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Abstract. The problem of multi-target tracking of deforming objects in
video sequences arises in many situations in image processing and com-
puter vision. Many algorithms based on finite dimensional particle fil-
ters have been proposed. Recently, particle filters for infinite dimensional
Shape Spaces have been proposed although predictions are restricted to
a low dimensional subspace. We try to extend this approach using pre-
dictions in the whole shape space based on a Sobolev-type metric for
curves which allows unrestricted infinite dimensional deformations. For
the measurement model, we utilize contours which locally minimize a
segmentation energy function and focus on the multiple contour track-
ing framework when there are many local minima of the segmentation
energy to be detected. The method detects figures moving without the
need of initialization and without the need for prior shape knowledge of
the objects tracked.

1 Introduction

We consider the problem of tracking multiple moving shapes in a video sequence,
which has been addressed many times in the past and in many different ways.

1.1 Shape Space

Many Shape Spaces have been considered in the past. One common approach is
to model Shape Space as a finite dimensional space; as in the case of the B-splines
approach used for the original snakes model in [1–3]. Another common approach
is the level set method [4], where the shape is represented implicitly by the zero
level set of a function. Some authors represent shapes explicitly as parametric
curves, and then decompose the motion of a shape in a finite dimensional affine
part, and an infinite dimensional deformation part [5, 6]. Others model the shape
space as an infinite dimensional Riemannian manifold [7, 8]. Some authors do
not model the shapes, but rather a (parametric) estimation of their posterior
probability distribution (conditional on the images) [9].

Some of the above choices present problems when tracking. The approach
with level sets is not well-apt to fast moving shapes: to predict their motion, we
must be able to move the “shape” on long range. At the same time, if we model
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curves as splines, then we must specify the dynamic of the control points, and
take care to factor those out of the shape dynamics.

We represent shapes as parametric curves. The model that we employ is an
Infinite Dimensional Riemannian Manifold, with a Sobolev-type metric H; it
has been proposed in [8] and is briefly described in Section 2. The metric can be
explained as giving (orthogonal) cost to translation, scaling and deformations
of curves. This is a novel approach, in that we will not need, in the tracking
model, to address separately the affine and deformation parts: this is implicitly
done by the metric H. This also implies that the prediction phase of the tracking
algorithm predicts the translation, scaling and deformation parts all together:
from the theoretical point of view this improves on previous approaches [6].

1.2 Tracking

We want to track shapes in a series of images It, where t ∈ N, and It : Ω → R

(usually Ω = [0, 1]2). The tracking problem can benefit from prior assumptions:
one such prior is the shapes’ motion. We model the shapes’ dynamics using a sim-
ple constant-velocity model. No a priori assumption is made on the probability
distribution of shapes and of shape velocities.

Tracking is addressed, usually, as a hidden variable estimation problem. The
tracker has an internal state Ut, usually the a posteriori estimate of the position
of shape(s) at time t conditional on I1 . . . It. To reduce the complexity, a new
estimate Ut+1 is derived from It+1 and Ut. If the tracker includes a dynamical
model of the shape motion, then Ut may estimate the velocity of shapes as well.

To compute the estimate Ut, some authors have employed (extended) Kalman
Filtering [9]; when the Shape Space is not flat, this has known limitations since
the predictor/corrector updates are computed only within a linearized vector
space (i.e. the tangent space is used to approximate the relevant neighborhood
of the underlying shape space). Moreover this cannot be readily adapted to
unsupervised tracking of a large, possibly unknown, number of shapes, since a
scene including multiple shapes has inherently a multi-modal posterior.

In [6] the authors propose an approach based on Particle Filtering; since this
requires sampling and predicting in a (theoretically) infinite dimensional space,
they split the motion of shapes in a finite dimensional affine part and an infinite
dimensional deformation part ; then they predict the affine part alone. We seek
instead to carry out prediction within the entire shape space.

1.3 The Proposed Approach

We try to incorporate a simple simple particle filtering with importance sampling
scheme in the framework provided by the shape space proposed in [8].

For every frame It we consider a set of n curves γt,1 . . . γt,n, that represent
the objects in image It. The update process for the curves on the frame It+1

consists of three steps. In the first step we generate new curves using a prediction-
correction scheme, as typical for a particle filtering approach. We first predict the
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position and shape of objects in It+1 by shooting multiple geodesic trajectories
from the curves γt,i. Interpolation between all curves at time t and t−1 generates
approximately n2 curves and may be interpreted as a boosting step.

We then perform a correction step by evolving each predicted curve via the
gradient descent flow of an energy E = F +Ereg which is made up of a segmen-
tation energy term F (for example the Chan-Vese energy defined in Section 3),
plus a regularizing scale and translation invariant term Ereg.

In the second step we generate new curves in a random way. The same gra-
dient flow technique as above is applied to evolve m circles of random centers
and radii. These random curves are supposed to find new objects entering the
frame and could also individuate fast moving objects, on which it is otherwise
difficult to initialize the prediction mechanism.

In the final step we select a subset of curves from those generated during the
two previous steps by ranking them according to the segmentation energy F .
The selection mechanism guarantees also that the selected curves do not cluster
around the same local minimum of the segmentation energy but rather track
multiple objects in the frame.

The method has been tested on fixed–camera scenes where multiple objects
were moving. It was able to track multiple objects, both in translation and defor-
mation, without the need for prior knowledge of the object shapes nor any special
initialization. Results are presented in Section 4 and comparisons/relations with
previous literature are discussed in Section 5.

An open-source library has been implemented to test the proposed method.
It is available at http://mennucci.sns.it/StiefelCurve/. The source code is well
commented and documented and fully clarifies all implementation details.

2 The Curve Model

A planar curve γ is a smooth function from S1 to R2 (where S1 is the unit circle);
a curve is immersed when |γ ′(θ)| 6= 0 ∀θ ∈ S

1. We define M to be the space of
all smooth planar immersed curves.

We define len(γ) to be the length of γ. Given a function g : S1 → R2, we let
Dsg := g′/|γ ′| be the derivative with respect to arc length along γ. We define
the integral of g along γ and the average of g as

∫

γ

g(s) ds :=

∫

S1

g(θ)|γ ′(θ)| dθ ,

∫

γ

g(s) ds :=
1

len(γ)

∫

γ

g(s) ds.

We also define the centroid γ of γ as
∫

γ
γ(s) ds.

We endow the spaceM with a Riemannian metricH developed in [8]. Suppose
that h is a vector field along γ and decompose it as

h = ht + hl(γ − γ) + len(γ)hd .

Setting
p(h) := h− (h ·Dsγ)Dsγ − (h ·D2

sγ)(γ − γ) ,
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the components ht and hl of h are defined as

ht :=

∫

γ

p(h) ds ∈ R
2 , hl := −

∫

γ

h ·D2
sγ ds ∈ R .

The first component ht changes the centroid of γ, whereas hl(γ − γ) changes the
scale of γ, see [8]. The remaining component is intended to deform γ

hd :=
1

len(γ)
[h− ht − hl(γ − γ)] .

Given h, k ∈ TcM , decomposed as above, the metric is

〈h, k〉
H
:= ht · kt + hlkl + len(γ)2

∫

γ

Dsh
d ·Dsk

d ds .

The metric H enjoys the following properties.

– Centroid translations, scale changes and deformations of the curve are or-
thogonal. Moreover, the space of curves can be decomposed into a product
of three spaces representing position, scale, and shape (see Thm 3.4 in [8]).

– Sobolev-type metrics favor smooth but otherwise unrestricted infinite–dim-
ensional deformations [10] and they have a coarse-to-fine evolution behavior
[11]. They are then quite useful for shape optimization and tracking tasks.

– There is a fast and easy way to compute gradients of commonly used energies
with respect to the metric H.

– Geodesics between immersed curves can be numerically computed efficiently.
Geodesics connecting immersed curves up to rotation can be computed using
simple closed form formulas.

3 The Tracking Algorithm

Given a curve γ, we define its exterior region as the unbounded connected com-
ponent of R2 \ γ and its interior (denoted by γ̊) as the complement in R2 of the
exterior region. We denote by F (γ, I) the standard Chan-Vese energy [12]:

F (γ, I) =

∫

γ̊

(I(x) − avginI)
2
dx+

∫

Ω\γ̊

(I(x) − avgoutI)
2
dx (1)

where avginI =
∫

γ̊
I(x) dx and avgoutI =

∫

Ω\γ̊ I(x) dx.

Let {It}t=0,...,N be the frames of the video to be analyzed and n ∈ N a fixed
parameter. For every t we define curves γt,1, ..., γt,n ∈ M , which should outline
different objects in the video. We expect more than one curve to estimate each
moving object in the video in accordance with the particle filtering paradigm.

We also use some auxiliary curves δt,1, ..., δt,n ∈ M , which will be defined in
the following. The curve δt,i represents the state of the curve γt,i in the previous
frame. The algorithm also depends on some real parameters τ0, τ1, d0 ≥ 0, and
a count parameter m ∈ N.



Tracking via Prediction and Filtering with a Sobolev-type metric 5

We define also a closeness function f , which will be used in the third step.
Given two curves γ and σ, it is the fraction of the area of γ̊ covered by σ̊,

f(γ, σ) :=
Area(̊γ ∩ σ̊)

Area(̊γ)
.

Each iteration of the algorithm computes γt+1,i and δt+1,i for i = 1, ..., n at
time t + 1 starting from the previous two sets of curves at time t. To start, we
randomly choose curves γ0,1, ..., γ0,n and define δ0,i = γ0,i for every i = 1, . . . , n.
Each full iteration of the algorithm is broken down into three different steps.

Step 1: Generation of new curves via prediction and correction. For
every pair i, j ∈ {1, ..., n} let Γi,j : [−1, 1] → M be a constant speed geodesic
such that Γi,j(−1) = δt,i, Γi,j(0) = γt,j and Γi,j restricted to [−1, 0] is a minimal
geodesic between δt,i and γt,j. An iterative algorithm to compute Γi,j is given
in [8]. To shoot a geodesic with a given velocity there is a closed formula, as
shown in [13] and [8].

We define the prediction pi,j as the geodesic calculated at time 1, namely

pi,j := Γi,j(1) ∀(i, j) ∈ {1, ..., n}2 .

The prediction is made according to a constant velocity dynamic of the
objects in the video, which is always reasonable on a short time scale. Since
geodesics are calculated with respect to the H-metric in M , we do not predict
only the position and scale of the new curve, but also its overall shape.

Note that we consider more than n predictions. Since more than one curve is
usually tracking any given object, this causes small perturbations in the predic-
tion that give stability to the algorithm. On the other hand we expect predictions
made between curves following different objects to be meaningless and to be dis-
carded in the upcoming selection step of the algorithm. Instead of shooting n2

geodesics, random perturbations may be used but they are difficult to implement
in a infinite dimensional shape space.

Then, for every i, j ∈ {1, ..., n}, we correct the prediction through a gradient
descent flow. We use an energy Et+1, defined as the sum of a Chan-Vese segmen-
tation term F introduced in (1) and a regularizing elastic term with coefficient
ke > 0 (which is usually 0.02 in our experiments),

Et(γ) := F (γ, It) + ke len(γ)

∫

γ

|D2
sγ|

2 ds .

Let GF(τ, γ) : [0,+∞)×M → M be the gradient flow of Et+1 starting from γ,
namely for every γ ∈ M we solve the P.D.E.

{

d
dτ
GF(τ, γ) = −∇Et+1(GF(τ, γ)) for a. e. τ ∈ [0,+∞)

GF0(γ) = γ

where∇Et+1 is the gradient of Et+1 w.r.t. the metric H. We define the correction
as the gradient flow after a fixed flow-time τ = τ0,

ci,j := GF(τ0, pi,j) ∀(i, j) ∈ {1, ..., n}2.
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Step 2: Generation of random new curves. In order to detect new figures
which appear in the frames, we consider m random curves r1, ..., rm ∈ Mi. Each
ri is a circle of random center and random radius on the image It+1.

We then correct the random circles with a gradient flow. Taking Et+1 and
GF as in the previous paragraph, we define ci as the gradient flow starting from
ri after a fixed flow-time τ1

ci := GF(τ1, ri) ∀i ∈ {1, ...,m}.

Step 3: Selection. In this step we select n curves from the large family of new
curves generated in the previous steps

C0 :=
{

ci,j | (i, j) ∈ {1, .., n}2
}

∪ {ci | i ∈ {1, ..,m}} .

We want to select the curves that best fit the image It+1 according to the seg-
mentation energy F , defined in (1). At the same time we prevent the selected
curves from clustering around a single mode of the posterior and ignoring all
other modes (as noted in [9]). To avoid this form of “collapsing”, we employ a
closeness function f : M ×M → [0, 1], which will be described in the following,
and a cut-off value d0 ∈ [0, 1].

We denote by Ft+1(γ) = F (γ, It+1) the segmentation energy on frame It+1

and by γt+1,1 the curve that minimizes Ft+1 within the set C0. Then, we consider
the set of all curves which have closeness to γt+1,1 smaller than d0

C1 := {c ∈ C0 | f(γt+1,1, c) < d0 } ,

and we let γt+1,2 be the curve of minimal energy within this set C1. We repeat
the procedure, defining C2 as the set of curves which have closeness to γt+1,1 and
γt+1,2 smaller than d0; the curve γt+1,3 is the one of minimal energy with the set
C2. We repeat this procedure until we have selected n curves γt+1,1, . . . , γt+1,n

or there are no curves left.
Since the sets Ci are decreasing, curves in Ci have Ft+1 energies greater than

γt+1,1 . . . γt+1,i. Moreover, a curve σ ∈ Ci is discarded if contains in its interior a
curve γt+1,j for some j ≤ i because of the definition of f . Indeed, σ is probably
a worse segmentation of the same object segmented by γt+1,j .

We point out that the energy Ft+1 used here is different from the energy Et+1

used for the gradient flow since we neglect the elastic term in order to select the
curves which best segment our moving figures, regardless of their regularity.

Eventually we define the curves δt+1,i. If γt+1,i = c̃ı,̃ for some (̃ı, ̃) (i.e. it
was obtained via prediction and correction), we define δt+1,i as the curve from
which the prediction was generated δt+1,i := γt,̃. Otherwise, γt+1,i = c̃ı (the
result of a gradient flow on a random circle), and we define δt+1,i = γt+1,i.

Optional Splitting of Curves. While tracking, it happens that curves develop
self intersection, in particular when a figure is the superposition of two objects
whose trajectories deviate after some time (see Figure 1). For this reason the al-
gorithm has provision for an optional splitting step, before the selection step. We
divide each curve in all its non-self-intersecting parts and those parts substitute
it in the pool γt+1,1, . . . , γt+1,n.



Tracking via Prediction and Filtering with a Sobolev-type metric 7

Fig. 1. Evolution with m = 7, n = 3 without splitting self-intersecting curves

Fig. 2. Evolution with m = 7, n = 3

4 Experiments

In this section we describe some numerical experiments. Besides testing the
algorithm on some simple videos, we run our algorithm disabling some core
components, e.g. shape prediction, and present examples of how this affects the
quality of the tracking. The variations of the algorithm are the following.

“Gradient flow only”. This is the classical Chan-Vese method, implemented
on multiple curves. The generation of new curves is made by evolving old curves
with a gradient flow on the new frame and selection step is left unchanged.

“Centroid and length prediction”. This algorithm differs from the one pre-
sented in Section 3 only in the prediction step. In this case the prediction is
made about the centroid and length of the curve, leaving the shape unchanged.

Because of the novelty of the shape space and the inherent difficulty of im-
plementing a particle filtering in a infinite dimensional shape space, the main
goal of this experimental validation is not to compare the algorithm with the
wide literature available nowadays. Instead, we show how the different parts of
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Fig. 3. Enlargement of the sixth image in Figure 2, comparison with the same frame
obtained without prediction and with prediction of centroid and length only

the algorithm work and what is the contribution of each, hoping that the result
presented here might be the first step towards further studies in this direction.

We consider two different sample videos. In the first one there are two over-
lapping people in the beginning who then walk in opposite directions. The second
video shows a bird’s eye view of a plaza with many people walking and a mo-
torcycle which enters the video in the right upper corner.

All our sample videos have been preprocessed in order to eliminate the fixed
background. The energies are computed on the preprocessed frames. We show
here the curves superimposed on the original frames to provide the scene context.

Figures 1, 2, 4 are examples of the program results. In Figure 1, when the two
figures cease to be overlapped two new local minima of the Chan-Vese energy
appear. They correspond to the two separate figures and are soon captured by
the random curves. Other features can be pointed out in Figures 2 and 4.

Multiple segmentation. The possibility of tracking multiple objects and detecting
new objects entering the frame is a key feature of the algorithm. In Figure 2,
starting from random circles the central object is detected and then tracked. In
Figure 4 there are more objects to follow and because of shadows they have more
complex shapes. However, the algorithm works well and the motorcycle which
enters the video is quickly detected and followed. Note that only 10 curves are
used to follow 5 objects, so the number of needed curves does not grow too much
with the number of shapes to track. In both examples once an object has been
detected random circles do not influence its tracking any more.

Comparison with “gradient flow only”. The prediction produces improvements
in the tracking, when compared to simple active-contour based tracking algo-
rithms. For example comparing Figure 4 and 5 we see that figures are detected
in both sequences, but in the first they are segmented better than in the second.
Indeed, the tracked objects, namely people together with their shadow, have a
complicated shape that is quite different from a circle, so it is more difficult for
the gradient flow to conform to them after a limited amount of flow time.
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Fig. 4. Evolution with m = 20, n = 10 (only best 5 curves are drawn)

Shape prediction. The prediction about the shape turns out to be important
to delineate small details of the moving shapes. We compared the algorithm
with the more limited (and finite dimensional) “centroid and size prediction”.
Due to space limitation, we omit to include in this paper detailed examples
obtained in this way. In Figure 3 we can see a snapshot of the evolution with our
algorithm, with “centroid and size prediction” and with “gradient flow only”.
We can observe that the segmentations are much rougher in the last two figures.

5 Conclusions

Our method does not use an a-priori probability model for shapes, as is often
done [3, 14], neither level–set methods, as is often the case [14] in active contour
based trackers. Instead, it uses a metric on curves which allows unrestricted
shape deformation and long-range infinite dimensional shape prediction.

The structure of our algorithm overcomes the motion correspondence prob-
lem. As described in [9], particle filtering is appealing in multiple object tracking
because of its ability to carry multiple hypotheses, but establishing the corre-
spondence between objects and observations is not a trivial task.

One current limitation in the proposed algorithm is that it does not enforce
temporal coherence in the velocity or the photometry of shapes. This enables the
algorithm to easily find and track new objects, but it may be a nuisance in some
applications. This is also the reason why the algorithm is applied on pre-filtered,
background subtracted frames. However, this limitation is primarily due to our
simple choice to use the Chan-Vese model for our segmentation energy and may
be significantly improved by using a model that incorporates more photometric
details. We are currently testing different choices for the segmentation energy as
well as the dynamics so that the algorithm will model and deal with a (possibly
non fixed) background, and/or a cluttered scene.
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Fig. 5. Evolution with m = 20, n = 10, without prediction (5 best curves are drawn)
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