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Abstract. We study a variational framework to compare shapes, modeled
as Radon measures on R

N , in order to quantify how they differ from isometric
copies. To this purpose we discuss some notions of weak deformations termed
reformations as well as integral functionals having some kind of isometries as
minimizers. The approach pursued is based on the notion of pointwise Lips-
chitz constant leading to a space metric framework. In particular, to compare
general shapes, we study this reformation problem by using the notion of
transport plan and Wasserstein distances as in optimal mass transportation
theory.
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Introduction

One of the main goal in shape analysis relies in detecting and quantifying
differences between shapes. The interest for such studies concerns a wide range
of applications, especially those within the computer vision community, in par-
ticular in pattern recognition, image segmentation, and computation anatomy
(see [50, 12, 20]). In recent years many authors have focused their attention on
the notions of shape space and shape metric to the aim of establishing a general
framework in which the analysis of shapes crucially depends on their invari-
ance with respect to suitable geometric transformations (see [25, 12, 29, 58]).
A natural suggestion in this direction comes from continuum mechanics since
the variational theory of elasticity can be used to compare the initial and final
shape of a deformable material body, i.e. to establish how the two shapes differ
from an isometry of the euclidean space. Therefore some authors begin to study
the possible links between elastic energies and distances in shape spaces (see
[25, 65, 66]).
On the other side, by arguing from a mechanical perspective, we know that
a large class of physical manifestations (fractures, fragmentations, material in-
stabilities) require more general kinematical tools than those available in the
context of Sobolev maps, hence it seems reasonable to exploit a more general
mathematical framework to obtain more accurate descriptions of more complex
physical problems.
In this paper we model (material) shapes as Radon measures on subsets X,Y ⊂
R

N and study a variational model to the aim of quantifying how a target shape
ν on Y differs from an isometric copy of µ on X. To this purpose we scrutiny
some notions of weak deformations, which we denote by the term reformations,
as well as energy like (or cost) functionals having some kind of isometries be-
tween µ and ν as minimizers.
In the first part of the paper (Sections 1,2,3) we study the variational problem of
reformation of two shapes µ and ν through functions called reformation maps,
while in the second part (Sections 4,5,6) we relax the problem by considering a
formulation in terms of transport plans which leads to a variational framework
as in optimal transport theory.
For reader convenience we have added an appendix containing some basic tools
from analysis in metric spaces.
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Description of the variational model and main results

To quantify how two shapes X,Y ⊂ R
N are close to be isometric, an usual

way relies in considering Y = u(X) for maps u belonging to a suitable class of
admissible maps. The two shapes are isometric if there exists u : X → Y such
that u(X) = Y and

|u(x) − u(y)| = |x− y|, ∀x, y ∈ X.

Equivalently, the last condition means that the map u has bi-Lipschitz constant
L = 1. Let us recall that a map u : x → Y is said to be bi-Lipschitz with
constant L if

1

L
|x− y| ≤ |u(x) − u(y)| ≤ L|x− y|, ∀x, y ∈ X.

Therefore, the two shapes X,Y could be considered close to be isometric as the
bi-Lipschitz constant L is close to one, so assuming the bi-Lipschitz constant as
a quantifier of the closeness to the isometry. This approach has the disadvan-
tage to involve a global condition. For instance, the shapes in Figure 0.1 looks
very close to be isometric but the bi-Lipschitz constant is quite large and far
from L = 1, whatever the size of the bending part. To avoid this difficulty some

1
n

Figure 0.1. Bending a rectangle.

localization procedure is needed. This can be done by an analytical approach.
An isometry u is of course an affine map u(x) = Ax + b and ∇u = A is an
orthogonal matrix. Actually, under some regularity assumptions, by Liouville
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Rigidity Theorem the orthogonality of the Jacobian matrix characterizes the
isometric maps (see also Theorem 3.8). Hence, a reasonable way to quantify
how two shapes are isometric is that of measuring how ∇u is close to be an
orthogonal matrix. This program can be carried on by selecting a function
W reaching its minimal value at the orthogonal matrices. Then, by Liouville
Rigidity Theorem, it follows that the isometries characterize the minimal pos-
sible value of the functional I(u) =

∫

Ω
W (∇u) dx. This approach is pursued in

[66] for smooth 2-dimensional domains where the admissible maps are incom-
pressible diffeomorphisms, i.e. u such that det (∇u) = 1.
In order to characterize the isometries, a polyconvex function W having min-
imal value at orthogonal matrices is selected. Therefore, to quantify how two
domains Ω1,Ω2 ⊂ R

N are close to be isometric one considers the variational
problem

min

{
∫

Ω1

W (∇u) dx | u(Ω1) = Ω2, u ∈ D
}

,

where D denotes the set of incompressible diffeomorphisms. This approach has
of course many restrictions. For instance, to compare a connected domain to a
disconnected one, or for non-smooth domains, many regularity questions arise.
In continuum mechanics, one usually looks for minimizers u : Ω → R

N of
the stored energy I(u) =

∫

Ω
W (∇u) dx in an admissible class of deformations

usually consisting of Sobolev functions which are locally orientation preserving,
i.e. det∇u(x) > 0 for a.e. x ∈ Ω.

A main goal of our approach relies in exploiting possible extensions of the
variational scheme of elasticity in order to compare more general shapes as
those in Figure 4.1, also allowing fragmentations. However, a purely measur-
able setting does not work to compare shapes as shown in Example 3.6 and, on
the other hand, to compare a more extended class of shapes we have to reduce
regularity requirements. So, a useful compromise relies in working on a general
metric framework.
We remark that an approach like the one followed in [66] cannot be pursued
in a metric framework, indeed the mapping A 7→ ϕ(‖A‖) is polyconvex only if
ϕ is a positive convex and strictly increasing function (see for instance [16]),
therefore the minimal value cannot be reached at orthogonal matrices A, since
they have ‖A‖ = 1.
We denote by P(X) the space of probability measures on the metric space X.
Assume the material shapes are given by probability measures µ ∈ P(X) and
ν ∈ P(Y ), (to fix ideas consider µ = LN X, ν = LN Y ).
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In this paper we assume the pointwise Lipschitz constant Lip(u)(x) (see Defi-
nition 1.1) as a local descriptor to measure how an admissible map u is an ex-
pansion or a contraction. Note that the pointwise Lipschitz constant Lip(u)(x)
coincides with the operator norm ‖∇u(x)‖ whenever u is a differentiable map.
Hence the local expansion and contraction due to the map u at any point x are
respectively represented by the functions eu(x) and cu(x) (see Definition 2.1)
depending on Lip(u)(x).
Let H(x), K(x) > 0 be given. We require the admissible maps u : X → Y
satisfy the conditions

u#µ = ν, (0.1)

eu ≤ K, cu ≤ H. (0.2)

These maps will be called reformation maps, and the set of such functions will be
denoted by Ref(µ; ν)H,K (see Definition 2.2). We consider the local reformation
energy ru = eu + cu and the total reformation energy R(u) =

∫

X
ru(x) dµ, so

in Theorem 3.10 we show that the variational problem

min{R(u) | u ∈ Ref(µ; ν)H,K} (0.3)

admits solutions whenever Ref(µ; ν)H,K 6= ∅. Therefore, to quantify how the two
measures µ, ν are isometric we look to the elastic reformation energy between
µ and ν defined by

E(µ, ν) := inf{R(u) | u ∈ Ref(µ; ν)H,K}. (0.4)

In Theorem 3.15 we show that the value of (0.4) is attained and equal to 2 if
and only if the two shapes are isometric.
In Section 4 we extend the scenario to deal with the case of non-existence
of maps satisfying (2.4) and this happens, for instance, when fragmentation
occurs. In such a case the notion of transport plan coming from the optimal mass
transportation or Monge-Kantorovich theory is useful. A transport plan between
µ and ν is a measure γ ∈ P(X×Y ), having µ, ν as marginals, namely (π1)#γ =
µ, (π2)#γ = ν, where π1,2 are the projections of X×Y on its factors. The notion
of transport plan could be considered as a generalization of a transport map,
i.e. u : X → Y , such that u#µ = ν, and so as a weak notion of reformation
of µ into ν. We shall refer to such measures as reformation plans. Actually, to
every transport map corresponds the transport plan given by (I × u)#µ. The
shapes µ, ν could be compared by considering the local mass transportation
displacement in the target configuration.
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More precisely, by Disintegration Theorem (see [3, Section 2.5]) every trans-
port plan γ ∈ P(X × Y ) can be written as γ = f(x) ⊗ µ, where

f : X → (P(Y ),W ) (0.5)

is called disintegration map and P(Y ) is equipped with the Wasserstein distance
W . This point of view leads to formulate the reformation problem in terms of
disintegration map f and related metric expansion and contraction energies (see
Definition 4.6). So, in this setting, reformation maps take value in the space of
probabilities, endowed with the Wasserstein metric, over the target domain.
The main advantage of this approach relies in its generality and in its connec-
tions with fertile topics as optimal mass transportation and geometric measure
theory. However, many interesting open questions arise as the regularity needed
on f to capture relevant geometrical and physical properties of the shapes.
In Section 5 we show several examples of shape reformations attainable by dis-
integration maps but not attainable by any regular transport map.
In Section 6 we study the main aspects of the variational problems of reforma-
tion in the enlarged context of generalized reformations, showing in Theorem 6.4
how isometric measures can be characterized by means of the reformation en-
ergy. In Theorem 6.8 we prove the existence of minimizing reformation plans
for a constrained variational problem.

1. The pointwise Lipschitz constant

In this section we introduce the notion of pointwise Lipschitz constant and
scrutiny some properties related to this tool since it will play a crucial role in
this paper.

Definition 1.1. Let (X, dX), (Y, dY ) be two metric spaces and let f : (X, dX) →
(Y, dY ). The pointwise Lipschitz constant Lip(f)(x0) of f at x0 ∈ X is defined
by

Lip(f)(x0) :=







lim sup
x→x0

dY (f(x), f(x0))

dX(x, x0)
if x0 is a non-isolated point,

0 if x0 is an isolated point.
(1.1)

It is readily seen that Lip(f) is a measurable function. The pointwise Lipschitz
constant leads to a global Lipschitz’s constant on convex sets.
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Lemma 1.2 (Lemma 14.4 of [10]). Let L > 0, X ⊂ R
N a convex set and let

f : X → (Y, d) be a function such that Lip(f)(x) ≤ L ∀x ∈ X. Then f is
L-Lipschitz.

A result similar to the previous lemma holds true for quasi-convex metric
spaces X (see [19]).
A metric space (X, d) is C-quasi-convex if there exists a constant C > 0 such
that for each pair of points x, y ∈ X, there exists a curve γ connecting x and y
with l(γ) ≤ Cd(x, y). As one can expect, a metric space is quasi-convex if, and
only if, it is bi-Lipschitz homeomorphic to some length space. For X C-convex,
the function f of Lemma 1.2 is just CL-Lipschitz.

The pointwise Lipschitz constant is also related to the notion of metric
differential (see [7, 43, 44, 51]). A function f : X ⊂ R

N → (Y, d) is said to be
metrically differentiable at a point x0 ∈ X if there exists a (unique) on R

N ,
denoted by MD(f, x0), such that for every y, z ∈ X the following formula holds
true

d(f(y), f(z)) −MD(f, x0)(y − z) = o(‖y − x0‖ + ‖z − x0‖). (1.2)

Let U ⊂ R
N be an open set and let f : U → (Y, d) be a Lipschitz function.

Hence, for every fixed p ∈ Y the function

x 7→ d(f(x), p) : U → R+ (1.3)

is a Lipschitz function and by Rademacher Theorem it is a.e. differentiable in
U . Moreover (see [43, 44]), it turns out that f is metrically differentiable at
almost every point.

The following lemma establishes a link between the pointwise Lipschitz
constant, the distance function (see [6] for dual Banach spaces) and the metric
differential (see (1.7) below).

Lemma 1.3. Let f : U ⊂ R
N → (Y, d) be a Lipschitz function over a separable

metric space Y . Then, for a.e. x0 ∈ U it results

Lip(f)(x0) = sup
p∈Y

‖∇d(f(x0), p)‖. (1.4)

Proof. We assume ‖∇d(f(x0), p)‖ = 0 if the function x 7→ d(f(x), p) is not
differentiable at x0. For p ∈ Y we compute

〈∇d(f(x0), p), v〉 = lim
t→0+

d(f(x0 + tv), p) − d(f(x0), p)

t

≤ lim
t→0+

d(f(x0 + tv), f(x0))

t
≤ Lip(f)(x0).
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Taking the supremum with respect to v and then respect to p, we have

sup
p∈Y

‖∇d(f(x0), p)‖ ≤ Lip(f)(x0).

To get the opposite inequality, we use a slight modification of the proof of [7,
Theorem 4.1.6]. Since Y is separable, we fix a countable dense set {pn} ⊂ Y ,
then for every x1, x2 ∈ U we have

d(f(x1), f(x2)) = sup
n

|d(f(x1), pn) − d(f(x2), pn)|. (1.5)

Consider the Lipschitz function ϕn(t) = d(f(x0 + tv), pn) and set m(t) =
supn |ϕ̇n(t)|. Observe that |m(t)| ≤ Lip(f). By the Lipschitz condition, we may
suppose that, for every n ∈ N, t = 0 is a differentiability point for ϕn and also
t = 0 is a Lebesgue point for m ∈ L∞. By (1.5) we obtain

d(f(x0 + tv), f(x0))

t
≤ sup

n

1

t

∫ t

0

|ϕ̇n(s)|ds ≤ 1

t

∫ t

0

m(s)ds.

Letting t→ 0+ we get (see Prop. 1 and Th. 2 of [44])

MD(f, x0)(v) ≤ m(0) ≤ sup
n

‖∇d(f(x0), pn)‖. (1.6)

On the other hand, by (1.2) we get

d(f(x), f(x0))

‖x− x0‖
= MD(f, x0)

(

x− x0

‖x− x0‖

)

+
o(‖x− x0‖)
‖x− x0‖

Letting x→ x0, by (1.6) we get

Lip(f)(x0) ≤ sup
n

‖∇d(f(x0), pn)‖.

�

Observe that by the proof of the previous lemma, the following equality
also holds true

Lip(f)(x0) = sup
v∈RN , |v|=1

|MD(f, x0)(v)|. (1.7)

Lemma 1.4. Let (Y, d) be a separable metric space. Assume U ⊂ R
N is an open

set, (fn)n∈N be a sequence of (locally) equi-Lipschitz functions fn : U → (Y, d)
and let f : U → (Y, d). If fn → f (locally) uniformly on U then

∫

U

Lip(f)(x) dx ≤ lim inf
n→+∞

∫

U

Lip(fn)(x) dx. (1.8)
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Proof. By uniform convergence f is a (locally) Lipschitz function, moreover we
have that d(fn(·), p) ⇀ d(f(·), p) weakly∗ in W 1,∞

loc (U). Therefore, for every p,
by weak l.s.c. of the gradient norm (see also Ch. III Th. 3.3 of [60]) and using
(1.4) we get
∫

U

‖∇d(f(x), p)‖dx ≤ lim inf
n→+∞

∫

U

‖∇d(fn(x), p)‖dx ≤ lim inf
n→+∞

∫

U

Lip(fn)(x) dx.

Since Y is separable, as in the proof of Lemma 1.3, denoting by gn = ‖∇d(f(x), pn)‖,
by (1.4) we may assume that Lip(f)(x) = limn gn(x). Moreover, observe that
|gn(x)| ≤ Lip(f). Hence, passing to the limit under the integral sign we finally
obtain

∫

U

Lip(f)(x) dx = lim
n→+∞

∫

U

gn(x)dx ≤ lim inf
n→+∞

∫

U

Lip(fn)(x) dx.

�

Remark 1.5. The above Lemma holds true of course for the function Lipp(f),
for any p ≥ 1. If Y ⊂ R

N , the uniform convergence can be replaced by the
weak convergence on the Sobolev space W 1,p(U). In such a case, Lemma 1.4
just states the lower semicontinuity of the p-Dirichlet energy in Sobolev spaces,
since if u : R

N → R
N is differentiable at x then Lip(u)(x) = ‖∇u(x)‖ (see also

[60, Ch. 3 Theorem 3.3] and [61] for a related semicontinuity result).

2. Reformation maps

In this section we introduce the class of reformation maps and establish
some properties of these functions. Though the definition of reformation map
holds for general metric measure spaces, as a first step we restrict our analysis
to the euclidean framework of subsets of R

N .
Let Ω ⊂ R

N be an open bounded connected set, X = Ω, Y ⊂ R
N , µ ∈ P(X)

and ν ∈ P(Y ).

Definition 2.1 (Expansion and contraction energy). Let x0 ∈ X and u : X →
Y . The pointwise expansion energy of u at x0 is defined by

eu(x0) := Lip(u)(x0) = lim sup
x→x0

|u(x) − u(x0)|
|x− x0|

. (2.1)

The pointwise contraction energy of u at x0 is defined by

cu(x0) := lim sup
x→x0

|x− x0|
|u(x) − u(x0)|

. (2.2)
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The pointwise reformation energy of u at x0 is defined by

ru(x0) = eu(x0) + cu(x0). (2.3)

Definition 2.2 (Reformation maps). Given H,K : X →]0,+∞[, H,K ∈
L1(X,µ) and a fixed covering A of X made by balls, we define the set of ref-
ormation maps between µ and ν, which we shall denote by Ref(µ; ν)H,K, as the
set of maps u : X → Y such that the following conditions hold true:

u#µ = ν, (2.4)

∀x ∈ X ∃B(x, r) ∈ A s.t. cu(y) ≤ H(x), eu(y) ≤ K(x) ∀y ∈ B(x, r)∩Ω, (2.5)

where u#µ is the probability measure on Y defined by u#µ(A) = µ(u−1(A)) for
every Borel set A of Y .

The point in the above definition is that the functions cu, eu are locally
bounded from the above by H(x), K(x) which may depend just on the point
x an not by the map u ∈ Ref(µ; ν)H,K .Therefore, the reformation maps are
characterized by locally uniformly bounded expansion and contraction. Notice
that, by the bounds (2.5), any u ∈ Ref(µ; ν)H,K is continuous and, by Stepanov
Theorem (see [36]), is a.e. differentiable in Ω. In particular, by Lemma 1.2
reformation maps are locally Lipschitz on Ω.

Remark 2.3. In a mechanical perspective, the constraints stated in (2.5) could
be considered as a bound on the maximum expansion or contraction experienced
by the material Ω. In this setting, the assumption that the bounds H(x), K(x)
do not depend on the map u in (2.5) corresponds to a constitutive property of
the material under consideration. We point out that bounds like (2.5) are in
some sense necessary to control the geometry of the reformations. For instance,
in the case of ν = δy0

we have eu = 0, cu = +∞ for any map u satisfying (2.4).
On the other hand, mapping a bar into a bended one (see Fig. 2.1) by two
piecewise isometries u1, u2 such that u1(x0) 6= u2(x0), we necessarily create a
fracture at the point x0. It results eu(x0) = +∞ at the discontinuity point x0.
See also Example 3.6. Therefore, roughly speaking, the bound cu ≤ H means
no implosion , while eu ≤ K means no fractures.

Remark 2.4. The constraint cu ≤ H in (2.5) is related to inversion properties,
both local or global, of reformation maps, see [26, 27, 41]. Observe that for
differentiable maps with non-vanishing Jacobian we always have

cu = ‖(∇u)−1‖, eu = ‖∇u‖.
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b b

b

bx0

x

u1(x0) = u2(x)
u2(x0)

u1

u2

Figure 2.1. Mapping a bar into a bended one.

Therefore, it would be an interesting question to consider just pointwise
bounds H(x), K(x). This is similar in spirit to the passage from functions with
bounded distortion to functions with finite distortion (see the monograph [40]).
However, in such a case, inversion properties becomes more subtle and further
assumptions are needed, see for instance [47, 48, 59] for inversion results of
Sobolev maps. Anyway, the main interest of reformation maps relies in this
perspective in considering just metric objects (see Section 4 below). However,
in a purely metric framework, such pointwise conditions are not enough to
guarantee inversion properties. Consider for instance the map u : R → R, u(x) =
|x| having eu = cu = 1 at every point. Therefore, also uniform bounds alone
are not enough to get satisfactory inversion properties. Under differentiability
assumptions in R

N , pointwise bounds are in fact enough, see Lemma 2.10.
However, in general this is not true. For instance (see [55]), it is possible to
find everywhere differentiable maps with everywhere invertible differential on
Hilbert spaces which are not neither open or locally one-to-one. In the metric
setting different restrictions arise (see [27] for a detailed discussion).

Remark 2.5. The local uniform bounds in Def. 2.2 are also related to quasi-
isometries, see for instance [10, 41]. In such case uniform bounds

m ≤ D−f(x) ≤ D+f(x) ≤M,

where

D−f(x0) = lim inf
x→x0

|f(x) − f(x0)|
|x− x0|

, D+f(x0) = lim sup
x→x0

|f(x) − f(x0)|
|x− x0|

denote the local distortion of distances, are required. Observe that eu(x) =
D+f(x), while cu(x) = 1

D−f(x0)
. Indeed,

|x− x0|
|f(x) − f(x0)|

=
1

|f(x)−f(x0)|
|x−x0|

≤ 1

infB
|f(x)−f(x0)|

|x−x0|
.
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Taking the supremum over B = B(x0, r) and then letting r → 0+ we get
cu(x) ≤ 1

D−f(x0)
. In a similar way the opposite inequality follows.

Remark 2.6. The mass conservation property (2.4) is a generalized version of
incompressibility and it can be always satisfied (provided µ has no atom, see
[54]) by some measurable map u. Actually, condition (2.4) is equivalent to the
following change of variable formula

∫

X

f(u(x)) dµ =

∫

Y

f(y) dν, (2.6)

for every continuous function f : Y → R. In the setting of Mass Transportation,
maps u satisfying (2.4) are called transport maps.

Remark 2.7. Since Ref(µ; ν)H,K is made by nice functions, to compare the
present approach with other ones, as for instance that of [66], one should also re-
quire the condition u(X) = Y in the case of µ = LN X, ν = LN Y . However,
we point out that this surjection requirement is actually a severe constraint.
Indeed, for instance, to find Lipschitz functions u : X → Y, u(X) = Y for
general compact sets in dimension N ≥ 3 (see [1]), as far as we know, is still
an open question. Moreover, also bi-Lipschitz functions between nice sets are
not easy to find (see [22, 33]). Anyway, in such a case many restrictions on the
target space Y may be needed (connectedness, for instance).

In the following we prove some properties enjoyed by reformation maps. A
first estimate easy to verify is an immediate consequence of (2.5) and is given
by the following proposition.

Proposition 2.8. Let u ∈ Ref(µ; ν)H,K. Then, for every x0 ∈ X there exists
r > 0 such that

1

H(x0)
|x− x0| ≤ |u(x) − u(x0)| ≤ K(x0)|x− x0| ∀ x∈X ∩B(x0, r). (2.7)

Lemma 2.9. Let u ∈ Ref(µ; ν)H,K. Then u is a discrete map, i.e. for every
y ∈ Y , u−1(y) is a finite set.

Proof. Let y ∈ Y . By (2.7), if x0 ∈ u−1(y) we have that u(x) 6= u(x0) for every
x ∈ B(x0, r). Hence, x0 is an isolated point of u−1(y). We claim that u−1(y) is a
finite set. Indeed, otherwise, since X is compact, we find a sequence xn → x0 ∈
X such that xn ∈ u−1(y). By continuity of u we have also x0 ∈ u−1(y). This is
a contradiction since x0 is an isolated point of u−1(y). �
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For discrete continuous maps the local degree or local index i(x0, u) of u :
X → Y at x0 ∈ X is defined as follows

i(x0, u) = deg(u(x0), u, B(x0, r)), (2.8)

where deg(y, u,B) denotes the topological degree (see [21, 60]).
Let u−1(y) = {x1, · · · , xh}, we have the following relation

deg(y, u, Y ) =
h
∑

j=1

i(xj, u). (2.9)

Observe that if u is locally injective in a neighborhood of x ∈ X then |i(x, u)| =
1.
We say that u is a sense-preserving (reversing) continuous map if the local index
i(x, u) has constant sign in X. Notice that each homeomorphism on a domain
is either sense-preserving or sense-reversing (see [21, Theorem 3.35]). Moreover,
sense-preserving or sense-reversing differentiable maps have constant Jacobian
sign, (see [21, Lemma 5.9]), since

i(x0, u) = sign(Ju(x0)), (2.10)

where Ju := det∇u, providing Ju(x0) 6= 0.

Lemma 2.10. Let u ∈ Ref(µ; ν)H,K. If u is differentiable at x0 ∈ Ω then
Ju(x0) 6= 0.

Proof. Suppose by contradiction that Ju(x0) = 0. Then we find a vector |v| = 1
such that ∇u(x0) · v = 0. Fixed ε > 0, since u is differentiable, there exists
δ > 0 such that |u(x0 + tv)− u(x0)| < εt, whenever |t| < δ. On the other hand,
by (2.7), there exists 0 < t < δ such that t

H
< |u(x0 + tv) − u(x0)| < εt. Hence

1
H
< ε. Letting ε→ 0+ we get a contradiction. �

By the previous lemma, any u ∈ C1(X;Y ) ∩ Ref(µ; ν)H,K (or even an
everywhere differentiable reformation map) is locally invertible on Ω (see [34]
for a related inversion result and [55] for an elementary analytical proof).
If u is only a.e. differentiable, by Lemma 2.10 we have Ju(x) 6= 0 for a.e. x.
However, it is well known that in general this condition does not ensure the local
invertibility of Sobolev maps (see for instance [47]). By the way, the condition
Ju > 0 on an open set Ω is a standard requirement (see for instance [59]),
ensuring that u is locally invertible for a.e. x ∈ Ω. The restriction to sense-
preserving maps is also made in [27] to derive local inversion results. To this
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aim, also assumptions on the boundedness of HK ≤ M , for sufficiently small
M are necessary. In our context, since we are interested in comparing domains,
also in a metric framework, restrictions to open maps seem more natural.

We refer [9] for a proof of the following result.

Theorem 2.11. Let u : Ω → R
N be a continuous open and discrete map. Then

u is sense-preserving or sense-reversing.

Lemma 2.12. Let u : Ω → R
N be a discrete sense-preserving (reversing) con-

tinuous map such that |i(x0, u)| = 1. Then u is injective in a neighborhood of
x0.

Proof. We use here the same arguments of [60, Ch. II Theorem 6.6 ]. Suppose
i(x0, u) = 1. The other case is analogous. By contradiction, if u is not injective
we have two distinct sequences (x1

n)n∈N, (x2
n)n∈N converging to x0 such that for

every n ∈ N: u(x1
n) = u(x2

n) = yn. By continuity we also have u(x1
n) → y0 =

u(x0). Since the degree is constant in a neighborhood of y0, for n ∈ N large
enough and suitable small radius r > 0 we have

deg(yn, u, B(x0, r)) = deg(y0, u, B(x0, r)) = i(x0, u) = 1. (2.11)

On the other hand, since u is sense-preserving and by (2.9) we have

deg(yn, u, B(x0, r)) ≥ i(x1
n, u) + i(x2

n, u) = 2,

contradicting (2.11). �

Theorem 2.13 (Invertibility of incompressible maps). Assume u ∈ Ref(µ; ν)H,K

is an incompressible map (see for instance [66]), i.e.

|Ju(x)| = 1 for a.e. x ∈ Ω. (2.12)

Then u|Ω is globally invertible.

Proof. Of course, condition (2.4) holds true for injective such maps u. Anyway,
let us begin by showing that u is an open map. Let U be an open subset of Ω.
We have to prove that V = u(U) is open. Let y0 ∈ V , y0 = f(x0) for a x0 ∈ U .
By (2.7) we find C = B(x0, r) such that y0 /∈ u(∂C). Therefore, it is well defined
deg(y0, u, C) which is constant in a neighborhood of y0. If u is differentiable at
x0, by Lemma 2.9 and Lemma 2.10 we have

|deg(y, u, C)| = |deg(y0, u, C)| = 1,

in a neighborhood Vy0
of y0. Since deg(y, u, C) 6= 0, it follows that Vy0

⊂ u(C) ⊂
V , since otherwise the degree would be zero.
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On the other hand, denoting by N(y, u,K) := card{u−1(y)∩K} the multiplicity
function, by the Area Formula and the push-forward condition (2.6) we compute

LN(u(B(x0, r))) ≤
∫

u(B(x0,r))

N(y, u,B(x0, r)) dy =

∫

u−1(u(B(x0,r)))

|Ju| dx =

LN(u−1(u(B(x0, r)))) = LN(u(B(x0, r))).

Therefore, for a.e. y ∈ u(B(x0, r)), it results N(y, u,B(x0, r)) = 1. Hence,
if x0 is a non-differentiability point, by the Lusin (N)-property, there exists
a differentiability point x ∈ B(x0, δ) of u and an open neighborhood Vy0

of
y0 such that u(x) ∈ Vy0

and deg(u(x), u, C) 6= 0. As above it follows that
Vy0

⊂ u(C) ⊂ V . Hence u|Ω is open. By Theorem 2.11 we have that u is
sense-preserving, or sense-reversing. Since actually it results |i(x0, u)| = 1, the
statement follows by Lemma 2.12. �

Remark 2.14. If a reformation map satisfies (2.12), then |i(x, u)| = 1 for a.e.
x ∈ Ω. Therefore, by Lemma 2.12 such map u is a.e. locally invertible on Ω. As
previously discussed, actually to obtain this invertibility property it is enough
to require |Ju| ≤ 1 a.e. in Ω. Since |Ju| ≤ ‖∇u‖N , this happens for instance
for reformation maps u satisfying the condition eu ≤ 1.

Theorem 2.15 (Invertibility of small reformations). Let u ∈ Ref(µ; ν)H,K be
such that eu(x) <

N
√

2 for a.e. x. Then u is globally invertible.

Proof. Recalling the assumption that both µ and ν have density given by char-
acteristics functions of an open set, by the constraint cu ≤ H we find (see
[52, Prop. 1.1, Sec. 3]) an open dense subset U ⊂ X on which u is locally bi-
Lipschitz. It follows that the multiplicity function N(y, u, U) is locally constant
(see [2]). We first prove that u is globally invertible on U . For y = u(x) ∈ u(U),
we prove that N(y, u, U) = 1. Observe that by the Domain Invariance Theorem
(see for instance [21]), u|U is open. Let B = B(x, r) be a ball on which u is
bi-Lipschitz. We may suppose that D = N(y, u,B) is constant on u(B). Since
|Ju| ≤ ‖∇u‖N , by the Area Formula we compute

DLN(u(B)) =

∫

u(B)

N(y, u,B)dy =

∫

u−1(u(B))

|Ju(x)|dx

≤
∫

u−1(u(B))

‖∇u‖Ndx =

∫

u−1(u(B))

eu(x)
Ndx.

(2.13)
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Therefore, if the map u satisfies the small expansion condition eu < N
√

2, by
(2.13) and the push-forward condition we get

DLN(u(B)) < 2LN(u−1(u(B))) = 2LN(u(B)),

hence the map u is globally invertible on U . By uniform continuity, u uniquely
extends to the whole X and therefore letting to global invertibility on X. �

Theorem 2.16. Let u ∈ RefH,K(µ; ν) be an open map and suppose that ∀x ∈
X : H(x)K(x) < 2. Then u|Ω is locally invertible.

Proof. By Lemma 2.9 and Theorem 2.11 it follows that u is sense-preserving or
sense-reversing. Hence, by Theorem II of [27] the thesis follows. �

The condition eucu ≤ α may be required to hold just a.e. by reducing
the upper bound α < N

√
2 (see [27]). Observe that the map u(x) = |x| in

one dimension is not a counterexample to Theorem 2.15 since u is not mass
preserving around x0 = 0. If Ω is a ball, or in some classes of convex sets, for
sufficiently small α the map u is actually globally invertible (see [28]).

3. The variational problem of elastic reformation

Definition 3.1. Let u : X → Y , µ ∈ P(X), ν ∈ P(Y ), such that u#µ = ν. We
define the total reformation energy R(u) of a reformation map u of µ into ν as
follows

R(u) :=

∫

X

ru(x) dµ. (3.1)

We recall that R(u) < +∞ for every u ∈ Ref(µ; ν)H,K , since we will always
assume

H(x), K(x) ∈ L1(X,µ), (3.2)

where H,K are given in Definition 2.2. We have the following

Lemma 3.2. Let u : X → Y . Then

cu(x) ≥
1

eu(x)
∀x ∈ X. (3.3)

Proof. It suffices to recall that cu(x) = 1
D−f(x)

, see Remark 2.5. �

Observe that for every u : X → Y such that u#µ = ν, by Lemma 3.2 it
results R(u) ≥ 2.
Actually, Definition 3.1 is motivated by the trivial fact that the real function
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f(x) = x + 1/x reaches its minimum value at f(1) = 2. Moreover, observing
that at any x0 ∈ X

ru(x0) ≥ eu(x0) +
1

eu(x0)
≥ 2, (3.4)

we have that ru(x0) reaches its minimum value if u : X → Y is an isometric
mapping, i.e. |u(x)− u(y)| = |x− y|, ∀x, y ∈ X. Therefore R(u) can be viewed
as a measure detecting how u is far from being an isometric map.

Lemma 3.3. Let u : X → Y be a local homeomorphism. Then

cu(x) = eu−1(u(x)) ∀x ∈ X. (3.5)

Proof. Fix x ∈ X, δ1 > 0 and letB1 = B(u(x), δ1). By the local homeomorphism
condition, there exists a δ > 0 such that u(Bδ) ⊂ B1 and u is invertible on
Bδ = B(x, δ). For every y ∈ Bδ we have

|y − x|
|u(y) − u(x)| =

|u−1(u(y)) − u−1(u(x))|
|u(y) − u(x)| ≤ sup

z∈B1

|u−1(z) − u−1(u(x))|
|z − u(x)| .

Taking the supremum with respect to y ∈ Bδ and letting δ1 → 0+, we get
cu(x) ≤ eu−1(u(x)). Analogously we deduce the opposite inequality. �

Definition 3.4. We define the elastic reformation energy between µ and ν as

E(µ, ν) := inf{R(u) | u ∈ Ref(µ; ν)H,K}. (3.6)

In general, the above elastic reformation energy is not symmetric. For in-
stance, if µ = LN B, for a ball B, and ν a Dirac delta, we have E(µ, ν) =
+∞. Reversing the shapes, we see that E(ν, µ) has no meaning simply because
Ref(ν;µ)H,K = ∅. Moreover, also in nice cases, the matter is that reformation
maps could be not invertible. Assuming invertibility for u ∈ Ref(µ; ν)H,K , set-
ting v := u−1, by using Lemma 3.3 we have

R(u) =

∫

X

eu dµ+

∫

X

cu dµ =

∫

X

eu(u
−1(u(x))) dµ+

∫

X

eu−1(u(x)) dµ =

∫

Y

ev−1(v(y)) dν +

∫

Y

ev(y) dν =

∫

Y

cv(y) dν +

∫

Y

ev(y) dν = R(v).

Since v ∈ Ref(ν;µ)H,K , we get E(µ, ν) = E(ν, µ). Therefore, symmetry issues
essentially correspond to invertibility of maps.

The question is now to establish conditions to ensure the infimum in (3.6)
is attained. It is easily seen that

R(u) = 2 if and only if ru(x) = 2 for µ− a.e. x ∈ X. (3.7)
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Lemma 3.5. Let x0 ∈ X, u : X → Y . Then ru(x0) = 2 if and only if

∀ε > 0 :
1

1 + ε
|x− x0| ≤ |u(x) − u(x0)| ≤ (1 + ε)|x− x0|, ∀x ∈ X ∩B(x0, rε).

Proof. Assume ru(x0) = 2, then

2 = eu(x0) + cu(x0) ≥ eu(x0) +
1

eu(x0)
≥ 2,

so

eu(x0) +
1

eu(x0)
= 2 ⇒ (eu(x0) − 1)2 = 0 ⇒ eu(x0) = cu(x0) = 1.

Fix ε > 0, then eu(x0) < 1 + ε implies that u satisfies

|u(x) − u(x0)| ≤ (1 + ε)|x− x0|, ∀x ∈ X ∩B(x0, rε). (3.8)

By using the condition cu(x0) < 1 + ε, eventually by decreasing the radius rε,
we get the opposite inequality. Vice versa, if both the inequalities locally hold,
then it results 2 ≤ ru(x0) = eu(x0) + cu(x0) ≤ 1 + 1 = 2. �

Therefore, the maps u : X → Y such that ru = 2 are in some sense
pointwise locally quasi-isometric, (see [53] for the relation with quasi-conformal
maps).
In the following we shall try to characterize in a more precise way the ref-
ormation maps u ∈ Ref(µ; ν)H,K , if any, realizing the minimum energy level
R(u) = 2. We also want to prevent pathological situations as the one described
in Example 3.6 below in which the map u : X → Y is merely a.e. continuous
(it is actually a.e. invertible and differentiable).
In particular, by (3.4) (see also the proof of Lemma 3.5) it results eu(x) = 1
for µ-a.e. x ∈ X. Moreover, eu(x) < +∞ implies u continuous at x. Then these
reformation maps u are at least a.e. continuous functions. However, this mild
regularity is too poor to preserve geometric (or physical) properties as we show
in the next example.

Example 3.6. Let Ω ⊂ R
N be a smooth bounded open set and Q ⊂ R

N be a
cube such that LN(Ω) = LN(Q) (see figure 3.1). For n ≥ 1 large enough, Ω
contains a certain number of disjoint squares Qn of length 1

n
. Then consider

the map un which isometrically moves every square Qn inside Q in a disjoint
way. On the remainder of Ω, consider the contained squares Qm, m > n, and
then the map um which coincides with un on the squares Qn and moves by
an isometry the squares Qm inside Q in a disjoint way. By this procedure it is
then defined a sequence (un)n∈N. Taking the limit u = limn→+∞ un we obtain a
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un

Figure 3.1. A piece-wise isometric map from the circle into a square.

measurable map u : Ω → Q such that u#µ = ν, where µ = LN Ω, ν = LN Q,
and ru(x0) = 2 for a.e. x0 ∈ Ω. Therefore, every bounded smooth open set can
be reformed into a square at minimal energy.

In order to preserve some geometric and physical properties of the shapes
under consideration, we then need more regularity on the admissible reforma-
tions. We have the following

Lemma 3.7. Let x0 ∈ Ω, u : X → Y . If u is differentiable at x0 then

ru(x0) = 2 ⇒ ∇u(x0) ∈ O(N),

where O(N) denotes the set of orthogonal matrices.

Proof. By (3.4) we have cu(x0) = eu(x0) = 1. Hence, for every v ∈ R
N , taking

x = x0 + δv we get

cu(x0) = eu(x0) = 1 ⇒ |∇u(x0) · v|
|v| = 1 ⇒ ∇u(x0) ∈ O(N).

�

By Liouville Theorem (see for instance [14]) it follows that every u ∈
C1(X;Y ) such that R(u) = 2 is actually an isometry. There are several gener-
alizations of Liouville Rigidity Theorem, however (see [14, 18, 24]) these results
are not directly applicable in our context since they generally require a con-
stant sign for the Jacobian, as the condition ∇u(x) ∈ SO(N) for a.e. x ∈ X.
For instance, the map u(x) = x if x1 ≥ 0 and u(x) = (−x1, x2, . . . , xN) if x1 ≤ 0
belongs to the Sobolev space W 1,2(Ω,RN), ∇u(x) ∈ O(N) for a.e. x, but u is
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not an isometry.
Since reformations have to preserve the volume, we have the following result.

Theorem 3.8 (Rigidity). Let U ⊂ R
N be an open connected bounded set. Let

u : U → R
N be a continuous, locally Lipschitz, open map such that LN(U) =

LN(u(U)) and satisfying the following conditions

(i) u(∂U) ⊂ ∂(u(U))
(ii) u is a.e. differentiable and ∇u ∈ O(N) a.e. on U .

Then u is an affine function.

Proof. By (ii) it follows that u is locally a 1-Lipschitz function (see [15, Propo-
sition 3.4]). By the Area Formula and (ii) we infer

LN(u(U)) = LN(U) =

∫

U

|Ju| dx =

∫

RN

N(y, u, U) dy.

Therefore, N(y, u, U) = 1 for a.e. y ∈ u(U). Observe that

u(U) ⊂ R
N \ ∂u(U) ⊂ R

N \ u(∂U). (3.9)

Then, ∀x ∈ U deg(u(x), u, U) is well defined. Since u is a.e. differentiable, for
a.e. x ∈ U it results (see Lemma 5.9 of [21])

|deg(u(x), u, U)| = |sign (Ju(x))| = 1.

On the other hand, since u(U) is connected, by (3.9), u(U) is contained in
a connected component of R

N \ u(∂U). Therefore, the degree is constant on
u(U)and so the sign of the Jacobian Ju is a.e. fixed. The conclusion follows by
Liouville Theorem for Sobolev maps (see for instance [14]). �

For a related rigidity result involving local homeomorphisms see [60]. For
quasi-isometries over Banach spaces see [10, Cor. 14.8].

Remark 3.9. Condition (i) holds of course for invertible maps u. If we are dealing
with locally invertible maps, since continuous and locally invertible maps are
open maps, actually by (i) the equality u(∂U) = ∂(u(U)) holds true. Moreover,
if the map u : ∂U → ∂(u(U)) is injective, then u is globally invertible (see
also [49]). Another classical condition for global invertibility holds for simply

connected, or simply connectedly exhausted, target u(U) (see [2, 60]). Moreover,
suppose to have a continuous, locally invertible, surjective function u : X → Y
such that ∇u(x) ∈ O(N) for a.e. x. Then, D = N(y, u, U) is constant (see [2])
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and by Area Formula we have

DLN(Y ) =

∫

Y

N(y, u, U)dy =

∫

X

|Ju(x)|dx = LN(X).

Hence, if LN(X) = LN(Y ), it follows that N(y, u, U) = 1 and hence u is glob-
ally invertible.

Theorem 3.10. Let µ ∈ P(Ω) and ν ∈ P (Y ) so that µ = LN Ω, ν = LN Y .
Suppose that for H,K ∈ L1(X,µ) provided by Definition 2.2 the inequality
H(x)K(x) < 2 is satisfied. Then the variational problem

min{R(u) | u ∈ Ref(µ; ν)H,K , u open } (3.10)

admits solutions whenever {u ∈ Ref(µ; ν)H,K , u open } 6= ∅.
Proof. Since µ = LN Ω, we may assume that X = Ω. Let (un)n∈N be a min-
imizing sequence. Given x0 ∈ Ω, by Definition 2.2 and Lemma 1.2 it follows
that the sequence (un)n∈N is locally equi-Lipschitz on B(x0, r). By the Ascoli-
Arzelá Theorem we extract a subsequence converging, uniformly on compact
subsets of Ω, to a continuous map u. For this continuous limit map u : Ω → R

N

it is easily seen that u#µ = ν. It remains to prove u ∈ Ref(µ; ν)H,K , namely
eu(x) ≤ K(x0), cu(x) ≤ H(x0) for every x ∈ X ∩B(x0, r).

Since X = Ω, by Lemma 1.2 we get the Lipschitz condition

|un(x1) − un(x2)| ≤ K(x0)|x1 − x2|
for every x1, x2 ∈ B(x0, r) ⊂ Ω. Passing to the limit as n → +∞ and then as
r → 0+, we obtain eu(x) ≤ K(x0).

Observe that by Theorem 2.16 the maps un are locally invertible. There-
fore, using Lemma 1.2 and Lemma 3.3 the inverse maps u−1

n are also locally
equi-Lipschitz. Moreover, by the theory of quasi-isometric mappings (see [41,
Theorem III], [10]) the maps un are equi-Lipschitz on the balls B(x0,

r
HK

). In
this way we find a common neighborhood Ux0

:= B(x0,
r

HK
) ⊂ B(x0, r) in which

the functions un are all simultaneously invertible (see also [48, Proposition 7],
[32]). It follows that u is also locally invertible. Indeed, suppose by contradic-
tion to get two distinct sequences (x1

h)h∈N, (x2
h)h∈N converging to x0 such that

u(x1
h) = u(x2

h) ∀h ∈ N. Let ε > 0 be fixed. By uniform convergence, we find a
large integer n such that |un(x) − u(x)| < ε for every x ∈ Ux0

. Now, for a large
h we may assume x1

h, x
2
h ∈ Ux0

and we compute

|xh
1 − xh

2 | = |u−1
n (un(x1

h)) − u−1
n (un(x2

h))| ≤ H|un(x1
h) − un(x2

h)| ≤
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H
(

|un(x1
h) − u(x1

h)| + |u(x1
h) − u(x2

h)| + |u(x2
h) − un(x2

h)|
)

≤ 2Hε,

where H is a common Lipschitz constant for u−1
n . By the arbitrariness of ε we

get the contradiction x1
h = x2

h. Observe that u is open by the Domain Invariance
Theorem. Hence u(Ω) is actually an open set. Let x1 ∈ B(x0, r) and y1 = u(x1)
be fixed. Adding a constant, we may also suppose un(x1) = y1. By using [41, Th.
II] it results B1 := B(y1,

r
H

) ⊂ un(B(x1, r)), where the u−1
n are simultaneously

defined.
By Lemma 3.3 we get eu−1

n
(y) ≤ H(x0) for every y ∈ B1. By Lemma 1.2 it

follows
|u−1

n (y) − u−1
n (y1)| ≤ H(x0)|y − y1|, ∀y ∈ B1.

On the other hand, the maps un are bi-Lipschitz on U1 = B(x1,
r1

HK
). For the

common neighborhood U1 of x1 we have

|x− x1| ≤ H(x0)|un(x) − un(x1)|, ∀x ∈ U1.

Passing to the limit as n → +∞ and then as x → x1 we get cu(x1) ≤ H(x0).
Hence u ∈ Ref(µ; ν)H,K .
Fixed ε > 0, we find δ > 0 such that

∫

E
(H(x) + K(x)) dµ < ε whenever

LN(E) < δ. By using a Vitali covering, we cover Ω, up to a measurable set E
such that LN(E) = δ > 0, by a finite number of disjoint neighborhoods Ui on
which un → u uniformly and invertibility holds. Since u#µ = ν we compute

R(u) ≤
l
∑

i=1

(
∫

Ui

Lip(u)(x)dµ+

∫

Ui

Lip(u−1)(u(x))dµ

)

+

∫

E

(H(x) +K(x))dµ ≤
l
∑

i=1

(
∫

Ui

Lip(u)(x)dµ+

∫

u(Ui)

Lip(u−1)(y) dν

)

+ ε.

By Lemma 1.4 we get

R(u) ≤
l
∑

i=1

lim inf
n→+∞

(
∫

Ui

Lip(un)(x)dµ+

∫

u(Ui)

Lip(u−1
n )(y) dν

)

+ ε

≤ lim inf
n→+∞

l
∑

i=1

(
∫

Ui

Lip(un)(x)dµ+

∫

u(Ui)

Lip(u−1
n )(y) dν

)

+ ε

≤ lim inf
n→+∞

(
∫

Ω

eun
(x) dµ+

∫

Ω

cun
(x) dµ

)

+ ε = lim inf
n→+∞

R(un) + ε.

Letting ε→ 0+ we get the thesis. �
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Remark 3.11. By using essentially the same tools employed in the proof of
Theorem 3.10 and according to Theorem 2.15 and Theorem 2.13 one can prove
existence results for the variational problems min{R(u) | u ∈ Ai}, where

A1 = {u ∈ Ref(µ; ν)H,K , eu <
N
√

2}, A2 = {u ∈ Ref(µ; ν)H,K , u incompressible},
A3 = {u ∈ Ref(µ; ν)H,K , u (locally) invertible}.
Remark 3.12. If for reformation maps the surjection property u(X) = Y is
required, we may argue as follows. To check that u is onto, let us fix y0 ∈ Y .
Observe that u−1

n are locally equi-Lipschitz. Arguing as in the proof of Theorem
in 3.10 for the sequence u−1

n we find a common neighborhood B(y0, r) such that
u−1

n are simultaneously homeomorphisms. Therefore, since un(X) = Y , we find
a sequence xn → x0 such that un(xn) = y0. Then we have

|u(x0) − y0| ≤ |u(x0) − u(xn)| + |u(xn) − un(xn)| + |un(xn) − y0|
≤ |u(x0) − u(xn)| + ‖u− un‖∞ → 0

as n→ +∞.

Remark 3.13. Observe that thanks to the compactness of Ref(µ; ν)H,K , no co-
ercitivity conditions on the energy functional R are needed (See [60, Ch. II
Section 9] for related results in the setting of mappings with bounded distor-
tion). In the case of H,K ∈ Lp(X,µ) the above minimization result could be
obtained by using Rellich-Kondrakov compactness in Sobolev spaces and the
l.s.c of the p-Dirichlet energy.

Remark 3.14. For X compact, considering finite coverings, it turns out that
H,K ∈ L∞. Therefore, in such a case we may consider H,K as two universal
constants. However the proof of Theorem 3.10 works as well for the non-compact
case. It would be interesting to develop an analogous theory under weaker re-
quirement on the functions H,K. For instance, supposing H,K ∈ Lp with
p > N , by Morrey’s inequality

|u(x) − u(y)| ≤ C(N, p)|x− y|1−N
p ‖∇u‖p

it follows that the sequences un, u
−1
n of the proof of Theorem 3.10 are locally

equi-Holder. Hence we get existence of minimizers for example in the set A3 as
in Remark 3.11. To check that the set A3 is closed one can also use the results
of [8, 62, 32].

Isometric measures are characterized by the following statement.
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Theorem 3.15. Let µ ∈ P(Ω) and ν ∈ P(Y ), so that µ = LN Ω, ν = LN Y ,
for a given bounded set Y . Then, E(µ, ν) = 2 if and only if there exists an
isometry u such that u#µ = ν.

Proof. By Theorem 3.10 we get a minimizer u : Ω → R
N which belongs to

Ref(µ; ν)H,K . By Theorem 2.15 and Remark 2.15 it follows that u is globally
invertible. By Lemma 3.7 and Theorem 3.8 it follows that u is a local isometry,
then (see for instance [10, Th. 14.1]), u is an isometric map.

�

By Theorem 3.15 we have that by reforming a flat configuration µ in a
corrugated one ν it results E(µ, ν) > 2. This last fact gives an alternative proof
of the so-called Grinfeld instability (see [23]), indeed, by the changing of the
geometry, any possible reformation must expand or contract some portion of
the body.

4. Generalized reformations

The notion of reformation introduced in the previous section has some
restrictions, indeed it is easy to exhibit examples, like the one in Figure 4.1, in
which every reformation map has a large cost while allowing fractures of the
body leads to map the initial measure by using local isometries.

H1 1

2
H11

2
H1

t1t2

Figure 4.1. An isometric fractured reformation.

Here we introduce a notion of generalized reformation. Our approach re-
lies on measure theoretic tools mostly developed in the field of optimal mass
transportation (see [4, 64]) where maps satisfying u#µ = ν are called transport
maps. A natural generalization of the transport map (reformation map) is given
by the notion of transport plan. A transport plan between two probability mea-
sures µ ∈ P(X) and ν ∈ P(Y ) is a measure γ ∈ P(X × Y ) such that π1

#γ = µ,

π2
#γ = ν, where πi, i = 1, 2 denote the projections of X × Y on its factors. A
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transport map u induces the transport plan γu := (I × u)#µ, where I is the
identity map of X. Observe that the set of transport plans with marginals µ
and ν, denoted by Π(µ, ν), is never empty since it always contains the transport
plan µ⊗ ν.
We shall call generalized reformation, or reformation plan, of µ into ν any trans-
port plan γ with marginals µ and ν.
Let us recall some known results which will play a crucial role in the following
(we refer to [3, 4]).

Definition 4.1. Let M(Y ) be the space of Radon measures on Y . A map λ :
X → M(Y ) is said to be Borel if for any open set B ⊂ Y the function x ∈
X 7→ λx(B) is a real valued Borel map. Equivalently, x 7→ λx is a Borel map if
for any Borel and bounded map ϕ : X × Y → R it results that the map

x ∈ X 7→
∫

Y

ϕ(x, y)dλx

is Borel.

Theorem 4.2 (Disintegration theorem). Let γ ∈ P(X × Y ) be given and let
π1 : X×Y → X be the first projection map of X×Y , we set µ = (π1)#γ. Then
for µ− a.e. x ∈ X there exists νx ∈ P(Y ) such that

(i) the map x 7→ νx is Borel,

(ii) ∀ϕ ∈ Cb(X × Y ) :
∫

X×Y
ϕ(x, y)dγ =

∫

X

(∫

Y
ϕ(x, y)dνx(y)

)

dµ(x).

Moreover the measures νx are uniquely determined up to a negligible set with
respect to µ.

Let γ ∈ Π(µ, ν), as usual we will write γ = νx ⊗ µ, assuming that νx

satisfy the condition (i) and (ii) of Theorem 4.2. Obviously the transport plan
µ ⊗ ν corresponds to the constant map x 7→ νx = ν. Let u : X → Y , observe
that for the transport plan γu := (I × u)#µ, the Disintegration Theorem yields
γu = δu(x) ⊗ µ.

Remark 4.3. Let X ⊂ R
N , we recall that the barycenter of a measure µ ∈ P(X)

is given by

β(µ) =

∫

X

x dµ.

If γ = νx⊗µ, then, by Theorem 4.2 the map x 7→ β(νx) is measurable. It is possi-
ble to define a generalized pointwise expansion and compression energy through
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the pointwise Lipschitz constant of the map x 7→ ϕ(x) := β(νx). Observe that
for a transport map u, since β(δx) = x, we have

rϕ(x0) = ru(x0).

However, it may happen that the map ϕ is an isometry although the target are
quite far from being isometric as described in Figure 4.2 .

H1 1

2
H11

2
H1

t1t2

Figure 4.2. A barycenter isometric reformation.

In the sequel we will introduce the notion of generalized pointwise com-
pression and expansion energy through the notion of 1-Wasserstein distance of
measures.

Definition 4.4. Let µ, ν ∈ P(X), the 1-Wasserstein distance between µ and ν
is defined by

W (µ, ν) = inf
γ∈Π(µ,ν)

∫

X

d(x, y) dγ(x, y). (4.1)

Let us recall that by Kantorovich duality (see [4, 30, 64]) the 1-Wasserstein
distance between µ and ν can be expressed as follows

W (µ, ν) = sup

{
∫

X

ϕ d(µ− ν) | ϕ ∈ Lip1(X)

}

. (4.2)

Lemma 4.5. The balls of (P(Y ),W ) are 1-convex.

Proof. Let µ ∈ P(Y ), r > 0 be fixed, we consider ν1, ν2 ∈ B := B(µ, r) ⊂ P(Y ).
For every t ∈ [0, 1], let νt := tν1 + (1− t)ν2. Then, by considering (4.2), for any
fixed ϕ ∈ Lip1(Y ), we compute

∫

Y

ϕ d(νt − µ) = t

∫

Y

ϕ d(ν1 − µ) + (1 − t)

∫

Y

ϕ d(ν2 − µ)

≤ tW (ν1, µ) + (1 − t)W (ν2, µ) ≤ r



ELASTIC REFORMATIONS 27

Passing to the supremum with respect to ϕ ∈ Lip1(Y ) we get W (νt, µ) ≤ r,
hence νt ∈ B ∀t ∈ [0, 1]. Observing that W (νt+h, νt) = hW (ν1, ν2) it follows

that the length of the curve νt (see Appendix A) amounts to l(νt) =
∫ 1

0
|ν̇t|dt =

W (ν1, ν2). �

As stated in Section 1, over the metric space (P(Y ),W ) the above Lemma
allows to derive local Lipschitz conditions from just pointwise Lipschitz bounds
(see also [19]). Let γ = νx ⊗ µ, the function

f : X → (P(Y ),W ), f(x) = νx. (4.3)

will be called disintegration map. Let us introduce the notion of generalized
compression and expansion energy in terms of the disintegration map f .

Definition 4.6 (Generalized expansion and compression energy). For any ref-
ormation plan γ = νx ⊗ µ of µ into ν we define the pointwise expansion energy

eγ(x0) := lim sup
x→x0

W (νx, νx0
)

|x− x0|
, (4.4)

and the pointwise compression energy

cγ(x0) = lim sup
x→x0

|x− x0|
W (νx, νx0

)
. (4.5)

By using (4.3) we can state

eγ(x) = ef (x), cγ(x) = cf (x). (4.6)

The pointwise reformation energy is then defined by

rγ(x0) = eγ(x0) + cγ(x0).

Remark 4.7. Notice that, since W (δx, δy) = |x − y|, if γ is a reformation plan
induced by a map u : X → Y , say γu = (I × u)#µ and fu is the disintegration
map of γ, then it results

rγ(x0) = rfu
(x0) = ru(x0).

Definition 4.8. Given H,K : X →]0,+∞[, H,K ∈ L1(X,µ) and a fixed
covering A of X made by balls, we define the set GRef(µ; ν)H,K ⊂ Π(µ, ν) as
the subset of reformation plans γ of µ into ν such that

∀x0 ∈ X : ∃ B(x0, r) ∈ A s.t. eγ(x) ≤ K(x0), cγ(x) ≤ H(x0) (4.7)

∀x ∈ Ω ∩B(x0, r).
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Remark 4.9. By (4.4)-(4.6) the role played by the disintegration map is clear,
hence one is led to argue as in the previous section trying to establish the
analogous of Theorem 2.15 in the case of disintegration maps. Unfortunately in
the general case of metric spaces some tools as degree theory are not available.
Therefore, it is not clear if local invertibility follows by (4.7).

Nevertheless, by restricting the analysis to the case of small reformations,
i.e. satisfying HK ≤ µ0, for enough small constant µ0, it is possible to prove
some global invertibility results suitable to the present case. For instance, as-
suming that Ω is a ball and that f is a local homeomorphism, then there exists
a constant µ0 such that HK < µ0 implies f globally invertible (see [41, 10] and
[28] for other classes of domains Ω).

Definition 4.10. Let us define

GRef0(µ, ν)
H,K = {γ ∈ GRef(µ, ν)H,K |γ = f(x)⊗µ, f : Ω → P(Y ) invertible }.

(4.8)

5. Finding reformation plans

In the following examples we show that it is possible to compare shapes
with regular disintegration maps despite no regular transport map does exist.

b

b b

b

b

b

x

y u1(x)

u1(y)

u2(x)

u2(y)

X

A

B

Figure 5.1. A disconnected target reformation

Example 5.1. Consider a regular domain X ⊂ R
N splitted into Y = A ∪ B

for two disjoint regular domains A,B ⊂ R
N in such a way 1 = LN(X) =

LN(A) + LN(B). We find (see [33, 66]) two diffeomorphisms u1 : X → A,



ELASTIC REFORMATIONS 29

u2 : X → B so that |Ju1| = LN(A), |Ju2| = LN(B).
Diffeomorphisms with constant Jacobian can be constructed by using the results
of [17]. Indeed, let ϕ : Ω → Ω1 be a diffeomorphism. Assume for instance

Jϕ(x) > 0 ∀x ∈ Ω and let f(x) = LN (Ω)
LN (Ω1)

Jϕ(x). Then

∫

Ω

f(x) dx =
LN(Ω)

LN(Ω1)

∫

Ω

Jϕ(x) dx = LN(Ω).

By the results of [17], there exists a diffeomorphism u : Ω → Ω such that

Ju = f . Setting ψ = ϕ ◦ u−1 : Ω → Ω1 it follows that Jψ = LN (Ω)
LN (Ω1)

.

Let νx = LN(A)δu1(x) +LN(B)δu2(x), then the reformation plan γ := νx ⊗µ
has µ = LN X and ν = LN Y as marginals. We claim that the function
f(x) = νx is, at least locally, bi-Lipschitz. Indeed it results

W (νx, νx0
) = LN(A)|u1(x) − u1(x0)| + LN(B)|u2(x) − u2(x0)|.

Since u1, u2 are diffeomorphisms, we find constants K1,2, H1,2, H,K such that

1

H
|x− x0| ≤ LN(A)

H1

|x− x0| +
LN(B)

H2

|x− x0|

≤ LN(A)|u1(x) − u1(x0)| + LN(B)|u2(x) − u2(x0)|
= W (νx, νx0

),

W (νx, νx0
) = LN(A)|u1(x) − u1(x0)| + |LN(B)|u2(x) − u2(x0)|

≤ LN(A)K1|x− x0| + LN(B)K2|x− x0|
≤ K|x− x0|.

Remark 5.2. The above construction is possible also for a class of star-shaped
domains as in [22, Theorem 5.4] by considering bi-Lipschitz maps in place of
diffeomorphisms.

Moreover, generalized reformation maps are useful to compare near-isometric
shapes.

Example 5.3. Consider a rectangle R and a bended one with the bended size of
1
n

(see Figure 0.1). Consider the maps

u1(x) =

(

1 − 1

n

)

(Ax+ a) , u2(x) =
1

n
(Bx+ b)
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for orthogonal matrices A,B and then the reformation plan

γ =

((

1 − 1

n

)

δu1(x) +
1

n
δu2(x)

)

⊗ µ,

where µ = LN R. We compute

W (νx, νx0
) =

(

1 − 1

n

)

|u1(x)−u1(x0)|+
1

n
|u2(x)−u2(x0)| =

(

(

(1 − 1

n

)2

+
1

n2

)

|x−x0|.

Therefore the function f(x) = νx is, at least locally, bi-Lipschitz and

eγ(x0) =

(

1 − 1

n

)2

+
1

n2
→ 1

as n→ +∞, while cγ(x0) = 1
eγ(x0)

.

2
√

2

y = x+ 1

y = −x− 1

Figure 5.2. An horizontal segment, with mass 2
√

2, splitted
into two different ones.

Example 5.4. Consider the situation displayed in Figure 5.3. Defining νx =
1
2
(δx+1 + δ−x−1), we find W (νx, νx0

) =
√

2|x−x0|. Hence rγ = eγ+cγ =
√

2+ 1√
2
.

Example 5.5. Let X ⊂ R
N be a measurable set with LN(∂X) = 0. We find

an increasing sequence of polyhedral sets Xn such that X =
⋃

n≥1Xn up to
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a negligible set. Let Y ⊂ R
N be the unitary cube, LN(X) = LN(Y ) and let

Yn ⊂ Y be a rectangle such that LN(Yn) = LN(Xn) ∀n ∈ N. Let µ = LN X,
ν = LN Y .
We find a sequence (un)n∈N so that ∀n ∈ N un : Xn → Yn is a bi-Lipschitz
map with Jun = 1. The volume constraint implies that Kn := Lip(un) ≤ K,
Hn := Lip(u−1

n ) ≤ H. In particular, for every x, y ∈ Xn we have

1

H
|x− y| ≤ |un(x) − un(y)| ≤ K|x− y|.

By Lipschitz extension, we may consider un as defined on the whole X. By
Ascoli-Arzelá Theorem we find un → u uniformly. It follows that

1

H
|x− y| ≤ |u(x) − u(y)| ≤ K|x− y|,

up to a zero measure set. Moreover
∫

X

f(u(x)) dx = lim
n→+∞

∫

X

f(un(x)) dx

= lim
n→+∞

(
∫

Xn

f(un(x)) dx+

∫

X\Xn

f(un(x)) dx

)

= lim
n→+∞

∫

Yn

f(y) dy =

∫

Y

f(y) dy.

Hence, u#µ = ν.

6. Variational problems on generalized reformations

The notion of generalized reformation involves the Lipschitz pointwise con-
stant of maps in a metric space framework. For the associated integral energies
it is natural to consider some notion of Sobolev spaces in a metric setting.
There exist different notions of metric Sobolev spaces which coincide provided
some mild assumptions such as a doubling condition, a Poincarè inequality and
a power of integrability 1 < p < +∞ are satisfied. We refer the reader to the
Appendix B and the references therein for further informations. In particular,
the requirement on the power p > 1 will be important to state a general ex-
istence result (see Theorem 6.8 below) for the variational problem related to
generalized reformations. Actually, these kind of assumptions seem to form a
natural context to work with in the setting of metric analysis. Therefore, along
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all this section we will assume

X = Ω ⊂ R
N compact and satisfying (B.3) and (B.4),

Y ⊂ R
N compact.

(6.1)

Definition 6.1. Let γ ∈ Π(µ, ν). We define the reformation energy of γ as
follows

R(γ) =

∫

X

(cγ + eγ) dµ. (6.2)

Remark 6.2. With abuse of notation we are using the same symbol R to denote
the reformation energy functional defined on the space of reformation maps and
the analogous defined on the space of reformation plans. Since in the paper it
always appear with its argument specified, there is no risk of confusion.

Theorem 6.3. Let γ = f(x) ⊗ µ ∈ GRef(µ; ν)H,K be such that R(γ) = 2, µ
absolutely continuous with respect to the Lebesgue measure. Then there exists
an open dense subset of Ω on which the disintegration map f is a local isometry
(with respect to the Wasserstein distance).

Proof. First observe that since Ω is quasiconvex (see for instance [46, Lemma
6.1]), then f is a Lipschitz function. We have eγ = cγ = 1 a.e. By [52, Prop.
1.1, Sec. 3], there exists an open dense subset U ⊂ Ω on which f is locally bi-
Lipschitz. Therefore, consider a bi-Lipschitz map f : B → P(Y ) for an open ball
B ⊂ U . For x1, x2 ∈ B, by using Fubini Theorem, we find a curve η connecting
x1, x2 as in [15, Prop. 3.4] in such a way for a.e. t it results eγ(η(t)) = 1 and
l(η) ≤ |x1 − x2| + ε. Since f is Lipschitz, the curve ρ : [0, 1] → (P(Y ),W ),
defined by ρt = f(η(t)) is Lipschitz too. Hence, it admits a tangent vector v
(see Theorem A.2). Fixed u ∈ Lip1(Y ), by standard approximation argument
we may suppose that u ∈ C1. Therefore, by using the continuity equation (A.4)
we compute

∫

Y

u d (f(x1) − f(x2)) =

∫

Y

u d(ρ1 − ρ0) =

∫ 1

0

d

dt

(
∫

Y

u dρt

)

dt =

=

∫ 1

0

∫

Y

〈du, v〉dρt dt ≤
∫ 1

0

∫

Y

|v|dρt dt =

∫ 1

0

|ρ̇|(t) dt ≤
∫ 1

0

eγ(ηt)|η̇|dt ≤

≤ l(η) ≤ |x1 − x2| + ε.

Taking the supremum with respect to u and letting ε → 0+ we get the 1-
Lipschitz property

W (f(x1), f(x2)) ≤ |x1 − x2|.
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To get the opposite inequality, we argue as follows. Set ρ0 = f(x1), ρ1 = f(x2),
let us consider a geodesic ρt : [0, 1] → P(Y ) between ρ0 and ρ1, i.e. l(ρ) =
W (f(x1), f(x2)). Since f is bi-Lipschitz, there exists an injective Lipschitz curve
γ : [0, 1] → B connecting x1, x2 such that ρt = f(γ(t)). Again by using a Fubini
type argument, we find a sequence of Lipschitz injective curves (γn)n∈N so that
γn → γ uniformly and Lip(f−1)(f(γn(t))) = 1 for a.e. t ∈ [0, 1]. Therefore,
we get σn = f(γn) → ρ uniformly in (P(Y ),W ). By the upper semiconti-
nuity of the Hausdorff measure along the sequence σn (see for instance [11,
Lemma 4.1]), recalling that for injective curves it results l(σ) = H1(σ([0, 1]))
(see [7]), fixed ε > 0, we find a Lipschitz curve σ connecting ρ0 and ρ1 such that
Lip(f−1)(σ(t)) = 1 for a.e. t ∈ [0, 1] and l(σ) ≤ W (f(x1), f(x2)) + ε. Finally,
we compute

|x1 − x2| = |f−1(σ(0)) − f−1(σ(1))| =

∣

∣

∣

∣

∫ 1

0

d

dt
f−1(σ(t)) dt

∣

∣

∣

∣

≤

≤
∫ 1

0

|σ̇|W (t) dt = l(σ) ≤ W (f(x1), f(x2)) + ε.

Letting ε→ 0+ we get the thesis. �

Theorem 6.3 should be compared with Theorem 3.17. The main restriction
is on invertibility which is just on an open dense subset. We may say that this
open set is of full measure, actually coinciding with the whole space, just for the
case of small reformations as done in Theorem 6.4 below. There are different
restrictions in doing so for the general case. A first matter relies in characterizing
the set where a map is locally invertible on a metric setting. A second one
relies on the fact that the integral functional R gives a.e. informations, while
invertibility requires global conditions. Therefore the matter is on passing from
a.e. conditions to everywhere ones. In the results concerning reformation maps,
this difficulty was overcome by using degree theory in R

N . Therefore, something
similar to degree theory over metric spaces should be needed in order to handle
with this kind of questions.

Let us introduce the notation

EG(µ, ν) = inf{R(γ) | γ ∈ GRef0(µ; ν)H,K}. (6.3)

Concerning symmetry properties of the above generalized reformation energy,
the same reasonings made for transport maps, compare with Definition 3.4, hold
as well. We remark here that this time the question of symmetry is not just a
question on invertibility. For instance, the transport plan γ = f ⊗ µ between
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µ and ν, considered in Figure 4.1 is isometric, i.e. W (f(x), f(x0)) = |x − x0|.
However, reversing the target measures we see that the transport plan between
ν and µ is just locally isometric and no transport plan g ⊗ ν between ν and µ
is isometric. The fact is that the corresponding disintegration maps are of the
form

g : Y → P(X).

Therefore, symmetry questions are quite involved and here we do not further
consider them.

We state the following characterization of the lowest possible value of the
generalized reformation energy.

Theorem 6.4. If EG(µ, ν) = 2, with µ = LN Ω, then the infimum is attained
at a local isometric reformation plan.

Proof. Since µ = LN Ω, we may assume X = Ω. Let γn be a minimizing
sequence. By compactness of P(X × Y ), by passing to a subsequence, we may

assume that γn
∗
⇀ γ. It follows that γ is also a transport plan between µ and

ν. By disintegration, we also assume that γn = fn(x) ⊗ µ, γ = νx ⊗ µ. For any
fixed ϕ ∈ C(X), ψ ∈ C(Y ), we get

∫

X

ϕ(x)

(
∫

Y

ψ(y)dνx

)

dµ =

∫

X×Y

ϕ(x)ψ(y) dγ = lim
n→+∞

∫

X×Y

ϕ(x)ψ(y) dγn =

= lim
n→+∞

∫

X

ϕ(x)

(
∫

Y

ψ(y)dfn(x)

)

dµ. (6.4)

By density of continuous functions, it follows that
∫

Y
ψ(y)dfn(x) ⇀

∫

Y
ψ(y)dνx

in Lebesgue spaces of integrable functions.
Since X is quasiconvex, by definition of generalized reformations, it follows

that the sequence fn is equi-Lipschitz on X. By Ascoli-Arzelá Theorem, by
passing to a subsequence we have that fn → f uniformly on compact subsets.
Since the disintegration is uniquely determined, it follows that f(x) = νx for
µ-a.e. x. Indeed, since the Wasserstein distance metrizes the weak∗ convergence
of measures (Y is compact), for every ψ ∈ C(Y ) we have

∫

Y

ψdfn(x) →
∫

Y

ψdf(x).
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Hence, for every ϕ ∈ C(X), passing to the limit under the integral sign and by
(6.4) we get

∫

X

ϕ(x)

(
∫

Y

ψdf(x)

)

dµ =

lim
n→+∞

∫

X

ϕ(x)

(
∫

Y

ψdfn(x)

)

dµ =

∫

X

ϕ(x)

(
∫

Y

ψdνx

)

dµ.

By lemma 4.5, fn, f
−1
n are both locally equi-Lipschitz. It follows that also f

is invertible. Indeed, if y0 = f(x1) = f(x2), as in the proof of Theorem 3.10,
the inverse maps f−1

n are well defined on a small ball B(y0, δ). For a common
Lipschitz constant H we compute

|x1 − x2| = |f−1
n (fn(x1)) − f−1

n (fn(x2))| ≤ HW (fn(x1), fn(x2)) ≤
H (W (fn(x1), f(x1)) +W (f(x1), f(x2)) +W (f(x2), fn(x2))) .

Letting n→ +∞ we get x1 = x2. Therefore, f ∈ GRef0(µ; ν)H,K . Since

2 ≤
∫

X

(

eγn
+

1

eγn

)

dµ ≤ R(γn) ∀n ∈ N,

passing to the limit we get

lim
n→+∞

∫

X

gn(x)dµ = 2,

where gn(x) = eγn
+ 1

eγn
. Passing to a subsequence we have gn → 2 a.e. Since

gn(x) = ϕ(eγn
) for ϕ(t) = t + 1

t
, by continuity of ϕ it follows that eγn

→ 1 a.e.

On the other hand, cγn
≥ 1

eγn
yielding lim infn→+∞ cγn

≥ 1 a.e. Since γn is a

minimizing sequence for R, we get

2 = lim
n→+∞

R(γn) = 1 + lim
n→+∞

∫

X

cγn
dµ.

and by Fatou Lemma we infer

1 ≤
∫

X

lim inf
n→+∞

cγn
dµ ≤ lim

n→+∞

∫

X

cγn
= 1.

Therefore, by passing to a subsequence, we also have that cγn
→ 1 a.e. Arguing

as in the proof of Theorem 6.3, we locally find in Ω a curve η : [0, 1] → P(Y )
such that eγn

(η(t)) → 1 a.e. and l(η) ≤ |x1 − x2| + ε. Therefore we get

W (fn(x1), fn(x2)) ≤
∫ 1

0

eγn
(η(t))|η̇|(t)dt.
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Passing to the limit we obtain

W (f(x1), f(x2)) ≤ l(η) ≤ |x1 − x2| + ε.

Letting ε→ 0+ we obtain the 1-Lipschitz condition

W (f(x1), f(x2)) ≤ |x1 − x2|.
Arguing again as in the proof of Theorem 6.3, we (locally) obtain

W (f(x1), f(x2)) = |x1 − x2|,
hence R(γ) = 2. �

Remark 6.5. To recover a global isometry in the above results as in Theorem
3.15 one should establishes some metric version of Liouville Rigidity Theorems
as in Theorem 3.8.

A natural question concerns the validity of an existence result as in Theo-
rem 3.10. However, we observe that the approach pursued in the proof of such
result involve the push-forward of the transport map. Therefore, for generalized
reformations, the push-forward of the disintegrations maps is involved. This
point of view leads to consider a variational problem over transport classes as
introduced in [31]. The definition of transport classes is the following

Definition 6.6. Let γ, η ∈ Π(µ, ν) with γ = f(x) ⊗ µ, η = g(x) ⊗ µ be given.
We shall say that γ and η are equivalent (by disintegration), in symbols γ ≈ η,
if f#µ = g#µ.
For any η ∈ Π(µ, ν) with η = g(x) ⊗ µ, we shall call transport class any equiv-
alence class of a transport plan η and it will be denoted by [η], i.e.

[η] = {γ = f(x) ⊗ µ | f#µ = g#µ}. (6.5)

For a transport map u the disintegration map is given by x 7→ δu(x). In [31]
it is shown that every such disintegration map leads to the same push-forwarded
measure. In other words, all the reformation plans of the form (I×u)#µ belong
to the same transport class. Moreover, the following result holds true

Proposition 6.7. Let u : X → Y be such that u#µ = ν and let η = (I×u)#µ =
δu(x) ⊗ µ. If γ ∈ [η] then there exists v : X → Y such that γ = δv(x) ⊗ µ, i.e. the
transport plan γ is concentrated on the graph of v.

In this perspective, fixed v : X → Y such that v#µ = ν, the variational
problem (3.10) studied in Section 3 could be rephrased as follows

min{R(u) | u ∈ Ref(µ; ν)H,K} = min
GRef(µ;ν)H,K

{R(γ) | γ ∈ [(I × v)#µ]}. (6.6)
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However, by passing to transport plans, different transport classes arise. By
the above discussion it seems natural to fix a transport plan η ∈ Π(µ, ν), η =
g(x) ⊗ µ and to consider the variational problem

min
GRef(µ;ν)H,K

{R(γ) | γ ∈ [η]} . (6.7)

Theorem 6.8. (Existence of optimal reformation plans) Assume (6.1) and µ =
LN Ω. Let η ∈ GRef0(µ; ν)H,K be given. Then, for every p > 1 the variational
problem

min
GRef0(µ;ν)H,K

{

R
p(γ) :=

∫

X

(cpγ + ep
γ)dµ | γ ∈ [η]

}

(6.8)

admits solutions.

Proof. Let γn = fn(x) ⊗ µ be a minimizing sequence. Let fn → f uniformly
with respect to the Wasserstein distance as in the proof of Theorem 6.4. By
Lemma 1.4 we get the lower semicontinuity of the term

∫

X
ep

γ(x)dµ. Moreover,
by Lemma 3.3 we get

∫

X

cpγ(x)dµ =

∫

X

Lipp(f−1)(f(x)) dµ (6.9)

Since (6.1) X satisfies the doubling condition given in Definition B.4 and the
Poincaré inequality given in Definition B.5, we can apply the theory of Sobolev
spaces over the subset f(X) of the metric space (P(Y ),W, f#µ) (see Appendix
B). Moreover (see [57]), since for p > 1 the pointwise Lipschitz constant Lip(g)
is the minimal generalized upper gradient of the locally Lipschitz map g ([57,
Theorem 5.9]) and the Cheeger p-energy (B.1) is lower semicontinuous with
respect to Lp convergence ([57, Theorem 2.8]), by using (6.9) we have

∫

X

cpγ(x)dµ =

∫

P(Y )

Lipp(f−1)(y) d(f#µ) ≤ lim inf
n→+∞

∫

P(Y )

Lipp(f−1
n )(y) d(f#µ).

(6.10)
By taking into account the condition (fn)#µ = f#µ ∀n ∈ N, we get

∫

X

cpγ(x)dµ ≤ lim inf
n→+∞

∫

P(Y )

Lipp(f−1
n )(y) d((fn)#µ) = lim inf

n→+∞

∫

X

cpγn
(x)dµ.

�



38 LUCA GRANIERI, FRANCESCO MADDALENA

6.1. Small reformation plans. Let γ ∈ GRef(µ; ν)H,K and f : X → P(Y )
be the correspondent disintegration map. Following the proof of Theorem 2.15,
f is locally invertible on an open dense subset U and N(y, f, U) = D is locally
constant. In order to prove that actually N(y, f, U) = 1, fix a small ball B on
which f is bi-Lipschitz. By using the Metric Area Formula (see [6, 43, 44]) we
have

DHN(f(B)) =

∫

f(B)

N(y, f, B) dHN(y) =

∫

f−1(f(B))

J(MD(f, x)) dx ≤

≤
∫

f−1(f(B))

ef (x)
N dx ≤ KNLN(f−1(f(B))),

where MD(f, x) denotes the metric differential introduced in Section 1, while
for any seminorm P the metric Jacobian is defined by

J(P ) = NωN

(
∫

SN−1

P (v)−NdHN−1(v)

)−1

.

For V = f(B) and µ = LN X we are led to

DHN(V ) ≤ KNLN(f−1(V )) = KNf#µ(V ).

Therefore, invertibility for small K as in Theorem 2.15 depends on the transport
class correspondent to Λ = f#µ. Such invertibility property could be obtained
for Λ(V ) ≤ HN(V ). For instance, consider the isometric embedding y 7→ δy.
Let i(Y ) = ∆ ⊂ P(Y ) be the set of Dirac deltas. It follows that HN(∆) =
HN(i(Y )) = LN(Y ) = 1. Consider Λ as the probability measure over (P(Y ),W )
defined by Λ(F ) =

∫

F
χ∆(λ) dHN(λ). In such case we have that if K < N

√
2

then f is globally invertible. Therefore, fixed a transport plan η = f(x)⊗µ such
that f#µ = Λ, we get existence of the variational problem of minimizing Rp(γ)
over the set

{γ ∈ GRef(µ, ν)H,K : γ ∈ [η]},
provided of course that such set of reformation plans is not empty.

Appendix A. Curves in metric spaces

For reader convenience here we just summarize some basic results. For
analysis in metric spaces we refer to [5, 7, 36, 37]. For Lipschitz function on a
metric space (X, d) we introduce the metric derivative according to the following
definition.
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Definition A.1. Given a curve ρ : [a, b] → (X, d), the metric derivative at the
point t ∈]a, b[ is given by

lim
h→0

d(ρ(t+ h), ρ(t))

h
(A.1)

whenever it exists and in this case we denote it by |ρ̇|(t).
Of course, the above notion of metric derivative coincides with the metric

differential (1.2). If ρ : [a, b] → (X, d) is a Lipschitz curve, by metric Rademacher
Theorem the metric derivative of ρ exists at L1-a.e. point in [a, b]. Furthermore,
the length of the Lipschitz curve ρ is given by

l(ρ) =

∫ b

a

|ρ̇|(t)dt. (A.2)

We restrict to the case of P(X) := (P(Ω),W ). The following theorem relates
absolutely continuous curves in P(X) to the continuity equation.

Theorem A.2. Let t 7→ ρt ∈ P(X), t ∈ [0, 1], be a curve. If ρt is absolutely
continuous and |ρ̇| ∈ L1(0, 1) is its metric derivative, then there exists a Borel
vector field v : (t, x) 7→ vt(x) such that

vt ∈ Lp(X, ρt) and ‖vt‖Lp(X,ρt) ≤ |ρ̇|(t) for L1 − a.e. t ∈ [0, 1] (A.3)

and the continuity equation

ρ̇t + div(vρt) = 0 in (0, 1) ×X, (A.4)

where the divergence operator with respect to the spatial variables is satisfied in
the sense of distributions.
Conversely, if ρt satisfies the continuity equation (A.4) for some vector fields vt

such that ‖vt‖Lp(ρt) ∈ L1(0, 1), then t 7→ ρt is absolutely continuous and

|ρ̇|(t) ≤ ‖vt‖Lp(X,ρt) for L1 − a.e. t ∈ [0, 1].

Remark A.3. The minimality property (A.3) uniquely determines a tangent
field vt. We will refer to vt as the tangent vector associated to the curve t 7→ ρt.
The continuity equation (A.4) has been used in the Monge-Kantorovich theory
since its beginning for many applications. The fact that it characterizes the
absolutely continuous curves on the space of probability measures equipped
with the Wasserstein metric was only recently pointed out and the full proof is
contained in [5].

An immediate consequence of the continuity equation is the following
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Lemma A.4. For every solution (ρt, vt) of the continuity equation (A.4) and
for every f ∈ C1(X) it results

d

dt

(
∫

X

f(x)dρt

)

=

∫

X

〈∇f(x), vt(x)〉dρt (A.5)

in the sense of distributions.

Actually, it turns out that the map f 7→
∫

X
fdρt belongs to W 1,1

loc (0, 1).
Therefore, formula (A.5) holds for a.e. t ∈ (0, 1). We refer the reader to [4, 5, 30]
for proofs and more details.

Appendix B. Sobolev spaces on metric spaces

There are several ways to generalize the notion of Sobolev spaces into a
metric framework, see for instance [13, 19, 35, 38, 46, 57, 63]. The approach
based on the notion of upper gradient (see [13, 38, 57, 63]) seems to be more
appropriate to the context of this paper.

Definition B.1. Let (X, dX), (Y, dY ) be metric spaces, let U ⊂ X be an open
subset and let u : U → Y be a given map. A Borel function g : U → [0,+∞]
is said to be an upper gradient of u if for any unit speed curve γ : [0, l] → X it
results

dY (u(γ(0)), u(γ(l))) ≤
∫ l

0

g(γ(s)) ds.

If u : U → Y is Lipschitz, then the pointwise Lipschitz constant Lip(u) is
an upper gradient for u, see [13, 19, 63]. For u ∈ Lp(U, Y ), the Cheeger type
p-energy is defined as follows

Ep(u) = inf
(un,gn)

lim inf
n→+∞

|gn|pLp , (B.1)

where the infimum is taken over the sequences (un, gn) such that gn is an upper
gradient of un and un → u, gn → g in Lp. By definition (B.1) it immediately
follows

Ep(u) ≤ lim inf
n→+∞

Ep(un) (B.2)

whenever un → u in Lp. The Cheeger metric (1, p)-Sobolev space is defined as

H1,p(U, Y ) = {u ∈ Lp(U, Y ) : Ep(u) < +∞}.
We need two more definitions.
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Definition B.2. A function g ∈ Lp is called a generalized upper gradient for
u ∈ H1,p(U, Y ) if there exists a sequence (un, gn) such that gn is an upper
gradient for un and un → u, gn → g in Lp.

From Definition B.1 it follows that |g|pLp ≥ Ep(u) whenever g is a generalized
upper gradient for u.

Definition B.3. A generalized upper gradient g for a map u ∈ H1,p(U, Y ) is
said to be minimal if it satisfies |g|pLp = Ep(u)

Under some regularity requirement on the target metric space Y , it may be
proved (see [57]) that every u ∈ H1,p(U, Y ), with 1 < p < +∞ admits a unique
minimal generalized upper gradient gu. This minimal generalized upper gradient
coincides with the pointwise Lipschitz constant Lip(u) under some geometrical
property of the spaces (X,µ), Y (see [57, Theorem 5.9]). In particular, a crucial
role is played by the doubling condition and a weak Poincaré (1, p)-inequality
for the space (X,µ).

Definition B.4. A measure µ over a metric space X is said to be ”doubling”
if µ is finite on bounded sets and there exists a constant C such that for every
x ∈ X and every r > 0 the following inequality holds

µ(B(x, 2r)) ≤ Cµ(B(x, r)). (B.3)

Definition B.5. Let 1 ≤ p < +∞. A metric measure space (X, d, µ) is said to
satisfy the weak Poincaré (1, p)-inequality if, for any s > 0, there exist constants
C,Λ ≥ 1 such that, for any open ball B(x, r) with 0 < r ≤ s, function f ∈
L1(B(x,Λr))) and upper gradient g : B(x,Λr)) → [0,+∞] for f , the following
inequality holds

−
∫

B(x,r)

∣

∣

∣

∣

f − −
∫

B(x,r)

f dµ

∣

∣

∣

∣

dµ ≤ C

(

−
∫

B(x,Λr)

gp dµ

)
1

p

(B.4)

Observe that under some geometrical requirement on X, the Poincaré
inequality (B.4) may be required to hold just for Lipschitz functions f (see
[37, 38]). The euclidean space R

N equipped with the Lebesgue measure LN is
doubling and satisfies the above Poincaré inequality with Λ = 1. Given a square
Q and µ = LN Q, by the inequality

1

2N
LN(B(x, r)) ≤ µ(B(x, r)) ≤ LN(B(x, r)),

holding for every ball B(x, r) of Q and the usual Poincaré inequality on convex
sets, it follows that (Q,µ) is doubling and supports the Poincaré inequality
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(B.4). Since the doubling condition and the Poincaré inequality are stable under
bi-Lipschitz maps, every diffeomorphic (or bi-Lipschitz), with volume preserving
maps, domain Ω (as balls, see for instance [22, 33]) with the same volume of
the square Q, equipped with the measure ν = LN Ω is doubling and supports
the Poincaré inequality (B.4). For more details on the doubling and Poincaré
inequality we refer the reader for instance to [7, 13, 38, 46].
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