λ2
i |ξi|pi−2, (2.2)

(H2) (growth conditions)

∣∣∣∣∣∣
n∑
j=1

aij(x, u, ξ)ξj

∣∣∣∣∣∣ ≤M2


n∑
j=1

|ξj |pj + b1(x)|u|γ + a1(x)


1− 1

pi

, ∀ i (2.3)

|bi(x, u, ξ)| ≤M2


n∑
j=1

|ξj |pj(1−ε) + b2(x)|u|γ + a2(x)


1− 1

pi

, ∀ i (2.4)

|f(x, u, ξ)| ≤M2

n∑
j=1

|ξj |pj(1−δ) + b3(x)|u|γ−1 + a3(x), (2.5)

where

M1,M2 > 0, 1 < γ < p∗, 0 < ε < 1,
1

p∗
< δ < 1 (2.6)

and, for i = 1, 2, 3,

bi ∈ Lsloc(Ω) with

(
p∗

γ

)′
< s ≤ +∞ and ai ∈ Ltloc(Ω) with

(
p∗

q

)′
< t ≤ +∞. (2.7)

Our aim is to prove the local boundedness of weak solutions to (2.1). We consider the following
anisotropic Sobolev space

W 1,(p1,...,pn)(Ω;Rm) :=
{
u ∈W 1,1(Ω;Rm) : uxi ∈ Lpi(Ω;Rm), for all i = 1, . . . , n

}
,

endowed with the norm

‖u‖W 1,(p1,...,pn)(Ω) := ‖u‖L1(Ω) +

n∑
i=1

‖uxi‖Lpi (Ω).

We write W
1,(p1,...,pn)
0 (Ω;Rm) in place of W 1,1

0 (Ω;Rm) ∩W 1,(p1,...,pn)(Ω;Rm). For some properties
of these spaces we refer to [42]; in particular the following embedding result holds.
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Theorem 2.1. Let Ω ⊂ Rn be a bounded open set and consider u ∈ W 1,(p1,...,pn)
0 (Ω;Rm), pi ≥ 1

for all i = 1, . . . , n. Let max{pi} < p∗, with p∗ as in (1.7). Then u ∈ Lp∗(Ω;Rm). Moreover, there
exists c, depending on n, p1, . . . , pn, such that

‖u‖n
Lp∗ (Ω)

≤ c
n∏
i=1

‖uxi‖Lpi (Ω).

Thanks to the imbedding theorem above and to Hölder inequality, the growth conditions (H2)
allow a meaningful definition of weak solutions.

Definition 2.2. A function u ∈W 1,(p1,...,pn)
loc (Ω;Rm) is a weak solution to (2.1) if∫

Ω


n∑

i,j=1

(
aij(x, u,Du)uαxj + bαi (x, u,Du)

)
ϕαxi + fα(x, u,Du)ϕα

 dx = 0 (2.8)

for all α = 1, ...,m and all ϕ ∈ C1
c (Ω;Rm) (or equivalently ϕ ∈W 1,(p1,...,pn)

0 (Ω;Rm)).

Theorem 2.3. Assume (H1) and (H2) and let 1 < p ≤ q < p∗. Then every weak solution

u ∈W 1,(p1,...,pn)
loc (Ω;Rm) to (2.1) is locally bounded. Moreover, for every BR(x0) ⊂ Ω there exists a

positive constant c such that

sup
BR/2(x0)

|u| ≤ c

{∫
BR(x0)

(|u|+ 1)p
∗
dx

} 1+θ
p∗

, (2.9)

where θ = q̃
p
q̃−p
p∗−q̃ with q̃ = max

{
1
δ , γs

′, qt′
}

.

The above theorem also gives the local boundedness of weak solutions to the general quasilinear
equation (m = 1)

n∑
i=1

∂

∂xi
(ai (x, u,Du)) = f (x, u,Du) , (2.10)

where ai(x, u, ξ),
∂ai
∂ξj

(x, u, ξ) are Carathéodory functions. Let us assume

n∑
i,j=1

∂ai
∂ξj

(x, u, ξ)λiλj ≥M1

n∑
i=1

λ2
i |ξi|pi−2, ∀λ ∈ Rn (2.11)

|ai(x, u, ξ)| ≤M2


n∑
j=1

|ξj |pj + b1(x)|u|γ + a1(x)


1− 1

pi

, ∀ i (2.12)

and

|f(x, u, ξ)| ≤M2

n∑
j=1

|ξj |pj(1−δ) + b3(x)|u|γ−1 + a3(x), (2.13)

where M1,M2,γ,δ,ai,bi (i = 1, 3) satisfy (2.6) and (2.7).

Corollary 2.4. Under assumptions (2.11)–(2.13), if 1 < p ≤ q < p∗, then every weak solution

u ∈W 1,(p1,...,pn)
loc (Ω) to the pde (2.10) is locally bounded and the estimate (2.9) holds.
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3. Proof of Theorem 2.3

First we give two preliminary results.

Lemma 3.1. Under the ellipticity condition (2.2), for almost every x ∈ Ω ⊂ Rn, for every u ∈ Rm
and ξ ∈ Rm×n, we have

m∑
α=1

n∑
i,j=1

aij(x, u, ξ)ξ
α
i ξ

α
j ≥M3

n∑
i=1

(
m∑
α=1

(ξαi )2

) pi
2

, (3.1)

with M3 = M1m
1−q.

Proof. For fixed α ∈ {1, 2, . . . ,m} we pose λ = (ξαi )i=1,...,n ∈ Rn and we get

n∑
i,j=1

aij(x, u, ξ)ξ
α
i ξ

α
j ≥M1

n∑
i=1

(ξαi )2

 m∑
β=1

(
ξβi

)2


pi−2

2

≥M1

n∑
i=1

|ξαi |
pi . (3.2)

Fixed i ∈ {1, . . . , n}, by the convexity of the function t ∈ R+ → tpi we have the inequality(
1

m

m∑
α=1

|ξαi |

)pi
≤ 1

m

m∑
α=1

|ξαi |
pi .

If we sum up both sides of (3.2) with respect to α = 1, 2, . . . ,m, we obtain

m∑
α=1

n∑
i,j=1

aij(x, u, ξ)ξ
α
i ξ

α
j ≥M1

n∑
i=1

m∑
α=1

|ξαi |
pi ≥M1

n∑
i=1

m1−pi

(
m∑
α=1

|ξαi |

)pi
.

The conclusion (3.1) follows from the fact that
∑m

α=1 |ξαi | ≥
(∑m

α=1 (ξαi )2
)1/2

. �

Lemma 3.2. Let ν, γ, δ, σ be positive numbers, and assume that there exists τ ∈ (1,+∞] such that

γτ ′, δτ ′ ≤ σ. Let v ∈ Lσ(ν+1)(Ω), v ≥ 1, and let a ∈ Lτ (Ω), where Ω ⊂ Rn is a measurable set with
finite Lebesgue measure. Then∫

Ω
|a(x)|[v(x)]γ+δν dx ≤ ‖a‖Lτ ‖v‖

σ−δτ ′
τ ′

Lσ

(∫
Ω

[v(x)]σ(ν+1) dx

) δ
σ

.

Proof. By Hölder inequality∫
Ω
|a| vγ+δν dx ≤ ‖a‖Lτ

(∫
Ω
vγτ

′+δτ ′ν dx

) 1
τ ′

.

Let us consider the two cases separately: γ ≤ δ and γ > δ. In the first case, since γτ ′ ≤ δτ ′ and
v ≥ 1 we have

∫
vγτ

′+δτ ′ν dx ≤
∫
vδτ
′(ν+1) dx.

If δτ ′ = σ we conclude; otherwise, we proceed with the chain of inequalities:∫
Ω
vδτ
′(ν+1) dx ≤

(∫
Ω
vσ(ν+1) dx

) δτ ′
σ

|Ω|
σ−δτ ′
σ ≤

(∫
Ω
vσ(ν+1) dx

) δτ ′
σ
(∫

Ω
vσ dx

)σ−δτ ′
σ

.

Let us now deal with the case γ > δ. We have
∫
vγτ

′+δτ ′β dx ≤
∫
vσ−δτ

′
v(β+1)δτ ′ dx and if δτ ′ = σ

we have done; otherwise, by Hölder inequality∫
Ω
vσ−δτ

′
v(β+1)δτ ′ dx ≤

(∫
Ω
vσ dx

)σ−δτ ′
σ
(∫

Ω
v(ν+1)σ dx

) δτ ′
σ
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and we get the thesis. �

Proof of Theorem 2.3. We split the proof into steps. Without loss of generality we assume that the
functions ai, bi, i = 1, 2, 3, in (H2) are a.e. greater than or equal to 1.

Step 1. We define a sequence of test functions (ϕk)k to insert in (2.8), with ϕk ∈W 1,(p1,...,pn)(Ω;Rm)
and suppϕk b Ω. Fix a ball BR0(x0) b Ω. Notice that when it is obvious by the context, we

write Br and W 1,(p1,...,pn)(Br) in place of Br(x0) and W 1,(p1,...,pn)(Br(x0);Rm). Let us assume
0 < ρ < R ≤ R0 and let η ∈ C∞c (Ω) be a cut-off function, satisfying the following assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bρ, supp η b BR, |Dη| ≤ 2

R− ρ
. (3.3)

Let us approximate the identity function id : R+ → R+ with an increasing sequence of C1

functions gk : R+ → R+, such that

gk(t) =

{
0 for all t ∈ [0, 1

k+1 ]

k for all t ≥ k,
0 ≤ g′k(t) ≤ 2 and g′k(t)t ≤ gk(t) +

2

k
in R+. (3.4)

Notice that the last inequality can be assumed since the restriction of gk to the interval
[

1
k+1 , k

]
can be seen as a smooth approximation of the linear funtion Gk(t) = k(k+1)

k(k+1)−1

(
t− 1

k+1

)
, whose

graph is the line of the plane connecting ( 1
k+1 , 0) and (k, k) and Gk satisfies G′k(t)t ≤ Gk(t) + 1

k .

Fixed h = 1, ..., n, k ∈ N and ν > 0, let Φ
(h)
k,ν : R+ → R+ be the increasing function defined as

Φ
(h)
k,ν(t) := gk(t

phν).

By (3.4) we obtain

(Φ
(h)
k,ν)′(t)t ≤ phν

{
Φ

(h)
k,ν(t) +

2

k

}
≤ qν

{
Φ

(h)
k,ν(t) +

2

k

}
. (3.5)

Finally, define ϕ
(h)
k,ν : BR0 → Rm,

ϕ
(h)
k,ν(x) := Φ

(h)
k,ν(|u(x)|)u(x)[η(x)]q for every x ∈ BR0 . (3.6)

From now on, we write ϕ
(h)
k and Φ

(h)
k instead of ϕ

(h)
k,ν and Φ

(h)
k,ν . We claim that

ϕ
(h)
k ∈W

1,(p1,...,pn)(BR0 ;Rm), supp ϕ
(h)
k b BR.

Indeed, Φ
(h)
k is in C1(R+), bounded, because ‖Φ(h)

k ‖L∞(R+) ≤ k, and with bounded derivative.

Precisely, if a
(h)
k = (k + 1)

− 1
phν and b

(h)
k = k

1
phν , then

(Φ
(h)
k )′(s) =

{
0 if s ∈ R+ \ [a

(h)
k , b

(h)
k ]

phνg
′
k(s

phν)sphν−1 if s ∈ [a
(h)
k , b

(h)
k ]

and

‖(Φ(h)
k )′‖L∞(R+) ≤ 2phν ‖sphν−1‖

L∞(a
(h)
k ,b

(h)
k )

= 2phν max

{[
a

(h)
k

]phν−1
,
[
b
(h)
k

]phν−1
}
<∞.

As a consequence, taking into account that u ∈ W 1,(p1,...,pn)(BR0) we have that Φ
(h)
k (|u|)u is in

W 1,(p1,...,pn)(BR0) and the claim follows. By density arguments, we can use ϕ
(h)
k in (3.6) as a test

function in (2.8).
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Step 2. Assume that η is the cut-off function in Step 1. We aim to prove that for every
h = 1, ..., n and every ν > 0

M3

4

∫
BR

n∑
i=1

|uxi |pi |u|phν ηq dx

≤ cmax{ν, 1}
p′
ε

(R− ρ)q

∫
BR

|u|q + |u|1/δ +
3∑
j=1

bj |u|γ + a3|u|+
2∑
j=1

aj

 |u|phν dx,
(3.7)

where M3 = M1m
1−q and c is a positive constant depending on the data and R0, but is independent

of ν, R and ρ.

Insert ϕ
(h)
k in (2.8) as test function. Notice that

(
ϕ

(h)
k,ν

)
xi

(x) =
m∑
β=1

(Φ
(h)
k )′(|u|)u

β

|u|
uβxiuη

q + Φ
(h)
k (|u|)uxiηq + qΦ

(h)
k (|u|)uηq−1ηxi .

We recall that (Φ
(h)
k )′(s) = 0 in [0, a

(h)
k ]. Then (2.8) implies

I1 + I2 :=

∫
BR

〈ã(x, u,Du), Du〉Φ(h)
k (|u|) ηq dx

+

∫
BR

n∑
i=1

m∑
α,β=1

ãαi (x, u,Du)uα
uβ

|u|
uβxi (Φ

(h)
k )′(|u|) ηq dx

= q

∫
BR

〈ã(x, u,Du),−u⊗Dη〉Φ(h)
k (|u|) ηq−1 dx

−
∫
BR

〈f(x, u,Du), u〉Φ(h)
k (|u|) ηq dx =: I3 + I4,

(3.8)

where ã = (ãαi ) i=1,...,n
α=1,...,m

is the matrix with entries

ãαi (x, u, ξ) =

n∑
j=1

aij (x, u, ξ) ξαj + bαi (x, u, ξ) (3.9)

and we used the following notation: u⊗Dη := (uαηxi) i=1,...,n
α=1,...,m

.

Separately we consider and estimate Ii, i = 1, ..., 4.

Estimate of I1

By (2.2) and Lemma 3.1 we easily get

〈ã(x, u,Du), Du〉 =

n∑
i,j=1

m∑
α=1

aij(x, u,Du)uαxju
α
xi +

n∑
i=1

m∑
α=1

bαi (x, u,Du)uαxi

≥M3

n∑
i=1

|uxi |pi −
n∑
i=1

|bi(x, u,Du)||uxi |.
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By (2.4) and the Young inequality (applied first with exponent pi and then with exponent 1
1−ε) we

obtain

|bi(x, u,Du)||uxi | ≤
M3

8n
|uxi |pi + c1


n∑
j=1

|uxj |pj(1−ε) + b2(x)|u|γ + a2(x)


≤ M3

4n

n∑
j=1

|uxj |pj + c2 {b2(x)|u|γ + a2(x) + 1}

(3.10)

with c2 depending also on ε. Therefore, defining c3 = 2nc2 we get (recall that ai, bi ≥ 1)

I1 ≥
3M3

4

∫
BR

n∑
i=1

|uxi |piΦ
(h)
k (|u|)ηq dx− c3

∫
BR

{b2|u|γ + a2}Φ
(h)
k (|u|) dx. (3.11)

Estimate of I2

For a.e. x ∈ {|u| > 0}
n∑
i=1

m∑
α,β=1

ãαi (x, u,Du)uα
uβ

|u|
uβxi

=

n∑
i,j=1

m∑
α,β=1

aij(x, u,Du)uαxju
α u

β

|u|
uβxi +

n∑
i=1

m∑
α,β=1

bαi (x, u,Du)uα
uβ

|u|
uβxi .

By (2.2), with λi =
∑m

α=1 u
α uαxi , we have that

n∑
i,j=1

m∑
α,β=1

aij(x, u,Du)uαxju
αuβ uβxi =

n∑
i,j=1

aij(x, u,Du)

{
m∑
α=1

uα uαxj

}{
m∑
α=1

uα uαxi

}
≥ 0. (3.12)

Thus, by (Φ
(h)
k )′ ≥ 0 we have∫

BR

n∑
i,j=1

m∑
α,β=1

aij(x, u,Du)uαxju
α u

β

|u|
uβxi(Φ

(h)
k )′(|u|) ηq dx ≥ 0. (3.13)

The above inequality and (3.5) imply

I2 ≥
∫
BR

n∑
i=1

m∑
α,β=1

bαi (x, u,Du)uα
uβ

|u|
uβxi (Φ

(h)
k )′(|u|) ηq dx

≥ −
∫
BR

n∑
i=1

|bi(x, u,Du)||uxi | (Φ
(h)
k )′(|u|)|u| ηq dx

≥ −qν
∫
BR

n∑
i=1

|bi(x, u,Du)||uxi |
{

Φ
(h)
k (|u|) +

2

k

}
ηq dx.

Reasoning as done in (3.10), since a2 ≥ 1

qν|bi(x, u,Du)||uxi | ≤
M3

8n
|uxi |pi + c4M2 max{ν, 1}p′


n∑
j=1

|uxj |pj(1−ε) + b2(x)|u|γ + a2(x)


≤ M3

4n

n∑
j=1

|uxj |pj + c5 max{ν, 1}
p′
ε {b2(x)|u|γ + a2(x)} .

(3.14)
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Thus, we obtain

I2 ≥−
M3

4

∫
BR

n∑
j=1

|uxj |pj
{

Φ
(h)
k (|u|) +

2

k

}
ηq dx

− c5 nmax{ν, 1}
p′
ε

∫
BR

{b2|u|γ + a2}
{

Φ
(h)
k (|u|) +

2

k

}
dx.

(3.15)

Estimate of I3

For a.e. x ∈ BR0 |uxj |pj(1−ε) ≤ max{|uxj |, 1}pj(1−ε) ≤ |uxj |pj + 1 ≤ |uxj |pj + a2(x); therefore, (2.4)
implies

|bi(x, u,Du)| ≤ 2M2


n∑
j=1

|uxj |pj + b2(x)|u|γ + a2(x)


1− 1

pi

∀ i.

Thus, the above inequality and (2.3) imply that for a.e. x,

|ãi(x, u,Du)| ≤ 3M2


n∑
j=1

|uxj |pj + (b1(x) + b2(x))|u|γ + a1(x) + a2(x)


1− 1

pi

.

By (2.3) and the properties of η in (3.3) we obtain

q〈ã(x, u,Du),−u⊗Dη〉ηq−1 ≤
n∑
i=1

2qηq−1

R− ρ
|u||ãi(x, u,Du)|

≤
n∑
i=1

6M2qη
q−1

R− ρ
|u|


n∑
j=1

|uxj |pj + (b1(x) + b2(x))|u|γ + a1(x) + a2(x)


1− 1

pi

.

Using the Young inequality and η ≤ 1 we get

6M2qη
q−1

R− ρ
|u|


n∑
j=1

|uxj |pj + (b1 + b2)|u|γ + a1 + a2


1− 1

pi

=
6M2qη

q−pi
pi

R− ρ
|u|

ηq
 n∑
j=1

|uxj |pj + (b1 + b2)|u|γ + a1 + a2


1− 1

pi

≤ M3

8n
ηq


n∑
j=1

|uxj |pj + (b1 + b2)|u|γ + a1 + a2

+

{
c6

R− ρ
|u|
}pi

,

with c6 depending on n,m,M1,M2, q. Since

n∑
i=1

{
c6

R− ρ
|u|
}pi
≤

n∑
i=1

(
max

{
c6

R− ρ
|u|, 1

})pi
≤ n

({
c6

R− ρ
|u|
}q

+ 1

)
≤ n

({
c6

R− ρ
|u|
}q

+ a2

)
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we conclude that there exists c7 > 0, possibly depending on R0, such that

q〈ã(x, u,Du),−u⊗Dη〉ηq−1 ≤

≤ M3

8
ηq

n∑
i=1

|uxi |pi +

{
c7

R− ρ

}q
{|u|q + (b1 + b2)|u|γ + a1 + a2} .

and the following estimate of I3 follows:

I3 ≤
M3

8

∫
BR

n∑
i=1

|uxi |piΦ
(h)
k (|u|) ηq dx

+

{
c7

R− ρ

}q ∫
BR

{|u|q + (b1 + b2)|u|γ + a1 + a2}Φ
(h)
k (|u|) dx.

(3.16)

Estimate of I4

Let us now deal with I4. Using (2.5) we obtain

I4 ≤
∫
BR

{
M2

n∑
i=1

|uxi |pi(1−δ)|u|+ b3|u|γ + a3|u|

}
Φ

(h)
k (|u|) ηq dx

≤
∫
BR

{
M2η

q
n∑
i=1

|uxi |pi(1−δ)|u|+ b3|u|γ + a3|u|

}
Φ

(h)
k (|u|) dx.

By the Young inequality

M2

n∑
i=1

|uxi |pi(1−δ)|u| ≤
M3

8

n∑
i=1

|uxi |pi + c8|u|
1
δ ,

with c8 ≥ 1, depending on M1,M2,m, q, δ, we get

I4 ≤
M3

8

∫
BR

n∑
i=1

|uxi |piΦ
(h)
k (|u|) ηq dx+ c8

∫
BR

{
|u|

1
δ + b3|u|γ + a3|u|

}
Φ

(h)
k (|u|) dx. (3.17)

Conclusion of Step 2.

Collecting (3.11), (3.15), (3.16) and (3.17), the equality (3.8) gives

M3

4

∫
BR

n∑
i=1

|uxi |pi
{

Φ
(h)
k (|u|)− 2

k

}
ηq dx ≤ c3

∫
BR

{b2|u|γ + a2}Φ
(h)
k (|u|) dx

+ c5 max{ν, 1}
p′
ε

∫
BR

{b2|u|γ + a2}
{

Φ
(h)
k (|u|) +

2

k

}
dx

+

{
c7

R− ρ

}q ∫
BR

{|u|q + (b1 + b2)|u|γ + a1 + a2}Φ
(h)
k (|u|) dx

+ c8

∫
BR

{
|u|

1
δ + b3|u|γ + a3|u|

}
Φ

(h)
k (|u|) dx.

Since the sequence Φk is increasing and, by Theorem 2.1, |u| ∈ Lp∗ , we get (3.7) when k goes to∞.

Step 3. In this step we prove that{∫
Bρ

vp
∗(ν+1) dx

} 1
p∗

≤

c[ν + 1]q+
p′
ε

[R− ρ]q


1
p {

1 +

∫
BR0

vp
∗

} q̃−p
p∗p {∫

BR

vq̃(ν+1)

} 1
q̃

, (3.18)
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where

v := max{|u|, 1}, q ≤ q̃ := max

{
1

δ
, γs′, qt′

}
< p∗

and c is a positive constant depending on the data, R0 and on the Lebesgue norms of bi and ai,
i = 1, 2, 3. We point out that c is independent of ν, R and ρ. We begin noticing that∫

BR

∣∣∣[ηq(|u|ν+1 + 1)
]
xh

∣∣∣ph dx ≤ 2q−1[ν + 1]q
∫
BR

{|u|ν |uxh | η
q}ph dx

+ 2q−1

∫
BR

{∣∣∣[ηq]xh∣∣∣ (|u|ν+1 + 1)
}ph

dx = J1 + J2.

(3.19)

By (3.7) we can estimate J1 as follows:

J1 ≤ 2q−1[ν + 1]q
∫
BR

{|u|ν |uxh |}
ph ηq dx ≤ 2q−1[ν + 1]q

∫
BR

n∑
i=1

|uxi |pi |u|phν ηq dx

≤ c9[ν + 1]q+
p′
ε

[R− ρ]q

∫
BR

vq̃ +
3∑
j=1

bjv
γ + a3v + a1 + a2

 |u|phν dx
(3.20)

where we used that ηqph ≤ ηq. Moreover, by the assumptions on η, see (3.3), ph ≤ q and the Hölder
inequality we have

J2 ≤
c10

[R− ρ]q

{∫
BR

vq̃(ν+1) dx

} ph
q̃

. (3.21)

By (3.19)–(3.21) we obtain∫
BR

∣∣∣[ηq(|u|ν+1 + 1)
]
xh

∣∣∣ph dx ≤ c10

(R− ρ)q

{∫
BR

vq̃(ν+1) dx

} ph
q̃

+
c9[ν + 1]q+

p′
ε

[R− ρ]q

∫
BR

vq̃ +
3∑
j=1

bjv
γ + a3v + a1 + a2

 vphν dx.

(3.22)

We remark that

b1, b2, b3 ∈ Ls(BR0) with

(
p∗

γ

)′
< s ≤ +∞ and γs′ ≤ q̃,

a1, a2, a3 ∈ Lt(BR0) with

(
p∗

q

)′
< t ≤ +∞ and qt′ ≤ q̃.

Thus, since ph ≤ q ≤ q̃, we can repeatedly use Lemma 3.2 with δ = ph, σ = q̃ and suitable
exponents γ and τ :∫
BR

3∑
j=1

bjv
γ+phν dx ≤ c(‖b1‖s, ‖b2‖s, ‖b3‖s)

{∫
BR0

vq̃

} 1
s′−

ph
q̃ {∫

BR

vq̃(ν+1)

} ph
q̃

(γ = γ, τ = s)

∫
BR

(a1 + a2)vphν dx ≤ c(‖a1‖t, ‖a2‖t)

{∫
BR0

vq̃

} 1
t′−

ph
q̃ {∫

BR

vq̃(ν+1)

} ph
q̃

(γ = 0, τ = t)

∫
BR

a3v
1+phν dx ≤ c(‖a3‖t)

{∫
BR0

vq̃

} 1
t′−

ph
q̃ {∫

BR

vq̃(ν+1)

} ph
q̃

(γ = 1, τ = t)
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and, by Hölder inequality,∫
BR

vq̃+phν dx =

∫
BR

vq̃−phvph(ν+1) dx ≤

{∫
BR0

vq̃

}1− ph
q̃ {∫

BR

vq̃(ν+1)

} ph
q̃

.

Collecting these inequalities, by max{ 1
t′ ,

1
s′ , 1} = 1 there exists c11 depending on R0 and the

Lebesgue norms of ai, bi, i = 1, 2, 3, such that∫
BR

∣∣∣[ηq(|u|ν+1 + 1)
]
xh

∣∣∣ph dx ≤ c11[ν + 1]q+
p′
ε

[R− ρ]q

{
1 +

∫
BR0

vq̃

}1− ph
q̃ {∫

BR

vq̃(ν+1)

} ph
q̃

.

If we choose c12 ≥ c11 large so that c12[ν+1]q+
p′
ε

Rq0
≥ 1 the above inequality, together with ph ≥ p,

implies{∫
BR

∣∣∣[ηq(|u|ν+1 + 1)
]
xh

∣∣∣ph dx} 1
ph ≤

c12[ν + 1]q+
p′
ε

[R− ρ]q


1
p {

1 +

∫
BR0

vq̃

} q̃−p
pq̃ {∫

BR

vq̃(ν+1)

} 1
q̃

.

This inequality holds for every h = 1, ..., n; therefore, we get

n∏
h=1

{∫
BR

∣∣∣[ηq(|u|ν+1 + 1)
]
xh

∣∣∣ph dx} 1
ph ≤

c12[ν + 1]q+
p′
ε

[R− ρ]q


n
p {

1 +

∫
BR0

vq̃

}n q̃−p
pq̃ {∫

BR

vq̃(ν+1)

}n
q̃

.

By Theorem 2.1 we get{∫
Bρ

vp
∗(ν+1) dx

} 1
p∗

≤

{∫
Bρ

{
|u|ν+1 + 1

}p∗
dx

} 1
p∗

≤
{∫

BR

{
ηq
(
|u|ν+1 + 1

)}p∗
dx

} 1
p∗

≤

c13[ν + 1]q+
p′
ε

[R− ρ]q


1
p {

1 +

∫
BR0

vq̃

} q̃−p
pq̃ {∫

BR

vq̃(ν+1)

} 1
q̃

(3.23)

and by the Hölder inequality we get the conclusion (3.18).

Step 4. We prove the boundedness of u and the estimate (2.9), using Moser’s iteration tech-

nique. For all h ∈ N define νh = −1 +
(
p∗

q̃

)h
, ρh = R0/2 + R0/2

h+1 and Rh = R0/2 + R0/2
h.

Notice that ρh = Rh+1 and p∗(νh + 1) = q̃(νh+1 + 1); therefore, by (3.18), replacing ν, R and ρ

with νh, Rh and ρh, respectively, we have that v ∈ Lq̃(νh+1)(BRh) implies v ∈ Lq̃(νh+1+1)(BRh+1
).

Precisely,

‖v‖νh+1

Lq̃(νh+1+1)(BRh+1
)

=

{∫
BRh+1

vq̃(νh+1+1) dx

} 1
p∗

=

{∫
BRh+1

vp
∗(νh+1) dx

} 1
p∗

≤


c142(h+1)q

[
p∗

q̃

]h(q+ p′
ε

)
Rq0


1
p {

1 +

∫
BR0

vp
∗

} q̃−p
p∗p
{∫

BRh

vq̃(νh+1) dx

} 1
q̃

,

≤ [c15]h

{
1 +

∫
BR0

vp
∗

} q̃−p
p∗p

‖v‖νh+1

Lq̃(νh+1)(BRh )
.

(3.24)
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Thus,

‖v‖
Lq̃(νh+1+1)(BRh+1

)
≤ [c15]

h
(
q̃
p∗

)h {
1 +

∫
BR0

vp
∗

} q̃−p
p∗p

(
q̃
p∗

)h
‖v‖Lq̃(νh+1)(BRh ).

Taking into account that q̃(ν1 + 1) = p∗ and that q̃−p
p∗p

∑∞
h=1

(
q̃
p∗

)h
= q̃

p∗p
q̃−p
p∗−q̃ , an iterated use of

(3.24) implies

‖v‖L∞(BR0/2
) ≤ c16

{
1 +

∫
BR0

vp
∗

} q̃
p∗p

q̃−p
p∗−q̃

‖v‖Lp∗ (BR0
).

Therefore, since v = max{|u|, 1} then

sup
BR0/2

(x0)
|u| ≤ c17

{∫
BR0

(|u|+ 1)p
∗
dx

} 1+θ
p∗

with θ = q̃
p
q̃−p
p∗−q̃ and we get the thesis. �

4. Boundedness under p, q−growth

In this section we deal with the system (2.1), assuming a suitable p, q−growth with 1 < p ≤ q.
For the sake of simplicity we use the following notations

a = (aαi ) i=1,...,n
α=1,...,m

, aαi (x, u, ξ) :=
n∑
j=1

aij(x, u, ξ)ξ
α
j ∀ i = 1, ..., n, α = 1, ...,m

and similarly for b = (bαi ). We assume that the following inequalities hold for a.e. x ∈ Ω and for
every u ∈ Rm, ξ ∈ Rm×n, λ = (λi)i=1,...,n ∈ Rn

(A1) (ellipticity condition)

n∑
i,j=1

aij(x, u, ξ)λiλj ≥M1

n∑
i=1

λ2
i |ξi|p−2, (4.1)

(A2) (growth conditions)

|a(x, u, ξ)| ≤M2

{
|ξ|q−1 + b1(x)|u|

γ
p′ + a1(x)

}
, (4.2)

|b(x, u, ξ)| ≤M2

{
|ξ|(p−1)(1−ε) + b2(x)|u|

γ
p′ + a2(x)

}
, (4.3)

|f(x, u, ξ)| ≤M2

{
|ξ|p(1−δ) + b3(x)|u|γ−1 + a3(x)

}
, (4.4)

for some positive constants M1, M2, 1 < γ < p∗, 0 < ε < 1, 1
p∗ < δ < 1 and, for i = 1, 2, 3,

bp
′

1 , b
p′

2 , b3 ∈ L
s
loc(Ω) with

(
p∗

γ

)′
< s ≤ +∞, ap

′

1 , a
p′

2 , a3 ∈ Ltloc(Ω) with

(
p∗

p

)′
< t ≤ +∞.
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Theorem 4.1. Let (A1) and (A2) hold. Assume also that either

〈a(x, u, ξ)− a(x, u, η), ξ − η〉 ≥ 0 ∀ ξ, η ∈ Rn×m and q < p
n− 1

n− p
if p < n, (4.5)

or there exists a Carathéodory function A : Ω × Rm × R+ → R+, t → A(x, u, t)t increasing, such
that

aij(x, u, ξ) = A(x, u, |ξ|)δij ∀ i, j = 1, ..., n, ∀ ξ ∈ Rn×m and q < p∗ if p < n. (4.6)

Then any weak solution u ∈W 1,q
loc (Ω;Rm) to (2.1) is locally bounded. Moreover, for every BR(x0) b

Ω there exists a constant c > 0 such that

sup
BR/2(x0)

|u| ≤ c

{∫
BR(x0)

(|u|+ 1)p
∗
dx

} 1+θ
p∗

, (4.7)

where θ = q̃
p
q̃−p
p∗−q̃ with q̃ = max

{
q p
′

q′ ,
1
δ , γs

′, pt′
}

if (4.5) holds, otherwise q̃ = max
{
q, 1

δ , γs
′, pt′

}
if

(4.6) holds.

Remark 4.2. Inequality (4.1) implies

〈a(x, u, ξ), ξ〉 =
n∑

i,j=1

m∑
α=1

aij(x, u, ξ)ξ
α
j ξ

α
i ≥M1n

1−p|ξ|p ∀ ξ ∈ Rm×n. (4.8)

Notice that if (4.6) holds then

〈a(x, u, ξ), η〉 = A(x, u, |ξ|)〈ξ, η〉 ∀ ξ, η ∈ Rm×n, (4.9)

so the inequality (4.8) is equivalent to

A(x, u, |ξ|)|ξ|2 ≥M1n
1−p|ξ|p. (4.10)

Moreover, under the structure assumption (4.6) we have that the growth condition (4.2) is equiva-
lent to

A(x, u, |ξ|)|ξ| ≤M2

{
|ξ|q−1 + b1(x)|u|

γ
p′ + a1(x)

}
. (4.11)

By the monotonicity assumption on A it is easy to prove that

A(x, u, |ξ|)〈ξ, η〉 ≤ A(x, u, |ξ|)|ξ||η| ≤ A(x, u, |ξ|)|ξ|2 +A(x, u, |η|)|η|2 (4.12)

or equivalently
n∑

i,j=1

m∑
α=1

aij(x, u, ξ)ξ
α
j η

α
i ≤

n∑
i,j=1

m∑
α=1

aij(x, u, ξ)ξ
α
i ξ

α
j +

n∑
i,j=1

m∑
α=1

aij(x, u, η)ηαi η
α
j ∀ ξ, η ∈ Rm×n.

Proof of Theorem 4.1. The scheme of the proof is analogous to the proof of Theorem 2.3. Also in
this case, without loss of generality we assume that the functions ai, bi, i = 1, 2, 3, in (4.2)–(4.4)
are a.e. greater than or equal to 1. We split the proof into steps.

Step 1. We define a sequence of test functions (ϕk)k. Consider BR0(x0) b Ω, 0 < r ≤ R ≤ R0,
η ∈ C∞c (BR), and the increasing sequence of C1 functions gk : R+ → R+ as in the proof of Theorem
2.3. Fixed k ∈ N and ν ≥ 0, let Φk,ν : R+ → R+ be the increasing function Φk,ν(t) := gk(t

pν).
Notice that as in (3.5) we have

(Φk,ν)′(t)t ≤ pν
{

Φk,ν(t) +
2

k

}
. (4.13)

Finally, define ϕk,ν(x) := Φk,ν(|u(x)|)u(x)[η(x)]µ for every x ∈ BR0 , with µ = q p
′

q′ ≥ q. Notice that

ϕk,ν is in W 1,q(BR0 ;Rm), supp ϕ b BR.
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Step 2. We aim to prove that for every ν ≥ 0, k ∈ N,

5

8

∫
BR

〈a(x, u,Du), Du〉
{

Φk(|u|)−
1

5k

}
ηµ dx

≤µ
∫
BR

〈ã(x, u,Du),−u⊗Dη〉Φk(|u|) ηµ−1 dx

+ cmax{ν, 1}
p′
ε

∫
BR

{
|u|

1
δ +

(
bp
′

2 + b3

)
|u|γ + a3|u|+ ap

′

2

}{
Φk(|u|) +

2

k

}
dx,

(4.14)

where we used the notations in Step 2 of the proof of Theorem 2.3, see in particular (3.9). Using
ϕk as a test function in (2.8) we get

I1 + I2 :=

∫
BR

〈ã(x, u,Du), Du〉Φk(|u|) ηµ dx

+

∫
BR

n∑
i=1

m∑
α,β=1

ãαi (x, u,Du)uα
uβ

|u|
uβxi (Φk)

′(|u|) ηµ dx

=µ

∫
BR

〈ã(x, u,Du),−u⊗Dη〉Φk(|u|) ηµ−1 dx

−
∫
BR

〈f(x, u,Du), u〉Φk(|u|) ηµ dx =: I3 + I4.

(4.15)

Now, we separately consider and estimate Ii, i = 1, 2, 4.

Estimate of I1

By (4.3) the Young inequality (applied first with exponent p and then with exponent 1
1−ε) and

(4.8) we have that for some positive τ << 1

|〈b(x, u,Du), Du〉| ≤M2

{
|Du|(p−1)(1−ε) + b2|u|

γ
p′ + a2(x)

}
|Du|

≤ τ |Du|p + cτ

{
|Du|p(1−ε) + bp

′

2 (x)|u|γ + ap
′

2 (x)
}

≤ M1

4np−1
|Du|p + c1

{
bp
′

2 (x)|u|γ + ap
′

2 (x) + 1
}

≤ 1

4
〈a(x, u,Du), Du〉+ c2

{
bp
′

2 (x)|u|γ + ap
′

2 (x)
}

(4.16)

with c2 depending also on ε. Thus,

I1 ≥
3

4

∫
BR

〈a(x, u,Du), Du〉Φk(|u|)ηµ dx− c2

∫
BR

{
bp
′

2 |u|
γ + ap

′

2

}
Φk(|u|) dx. (4.17)

Estimate of I2

As in the proof of Theorem 2.3, using (3.12) and (4.13) we have

I2 ≥
∫
BR

n∑
i=1

m∑
α,β=1

bαi (x, u,Du)uα
uβ

|u|
uβxi (Φk)

′(|u|) ηµ dx

≥ −
∫
BR

pν|b(x, u,Du)||Du|
{

Φk(|u|) +
2

k

}
ηµ dx.

Reasoning as in (3.14) and in (4.16), by (4.3) and the Young inequality it follows that

pν|b(x, u,Du)||Du| ≤ 1

16
〈a(x, u,Du), Du〉+ c3 max{ν, 1}

p′
ε

{
bp
′

2 (x)|u|γ + ap
′

2 (x)
}
.
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Thus, we obtain

I2 ≥−
1

16

∫
BR

〈a(x, u,Du), Du〉
{

Φk(|u|) +
2

k

}
ηµ dx

− c3 max{ν, 1}
p′
ε

∫
BR

{
bp
′

2 (x)|u|γ + ap
′

2 (x)
}{

Φk(|u|) +
2

k

}
dx.

(4.18)

Estimate of I4

Let us now deal with I4. Using (4.4) we obtain

I4 ≤M2

∫
BR

{
ηµ|Du|p(1−δ)|u|+ b3|u|γ + a3|u|

}
Φk(|u|) dx.

Now, let us estimate the right-hand side using the Young inequality and (4.8). We have that there
exists c4, depending on M1, M2, n, p, δ, such that for a.e. x

M2|Du|p(1−δ)|u| ≤
M1

16np−1
|Du|p + c4|u|

1
δ ≤ 1

16
〈a(x, u,Du), Du〉+ c4|u|

1
δ .

Therefore,

I4 ≤
1

16

∫
BR

〈a(x, u,Du), Du〉Φk(|u|)ηµ dx+ c4

∫
BR

{
|u|

1
δ + b3|u|γ + a3|u|

}
Φk(|u|) dx. (4.19)

Collecting (4.15), (4.17), (4.18) and (4.19) we get

5

8

∫
BR

〈a(x, u,Du), Du〉
{

Φk(|u|)−
1

5k

}
ηµ dx

≤ I3 + c5 max{ν, 1}
p′
ε

∫
BR

{
|u|

1
δ +

(
bp
′

2 + b3

)
|u|γ + a3|u|+ ap

′

2

}{
Φk(|u|) +

2

k

}
dx.

(4.20)

and the claim follows.

Step 3. In this step we provide two different estimates of I3 depending on whether (4.5) or
(4.6) holds true. We recall that

I3 = µ

∫
BR

〈a(x, u,Du) + b(x, u,Du),−u⊗Dη〉Φk(|u|) ηµ−1 dx.

Estimate of I3 under assumption (4.5). For a.e. x ∈ BR0 ∩ {η 6= 0} by (4.5) with ξ = Du(x)

and η = −8µu(x)⊗ Dη(x)
η(x) , we obtain

µ〈a(x, u,Du),−u⊗Dη〉ηµ−1 =
ηµ

8
〈a(x, u,Du),−8µu⊗ Dη

η
〉

≤η
µ

8
〈a(x, u,Du), Du〉+

ηµ

8
〈a
(
x, u,−8µu⊗ Dη

η

)
,−8µu⊗ Dη

η
〉

− ηµ

8
〈a
(
x, u,−8µu⊗ Dη

η

)
, Du〉.

(4.21)
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By (4.2) and the assumptions on η, see (3.3),

ηµ

8
〈a
(
x, u,−8µu⊗ Dη

η

)
,−8µu⊗ Dη

η
〉

≤ 8q−1µqηµM2

{∣∣∣∣u⊗ Dη

η

∣∣∣∣q +
(
b1|u|

γ
p′ + a1

) ∣∣∣∣u⊗ Dη

η

∣∣∣∣}
≤ c6

(R− ρ)q

{
|u|q + b1|u|

γ
p′+1

+ a1|u|
}
≤ c7

(R− ρ)q

{
|u|q + |u|p + bp

′

1 |u|
γ + ap

′

1

} (4.22)

with c7 depending on M2, p, q and R0. Notice that we used that µ ≥ q and 1
(R−ρ)a ≤

Rb−a0

(R−ρ)b
if

0 < a < b. Let us now estimate the last term in (4.21) using (4.2) once more. We get

−η
µ

8
〈a
(
x, u,−8µu⊗ Dη

η

)
, Du〉 ≤ c8

(R− ρ)q−1
ηµ−q+1|Du|

{
|u|q−1 + b1|u|

γ
p′ + a1

}
(4.23)

with c8 depending on M2, p, q. To estimate the term at the right-hand side of (4.23) we use the

Young inequality and (4.8) (notice that ηµ−q+1 = η
µ
p η

µ p−1
p
−q+1

and that µp−1
p − q + 1 ≥ 0). Thus,

for a.e. x {
η
µ
p |Du|

}{ c8

(R− ρ)q−1
η
µ p−1

p
−q+1

(
|u|q−1 + b1|u|

γ
p′ + a1

)}
≤ M1

16np−1
ηµ|Du|p +

c9

(R− ρ)(q−1)p′

{
|u|(q−1)p′ + bp

′

1 |u|
γ + ap

′

1

}
≤ 1

16
ηµ〈a(x, u,Du), Du〉+

c9

(R− ρ)(q−1)p′

{
|u|(q−1)p′ + bp

′

1 |u|
γ + ap

′

1

}
.

(4.24)

As far as the integral

µ

∫
BR

〈b(x, u,Du),−u⊗Dη〉Φk(|u|) ηµ−1 dx

is concerned, reasoning as in (4.16) and using (4.3) and (4.8) we get

µ〈b(x, u,Du),−u⊗Dη〉ηµ−1 ≤ M1

16np−1
ηµ|Du|p +

c10

(R− ρ)p

{
|u|p + bp

′

2 |u|
γ + ap

′

2

}
≤ 1

16
ηµ〈a(x, u,Du), Du〉+

c10

(R− ρ)p

{
|u|p + bp

′

2 |u|
γ + ap

′

2

}
.

(4.25)

Collecting (4.21)–(4.25) we get the following estimate of I3 ((q − 1)p′ ≥ q ≥ p)

I3 ≤
1

4

∫
BR

〈a(x, u,Du), Du〉Φk(|u|) ηµ dx

+
c11

(R− ρ)(q−1)p′

∫
BR

{
|u|(q−1)p′ + (bp

′

1 + bp
′

2 )|u|γ + ap
′

1 + ap
′

2

}
Φk(|u|) dx.

(4.26)

Estimate of I3 under assumption (4.6). By definition of ã(x, u,Du) in (3.9) and (4.9)

µ〈ã(x, u,Du),−u⊗Dη〉ηµ−1 ≤µA(x, u, |Du|)〈Du,−u⊗Dη〉ηµ−1

+ µ|b(x, u,Du)||u⊗Dη|ηµ−1.
(4.27)
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By applying (4.12), with ξ = Du(x) and η = −8µu(x)⊗ Dη(x)
η(x) ,

µA(x, u, |Du|)〈Du,−u⊗Dη〉ηµ−1 =
ηµ

8
A(x, u, |Du|)〈Du,−8µu⊗ Dη(x)

η(x)
〉

≤ ηµ

8

{
A(x, u, |Du|)|Du|2 +A

(
x, u,

∣∣∣∣8µu⊗ Dη

η

∣∣∣∣) ∣∣∣∣8µu⊗ Dη

η

∣∣∣∣2
}
.

(4.28)

Now, by (4.11) and the Young inequality

ηµ

8
A

(
x, u,

∣∣∣∣8µu⊗ Dη

η

∣∣∣∣) ∣∣∣∣8µu⊗ Dη

η

∣∣∣∣2
≤ µηµM2

{
(8µ)q−1

∣∣∣∣u⊗ Dη

η

∣∣∣∣q−1

+ a1(x)|u|
γ
p′ + a1(x)

}∣∣∣∣u⊗ Dη

η

∣∣∣∣
≤ c12

(R− ρ)q
|u|q +

c12

R− ρ

{
b1(x)|u|

γ
p′+1

+ a1(x)|u|
}

≤ c13

(R− ρ)q

{
|u|q + |u|p + bp

′

1 (x)|u|γ + ap
′

1 (x)
}

(4.29)

with c13 depending on M2, p, q and R0. Taking into account (4.3) and reasoning as in (4.16) we
get

µ|b(x, u,Du)||u⊗Dη|ηµ−1 ≤ M1η
µ

8np−1
|Du|p +

c14

(R− ρ)p

{
|u|p + bp

′

2 |u|
γ + ap

′

2

}
which implies, by using (4.9) and (4.10),

µ|b(x, u,Du)||u⊗Dη|ηµ−1 ≤ ηµ

8
〈a(x, u,Du), Du〉+

c15

(R− ρ)(q−1)p′

{
|u|p + bp

′

2 |u|
γ + ap

′

2

}
. (4.30)

Collecting (4.27)–(4.30) we get the following estimate of I3

I3 ≤
1

4

∫
BR

〈a(x, u,Du), Du〉Φk(|u|) ηµ dx

+
c16

(R− ρ)(q−1)p′

∫
BR

{
|u|q + |u|p +

2∑
i=1

bp
′

i |u|
γ +

2∑
i=1

ap
′

i

}
Φk(|u|) dx,

(4.31)

which implies an inequality analogous to (4.26):

I3 ≤
1

4

∫
BR

〈a(x, u,Du), Du〉Φk(|u|) ηµ dx

+
c17

(R− ρ)(q−1)p′

∫
BR

{
|u|q + (bp

′

1 + bp
′

2 )|u|γ + ap
′

1 + ap
′

2

}
Φk(|u|) dx.

(4.32)

Eventually, by (4.14), (4.26) and (4.32) we have

3

8

∫
BR

〈a(x, u,Du), Du〉
{

Φk(|u|)−
1

3k

}
ηµ dx

≤ c18[ν + 1]
p′
ε

(R− ρ)(q−1)p′

∫
BR

{
|u|θ + |u|

1
δ +

(
2∑
i=1

bp
′

i + b3

)
|u|γ + a3|u|+

2∑
i=1

ap
′

i

}{
Φk(|u|) +

2

k

}
dx,

where

θ :=

{
(q − 1)p′ = q p

′

q′ if (4.5) holds

q if (4.6) holds.
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Since Φk(|u|)→ |u|pν as k go to +∞, passing to the limit and using (4.8) we obtain∫
BR

|Du|p|u|pν ηµ dx

≤ c19[ν + 1]
p′
ε

(R− ρ)(q−1)p′

∫
BR

{
|u|θ + |u|

1
δ +

(
2∑
i=1

bp
′

i + b3

)
|u|γ + a3|u|+

2∑
i=1

ap
′

i

}
|u|pν dx

(4.33)

where c is a suitable positive constant depending on the data and R0, but not on ν.

Step 4. In this step we conclude. We follow the scheme of Steps 3 and 4 of the proof of

Theorem 2.3, taking into account that now ph = p and that ai and bi are now replaced by ap
′

i and

bp
′

i , i = 1, 2, respectively. We limit ourselves to outline the main first inequalities. First we estimate
the left-hand side in (4.33) proceeding as in (3.19):∫

BR

∣∣∣D [η µp (|u|ν+1 + 1
)]∣∣∣p dx

≤ c20

∫
BR

ηµ−p|Dη|p[|u|ν+1 + 1]p dx+ c20[ν + 1]p
∫
BR

|Du|p|u|pνηµ dx

≤ c21

(R− ρ)p

∫
BR

[max{|u|, 1}]p+pν dx+ c20[ν + 1]p
∫
BR

|Du|p|u|pνηµ dx

≤ c22

(R− ρ)(q−1)p′

∫
BR

[max{|u|, 1}]p+pν dx+ c20[ν + 1]p
∫
BR

|Du|p|u|pνηµ dx

with c20 depending only on p and c22 depending also on q and R0. Then, defining v := max{|u|, 1}
and using the classical Sobolev imbedding theorem and (4.33) we get(∫

Bρ

vp
∗(ν+1) dx

) p
p∗

≤
(∫

BR

∣∣∣η µp (|u|ν+1 + 1
)∣∣∣p∗ dx) p

p∗

≤ c23

∫
BR

∣∣∣D [η µp (|u|ν+1 + 1
)]∣∣∣p dx

≤ c24[ν + 1]p+
p′
ε

(R− ρ)(q−1)p′

∫
BR

{
|v|θ+pν + |v|

1
δ

+pν +

(
2∑
i=1

bp
′

i + b3

)
vγ+pν + a3v

1+pν +
2∑
i=1

ap
′

i v
pν

}
dx.

By Lemma 3.2 with δ = p, σ = q̃ and a suitable choice of γ and τ , taking into account that
max{ 1

t′ ,
1
s′ , 1} = 1, we obtain(∫

Bρ

vp
∗(ν+1) dx

) 1
p∗

≤ c25 [ν + 1]
1+ 1

(p−1)ε

(R− ρ)
q−1
p−1

{
1 +

∫
BR0

vq̃ dx

} q̃−p
pq̃ {∫

BR

vq̃(ν+1)

} 1
q̃

the analogue of (3.23). Taking into account that q̃ < p∗, from now on the proof goes as in the
previous section. �
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[22] S. Krömer: A priori estimates in L∞ for non-diagonal perturbed quasilinear systems. Ann. Sc. Norm. Super.

Pisa Cl. Sci. (5) 8 (2009) 417-428.
[23] O. Ladyzhenskaya, N. Ural’tseva: Linear and quasilinear elliptic equations, Academic Press, New York

and London (1968).
[24] R. Landes: Some remarks on bounded and unbounded weak solutions of elliptic systems, Manuscripta Math.

64 (1989) 227-234.
[25] R. Landes: On the regularity of weak solutions of certain elliptic systems, Calc. Var. Partial Differential

Equations 25 (2005) 247-255.
[26] G.M. Lieberman: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for

elliptic equations, Comm. Partial Differential Equations 16 (1991) 311-361.
[27] G.M. Lieberman: Gradient estimates for anisotropic elliptic equations, Adv. Differential Equations 10 (2005)

767-812.
[28] P. Marcellini: Regularity of minimizers of integrals in the calculus of variations with non standard growth

conditions, Arch. Rational Mech. Anal. 105 (1989) 267-284.
[29] P. Marcellini: Regularity and existence of solutions of elliptic equations with p − q-growth conditions, J.

Differential Equations 90 (1991) 1-30.
[30] P. Marcellini: Regularity for elliptic equations with general growth conditions, J. Differential Equations 105

(1993) 296-333.
[31] P. Marcellini: Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola

Norm. Sup. Pisa Cl. Sci. 23 (1996) 1-25.
[32] P. Marcellini, G. Papi: Nonlinear elliptic systems with general growth, J. Differential Equations 221 (2006)

412-443.
[33] M. Meier: Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine

Angew. Math. 333 (1982) 191-220.



LOCAL BOUNDEDNESS OF SOLUTIONS TO QUASILINEAR ELLIPTIC SYSTEMS 23

[34] G. Mingione: Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math.
51 (2006) 355-426.

[35] G. Mingione: Singularities of minima: a walk on the wild side of the calculus of variations, J. Global Optim.
40 (2008) 209-223.
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