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Abstract

We consider a variational model for image segmentation proposed in [20]. In
such a model the image domain is partitioned into a finite collection of subsets
denoted phases. The segmentation is unsupervised, i.e., the model finds auto-
matically an optimal number of phases, which are not required to be connected
subsets. Unsupervised segmentation is obtained by minimizing a functional of
the Mumford-Shah type [19], but modifying the geometric part of the Mumford-
Shah energy with the introduction of a suitable scale term. The results of com-
puter experiments discussed in [20] show that the resulting variational model
has several properties which are relevant for applications. In the present paper
we investigate the theoretical properties of the model. We study the existence
of minimizers of the corresponding functional, first looking for a weak solution
in a class of phases constituted by sets of finite perimeter. Then we find various
regularity properties of such minimizers, particularly we study the structure of
triple junctions by determining their optimal angles.

Keywords: Computer vision, image segmentation, calculus of variations

1. Introduction

The segmentation problem in image analysis consists in looking for a de-
composition of an image into homogeneous regions corresponding to meaning-
ful parts of objects. In recent years a number of variational models have been
proposed for the segmentation problem. Mumford and Shah [19] proposed to
minimize the functional

Ems(u,Γ) = αH1(Γ) + β

∫
Ω\Γ
|∇u|2dx+

∫
Ω

|u− uo|2dx, (1)
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where Ω ⊂ R2 is a bounded Lipschitz image domain, uo : Ω −→ R+ ∪ {0}
is a bounded function representing the given image, H1 is the 1-dimensional
Hausdorff measure, and α, β are positive weights. The functional has to be
minimized over all closed sets Γ ⊂ Ω and all u ∈ C1(Ω \ Γ). The function u
represents a piecewise smooth (i.e., denoised) approximation of the input image
uo, and the set Γ represents the union of boundaries of the regions constituting
the segmentation. If Γ is regular enough, then the measure H1(Γ) is simply the
total length of the boundaries.

In [4, 5] Chan and Vese introduced a multiphase variational model for image
segmentation based on the Mumford-Shah functional and the level set method.
They considered both a piecewise constant and a piecewise smooth approxima-
tion of the image uo. In the piecewise constant case the variational model looks
for a local minimizer of the functional

Ecv(u,Γ) = αH1(Γ) +
K∑
i=1

∫
χi

|u− uo|2dx, (2)

where K is a given integer, χi, i = 1, . . . ,K, are open subsets that constitute
a Borel partition of the image domain Ω, here Γ is the union of the part of the
boundaries of the χi inside Ω, so that

Γ =
K⋃
i=1

∂χi ∩ Ω, Ω = Γ
K⋃
i=1

χi, (3)

and the function u is constant on every subset χi. It is easy to see that, for
a fixed Γ, the functional Ecv is minimized with respect to the function u by
setting, for each χi, u equal to the mean value of uo in χi. The subsets χi are
denoted phases and are not required to be connected. The functional Ecv is a
piecewise constant version of the Mumford-Shah functional, since ∇u(x) = 0 in
Ω\Γ. With a level-set formulation and implementation, the model is frequently
referred to as the Chan-Vese model for either two-phase (K = 2), or multiphase
(K > 2), segmentation.

Extending this idea, there is a number of region-based multiphase segmenta-
tion models introduced, such as [1, 2, 6, 12, 14, 15, 22, 25] for K ≥ 2. However,
except for the case of two-phase segmentation, the multiphase case can have
some sensitivity issues. Typically the number of phases K > 2 is pre-determined
and result can depend on the initial guess used in the local minimization of the
functional.

The model proposed in [20] addresses these issues, that the model automat-
ically chooses a reasonable number of phases K, as it segments the image via
the minimum of the following functional:

E(K,χ1, . . . , χK) = µ

(
K∑
i=1

P (χi)
|χi|

)
H1(Γ) +

K∑
i=1

∫
χi

|uo − ci|2dx. (4)

Here P (χi) denotes the perimeter of a phase χi, |χi| denotes the 2-dimensional
area of a phase χi, Γ is defined by (3), for any i = 1, . . . ,K, ci is the mean value
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(a) Original Image (b) Segmentation to 4 phases

(c) Original (zoom) (d) Segmentation to 3 phases

Figure 1: Figures from [20]. The original image (a) is automatically segmented to four phases
in image (b) - each gray color represents different phases of the segmentation result. When
zoomed into the field area and (c) is given as an original image, image (c) is automatically
further segmented to three phases in image (d).

of uo in χi, and µ is a positive parameter. Notice that both K and the χis are
all unknown variables.

Compared to the piecewise constant Mumford-Shah model, one difference

is the newly added weight
∑
i

P (χi)
|χi|

in front of the length term. The ratio

P (χi)
|χi|

, called scale term, is related to Cheeger sets, which are widely studied

in the Calculus of Variations [3, 9]. The Cheeger problem consists of finding a
single subset of Ω minimizing the ratio perimeter/area, while in our problem
this new weight is the summation of the scale terms for multiple phases. Such
a weight gives an effective property of the model, allowing an unsupervised
multiphase segmentation, as it has been discussed in [20]. Here, unsupervised
segmentation means the automatic selection of the optimal number of phases
K by functional minimization. The number of phases recovered in an optimal
segmentation can be controlled by means of the parameter µ: large values of µ
favor fewer phases with larger areas, while small values of µ prefer more phases
with smaller area (see [20] for further details). Figure 1 shows an example from
[20], where K is automatically selected depending on the focus of the image. In
this example the value µ = 1 has been used. This model has many properties
in addition to being an automatic segmentation, such as giving balance among
different phases (phases which are either extremely small or extremely large are
disfavored), and good detail recovery [20]. This method can be additionally
applied to image quantization [20], object identification for 3-dimensional Flash
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Lidar Images [8], and scale segmentation and an extension to a regularized K-
means [13].

In this paper, we study the analytic properties of the functional (4), such as
the existence and regularity of minimizers. First, we prove the existence of a
weak minimizer of the functional (4) in the class of sets with finite perimeter.
Then we investigate some geometrical properties of optimal segmentations. It
is known that sets Γ which minimize the Mumford-Shah functional can possess
only very restricted types of singularities. Particularly, corners are not allowed
in Γ. Moreover, if Γ is composed of regular arcs, then at most three arcs can
meet at a single point, and they meet at such a point with 120o angles. Such a
point is called a triple junction. We find that, similarly to the Mumford-Shah
case, corners are not allowed in sets Γ minimizing the functional (4). We also
compute the optimal angles of triple junctions and we find different properties
with respect to the Mumford-Shah functional. Moreover multiple junctions,
where more than three arcs meet, are also allowed. Then we study the general
regularity properties of minimizers of functional (4) by adapting to the present
problem techniques developed for the Mumford-Shah functional by Tamanini,
Congedo and Massari in [7, 16, 17, 19, 24]. We prove that the sets {χ1, . . . , χK}
forming an optimal segmentation are open, and that the set Γ is constituted by
smooth curves, except possibly a singular set of points which is locally finite.

In Section 2, mathematical notations are given, and the existence of a weak
minimizer is proved in Section 3. In Section 4, we study the possible optimal
angles of triple junctions and we motivate the regularity analysis in the following
sections. In Section 5, we prove an elimination lemma which permits us to prove
that the sets forming an optimal partition are open. Such a lemma will be crucial
in order to prove further regularity properties. Then we show that the blow-up
of an optimal set Γ only allows straight lines in Section 6. By using the result
of the blow-up, together with the elimination lemma, regularity properties of a
minimizer are proved in Section 7, followed by concluding remarks in Section 8.

2. Mathematical preliminaries and statement of the main result

For a given set A ⊂ R2 we denote by ∂A its topological boundary, by |A| its
two-dimensional Lebesgue measure and by H1(A) its one-dimensional Hausdorff
measure. We denote by Bρ(x) the open ball {y ∈ R2 : |y − x| < ρ} with center
x ∈ R2 and radius ρ > 0. When x = 0 we simply write Bρ instead of Bρ(x). If
A and B are open subsets of R2, by A ⊂⊂ B we mean that A is compact and
A ⊂ B. We denote by 1A the characteristic function of A, i.e., 1A(x) = 1 if
x ∈ A and 1A(x) = 0 if x /∈ A.

For any set A ⊂ R2, we denote by A(α) the set of points of density α ∈ [0, 1]
for A, which is defined by

A(α) =
{
x ∈ R2 : lim

ρ→0+
|A ∩Bρ(x)|/|Bρ(x)| = α

}
. (5)

Let {Ah}h ⊂ Ω be a sequence of measurable sets. If 1Ah → 1A in L1(Ω) as
h→ +∞, then we simply write Ah → A in L1(Ω).
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2.1. Sets of finite perimeter
We denote by Ω ⊂ R2 the image domain, and we assume that Ω is an open

rectangle. We say that u ∈ L1(Ω) is a function of bounded variation in Ω, and
we write u ∈ BV (Ω), if the distributional derivative Du of u is a vector-valued
Radon measure with finite total variation in Ω. We denote by |Du| the total
variation of the measure Du.

We say that a Borel set A ⊂ R2 is a set of finite perimeter in Ω, if 1A ∈
BV (Ω). The reduced boundary ∂∗A ∩ Ω of a set A of finite perimeter in Ω is
defined as the set of points x ∈ Ω such that

there exists lim
ρ→0

D1A(Bρ(x))
|D1A| (Bρ(x))

:= νA(x) with |νA(x)| = 1.

We notice that ∂∗A ∩ Ω ⊆ ∂A ∩ Ω. If A is a set with smooth boundary, then
∂∗A ∩ Ω = ∂A ∩ Ω. The perimeter of A in Ω is then defined by

P (A,Ω) := |D1A|(Ω) = H1(∂∗A ∩ Ω). (6)

Properties of sets of finite perimeter can be found in [11]. If A is a set of finite
perimeter in Ω, then the following properties hold:

∂∗A ∩ Ω ⊂ A(1/2) ∩ Ω, H1 (A(1/2) ∩ Ω \ ∂∗A) = 0. (7)

The isoperimetric inequality and the relative isoperimetric inequality will be
used.

Theorem 2.1. (Isoperimetric inequality) Let A be a set of finite perimeter in Ω
such that |A ∩ Ω| ≤ 1

2 |Ω|. Then there exists a positive constant C, independent
of A, such that the following inequality holds:

P (A,Ω) ≥ C ·
√
|A ∩ Ω|.

Moreover, if Ω = R2 then C = 2
√
π.

The following further properties about sets of finite perimeter will be used
(see [16], Section 2). If A and B are sets of finite perimeter in Ω such that
A ∩B ∩ Ω = ∅, then

P (A,Ω) + P (B,Ω)− P (A ∪B,Ω) = 2H1(∂∗A ∩ ∂∗B ∩ Ω). (8)

If A is a set of finite perimeter in Ω and B is an open subset of Ω with locally
Lipschitz boundary in Ω, then

P (A ∩B,Ω) = P (A,B) +
∫
∂B∩Ω

1A dH1. (9)
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2.2. Partitions in sets of finite perimeter
Let K ∈ N and let χi ⊂ Ω, i ∈ {1, . . . ,K}, be Borel sets. We say that the

family of sets
χ = {χ1, . . . , χK}

defines a Borel partition of Ω if

|χi ∩ χj | = 0 ∀i, j ∈ {1, . . . ,K}, i 6= j,
∣∣Ω \ ∪Ki=1χi

∣∣ = 0.

In the following we assume that χi, i ∈ {1, . . . ,K}, are sets of finite perimeter
in Ω. For any i = 1, . . . ,K, we choose a definite representation of the set χi
by setting χi = χi(1) according to (5), otherwise, the characteristic function
1χi would be defined only almost everywhere. Note that by replacing each set
χi by χi(1) we obtain an equivalent partition in sets of finite perimeter. This
property will be used in order to prove that the sets of an optimal partition are
open. We set

|χm| = min
i=1,...,K

|χi| > 0, |χM | = max
i=1,...,K

|χi|. (10)

As it is shown in [7], see Lemma 1.4, if χ = {χ1, . . . , χK} is a Borel partition
of Ω in sets of finite perimeter, then

Ω =

[
K⋃
i=1

(χi ∩ Ω)

]
∪

 K⋃
i 6=j

(χi(1/2) ∩ χj(1/2) ∩ Ω)

 ∪N, (11)

with N ⊂ Ω, H1(N) = 0. This is a structure property that says that Ω is
constituted by points of density 1 (we will prove that such points are interior
points of sets of an optimal partition), points of density 1/2 (boundary points
from property (7)), and an exceptional set N = Ω\∪Ki=1[χi(1)∪χi(1/2)] having
null H1 measure (null length). The boundary points form the interface between
pairs of the partitioning sets {χi(1/2) ∩ χj(1/2) ∩ Ω, i 6= j}, except at most a
set of null length. Eventually, we will prove that the boundaries of sets of an
optimal partition are regular curves in a neighborhood of points of density 1/2,
so that singularities are contained in the set N .

2.3. The main result
Let K ∈ N and let χ = {χ1, . . . , χK} be a Borel partition of Ω. Let uo ∈

L∞(Ω), µ be a positive number and ci, i ∈ {1, . . . ,K}, be numbers defined by

ci =
1
|χi|

∫
χi

uo(x)dx.

We set Γ = ∪Ki=1∂χi ∩ Ω. We prove the following result:

Theorem 2.2. (Main Theorem) There exist K ∈ N and a Borel partition of Ω
in open sets χ1, . . . , χK which minimize the functional

E(K,χ1, . . . , χK) = µ

(
K∑
i=1

H1(∂χi ∩ Ω)
|χi|

)
H1(Γ) +

K∑
i=1

∫
χi

|uo − ci|2dx. (12)
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Moreover, Γ = Γreg∪Γsing, where Γreg is a curve of class C1,1/2 in Ω, H1(Γsing) =
0 and the set Γsing is locally finite.

2.4. The weak energy functional
Let K ∈ N and let χ = {χ1, . . . , χK} be a partition of Ω in sets of finite

perimeter. For a Borel subset B ⊆ Ω, we introduce the following notations:

P (χ,B) :=
1
2

K∑
i=1

P (χi, B) and S(χ,B) :=
K∑
i=1

P (χi, B)
|χi|

.

We have P (χ,B) = H1
(
∪Ki=1∂

∗χi ∩B
)
.

In order to avoid cumbersome formulas, in the sequel of the paper when
B = Ω, with an abuse of notation we simply write

P (A) := P (A,Ω) for any set A of finite perimeter in Ω,
P (χ) := P (χ,Ω), S(χ) := S(χ,Ω).

Then, a weak version of the functional (12) is defined by

E(K,χ1, . . . , χK) = µS(χ)P (χ) +
K∑
i=1

∫
χi

|uo − ci|2dx. (13)

The weak version E is obtained by replacing in the original functional E the
topological boundary ∂χi∩Ω of each set of the partition with the corresponding
reduced boundary ∂∗χi ∩Ω. Then, for any Borel partition χ = {χ1, . . . , χK} of
Ω, since ∂∗χi ∩ Ω ⊆ ∂χi ∩ Ω, then H1(∂∗χi ∩ Ω) ≤ H1(∂χi ∩ Ω) for any i, and
it follows

E(K,χ1, . . . , χK) ≤ E(K,χ1, . . . , χK). (14)

First we prove (Theorem 3.3) the existence of a partition in sets of finite perime-
ter minimizing the functional E, then from this result we derive the existence
of a Borel partition minimizing the functional E (Theorem 5.3).

We also set
E0(K,χ1, . . . , χK) := S(χ)P (χ),

and we define a coefficient qi for each phase χi, which in the sequel will have a
suitable meaning of a weight of the length of boundaries,

qi =
1
2
S(χ) +

1
|χi|

P (χ), ∀i ∈ 1, . . . ,K. (15)

3. Existence of weak minimizers

In this section, we prove the existence of a minimizer of the functional (13)
which is constituted by a finite number of sets of finite perimeter. We begin by
proving the following compactness result.

7



Proposition 3.1. (Compactness) Let {Kh}h ⊂ N be a sequence of integers,
and let {χh1 , . . . , χhKh} be a sequence of families of sets of finite perimeter such
that the family {χh1 , . . . , χhKh} defines a partition of Ω for any h ∈ N. Assume
that

E0(Kh, χ
h
1 , . . . , χ

h
Kh

) ≤M ∀h ∈ N,

where M is a positive constant independent of h. Then there exist a finite
integer K ∈ N, a family of sets of finite perimeter {χ1, . . . , χK} which defines
a partition of Ω, a subsequence of integers {Khk}k such that Khk = K for any
k ∈ N, and a subsequence of families of sets {χhk1 , . . . , χhkK }, such that

χhki → χi in L1(Ω), ∀i ∈ {1, . . . ,K},

as k tends to infinity.

Proof. For any h ∈ N, in the family {χh1 , . . . , χhKh} there is at most one
set having Lebesgue measure strictly greater than 1

2 |Ω|. We may arrange the
family in such a way that such a set, if it exists, is the set χhKh . For any h ∈ N
we set

Γh =
Kh⋃
i=1

(
∂∗χhi ∩ Ω

)
.

Using the isoperimetric inequality, Theorem 2.1, we have

H1(Γh) ≥ 1
2

Kh−1∑
i=1

P (χhi ) ≥ C

2

Kh−1∑
i=1

√
|χhi |. (16)

Using again the isoperimetric inequality and (16), we find

M ≥

(
Kh−1∑
i=1

P (χhi )
|χhi |

)
H1(Γh) ≥ C

(
Kh−1∑
i=1

1√
|χhi |

)
H1(Γh)

≥ C2

2

Kh−1∑
i=1

√
|χhi |

1√
|χhi |

=
C2

2
(Kh − 1).

It follows that
Kh ≤

2M
C2

+ 1,

so that Kh is uniformly bounded with respect to h. Hence, for any h we may
arrange the family of sets {χh1 , . . . , χhKh} in such a way that there exist finite
integers K, K̂ ∈ N, with K ≤ K̂, a subsequence of integers {Khk}k and a
subsequence {χhk1 , . . . , χhkKhk

} of families of sets such that Khk = K̂ for any
k ∈ N, and

lim
k→+∞

|χhki | > 0 ∀i = 1, . . . ,K, lim
k→+∞

|χhki | = 0 ∀i = K + 1, . . . , K̂.
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Let us denote by {χk1 , . . . , χkK} the subsequence {χhk1 , . . . , χhkK } of families of
sets. For any k we assume that the only set having Lebesgue measure strictly
greater than 1

2 |Ω|, if it exists, is the set χkK .
On such a subsequence, we have

M ≥

(
K−1∑
i=1

P (χki )
|χki |

)
1
2

K−1∑
i=1

P (χki ) ≥ 1
2
P (χkj )
|χkj |

P (χkj ) ≥ C

2
P (χkj )√
|χkj |

for any k ∈ N and any j ∈ {1, . . . ,K−1}, also using the isoperimetric inequality.
From this we get

P (χkj ) ≤ 2M
C

√
|Ω| (17)

for any j ∈ {1, . . . ,K − 1}. Moreover, we have

P (χkK) ≤
K−1∑
i=1

P (χki ) ≤ (K − 1)
2M
C

√
|Ω|. (18)

Then the perimeter of χki in Ω is uniformly bounded with respect to k, for
any i ∈ {1, . . . ,K}. Using (6) it follows that the total variation |D1χki |(Ω)
is uniformly bounded, so that the sequence of functions {1χki }k is uniformly
bounded in BV with respect to k, for any i ∈ {1, . . . ,K}.

Using the BV compactness theorem [11], by extracting for any i a subse-
quence which we do not relabel for simplicity, there exist K sets {χ1, . . . , χK}
of finite perimeter such that

χki → χi in L1(Ω), ∀i ∈ {1, . . . ,K}, (19)

as k tends to infinity.
Eventually, the property that the family of sets {χ1, . . . , χK} defines a par-

tition of Ω follows from Theorem 1.6 of [7].
Now we prove a lower semicontinuity result.

Proposition 3.2. (Lower semicontinuity) Let K ∈ N and let {χ1, . . . , χK} be a
family of sets of finite perimeter which defines a partition of Ω. Let {χh1 , . . . , χhK}
be a sequence of partitions of Ω in sets of finite perimeter such that

χhi → χi in L1(Ω), ∀i ∈ {1, . . . ,K},

as h tends to infinity. Then

lim inf
h→+∞

E(K,χh1 , . . . , χ
h
K) ≥ E(K,χ1, . . . , χK).

Proof. By using (6) and the lower semicontinuity of the total variation [11],
we have

lim inf
h→+∞

H1(Γh) = lim inf
h→+∞

1
2

K∑
i=1

P (χhi ) ≥ 1
2

K∑
i=1

lim inf
h→+∞

P (χhi ) ≥ 1
2

K∑
i=1

P (χi) = P (χ).

(20)
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For any i ∈ {1, . . . ,K} the L1-convergence of χhi to χi implies that

lim inf
h→+∞

P (χhi )
|χhi |

≥ P (χi)
|χi|

. (21)

Since the lower limit of the product of two positive sequences is greater than
equal to the product of the respective lower limits, using (20) and (21), we find

lim inf
h→+∞

P (χhi )
|χhi |

H1(Γh) ≥ P (χi)
|χi|

P (χ).

It then follows

lim infh→+∞E0(K,χh1 , . . . , χ
h
K) ≥

K∑
i=1

lim inf
h→+∞

P (χhi )
|χhi |

H1(Γh)

≥
K∑
i=1

P (χi)
|χi|

P (χ) = E0(K,χ1, . . . , χK),

hence the functional E0 is lower semicontinuous.
Eventually, the statement of the proposition follows from the lower semicon-

tinuity of E0 and the continuity of the integrals
∫
χi
|uo − ci|2dx.

Using the compactness and lower semicontinuity results, we get the existence
of minimizers of the functional E by means of the direct method of the calculus
of variations.

Theorem 3.3. (Existence of weak minimizers) There exist a finite integer K ∈
N and a family of sets {χ1, . . . , χK}, which minimize the functional E over all
partitions of Ω in sets of finite perimeter.

4. Corner smoothing and optimal angles of junctions

Minimizers of Mumford-Shah functional (1) are known to possess only re-
stricted types of singularities. Corners are not allowed in optimal boundaries Γ,
and arcs can meet at a triple junction only with 120o angles. Moreover multiple
junctions, where more than three arcs meet, are not allowed. In this section,
we study the analogous properties for the unsupervised model (4). While we
find that corners are still not allowed in our case, conversely optimal junctions
exhibit very different properties. In this section we assume that the union Γ of
the boundaries of a weak minimizer χ1, . . . , χK of the functional (4) is consti-
tuted, locally, by a finite number of regular arcs. Regularity properties of weak
minimizers will be investigated in the subsequent sections: the openness of the
sets constituting an optimal segmentation in Section 5, the blow-up of optimal
boundaries in Section 6, and the regularity of optimal boundaries in Section 7.
Particularly, it will be proved that an optimal set Γ is constituted by curves of
class C1,1/2, except possibly a singular set of points which is locally finite.

Corner smoothing. Let χ = {χ1, . . . , χK} be a partition such that the
common boundary ∂χ1 ∩ ∂χ2 has a corner point P where two arcs meet at an
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χ

χ

α 1

2

B ε B ε

B ε/2

Λ1
P P

Λ2

α

Figure 2: A partition χ and the new partition Λ.

angle α such that 0 < α < π, as it is shown in the left part of Figure 2. Let ε be
the radius of a ball centered at P such that Γ∩Bε(P ) = ∂χ1∩∂χ2∩Bε(P ). It is
shown in [19] that a minimizer (u,Γ) of Mumford-Shah functional is such that
the set Γ has no corner points. Such a result is obtained by comparing the energy
Ems(u,Γ) with Ems evaluated on a modified pair (û, Γ̂). The modified pair (û, Γ̂)
is obtained by cutting the corner P inside the ball Bε(P ), as it is shown in the
right part of Figure 2, see also [19]. Among the three terms in the functional (1),
the change in the length term is of order ε, while the changes in the second and
third term are of order ε

2π
2π−α and ε2, respectively. Asymptotically, for small ε,

the overall change of the energy can then be estimated by [19]

Ems(û, Γ̂)− Ems(u,Γ) ≤ c
(
ε2 + ε

2π
2π−α + ε

(
sin

α

2
− 1
))

,

for some positive constant c. For a sufficiently small ε, the change of the energy
is governed by ε

(
sin α

2 − 1
)

which is always a negative value for any 0 < α < π,
hence contradicting the minimality of the pair (u,Γ). It follows that the presence
of a corner point is not allowed in a minimizer of Mumford-Shah functional.

In the same setting, the change in the energy for the model (4) can also
be computed as follows. Analogously to Mumford-Shah case, we compare
the energy E(K,χ1, . . . , χK) with E evaluated on a modified partition Λ =
{Λ1, . . . ,ΛK}, which is obtained by cutting again the corner P inside the ball
Bε(P ), as it is shown in the right part of Figure 2. Hence we have Λi = χi for
any i > 2. The change in the last term of functional (4) will be again of order
ε2. The change in the geometric terms of the functional is given by

S(Λ)P (Λ)− S(χ)P (χ) = (S(Λ)− S(χ))P (χ) + S(Λ)(P (Λ)− P (χ)). (22)
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Here S(Λ) can be evaluated using χ and we find

S(Λ) =
P (χ1)− ε+ ε sin(α2 )

|χ1| − ε2

8 sinα
+
P (χ2)− ε+ ε sin(α2 )

|χ2|+ ε2

8 sinα
+

K∑
i=3

P (χi)
|χi|

=
2∑
i=1

P (χi)− ε+ ε sin(α2 )
|χi|

(
1 +O(ε2)

)
+

K∑
i=3

P (χi)
|χi|

= ε(−1 + sin
α

2
)

2∑
i=1

1
|χi|

+ S(χ) +O(ε2).

Then, the terms with χ cancels to

(S(Λ)− S(χ))P (χ) = ε(−1 + sin
α

2
)
(

1
|χ1|

+
1
|χ2|

)
P (χ) +O(ε2),

and the change in the length can be represented as

S(Λ)(P (Λ)− P (χ)) = S(Λ)ε(−1 + sin
α

2
) +O(ε2).

Then, using the definition of the weights qi in (15), the energy change becomes

S(Λ)P (Λ)− S(χ)P (χ) = ε(−1 + sin
α

2
)
{(

1
|χ1|

+
1
|χ2|

)
P (χ) + S(Λ)

}
+O(ε2)

= ε(−1 + sin
α

2
) {q1 + q2 + (S(Λ)− S(χ))}+O(ε2)

= ε(−1 + sin
α

2
)(q1 + q2) +O(ε2).

We used (S(Λ) − S(χ)) ≈ O(ε). Therefore, for any 0 < α < π, this is also
negative, i.e., cutting a corner on Γ reduces the energy as in the case of Mumford-
Shah model. If q1 = q2 = 1, this is exactly the case of Mumford-Shah model
using a non-weighted length term H1(Γ). Hence corners are not allowed along
the boundaries of partitions minimizing functional (4).

Optimal angles of junctions. One of interesting properties of Mumford-Shah
functional is the special structure of junctions that are allowed in a minimizer
[19]. When arcs of Γ meet at a common endpoint, such an endpoint can only be
a triple junction with equal angles of 2π

3 radians. The main idea of the analysis
in [19] is based on the case shown in Figure 3. If Γ has a triple junction with
an angle α such that α < 2π

3 , then the energy Ems is reduced by modifying
locally the set Γ in such a way that the angles of the junction become all equal
to 2π

3 . More precisely, Γ is modified inside a ball B by extending ∂χ2 ∩ ∂χ3

along the bisector of angle α, as it is shown in Figure 3. A new partition
Λ = {Λ1, . . . ,ΛK}, with Λi = χi for any i > 3, is then obtained. Let the length
of the segment P1P2 be asymptotically (for a small ball B) equal to r. The
original length P (χ,B) is equal to 2r, while the new length P (Λ, B) becomes

2(
2√
3
r sin

α

2
) + (r cos

α

2
− 1√

3
r sin

α

2
) = 2r sin(

π

6
+
α

2
).

12
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Figure 3: Optimal triple junction with equal angles for Mumford-Shah functional.

This new length is smaller than 2r for any α < 2π
3 . Since the change in the

other terms of the functional Ems is again of a smaller order, then the energy is
reduced. Therefore, a minimizer of Mumford-Shah functional allows only triple
junctions with 2π

3 equal angles. A similar argument leads to the conclusion that
there are no junctions where four or more arcs meet at positive angles. In [19] it
is shown how the energy is reduced by finding the smallest angle α and replacing
a 4-fold intersection by two triple junctions.

Now we compute the energy change for the model (4) in the same case as in
Figure 3. First, we write the difference of length as

∆i = P (Λi, B)− P (χi, B), i = 1, 2, 3.

In the energy change S(Λ)P (Λ)− S(χ)P (χ), the length change P (Λ)− P (χ) is
again given by 2r(−1 + sin(π6 + α

2 )), yet S(Λ)−S(χ) gives a weighted difference
of lengths ∆i. As before, the change in the last term of functional (4) is of order
r2, therefore negligible. With a similar computation as in the case of corner
points, the energy change becomes

(S(Λ) − S(χ))P (χ) + S(Λ)(P (Λ)− P (χ))

=
3∑
i=1

∆i

|χi|
P (χ) +

1
2
S(Λ)

3∑
i=1

∆i +O(r2)

=
3∑
i=1

∆i

|χi|
P (χ) +

1
2

(S(χ) + S(Λ)− S(χ))
3∑
i=1

∆i +O(r2)

=
3∑
i=1

(
P (χ)
|χi|

+
1
2
S(χ)

)
∆i +

1
2

(S(Λ)− S(χ))
3∑
i=1

∆i +O(r2)

=
3∑
i=1

qi∆i +O(r2). (23)

The energy decreases if
∑
i qi∆i < 0, therefore, the values of the optimal angles

of the triple junction strongly depend on the values of qi.
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Figure 4: Definition of r, α, β and γ.

As a simple example, consider the case in Figure 4. The change in energy
becomes

q1(−2r + β + γ) + q2(−r + α+ γ) + q3(−r + α+ β) = q1∆1 + q2∆2 + q3∆3.

Here the length of ∂Λ1 ∩ B is smaller than the length of ∂χ1 ∩ B, i.e., ∆1 <
0, while the other two length changes are positive. Therefore, modifying the
partition χ into the partition Λ, the energy is reduced only if

q1 > −q2(∆2/∆1)− q3(∆3/∆1),

so that the result depends on the ratio of the length changes weighted by qi.
The optimal angles are strongly dependent on the values of the weights (15),
which are qi = 1

2S(χ) + 1
|χi|P (χ). Notice that in order for the weight q1 to be

large, the area χ1 should be small. That is, if the area of χ2 and χ3 are big (i.e.,
q2 and q3 are small), the new partition Λ is preferable, i.e., increasing the area
of χ2 and χ3 decreases the energy. This implies that the bigger the area of a
phase is, the bigger that phase tries to become. The minimum of the functional
(4) becomes a balance among these big phases while fitting the image datum
uo. This clearly shows the effect of the scale term.

A similar argument shows that minimizers of the model (4) can have mul-
tiple junctions, not only triple. This property is related to results obtained by
Morgan and others [18, 10] about immiscible fluids in R2. Indeed, the energy
of an immiscible fluid cluster is given by a linear combination of the lengths
of the interfaces between fluids, where each length is weighted by a coefficient
depending on which fluids the interface separates. Such coefficients play a role
analogous to the weights qi. In [10], the authors show that the interfaces of
energy minimizing fluids can meet in any number around a junction, with the
angles between segments determined by the weights.

5. Optimal segmentations by open sets

In the reminder of the paper χ = {χ1, . . . , χK} will denote a family of sets
which minimizes the functional E over all partitions of Ω in sets of finite perime-
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Figure 5: Setting of Elimination Lemma 5.1

ter. Moreover, without losing generality, we will assume µ = 1. According to
(11), the image domain Ω is partitioned in three different sets: the union of
the sets χi(1) representing the phases, the union of the intersections {χi(1/
2) ∩ χj(1/2) ∩ Ω, i 6= j} representing the boundaries of the segmentation, and
the negligible set N .

A tool that we use in order to prove regularity properties of optimal seg-
mentations is a suitable elimination lemma (Lemma 5.1 below). We adapt and
modify the proof used by Tamanini and Congedo in [24] to prove an analogous
result for the piecewise constant Mumford-Shah functional.

By means of the elimination lemma, first we prove that the sets χi(1) are
open, then we will prove in Section 7 the regularity of the boundaries χi(1/
2) ∩ χj(1/2) ∩ Ω. We formulate a statement of the lemma that permits us to
prove both regularity properties (see also Figure 5).

Lemma 5.1. (Elimination Lemma) There exists a constant σ > 0 such that for
any x ∈ Ω there exists a ball BR0(x) ⊂ Ω with the following property: if χj , χl,
with j, l ∈ {1, . . . ,K}, j 6= l, and R ∈ (0, R0) are such that

Σ =
K⋃

i=1,i/∈{j,l}

χi, |Σ ∩BR(x)| ≤ σR2,

then
∣∣Σ ∩BR/2(x)

∣∣ = 0.

Proof. Let us assume K > 2, otherwise the result is trivial. Let us fix x ∈ Ω
and assume for simplicity x is the origin of R2. We may assume that j = 1 and
l = 2, so that Σ =

⋃
i>2 χi. In order to prove that |Σ ∩ BR/2| = 0, we define

α(r) = |Σ∩Br| and we assume that α(r) > 0 in the interval (R/2, R) (otherwise
there is nothing to prove). By using the coarea formula we have

α(r) = |Σ ∩Br| =
∫ r

0

dt

∫
∂Bt

1ΣdH1. (24)

We may choose R0 small enough in such a way that for any r ∈ (R/2, R)

|χi \Br| ≥ |χi|/2, |χi ∪Br| ≤ 2|χi|, ∀i = 1, . . . ,K. (25)
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In addition, for almost all r ∈ (R/2, R) we have

H1(∂∗χi ∩ ∂Br) = 0 ∀i = 1, . . . ,K. (26)

Let us fix r ∈ (R/2, R) in such a way that (26) holds. We may assume that
the boundary of χ1 has bigger intersection with the boundary of Σ in the ball
Br than χ2 (otherwise it is enough to exchange the two sets):

H1(∂∗χ1 ∩ ∂∗Σ ∩Br) ≥ H1(∂∗χ2 ∩ ∂∗Σ ∩Br). (27)

Then, we define a perturbed partition Λ as follows:

Λ1 = (χ1 ∪ (Σ ∩Br)) (1), Λ2 = χ2, Λi = χi \Br, i = 3, . . . ,K. (28)

Since ci, i = 1, . . . ,K, are the optimal constants for the sets χi, we have

E0(K,Λ1, . . . ,ΛK) +
K∑
i=1

∫
Λi

|uo − ci|2dx ≥ E(K,Λ1, . . . ,ΛK).

Since {χ1, . . . , χK} is a minimizer of E, we have E(K,Λ1, . . . ,ΛK) ≥ E(K,χ1, . . . , χK),
so that setting

∆E0 = E0(K,Λ1, . . . ,ΛK)−E0(K,χ1, . . . , χK)+
K∑
i=1

∫
Λi

|uo−ci|2dx−
K∑
i=1

∫
χi

|uo−ci|2dx,

(29)
we have ∆E0 ≥ 0. We prove that, choosing R0 small enough, this inequality
implies the estimate

a1

∫
∂Br

1Σ dH1 − a2|Σ ∩Br|1/2 ≥ 0, (30)

with a1, a2 > 0 independent of r and a2/4a1 <
√
π. Then, using (24), it follows

a1
dα

dr
− a2 [α(r)]1/2 ≥ 0,

which yields
d

dr
[α(r)]1/2 =

1
2

dα/dr

[α(r)]1/2
≥ a2

2a1
.

Integrating on the interval (R/2, R) we get

|Σ ∩BR|1/2 ≥
a2

4a1
R+ |Σ ∩BR/2|1/2.

Then, choosing the positive constant σ in the statement of the lemma in such
a way that

σ =
[
a2

4a1

]2

< π,
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it follows |Σ∩BR/2| = 0, proving the statement of the lemma. In the following,
we show how the estimate (30) follows from the inequality ∆E0 ≥ 0, for some
a1 and a2 independent of r.

Let E0(K,Λ1, . . . ,ΛK) = S(Λ)P (Λ), and P (Λ) = P (χ) + ∆P . Then, as in
(22), the difference of values of E0 in (29) can be written as

E0(K,Λ1, . . . ,ΛK)− E0(K,χ1, . . . , χK) = (S(Λ)− S(χ))P (χ) + S(Λ)∆P.

The estimate (30) is obtained in four steps.

Step 1. Estimate of the difference (S(Λ)− S(χ))P (χ).

Using (9) we have P (Σ ∩ Br) = P (Σ, Br) +H1(Σ ∩ ∂Br). Then, using the
identity (8) and (27), it follows

P (Λ1) = P (χ1 ∪ (Σ ∩Br)) = P (χ1) + P (Σ ∩Br)− 2H1(∂∗χ1 ∩ ∂∗(Σ ∩Br))
= P (χ1)−H1(∂∗χ1 ∩ ∂∗Σ ∩Br) +H1(∂∗χ2 ∩ ∂∗Σ ∩Br) +H1(Σ ∩ ∂Br)
≤ P (χ1) +H1(Σ ∩ ∂Br).

Taking into account that Λ2 = χ2 and using (26), we get

S(Λ) =
P (Λ1)
|Λ1|

+
P (Λ2)
|Λ2|

+
K∑
i=3

P (Λi)
|Λi|

≤ 1
|Λ1|

{
P (χ1) +H1(Σ ∩ ∂Br)

}
+

P (χ2)
|χ2|

+
K∑
i=3

1
|Λi|

{
P (χi)− P (χi, Br) +H1(χi ∩ ∂Br)

}
.

The term by term subtraction yields

S(Λ)− S(χ) ≤
(

1
|Λ1|

− 1
|χ1|

)
P (χ1) +

K∑
i=3

(
1
|Λi|
− 1
|χi|

)
P (χi) (31)

−
K∑
i=3

1
|Λi|

P (χi, Br) (32)

+
1
|Λ1|
H1(Σ ∩ ∂Br) +

K∑
i=3

1
|Λi|
H1(χi ∩ ∂Br). (33)

Using (10) and (25) we have

1
|Λi|
≤ 2
|χm|

, − 1
|Λi|
≤ − 1

2|χM |
, ∀i ∈ {1, . . . ,K}. (34)
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Notice the first term in the right-hand side of (31) is non-positive, so that it can
be ignored. Using (34) for the other terms in (31) we have

1
|Λi|
− 1
|χi|

=
|χi| − |χi \Br|
|Λi| · |χi|

=
|χi ∩Br|
|Λi| · |χi|

≤ |Σ ∩Br|
|Λi| · |χi|

≤ |Σ ∩Br|1/2|Br|1/2

|Λi| · |χi|
≤ 2
|Σ ∩Br|1/2|Br|1/2

|χm|2
≤ 2
√
πR

|χm|2
|Σ ∩Br|1/2.

Using P (χ) ≤M , where M is a positive constant that can be estimated arguing
as in the proof of (17) and (18) of Proposition 3.1, the terms in (31) can be
estimated by means of(

1
|Λ1|

− 1
|χ1|

)
P (χ1) +

K∑
i=3

(
1
|Λi|
− 1
|χi|

)
P (χi) ≤

4
√
πRM

|χm|2
|Σ ∩Br|1/2.

Using (34), (9) and the isoperimetric inequality, the terms (32) (although neg-
ative) can be estimated as follows:

−
K∑
i=3

1
|Λi|

P (χi, Br) ≤ −1
2|χM |

K∑
i=3

P (χi, Br) ≤
−1

2|χM |
P (Σ, Br) (35)

≤ −1
2|χM |

{
P (Σ ∩Br)−

∫
∂Br

1ΣdH1

}
≤ −

√
π

|χM |
|Σ ∩Br|1/2 +

1
2|χM |

∫
∂Br

1ΣdH1.

Using (34) the term (33) can be estimated as follows:

1
|Λ1|
H1(Σ ∩ ∂Br) +

K∑
i=3

1
|Λi|
H1(χi ∩ ∂Br) (36)

≤ 1
|Λ1|
H1(Σ ∩ ∂Br) +

2
|χm|

H1(Σ ∩ ∂Br) ≤
4
|χm|

∫
∂Br

1ΣdH1.

Collecting all the estimates, and taking into account that P (χ) ≤M , we find

(S(Λ)−S(χ))P (χ) ≤
(
−M
√
π

|χM |
+

4
√
πRM2

|χm|2

)
|Σ∩Br|1/2+

(
M

2|χM |
+

4M
|χm|

)∫
∂Br

1ΣdH1.

(37)

Step 2. Estimate of the difference S(Λ)∆P .

Arguing as in Step 1 we have

P (Λ) ≤ 1
2

[
P (χ1) +H1(Σ ∩ ∂Br) + P (χ2) +

K∑
i=3

{
P (χi)− P (χi, Br) +H1(χi ∩ ∂Br)

}]
.
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Similar to above computations in (35) and (36),

∆P = P (Λ)− P (χ) ≤ −
√
π|Σ ∩Br|1/2 +

1
2

∫
∂Br

1ΣdH1 +
∫
∂Br

1ΣdH1.

S(Λ) =
K∑
i=1

P (Λi)
|Λi|

≤ 2
|χm|

{
K∑
i=1

P (χi)−
K∑
i=3

P (χi, Br) + 2H1(Σ ∩ ∂Br)

}

≤ 2
|χm|

{
2P (χ) + 2H1(Σ ∩ ∂Br)

}
≤ 4
|χm|

{M + 2πR}.

Therefore,

S(Λ)∆P ≤ −4M
√
π

|χm|
|Σ ∩Br|1/2 +

6
|χm|

(M + 2πR)
∫
∂Br

1ΣdH1. (38)

Step 3. Estimate of the difference of the integral terms.

Using (28) we have∫
Λ1

|uo − c1|2dx−
∫
χ1

|uo − c1|2dx+
K∑
i=3

∫
Λi

|uo − ci|2dx−
K∑
i=3

∫
χi

|uo − ci|2dx

=
∫

Λ1∩Br
|uo − c1|2dx−

∫
χ1∩Br

|uo − c1|2dx−
K∑
i=3

∫
χi∩Br

|uo − ci|2dx

≤
∫

(χ1∪Σ)∩Br
|uo − c1|2dx−

∫
χ1∩Br

|uo − c1|2dx =
∫

Σ∩Br
|uo − c1|2dx

≤ M1|Σ ∩Br| ≤M1 |Σ ∩Br|1/2|Br|1/2,

where
M1 = 2‖uo‖2L∞(Ω) + 2c21.

Then we obtain

K∑
i=1

∫
Λi

|uo − ci|2dx−
K∑
i=1

∫
χi

|uo − ci|2dx ≤
√
πM1R |Σ ∩Br|1/2. (39)

Step 4. Collection of the inequalities.
Collecting the estimates (37), (38) and (39), the quantity ∆E0 defined in

equation (29) is bounded by

0 ≤ ∆E0 ≤ a1

∫
∂Br

1Σ dH1 + (b1R− b2)|Σ ∩Br|1/2,
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where

a1 = M

(
1

2|χM |
+

10
|χm|

)
+

12π
|χm|

R0,

b1 =
(

4M2

|χm|2
+M1

)√
π,

b2 = M
√
π

(
1
|χM |

+
4
|χm|

)
.

Now we choose R0 < b2/(2b1) so that, setting a2 = b2/2, we obtain inequal-
ity (30) with a1, a2 > 0 independent of r. Moreover, one can check that
a2/4a1 <

√
π, hence completing the proof of the lemma.

As a corollary of the elimination result, we obtain that the sets constituting
an optimal segmentation are open.

Corollary 5.2. For any i = 1, . . . ,K, the set χi is open.

Proof. We prove that the set χ1 is open, then it will be enough to repeat
the argument for the sets χ2, . . . χK . We define Σ =

⋃K
i=2 χi. We fix a point of

χ1 and, without losing generality, we assume it is the origin of R2. Given σ > 0,
let R > 0 be such that BR ⊂ Ω and

|BR ∩ Σ| = |BR \ χ1| ≤ σR2.

This is possible since χ1 = χ1(1), so that the origin of R2 is a point of density
0 for Σ.

With the same method of proof of Lemma 5.1 we find that |Σ ∩ BR/2| = 0
for a suitable value of σ. It follows immediately that BR/2 ⊂ χ1, thus proving
that χ1 is open.

Now we can recover the existence of a minimizer of the functional E .

Theorem 5.3. There exist K ∈ N and a Borel partition of Ω in open sets
χ1, . . . , χK which minimize the functional E.

Proof. Let K ∈ N and let χ = {χ1, . . . , χK} be a partition of Ω in sets
of finite perimeter which minimizes the functional E. The sets are open by
Corollary 5.2. First we prove the following property:

H1 ((∂χi \ ∂∗χi) ∩ Ω) = 0, ∀ i = 1, . . . ,K. (40)

Let us fix i ∈ {1, . . . ,K} and let x ∈ ∂χi. Hence x /∈ χj(1) for any j, otherwise,
since each set χj is open by Corollary 5.2, then x would be an interior point of
χj , so that x could not belong to ∂χi.

Moreover, x /∈ χj(1/2)∩χl(1/2)∩Ω for any j, l 6= i such that j 6= l. Indeed, if
this is not the case, using (5) and Lemma 5.1, there exists R ∈ (0, R0) such that
|Σ ∩BR(x)| ≤ σR2, so that

∣∣Σ ∩BR/2(x)
∣∣ = 0. It follows

∣∣χi ∩BR/2(x)
∣∣ = 0,
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but this is in contradiction with the assumption x ∈ ∂χi which implies, the set
χi being open, the existence of a ball Bρ(y) such that Bρ(y) ⊂ χi ∩BR/2(x).

Then, using the structure property (11) of partitions in sets of finite perime-
ter, it follows that x ∈ (χi(1/2) ∩ Ω)∪N , from which, using (7) and H1(N) = 0,
the property (40) follows.

Using (40), then we have E(K,χ1, . . . , χK) = E(K,χ1, . . . , χK) < +∞. Now
we prove that the Borel partition χ = {χ1, . . . , χK} minimizes the functional E .

If this is not true, then there exist K̂ ∈ N and another Borel partition
Λ = {Λ1, . . . ,Λ bK} such that

E(K̂,Λ1, . . . ,Λ bK) < E(K,χ1, . . . , χK) < +∞.

Using property (14) we have E(K̂,Λ1, . . . ,Λ bK) ≤ E(K̂,Λ1, . . . ,Λ bK). Moreover,
arguing as in the proof of estimates (17) and (18) in Proposition 3.1, we have
that the sets Λi have finite perimeter. Then, collecting all the above inequalities
we get

E(K̂,Λ1, . . . ,Λ bK) < E(K,χ1, . . . , χK),

which is a contradiction, since the integer K and the partition {χ1, . . . , χK}
minimize the functional E. The statement of the theorem then follows.

In the following section, we further investigate properties of optimal parti-
tions leading up to regularity properties of the boundaries.

6. Some results on optimal segmentations

We first prove some preliminary lemmas which will be useful to achieve
a blow-up result of the boundaries of an optimal segmentation. Regularity
properties of the boundaries will then be shown by combining the elimination
lemma proved in the previous section with the blow-up result.

Lemma 6.1. Let x ∈ Ω and Br = Br(x) ⊂⊂ Ω. Let {Λ1, . . . ,ΛK} be a family
of sets of finite perimeter which define a partition of Ω satisfying

Λi \ C = χi \ C ∀i ∈ 1, . . . ,K, C ⊂ Br compact set. (41)

Then there exists δ > 0 such that for any r < δ the following inequality holds:

K∑
i=1

[ϕ(0) + ψi(r)]P (χi, Br) ≤
K∑
i=1

[
ϕ(r) + (1 + bir

2)ψi(r)
]
P (Λi, Br) + a1r

2,

(42)
where a1 is a positive constant independent of r and of the family {Λ1, . . . ,ΛK},
bi = 2π/|χi|, for i = 1, . . . ,K,

ϕ(r) =
1
2

K∑
i=1

P (Λi)
|χi|

(1 + bir
2), ψi(r) =

1
|χi|

P (χ,Ω \Br),

and ϕ(0) = limr→0+ ϕ(r).

21



Proof. Let δ > 0 be such that

|Bδ|
|χm|

≤ 1
2
, (43)

and let r < δ. Since ci, i = 1, . . . ,K, are the optimal constants for the sets χi,
we have

E0(K,Λ1, . . . ,ΛK) +
K∑
i=1

∫
Λi

|uo − ci|2dx ≥ E(K,Λ1, . . . ,ΛK). (44)

For any i ∈ {1, . . . ,K}, using (41) and (43), we have

1
|Λi|

=
1

|Λi \Br|+ |Λi ∩Br|
=

1
|χi \Br|+ |Λi ∩Br|

=
1

|χi|+ |Λi ∩Br| − |χi ∩Br|
≤ 1
|χi|

1
1− ξi

,

where

ξi =

∣∣∣|Λi ∩Br| − |χi ∩Br|∣∣∣
|χi|

≤ |Br|
|χi|

≤ 1
2
,

from which it follows

1
|Λi|
≤ 1
|χi|

(1 + 2ξi) ≤
1
|χi|

(1 + bir
2), bi =

2π
|χi|

. (45)

Using (41), for any i = 1, . . . ,K, we have

P (Λi) = P (Λi, Br) + P (χi,Ω \Br). (46)

Using (45) and (46) we have the following estimate for the energy of the partition
{Λ1, . . . ,ΛK}:

E0(K,Λ1, . . . ,ΛK) ≤ P (Λ)
K∑
i=1

P (Λi)
|χi|

(1 + bir
2)

= 2ϕ(r)P (Λ, Br) +
K∑
i=1

(1 + bir
2)ψi(r)P (Λi, Br) (47)

+ P (χ,Ω \Br)
K∑
i=1

P (χi,Ω \Br)
|χi|

(1 + bir
2).

Analogously, for the energy of the optimal partition {χ1, . . . , χK} we have

E0(K,χ1, . . . , χK) = 2ϕ(0)P (χ,Br) +
K∑
i=1

ψi(r)P (χi, Br) + P (χ,Ω \Br)S(χ,Ω \Br), (48)
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where, using (46),

ϕ(0) = lim
r→0+

ϕ(r) =
1
2
S(χ). (49)

By the optimality of the partition {χ1, . . . , χK}, using (44), we have

E0(K,χ1, . . . , χK)+
K∑
i=1

∫
χi

|uo−ci|2dx ≤ E0(K,Λ1, . . . ,ΛK)+
K∑
i=1

∫
Λi

|uo−ci|2dx,

(50)
from which, using (47) and (48), it follows

E0(K,Λ1, . . . ,ΛK)− E0(K,χ1, . . . , χK) ≤ αr2 − 2ϕ(0)P (χ,Br) (51)

−
K∑
i=1

ψi(r)P (χi, Br) + 2ϕ(r)P (Λ, Br) +
K∑
i=1

(1 + bir
2)ψi(r)P (Λi, Br),

where, using P (χ) ≤M and (45), the constant α is given by α =
4πM2

mini=1,...,K |χi|2
.

Moreover, using (41) and taking into account that |ci| ≤ ‖uo‖L∞(Ω) for any
i = 1, . . . ,K, we have

K∑
i=1

∫
Λi

|uo − ci|2dx−
K∑
i=1

∫
χi

|uo − ci|2dx

=
K∑
i=1

∫
Λi∩Br

|uo − ci|2dx−
K∑
i=1

∫
χi∩Br

|uo − ci|2dx

≤
K∑
i=1

∫
Λi∩Br

|uo − ci|2dx ≤
K∑
i=1

(
2‖uo‖L∞(Ω)

)2 |Br| ≤ βr2, (52)

where
β = πK

(
2‖uo‖L∞(Ω)

)2
.

Collecting (50), (51) and (52), we find the inequality (42), where a1 = α+β.

Now we prove an estimate of the perimeter of an optimal partition in a ball.

Lemma 6.2. Let x ∈ Ω, 0 < r < 1 and Br = Br(x) ⊂⊂ Ω. Then the following
estimate holds:

P (χ,Br) ≤ a2r,

where a2 is a positive constant independent of r.

Proof. Let s ∈ (0, r) and let Bs = Bs(x); we set

Λ1 = χ1 ∪Bs, Λi = χi \Bs, i = 2, . . . ,K,

so that we have

∂∗Λi ∩ Ω = (∂∗Λi ∩ ∂Bs)
⋃(

∂∗χi ∩ (Ω \Bs)
)
,
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for any i = 1, . . . ,K. Then we can write

E0(K,Λ1, . . . ,ΛK)

=
[
P (Λ, ∂Bs) + P (χ,Ω \Bs)

]
·

[
S(Λ, ∂Bs) +

K∑
i=1

P (χi,Ω \Bs)
|Λi|

]

≤
[
2πs+ P (χ,Ω \Bs)

]
·
[

4πs
|χm|

(
1 +

2πr2

|χm|

)
+
(

1 +
2πr2

|χm|

)
S(χ,Ω \Bs)

]
≤
(

1 +
2πr2

|χm|

)
S(χ,Ω \Bs)P (χ,Ω \Bs) + αs+ βs2, (53)

where we have used the inequality P (Λ, ∂Bs) ≤ 2πs, and (45) with C = Bs;
moreover, using P (χ) ≤M , we set

α =
8πM
|χm|

(
1 +

2π
|χm|

)
, β =

8π2

|χm|

(
1 +

2π
|χm|

)
.

For the optimal partition {χ1, . . . , χK}, by using the isoperimetric inequality,
Theorem 2.1, we have

E0(K,χ1, . . . , χK) ≥ S(χ,Ω \Bs)P (χ,Ω \Bs) + S(χ)P (χ,Bs)

≥ S(χ,Ω \Bs)P (χ,Ω \Bs) + (K − 1)
C√
|χM |

P (χ,Bs). (54)

Then taking the difference between the inequalities (53) and (54) we get

E0(K,Λ1, . . . ,ΛK) − E0(K,χ1, . . . , χK)

≤ αs+ βs2 +
2πr2

|χm|
S(χ,Ω \Bs)P (χ,Ω \Bs)− ηP (χ,Bs)

≤ αs+ βs2 + γr2 − ηP (χ,Bs),

where γ = 4πM2/|χm|2 and η = C(K − 1)/
√
|χM |.

Since {χ1, . . . , χK} is a minimizer of E we have E(K,Λ1, . . . ,ΛK)−E(K,χ1, . . . , χK) ≥
0, so that arguing as in the proof of Lemma 5.1 (Equation (29) and Step 3), we
obtain

ηP (χ,Bs) ≤ αs+ βs2 + γr2 + δs2,

where δ = 2π(‖uo‖2L∞(Ω) + c21). Since s ∈ (0, r) and r < 1, we have

P (χ,Bs) ≤ a2r, a2 = (α+ β + γ + δ)/η,

and the statement of the lemma follows by letting s→ r.
Let now A ⊂ Ω be an open set; we define the functionals

I(χ,A) = inf
{Λ1,...,ΛK}

{
K∑
i=1

qiP (Λi, A) : Λi \ C = χi \ C ∀i, C ⊂ A compact

}
,

Ψ(χ,A) = −I(χ,A) +
K∑
i=1

qiP (χi, A),
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where the coefficients qi have been defined in (15), and the infimum in I(χ,A)
is taken over the families of sets {Λ1, . . . ,ΛK} of finite perimeter which define
a partition of A.

Lemma 6.3. Let x ∈ Ω, 0 < r < 1 and Br = Br(x) ⊂⊂ Ω. Then the following
estimate holds:

Ψ(χ,Br) ≤ a3r
2,

where a3 is a positive constant independent of r.

Proof. For any η such that 0 < η < 1 there exists a partition {Λ1, . . . ,ΛK}
of Ω in sets of finite perimeter such that

Λi \ C = χi \ C ∀i ∈ 1, . . . ,K, C ⊂ Br compact set, (55)

and
K∑
i=1

qiP (Λi, Br) ≤ I(χ,Br) + ηr. (56)

Using Lemma 6.2 we have

I(χ,Br) ≤
K∑
i=1

qiP (χi, Br) ≤ 2qMP (χ,Br) ≤ 2qM a2 r,

where qM = maxi=1,...,K qi. Then, using (56) it follows

P (Λ, Br) =
1
2

K∑
i=1

P (Λi, Br) ≤ α1r, (57)

where α1 =
η + 2qMa2

2qm
and qm = mini=1,...,K qi. Using inequality (42) of

Lemma 6.1 we have:

K∑
i=1

qiP (χi, Br) ≤
K∑
i=1

[qi − ϕ(0)− ψi(r)]P (χi, Br) +
K∑
i=1

qiP (Λi, Br)

+
K∑
i=1

[
ϕ(r) + (1 + bir

2)ψi(r)− qi
]
P (Λi, Br) + a1r

2.(58)

Using the expression of ψi(r) in Lemma 6.1, (49), and Lemma 6.2, we get

qi − ϕ(0)− ψi(r) =
1
|χi|

P (χ)− 1
|χi|

P (χ,Ω \Br) =
1
|χi|

P (χ,Br) ≤
a2

|χm|
r.

Using again Lemma 6.2 we obtain

K∑
i=1

[qi − ϕ(0)− ψi(r)]P (χi, Br) ≤
2a2

2

|χm|
r2. (59)
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Using (55) and the expressions of ϕ(r) and ψi(r) in Lemma 6.1, we have

ϕ(r) + (1 + bir
2)ψi(r)− qi

=
1
2

K∑
j=1

P (Λj)
|χj |

− 1
2
S(χ) +

1
|χi|

P (χ,Ω \Br)−
1
|χi|

P (χ)

+r2

1
2

K∑
j=1

bj
P (Λj)
|χj |

+ biψi(r)


=

1
2

K∑
j=1

(
P (Λj)
|χj |

− P (χj)
|χj |

)
− 1
|χi|

P (χ,Br)

+r2

 K∑
j=1

π

|χj |
P (χj ,Ω \Br) + P (Λj , Br)

|χj |
+

2π
|χi|2

P (χ,Ω \Br)


≤ 1
|χm|

P (Λ, Br) +
2π
|χm|2

(2P (χ,Ω \Br) + P (Λ, Br))r2,

from which, using P (χ) ≤M , the inequality (57), and taking into account that
0 < r < 1, it follows

ϕ(r) + (1 + bir
2)ψi(r)− qi ≤

1
|χm|

(1 +
2πr2

|χm|
)α1r +

4πM
|χm|2

r2 ≤ α r,

where

α =
α1

|χm|

(
1 +

2π
|χm|

)
+

4πM
|χm|2

.

Then, using again the inequality (57), we obtain

K∑
i=1

[
ϕ(r) + (1 + bir

2)ψi(r)− qi
]
P (Λi, Br) ≤ 2αα1 r

2. (60)

Substituting (59) and (60) into (58) we have

K∑
i=1

qiP (χi, Br) ≤
K∑
i=1

qiP (Λi, Br) + a3r
2 with a3 = a1 +

2a2
2

|χm|
+ 2αα1.

Then, using (56) we get

K∑
i=1

qiP (χi, Br) ≤ I(χ,Br) + ηr + a3r
2,

from which it follows
Ψ(χ,Br) ≤ ηr + a3r

2.

Since η is arbitrary, the statement of the lemma follows by letting η → 0+.
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In the following we consider the blow-up of partitions: for ε > 0 and A ⊂ R2,
we define

Aε =
{
x ∈ R2 : εx ∈ A

}
. (61)

For the partition χ = {χ1, . . . , χK} in the same way we define χε = {χ1ε, . . . , χKε}.
Then for any open set A ⊂ R2 we have

P (χε, Aε) =
1
ε
P (χ,A), Ψ(χε, Aε) =

1
ε

Ψ(χ,A), (62)

moreover if Bδ ⊂ A, then Bt ⊂ Aε for every t > 0 and ε ∈ (0, δ/t).

The proof of the following proposition is essentially the same as in Theorem
7 of [16].

Proposition 6.4. (Blow-up) Let x ∈ Ω and B1 = B1(x), and let {εh}h be
a sequence of positive numbers converging to zero as h → +∞. Let χεh =
{χ1εh , . . . , χKεh} be the corresponding sequence of families of dilated sets.
Then the following properties hold.

(i) There exists a family of sets of finite perimeter χ∞ = {χ∞1 , . . . , χ∞K } which
defines a partition of B1 such that, up to the extraction of a subsequence,
we have

χiεh → χ∞i in L1(B1), ∀i ∈ {1, . . . ,K},
as h tends to infinity;

(ii) for any i = 1, . . . ,K, if the set ∂χ∞i ∩ B1 is not empty, then it is the
intersection of B1 with a finite number of half-lines issuing from the center
point x.

Proof. Using (62) and Lemma 6.2 we have

K∑
i=1

qiP (χiεh , B1) ≤ 2qMP (χεh , B1) =
2qM
εh

P (χ,Bεh) ≤ 2qM a2,

from which the compactness property (i) follows as in Proposition 3.1. Moreover,
by the lower semicontinuity of the perimeter we have P (χ∞i , B1) < +∞ for any
i = 1, . . . ,K.

The proof of property (ii) follows from Lemma 6.3 and (62) exactly in the
same way as in the proof of Theorem 7 of [16]: it is enough to replace everywhere
in the proof

the perimeter
1
2

K∑
i=1

P (χi, Bεh) with
K∑
i=1

qiP (χi, Bεh),

and to replace

the perimeter
1
2

K∑
i=1

P (χ∞i , B1) with
K∑
i=1

qiP (χ∞i , B1).
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Then, for almost all r, s ∈ (0, 1) we find

K∑
i=1

(∫
∂B1

|1χ∞i (rω)− 1χ∞i (sω)|dH1(ω)
)2

= 0.

Hence each characteristic function 1χ∞i is homogeneous of degree 0, so that,
taking into account that P (χ∞i , B1) < +∞ for any i, property (ii) follows.

7. Regularity properties of optimal segmentations

The following theorem shows that the boundaries of an optimal segmentation
are constituted by smooth curves, except possibly for a singular set having null
one-dimensional Hausdorff measure. Moreover, the singular set is locally finite.
The proof of the theorem follows from the results of sections 5 and 6 as in
[16, 19]. For the sake of completeness we give here the proof since it is short.

Theorem 7.1. (Regularity of boundaries) The set Γ = ∪Ki=1(∂χi ∩ Ω) has the
following properties: Γ = Γreg ∪ Γsing, where Γreg is a curve of class C1,1/2 in
Ω and H1(Γsing) = 0.

Moreover, for any compact subset C ⊂ Ω the set Γsing ∩ C is a finite set of
points.

Proof. Let j, l ∈ 1, . . . ,K, with j 6= l, and let x ∈ χj(1/2) ∩ χl(1/2) ∩ Ω.
Using (5) and Lemma 5.1, there exists R ∈ (0, R0) such that |Σ ∩BR(x)| ≤ σR2,
so that

∣∣Σ ∩BR/2(x)
∣∣ = 0. Then we have

∂∗χi ∩BR/2(x) = ∅ ∀i 6= j, l, (63)

from which, for any s < R/2 it follows

K∑
i=1

qiP (χi, Bs(x)) = (qj + ql)P (χj , Bs(x)) = (qj + ql)P (χl, Bs(x)).

Using Lemma 6.3 we find

(qj + ql)P (χj , Bs(x)) = I(χ,Bs(x)) + Ψ(χ,Bs(x)) ≤ I(χ,Bs(x)) + a3s
2. (64)

Let now {Λ1, . . . ,ΛK} be a partition of Bs(x) such that Λi ∩Bs(x) = ∅ for any
i 6= j, l, and

Λj \ C = χj \ C, Λl \ C = χl \ C, C ⊂ Bs(x) compact set. (65)

Then it follows
I(χ,Bs(x)) ≤ (qj + ql)P (Λj , Bs(x)),

from which, using (64), for any pair of sets Λj ,Λl satisfying (65) we have

P (χj , Bs(x)) ≤ P (Λj , Bs(x)) + c3s
2,
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where c3 = a3/(qj+ql). We deduce from Theorem 1 of [23] that ∂χj∩BR/2(x) =
∂χl ∩BR/2(x) is a curve of class C1,1/2. Then x ∈ Γreg, and from property (11)
of partitions in sets of finite perimeter it follows that H1(Γsing) = 0.

Let now C ⊂ Ω be a compact set and let us assume that Γsing ∩ C is not a
finite set of points. Then there exist a point x ∈ C and a sequence of points
{xh}h ⊆ Γsing∩C converging to x. Let B1 = B1(x) and t ∈ (0, 1); for any h ∈ N
we set

εh =
|xh − x|

t
, yh = x+

xh − x
|xh − x|

t,

so that yh ∈ ∂Bt(x) for any h. Then there exists y ∈ ∂Bt(x) such that the se-
quence {yh}h converges to y as h→ +∞, up to the extraction of a subsequence.

Let {χ1εh , . . . , χKεh} be the sequence of families of sets defined in Proposi-
tion 6.4; according to property (i) of Proposition 6.4 such a sequence converges
to {χ∞1 , . . . , χ∞K } in [L1(B1)]K . Using property (ii) of Proposition 6.4 there exist
ρ > 0 and j, l ∈ {1, . . . ,K} such that Bρ(y) ⊂ B1 and

Σ∞ =
K⋃

i=1,i/∈{j,l}

χ∞i , Σ∞ ∩Bρ(y) = ∅.

Then, for any σ > 0 and for h large enough we have

Σh =
K⋃

i=1,i/∈{j,l}

χiεh ,
∣∣Σh ∩Bρ(y)

∣∣ ≤ σρ2.

Using (61) we find

Σ =
K⋃

i=1,i/∈{j,l}

χi, |Σ ∩Bεhρ(x+ εhy − εhx)| ≤ σ (εhρ)2
.

Then, using Lemma 5.1 for h large enough we have∣∣Σ ∩Bεhρ/2(x+ εhy − εhx)
∣∣ = 0,

from which it follows
∣∣Σh ∩Bρ/2(y)

∣∣ = 0.
For h large enough yh ∈ Bρ/2(y), so that yh is an exterior point of χiεh for

any i 6= j, l. Hence xh is an exterior point of χi for any i 6= j, l.
Then there exists δ > 0 small enough such that ∂∗χi ∩ Bδ(xh) = ∅ for any

i 6= j, l, so that, arguing again as in the proof after formula (63), it follows that
either xh is an interior point of one of the sets χj , χl, or xh ∈ Γreg. Hence
xh /∈ Γsing and we have a contradiction. We conclude that Γsing ∩ C is a finite
set of points.

Eventually, the statement of the main result, Theorem 2.2, follows collecting
the results stated in Theorem 5.3 and Theorem 7.1.
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(a) Original Image

(b) Quantum TV (c) This model (4)

Figure 6: Figures from [20]. The original image (a) is automatically segmented to six phases
in image (c). Image (b) is using Total Variation based quantization [21]. The result in (c)
keeps more finer details, especially the necklace.
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8. Concluding Remarks

We explored the analytical properties of the variational model (4). Following
the existence of minimizers, we showed this model does not allow corners in
an optimal segmentation, hence corners are smoothed. Yet, differently from
Mumford-Shah, the model allows different angles for multiple junctions. In
[20], it is also noticed by numerical experiments that the recovered boundaries
are more detailed compared to models involving only the total length of the
boundaries such as [4, 19]. Figure 6 shows an application to image quantization
showing sharper details. Though the model (4) prefers to smooth corners and
denoise the image, yet, if the image datum uo can be approximated by means
of a phase with a big area, more details can be kept and more oscillations in the
boundaries are allowed.

Considering the computation of optimal angles in Section 4, the difference
in energy (23) implies that the bigger the area of a phase is, the bigger that
phase tries to become. Therefore, the minimum of the model (4) becomes a
balance among these big phases, trying to fit the image datum uo. In [20], the
stopping criterion of the method of discrete numerical minimization (when to
stop adding new phases), also has similar terms as in (22):

µ {(S(Λ)− S(χ))P (χ) + S(Λ)(P (Λ)− P (χ))} (1− 1/nl) < (uo − cl)2,

where cl is the mean value of uo in the phase χl, and nl is the number of pixels
in such a phase. A new phase is created inside the phase χl only if the inequality
is satisfied. This formula shows the effects of scale term and total length term
together. It only allows the new region to be created when the image datum is
significantly non-homogeneous, enough to overcome increasing the total length
and handle the scale change among all the phases. Once each phase is big
enough, it gets harder to add new phases, which gives the automatic stopping
of the algorithm and determines the number of phases K.

On the other hand, in the proof of the regularity results, we have also proved
that the boundaries are guaranteed to be not very complicated: boundaries are
smooth curves, except possibly a singular set of points which is locally finite,
i.e., a result similar to that of Mumford-Shah functional. Nevertheless, there
is a difference in the properties of blow-up of the two functionals, which is due
to the presence of the weights qi which were defined in (15). Indeed, consider
a ball of radius ε centered at a point of an optimal Γ. Arguing as in Section
4, the value of ε at which the energy is locally minimized by cutting a corner,
or modifying a junction, may have to be smaller compared to Mumford-Shah
model. In this case details of the boundaries can be recovered at a finer spatial
scale, in agreement with numerical experiments.
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