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Abstract. By disintegration of transport plans it is introduced the notion of trans-
port class. This allows to consider the Monge problem as a particular case of the
Kantorovich transport problem, once a transport class is fixed. The transport prob-
lem constrained to a fixed transport class is equivalent to an abstract Monge problem
over a Wasserstein space of probability measures. Concerning solvability of this kind
of constrained problems, it turns out that in some sense the Monge problem corre-
sponds to a lucky case.
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Introduction

Optimal transport problems, also known as Monge-Kantorovich problems, have been
very intensively studied in the last years giving rise to numerous and important ap-
plications to PDE, Shape Optimization and Calculus of Variations, so we witnessed
a spectacular development of the field. The interested reader may look at the mono-
graphs and lecture notes [3, 5, 11, 14, 19, 20, 21, 22] where the subject is fully devel-
oped.
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Let us briefly recall the formulations of the Monge-Kantorovich problems.
Let X, Y be two compact metric spaces and let c : X × Y → R

+ be a Borel cost
function. The Monge problem is formulated as follows: given two probability measures
µ ∈ P(X), ν ∈ P(Y ) find a measurable map t : X → Y such that t#µ = ν (# denotes
the push-forward of measures) and such that t minimizes the total cost, i.e.

min
t:X→Y

{
∫

X

c(x, t(x)) dµ, | t#µ = ν

}

(0.1)

It may happens that the set of admissible maps is empty (e.g. µ = δx and ν =
1
2
(δy + δz)). Then the problem could be reformulated in its Kantorovich’s relaxation:

find γ ∈ P(X ×Y ) such that π1
#γ = µ and π2

#γ = ν (π1 and π2 are the projections on
the factors of X × Y ) and such that γ minimizes the total cost, i.e.

min
γ

{
∫

X×Y

c(x, y) dγ(x, y) | π1
#γ = µ, π2

#γ = ν

}

. (0.2)

The admissible measures γ for the Kantorovich problem are called transport plans. We
denote by Π(µ, ν) the set of transport plans with marginals µ and ν. If t is admissible
for the Monge problem then the measure associated in the usual way to the graph
of t, i.e. γ = (IX × t)#µ, is admissible for the Kantorovich problem. However the
class of admissible measures for the Kantorovich problem is never empty as it contains
µ⊗ ν. Moreover, the Kantorovich problem is a linear one. Existence of minimizers for
the Monge problem is difficult and may fails, while for the Kantorovich problem the
semicontinuity of c is enough to ensure existence of minimizers.

If X = Y , and c = d is the distance function, for p ≥ 1 the cost

Wp(µ, ν) =

(

min

{
∫

X×X

dp(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

})1/p

defines a distance on P(M) called p-Wasserstein distance.
Let us recall that by Kantorovich duality (see [3, 14, 21, 22]) the 1-Wasserstein

distance between µ and ν, which we will simply denote by W , can be expressed as
follows

W (µ, ν) = sup

{
∫

X

ϕ d(µ− ν) | ϕ ∈ Lip1(X)

}

, (0.3)

where Lip1(X) denotes the set of Lipschitz function having Lipschitz constant not
greater than one.

Description of the results. A relevant tool in mass transportation theory is con-
stituted by the Disintegration Theorem (Theorem 1.1) of measures which states that
every transport plan γ ∈ P(X×Y ) can be written as γ = f(x)⊗µ where f(x) ∈ P(Y ).
We shall call disintegration map every f : X → (P(Y ),W ) such that

f(x) ⊗ µ ∈ Π(µ, ν).
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In this paper we relate the structure of the set of transport plans Π(µ, ν) with
the push-forward of disintegration maps. Indeed, given the measure γ = f(x) ⊗ µ,
obviously µ is the first marginal of γ, while the second marginal depends on the
disintegration map f . An interesting feature of transport plans appears by looking to
the measure f#µ. Precisely, if η = g(x) ⊗ µ is another transport plan, it results (see
Lemma 1.5):

f#µ = g#µ ⇒ π2
#γ = π2

#η.

Therefore, the second marginals can be fixed by looking to the push-forward of dis-
integration maps. In this way the set of transport plans Π(µ, ν) can be structured
in transport classes (see Definition 1.7) by setting η ∈ [γ] ⇔ f#µ = g#µ. Roughly
speaking (see Example 1.8), fixing a transport class leads to consider a constrained
transport problem with respect to splitting masses or traveling ones. Lemma 1.3 shows
that all transport plans induced by transport maps belong to the same transport class.
Moreover, by density of transport maps in Π(µ, ν), it follows that (see Proposition 1.9)
such transport class characterizes the transport plans induced by transport maps.
Therefore, in this perspective the Monge problem can be seen as a constrained Kan-
torovich problem, namely

min

{
∫

X

c(x, t(x)) dµ : t#µ = ν

}

= min

{
∫

X×Y

c(x, y) dγ : γ ∈ [δs ⊗ µ]

}

,

for a given transport map s. By density of transport maps, the Kantorovich transport
problem also corresponds to

min

{
∫

X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)

}

= min

{
∫

X×Y

c(x, y) dγ : γ ∈ [δs ⊗ µ]
W

}

,

for a given transport map s.
Hence the Monge problem represents a particular case of a more rich structure of
problems, obtained by fixing a transport class in the Kantorovich formulation of trans-
port problems. In this context, considering transport problems in a fixed transport
class is quite natural. Since we are looking to the push-forward trough disintegration
maps, fixing a transport class results equivalent (see Section 2) to consider measures
Λ ∈ P(P(Y )) satisfying the barycenter constraint

∫

P(Y )

λ dΛ(λ) = ν.

The corresponding transport class is given by the transport plans f(x) ⊗ µ such that
f#µ = Λ. In this formulation we see that fixing a transport class is equivalent to
consider transport maps f sending µ into Λ. So it is natural to consider the following
Monge-Kantorovich problem in the class Λ:

MKΛ(c, µ, ν) := inf
γ

{
∫

X×Y

c(x, y) dγ | γ = f ⊗ µ, f#µ = Λ

}

. (0.4)
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The above transport problem leads to consider an abstract Monge problem between
the space X and P(Y ). Let us consider the following transport cost

∀(x, λ) ∈ X × P(Y ) : c̃(x, λ) =

∫

Y

c(x, y) dλ.

We set

M(c̃, µ,Λ) := inf
f

{
∫

X

c̃(x, f(x)) dµ | f#µ = Λ

}

. (0.5)

For every transport class Λ (see Proposition 2.2) we have

M(c̃, µ,Λ) = MKΛ(c, µ, ν).

Therefore, every existence result for the Monge problem M(c̃, µ,Λ) in the abstract
setting corresponds to an existence result for the Monge-Kantorovich problem in the
transport class Λ. Of course, minimizing in a transport class could be as difficult as
for the Monge problem since, of course, the transport classes are not in general closed.
However, by this reformulation it comes out that the Monge case is peculiar. More
precisely, since the Monge problem is a particular case of transportation in a transport
class, one may asks what happens for others transport classes. In other words, the
matter consists in establishing if the abstract Monge problem admits solutions. The
existence results for the Monge problem are usually stated in the following form: under
some assumption on the spaces, on the first marginal µ and on the cost c(x, y), for
every second marginal ν the Monge problem admits solutions. For the abstract Monge
problem M(c̃, µ,Λ) this is not the case. For discrete measures Λ, see Section 4, for
the quadratic cost it results that M(c̃, µ,Λ) may not admit solutions. Therefore, in
the abstract setting, it could be also interesting to consider, under some assumption
on the spaces, on the first marginal µ and on the cost c(x, y), the question for what
kind of second marginals the corresponding Monge problem admits solutions. From
this point of view, in some sense the Monge problem is a lucky case.

1. Disintegration maps and transport classes

Let X, Y ⊂ R
N be two compact sets and let M(Y ) be the space of Radon measures

on Y . A map λ : X → M(Y ) is said to be Borel, or equivalently weakly*-measurable,
if for any open set B ⊂ Y the function x ∈ X 7→ λx(B) is a real valued Borel map.
Equivalently, x 7→ λx is a Borel map if, for any Borel and bounded map ϕ : X×Y → R,
it results that the map

x ∈ X 7→

∫

Y

ϕ(x, y)dλx

is Borel.

Theorem 1.1 (Disintegration theorem). Let γ ∈ P(X × Y ) be given and let π1 :
X × Y → X be the first projection map of X × Y , we set µ = (π1)#γ. Then for
µ− a.e. x ∈ X there exists νx ∈ P(Y ) such that
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(i) the map x 7→ νx is Borel,

(ii) ∀ϕ ∈ Cb(X × Y ) :
∫

X×Y
ϕ(x, y)dγ =

∫

X

(∫

Y
ϕ(x, y)dνx(y)

)

dµ(x).

Moreover the measures νx are uniquely determined up to a negligible set with respect
to µ.

Let γ ∈ Π(µ, ν), as usual we will write γ = νx ⊗ µ, assuming that νx satisfy the
condition (i) and (ii) of Theorem 1.1. Obviously, the transport plan µ⊗ν corresponds
to the constant map x 7→ νx = ν. Let t : X → Y , be a transport map, observe that for
the transport plan γt := (I × t)#µ, the Disintegration Theorem yields γt = δt(x) ⊗ µ.
Therefore, the disintegration procedure for a transport plan γ = f(x) ⊗ µ produces a
map

f : X → (P(Y ),W ), s.t. x 7→ f(x) is Borel. (1.1)

We shall refer to such maps f as disintegration maps. For a transport map t the
corresponding disintegration map is given by x 7→ δt(x). Of course, it is possible to
look at a disintegration map as a measurable map between X and (P(Y ),W ). Indeed,
we have the following result.

Lemma 1.2. A map f : X → (P(Y ),W ) is a disintegration map if and only if f is
measurable.

Proof. Let f : X → (P(Y ),W ) be measurable and let A ⊂ Y be an open set. Observe
that f(x)(A) =

∫

Y
χA(y)df(x). For a l.s.c. function ϕ over Y , define

Iϕ : (P(Y ),W ) → R, Iϕ(λ) :=

∫

P(Y )

ϕ(y)dλ. (1.2)

Since W metrizes the weak* topology of measures, we have that Iϕ is a l.s.c. map.
For every x ∈ X it results

∫

Y

ϕ(y)df(x) = Iϕ(f(x)).

If f is a measurable map, it follows that the map f(·)(A) : X → R is Borel as
composition of a l.s.c map and a measurable one. Hence f is a disintegration map.
Vice versa, observe that by the Ascoli-Arzelá Theorem the space Lip1(Y ) is compact
with respect to the uniform convergence. Fixed a countable dense subset D ⊂ Lip1(Y ),
by Kantorovich duality we have

W (ν1, ν2) = sup
u∈Lip1(Y )

∫

Y

u d(ν1 − ν2) = sup
u∈D

∫

Y

u d(ν1 − ν2).

Since x 7→ f(x) is Borel, we have that, for every u ∈ Lip1(Y ), g : X → R defined by
gu(x) :=

∫

Y
u d(ν − f(x)) is a Borel map . To check that f is a measurable map, it is

sufficient to observe that

f−1(B(ν, r)) =
⋂

u∈D

g−1
u (] − r, r[) := A.
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Indeed, if x ∈ A we get |gu(x)| < r, for every u ∈ D. Hence, by definition of gu, it
follows that W (ν, f(x)) < r and then f(x) ∈ B(ν, r). On the other hand, if f(x) ∈
B(ν, r), i.e. W (ν, f(x)) < r, by Kantorovich duality |gu(x)| := |

∫

Y
u d(ν − f(x))| < r

for every u ∈ D. This implies x ∈ A. �

Let X ⊂ R
N , we recall that the barycenter of a measure µ ∈ P(X) is given by

β(µ) =

∫

X

x dµ.

Disintegration maps naturally produce measures of the form f#µ on the space
(P(Y ),W ). By the following lemma, we see that this point of view is equivalent
to fix the second marginal of transport plans induced by transport maps.

Lemma 1.3. Let t, s : X → Y be two given Borel maps, µ ∈ P(X) and let f, g : X →
P(Y ) defined by f(x) = δt(x), g(x) = δs(x). Then

t#µ = s#µ ⇔ f#µ = g#µ. (1.3)

Proof. Assume f#µ = g#µ and for any ϕ ∈ C(Y ) let us consider the function Iϕ
defined in (1.2). Observe that Iϕ ∈ C((P(Y ),W )). Hence we have

∫

P(Y )

Iϕ(λ) d(f#µ) =

∫

P(Y )

Iϕ(λ) d(g#µ) ⇔

∫

X

Iϕ(f(x)) dµ =

∫

X

Iϕ(g(x)) dµ

⇔

∫

X

(
∫

Y

ϕ(y) df(x)

)

dµ =

∫

X

(
∫

Y

ϕ(y) dg(x)

)

dµ. (1.4)

Since
∫

Y

ϕ(y) df(x) = ϕ(t(x)),

∫

Y

ϕ(y) dg(x) = ϕ(s(x)),

bi (1.4) we get
∫

X

ϕ(t(x)) dµ =

∫

X

ϕ(s(x)) dµ.

By the arbitrariness of ϕ we infer t#µ = s#µ.
Vice-versa, for every ψ ∈ C((P(Y ),W )) let us consider the function ϕ(y) = ψ(δy).

Observe that ϕ ∈ C(Y ). If t#µ = s#µ we compute
∫

Y

ψ d(f#µ) =

∫

X

ψ(f(x)) dµ =

∫

X

ψ(δt(x)) dµ =

∫

X

ϕ(t(x)) dµ =

∫

X

ϕ(s(x)) dµ =

∫

Y

ψ d(g#µ).

By the arbitrariness of ψ we obtain f#µ = g#µ. �

Corollary 1.4. Let t, s : X → Y be two given Borel maps, µ ∈ P(X), let f, g : X →
P(Y ) defined by f(x) = δt(x), g(x) = δs(x) and let γ = f(x) ⊗ µ, η = g(x) ⊗ µ. Then

π2
#γ = π2

#η ⇔ f#µ = g#µ. (1.5)
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Observe that the first part of the proof of the above Lemma works for general
transport plans γ = f(x) ⊗ µ, η = g(x) ⊗ µ. Actually, by (1.4) we get the following

Lemma 1.5. Let µ ∈ P(X), f, g : X → P(Y ), γ = f(x) ⊗ µ, η = g(x) ⊗ µ be given.
Then the following implication holds true

f#µ = g#µ ⇒ π2
#γ = π2

#η. (1.6)

Therefore, also for transport plans, the second marginal can be fixed by fixing the
push-forward of disintegration maps.

Notice that in general the converse of (1.6) is not true as we show in the next
example.

Example 1.6. Let f : X → P(Y ) defined by f(x) = ν and let γ = f(x) ⊗ µ. Let
η = g(x) ⊗ µ where g(x) = δt(x) for a given transport map t : X → Y with t#µ = ν.
For every ψ ∈ C((P(Y ),W )) we have

∫

P(Y )

ψ d(g#µ) =

∫

X

ψ(δt(x)) dµ,

while
∫

P(Y )

ψ d(f#µ) = ψ(ν).

For any ϕ ∈ C(Y ) let us consider ψ(λ) =
∣

∣

∫

Y
ϕ(y)dλ

∣

∣ = |Iϕ(λ)|. We compute
∫

X

ψ(δt(x)) dµ =

∫

X

∣

∣

∣

∣

∫

Y

ϕ(y) dδt(x)

∣

∣

∣

∣

dµ =

∫

X

|ϕ(t(x))| dµ =

∫

Y

|ϕ(y)| dν.

However, on the other hand ψ(ν) =
∣

∣

∫

Y
ϕ(y) dν

∣

∣.

The above arguments allow to characterize transport plans through the push forward
of disintegration maps. We introduce the following notion of transport class.

Definition 1.7 (Transport classes). Let γ, η ∈ Π(µ, ν) with γ = f(x)⊗µ, η = g(x)⊗µ
be given. We shall say that γ and η are equivalent (by disintegration), in symbols γ ≈ η,
if f#µ = g#µ.
For any given η ∈ Π(µ, ν) with η = g(x) ⊗ µ, we shall call transport class of η the
equivalence class of transport plans given by

[η] = {γ = f(x) ⊗ µ | f#µ = g#µ}. (1.7)

Notice that in the case of discrete first marginal µ =
∑

i αiδxi
, for any disintegration

map it is easily seen that

f#µ =
∑

i

αiδf(xi).

Therefore, transport classes are fixed by the range of f .
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Example 1.8. Let

µ =
1

3
δx1 +

1

3
δx2 +

1

3
δx3, ν =

1

6
δy1 +

5

6
δy2.

b

b

b

b

b

x1

x2

x3

y1

y2

b

b

b

b

b

x1

x2

x3

y1

y2

Figure 1.1. Transport plans in the same class.

Consider the transport plan which uniquely splits the mass at x1. This transport
plan corresponds to the disintegration map

f(x1) = 3(aδy1 + bδy2), f(x2) = δy2 , f(x3) = δy2 , a = b =
1

6
. (1.8)

By changing the point at which the mass is splitted, the range of the corresponding
disintegration map does not change. For instance, for the second transport plan in
Figure 1.1 we get the following disintegration map

g(x1) = δy2 , g(x2) = 3(aδy1 + bδy2), g(x3) = δy2 , a = b =
1

6
.

It follows f#µ = g#µ. Analogously, all the transport plans with only one splitted mass
belong to the same transport class.
On the other hand, by changing the number of splitted masses the corresponding
disintegration range is changing.

b

b

b

b

b

x1

x2

x3

y1

y2

Figure 1.2. Two splitting masses.

Indeed, by looking at Figure 1.2, we may consider the disintegration map

h(x1) = 3(a′δy1 + b′δy2), h(x2) = 3(c′δy1 + d′δy2), h(x3) = δy2 ,

a′ =
3

30
, b′ =

7

30
, c′ =

2

30
, d′ =

8

30
.

In such a case we have that f#µ 6= h#µ. On the other hand, by keeping fixed the
number of splitted masses, the transport class may be changed by modifying the
amount of traveling masses. Consider for instance the disintegration

k(x1) = 3(a′′δy1 + b′′δy2), k(x2) = 3(c′′δy1 + d′′δy2), k(x3) = δy2,
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a′′ =
1

30
, b′′ =

9

30
, c′′ =

4

30
, d′′ =

6

30
.

We get h#µ 6= k#µ.

Therefore, to fix a transport class leads to consider a constrained transport problem,
with respect to splitting masses or traveling ones.

By Lemma 1.3 it follows that all transport plans induced by transport maps belong
to the same transport class. Since the transport maps are dense in Π(µ, ν) we can
prove the following result.

Proposition 1.9. Let s : X → Y , be a transport map, i.e. such that s#µ = ν, with µ
non-atomic, and let η = (I × s)#µ = δs(x) ⊗ µ. If γ ∈ [η] then there exists a transport
map t : X → Y such that γ = δt(x) ⊗ µ, i.e. the transport plan γ is induced by a
transport map t. In particular, if γ = f(x) ⊗ µ, it results t(x) = β(f(x)) µ-a.e..

Proof. By applying [3, Theorem 9.3], see also [11], and the same argument employed
in the proof of ([3, Theorem 2.1]), we find a sequence of Borel maps tn : X → Y such
that

γ = lim
n→+∞

δtn(x) ⊗ µ, (tn)#µ = ν ∀n ∈ N

and therefore δtn(x) ⊗ µ ∈ [η], ∀n ∈ N. Consider ϕ(y) = |y|2. By the push-forward
constraint we get

∫

X

|tn(x)|2 dµ =

∫

X

ϕ(tn(x)) dµ =

∫

Y

ϕ(y) dν =

∫

Y

|y|2dν < +∞.

Let us consider ψ ∈ C((P(Y ),W )) defined by ψ(δy) = |y|2. In fact, setting
∆ ⊂ P(Y ) the set of Dirac deltas, the function ψ is Lipschitz, with respect to the
Wasserstein distance, over ∆. Hence it suffices to consider any Lipschitz extension of
ψ on the whole P(Y ). For every n ∈ N, since (δtn)#µ = (δs)#µ we have

∫

X

|tn(x)|2dµ =

∫

X

ψ(δtn(x)) dµ =

∫

X

ψ(δs(x)) dµ =

∫

X

|s|2dµ. (1.9)

Therefore, by passing to a subsequence, we may suppose that tn is weakly convergent
and let t be the weak limit of tn.
Let γ = f(x)⊗µ. By definition of weak convergence, by approximation with continuous
functions, for any g ∈ L2(X,RN) we get

∫

X

〈g, t〉dµ = lim
n→+∞

∫

X

〈g, tn〉dµ = lim
n→+∞

∫

X

(
∫

Y

〈g, y〉dδtn(x)(y)

)

dµ =

∫

X

(
∫

Y

〈g, y〉 df(x)

)

dµ =

∫

X

〈

g,

∫

Y

y df(x)

〉

dµ =

∫

X

〈g, β(f(x))〉dµ.

Therefore tn ⇀ β(f(x)). On the other hand, since γ ∈ [η], i.e. f#µ = (δtn)#µ, and by
(1.9) we have
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∫

X

|β(f(x))|2dµ =

∫

X

|β(δs(x))|
2dµ =

∫

X

|s|2dµ =

∫

X

|tn|
2dµ.

Then, it follows that tn strongly converges to β(f(x)), hence by [3, Lemma 9.1] we
deduce that γ = δt(x) ⊗ µ with t(x) = β(f(x)). �

Of course, the above arguments hold true as well by considering Lp(X,µ) with p > 1.
This corresponds to consider the transport cost dp(x, y).
Proposition 1.9 allows to reformulate the Monge transport problem as follows:

min

{
∫

X

c(x, t(x)) dµ : t#µ = ν

}

= min

{
∫

X×Y

c(x, y) dγ : γ ∈ [δs ⊗ µ]

}

, (1.10)

for a given transport map s.
By density of transport maps, the Kantorovich transport problem can be seen as

min

{
∫

X×Y

c(x, y)) dγ : γ ∈ Π(µ, ν)

}

= min

{
∫

X×Y

c(x, y) dγ : γ ∈ [δt ⊗ µ]
W

}

,

(1.11)
for a given transport map t.

Therefore, the Monge problem corresponds to minimize the functional
∫

X×Y
c(x, y) dγ

in a fixed transport class of Π(µ, ν), while the Kantorovich one corresponds to minimize
the same functional on the whole Π(µ, ν).

2. Monge-Kantorovich problems on transport classes

In the previous section we have seen that the Monge problem could be seen as a
particular case of minimization on a transport class. Since the transport classes are
determined through the push-forward of disintegration maps, they can be assigned by
probability measures Λ over (P(Y ),W ).
Actually, consider f ⊗ µ ∈ Π(µ, ν) and Λ = f#µ. Since (π2)#(f ⊗ µ) = ν, for every
ϕ ∈ C(Y ) we have

∫

Y

ϕ(y) dν =

∫

X

(
∫

Y

ϕ(y) df(x)

)

dµ =

∫

X

Iϕ(f(x)) dµ =

∫

P(Y )

Iϕ(λ) dΛ(λ) =

=

∫

P(Y )

(
∫

Y

ϕ(y) dλ

)

dΛ.

Therefore, in order to define a transport class, the measure Λ has to satisfy the con-
straint

∫

P(Y )

λ dΛ = ν. (2.1)

Hence, every probability measure Λ over (P(Y ),W ) satisfying (2.1) defines a transport
class [η] = {f ⊗ µ : f#µ = Λ}.
For instance, the transport class [µ ⊗ ν] corresponds to the measure Λ = δν . While
for a transport map t, the transport class [δt(x) ⊗ µ] corresponds to Λ =

∫

X
δδt(x)

dµ.
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On the other hand, the transport class in (1.8) corresponds to the discrete measure
Λ = 1

6
δδy1

+ 5
6
δδy2

. In this perspective, transport plans in the transport class Λ can be
seen as transport maps between µ and Λ. It is then natural to consider the Monge-
Kantorovich problem in the class Λ defined as follows

MKΛ(c, µ, ν) := inf
γ

{
∫

X×Y

c(x, y) dγ | γ = f ⊗ µ, f#µ = Λ

}

(2.2)

By Proposition 1.9, the Monge problem corresponds to the transport class Λ =
∫

X
δδt(x)

dµ.

Remark 2.1. Observe that for a discrete transport class Λ =
∑

i αiδλi
, the Monge-

Kantorovich problem in the class Λ yields the optimal allocation problem consisting in
the determination of a Borel subdivision {Ui} of X minimizing

∑

i

∫

Ui

(
∫

Y

c(x, y)dλi

)

dµ,

under the constraint
∑

i αiλi = ν. For existence results in this framework see Section
4.

The notion of transport class leads naturally to consider an abstract Monge problem
between the space X and P(Y ). Consider the following transport cost

∀(x, λ) ∈ X ×P(Y ) : c̃(x, λ) =

∫

Y

c(x, y)dλ. (2.3)

We have the following

Proposition 2.2. For every transport class Λ ⊂ Π(µ, ν) we have

M(c̃, µ,Λ) = MKΛ(c, µ, ν).

Proof. It suffices to observe that for any disintegration map f : X → P(Y ) such that
f#µ = Λ, it results

∫

X

c̃(x, f(x)) dµ =

∫

X

(
∫

Y

c(x, y)df(x)

)

dµ =

∫

X×Y

c(x, y) d(f ⊗ µ).

�

Observe that by the above proof it follows that f is a solution of M(c̃, µ,Λ) if and
only if f ⊗ µ is a solution of MKΛ(c, µ, ν). Therefore, every existence result for the
Monge problem M(c̃, µ,Λ) in the abstract setting corresponds to an existence result
for the Monge-Kantorovich problem in the transport class Λ. The abstract setting has
the advantage of considering a nice cost, since it is linear with respect to the second
variable. Of course the disadvantage is the passage from the space X ×Y ⊂ R

N ×R
N

to the space X × P(Y ). Observe that by [19, Theorem 2.4] the transport classes are
always non-empty provided µ is non-atomic.
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Proposition 2.3. c is continuous, l.s.c., Caratheodory, normal iff c̃ is.

Where we say that a measurable map c(x, y) is Caratheodory (resp. normal) if
c(x, ·) is continuous (resp. l.s.c.).

Lemma 2.4. Let c : X × Y → [0,+∞] be a Borel cost function satisfying

|c(x1, y) − c(x2, y)| ≤ α(x1 − x2), (2.4)

for a given map α : X → R continuous at x = 0 and such that α(0) = 0. We have the
following

(1) If c(x, ·) is continuous then c (and hence c̃) is continuous.
(2) If c(x, ·) is l.s.c. then c (and hence c̃) is l.s.c.

Proof. Let c(x, ·) be continuous. If (xn, yn) → (x, y) on X × Y we compute

|c(x, y) − c(xn, yn)| ≤ |c(x, y) − c(x, yn)| + |c(x, yn) − c(xn, yn)| ≤

|c(x, y) − c(x, yn)| + α(x− xn) → 0,

as n→ +∞. If c(x, ·) is l.s.c. considering

c(xn, yn) = c(xn, yn) − c(x, yn) + c(x, yn),

by (2.4), passing to the liminf we obtain

lim inf
n→+∞

c(xn, yn) = lim inf
n→+∞

c(x, yn) ≥ c(x, y).

�

In general, for the existence of optimal transport plans in the Kantorovich problem
at least the lower semicontinuity property of the cost function is usually required.
Actually, some regularity of the cost function is needed to obtain a useful duality
theory or to ensure that the infimum of the Kantorovich problem is equal to the
infimum of the Monge problem (see for instance [3, 19]). However, it is not hard to
verify that the Kantorovich problem admits solutions under more weak requirements
on the cost function (see for instance [7]).

For reader’s convenience here we provide some details based on disintegration maps.
Let πn = fn ⊗ µ be a minimizing sequence for the Monge-Kantorovich problem (0.2).
Passing to a subsequence we may suppose that πn ⇀ f ⊗ µ = π ∈ Π(µ, ν). Now, for
any ψ(x) ∈ C(X), ϕ(y) ∈ C(Y ), we get

∫

X×Y

ψ(x)ϕ(y) dπ =

∫

X

ψ(x)

(
∫

Y

ϕ(y)df(x)

)

dµ =

lim
n→+∞

∫

X

ψ(x)

(
∫

Y

ϕ(y)dfn(x)

)

dµ = lim
n→+∞

∫

X×Y

ψ(x)ϕ(y) dπn.

(2.5)

By density of continuous functions, the above limit holds for ψ ∈ L1(X,µ) as well.
Therefore, if the cost function has the form c(x, y) = a(x)b(y), with a ∈ L1, b ∈ C,
then by (2.5) it follows that π is an optimal transport plan. Arguing component-wise,
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the same reasonings apply to linear costs c(x, y) = 〈a(x), y〉. For a Caratheodory cost
function c(x, y), i.e. a Borel map such that c(x, ·) is continuous, observe that the
disintegration maps fn : X → P(Y ) ⊂ M(Y,R) belongs to L∞(X,M(Y,R)), which
is the dual of L1(X, C(Y )). Therefore, by passing to a subsequence we may suppose

that fn
∗
⇀ f , i.e.

lim
n→+∞

∫

X

(
∫

Y

ψ(x, y)dfn(x)

)

dµ =

∫

X

(
∫

Y

ψ(x, y)df(x)

)

dµ ∀ψ ∈ L1(X, C(Y )).

The above continuity property shows that π = f ⊗ µ is an optimal transport plan,
provided that

∫

Y
supy c(x, y) dµ < +∞.

If c(x, y) is a normal cost, i.e. a Borel measurable map such that c(x, ·) is lower semi-
continuous, then it can be reduced to a Caratheodory cost by standard approximation
procedures. For instance (see [10]), we may write

c(x, y) = sup
h
ah(x)bh(y), bh ∈ C(Y ).

Hence, the cost cj = supi≤j aibi is Caratheodory and cj ր c. Since
∫

X×Y

cj(x, y)dπn ≤

∫

X×Y

c(x, y)dπn,

passing to the limit we obtain
∫

X×Y

cj(x, y)dπ ≤ lim inf
n→+∞

∫

X×Y

c(x, y)dπn.

Passing to the limit with respect to j we get that π is optimal. By representation
of weakly* l.s.c. functionals (see [4]), the same reasonings apply to normal cost on
X × P(Y ). For a related result see also [13].

In the following we compare the Kantorovich problem (0.2) with the abstract version
formulated using the transport classes.

Lemma 2.5. For every transport class Λ ⊂ Π(µ, ν) it results

MK(c, µ, ν) ≤ MK(c̃, µ,Λ).

Proof. Let π̃ = N (x) ⊗ µ ∈ Π(µ,Λ). We compute
∫

X×P(Y )

c̃ dπ̃ =

∫

X

(
∫

P(Y )

(
∫

Y

c(x, y)dλ

)

dN (x)

)

dµ =

∫

X

(
∫

Y

c(x, y)df(x)

)

dµ =

∫

X×Y

c(x, y) d(f ⊗ µ),

(2.6)

where f(x) =
∫

P(Y )
λ dN (x). It remains to check that (π2)#(f ⊗µ) = ν. By (2.1), for

every ϕ ∈ C(Y ) we have



14 LUCA GRANIERI, FRANCESCO MADDALENA

∫

X

(
∫

Y

ϕ(y)df(x)

)

dµ =

∫

X

(
∫

P(Y )

(
∫

Y

ϕ(y)dλ

)

dN (x)

)

dµ =

∫

X×P(Y )

Iϕ(λ) dπ̃ =

=

∫

P(Y )

Iϕ(λ) dΛ =

∫

P(Y )

(
∫

Y

ϕ(y) dλ

)

dΛ =

∫

Y

ϕ(y) dν.

�

Observe that the above definition of f(x) = β(N (x)) can be seen as a generalized
barycenter map. Indeed, we have the following

Lemma 2.6. The generalized barycenter map β : P(P(Y )) → P(Y ) defined by

β(N ) =

∫

P(Y )

λ dN

is 1-Lipschitz with respect to the Wasserstein distance.

Proof. First observe that if ϕ ∈ Lip1(Y ) then Iϕ ∈ Lip1(P(Y )). Fixed ϕ ∈ Lip1(Y )
we get

∫

Y

ϕ d(β(N1) − β(N2)) =

∫

P(Y )

(
∫

Y

ϕ dλ

)

d(N1 −N2) =

=

∫

P(Y )

Iϕ(λ) d(N1 −N2) ≤W (N1,N2).

Taking the supremum with respect to ϕ ∈ Lip1(Y ) it results

W (β(N1), β(N2)) ≤ W (N1,N2).

�

Observe that a probability measure Λ on P(Y ) defines a transport class iff its
generalized barycenter is equal to ν.

Lemma 2.7. If c̃ is normal then there exists a transport class Λ ⊂ Π(µ, ν) such that

MK(c, µ, ν) = MK(c̃, µ,Λ).

Proof. Let πn = fn ⊗ µ ∈ Π(µ, ν) be a minimizing sequence for MK(c, µ, ν). Set
Λn = (fn)#µ. By passing to a subsequence we have that Λn ⇀ Λ with respect to the
weak convergence of measures. Observe that
∫

P(Y )

(
∫

Y

ϕ dλ

)

dΛ =

∫

P(Y )

Iϕ(λ) dΛ = lim
n→+∞

∫

P(Y )

Iϕ(λ) dΛn = lim
n→+∞

∫

X

Iϕ(fn(x)) dµ =

= lim
n→+∞

∫

X

(
∫

Y

ϕ(y)dfn(x)

)

dµ =

∫

Y

ϕ dν.
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Therefore, Λ defines a transport class. Consider the transport plans π̃n = (I×fn)#µ ∈
Π(µ,Λn). Passing to a subsequence we may also suppose that weakly π̃n ⇀ π̃ ∈
Π(µ,Λ). Since c̃ is normal we get

MK(c̃, µ,Λ) ≤

∫

X×P(Y )

c̃ dπ̃ ≤ lim inf
n→+∞

∫

X×P(Y )

c̃ dπ̃n =

= lim inf
n→+∞

∫

X

c̃(x, fn(x))dµ = lim inf
n→+∞

∫

X

(
∫

Y

c(x, y)dfn(x)

)

dµ = MK(c, µ, ν).

The result follows by Lemma 2.5. �

By the above analysis the Kantorovich problem over X×P(Y ) is essentially equiva-
lent to the usual Kantorovich’s one. Indeed, if c̃ is normal (for instance if the cost c sat-
isfies the conditions of Lemma 2.4) by Lemma 2.7 we have MK(c, µ, ν) = MK(c̃, µ,Λ)
for a transport class Λ. If π̃ = N (x)⊗ µ is a transport plan for MK(c̃, µ,Λ), for such
transport class Λ, setting f(x) =

∫

P(Y )
λ dN (x), by (2.6) it follows that f(x) ⊗ µ is

an optimal plan for MK(c, µ, ν). For a related relaxation procedure see [12].

3. Existence and uniqueness for the Monge problem

In the previous section we have seen that the Monge-Kantorovich problem is es-
sentially equivalent to the transport problem on transport classes. Of course, the
Monge problem reveals hard to handle. For linear cost c(x, y) = 〈x, y〉, which is equiv-
alent to the quadratic cost c(x, y) = |x − y|2 because of the expansion |x − y|2 =
|x|2 + |y|2 − 2〈x, y〉, it is relatively easy to find existence and uniqueness of optimal
transport maps. We expect some advantage by considering the special form of the cost
c̃ for the Monge problem on a transport class. In order to handle with the abstract
Monge problem, we review here some usual tools for solving the Monge problem. The
available approaches to existence and uniqueness rely more or less on two basic facts.
The first one is based on the notion of c-cyclical monotonicity. A set S ⊂ X × Y

is said c-cyclical monotone if for any finite set of pairs (x1, y1), . . . , (xk, yk) and any
permutation σ the following inequality holds true

k
∑

i=1

c(xi, yi) ≤
k

∑

i=1

c(xi, yσ(i)).

A fundamental fact in mass transportation is that the support of every optimal trans-
port plan is a c-cyclical monotone set and every c-cyclical monotone set is contained
in the c-superdifferential ∂cψ (or contact set) of a c-concave function ψ, where

∂cψ = {y ∈ Y : ψ(x′) − ψ(x) ≤ c(x′, y) − c(x, y) ∀x′ ∈ X}. (3.1)

A function ψ is said to be c-concave if there exist A×B ⊂ Y × R such that

ψ(x) = inf
(y,t)∈A×B

c(x, y) + t.
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For details we refer the reader for instance to [19, 22]. The c-transform of ψ is defined
by ψc(y) = infx∈X{c(x, y) − ψ(x)}. It can be shown that y ∈ ∂cψ ⇔ ψ(x) + ψc(y) =
c(x, y). If one is able to show that for µ a.e. x ∈ X the c-superdifferential is single
valued, then every transport plan is supported on the graph of a transport map (see
[3, 19, 22]). Namely, there exists a unique solution of the Monge problem. The same
reasonings apply as well directly to the abstract problem M(c̃, µ,Λ). In other words,
if the c̃-superdifferentials is single-valued, then the Monge problem M(c̃, µ,Λ) admits
a unique solution. In this framework the two Monge problems are essentially related.
Indeed, suppose that the c̃-superdifferentials contain just one Dirac delta and let ψ be
a c-concave function. We set

Ã = {δy : y ∈ A} × B ⊂ P(Y ) × R

and ψ̃(x) = inf(λ,t)∈Ã×B c̃(x, λ) + t. It follows that ψ̃ is c̃-concave and ψ̃(x) = ψ(x).

Recalling that c̃(x, δy) = c(x, y), the following implications hold true

y ∈ ∂cψ(x) ⇔ ψ(x′) − ψ(x) ≤ c(x′, y) − c(x, y) ⇔

ψ̃(x′) − ψ̃(x) ≤ c̃(x′, δy) − c̃(x, δy) ⇔ δy ∈ ∂c̃ψ̃(x).

Therefore ∂cψ(x) = {y}.
Vice-versa, suppose that c-superdifferentials are single valued and let ψ̃ be a c̃-

concave function. Consider the c-transform (ψ̃)c(y) = infx{c(x, y) − ψ̃(x)}.
We have

δy ∈ ∂c̃ψ̃(x) ⇔ ψ̃(x′) − ψ̃(x) ≤ c(x′, y) − c(x, y) ⇔ c(x, y) − ψ̃(x) ≤ c(x′, y) − ψ̃(x′)

⇔ c(x, y) − ψ̃(x) = (ψ̃)c(y) ⇔ y ∈ ∂cψ̃(x) ⊂ ∂cu(x)

for a c-concave function u (see for instance [19, Remark 3.12, Theorem 3.10]). It follows

that ψ̃c(y) contains just one delta. Of course this singleton condition of superdiffer-
entials can be achieved under additional requirements on the cost function. For a
differentiable cost a general condition relies in the so called twist (or Spence-Mirrlees
in economic settings) condition, i.e.

x 7→ c(x, y1) − c(x, y2) has no critical point ∀ y1 6= y2 (3.2)

(see [11, 15, 8]). For a generalization of such condition, in the case of suitable ge-
ometries see [2]. In the case X = Y = M with M a Riemannian manifold and for a
Lagrangian cost it is enough for the cost c to satisfy the Mather’s shortening principle
and the connectedness of the c-superdifferential, as it is shown in [22, Chapter 9].
Observe that in this case the connectedness is a key property. This property is easily
satisfied if c(x, ·) is linear as happens just for the cost c(x, y) = 〈x, y〉. However, general
forms of the cost c which guarantee the connectedness of the c-superdifferential are
not known. In this perspective, the consideration of the linear cost c̃ could be useful.
Observe that for a cost c linear with respect to the second variable, the twist condition
is not in general satisfied. Consider for instance c(x, y) = 〈a(x), y〉 for possibly not
invertible Jacobian matrix ∇a(x).
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3.1. Monge-Mather’s shortening principle. By considering the cost c̃, it may
happen that the c̃-superdifferential contains many points, which actually are proba-
bility measures of P(Y ), although the c-superdifferential is a singleton. However, we
have the advantage that the c̃-superdifferential are convex sets. Consider X = Y = M

and a cost c satisfying a shortening principle. We briefly sketch the reasonings of [22,
Chapter 9]. Suppose that the following conditions are satisfied

(1) There exists D ⊂ M with µ(D) = 0 such that D intersects every nontrivial
continuous curve over M .

(2) The cost c satisfies a shortening principle.
(3) The superdifferential ∂cψ is connected.

By assumption (2) it is possible to define a function F : γx,y(1
2
) 7→ x with y ∈ ∂cψ(x)

having as domain the mid point of geodesics over M . Indeed, by definition of c-
superdifferential we get

ψ(x1) − ψ(x) ≤ c(x1, y) − c(x, y) ψ(x) − ψ(x1) ≤ c(x, y1) − c(x1, y1)

for every y ∈ ∂cψ(x), y1 ∈ ∂cψ(x1). It follows

c(x1, y1) − c(x, y1) ≤ c(x1, y) − c(x, y) ⇒ c(x1, y1) + c(x, y) ≤ c(x1, y) + c(x, y1).

Hence, the shortening principle implies that

d(x, x1) ≤ Kd

(

γx,y

(

1

2

)

, ηx1,y1

(

1

2

))

. (3.3)

By the inequality (3.3) it follows that F is well defined and moreover it results a
Lipschitz, actually also an Holder condition works as well, map. By condition (1) and
(3) it is possible to show that the set of points on which ∂cψ is not single valued is of
null measure. Indeed, let y1, y2 ∈ ∂cψ(x). By condition (3) consider a continuous curve
ρt lying in ∂cψ(x) connecting y1, y2. Therefore it is defined the non-trivial continuous
curve mt = γx,ρt(1

2
). Hence, x = F (mt). By point (1) it follows that x ∈ F (D)

which is a null measure set. Since c(x, y) = c̃(x, δy), we would like to prove that the
c̃-superdifferential are a.e. single valued. The analogue condition for c̃ superdifferential
is

c̃(x1, λ1) + c̃(x, λ) ≤ c̃(x1, λ) + c̃(x, λ1).

By definition, the above inequality leads to

MK(c, δx1 , λ1) +MK(c, δx, λ) ≤MK(c, δx1 , λ) +MK(c, δx, λ1).

A shortening principle should allow to estimate the distance d(x, x1) by the distance
between mid points of geodesics in M or in P(M). The main problem is to find a null
set D, due to the fact that we are now dealing with the space M × P(M).
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3.2. Twist condition. Assume the cost function c satisfies the twist condition (3.2).
Under differentiability requirement, for instance on an open and bounded set Ω ⊂ R

N ,
with a uniform Lipschitz condition

|c(x, y)− c(x′, y)| ≤ K|x− x′|, ∀y ∈ Y, (3.4)

this means that the map y 7→ ∇xc(x, y) is injective. It turns out that c-concave
functions ψ are Lipschitz on Ω. Indeed, it suffices to compute

ψ(x2) = inf{c(x2, y) + t, (y, t) ∈ A× B} =

= inf{c(x2, y) − c(x1, y) + c(x1, y) + t, (y, t) ∈ A×B} ≤ K|x1 − x2| + ψ(x1).

Moreover, if ψ is differentiable at x ∈ Ω, for every y ∈ ∂cψ(x), we have

ψ(x+ tv) − ψ(x)

t
≤
c(x+ tv, y) − c(x, y)

t
.

Passing to the limit as t→ 0+ we get

〈∇ψ −∇xc(x, y), v〉 ≤ 0.

By the arbitrariness of v it follows ∇ψ(x) = ∇xc(x, y) (see also [8]). Therefore,
if µ is absolutely continuous with respect to the Lebesgue measure, then the twist
condition implies that the superdifferential ∂cψ(x) is a singleton for µ-a.e. x ∈ Ω.
The same reasoning applies as well directly for the cost c̃. Indeed, since ∇xc̃(x, λ) =
∫

Y
∇xc(x, y) dλ we have that c̃-superdifferentials contains at most one delta iff the cost

c satisfies the twist condition.
In the sequel we sketch a related approach to show existence and uniqueness for the
Monge problem.
Assume that c(x, y) is a Caratheodory function, hence by Lemma 2.4 c is continuous.
Approximate the target measure ν by a finite convex combination of Dirac deltas, say
by νn ∈ P(Y ). Consider the problem MK(c, µ, νn). The optimal transport plans of
this approximation problem are of course extremal points of Π(µ, νn). It can be shown
that these extremal points, which are supported on the graph of a c-concave function
ψn, are of the form (Id × t)#µ (see section 4), i.e. the Monge problem M(c, µ, νn)
admits a unique solution.

By the uniform Lipschitz condition (3.4) it follows that the sequence of c-concave
functions ψn is equi-Lipschitz. Indeed, fixed x, x′ ∈ Ω, for yn ∈ ∂cψn(x) we have

ψn(x′) − ψn(x) ≤ c(x′, yn) − c(x, yn) ≤ K|x− x′|,

while for y′n ∈ ∂cψn(x′) we have

ψn(x) − ψn(x′) ≤ c(x, y′n) − c(x′, y′n) ≤ K|x− x′|.

By the Ascoli-Arzelá Theorem we may suppose that ψn → ψ, uniformly on compact
subsets. Observe that ψ is c-concave as well. Indeed, recall that a map ψ is c-concave
iff ψ = ψcc, where

ψcc(x) = inf{ψ(x) ≤ f(x) : f c-concave}.
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Fixed ε > 0, we find a large integer n such that |ψn(x) − ψ(x)| < ε. Since ψn is
c-concave we get

ψ(x) < ε+ ψn(x) ⇒ ψcc(x) ≤ ψn(x) + ε ≤ ψ(x) + 2ε.

By the arbitrariness of ε we obtain ψcc ≤ ψ.
Let yn = tn(x) ∈ ∂cψn(x). By passing to a subsequence we may suppose that

yn → y. Since

ψn(x′) − ψn(x) ≤ c(x′, yn) − c(x, yn) ≤ K|x− x′|,

passing to the limit as n→ +∞ we get

ψ(x′) − ψ(x) ≤ c(x′, y) − c(x, y).

Therefore y ∈ ∂cψ(x). Since the c-superdifferential is a singleton, the whole sequence
yn converges to y. We set t(x) = y. As limit of measurable maps, t is measurable as
well. Moreover, it results

∫

Ω

f(t(x))dµ = lim
n→+∞

∫

Ω

f(tn(x))dµ = lim
n→+∞

∫

Y

f(y)dνn =

∫

Y

f(y)dν.

Hence t#µ = ν. Since the graph (x, t(x)) is supported on ∂cψ(x) it follows, see [19,
Th. 3.22], that t is an optimal transport map. For a related approximation procedure
of the Kantorovich problem see [13].
Hence, under the twist condition for the cost c̃, we would have existence and uniqueness
of optimal transport plans in every fixed transport class. Therefore, an interesting
question is that of finding condition on the cost c ensuring the twist condition for c̃.

4. Existence in discrete transport classes

To treat discrete measures we sketch existence for the Monge problem in this setting.
For an extensive discussion of this case we refer to [1, 9, 18].

Let ν =
∑

i aiδyi
be a discrete probability measure over a metric space Y . Let γ be

an optimal transport plan between µ and ν. Denote by Γ = supp(γ). By optimality,
we have that Γ is a c-cyclically monotone set of X × Y . Define Ai,j = {x ∈ X :
(x, yi), (x, yj) ∈ Γ}. Let x, x′ ∈ Ai,j . By c-cyclically monotonicity we get

c(x, yi) + c(x′, yj) ≤ c(x, yj) + c(x′, yi) ≤ c(x, yi) + c(x′, yj).

Therefore, we obtain

c(x, yi) − c(x, yj) = c(x′, yi) − c(x′, yj) = λi,j.

Under the assumption of µ c-continuous, i.e.

µ ({x ∈ X : c(x, yi) − c(x, yj) = λi,j}) = 0,

for every yi, yj ∈ Y, λi,j ∈ R, we have that µ(Ai,j) = 0. Therefore, since the set of
splitting masses is given by A =

⋃

i,j Ai,j , if µ is c-continuous then µ(A) = 0. Hence,
the transport plan γ is induced by a transport map.
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4.1. Existence in some transport classes. Let Λ be an atomic transport class.
Optimal transport plan for MK(c̃, µ,Λ) are of the form

∑

i αiδfi
⊗ µ (see [12, 13]).

For every index it results fi(x) ∈ ∂c̃ψ(x). By linearity of c̃ it follows f(x) =
∑

αifi ∈
∂c̃ψ(x). Therefore, the transport map f(x) is optimal for M(c̃, µ, (f)#µ).

4.2. Non-existence in some transport classes. Consider a discrete transport class
given by Λ =

∑

i aiδλi
. Consider the cost c(x, y) = 〈x, y〉. For i, j observe that

c̃(x, λi) − c̃(x, λj) = 〈x,

∫

Y

y d(λi − λj)〉.

Therefore, M(c̃, µ,Λ) admits solution iff β(λi) 6= β(λj). Analogously, for cost a(x)b(y),
if µ({x ∈ X : a(x) = k}) = 0 for every k ∈ R, it turns out that M(c̃, µ,Λ) admits
solution iff

∫

Y
b(y)d(λi − λj) 6= 0 for every i, j.

In this section we have seen that the usual approaches to solve the Monge problem
give rise to some difficulties in the setting of the transport problem in a transport
class. In some sense, these methods are specific for the transport class corresponding
to transport maps. The question to establish existence in different transport classes
remains open. We have shown that also for the case of a discrete transport class the
answer could be negative. Therefore, from this point of view, the Monge problem
corresponds to a lucky case for the fixed transport class. This feature of transport
classes also naturally leads to the following question. The existence results for the
Monge problem are usually stated in the following form: under some assumption on
the spaces, on the first marginal µ and on the cost c(x, y), for every second marginal
ν the Monge problem admits solutions. Having in mind the abstract Monge problem
M(c̃, µ,Λ), it could be also interesting to consider, under some assumption on the
spaces, on the first marginal µ and on the cost c(x, y), the question for what kind of
second marginals the corresponding Monge problem admits solutions.
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