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Abstract. This paper continues the investigation of ‘Wasserstein-like’ transportation dis-
tances for probability measures on discrete sets. We prove that the discrete transportation
metrics on the d-dimensional discrete torus Td

N with mesh size 1
N

converge, when N → ∞,
to the standard 2-Wasserstein distance on the continuous torus in the sense of Gromov–
Hausdorff. This is the first result of a passage to the limit from a discrete transportation
problem to a continuous one, and proves compatibility of the recently developed discrete
metrics and the well-established 2-Wasserstein metric.

1. Introduction

Since the seminal work of Jordan, Kinderlehrer and Otto [12] it is known that the heat
flow on Rn is the gradient flow of the entropy with respect to the Wasserstein distance
W2. Subsequently, this interpretation has been extended to a wide class of spaces, including
Riemannian manifolds [7], Finsler spaces [16], Alexandrov spaces [11], Wiener spaces [9], and
metric measure spaces [2, 3].

By contrast, the corresponding result fails in a discrete setting, but nevertheless it has
been shown recently [5, 13, 14] that the heat flow on a discrete space is the gradient flow of
the entropy, if one replaces the Wasserstein distance by a different metric W. The key idea
in order to define the metric W, in the spirit of the Benamou-Brenier formula [4], is to the
minimize an action functional over curves in the spaces of probability measures, rather than
minimizing a cost functionals over measures on the product space. An important ingredient

in the definition is the logarithmic mean θ(s, t) =
∫ 1

0 s
1−ptp dp which is used to “average”

probability densities at neighbouring points.
In this paper we consider the space P(Td) of probability measures on the torus Td :=

Rd/Zd, endowed with the usual 2-Wasserstein metric W2. We also consider the d-dimensional
periodic lattice Td

N := (Z/NZ)d with mesh size 1
N , and endow the space of probability

measures P(Td
N ) with its renormalized discrete transportation metric WN as defined in [13]

(see Section 2 below).
The main result of this paper is the following theorem, which proves compatibility between

the discrete theory and the continuous one.

Theorem 1.1. Let d ≥ 1. Then the metric spaces (P(Td
N ),WN ) converge to (P(Td),W2)

in the sense of Gromov-Hausdorff as N →∞.

Loosely speaking, Gromov-Hausdorff convergence means that there exists a sequence of
mapping IN : P(Td) → P(Td

N ) which are “approximately isometric and surjective”, up to
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an error which vanishes as N →∞. We refer to Definition 3.14 below for a formal definition.
The mappings IN that we shall use are of the form IN (µ) = PN (Hs(µ)), where PN denotes
the natural projection of P(Td) onto P(Td

N ), and (Ht)t≥0 is the heat semigroup, run for a
sufficiently small time s = s(N).

The proof of Theorem 1.1 relies on two-sided bounds for W2 in terms of WN . In particular
we shall prove a lower bound for W2 of the form

WN (PN (Hs(µ0)),PN (Hs(µ1))) ≤W2(µ0, µ1) +
C(s)√
N

.

Interestingly, an upper bound for W2 can be readily obtained in terms of a modification of
W, which involves the harmonic mean instead of the logarithmic mean. Metrics of this form
have already been considered in [13]. A considerable part of the work in the current paper
consists of showing that the choice of the mean is irrelevant in the limit N →∞.

Let us remark that Gromov-Hausdorff convergence results such as in Theorem 1.1 can be
used to prove convergence of gradient flows along the following lines:

(i) Theorem 1.1 in this paper asserts that (P(Td
N ),WN ) converges to (P(Td),W2) in the

sense of Gromov–Hausdorff.
(ii) Let πN be the uniform probability measure on Td

N and let π be the Lebesgue measure

on Td. It is not difficult to see that the relative entropy functionals EntπN on P(Td
N )

Γ-converge, as N →∞, to the relative entropy functional Entπ on P(Td).
(iii) In [8] it has been proved that the functionals EntπN are all geodesically convex on

(P(Td
N ),WN ).

(iv) From [13] we know that the gradient flow of EntπN with respect toWN produces solutions
to the heat flow.

(v) These results can be combined to obtain convergence of gradient flows, since it has
been proved in [10] that gradient flows of λ-geodesically convex functionals on Gromov-
Hausdorff convergent spaces are stable with respect to Γ-convergence.

Of course, the convergence of the discrete heat flow to the continuous one is not a new result,
and could also be proved directly, for instance using the explicit formulas for the heat kernels.
Yet the argument pointed out here has the advantage of being based on discrete Ricci bounds
and Gromov-Hausdorff convergence only, and as such this strategy can be useful also in other
situations. For instance, in [3] the stability of the heat flow in a continuous and non-smooth
context has been used to show the stability of Ricci curvature bounds in conjunction with the
linearity of the heat flow. Let us note that uniform geodesic λ-convexity for discretizations
of one-dimensional Fokker-Planck equations has been recently proved by Mielke [15].

This paper is structured as follows. In the preliminary Section 2 we recall some facts about
the Wasserstein metric W2 and its discrete counterpart W. We also collect some mostly
well-known properties of the heat flow that will be useful in the sequel. In Section 3.1 we
introduce the mappings that will be used to prove the Gromov-Hausdorff convergence result,
and we outline the strategy of the proof. Most of the actual work is done in Section 3.2, which
contains the crucial estimates. Finally, we put all pieces together in Section 3.3, in which we
prove Theorem 1.1.
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2. Preliminaries

2.1. The 2-Wasserstein metric. Let M be a compact smooth Riemannian manifold and
P(M) the set of Borel probability measures on it. The Wasserstein distance W2 on P(M) is
usually defined by minimizing the transport cost with respect to the cost function distance-
squared. It has been emphasized by Benamou and Brenier [4] that a completely different
introduction to the subject can be given in terms of solutions to the continuity equation.
The following result has been proved for M = Rd in [1] (see also [17]), the case of general
manifolds being a consequence of Nash’s embedding theorem (see also [7, Proposition 2.5] for
a direct proof on manifolds).

Proposition/Definition 2.1. LetM be a compact smooth Riemannian manifold and µ, ν ∈
P(M). Then we have

W 2
2 (µ, ν) = min

∫ 1

0

∫
M
|vt|2(x) dµt(x) dt , (2.1)

the minimum being taken among all distributional solutions (µt, vt) of the continuity equation

d

dt
µt +∇ · (vtµt) = 0 , (2.2)

such that t 7→ µt is weakly continuous in duality with C(M) and µ0 = µ, µ1 = ν.

In the sequel, when considering the continuous setting we will work with M being the
d-dimensional torus Td := Rd/Zd and we will consider solutions to the continuity equation
in terms of probability densities and momentum vector fields. To fix the ideas, we give the
following definition.

Definition 2.2 (Solutions to the continuity equation in the continuous torus). Consider the
mappings [0, 1]×Td 3 (t, x) 7→ ρt(x) ∈ R and [0, 1]×Td 7→ Vt(x) ∈ Rd. We say that (ρt, Vt)
solves the continuity equation

d

dt
ρt +∇ · Vt = 0 , (2.3)

provided both (t, x) 7→ ρt(x) and (t, x) 7→ Vt(x) are in L1([0, 1]×Td), t 7→ ρt is continuous with
respect to convergence in duality with C(Td), and (2.3) is satisfied in the sense of distributions.

2.2. Discrete transportation metrics. In several recent works [5, 13, 14] discrete ana-
logues of W2 have been considered, which are well suited to study evolution equations in a
discrete setting. The definition of the Wasserstein distance requires a metric on the underly-
ing space. In [13], instead, the starting point is a Markov kernel K on the finite set X , i.e.,
we assume that K : X × X → R+ satisfies

∑
y∈X K(x, y) = 1 for all x ∈ X . We assume that

K is irreducible and denote the unique steady state by π. Thus π is the unique probability
measure on X satisfying

π(y) =
∑
x∈X

π(x)K(x, y)

for all y ∈ X . We shall assume that K is reversible, i.e., the detailed balance equations

K(x, y)π(x) = K(y, x)π(y)
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hold for all x, y ∈ X . Since basic Markov chain theory implies that π is strictly positive, we
can – and will – identify probability measures on X with their densities with respect to π,
i.e., we set

P(X ) :=
{
ρ : X → R+ |

∑
x∈X

π(x)ρ(x) = 1
}
.

In order to define the metric W on P(X ), we let θ : R+×R+ → R+ denote the logarithmic
mean, which is defined by

θ(s, t) =

∫ 1

0
s1−ptp dp .

For ρ ∈P(X ) and x, y ∈ X we set

ρ̂(x, y) = θ(ρ(x), ρ(y)) ,

which can be regarded informally as being “the density ρ at the edge (x, y)”. According to
[8, Lemma 2.6], the following definition can be taken as one of the equivalent definitions of
the transportation metric W on P(X ).

Definition 2.3. Let K be an irreducible and reversible Markov kernel on a finite set X , and
let ρ̄0, ρ̄1 ∈P(X ). The distance W(ρ̄0, ρ̄1) is defined by

W(ρ̄0, ρ̄1)2 = inf

{
1

2

∫ 1

0

∑
x,y∈X

Vt(x, y)2

ρ̂t(x, y)
K(x, y)π(x) dt

}
, (2.4)

where the infimum runs over all curves [0, 1] 3 t 7→ (ρt, Vt) such that:

(i) ρt ∈ P(X ) for any t ∈ [0, 1], the function t 7→ ρt(x) is continuous for any x ∈ X , and
ρ0 = ρ̄0, ρ1 = ρ̄1;

(ii) Vt : X × X → R for any t ∈ [0, 1], and the function t 7→ Vt(x, y) belongs to L1(0, 1) for
any x, y ∈ X ;

(iii) the “discrete continuity equation”

d

dt
ρt(x) +

1

2

∑
y∈X

(
Vt(x, y)− Vt(y, x)

)
K(x, y) = 0 (2.5)

holds for all x ∈ X in the sense of distributions.

2.3. The transportation metric on the discrete torus. In this paper we shall only be
concerned with simple random walk on the d-dimensional discrete torus Td

N := (Z/NZ)d =

{0, . . . , N − 1}d, in which case the kernel KN : Td
N ×Td

N → [0, 1] is given by

KN (a,b) =

{
1
2d , b = a± ei mod N for some i ∈ {1, . . . , d} ,
0, otherwise .

Here, ei denotes the i-th unit vector. All computations in Td
N will be performed modulo N

without further mentioning.
In this case the stationary probability measure πN is the uniform measure given by πN (a) =

N−d for all a ∈ Td
N . Therefore, the collection of probability densities with respect to πN is

given by

P(Td
N ) =

{
ρN : Td

N → R+

∣∣∣ ∑
a∈Td

N

ρN (a) = Nd
}
.
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For functions f, g : Td
N → R we consider the normalized L2-inner product

〈f, g〉L2
N

=
1

Nd

∑
a∈Td

N

f(a)g(a)

and the Dirichlet form

EN (f, g) =
1

Nd−2

∑
a∈Td

N

d∑
i=i

(
f(a + ei)− f(a)

)(
g(a + ei)− g(a)

)
.

Furthermore we set

‖f‖L2
N

=
√
〈f, f〉L2

N
, EN (f) = EN (f, f) .

Let ∆N be the discrete Laplacian, defined by

∆Nf(a) = 2dN2(KN − I)f(a) = N2
d∑
i=1

(
f(a + ei)− 2f(a) + f(a− ei)

)
for a ∈ Td

N . Notice that following integration by parts formula holds:

EN (f, g) = −〈∆Nf, g〉L2
N
. (2.6)

Moreover, given g : Td
N → R, the equation ∆Nf = g can be solved if and only if

∑
a∈Td

N
g(a) =

0, in which case the solution is unique. We shall use the well-known Poincaré inequality on
Td
N , which we now recall.

Proposition 2.4 (Poincaré inequality on Td
N ). Let d ≥ 1 and N ≥ 4. For all f : Td

N → R
with

∑
a∈Td

N
f(a) = 0 we have

‖f‖2L2
N
≤ 1

2N2(1− cos(2π/N))
EN (f) ,

EN (∆−1
N f) ≤ 1

2N2(1− cos(2π/N))
‖f‖2L2

N
.

Proof. One way to prove the first inequality is as follows. If d = 1, then the spectrum of the
operator I −KN on L2(Td

N , πN ) consists of the eigenvalues

1− cos(2πn/N) , 0 ≤ n ≤ N − 1 ,

(see, e.g., [6, Section 4.2]), which yields the result if d = 1. The result in dimension d > 1
follows by tensorization (see, e.g., [6, Lemma 3.2]).

The second inequality follows from the first one, using the integration by parts formula
(2.6). �

Remark 2.5. In the limit N →∞, one recovers the classical Poincaré inequality on the torus
Td:

‖f‖2L2(Td) ≤
1

2π2
‖∇f‖2L2(Td) ,

valid for any f with zero mean.
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It will be useful to introduce some more notation. For a = (a1, . . . , ad) ∈ Td
N we define the

cube QNa by

QNa :=
[a1

N
,
a1 + 1

N

)
× · · · ×

[ad
N
,
ad + 1

N

)
⊆ Td ,

so that the torus Td = Rd/Zd can be written as the disjoint union

Td =
⋃

a∈Td
N

QNa .

For i = 1, . . . , d, the facets of QNa will be denoted by

RNa,i− =
[a1

N
,
a1 + 1

N

]
× · · ·

{ai
N

}
· · · ×

[ad
N
,
ad + 1

N

]
,

RNa,i+ =
[a1

N
,
a1 + 1

N

]
× · · ·

{ai + 1

N

}
· · · ×

[ad
N
,
ad + 1

N

]
.

The collection of all these facets RNa,i± will be denoted by RN . For R = RNa,i± ∈ RN we shall
write

ρ̂(RNa,i±) := θ(QNa , Q
N
a±ei) .

Notice that KN (a,b) is non-zero only for a,b such that a − b = ±ei for some i = 1, . . . , d.
Therefore we can think about the vector fields V : Td

N × Td
N → R appearing in Definition

2.3(ii) as being defined on facets R ∈ RN , rather than on generic couples a,b. This will be
our convention from now on.

Let WKN
denote the metric on P(Td

N ) associated with the kernel KN according to Defi-
nition 2.3. It will be convenient to work with the normalised metric

WN :=
WKN

N
√

2d
,

which is a quantity of order 1.
Given a probability density ρN ∈ P(Td

N ) and a ‘momentum vector field’ VN : RN → R,
the action AN of (ρN , VN ) is defined by

AN (ρN , VN ) :=
1

4d2Nd+2

∑
R∈RN

VN (R)2

ρ̂N (R)
. (2.7)

With this notation and taking Definition 2.3 into account, it is immediate to obtain the
following expression for the metric WN .

Lemma 2.6. For any ρ̄N,0, ρ̄N,1 ∈P(Td
N ) we have

WN (ρ̄N,0, ρ̄N,1)2 = inf

{∫ 1

0
AN (ρN,t, VN,t) dt

}
, (2.8)

where the infimum runs over all curves [0, 1] 3 t 7→ (ρN,t, VN,t) such that:

(i) ρN,t ∈ P(Td
N ) for any t ∈ [0, 1], and the function t 7→ ρN,t(a) is continuous for any

a ∈ Td
N with ρN,0 = ρ̄N,0, ρN,1 = ρ̄N,1;

(ii) VN,t : RN → R for any t ∈ [0, 1], and the function t 7→ VN,t(R) belongs to L1(0, 1) for

any R ∈ RN ;
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(iii) the discrete continuity equation

d

dt
ρN,t(a) +

1

2d

d∑
i=1

(
VN,t(R

N
a,i+)− VN,t(RNa,i−)

)
= 0 (2.9)

holds for all a ∈ Td
N in the sense of distributions.

By analogy with Definition 2.2 we formulate the following discrete counterpart.

Definition 2.7 (Solutions to the continuity equation in the discrete torus). Let [0, 1]×Td
N 3

(t,a) 7→ ρN,t(a) ∈ R and [0, 1] ×RN 3 (t, R) 7→ VN,t(R) ∈ Rd. We say that (ρN,t, VN,t) is
a solution to the discrete continuity equation (2.9) provided that (i), (ii) and (iii) in Lemma
2.6 are fulfilled.

Finally, we recall a couple of properties of WN that will be used in the sequel. We shall
use the metric dN on Td

N defined by

dN (a,b) =
1

N

√√√√ d∑
i=1

|ai − bi|2

for a,b ∈ Td
N . We let

W2,N (2.10)

denote the standard 2-Wasserstein distance on P(Td
N ) induced by the distance dN on Td

N .
In the following result we collect some basic properties of the metric WN .

Proposition 2.8. The following assertions hold.

(i) The function (ρ, σ) 7→ W2
N (ρ, σ) is convex on P(Td

N ) ×P(Td
N ) with respect to linear

interpolation.
(ii) There exists a universal constant C > 0 such that

WN ≤
C√
d
W2,N .

In particular, the diameter of the spaces (P(Td
N ),WN ) is bounded by a constant de-

pending only on the dimension.

Proof. The first assertion has been proved in [8, Proposition 2.8]. For the second assertion,
we apply [8, Proposition 2.12] to obtain

WN ≤
c

dN
W ′2,N ,

where c ≈ 0, 78 is a universal constant and W ′2,N is the 2-Wasserstein distance on P(Td
N )

induced by the distance d′N on Td
N , defined by d′N (a,b) :=

∑
i |ai − bi|. Since d′N (a,b) ≤√

dNdN (a,b), we have W ′2,N ≤
√
dNW2,N , which implies yields the desired estimate. Since

the diameter of the spaces (Td
N , dN ) is uniformly bounded by a dimensional constant, the

final assertion follows as well. �
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2.4. Some properties of the heat semigroup on the discrete and continuous torus.
We endow the continuous torus Td with its natural Riemannian flat distance, and we denote
the Lebesgue measure by π.

Let (Ht)t≥0 be the heat semigroup on Td with generator ∆, acting either on measures or
functions. The heat semigroup on Td

N is the semigroup generated by the discrete Laplacian
∆N , and will be denoted by (HNt )t≥0.

Let ht be the heat kernel on Td, i.e., the density of Ht(δ0) with respect to π. Similarly, hNt
will denote the heat kernel on Td

N , which is defined by hNt (x) = HNt (Nd1{0})(x). We thus
have the formulas

Htf(x) =

∫
Td

ht(x− y)f(y) dπ(y) , HNt fN (a) =
1

Nd

∑
b∈Td

N

hNt (a− b)fN (b) ,

valid for all L1-functions f : Td → R and fN : Td
N → R.

The heat semigroup on Td acts on vector fields as well coordinatewise. Similarly, the action
of HNt on a vector field VN : RN → R can be defined via

HNt VN (RNa,i+) :=
1

Nd

∑
b∈Td

N

hNt (a− b)VN (RNb,i+) . (2.11)

Given a function f : Td → R, its Lipschitz constant will be denoted by Lip(f). Similarly,
we define the Lipschitz constant of a function f : Td

N → R by

LipN (f) := sup
a6=b

|f(a)− f(b)|
dN (a,b)

.

The propositions below collect some basic properties of the heat flows that we will use in the
sequel.

Proposition 2.9 (Heat flow on the continuous torus). The following assertions hold for all
s > 0.

(i) There exist constants c(s) > 0 and C(s) <∞ such that for any µ ∈P(Td) the density
ρs of Hsµ satisfies

ρs ≥ c(s) and Lip(ρs) ≤ C(s) .

Furthermore, there exists a dimensional constant C <∞ such that

W2(Hsµ, µ) ≤ C
√
s .

(ii) There exists a constant C(s) <∞ such that for any f ∈ L1(Td) we have

‖Hsf‖L∞ + Lip(Hsf) ≤ C(s)‖f‖L1 .

(iii) Let (µt) ⊂P(Td) be a geodesic, let vt be the corresponding velocity vector fields achieving
the minimum in (2.1), and let ρs,t and Vs,t be the densities of Hs(µt) and Hs(vtµt)
respectively. Then, t 7→ (ρs,t, Vs,t) is a solution to the continuity equation (2.3), and we
have ∫ 1

0

∫
Td

V 2
s,t(x)

ρs,t(x)
dx dt ≤W 2

2 (µ0, µ1) . (2.12)
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Proof. The first assertions in (i) are obvious. To prove the last claim in (i), notice that
by the convexity of W 2

2 it is sufficient to prove the claim when µ is a Dirac mass. In this
case the result follows from the fact that the heat kernel on the torus can be represented by
periodization of the heat kernel on Rd, and the parabolic scaling of the latter.

The result of (ii) is standard, and (iii) follows from the convexity of Rd×R+ 3 (x, a) 7→ x2

a
and the fact that Hs is a convolution operator, see, e.g., Lemma 8.1.10 in [1]. �

Proposition 2.10 (Heat flow on the discrete torus). The following assertions hold for s > 0.

(i) There exists a dimensional constant C > 0 such that for any ρN ∈P(Td
N ) we have

LipN (HNs ρN ) ≤ min
{
Cs−(d+1)/2, LipN (ρN )

}
.

(ii) For any ρN ∈P(Td
N ) and any momentum vector field VN : RN → Rd we have

AN (HNs ρN ,H
N
s VN ) ≤ AN (ρN , VN ) .

Proof. The estimate LipN (HNs ρN ) ≤ LipN (ρN ) in (i) is a simple consequence of the fact that

the heat semigroup consists of convolution operators. Taking the convexity of (x, a, b) 7→ x2

θ(a,b)

into account, this also gives (ii).
To prove the remaining bound in (i), we note that for any probability density ρN ∈P(Td

N ),

|HNs ρN (a)− HNs ρN (b)| = 1

Nd

∣∣∣∣ ∑
c∈Td

N

(
hNs (a− c)− hNs (b− c)

)
ρN (c)

∣∣∣∣
≤ 1

Nd

( ∑
c∈Td

N

ρN (c)

)
sup
c∈Td

N

∣∣hNs (a− c)− hNs (b− c)
∣∣

= sup
c∈Td

N

∣∣hNs (a− c)− hNs (b− c)
∣∣ .

Since hNs (a) = h1,N
s (a1) · . . . · h1,N

s (ad), where h1,N denotes the heat kernel in one dimension,
we infer that ∣∣hNs (a)− hNs (b)

∣∣ ≤ ‖h1,N
s ‖d−1

L∞

d∑
k=1

|h1,N
s (ak)− h1,N

s (bk)|

≤
√
ddN (a,b) ‖h1,N

s ‖d−1
L∞ LipN (h1,N

s ) ,

and therefore

LipN (HNs ρN ) ≤
√
d ‖h1,N

s ‖d−1
L∞ LipN (h1,N

s ) , (2.13)

so it remains to obtain bounds on the heat kernel in one dimension. These can be obtained
using the well-known (and easy to check) fact that, if d = 1, the spectrum of the operator
−∆N consists of the eigenvalues

λl = 2dN2
(
1− cos(2πl/N)

)
, l ∈ LN :=

{
z ∈ Z :

⌊
− N

2

⌋
+ 1 ≤ z ≤

⌊N
2

⌋}
.

Note that λl = λ−l. The corresponding eigenvectors vl are given by

vl(a) = exp
(2πila

N

)
, l ∈ LN .
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As a consequence, the heat kernel h1,N
s can be written explicitly as

h1,N
s (a) =

∑
l∈LN

e−λlsvl(a) .

We shall use the fact that there exists a constant c > 0 such that for all N ≥ 1 and l ∈ LN ,

|λl| ≥ cl2 , ‖vl‖L∞ ≤ 1 , and LipN (vl) ≤ cl .

It follows that for some constant C > 0 and all a,b ∈ Td
N ,∣∣h1,N

s (a)
∣∣ ≤ ∑

l∈LN

e−λls|vl(a)| ≤
∑
l∈LN

e−cl
2s ≤ C√

s
,

∣∣h1,N
s (a)− h1,N

s (b)
∣∣ ≤ ∑

l∈LN

e−λls|vl(a)− vl(b)| ≤ C
∑
l∈LN

le−cl
2sdN (a,b) ≤ C

s
dN (a,b) ,

so that ‖h1,N
s ‖L∞ ≤ Cs−1/2 and LipN (h1,N

s ) ≤ Cs−1. Plugging these estimates into (2.13),
we obtain the desired result. �

3. Proof of the main result

3.1. Ingredients and structure of the proof. In order to prove the stated Gromov-
Hausdorff convergence of the spaces (P(Td

N ),WN ), we will introduce the natural mappings
from the continuous torus to the discrete one, and those going the other way around.

First we construct discrete measures by integration over cubes, and discrete vector fields
by integration over facets:

Definition 3.1 (From Td to Td
N ). Given a probability measure µ ∈P(Td) and N ∈ N the

probability density PN (µ) ∈P(Td
N ) is defined as

PN (µ)(a) := Ndµ(QNa ) .

Similarly, given a continuous momentum vector field V = (V1, . . . , Vd) : Td → Rd we define
PN (V ) : RN → R by

PN (V )(R) := 2dNd

∫
R
Vi(x) dx , R = RNa,i± ∈ RN .

Probability densities on Td are defined by piecewise constant extensions of densities on
Td
N , and vector fields on Td are defined by linear interpolation.

Definition 3.2 (From Td
N to Td). Given a probability density ρN ∈P(Td

N ) and a momentum

vector field V N : RN → Rd, the probability measure QN (ρN )π ∈P(Td) and the momentum
vector field QN (V N ) : Td → Rd are defined as

QN (ρN )(x) := N−dρN (a) ,

QN (V N )i(x) :=
1

2dN

(
(1−Nxi + ai)V

N (RNa,i−) + (Nxi − ai)V N (RNa,i+)
)
,

where a = (a1, . . . , ad) ∈ Td
N is uniquely determined by the condition x = (x1, . . . , xd) ∈ QNa .

The maps PN , QN will be the ones that we use to prove Gromov-Hausdorff convergence.
They are constructed in such a way that ensures that solutions of the continuity equation are
mapped to solutions of the continuity equation.
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Proposition 3.3. The following assertions hold:

(1) Let (ρt, Vt) be a solution to the continuity equation (2.3) such that the mapping x 7→
Vt(x) is continuous for almost every t. Then (PN (ρt),PN (Vt)) solves the discrete
continuity equation (2.9).

(2) Vice versa, let (ρN,t, VN,t) be a solution to the discrete continuity equation (2.9). Then
(QN (ρN,t),QN (VN,t)) solves the continuity equation (2.3).

Proof. These statements are direct consequences of the definitions and the Gauss–Green The-
orem. �

It follows from the definitions that PN ◦ QN is the identity operator on P(Td
N ). On the

other hand, QN ◦ PN is a good approximation of the identity in the following sense.

Lemma 3.4. For all µ ∈P(Td) and all N ≥ 2 we have

W2(QN (PN (µ)), µ) ≤
√
d

N
. (3.1)

Proof. Since both measures agree on each cube QNa , it follows that

W2(QN (PN (µ)), µ)2 ≤
∑

a∈Td
N

µ(QNa ) diam(QNa )2 .

Taking into account that the diameter of each QNa equals
√
d/N , the result follows. �

The following simple result allows us to compare the 2-Wasserstein distances on P(Td)
and P(Td

N ). Recall that W2,N has been defined in (2.10).

Lemma 3.5. For all µ0, µ1 ∈P(Td) we have

W2,N (PN (µ0),PN (µ1)) ≤
√

2W2(µ0, µ1) +

√
2d

N
.

Proof. Define TN : Td → Td
N by TN (x) := a whenever x ∈ QNa . Since |(TNx)i − (TNy)i| ≤

1 +N |xi − yi| for x, y ∈ Td, we have

dN (TNx, TNy) ≤ |x− y|+
√
d

N
.

Using the fact that PN (µi) = (TN )#µi, the result follows. �

In order to carry out our estimates, we will sometimes need some regularity on the proba-
bility densities involved. For this reason, we introduce the following set.

Definition 3.6 (Regular densities). Let δ > 0. Then the set Pδ(T
d
N ) ⊂ P(Td

N ) is the set

of probability densities ρN ∈P(Td
N ) such that

min
a∈Td

N

ρN (a) ≥ δ , LipN (ρN ) ≤ δ−1 .

Notice that the projections PN preserve this sort of regularity, i.e.,

LipN (PN (ρ)) ≤ Lip(ρ) , min
a∈Td

N

PN (ρ)(a) ≥ inf
x∈Td

ρ(x) , (3.2)

as is readily checked from the definitions.
The set Pδ(T

d
N ) is endowed with the following distance, which is obtained by minimizing

the action functional over all paths in the space of regular densities.
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Definition 3.7 (The distance WN,δ). Let δ > 0 and ρN,0, ρN,1 ∈ Pδ(T
d
N ). The distance

WN,δ(ρN,0, ρN,1) is defined as(
WN,δ(ρN,0, ρN,1)

)2
:= inf

{∫ 1

0
AN (ρN,t, VN,t) dt

}
,

the infimum being taken among all solutions (ρN,t, VN,t) of the continuity equation (2.9) such

that ρN,t ∈Pδ(T
d
N ) for any t ∈ [0, 1].

The last tool that we need is a variant of the distance WN on P(Td
N ), where instead of

the logarithmic mean θ one considers the harmonic mean θ̃ given by

θ̃(a, b) :=
2ab

a+ b

for any a, b > 0. If a = 0 or b = 0, we set θ̃(a, b) = 0. For ρN ∈P(Td
N ) and R = RNa,i+ ∈ RN

we put

ρ̃N (R) := θ̃(ρN (a), ρN (a + ei)) .

Definition 3.8 (The distance W̃N ). For ρN,0, ρN,1 ∈ P(Td
N ), the metric W̃N (ρN,0, ρN,1) is

defined as (
W̃N (ρN,0, ρN,1)

)2
:= inf

{∫ 1

0

1

4d2Nd+2

∑
R∈RN

VN,t(R)2

ρ̃N,t(R)
dt

}
,

the infimum being taken among all solutions (ρN,t, VN,t) of the continuity equation (2.9).

Distances of this form have already been introduced in [13]. Notice that since θ̃(a, b) ≤
θ(a, b) for any a, b ≥ 0, it follows immediately that W̃N ≥ WN .

Let us now describe our strategy to prove Theorem 1.1. We start with two measures
µ0, µ1 ∈ P(Td), regularize them a bit using the heat flow for a short time s > 0, and then
show (Proposition 3.10) that for some constant C(s) <∞ (independent on µ0, µ1) we have

WN (PN (Hs(µ0)),PN (Hs(µ1))) ≤W2(µ0, µ1) +
C(s)√
N

.

This will follow quite easily. The converse inequality will be harder to achieve, as the nat-
ural inequality that one obtains for ρN,0, ρN,1 ∈ P(Td

N ) (in Proposition 3.11) involves the
harmonic mean rather than the logarithmic mean, i.e., we prove that

W2(QN (ρN0 ),QN (ρN1 )) ≤ W̃N (ρN0 , ρ
N
1 ) .

Thus the problem becomes to bound W̃N from above in terms of WN plus a small error.
Unfortunately, the harmonic-logarithmic mean inequality θ̃(a, b) ≤ θ(a, b) goes in the ‘wrong’
direction, but the elementary inequality

1

θ̃(a, b)
− 1

θ(a, b)
≤ (b− a)2

ab

1

θ̃(a, b)

that we establish in Proposition 3.12, allows us to obtain an estimate for all regular densities,
i.e.,

W̃N (ρN0 , ρ
N
1 ) ≤

(
1− 1

δ4N2

)− 1
2

WN,δ(ρ
N
0 , ρ

N
1 ) .
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for ρN0 , ρ
N
1 ∈Pδ(T

d
N ),

Thus at the end everything reduces to prove thatWN,δ can be bounded above, up to a small
error, by WN . Clearly, this is false without some additional assumptions on the measures
we want to interpolate. The idea is then to notice that the measures on the discrete torus
that we produced in our first step, using PN after an application of the heat flow, belong to
Pδ(T

d
N ) for some δ > 0. We then show in Proposition 3.13, which is technically the most

involved, that given ε, δ > 0, there exists δ̄ > 0 such that the bound

WN,δ̄(ρN,0, ρN,1) ≤ WN (ρN,0, ρN,1) + ε

holds for any ρN,0, ρN,1 ∈Pδ(T
d
N ). This will be enough to complete the argument.

3.2. Estimates. Here we collect all the estimates that we need to implement the strategy
outlined above. We start by observing the effect of PN on the action of vector fields.

Lemma 3.9. Let µ = ρπ ∈P(Td) be a probability measure and V : Td → Rd a momentum
vector field. Assume that both ρ and V are Lipschitz and that min ρ > 0. Put ρN := PN (µ)
and V N := PN (V ). Then there exists a universal constant C > 0, such that for any N ≥ 1
we have the bound

AN (ρN , V N ) ≤
∫
Td

|V (x)|2

ρ(x)
dx+

Cd

N

(
‖V ‖L∞ Lip(V )

min ρ
+
‖V ‖2L∞ Lip(ρ)

(min ρ)2

)
. (3.3)

Proof. We apply Jensen’s inequality to the convex function (x, y, z) 7→ x2

θ(y,z) to obtain for

R = RNa,i± ∈ RN ,

1

2d2Nd+2

V N (R)2

ρ̂N (R)
=

2

N2

( ∫
R Vi(r) dr

)2

θ
( ∫

R

∫ 1/N
0 ρ(r − hei) dh dr ,

∫
R

∫ 1/N
0 ρ(r + hei) dh dr

)
≤ 2

∫
R

∫ 1
N

0

|Vi(r)|2

θ
(
ρ(r − hei) , ρ(r + hei)

) dh dr

=

∫
R

∫ 1
N

− 1
N

|Vi(r)|2

θ
(
ρ(r − hei) , ρ(r + hei)

) dh dr .

(3.4)

Using the elementary fact that for x, x̃ ∈ R and y ≥ ỹ > 0,∣∣∣x2

y
− x̃2

ỹ

∣∣∣ ≤ |x+ x̃|
ỹ
|x− x̃|+ x2

ỹ2
|y − ỹ| ,

we obtain for r ∈ R and |h| ≤ 1
N ,∣∣∣∣ |Vi(r)|2

θ
(
ρ(r − hei) , ρ(r + hei)

) − |Vi(r + hei)|2

ρ(r + hei)

∣∣∣∣ ≤ C

N

(
‖V ‖L∞ Lip(V )

min ρ
+
‖V ‖2L∞ Lip(ρ)

(min ρ)2

)
,

for some universal constant C > 0. Combining this bound with (3.4), and summing over all
R ∈ RN the result follows. �

The previous result can be used to obtain the following lower bound for the Wasserstein
metric W2.
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Proposition 3.10. Let s > 0. There exists a dimensional constant C(s) < ∞ such that for
all probability measures µ0, µ1 ∈P(Td) and for all N ≥ 1 we have

WN (PN (Hs(µ0)),PN (Hs(µ1))) ≤W2(µ0, µ1) +
C(s)√
N

.

Proof. Let (µt) be a constant speed geodesic connecting µ0 to µ1 in (P(Td),W2), and let (vt)
denote the corresponding velocity vector field achieving the minimum in (2.1). For s > 0, let
ρs,t and Vs,t be the densities with respect to π of Hs(µt) and Hs(vtµt) respectively. According
to (iv) of Proposition 2.9, for given s > 0, the curve t 7→ (ρs,t, Vs,t) is a solution to the
continuity equation (2.3) and we have∫ 1

0

∫
Td

|Vs,t(x)|2

ρs,t(x)
dt dx ≤W 2

2 (ρ0, ρ1) . (3.5)

By (i) and (ii) of Proposition 2.9 we also know that there exists constants c(s) > 0 and
C(s) <∞ such that for all t ∈ [0, 1],

inf
x∈Td

ρs,t(x) ≥ c(s) , Lip(ρs,t) ≤ C(s) , ‖Vs,t‖L∞ + Lip(Vs,t) ≤ C(s)‖Vs/2,t‖L1 . (3.6)

Set t 7→ ηN,t := PN (Hs(µt)) and t 7→ WN,t := PN (Vs,t). By Proposition 3.3 the curve
(ηN,t,WN,t) solves the continuity equation (2.9). Applying Lemma 3.9, (3.6) and (3.5), we
obtain for some (different) dimensional constant C(s) <∞,

WN (PN (Hs(µ0)),PN (Hs(µ1)))2

≤
∫ 1

0
AN (ηN,t,WN,t) dt

≤
∫ 1

0

[ ∫
Td

|Vs,t(x)|2

ρs,t(x)
dx+

Cd

N

(
‖Vs,t‖L∞ Lip(Vs,t)

min ρs,t
+
‖Vs,t‖2L∞ Lip(ρs,t)

(min ρs,t)2

)]
dt

≤W 2
2 (ρ0, ρ1) +

C(s)

N

∫ 1

0
‖Vs/2,t‖2L1 dt .

Applying the Cauchy-Schwarz inequality in the form∥∥Vs/2,t∥∥2

L1 ≤
∫
Td

|Vs/2,t(x)|2

ρs/2,t(x)
dx ,

together with (3.5), we obtain

WN (PN (Hs(µ0)),PN (Hs(µ1)))2 ≤W2(ρ0, ρ1)2 +
C(s)

N

∫ 1

0

∫
Td

|Vs/2,t(x)|2

ρs/2,t(x)
dx dt

≤W2(ρ0, ρ1)2 +
C(s)

N
W2(ρ0, ρ1)2 .

Taking into account that (P(Td),W2) has finite diameter, we obtain the the result by taking

square roots and using that
√
a+ b ≤

√
a+
√
b. �

The next result provides a lower bound for W2. Recall that W̃N is defined using the
harmonic mean instead of the logarithmic mean.

Proposition 3.11. Let N ≥ 1 and ρN0 , ρ
N
1 ∈P(Td

N ). Then

W2(QN (ρN0 ),QN (ρN1 )) ≤ W̃N (ρN0 , ρ
N
1 ) . (3.7)
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Proof. Let t 7→ (ρNt , V
N
t ) be a solution to the continuity equation (2.9). Define ρt := QN (ρNt )

and Vt := QN (V N
t ). Then, for every t ∈ [0, 1] we have∫

Td

|Vt(x)|2

ρt(x)
dx =

∑
a∈Td

N

∫
QN

a

|Vt(x)|2

ρt(x)
dx

=
1

Nd−1

∑
a,i

1

ρNt (a)

∫ ai+1

N

ai
N

∣∣∣∣1−Nxi + ai
2dN

V N
t (RNa,i−) +

Nxi − ai
2dN

V N
t (RNa,i+)

∣∣∣∣2 dxi

=
1

4d2Nd+2

∑
a,i

1

ρNt (a)

∫ 1

0

∣∣(1− y)V N
t (RNa,i−) + yV N

t (RNa,i+)
∣∣2 dy

≤ 1

4d2Nd+2

∑
a,i

V N (RNa,i−)2 + V N (RNa,i+)2

2ρN (a)

=
1

4d2Nd+2

∑
a,i

V N (RNa,i+)2

2

(
1

ρN (a)
+

1

ρN (a + ei)

)

=
1

4d2Nd+2

∑
a,i

V N (RNa,i+)2

ρ̃N (RNa,i+)
.

Since from Proposition 3.3 we know that t 7→ (ρt, Vt) solves the continuity equation, we obtain

W 2
2 (ρ0, ρ1) ≤

∫ 1

0

∫
Td

|Vt(x)|2

ρt(x)
dx dt ≤ 1

4d2Nd+2

∑
R∈RN

∫ 1

0

V N
t (R)2

ρ̃Nt (R)
dt .

Taking the infimum over all the solutions (ρNt , V
N
t ) of (2.9) and recalling the Definition 3.8

of W̃N we get the result. �

For regular densities, the following result compares the distances defined using the harmonic

and the logarithmic means. Note that the reverse inequality WN ≤ W̃N follows directly from
the harmonic-logarithmic mean inequality.

Proposition 3.12. Let δ > 0, N > δ−2 and ρN0 ρ
N
1 ∈Pδ(T

d
N ). Then the following estimate

holds:

W̃N (ρN0 , ρ
N
1 ) ≤

(
1− 1

δ4N2

)− 1
2

WN,δ(ρ
N
0 , ρ

N
1 ) . (3.8)

Proof. Let b ≥ a > 0 and, as before, let θ̃(a, b) := 2
1
a

+ 1
b

be the harmonic mean. Set f(t) =

((1− t)a+ tb)−1 and notice that

1

θ(a, b)
=

∫ 1

0
f(t) dt ,

1

θ̃(a, b)
=

1

2
(f(0) + f(1)) .

Since f is convex and non-increasing, we obtain

1

θ̃(a, b)
− 1

θ(a, b)
=

1

2

∫ 1

0
f(0)− f(t) dt+

1

2

∫ 1

0
f(1)− f(t) dt

≤ 1

2

(
f ′(1)− f ′(0)

)
=
b− a

2

(
1

a2
− 1

b2

)
=

(b− a)2

ab

1

θ̃(a, b)
.
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Therefore, for ρN ∈Pδ(T
d
N ) and R ∈ RN we have

1

ρ̃N (R)
≤
(

1− 1

δ4N2

)−1 1

ρ̂N (R)
,

and the result follows applying this inequality along a geodesic in (Pδ(T
d
N ),WN,δ) connecting

ρN0 to ρN1 . �

The final proposition in this subsection shows that regular densities can be connected by
a curve consisting of (a bit less) regular densities, for which the action functional is almost
optimal.

Proposition 3.13. Let ε, δ ∈ (0, 1). Then there exists δ̄ > 0 such that for any N ≥ 4 and
ρN,0, ρN,1 ∈Pδ(T

d
N ), we have the bound

WN,δ̄(ρN,0, ρN,1) ≤ WN (ρN,0, ρN,1) + ε . (3.9)

Proof. Let a, b ∈ (0, δ) to be fixed later and t 7→ (ρN,t, VN,t) be a WN -geodesic connecting
ρN,0 to ρN,1. Define the curves t 7→ (ρ1

N,t, V
1
N,t) and t 7→ (ρ2

N,t, V
2
N,t) by

ρ1
N,t := (1− a)ρN,t + a , V 1

N,t := (1− a)VN,t , (3.10)

ρ2
N,t := HNb (ρ1

N,t) , V 2
N,t := HNb (V 1

N,t) . (3.11)

The latter expression should be interpreted in the sense of (2.11).
Step 1: From ρN,j to ρ1

N,j for j = 0, 1.

For j = 0, 1, we define s 7→ ηN,s,j as the linear interpolation between ρN,j and ρ1
N,j , i.e.,

ηN,s,j(a) := (1− s)ρN,j(a) + sρ1
N,j(a) = ρN,j(a) + sa

(
1− ρN,j(a)

)
.

Notice that since
∑

a∈Td
N

1− ρN,j(a) = 0, it makes sense to define

WN,s,j(R
N
a,i±) := ∓2adN2

(
∆−1
N (1− ρN,j)(a± ei)−∆−1

N (1− ρN,j)(a)
)
,

with 1 being the density constantly equal to one. A direct computation shows that s 7→
(ηN,s,j ,WN,s,j) is a solution to the continuity equation (2.9). Notice that actually WN,s,j does
not depend on s. Taking into account that

ηN,s,j(a) ≥ a , a ∈ Td
N , s ∈ [0, 1] , j = 0, 1 , (3.12)

recalling the Poincaré inequality (Proposition 2.4), and using the trivial bound

EN (1− ρN,j) ≤ d (LipN (ρN,j))
2 ≤ dδ−2 ,
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we obtain

AN (ηN,s,j ,WN,s,j) =
1

4d2Nd+2

∑
a∈Td

N

d∑
i=1

(
WN,s,j(R

N
a,i+)

)2
η̂N,s,j(RNa,i+)

≤ a

Nd−2

∑
a∈Td

N

d∑
i=1

(
∆−1
N (1− ρN,j)(a + ei)−∆−1

N (1− ρN,j)(a)
)2

= a EN (∆−1
N (1− ρN,j))

≤ a

κ
‖1− ρN,j‖2L2

N

≤ a

κ2
EN (1− ρN,j)

≤ ad

κ2δ2
,

(3.13)

where κ := infN≥4 2N2(1− cos(2π/N)) > 0. Notice also that

LipN (ηN,s,j) ≤ LipN (ρN,j) ≤ δ−1 , s ∈ [0, 1] , j = 0, 1 . (3.14)

Step 2: From ρ1
N,j to ρ2

N,j for j = 0, 1.

For j = 0, 1 we interpolate from ρ1
N,j and ρ2

N,j using the heat flow, i.e., we define s 7→
(σN,s,j , ZN,s,j) by

σN,s,j(a) := HNsb(ρ
1
N,j) ,

ZN,s,j(R
N
a,i±) := ∓2bdN2

(
σN,s,j(a± ei)− σN,s,j(a)

)
.

We then obtain

AN (σN,s,j , ZN,s,j)

=
1

4d2Nd+2

∑
a∈Td

N

d∑
i=1

ZN,s,j(R
N
a,i+)2

σ̂N,s,j(RNa,i+)

=
b2

Nd−2

∑
a,i

(
σN,s,j(a + ei)− σN,s,j(a)

)2
σ̂N,s,j(RNa,i+)

=
b2

Nd−2

∑
a,i

(
σN,s,j(a + ei)− σN,s,j(a)

)(
log(σN,s,j(a + ei))− log(σN,s,j(a))

)
= b2EN

(
σN,s,j , log(σN,s,j)

)
.

In view of Proposition 2.10(i) we obtain by construction,

σN,s,j(a) ≥ a , a ∈ Td
N , s ∈ [0, 1], j = 0, 1 , (3.15)

LipN (σN,s,j) ≤ LipN (ρ1
N,j) ≤ δ−1 , s ∈ [0, 1], j = 0, 1 . (3.16)

Hence LipN (log(σN,s,j)) ≤
LipN (σN,s,j)

minσN,s,j
≤ δ−2. Since |EN (f, g)| ≤ dLipN (f) LipN (g) we obtain

AN (σN,s,j , ZN,s,j) ≤
db2

δ3
. (3.17)

Step 3: From ρ2
N,0 to ρ2

N,1.
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From the convexity of the function (x, a, b) 7→ x2

θ(a,b) we get

AN (ρ1
N,t, V

1
N,t) ≤ (1− a)AN (ρN,t, VN,t) = (1− a)WN (ρN,0, ρN,1)2 ,

for any t ∈ [0, 1]. Using again the convexity of (x, a, b) 7→ x2

θ(a,b) and the fact that H acts as a

convolution semigroup, we also get

AN (ρ2
N,t, V

2
N,t) ≤ AN (ρ1

N,t, V
1
N,t)

for any t ∈ [0, 1]. Combining these two inequalities and integrating we get∫ 1

0
AN (ρ2

N,t, V
2
N,t) dt ≤

∫ 1

0
AN (ρ1

N,t, V
1
N,t) ≤ (1− a)WN (ρN,0, ρN,1)2 . (3.18)

Since the heat semigroup preserves positivity, we obtain

ρ2
N,t(a) ≥ a , a ∈ Td

N , t ∈ [0, 1] , (3.19)

and by (i) of Proposition 2.10 we have

LipN (ρ2
N,t) ≤ Cb−(d+1)/2 , t ∈ [0, 1] , (3.20)

for some universal constant C > 0.
Step 4: Gluing the pieces.

Let ` ∈ (0, 1/4) to be fixed later. We define the curve t 7→ (ρ3
N,t, V

3
N,t) on [0, 1] by gluing

the pieces together, that is,

(ρ3
N,t, V

3
N,t) :=



(ηN, t
`
,0 , `−1WN, t

`
,0) t ∈ [0, `] ,

(σN, t−`
`
,0 , `−1ZN, t−`

`
,0) t ∈ (`, 2`) ,

(ρ2
N, t−2`

1−4`

, (1− 4`)−1V 2
N, t−2`

1−4`

) t ∈ [2`, 1− 2`] ,

(σN, 1−`−t
`

,1 , `−1ZN, 1−`−t
`

,1) t ∈ (1− 2`, 1− `) ,
(ηN, 1−t

`
,1 , `−1WN, 1−t

`
,1) t ∈ [1− `, 1] .

Clearly, t 7→ (ρ3
N,t, V

3
N,t) is a solution to the continuity equation (2.9). From (3.13), (3.17)

and (3.18) we get, taking the scaling factors into account,∫ 1

0
AN (ρ3

N,t, V
3
N,t) ≤

2ad

`κ2δ2
+

2db2

`δ3
+

1− a
1− 4`

WN (ρN,0, ρN,1)2 .

It remains to fix the constants a, b ∈ (0, δ) and ` ∈ (0, 1/4) as functions of δ and ε. From
(ii) of Proposition 2.8 we know that the diameter of (P(Td

N ),WN ) is bounded by a constant

D > 0 depending only on d. Choose now ` > 0 so small that 1
1−4` ≤ 1+ ε2

3D2 , and then a, b > 0
so small that

2ad

`κ2δ2
≤ ε2

3
,

2db2

`δ3
≤ ε2

3
.

With these choices we get∫ 1

0
AN (ρ3

N,t, V
3
N,t) ≤ ε2 +WN (ρN,0, ρN,1)2 . (3.21)

Furthermore, the inequalities (3.12), (3.15), and (3.19) and the inequalities (3.14), (3.16) and
(3.20) imply that

min ρ3
N,t ≥ a , LipN (ρ3

N,t) ≤ max{δ−1, Cb−(d+1)/2} ,
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hence ρ3
N,t belongs to Pδ̄(T

d
N ) for some δ̄ depending on a, b and δ. The result follows in view

of Definition 3.7 of WN,δ̄. �

3.3. Wrap up and conclusion of the argument. Finally we shall prove Theorem 1.1. Let
us first recall one of the equivalent characterisations of Gromov-Hausdorff convergence, which
we formulate here as a definition. We refer to, e.g., [18, Definition 27.6 and (27.4)]) for more
details.

Definition 3.14 (Gromov-Hausdorff Convergence). We say that a sequence of compact met-
ric spaces (Xn, dn) converges in the sense of Gromov-Hausdorff to a compact metric space
(X , d), if there exists a sequence of maps fn : X → Xn which are

(i) εn-isometric, i.e., for all x, y ∈ X ,

|dn(fn(x), fn(y))− d(x, y)| ≤ εn ; and

(ii) εn-surjective, i.e., for all xn ∈ Xn there exists x ∈ X with

d(fn(x), xn) ≤ εn ,
for some sequence εn → 0.

Now we are ready to prove our main result Theorem 1.1, which we restate for the conve-
nience of the reader.

Theorem. Let d ≥ 1. Then the metric spaces (P(Td
N ),WN ) converge to (P(Td),W2) in

the sense of Gromov-Hausdorff as N →∞.

Proof. For s > 0 and N ≥ 1 we consider the map from P(Td) to P(Td
N ) given by

µ 7→ PN (Hsµ) .

We claim that for each s > 0 there exists N̄(s) ≥ 1 such that for all N ≥ N̄(s) this map is
both ε(s)-isometric and ε(s)-surjective, for some sequence ε(s) ↓ 0 as s ↓ 0. This suffices to
prove the theorem.

ε(s)-isometry. Let µ0, µ1 ∈ P(Td). Part (i) of Proposition 2.9 in conjunction with (3.2)
yields that PN (Hsµ0) and PN (Hsµ1) belong to Pδ(s)(T

d
N ) for some δ(s) > 0 and for any

N ≥ 1. Let η > 0. From Proposition 3.13 we then get the existence of δ̄(η, s) > 0 such that

WN,δ̄(η,s)

(
PN (Hsµ0),PN (Hsµ1)

)
≤ WN

(
PN (Hsµ0),PN (Hsµ1)

)
+ η .

From Proposition 3.12 we infer that

W̃N

(
PN (Hsµ0),PN (Hsµ1)

)
≤
(

1− 1

δ̄(η, s)4N2

)− 1
2

WN,δ̄(η,s)

(
PN (Hsµ0),PN (Hsµ1)

)
,

and then from Proposition 3.11 that

W2

(
QN (PN (Hsµ0)),QN (PN (Hsµ1))

)
≤ W̃N

(
PN (Hsµ0),PN (Hsµ1)

)
.

Lemma 3.4 and Proposition 2.9(i) yield

W2(µ0, µ1) ≤W2

(
QN (PN (Hsµ0)),QN (PN (Hsµ1))

)
+ 2C

√
s+ 2

√
d

N
.

Combining these four inequalities, we obtain

W2(µ0, µ1) ≤
(

1− 1

δ̄(η, s)4N2

)− 1
2 (
WN

(
PN (Hsµ0),PN (Hsµ1)

)
+ η
)

+ 2C
√
s+ 2

√
d

N
.
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On the other hand, Proposition 3.10 grants that

WN

(
PN (Hsµ0),PN (Hsµ1)

)
≤W2(µ0, µ1) +

C(s)√
N

.

Taking Proposition 2.8(ii) into account, the latter two inequalities yield that for N̄ = N̄(s)
sufficiently large and η = η(s) sufficiently small, we have for all N ≥ N̄(s),∣∣∣W2(µ0, µ1)−WN

(
PN (Hsµ0),PN (Hsµ1)

)∣∣∣ ≤ ε(s)
for some ε(s) ↓ 0 as s ↓ 0.

ε(s)-surjectivity. Let ρN ∈P(Td
N ) and set ρNs := HsQN (ρN ). Then, for some dimensional

constant C < ∞ which may change from line to line, we obtain using Proposition 2.8(ii),
Lemma 3.5, and Proposition 2.9(i),

WN

(
ρN ,PN (ρNs )

)
=WN

(
PN (QN (ρN )),PN (ρNs )

)
≤ CW2,N

(
PN (QN (ρN )),PN (ρNs )

)
≤ CW2

(
QN (ρN ), ρNs

)
+
C

N

≤ C
(√

s+
1

N

)
.

Taking, say, N = 1/
√
s, we infer that PN ◦ Hs is 2C

√
s-surjective, which completes the

proof. �
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