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ABSTRACT. We establish a quantitative isoperimetric inequality in higher codimension.
In particular, we prove that for any closed (n − 1)-dimensional manifold Γ in Rn+k the
following inequality

D(Γ) ≥ Cd2(Γ)

holds true. Here, D(Γ) stands for the isoperimetric gap of Γ, i.e. the deviation in measure
of Γ from being a round sphere and d(Γ) denotes a natural generalization of the Fraenkel
asymmetry index of Γ to higher codimensions.

1. INTRODUCTION

In 1986 in his seminal paper “Optimal isoperimetric inequalities” [2] Almgren proved
in the context of currents the higher codimension counterpart of the classical isoperimetric
inequality established by De Giorgi in [7]. In the particular case of smooth (n − 1)-
dimensional manifolds Γ ⊂ Rn+k without boundary, spanning an area minimizing smooth
surface M , his inequality states that

(1.1) Hn−1(Γ) ≥ Hn−1(∂D),

where D is an n-dimensional flat disk with the same area as M . Here, Hn−1 denotes the
(n − 1)-dimensional surface measure. Moreover equality occurs if and only if Γ is the
boundary of a flat disk.

A natural question is the stability of inequality (1.1). More precisely, one would like
to show that if Γ fails to realize equality in the isoperimetric inequality (1.1) by a small
factor δ, i.e. Hn−1(Γ) = Hn−1(∂D) + δ, then Γ is close to the boundary ∂D in a suitable
quantitative sense measured in terms of δ. For the classical isoperimetric inequality in
codimension zero, this stability issue was raised in the beginning of the last century by
Bernstein and Bonnesen in the particular case of planar convex sets [3, 5]. Later on the
first results in higher dimensions were established in [15] by Fuglede in the case of convex
or nearly spherical sets. His main result states that if E ⊂ Rn is a nearly spherical set in
the sense that

∂E =
{

(1 + u(x))x : x ∈ Sn−1
}

for some u : Sn−1 → R with small C1-norm, whose volume is equal to the volume of the
unit ball B1 ⊂ Rn and whose barycenter is at the origin, then

Hn−1(∂E)−Hn−1(∂B1) ≥ c(n)‖u‖2W 1,2(Sn−1).

In particular, this inequality implies that the isoperimetric gap on the left-hand side controls
the square of the measure of the symmetric difference E∆B1. The extension of Fuglede’s
result to general sets of finite perimeter was first obtained in [17] (see also [19, 20] for
a similar, but non optimal inequality). The result proved in [17] states that there exists a
constant C depending only on the dimension n such that if E is a set of finite perimeter
with |E| = |Br|, then

(1.2) D(E) ≥ C(n)α2(E).
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Here, D(E) stands for the (normalized) isoperimetric gap

D(E) :=
Hn−1(∂E)− nωnrn−1

nωnrn−1

and α(E) is the so-called Fraenkel asymmetry

α(E) := min
x

{
|E∆Br(x)|

rn

}
.

While the original proof in [17] used mainly symmetrization arguments, in [14] a new proof
based on arguments from the theory of optimal mass transport appeared. These arguments
allowed an extension of (1.2) also to anisotropic perimeter functionals. Both proofs are
quite involved due to their ad hoc character, especially, since they do not use any deep
result or heavy machinery from other fields of Analysis and Geometry. In a recent paper
Cicalese and Leonardi [6] observed that it is possible to give a proof of the quantitative
isoperimetric inequality by a selection principle based on a suitable penalization of the
functional E 7→ D(E)

α2(E) and the use of the regularity theory for minimal surfaces.
In order to describe the main result of our paper we restrict ourselves to the case of

smooth (n− 1)-dimensional closed surfaces Γ in Rn+k. Denoting by Q(Γ) an area mini-
mizing n-dimensional surface with boundary Γ the isoperimetric gap is defined by

D(Γ) :=
Hn−1(Γ)−Hn−1(∂D%)

Hn−1(∂D%)
,

where D% is an n-dimensional flat disk in Rn+k with the same area as Q(Γ), i.e.
Hn(D%) = Hn(Q(Γ)). Note that the area minimizing surface Q(Γ) may have singu-
larities even if Γ is smooth. To overcome this, the use of currents is unavoidable. However,
in order to keep the introduction as simple as possible we describe the objects in the context
of manifolds. The precise definition of the asymmetry index d(Γ) is more technical and
requires the use of a certain seminorm m (see Section 3). The underlying geometric idea
can be described as follows. Given any flat disk D% with the same area as Q(Γ), first one
considers an area minimizing cylindric type surface Σ(D%) spanned by the boundary com-
ponents Γ and ∂D%, and afterwards one takes the infimum of the surface areaHn(Σ(D%))
amongst all possible disks D%:

d(Γ) := %−n inf
{
Hn(Σ(D%)) : Hn(D%) = Hn(Q(Γ))

}
.

The aim of this paper is to state and prove in the context of currents the following heuristic
quantitative version of Almgren’s optimal isoperimetric inequality:

Theorem. Let n ≥ 2 and k ≥ 0. There exists a constant C = C(n, k) > 0 such that for
any (n− 1)-dimensional closed surface Γ ⊂ Rn+k the following inequality holds:

(1.3) D(Γ) ≥ C d2(Γ).

Note that if Γ is the boundary of a smooth open setE contained in an n-dimensional hy-
perplane, then the asymmetry index d(Γ) coincides with the classical Fraenkel asymmetry
index α(E). Hence, (1.3) reduces to (1.2). In particular this shows that the exponent 2 on
the right-hand side of the inequality cannot be improved, since it is known to be optimal
already for (1.2).

A few words on the proof are in order. As in [6] the overall strategy is to show first a
Fuglede type inequality and then to reduce the general case to it via a regularity argument.
However, here the situation is more delicate and involved due to the higher codimension.
First of all, the analogue of Fuglede’s result deals with a spherical graph over Sn−1 in
Rn+k, i.e. a manifold Γ which can be parametrized by a map X : Sn−1 → Rn+k of the
form

X(x) := (1 + u(x))(x, 0) + (0, v(x)) x ∈ Sn−1,
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where u ∈ C1(Sn−1) and v ∈ C1(Sn−1,Rk) have both small C1-norms. In our case
a substantial difficulty arises from the fact that, beside imposing the volume constraint
Hn(Q(Γ)) = ωn and the barycenter condition bar(Γ) = 0, we have also to fix the mixed
second order moments. This can be done for instance by assuming that they are all equal
to zero, i.e.

(1.4)
∫

Γ

zizj dHn−1 = 0

for any choice of i = 1, . . . , n and j = n + 1, . . . , n + k. Differently from the case
k = 0 considered by Fuglede, in which v does not appear, the conditions (1.4) play a
crucial role in the estimation of the n · k first order Fourier coefficients of v. The bounds
on the first order Fourier coefficients of u and the zero order Fourier coefficients of u and
v follow from the barycenter condition and the constraint on Hn(Q(Γ)). Under the above
assumptions on u and v we prove the following inequality (see Theorem 4.1)

(1.5) Hn−1(Γ)−Hn−1(Sn−1) ≥ c1
[
‖u‖2W 1,2(Sn−1) + ‖v‖2W 1,2(Sn−1,Rk)

]
≥ cod2(Γ),

where c1 ≥ co are constants depending only on n.
The next step is to reduce the general case to the previous one by a contradiction argu-

ment using the regularity theory for ω-minimizing currents. However, following [1] where
a similar kind of penalization term was introduced we use a much simpler penalization
then the one used in [6] in the treatment of the codimension zero case (see also [8, 16, 18])
which is also reminiscent of the Ekeland variational principle [12]. Our argument goes
as follows. We argue by contradiction assuming that there exists a sequence of (n − 1)-
dimensional surfaces Γj all contained in a large ball BR such that Hn(Q(Γj)) = ωn and
D(Γj)/d2(Γj) → 0. Then, we construct a new sequence by considering the minimizers
Γ′j of the penalized functionals

Fj(Γ) := Hn−1(Γ) + C1|d(Γ)− d(Γj)|+ Λ|Hn(Q(Γ))− ωn|

with Λ > 2n and C1 > 0 a suitable constant depending on co. It is not difficult
to show that the surfaces Γ′j converge in a weak sense to Sn−1 and that also the ratio
D(Γ′j)/d

2(Γ′j) → 0. Moreover, the weak convergence ensures that the barycenters and
the second order moments of Γ′j converge to zero while the corresponding area minimizers
Q(Γ′j) converge in a weak sense to a flat disk with boundary Sn−1. To derive a contra-
diction to the Fuglede type estimate (1.5), one first has to show that the surfaces Γ′j can
be chosen to satisfy (1.4). This is done by proving that (see Lemma 4.2) if Γ is a man-
ifold with sufficiently small second order moments one can find a rotation close to the
identity such that the mixed second order moments of the rotated manifold are all equal to
zero. Since the penalized functional above is invariant under rotations the tilted surfaces
are still minimizers. Thus, the last step in deriving the contradiction to (1.5) is to establish
that the surfaces Γ′j are spherical graphs converging to Sn−1 in C1,α. This is the point
where the regularity theory for ω-minimizing currents enters. In fact, the existence the-
ory yields only that the minimizers Γ′j are rectifiable currents minimizing an appropriate
generalization of the functional Fj in the context of Geometric Measure Theory. It can
also be shown that the penalization terms in the functional are of lower order, so that the
surfaces (in fact currents) Γ′j are ω-minimizers of the area (mass) functional. However,
to show that they are spherical C1,α graphs over Sn−1 one has to transform locally to a
situation where the regularity theory for ω-minimizing currents is applicable. This is done
by flattening locally Sn−1 and transforming to a flat case in which the ω-mass minimizers
become ω-minimizers of a suitable elliptic integrand, and in which they converge to a flat
(n − 1)-dimensional disk with multiplicity one. At this stage the regularity theory from
[4, 10] applies and yields that the Γ′j are spherical graphs converging in C1,α to Sn−1. But
this is a contradiction to the higher codimension version of Fuglede’s theorem as stated in
(1.5).
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2. NOTATION AND STATEMENT OF THE RESULT

Let n ∈ N, k ∈ No and 0 ≤ m ≤ n. Then m-dimensional surfaces in Rn+k will be
modelled by locally rectifiable integer multiplicity currents with finite mass in Rn+k. Such
currents T , of dimension m, can be represented by an (Hm,m) rectifiable mesurable sup-
porting set MT ⊂ Rn+k, an Hm summable multiplicity function ϑT : MT → N, and an
Hm measurable orientation ~T : MT →

∧
m Rn+k, i.e. ~T is the exterior product of an or-

thonormal basis in the m-dimensional measure theoretic tangent space Tan(HmxMT , x)
of MT which exists at Hm almost all points x ∈ MT . We set ϑT ≡ 0, ~T ≡ 0 out-
side MT and denote by ‖T‖ = ϑTHmxMT the (Radon) measure associated with T
and by M(T ) = ‖T‖(Rn+k) =

∫
ϑT dHm the mass (or m area) of T . Note that the

summability of ϑT is equivalent to the finiteness of the mass M(T ). Here we follow
the terminology of [13]. By definition, an m current is a continuous linear functional
on the space of compactly supported smooth m forms on Rn+k which we denote by
α ∈ C∞cpt(Rn+k,

∧m Rn+k). In terms of the quantities ‖T‖ and ~T the pairing of cur-
rents and differential forms is given by

T (α) =
∫
MT

〈α, ~T 〉ϑT dHm =
∫

Rn+k
〈α, ~T 〉 d‖T‖,

and it is defined whenever α is a bounded Baire form of degree m. The set of all locally
rectifiable integer multiplicity m currents is denoted byRm(Rn+k).

The boundary current ∂T is then defined by taking formally the dual of the exterior
derivative, i.e. ∂T (β) = T (dβ) for compactly supported smooth m− 1 forms β on Rn+k.
For an open (and more generally a Baire) set U ⊂ Rn+k we define the mass of T in U by

MU (T ) := (‖T‖xU)(Rn+k) =
∫
MT∩U

ϑT dHm.

On the set of closed m-dimensional surfaces, i.e. for T ∈ Rm(Rn+k) with ∂T = 0 and
1 ≤ m < n + k, we now define a seminorm measuring the mass of a minimal surface
spanned by T . More precisely, given T as above there exists a mass minimizing current
Q(T ) ∈ Rm+1(Rn+k) with boundary ∂Q(T ) = T . The mass of Q(T ) is denoted by
m(T ), i.e

m(T ) := M(Q(T )) ≡ inf
P∈Rm+1(Rn+k),

∂P=T

M(P ).

When writing Q(T ) we always understand that we have specified one particular mass
minimizer with boundary T . We note that there might be several mass minimizers. Our
arguments however will not depend on a particular choice. Moreover, in case that sptT
is compact we know from [21, Remark 34.2(2)] that sptQ(T ) ⊂ convex hull of sptT for
any mass minimizer Q(T ).

To give the precise formulation of our main result we have to introduce the notion of a
flat n-dimensional disk in Rn+k. The Euclidian current En on Rn is defined by

En(α) :=
∫

Rn
〈α, e1 ∧ · · · ∧ en〉 dLn for any α ∈ C∞cpt(Rn,

∧n Rn).

Here Ln denotes the Lebesgue measure on Rn. For an Ln measurable set A ⊂ Rn the
current EnxA is defined as usual via

(EnxA)(α) =
∫
A

〈α, e1 ∧ · · · ∧ en〉 dLn.

Then, by an n-dimensional flat disk in Rn+k we mean a current T ∈ Rn(Rn+k) of the
form T := Φ#(EnxD) whereD is any open ball in Rn and Φ: Rn → Rn+k an isometric
embedding. In order not to overburden our presentation with notation we will use the short
hand notation [[D]] instead of Φ#(EnxD). By [[Dr]] we denote a flat disk of radius r > 0.
We use a similar notation for currents associated to oriented, compact, m-dimensional
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submanifolds M ⊂ Rn+k. Indeed, if ξ denotes an orientation m-vector field on M , then
the corresponding m-current [[M ]] ∈ Rm(Rn+k) is defined by [[M ]](α) :=

∫
M
〈α, ξ〉 dHm

for all α ∈ Dm(Rn+k).
Now, let n ≥ 2. As introduced above, we use for a current T ∈ Rn−1(Rn+k) with

∂T = 0 the abbreviation m(T ) to denote the minimal mass spanned by T . Moreover, by
%(T ) we denote the radius of any flat n-dimensional disk [[D]] whose mass is equal to the
minimal mass spanned by T , that is m(T ) = M([[D]]) = ωn%(T )n, so that

%(T ) := n

√
m(T )
ωn

.

Then, the isoperimetric gap is given by

D(T ) :=
M(T )− nωn%(T )n−1

nωn%(T )n−1
.

Note that the isoperimetric gap is invariant with respect to translations, rotations and dila-
tions. Next, we observe that m(T − ∂[[D%(T )]]) measures how close T and ∂[[D%(T )]] are.
Of course, when taking an arbitrary disk of radius %(T ) this distance can be very large.
Therefore, in order to measure the deviation of the surface from round spheres of radius
%(T ) we shall take the infimum over all such spheres. This quantity we call the asymmetry
index of T , and it is a measure for the deviation of T from being a round sphere. Hence,
for T ∈ Rn−1(Rn+k) with ∂T = 0 we define

d(T ) := inf
[[D%(T )]]

m(T − ∂[[D%(T )]])
%(T )n

,

where now the infimum is taken over all flat n-dimensional disks [[D%(T )]] of radius %(T ),
i.e. about those disks with mass equal to the minimal mass m(T ) spanned by T . Note
that also d(T ) is invariant under translations, rotations and dilations. Now we are in the
position to state our result.

Theorem 2.1. Let n ≥ 2 and k ≥ 0. Then, there exists a constant C > 0 depending
only on n and k such that for any T ∈ Rn−1(Rn+k) with ∂T = 0 the sharp quantitative
isoperimetric inequality holds

(2.1) D(T ) ≥ C d2(T ).

3. FACTS FROM GEOMETRIC MEASURE THEORY

For later use we recall some facts from Geometric Measure Theory which can be re-
trieved either from [13] or [21]. We start with the definition of the flat seminorm. For a
given open set U and an m-dimensional current T with locally finite boundary mass, i.e.
MW (∂T ) <∞ for any W b Rn+k, the flat semi norm is defined by

FU (T ) := inf
T=S+∂P

(
MU (S) + MU (P )

)
,

where the infimum is taken over all S ∈ Rm(Rn+k) and P ∈ Rm+1(Rn+k). In the
case U = Rn+k we write F := FRn+k . The topology induced by the semi norms FU
for U ⊂ Rn+k open and bounded is called the Floc-topology on Rm(Rn+k). The fol-
lowing theorem ensures that for sequences the Floc-topology and the weak topology on
Rm(Rn+k) are identical, cf. [21, Theorem 31.2]. Note that we state the following two
theorems only for locally rectifiable integer multiplicity m-currents with finite mass. The
original versions certainly include m-currents with only locally finite mass.

Theorem 3.1. Let T, {Tj} ⊂ Rm(Rn+k) be m-currents with

sup
j∈N

(
MU (Tj) + MU (∂Tj)

)
<∞ for all U b Rn+k.
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Then Tj → T with respect to the Floc-topology if and only if Tj → T with respect to the
weak topology.

For later purposes we recall the compactness theorem of Federer and Fleming, see [13,
Theorem 4.2.17] or [21, Theorem 27.3].

Theorem 3.2. If {Tj} ⊂ Rm(Rn+k) is a sequence of m-currents in Rn+k with

sup
j∈N

(
MU (Tj) + MU (∂Tj)

)
<∞ for all U b Rn+k,

then there is an m-current T ∈ Rm(Rn+k) and a subsequence {Tj} such that Tj → T
with respect to the Floc-topology.

By Theorem 3.1 the compactness in Theorem 3.2 also holds with respect to the weak
topology. This allows to extract a weakly convergent subsequence from any sequence
of currents Tj ∈ Rm(Rn+k) satisfying a suitable mass bound. Together with a lower
semicontinuity property of certain functionals this yields the existence of a minimizer, as
for example in the case of the mass M (which is easily seen to be lower semicontinuous
with respect to weak convergence of currents).

We note that the flat norm F and the seminorm m are almost equivalent. First one
observes that FU ≤m holds for any open set U ⊂ Rn+k. On the other hand, the following
lemma, whose proof is an easy consequence of the isoperimetric inequality, ensures that
also a reverse type inequality holds true for currents with compact support.

Lemma 3.3. Let R > 0. Then, for any T ∈ Rn−1(Rn+k) with ∂T = 0 and sptT ⊂ BR
there holds

m(T ) ≤
[
C(n) M(T ) + 1

]
FB2R(T ).

Proof. We first choose S ∈ Rn−1(Rn+k) and P ∈ Rn(Rn+k) realizing FB2R(T ) up to
an error ε > 0, i.e. S + ∂P = T and MB2R(S) + MB2R(P ) < FB2R(T ) + ε. Since
sptT ⊂ BR, we may assume without loss of generality that sptS, sptP ⊂ BR. Indeed,
otherwise we replace S and P with the corresponding projections p#(S) and p#(P ) onto
BR, which still satisfy the equality T = p#(T ) = p#(S + ∂P ) = p#(S) + ∂p#(P ) but
have smaller mass on B2R. Then, from Theorem 3.4 below we observe that

m(T ) ≤ (m(T ))
1
n [m(S) + m(∂P )]

n−1
n

≤m(T )
1
n

[
γnM(S)

n
n−1 + M(P )

]n−1
n

≤m(T )
1
n γ

n−1
n

n M(S) + m(T )
1
nM(P )

n−1
n

≤
(
γnM(T )

n
n−1
) 1
n γ

n−1
n

n M(S) + 1
nm(T ) + n−1

n M(P )

= γnM(T )
1

n−1 M(S) + 1
nm(T ) + n−1

n M(P ).

Taking into account that M(S) = MB2R(S), M(P ) = MB2R(P ), we get

m(T ) ≤ n
n−1γnM(T )

1
n−1 MB2R(S) + MB2R(P )

≤
[(

nγn
n−1

)n−1
M(T ) + 1

]
MB2R(S) + MB2R(P )

≤
[(

nγn
n−1

)n−1
M(T ) + 1

](
MB2R(S) + MB2R(P )

)
≤
[(

nγn
n−1

)n−1
M(T ) + 1

](
FB2R(T ) + ε

)
.

Letting ε ↓ 0 the assertion of the lemma follows. �

In the proof of the quantitative isoperimetric inequality it will be convenient to work
with a non re-scaled version of the asymmetry index d. Hence, for T ∈ Rn−1(Rn+k)
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with ∂T = 0 we define
d1(T ) := inf

[[D1]]
m(T − ∂[[D1]]),

where the infimum is taken over all flat n-dimensional disks [[D1]] of radius 1. Note that
d1(T ) is invariant under translations and rotations and that d(T ) = d1(T ) if m(T ) = ωn.

Finally, the following optimal isoperimetric inequality can be retrieved from [2, Theo-
rem 9].

Theorem 3.4. Suppose that T ∈ Rn−1(Rn+k) with ∂T = 0 and that Q(T ) is a mass
minimizing current with boundary T . Then, there holds

M(Q(T )) ≤ γnM(T )
n
n−1

where γn := n−
n
n−1ω

− 1
n−1

n denotes the optimal isoperimetric constant. Equality holds if
and only if Q(T ) is a flat n-dimensional disk [[D]] in Rn+k.

4. A VERSION OF FUGLEDE’S THEOREM IN HIGHER CODIMENSION

We start with some notation. Coordinates z ∈ Rn+k are written as z = (x, y). Here
n ≥ 2 and k ≥ 0. The case k = 0 corresponds to the classical case treated by Fuglede. For
this reason we restrict ourselves to the case k ≥ 1. Throughout this section we consider
an (n − 1)-dimensional surface Γ ⊂ Rn+k which can be parametrized globally by a map
X : Sn−1 → Rn+k from the sphere Sn−1 into Rn+k as follows:

(4.1) X(x) := (1 + u(x))(x, 0) + (0, v(x)) x ∈ Sn−1.

Here u : Sn−1 → R is a scalar valued function and v : Sn−1 → Rk is a vector valued
function. We call such a surface Γ a spherical graph over Sn−1; actually such a surface is
a global section in the normal bundle over Sn−1. For spherical graphs we have

Theorem 4.1 (Fuglede’s theorem for spherical graphs in higher codimension). There
exist εo ∈ (0, 1] and C1 > Co > 0 depending only on n such that there holds: Whenever Γ
is a sphericalC1-graph over Sn−1 in Rn+k such that the defining functions u : Sn−1 → R
and v : Sn−1 → Rk satisfy

(4.2) ‖u‖C1(Sn−1) + ‖v‖C1(Sn−1,Rk) ≤ εo,
and such that the area of a mass minimizing current Q spanned by Γ is equal to the area
of a flat n-dimensional disk of radius 1, that is

(4.3) m([[Γ]]) ≡ inf
{
M(Q) : Q ∈ Rn(Rn+k), ∂Q = [[Γ]]

}
= ωn,

whose barycenter and mixed second order moments are zero, that is

(4.4) bar(Γ) :=
∫

Γ

z dHn−1 = 0,

and

(4.5)
∫

Γ

xiyα dHn−1 = 0

for every choice of i = 1, . . . , n and α = 1, . . . , k, then the following quantitative isoperi-
metric inequality holds:

Hn−1(Γ)− nωn
nωn

≥ C1

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
≥ Co d2([[Γ]]).

Proof. The proof will be divided into several steps.
Step 1. Lower bound for the isoperimetric gap. We first compute the area element of

the surface Γ with the help of the parametrization X from (4.1). For this we evaluate the
(n − 1)-Jacobian JX of X from the matrix representation of ∇τX with respect to an or-
thonormal basis τ1, . . . , τn−1 in the tangent space to Sn−1 and the associated orthonormal
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basis (τ1, 0), . . . , (τn−1, 0), (x, 0), (0, e1), . . . , (0, ek) in Rn+k. In this representation we
have

DX =



(1 + u) 0 . . . 0

0 (1 + u)
...

...
. . .

0 . . . (1 + u)
∇τ1u ∇τ2u . . . ∇τn−1u
∇τ1v1 ∇τ2v1 . . . ∇τn−1v1

...
. . .

...
∇τ1vk ∇τ2vk . . . ∇τn−1vk


and the Jacobian can easily be computed as follows

[JX]2 = (1 + u)2(n−1) + (1 + u)2(n−2)
(
|∇τu|2 + |∇τv|2

)
+

min{k+1,n−1}∑
α=2

(1 + u)2(n−1−α)Mα(∇τu,∇τv)2,

where Mα(∇τu,∇τv)2 is the sum of the squares of the α × α minors of the matrix
(∇τu,∇τv). This leads us to

[JX]2 = (1 + u)2(n−1) + (1 + u)2(n−2)
(
|∇τu|2 + |∇τv|2

)
+R1,

where assumption (4.2) ensures that the remainder R1 is pointwise bounded on Sn−1 by

|R1| ≤ c(n) (1 + |u|)2(n−3)
(
|∇τu|2 + |∇τv|2

)2 ≤ c(n) εo
(
|∇τu|2 + |∇τv|2

)
.

¿From the last identity we obtain

[JX]2 = 1 + 2(n− 1)u+ (n− 1)(2n− 3)u2 + |∇τu|2 + |∇τv|2 +R2,(4.6)

where the remainder R2 satisfies

(4.7) |R2| ≤ c(n) εo
(
|u|2 + |∇τu|2 + |∇τv|2

)
.

At this point we use the inequality
√

1 + a ≥ 1 + 1
2a −

1
8a

2 − |a|3 which is valid for
|a| ≤ 1/2. We apply this inequality with the obvious choice

a = 2(n− 1)u+ (n− 1)(2n− 3)u2 + |∇τu|2 + |∇τv|2 +R2.

Note that |a| ≤ 1/2 if we choose εo > 0 small enough. In this way we obtain

JX ≥ 1 + (n− 1)u+ (n−1)(n−2)
2 u2 + 1

2

(
|∇τu|2 + |∇τv|2

)
+R2,

with a possibly different remainderR2 which still satisfies (4.7). This allows us to estimate

Hn−1(Γ)− nωn =
∫
Sn−1

(JX − 1) dHn−1

≥ (n− 1)
∫
Sn−1

u dHn−1 + (n−1)(n−2)
2

∫
Sn−1

u2 dHn−1

+ 1
2

∫
Sn−1

(
|∇τu|2 + |∇τv|2

)
dHn−1 − c(n) εo

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.(4.8)

Step 2. Consequences of the mass assumption (4.3). In the case that∫
Sn−1

u dHn−1 ≥ 0

the estimate (4.8) will be sufficient to complete the proof. However, in the negative case,
which can be viewed as the more difficult case since the leading first order term in (4.8)
is negative, we shall need an improvement of (4.8). This improvement can be achieved by
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utilizing assumption (4.3), i.e. the fact that the minimal mass m(Γ) spanned by Γ is equal
to ωn. The precise argument is as follows. We consider the cone

C ≡ C(x, %) := %
[
(1 + u(x))(x, 0) + (0, v(x))

]
x ∈ Sn−1, % ∈ (0, 1]

over Γ. Using the minimality of m(Γ) we see that

ωn = m(Γ) ≤ Hn(C) =
∫ 1

0

∫
Sn−1

JC dHn−1 d%,(4.9)

where JC is the n-Jacobian of C. In order to utilize the properties of the right-hand side
we need to compute the area element of the cone C. For the partial derivatives we have

∇τiC(x, %) = %∇τiX(x) = %
[
(1 + u(x))(τi, 0) + (x, 0)∇τiu(x) + (0,∇τiv(x))

]
for i = 1, . . . , n− 1 and

∇%C(x, %) = (1 + u(x))(x, 0) + (0, v(x)).

The area element I := ∇%C ∧
∧n−1
i=1 ∇τiC can now be rewritten in the form

I = %n−1

[
(1 + u)(x, 0) ∧

n−1∧
i=1

∇τiX + (0, v) ∧
n−1∧
i=1

∇τiX
]

=: %n−1(I1 + I2).

For I1 we have

I1 := (1 + u)(x, 0) ∧
n−1∧
i=1

[
(1 + u)(τi, 0) + (x, 0)∇τiu+ (0,∇τiv)

]
= (1 + u)(x, 0) ∧

n−1∧
i=1

[
(1 + u)(τi, 0) + (0,∇τiv)

]
= (1 + u)n(x, 0) ∧ (τ1, 0) ∧ · · · ∧ (τn−1, 0)

+ (1 + u)n−1
n−1∑
i=1

(x, 0) ∧ (τ1, 0) ∧ · · · ∧ (0,∇τiv) ∧ . . . (τn−1, 0) +R31,

where the remainder can be estimated as follows:

|R31| ≤ c(n) |∇τv|2.
For I2 we similarly compute

I2 := (0, v) ∧
n−1∧
i=1

[
(1 + u)(τi, 0) + (x, 0)∇τiu+ (0,∇τiv)

]
= (1 + u)n−1(0, v) ∧ (τ1, 0) ∧ · · · ∧ (τn−1, 0) +R32,

where now the remainder R32 can be bounded by

|R32| ≤ c(n) |v|
(
|∇τu|+ |∇τv|

)
≤ c(n)

(
|∇τu|2 + |v|2 + |∇τv|2

)
.

Combining the preceding estimates we arrive at

[JC]2 = %2(n−1)
[
(1 + u)2n + (1 + u)2(n−1)

(
|v|2 + |∇τv|2

)
+R3

]
= %2(n−1)(1 + u)2n

[
1 +
|v|2 + |∇τv|2

(1 + u)2
+R3

]
,

where R3 has changed in the last line. Nevertheless, with the help of (4.2) we find that

|R3| ≤ c(n) εo
(
|∇τu|2 + |v|2 + |∇τv|2

)
.

Using (4.9), the expansion of JC from above and (4.2) we see that

ωn ≤
∫ 1

0

∫
Sn−1

JC dHn−1 d%
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≤ 1
n

∫
Sn−1

(1 + u)n
√

1 +
|v|2 + |∇τv|2

(1 + u)2
+R3 dHn−1

= 1
n

∫
Sn−1

(1 + u)n dHn−1 + II

≤ ωn +
∫
Sn−1

u dHn−1 + n−1
2

∫
Sn−1

u2 dHn−1 + c(n) εo‖u‖2L2 + II

where we have abbreviated

II := 1
n

∫
Sn−1

(1 + u)n
[√

1 +
|v|2 + |∇τv|2

(1 + u)2
+R3 − 1

]
dHn−1.

To estimate II we use
√

1 + a ≤ 1 + 1
2a for a ≥ −1 and obtain

II ≤ 1
2n

∫
Sn−1

(1 + u)n−2
(
|v|2 + |∇τv|2

)
dHn−1 + c(n) εo

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
≤ 1

2n

∫
Sn−1

(
|v|2 + |∇τv|2

)
dHn−1 + c(n) εo

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.

Here we also used that (1 + u)n−2 ≤ 1 + c(n)εo by (4.2). Joining this with the preceding
estimate we obtain∫

Sn−1
u dHn−1 ≥ −n−1

2

∫
Sn−1

u2 dHn−1 − 1
2n

∫
Sn−1

(
|v|2 + |∇τv|2

)
dHn−1

− c(n) εo
[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.(4.10)

Plugging the last inequality into (4.8) we obtain the desired improvement of (4.8), that is

Hn−1(Γ)− nωn ≥ 1
2

[ ∫
Sn−1

|∇τu|2 dHn−1 − (n− 1)
∫
Sn−1

u2 dHn−1

]
+ 1

2n

[ ∫
Sn−1

|∇τv|2 dHn−1 − (n− 1)
∫
Sn−1

|v|2 dHn−1

]
− c(n) εo

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.(4.11)

Step 3. Consequences of the barycenter assumption (4.4). The next prerequisites
for the final proof are estimates which can be derived from the barycenter condition (4.4).
Using the first n entries in (4.4) we infer with the help of the area formula for i = 1, . . . , n
that

0 =
∫

Γ

xi dHn−1 =
∫
Sn−1

(1 + u)xiJX dHn−1.

Using also the fact that
∫
Sn−1 xi dHn−1 = 0 for i = 1, . . . , n we compute∫

Sn−1
uxi dHn−1 =

∫
Sn−1

uxi(1− JX) dHn−1 +
∫
Sn−1

(1 + u)xiJX dHn−1

+
∫
Sn−1

xi(1− JX) dHn−1

=
∫
Sn−1

uxi(1− JX) dHn−1 +
∫
Sn−1

xi(1− JX) dHn−1

=
∫
Sn−1

uxi
1− [JX]2

1 + JX
dHn−1 +

∫
Sn−1

xi
1− [JX]2

1 + JX
dHn−1.

Using (4.6) in both integrals on the right-hand side we find that∫
Sn−1

uxi dHn−1 =
∫
Sn−1

R4 dHn−1 − 2(n− 1)
∫
Sn−1

uxi
1 + JX

dHn−1,

where
|R4| ≤ c(n)

(
|u|2 + |∇τu|2 + |∇τv|2

)
.
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Adding (n− 1)
∫
Sn−1 uxi dHn−1 on both sides of the preceding inequality we obtain

n

∫
Sn−1

uxi dHn−1 = (n− 1)
∫
Sn−1

uxi

[
1− 2

1 + JX

]
dHn−1 +

∫
Sn−1

R4 dHn−1

= −(n− 1)
∫
Sn−1

uxi
1− JX
1 + JX

dHn−1 +
∫
Sn−1

R4 dHn−1.

The first integral on the right-hand side can now be estimated with the help of (4.6) by∣∣∣∣ ∫
Sn−1

uxi
1− JX
1 + JX

dHn−1

∣∣∣∣ =
∣∣∣∣ ∫
Sn−1

uxi
1− [JX]2

(1 + JX)2
dHn−1

∣∣∣∣
≤ c(n)

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.

Joining the preceding estimates we finally arrive at∣∣∣∣ ∫
Sn−1

uxi dHn−1

∣∣∣∣ ≤ c(n)
[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.(4.12)

For components yα with α = 1, . . . , k, i.e. those ones corresponding to the functions vα,
we argue as before, in the case of the components xi. Using again the area formula and the
barycenter condition (4.4) for the yα-components we have∫

Sn−1
v dHn−1 =

∫
Sn−1

vJX dHn−1 +
∫
Sn−1

v(1− JX) dHn−1

=
∫

Γ

y dHn−1 +
∫
Sn−1

v(1− JX) dHn−1

=
∫
Sn−1

v(1− JX) dHn−1 =
∫
Sn−1

v
1− [JX]2

1 + JX
dHn−1.

Together with (4.6) this leads us to∣∣∣∣ ∫
Sn−1

v dHn−1

∣∣∣∣ ≤ c(n)
[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.(4.13)

Step 4. Consequences of assumption (4.5) on the mixed second order moments.
¿From (4.5) we get for i = 1, . . . , n and α = 1, . . . , k that

0 =
∫

Γ

xiyα dHn−1

=
∫
Sn−1

(1 + u)xivαJX dHn−1

=
∫
Sn−1

xivα dHn−1 +
∫
Sn−1

[
xivαuJX − xivα

1− [JX]2

1 + JX

]
dHn−1.

¿From (4.2) and (4.6) we therefore conclude that∣∣∣∣ ∫
Sn−1

xiv dHn−1

∣∣∣∣ ≤ c(n)
[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
(4.14)

holds for i = 1, . . . , n.
Step 5. The final conclusion. We consider the expansion of u and v into the corre-

sponding Fourier series

u =
∞∑
j=0

mj∑
`=1

aj,`Yj,` and v =
∞∑
j=0

mj∑
`=1

bj,`Yj,`

where {Yj,` : j ∈ No, ` = 1, . . . ,mj} stands for the orthonormal basis of spherical har-
monics in L2(Sn−1), i.e we have

−∆Sn−1Yj,` = j(j + n− 2)Yj,` for j ∈ No, ` = 1, . . . ,mj .
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Here,mj denotes the dimension of the eigenspace associated to the eigenvalue j(j+n−2).
Note that m1 = n and the precise value of mj is given for j ≥ 2 by

mj :=
(
n+ j − 1
n− 1

)
−
(
n+ j − 3
n− 1

)
.

Moreover, we have ∫
Sn−1

Yj1,`1Yj2,`2 dHn−1 = δj1,j2δ`1,`2 .

The coefficients of the Fourier expansions of u and v are obtained by

aj,` :=
∫
Sn−1

uYj,` dHn−1 ∈ R and bj,` :=
∫
Sn−1

vYj,` dHn−1 ∈ Rk .

In terms of the Fourier coefficients the L2-norms of u and v can be expressed as follows∫
Sn−1

u2 dHn−1 =
∞∑
j=0

mj∑
`=1

a2
j,`,

∫
Sn−1

|v|2 dHn−1 =
∞∑
j=0

mj∑
`=1

|bj,`|2.

Further, the L2-norms of the gradients of u and v are given by∫
Sn−1

|∇u|2 dHn−1 =
∞∑
j=1

mj∑
`=1

j(j + n− 2)a2
j,`

and ∫
Sn−1

|∇v|2 dHn−1 =
∞∑
j=1

mj∑
`=1

j(j + n− 2)|bj,`|2.

We note that Yo ≡ 1/
√
nωn and Y1,`(x) = x`/

√
ωn for ` = 1, . . . , n so that the zero order

coefficients ao and bo are given by ao = (1/
√
nωn)

∫
Sn−1 u dHn−1 respectively (bo)α =

(1/
√
nωn)

∫
Sn−1 vα dHn−1 for α = 1, . . . , k, and the first order coefficients are given by

a1,` = (1/
√
ωn)

∫
Sn−1 x`u dHn−1 respectively (b1,`)α = (1/

√
ωn)

∫
Sn−1 x`vα dHn−1

for ` = 1, . . . , n and α = 1, . . . , k. These integrals have been estimated before and we
recall the bounds here. For convenience in notation we abbreviate

I(µ) :=
∞∑
j=µ

mj∑
`=1

[
j(j + n− 2) + 1

](
a2
j,` + |bj,`|2

)
for µ ∈ N0

and note that I(0) = ‖u‖2W 1,2 + ‖v‖2W 1,2 . ¿From (4.12) and (4.2) we infer the following
bound for a1 := (a1,1, . . . , a1,n):

|a1|2 =
n∑
`=1

(a1,`)2 ≤ c
[
‖u‖2W 1,2 + ‖v‖2W 1,2

]2
≤ c εo

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
= c(n) εoI(0).(4.15)

Similarly, from (4.13) and (4.2) we obtain for bo ∈ Rk that

|bo|2 =
k∑

α=1

(
(bo)α

)2 ≤ c [‖u‖2W 1,2 + ‖v‖2W 1,2

]2 ≤ c(n) εoI(0).(4.16)

¿From (4.14) and (4.2) we obtain for b1 := (b1,1, . . . , b1,n) that

|b1|2 =
n∑
`=1

k∑
α=1

(
(b1,`)α

)2 ≤ c [‖u‖2W 1,2 + ‖v‖2W 1,2

]2 ≤ c(n) εoI(0).(4.17)

With respect to ao we recall that we have to distinguish between the cases that either ao ≥ 0
or that ao < 0. In the first case, i.e. when ao ≥ 0 we start from (4.8) omitting the positive
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term
∫
Sn−1 u

2 dHn−1 on the right-hand side. Rewriting the resulting inequality in terms
of the Fourier-coefficients we obtain

Hn−1(Γ)− nωn ≥ (n− 1)
√
nωn ao + 1

2

∞∑
j=1

mj∑
`=1

j(j + n− 2)
(
a2
j,` + |bj,`|2

)
− c εoI(0)

≥ (n− 1)
√
nωn ao + 1

4I(1)− c εoI(0)

= (n− 1)
√
nωn ao + ( 1

4 − c ε)I(0)− 1
4

(
a2
o + |bo|2

)
.

Here, we have used that j(j + n− 2) ≥ 1
2 [j(j + n− 2) + 1] for j ≥ 1 in the second last

line. Using the bound (4.16) for |bo|2 we find that

Hn−1(Γ)− nωn ≥ (n− 1)
√
nωn ao + ( 1

4 − c εo)I(0)− 1
4a

2
o,

with a modified constant c still depending only on n. ¿From (4.2) we deduce that ao ≤√
nωnεo and hence

√
nωnao ≥ a2

o/εo. Therefore, choosing εo small enough we have
(n− 1)

√
nωn ao ≥ 1

4a
2
o which yields that

Hn−1(Γ)− nωn ≥ ( 1
4 − c εo)I(0).

Therefore, choosing εo sufficiently small we get

Hn−1(Γ)− nωn ≥ 1
8I(0) = 1

8

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
.(4.18)

We now turn our attention to the case ao < 0. Here, we have the improvement from (4.11)
at hand, which can be rewritten in terms of the Fourier-coefficients as

Hn−1(Γ)− nωn ≥ 1
2II(0)− c εoI(0),

where

II(µ) :=
∞∑
j=µ

mj∑
`=1

[
j(j + n− 2)− (n− 1)

](
a2
j,` + 1

n |bj,`|
2
)

for µ ∈ N0.

The term II(0) we rewrite as follows

II(0) = −(n− 1)
(
a2
o + 1

n |bo|
2
)

+ II(2).

Since j(j + n− 2)− (n− 1) ≥ 1
2 [j(j + n− 2) + 1] for j ≥ 2 we have II(2) ≥ 1

2nI(2)
and therefore

II(0) ≥ −(n− 1)
(
a2
o + 1

n |bo|
2
)

+ 1
2nI(2)

= −(n− 1)
(
a2
o + 1

n |bo|
2
)

+ 1
2nI(0)− 1

2n

(
a2
o + |bo|2

)
− 1

2

(
|a1|2 + |b1|2

)
≥ 1

2nI(0)− n
(
a2
o + |bo|2

)
− 1

2

(
|a1|2 + |b1|2

)
.

Inserting this above we have

Hn−1(Γ)− nωn ≥
(

1
4n − c εo

)
I(0)− n

2

(
a2
o + |bo|2

)
− 1

4

(
|a1|2 + |b1|2

)
,

Since ao < 0 we infer from (4.10) and (4.2) the following estimate for ao:

a2
o ≤ c

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]2 ≤ c εo[‖u‖2W 1,2 + ‖v‖2W 1,2

]
≤ c εoI(0).

Using also the inequalities (4.15), (4.16) and (4.17) we obtain from the second last inequal-
ity

Hn−1(Γ)− nωn ≥
(

1
4n − c εo

)
I(0) ≥ 1

8nI(0) = 1
8n

[
‖u‖2W 1,2 + ‖v‖2W 1,2

]
,(4.19)

provided εo > 0 is chosen small enough in dependence of n. This finishes the proof in the
case ao < 0. In any case we have the bound from below for the quantity Hn−1(Γ)− nωn
in terms of the W 1,2-norms of u and v with the constant 1

8n .
At this stage it remains to derive a bound from above for the asymmetry index in terms

of the L2 norms of u and v. For this we use the homotopy formula. We connect Sn−1

and Γ by the affine homotopy h(t, x) := tX(x) + (1 − t)(x, 0), t ∈ [0, 1], x ∈ Sn−1.
Then h(1, Sn−1) = Γ and h(0, Sn−1) = Sn−1. The area of the affine connection can
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be computed by the area formula. To be precise we have (with ~e(x) = τ1 ∧ · · · ∧ τn−1

denoting the orienting vector field of Sn−1)

d([[Γ]]) ≤m([[Γ]]− ∂[[D1]])

≤ Hn
(
h#([[0, 1]]× Sn−1)

)
=
∫ 1

0

∫
Sn−1

∣∣∣(X − (x, 0)
)
∧
∧

n−1
Dτh(t, x)~e(x)

∣∣∣ dHn−1dt

≤ sup
t∈[0,1]

∫
Sn−1

|X − (x, 0)|
n−1∏
i=1

[
t
√

(1+u)2 + |∇τiu|2 + |∇τiv|2 + (1−t)
]
dHn−1

≤ 2n−1

∫
Sn−1

|X − (x, 0)| dHn−1 = 2n−1

∫
Sn−1

|(xu, 0) + (0, v)| dHn−1

= 2n−1

∫
Sn−1

√
|u|2 + |v|2 dHn−1,

where in the second last we used (4.2). With the help of Hölder’s inequality and (4.18) if
ao ≥ 0, respectively (4.19) if ao < 0 we further estimate

d([[Γ]]) ≤ 2n−1√nωn
(∫

Sn−1
|u|2 + |v|2 dHn−1

) 1
2

≤ 2n−1√nωn
[
‖u‖2W 1,2 + ‖v‖2W 1,2

] 1
2

≤ 2nn
√

2ωn
√
Hn−1(Γ)− nωn.

This proves the quantitative isoperimetric inequality for spherical graphs in higher codi-
mension with a constant Co = [22n+1n3ω2

n]−1. �

The next Lemma provides the possibility to tilt (rotate) (n − 1)-currents with second
order moments close to those ones of the flat (n−1)-dimensional unit sphere in such a way
that the mixed second order moments of the tilted current vanish. Later on this will enable
us to guarantee that certain penalized currents arising from a sequence of currents con-
tradicting the quantitative isoperimetric inequality can be adjusted in such a way that the
mixed second order moments vanish. This adjustment will be important for the application
of the higher codimension version of Fuglede’s theorem, i.e. Theorem 4.1.

Lemma 4.2. There exists a constant εo = εo(n, k) ∈ (0, 1] such that there holds: When-
ever T ∈ Rn−1(Rn+k) has compact support and second order moments defined by

M := ω−1
n

∫
z ⊗ z d‖T‖ ∈ R(n+k)×(n+k)

satisfying

(4.20) ‖M − In‖ ≤ ε for some ε ∈ (0, εo],

where In : Rn+k → Rn+k is defined by In(x, y) := (x, 0), there exists R ∈ SO(n + k)
with

‖R− I‖ ≤ c(n, k) ε
such that for the second order moments of (R−1)#T , defined by

M(R−1)#T := ω−1
n

∫
z ⊗ z d‖(R−1)#T‖

holds
‖M(R−1)#T − In‖ ≤ 2ε

and (
M(R−1)#T

)
i,n+α

≡
∫
xiyα d‖(R−1)#T‖ = 0

for i = 1, . . . , n and α = 1, . . . , k.
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Proof. We note that

In ≡ ω−1
n

∫
Sn−1×{0}

z ⊗ z dHn−1(z).

Therefore, the smallness assumption (4.20) ensures that the second order moments of T
are close to the second order moments of Sn−1 × {0} ⊂ Rn+k. In particular, the mixed
second order moments of T are small. The idea is to consider the map Φ: SO(n + k) →
R(n+k)×(n+k) defined by

Φ(R) :=
∫
z ⊗ z d‖(R−1)#T‖ =

∫
Rz ⊗Rz d‖T‖.

Evaluating Φ at the identity we find that Φ(I) = M . Next we compute the differential of
Φ at the identity. For a skew-symmetric matrix S ∈ so(n+ k) we consider its exponential
exp(tS) ∈ SO(n+ k) and compute

〈DΦ(I);S〉 =
d

dt

∣∣∣
t=0

Φ(exp(tS))

=
d

dt

∣∣∣
t=0

∫
exp(tS)z ⊗ exp(tS)z d‖T‖

=
∫ [

Sz ⊗ z + z ⊗ Sz
]
d‖T‖.

Now, we fix a matrix A ∈ L(Rk,Rn), which is at our disposal, and define a skew-
symmetric matrix S ∈ so(n+ k) by

(4.21) S :=
(

0 A
−At 0

)
and compute Sz = (Ay,−Atx). For the following computations we denote by ei, i =
1, . . . , n the standard basis in Rn and by eα, α = 1, . . . , k the standard basis in Rk. The
standard basis in Rn+k we denote by τ1, . . . , τn+k and note that τi = (ei, 0) for i =
1, . . . , n and τn+α = (0, eα) for α = 1, . . . , k. Then, for i = 1, . . . , n and α = 1, . . . , k
we have (Sz⊗z)i,n+α = yα(τi ·Sz) = yα(ei ·Ay) and (z⊗Sz)i,n+α = xi(τn+α ·Sz) =
−xi(eα ·Atx) and hence

〈DΦi,n+α(I);S〉 =
∫ [

yα(ei ·Ay)− xi(eα ·Atx)
]
d‖T‖.

Next, we compute

ei ·Ay =
k∑

β=1

yβ(ei ·Aeβ) and eα ·Atx =
n∑
`=1

x`(e` ·Aeα).

Recalling the definition of the second moments and writing Mi,j := τi ·Mτj for i, j =
1, . . . , n+ k we therefore have

〈DΦi,n+α(I);S〉 =
k∑

β=1

(ei ·Aeβ)Mn+α,n+β −
n∑
`=1

(e` ·Aeα)Mi,`.

We now choose A according to

ei ·Aeα = Mi,n+α for i = 1, . . . , n and α = 1, . . . , k(4.22)

and find that

〈DΦi,n+α(I);S〉 =
k∑

β=1

Mi,n+βMn+α,n+β −
n∑
`=1

M`,n+αMi,`

= −Mi,iMi,n+α +
k∑

β=1

Mi,n+βMn+α,n+β −
n∑

` 6=i,`=1

M`,n+αMi,`.
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Therefore, by Taylor’s formula and the fact that Φ(I) = M we obtain for the mixed mo-
ments of (R−1)#T withR = exp(S), i.e. for the components with i = 1, . . . , n and n+α
with α = 1, . . . , k, that there holds

|Φi,n+α(exp(S))|
≤ |Φi,n+α(I) + 〈DΦi,n+α(I), S〉|

+ 1
2 sup
t∈[0,1]

∣∣D2Φi,n+α(exp(tS))
(

exp(tS)S, exp(tS)S
)

+
〈
DΦi,n+α(exp(tS)), exp(tS)S2

〉∣∣
≤ |Φi,n+α(I) + 〈DΦi,n+α(I), S〉|

+ 1
2 sup
O∈SO(n+k)

‖D2Φi,n+α(O)‖‖S‖2 + 1
2 sup
O∈SO(n+k)

‖DΦi,n+α(O)‖‖S‖2

≤
∣∣∣∣(1−Mi,i)Mi,n+α +

k∑
β=1

Mi,n+βMn+α,n+β −
n∑

` 6=i,`=1

M`,n+αMi,`

∣∣∣∣
+ c(n, k)

n∑
`=1

k∑
β=1

M2
`,n+β .(4.23)

Here, we used the fact that there exists a constant c(n, k) <∞ such that if

(4.24) ‖M − In‖ ≤ 1

then

‖DΦ‖+ ‖D2Φ‖ ≤ 4
∫
|z|2 d‖T‖ ≤ c(n, k),

and thanks to (4.20), condition (4.24) is trivially satisfied. Similarly, we compute for i, j =
1, . . . , n that

〈DΦi,j(I);S〉 = 2
k∑

β=1

Mi,n+βMj,n+β

which, in view of (4.24), leads us to

|Φi,j(exp(S))− δi,j | ≤ |Φi,j(I)− δi,j + 〈DΦi,j(I);S〉|+ c(n, k) ‖S‖2

≤
∣∣∣∣Mi,j − δi,j + 2

k∑
β=1

Mi,n+βMj,n+β

∣∣∣∣+ c(n, k)
n∑
`=1

k∑
β=1

M2
`,n+β

≤ |Mi,j − δi,j |+ c(n, k)
n∑
`=1

k∑
β=1

M2
`,n+β .(4.25)

Furthermore, for α, β = 1, . . . , k we find that

〈DΦn+α,n+β(I);S〉 = −2
n∑
`=1

M`,n+αM`,n+β

and hence, still using the fact that (4.24) holds,

|Φn+α,n+β(exp(S))| ≤ |Φn+α,n+β(I) + 〈DΦn+α,n+β(I);S〉|+ c(n, k) ‖S‖2

≤
∣∣∣∣Mn+α,n+β − 2

n∑
`=1

M`,n+αM`,n+β

∣∣∣∣+ c(n, k)
n∑
`=1

k∑
β=1

M2
`,n+β

≤ |Mn+α,n+β |+ c(n, k)
n∑
`=1

k∑
β=1

M2
`,n+β .(4.26)
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Finally, we also have

‖ exp(S)− I‖2 ≤ c(n, k) ‖S‖2 ≤ c(n, k)
n∑
`=1

k∑
β=1

M2
`,n+β .(4.27)

Here, we used the definitions of S and A from (4.21) and (4.22) and the fact that by (4.20)
the mixed second order moments satisfy (4.24), and therefore we have ‖S‖ ≤ c(n, k).

Now, we want to iterate this procedure. We set M (0) := M and R(0) := I and define
iteratively for h ∈ N0

S(h+1) :=
(

0 A(h+1)

−(A(h+1))t 0

)
where ei ·A(h+1)eα := M

(h)
i,n+α

and
M (h+1) := Φ(R(h+1)) where R(h+1) := exp(S(h+1))R(h).

Moreover, for h ∈ N0 we define

a(h) :=
( n∑
i=1

k∑
α=1

|M (h)
i,n+α|

2

) 1
2

and

b(h) :=
( n∑
i=1

n∑
j=1

|M (h)
i,j − δi,j |

2 +
k∑

α=1

k∑
β=1

|M (h)
n+α,n+β |

2

) 1
2

.

Then, from (4.20) we know that

(4.28) a(0) ≤ ε and b(0) ≤ ε.
Moreover, from the preceding computations, i.e. from (4.23), (4.25), (4.26) and (4.27) we
infer that for h ∈ N0, provided (4.24) holds true for M (h), then

(4.29) a(h+1) ≤ c̃ a(h)
(
a(h) + b(h)

)
, b(h+1) ≤ b(h) + c̃

(
a(h)

)2
and

(4.30) ‖ exp(S(h))− I‖ ≤ c̃ a(h)

for some constant c̃ = c̃(n, k) ≥ 1. In the following we assume that 3c̃ε ≤ 1
2 . We will

prove by induction that

(4.31) a(h) ≤ (3c̃)hεh+1 and b(h) ≤ ε
h∑
`=0

(3c̃ε)`

holds for any h ∈ N0. For h = 0 the assertion (4.31) is obviously satisfied by (4.28). Now,
assume that (4.31) holds for some h ≥ 0. ¿From (4.29), (4.31) and the fact that 3c̃ε ≤ 1

2
we find that

a(h+1) ≤ c̃ a(h)
(
a(h) + b(h)

)
≤ c̃ (3c̃)hεh+1

[
(3c̃)hεh+1 + ε

h∑
`=0

(3c̃ε)`
]

= (3c̃)h+1εh+2

[
1
3 (3c̃ε)h + 1

3

h∑
`=0

(3c̃ε)`
]
≤ (3c̃)h+1εh+2.

Further, from (4.29), (4.31) and the fact that 3c̃ε ≤ 1
2 we infer

b(h+1) ≤ b(h) + c̃
(
a(h)

)2 ≤ ε h∑
`=0

(3c̃ε)` + c̃ (3c̃)2hε2h+2 ≤ ε
h+1∑
`=0

(3c̃ε)`.

The last two inequalities establish the assertion (4.31). We note that b(h) ≤ 2ε and a(h) ≤
ε. Then ‖M (h) − In‖ ≤ 3ε ≤ 1 and therefore the condition (4.24) is fulfilled for any
h ∈ N0.
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Next, we prove that R(h) is a Cauchy sequence. This follows from (4.30), (4.31) and
3c̃ε ≤ 1

2 since

‖R(h+`) −R(h)‖ ≤
`−1∑
i=0

‖R(h+i+1) −R(h+i)‖ ≤
`−1∑
i=0

∥∥ exp(S(h+i+1))− I
∥∥‖R(h+i)‖

≤ c̃
`−1∑
i=0

a(h+i+1) ≤ εc̃(3c̃ε)h+1
`−1∑
i=0

(3c̃ε)i ≤ εc̃(3c̃ε)h ≤ 2−hc̃ ε.

Therefore, there exists R∞ ∈ SO(n + k) such that R(h) → R∞ as h → ∞ and from the
preceding inequality with h = 0 and `→∞ we obtain

‖R∞ − I‖ ≤ c̃ ε.

Next, we observe that a(h) → 0 as h→∞. But this means that∫
xiyα d‖(R−1

∞ )#T‖ = 0

for any i = 1, . . . , n and α = 1, . . . , k. We remark that by (4.31) we also have

‖M∞ − In‖ ≤ 2ε, where M∞ := ω−1
n

∫
z ⊗ z d‖(R−1

∞ )#T‖.

This completes the proof of the lemma. �

5. A PENALIZATION PROCEDURE

We start this section with the definition of an auxiliary functional which will play a cru-
cial role in the final proof of the quantitative isoperimetric inequality. For given constants
C1, δ ≥ 0 and Λ ≥ 1 we define the variational functional F : Rn−1(Rn+k)→ [0,∞) by

F(T ) := M(T ) + C1|d1(T )− δ|+ Λ|m(T )− ωn|.
The presence of the two penalization terms forces a minimizer on one hand to have an
asymmetry index close to δ (and since δ will be small in the application, close to zero), and
on the other hand to make m(T ) close to ωn. Heuristically, this means that minimizers will
be close to a flat n-dimensional disk. However, a subtle interplay between the area term
and the two penalization terms will take place. The following lemma ensures the existence
of F-minimizers.

Lemma 5.1. Let R ≥ 1. Then, there exists a minimizer S ∈ Rn−1(Rn+k) of the varia-
tional problem

(5.1) min
{
F(T ) : T ∈ Rn−1(Rn+k) with ∂T = 0 and sptT ⊂ BR

}
.

Proof. We use the direct method of the calculus of variations. Let {Sj}∞j=1 be a minimiz-
ing sequence, i.e. Sj ∈ Rn−1(Rn+k) with ∂Sj = 0 and sptSj ⊂ BR and

lim
j→∞

F(Sj) = inf
{
F(T ) : T ∈ Rn−1(Rn+k), ∂T = 0, sptT ⊂ BR

}
.

¿From the definition of F we infer that

sup
j≥1

[
M(Sj) + m(Sj)

]
≤ C <∞.

For each Sj we choose a mass minimizer Q(Sj) with boundary ∂Q(Sj) = Sj and
sptQ(Sj) ⊂ BR. Since M(Q(Sj)) = m(Sj) we have

sup
j≥1

[
M(Sj) + M(Q(Sj))

]
≤ C <∞.

In this situation the compactness Theorem 3.2 ensures the existence of a current Q̃ ∈
Rn(Rn+k) and a (not relabeled) subsequence such that Q(Sj) → Q̃ with respect to the
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Floc-topology. By Theorem 3.1 we also have Q(Sj) ⇀ Q̃ with respect to weak conver-
gence in Rn(Rn+k). This implies Sj ⇀ S̃ := ∂Q̃ weakly in Rn−1(Rn+k) and moreover
spt S̃ ⊂ BR. Now, the compactness theorem for mass minimizing currents [21, Theorem
34.5] ensures that Q̃ is mass minimizing with respect to its boundary S̃, i.e. we know that
Q̃ = Q(S̃). Moreover, from [21, Theorem 34.5] we also conclude that

(5.2) lim
j→∞

M(Q(Sj)) = M(Q(S̃)).

Finally, we note that sptQ(S̃) ⊂ BR by the convex hull property, since spt S̃ is contained
in BR. At this point it remains to prove that there holds

(5.3) F(S̃) ≤ lim
j→∞

F(Sj).

We first note that the lower semi continuity of the mass with respect to weak convergence
of currents implies

(5.4) M(S̃) ≤ lim inf
j→∞

M(Sj).

Next, we let [[D]] be a flat n-dimensional disk with radius 1 realizing d1(S̃) up to an error
ε > 0, that is we choose [[D]] such that there holds m(S̃ − ∂[[D]]) < d1(S̃) + ε. Since
Sj ⇀ S̃ with respect to the Floc-topology and since both currents are supported in BR we
conclude from Lemma 3.3 that m(Sj − S̃) ≤ ε for j � 1. We therefore find that

d1(Sj) ≤m(Sj − ∂[[D]]) ≤m(Sj − S̃) + m(S̃ − ∂[[D]]) ≤ d1(S̃) + 2ε.

Similarly, we can also obtain a reverse type estimate. For j ∈ N we denote by [[Dj ]] flat
n-dimensional disks of radius 1 realizing up to an error ε > 0 the quantities d1(Sj), that
is m(Sj − ∂[[Dj ]]) < d1(Sj) + ε. We therefore find that

d1(S̃) ≤m(S̃ − ∂[[Dj ]]) ≤m(S̃ − Sj) + m(Sj − ∂[[Dj ]]) ≤ d1(Sj) + 2ε.

Combining the two preceding inequalities yields

(5.5) lim
j→∞

d1(Sj) = d1(S̃).

Joining (5.2), (5.4) and (5.5) and recalling the definition of the functional F yields the
claim (5.3) and therefore finishes the proof of the lemma. �

Next, let us recall the notions of λ-minimizing and almost minimizing currents.

Definition 5.2. For λ > 0 we say that S ∈ Rn−1(Rn+k) is λ-minimizing in Rn+k if for
any P ∈ Rn(Rn+k) there holds

M(S) ≤M(S + ∂P ) + λM(P ).

For a given radius %o > 0 and a given modulus ω : (0, %o]→ [0,∞) one says that a current
S ∈ Rn−1(Rn+k) is (M, ω)-minimizing in Rn+k if

M(S) ≤M(S +X) + ω(%) M(SxK +X)

holds for any X ∈ Rn−1(Rn+k) with ∂X = 0 and support contained in a compact set K
which is contained in a ball of radius % ≤ %o.

In the next lemma we establish that minimizers of the variational problem (5.1) are
λ-minimizing and almost minimizing.

Lemma 5.3. Let C1, δ ≥ 0, Λ ≥ 1 and R ≥ 1. Suppose that S ∈ Rn−1(Rn+k) is a
minimizer of the problem (5.1). Then, S is λ-minimizing in Rn+k with λ := C1 + Λ.
Moreover, S is (M, ω)-minimizing in Rn+k with ω(%) := 4λ% and %o := 1/(2λ).
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Proof. By p : Rn+k → BR we denote the spherical projection of Rn+k onto BR. Now,
let P ∈ Rn(Rn+k). Since spt(S + ∂p#P ) ⊂ BR and ∂(S + ∂p#P ) = 0 we have that
S + ∂p#P is an admissible comparison current for the minimizer S. Therefore, by the
minimality of S we have

M(S) + C1|d1(S)− δ|+ Λ|m(S)− ωn|
≤M(S + p#∂P ) + C1|d1(S + p#∂P )− δ|+ Λ|m(S + p#∂P )− ωn|.

Since p#S = S (note that sptS ⊂ BR) we have

M(S + p#∂P ) = M(p#(S + ∂P )) ≤M(S + ∂P ),

and the last two inequalities therefore imply

M(S) ≤M(S + ∂P ) + C1|d1(S + p#∂P )− d1(S)|
+ Λ|m(S + p#∂P )−m(S)|.(5.6)

In the following we shall bound the last two terms by a constant times M(P ). In order to
proceed in this direction we choose a mass minimizerQ(S) subject to the boundary S, and
moreover a mass minimizer Q(S + p#∂P ) with respect to the boundary S + p#∂P ; this
means that m(S+p#∂P ) = M(Q(S+p#∂P )) and m(S) = M(Q(S)). Moreover, both
currents have support in BR since sptS and spt(S + p#∂P ) are contained in BR. Using
the fact that ∂(p#P ) = p#(∂P ) we find

∂(Q(S) + p#P ) = S + ∂(p#P ) = S + p#∂P,

and together with M(p#P ) ≤ M(P ) and the minimizing property of Q(S + p#∂P ) we
obtain

m(S + p#∂P ) ≤M(Q(S) + p#P ) ≤m(S) + M(P ).

On the other hand, we also have

∂(Q(S + p#∂P )− p#P ) = S + p#∂P − ∂(p#P ) = S.

This allows us to utilize the minimality of Q(S) to deduce

m(S) ≤M(Q(S + p#∂P )− p#P )

≤M(Q(S + p#∂P )) + M(p#P ) ≤m(S + p#∂P ) + M(P ).

Together, we have shown that

|m(S + p#∂R)−m(S)| ≤M(P ).(5.7)

In order to estimate the second term on the right hand side of (5.6) we first recall that
∂(p#P ) = p#∂P which allows us to compute

m(p#∂P ) = m(∂(p#P )) ≤M(p#P ) ≤M(P ).

Denoting by [[D]] a flat n-dimensional unit disk in Rn+k realizing d1(S) up to an error of
ε > 0, that is m(S − ∂[[D]]) < d1(S) + ε we find that

d1(S + p#∂P ) ≤m(S + p#∂P − ∂[[D]])

≤m(p#∂P ) + m(S − ∂[[D]])

≤M(P ) + d1(S) + ε.

Similarly, denoting now with [[D]] a flat n-dimensional unit disk in Rn+k which realizes
d1(S+p#∂P ) up to an error of ε > 0, that is m(S+p#∂P−∂[[D]]) < d1(S+p#∂P )+ε
we obtain

d1(S) ≤m(S − ∂[[D]]) ≤m(p#∂P ) + m(S + p#∂P − ∂[[D]])

≤M(P ) + d1(S + p#∂P ) + ε.
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Joining the last two estimates and letting ε ↓ 0 we infer that

|d1(S + p#∂P )− d1(S)| ≤M(P ).(5.8)

Inserting (5.7) and (5.8) into (5.6) we arrive at

M(S) ≤M(S + ∂P ) + (C1 + Λ)M(P ),

i.e. S is a λ-minimizing current in Rn+k in the sense of Definition 5.2 with λ = C1 + Λ,
and this proves the first assertion of the Lemma.

The second assertion, i.e. the (M, ω) minimality is now an easy consequence of the
λ-minimality. For this it is sufficient to consider the case when xo ∈ Rn+k and % ∈
(0, 1/(2λ)] are such that B%(xo)∩BR 6= ∅, since in the case B%(xo)∩BR = ∅ the almost
minimality holds trivially, because M(SxK) = 0. Note that K is a compact subset of
B%(xo) and the support ofX is contained inK. Now, letX ∈ Rn−1(Rn+k) with ∂X = 0
and sptX ⊂ K ⊂ B%(xo) and choose P := xo××X . Then, sptP ⊂ B%(xo) and ∂P = X .
¿From the λ-minimality and M(P ) ≤ %

nM(X) we obtain

M(S) ≤M(S +X) + λ%M(X)

≤M(S +X) + λ%
(
M(SxK +X) + M(SxK)

)
.

Since (S +X)x(Rn+k \K) = Sx(Rn+k \K) the preceding estimate is equivalent to

M(SxK) ≤M(SxK +X) + λ%
(
M(SxK +X) + M(SxK)

)
.

This inequality can be rewritten as (note that % ≤ %o = 1/(2λ))

M(SxK) ≤ 1 + λ%

1− λ%
M(SxK +X) ≤

(
1 + 4λ%

)
M(SxK +X).

Adding M(Sx(Rn+k \K)) to both sides of the previous inequality then yields the second
assertion of the lemma. �

¿From [9, Lemma 2.2, Remark 2.4] we have the following

Lemma 5.4. Suppose that S ∈ Rn−1(Rn+k) with ∂S = 0 is a λ-minimizing current.
Then, the following assertions hold:

(i) If xo ∈ sptS, then (0, 1) 3 % 7→ %−(n−1)eλ%M(SxB%(xo)) is nondecreasing.
(ii) If xo ∈ sptS, then the (n − 1)-dimensional density satisfies Θn−1(‖S‖, xo) ≥ 1

and moreover there holds

ωn−1e
−λ ≤ M(SxB%(xo))

%n−1
≤ eλM(S) for any % ∈ (0, 1).

(iii) The density function x 7→ Θn−1(‖S‖, x) is upper semicontinuous on sptS, i.e.

lim sup
j→∞

Θn−1(‖S‖, xj) ≤ Θn−1(‖S‖, x)

whenever xj → x.

The following lemma is a modification of [21, Theorem 34.5] for λ-minimizers. We
state the result in a more general form for λ-minimizing currents Sj with possibly non-
vanishing boundary ∂Sj . However, in the application we will have ∂Sj = 0. The proof
follows almost verbatim along the lines of the one in [21, Theorem 34.5] and therefore we
skip it.

Lemma 5.5. Let λ ≥ 0 and suppose that Sj ∈ Rn−1(Rn+k) is a sequence of λ-mini-
mizing currents in Rn+k. If Sj → S holds locally with respect to the Floc-topology and
supj∈N(M(Sj) + M(∂Sj)) < ∞, then S ∈ Rn−1(Rn+k) is λ-minimizing in Rn+k.
Moreover, we have ‖Sj‖ → ‖S‖ in the sense of Radon measures.
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Lemma 5.6. Suppose that in addition to the assumptions from Lemma 5.5 the currents
Sj are closed, i.e. that ∂Sj = 0 holds true. Then, sptSj → sptS in the Kuratowski
convergence, that is

(i) if xj ∈ sptSj for any j ∈ N, then any limit point x belongs to sptS.
(ii) for every x ∈ sptS there exists a sequence {xj}j∈N with xj ∈ sptSj for any

j ∈ N converging to x.

Proof. For the proof of assertion (i) we consider a sequence xj ∈ sptSj and a limit point
x. Assume that x 6∈ sptS, then there exists % > 0 such that B%(x) ∩ sptS = ∅ and hence
M(SxB%(x)) = 0. Further, there exists a subsequence of xj , still denoted by xj such
that xj → x. Then, by Lemma 5.4 (ii) we have

(5.9) ωn−1(%/2)n−1e−λ ≤M
(
Sj xB%/2(xj)

)
≤M

(
Sj xB%(x)

)
,

provided j is large enough to ensure that B%/2(xj) ⊂ B%(x). On the other hand, we know
from Lemma 5.5 that

lim sup
j→∞

M
(
Sj xB%(x)

)
≤M(SxB%(x)) = 0

which contradicts (5.9). Therefore, it must hold that x ∈ sptS.
In order to prove assertion (ii) we suppose that there exists x ∈ sptS and % > 0 such

that {j ∈ N : B%(x) ∩ sptSj = ∅} is not finite. Together with Lemma 5.4 (ii) and the
lower semi continuity of the mass this yields a contradiction, since

ωn−1%
n−1e−λ ≤M(SxB%(x)) ≤ lim inf

j→∞
M
(
Sj xB%(x)

)
= 0.

Hence, for any x ∈ sptS and any % > 0 the set {j ∈ N : B%(x) ∩ sptSj = ∅} is finite.
But this means that there exists a sequence xj ∈ sptSj such that xj → x. �

Remark 5.7. A similar reasoning shows that the set {j ∈ N : H ∩ sptSj 6= ∅} is finite
for every compact set H ⊂ Rn+k \ sptS. 2

Lemma 5.8. Let Λ ≥ n and R > 1. Then any minimizer of the functional

F(T ) := M(T ) + Λ|m(T )− ωn|
in the class {T ∈ Rn−1(Rn+k) : ∂T = 0, sptT ⊂ BR} is the boundary of a flat n-
dimensional unit disk with support in BR.

Proof. ¿From Lemma 5.1 applied with C1 = 0 we infer the existence of a minimizer S ∈
Rn−1(Rn+k) of F with support in BR. In the following we prove that S is the boundary
of flat n-dimensional unit disk [[D1]]. By the minimality of S we have F(S) ≤ F(∂[[D1]])
for any flat n-dimensional unit disk [[D1]] with support in BR, i.e.

(5.10) M(S) + Λ|m(S)− ωn| ≤M(∂[[D1]]) = nωn.

Suppose that m(S) > ωn, then we have M(Q(S)) = m(S) > ωn for any mass mini-
mizer Q(S) subject to the boundary condition ∂Q(S) = S. Therefore, the isoperimetric
inequality from Theorem 3.4 yields that

M(S) ≥ nω
1
n
n M(Q(S))

n−1
n > nωn

contradicting (5.10). Therefore, it cannot happen that m(S) > ωn. Next, we assume
that m(S) < ωn. Then, there exists 0 < r < 1 such that M([[Dr]]) = m(S). Since
m(S) = M([[Dr]]) = ωnr

n inequality (5.10) can be rewritten as

M(S) + Λ(1− rn)ωn ≤ nωn.
On the other hand, we know from Theorem 3.4 that M(S) ≥ nωnr

n−1 which together
with the last inequality yields

Λ(1− rn) ≤ n(1− rn−1).
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But this contradicts the assumption Λ ≥ n and therefore we must have m(S) = ωn. Using
the isoperimetric inequality from Theorem 3.4 we deduce F(S) = M(S) ≥ nωn and
equality holds if and only if S = ∂[[D1]] for some flat n-dimensional unit disk [[D1]] with
support in BR. �

6. PROOF OF THE QUANTITATIVE ISOPERIMETRIC INEQUALITY

The first result of this section enables us to reduce the problem to a situation where we
only have to consider currents with compact support. Roughly speaking the Lemma asserts
that any closed current T with m(T ) = ωn can be truncated in such a way that the asym-
metry index d decreases at most by a multiplicative constant 1/C while the isoperimetric
gap increases at most by a multiplicative constant C, where C = C(n) ≥ 1. The result
of the truncation procedure is a current with support in a ball of radius Ro which depends
only on the dimension n. The content of the Lemma is the higher codimension analogue
of [17, Lemma 5.1] and the arguments used here are similar to the ones used therein.

Lemma 6.1. There exist a constant C̃ = C̃(n, k) ≥ 1 and a radius Ro = Ro(n) ≥ 1
such that for every T ∈ Rn−1(Rn+k) with ∂T = 0 and m(T ) = ωn, we find T ′ ∈
Rn−1(Rn+k) with ∂T ′ = 0, m(T ′) = ωn and sptT ′ ⊂ BRo satisfying

(6.1) d(T ) ≤ C̃
(
d(T ′) + D(T )

)
and D(T ′) ≤ C̃D(T ).

Proof. We start by assuming that D(T ) is sufficiently small, that is D(T ) ≤ µ where µ ≤
1
16 (2

1
n − 1) is to be chosen later. Next, we choose a mass minimizer Q(T ) ∈ Rn(Rn+k)

with boundary T . For t ∈ R we define the slices

〈Q(T ), t−〉 := ∂
(
Q(T )x{x1 < t}

)
− T x{x1 < t}

and
〈Q(T ), t+〉 := −∂

(
Q(T )x{x1 > t}

)
+ T x{x1 > t}.

We note that 〈Q(T ), t−〉 = 〈Q(T ), t+〉 for all but countably many values of t ∈ R which
are characterized by the fact that M(Q(T )x{x1 = t} + M(T x{x1 = t} > 0 (cf. [21,
28.6, 28.7], [13, 4.2.1, 4.3]). The common value will be denoted 〈Q(T ), t〉. First of all, we
observe that

(6.2) M
(
∂
(
Q(T )x{x1 < t}

))
≤M

(
T x{x1 < t}

)
+ M

(
〈Q(T ), t−〉

)
and

(6.3) M
(
∂
(
Q(T )x{x1 > t}

))
≤M

(
T x{x1 > t}

)
+ M

(
〈Q(T ), t+〉

)
hold for any t ∈ R. Next, we define the function g : R→ [0, 1] by

g(t) :=
M
(
Q(T )x{x1 < t}

)
ωn

.

We note that g is non-decreasing, differentiable for a.e. t ∈ R and continuous from the
left. We now set

a := inf{t ∈ R : g(t) > 0} and b := sup{t ∈ R : g(t) < 1}
such that −∞ ≤ a ≤ b ≤ ∞ and 0 < g(t) < 1 for any t ∈ (a, b). In case that a > −∞
this means that g(a) = 0, while for a = −∞ we have g(t) ↓ 0 as t → −∞. The same
holds for the right end point b, that is g(b) = 1 when b <∞ and g(t)→ 1 as t→∞ when
b =∞. Moreover, we define

N :=
{
t ∈ [a, b] : M(Q(T )x{x1 = t})+M(T x{x1 = t}) > 0 or g′(t) does not exist

}
.

The preceding arguments show thatN is a set of measure zero, i.e. L1(N) = 0. Moreover,
by [21, 28.9] we have

(6.4) M
(
〈Q(T ), t〉

)
≤ ωng′(t) for any t ∈ [a, b] \N .
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¿From the definition of g we infer for any t ∈ (a, b) that

M
(
g(t)−

1
n

(
Q(T )x{x1 < t}

))
= g(t)−1M

(
Q(T )x{x1 < t}

)
= ωn = M([[D1]])

which by the isoperimetric inequality from Theorem 3.4 implies that

nωn ≤M
(
∂
[
g(t)−

1
n

(
Q(T )x{x1 < t}

)])
= g(t)−

n−1
n M

(
∂[Q(T )x{x1 < t}]

)
.

Here and in the following we write for simplicity λS instead of (µλ)#S, where µλ(x) =
λx denotes the homothety. Joining this with (6.2) and assuming that t ∈ (a, b) \N we find
that

nωng(t)1− 1
n ≤M

(
∂[Q(T )x{x1 < t}]

)
≤M

(
T x{x1 < t}

)
+ M

(
〈Q(T ), t〉

)
.(6.5)

Our next aim is to infer a similar estimate from below for M(T x{x1 > t}) instead of
M(T x{x1 < t}). ¿From the definition of g and the fact that the mass is additive on Borel
sets we infer for any t ∈ (a, b) \N that

M
(

(1− g(t))−
1
n

(
Q(T )x{x1 > t}

))
= (1− g(t))−1M

(
Q(T )x{x1 > t}

)
= (1− g(t))−1

(
M
(
Q(T )

)
−M

(
Q(T )x{x1 ≤ t}

))
= (1− g(t))−1

(
ωn −M

(
Q(T )x{x1 < t}

)
−M

(
Q(T )x{x1 = t}

))
= (1− g(t))−1

(
ωn −M

(
Q(T )x{x1 < t}

))
= (1− g(t))−1

(
ωn − ωng(t)

)
= ωn = M([[D1]]).

The isoperimetric inequality from Theorem 3.4 therefore ensures that

nωn ≤M
(
∂
[
(1−g(t))−

1
n

(
Q(T )x{x1 > t}

)])
= (1−g(t))−

n−1
n M

(
∂[Q(T )x{x1 > t}]

)
which together with (6.3) yields for any t ∈ (a, b) \N that

nωn(1− g(t))1− 1
n ≤M

(
∂[Q(T )x{x1 > t}]

)
≤M

(
T x{x1 > t}

)
+ M

(
〈Q(T ), t〉

)
.(6.6)

Adding the inequalities (6.5) and (6.6) and taking into account that M(T x{x1 = t}) = 0
for t ∈ (a, b) \N we find that

nωn

(
g(t)1− 1

n + (1− g(t))1− 1
n

)
≤M

(
T x{x1 < t}

)
+ M

(
T x{x1 > t}

)
+ 2M

(
〈Q(T ), t〉

)
= M(T ) + 2M

(
〈Q(T ), t〉

)
.

Recalling the definition of D(T ), i.e. the fact that M(T ) = nωn(1+D(T )) we can rewrite
the preceding inequality as follows:

M
(
〈Q(T ), t〉

)
≥ 1

2nωn
(
ψ(g(t))−D(T )

)
for any t ∈ (a, b) \N ,(6.7)

where the function ψ : [0, 1]→ [0, 2
1
n − 1] is defined by

ψ(t) := t1−
1
n + (1− t)1− 1

n − 1.

We note that ψ(0) = ψ(1) = 0, that ψ(1/2) = 2
1
n − 1 is the maximum, and that ψ is

concave, so that

ψ(t) ≥ 2
(
2

1
n − 1

)
t for any t ∈ [0, 1

2 ].(6.8)

Next, we define δo := 2D(T ) and set

t1 := sup{t ∈ [a, b] : ψ(g(t)) ≤ δo, g(t) ≤ 1/2}
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and

t2 := inf{t ∈ [a, b] : ψ(g(t)) ≤ δo, g(t) ≥ 1/2}.

We first note that t1 is well defined since g(a) = ψ(g(a)) = 0 if a > −∞ and
g(t), ψ(g(t)) ↓ 0 as t ↓ −∞ when a = −∞. Similarly, t2 is well defined since g(b) = 1
and ψ(g(b)) = 0 if b < ∞ and g(t) ↑ 1 and ψ(g(t)) ↓ 0 as t ↑ ∞ when b = ∞.
¿From the choice of t1 and t2 and the left continuity of g we infer that ψ(g(t1)) ≤ δo and
ψ(g(t2 +1)) ≤ δo which together with (6.8) and the fact that (2

1
n −1)−1 ≤ n/ log 2 ≤ 2n

implies that

g(t1) ≤ δo

2(2
1
n − 1)

≤ nδo and 1− g(t2 + 1) ≤ δo

2(2
1
n − 1)

≤ nδo.(6.9)

The choice of t1 and t2 also implies that

ψ(g(t)) ≥ δo for any t ∈ (t1, t2).

By (6.7) and the definition of δo we therefore have for any t ∈ (t1, t2) \N that

M
(
〈Q(T ), t〉

)
≥ 1

2nωn
(
ψ(g(t))−D(T )

)
= 1

4nωnψ(g(t)) + 1
4nωn

(
ψ(g(t))− 2D(T )

)
≥ 1

4nωnψ(g(t)) + 1
4nωn

(
δo − 2D(T )

)
= 1

4nωnψ(g(t)).(6.10)

We now define

H(t) :=
∫ t

0

ds

ψ(s)
=
∫ t

0

ds

s1− 1
n + (1− s)1− 1

n − 1
for t ∈ [0, 1].

Note that H is C1((0, 1)) ∩ C0([0, 1]) and

H(1) =
∫ 1

0

ds

ψ(s)
=: α(n) ∈ (0,∞).

¿From the definition of H , (6.4) and (6.10) we infer that

2
d

dt
H(g(t)) =

2g′(t)
ψ(g(t))

≥ n

2
≥ 1 for any t ∈ (t1, t2) \N

which after integration over (t1, t2) implies

t2 − t1 ≤ 2
(
H(g(t2))−H(g(t1))

)
= 2

∫ g(t2)

g(t1)

ds

ψ(s)
≤ 2α(n).(6.11)

Next, we use [21, 28.10], the definition of the function g, (6.8) and the fact that ψ(g(t1)) ≤
δo = 2D(T ) to compute∫ ∗t1

t1−8n

M
(
〈Q(T ), t±〉

)
dt ≤M

(
Q(T )x{x1 < t1}

)
= ωng(t1)

≤ ωn

2(2
1
n − 1)

ψ(g(t1)) ≤ ωn

2
1
n − 1

D(T ) ≤ 2nωnD(T ).

Denoting by

S± :=
{
t ∈ [t1 − 8n, t1] : M

(
〈Q(T ), t±〉

)
> ωnD(T )

}
the sets of those t in which the slices 〈Q(T ), t±〉 have mass at least ωnD(T ), we infer
from the preceding inequality that

ωnD(T )|S±| ≤
∫ ∗t1
t1−8n

M
(
〈Q(T ), t±〉

)
dt ≤ 2nωnD(T ),
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which means that |S±| ≤ 2n and therefore

|[t1 − 8n, t1] \ (S+ ∪ S− ∪N)| ≥ 4n.

Therefore, we can find τ1 ∈ [t1 − 8n, t1] \ (S+ ∪ S− ∪ N). By the definition of S± this
means that we have

M
(
〈Q(T ), τ1〉

)
≤ ωnD(T ).(6.12)

Here we used that 〈Q(T ), τ1〉 = 〈Q(T ), (τ1)+〉 = 〈Q(T ), (τ1)−〉 by the choice of τ1. A
similar reasoning as before, i.e. using [21, 28.10], the definition of g, (6.8), the symmetry
of ψ and the fact that ψ(g(t2 + 1)) ≤ δo = 2D(T ), we can estimate∫ ∗t2+8n

t2+1

M
(
〈Q(T ), t±〉

)
dt ≤M

(
Q(T )x{x1 > t2 + 1}

)
= M

(
Q(T )

)
−M

(
Q(T )x{x1 < t2 + 1}

)
−M

(
Q(T )x{x1 = t2 + 1}

)
≤M

(
Q(T )

)
−M

(
Q(T )x{x1 < t2 + 1}

)
= ωn(1− g(t2 + 1)) ≤ ωn

2(2
1
n − 1)

ψ(g(t2 + 1)) ≤ 2nωnD(T ).

The arguments from above now yield the existence of τ2 ∈ [t2 + 1, t2 + 8n] \N such that

M
(
〈Q(T ), τ2〉

)
≤ ωnD(T ).(6.13)

At this stage we define Q̃ := Q(T )x{τ1 ≤ x1 ≤ τ2}. ¿From (6.11) and the definition of
τ1 and τ2 we have the bound τ2− τ1 ≤ 2α+ 16n. Moreover, from the definitions of g and
δo and (6.9) we obtain

M(Q̃) = M
(
Q(T )

)
−M

(
Q(T )x{x1 < τ1}

)
−M

(
Q(T )x{x1 > τ2}

)
= ωn

(
1− g(τ1)

)
− ωn

(
1− g(τ2)

)
+ M

(
Q(T )x{x1 = τ2}

)
= ωn

(
1− g(τ1)

)
− ωn

(
1− g(τ2)

)
≥ ωn

(
1− g(t1)

)
− ωn

(
1− g(t2 + 1)

)
≥ ωn(1− 2nδo) = ωn

(
1− 4nD(T )

)
.

Next, we define T̃ := ∂Q̃. From the choices of τ1 and τ2 we infer that

M(T̃ ) ≤M
(
T x{τ1 < x1 < τ2}

)
+ M

(
〈Q(T ), τ1〉

)
+ M

(
〈Q(T ), τ2〉

)
≤M(T ) + 2ωnD(T ).(6.14)

We now define

T ′ := σT̃ where σ :=
( ωn

M(Q̃)

) 1
n ≤

(
1− 4nD(T )

)− 1
n ∈ [1, 2

1
n ].

Then, sptT ′ is contained in a strip [τ ′1, τ
′
2] × RN−1 of width τ ′2 − τ ′1 ≤ 2

1
n (2α + 16n).

Moreover, we have

M
(
Q(T ′)

)
= M

(
Q(σT̃ )

)
= M(σQ

(
T̃ )
)

= σnM
(
Q(T̃ )

)
= ωn.

At this stage it remains to prove (6.1). Recalling the definition of T ′, using (6.14) and the
fact that M(T ) = nωn(1 + D(T )) we get

M(T ′) = σn−1M(T̃ ) ≤ σn−1
(
M(T ) + nωnD(T )

)
= nωnσ

n−1
(
1 + 2D(T )

)
.
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At this point we use the definition of σ and the assumption D(T ) ≤ 1
16 (2

1
n − 1) ≤ 1

8n to
compute

σn−1
(
1 + 2D(T )

)
≤ 1 + 2D(T )

(1− 4nD(T ))
n−1
n

≤ 1 + 2D(T )
1− 4nD(T )

≤ 1 +
5nD(T )

1− 4nD(T )
≤ 1 + 10nD(T ).

Inserting this above yields

M(T ′) ≤ nωn
(
1 + 10nD(T )

)
which proves the second estimate in (6.1). Finally, the first assertion in (6.1) can
be achieved as follows: Using the bound m(T − T̃ ) ≤ M(Q(T ) − Q̃) (note that
∂(Q(T )− Q̃) = T − ∂Q̃ = T − T̃ ) together with (6.12), (6.13) and (6.9) we obtain

m(T − T̃ ) ≤M
(
Q(T )x{x1 < τ1}

)
+ M

(
Q(T )x{x1 > τ2}

)
= ωn

(
g(τ1) + 1− g(τ2)

)
≤ ωn

(
g(t1) + 1− g(t2 + 1)

)
≤ 2nωnδo = 4nωnD(T ).

We now let [[D1/σ]] be the disk with radius 1/σ in Rn+k which realizes d(T̃ ) up to an error
ε > 0, i.e. m(T̃ − ∂[[D1/σ]]) < d(T̃ ) + ε (recall that M(Q̃) = ωn/σ

n) and let [[D1]] be
the disk of radius 1 lying in the same n-dimensional plane as [[D1/σ]] and having the same
center. Then, we get

d(T ) ≤m(T − ∂[[D1]]) ≤m(T − T̃ ) + m(T̃ − ∂[[D1/σ]]) + m(∂[[D1/σ]]− ∂[[D1]])

≤ 4ωnD(T ) + d(T̃ ) + ε+ ωn(1− σ−n) ≤ d(T ′) + CD(T ).

In the last line we used d(T̃ ) = d(T ′) and

1− σ−n = 1− (1− 4nD(T )) = 4nD(T ).

This proves also the first inequality in (6.1). Starting from T ′ we repeat the same construc-
tion with respect to x2 provided that D(T ′) ≤ 10nD(T ) ≤ 10nµ ≤ 1

16 (2
1
n −1). Thus we

get a new current T ′′ ∈ Rn−1(Rn+k) still satisfying (6.1) with a new constant and with
sptT ′′ now contained in [τ ′1, τ

′
2]× [τ ′′1 , τ

′′
2 ]× Rn+k−2 with τ ′2 − τ ′1 and τ ′′2 − τ ′′1 bounded

by a universal constant. Thus, the assertion follows by repeating the argument with respect
to all the remaining coordinate directions and assuming µ sufficiently small.

Finally, if D(T ) > µ then the result is easily obtained by taking T ′ equal to a unit disk
with support in BRo . �

In the final proof of Theorem 2.1 we shall also need the following regularity theorem
which can be viewed as the higher codimension version of [23], see also [22].

Theorem 6.2 (Regularity). Suppose Sj ∈ Rn−1(Rn+k) is a sequence of closed rectifiable
(M, ω)-minimizing currents in Rn+k for a modulus ω(%) ≡ Cω% and with %o = 2/Cω .
Furthermore, suppose that ‖Sj‖ → ‖∂[[D]]‖ in the sense of Radon measures and that
sptSj → spt ∂[[D]] in the Kuratowski convergence as j → ∞ and that sptSj ⊂ BRo
for some Ro > 0. Then there exists jo ∈ N such that for any j ≥ jo there exist maps
uj ∈ C1, 12 (Sn−1) and vj ∈ C1, 12 (Sn−1,Rk) such that the Sj admit the spherical graph
representation

Sj = Xj#[[Sn−1]],

where the maps Xj : Sn−1 → Rn+k are defined for x ∈ Sn−1 by

Xj(x) := (1 + uj(x))(x, 0) + (0, vj(x)) ∈ Rn+k.
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Moreover, the representing maps uj , vj satisfy for any α ∈ (0, 1
2 ):

(6.15) lim
j→∞

(
‖uj‖C1,α(Sn−1) + ‖vj‖C1,α(Sn−1,Rk)

)
= 0.

Proof. The proof will be divided into several steps. Before starting with certain geometric
constructions we recall that the Kuratowski convergence of sptSj → Sn−1 × {0} and the
fact that sptSj ⊂ BRo ensure that for any ε ∈ (0, 1

2 ] the inclusion

sptSj b
{
z ∈ Rn+k : dist(z, Sn−1 × {0}) < ε

}
holds true for all but finitely many j ∈ N.

Step 1: Geometric simplifications. Points in Rn+k are denoted again by z = (x, y).
For a (relatively) open subset U ⊂ Sn−1 × {0} ⊂ Rn+k and 0 < s ≤ 1

2 we consider sets
of the form

NU (s) :=
⋃
z∈U

{
z + v ∈ Rn+k : |v| < s, v ⊥ Tz(Sn−1 × {0})

}
.

Then, NSn−1×{0}(s) is the tubular neighborhood of Sn−1 × {0} in Rn+k of width s on
which the nearest point retraction π : NSn−1×{0}(s) → Sn−1 × {0} is well defined. For
z ∈ Sn−1 × {0}, the vectors {z, en+1, . . . en+k} are an orthonormal basis of T⊥z (Sn−1 ×
{0}). Hence, for points z = (x, y) ∈ NSn−1×{0}(s) the nearest point retraction is given
by π(x, y) =

(
x
|x| , 0

)
. The normal component z⊥ of z has the form

z⊥ := z − π(z) = (x, y)−
(
x
|x| , 0

)
=
(
x
|x| (|x| − 1), y

)
.

Now, if ϕ : Sn−1 × {0} ⊃ U →W ⊂ Rn−1 is a local coordinate chart then

Φ(x, y) :=
(
ϕ(π(x, y)), |x| − 1, y

)
is a trivialization of NU (s). The image Φ(NU (s)) is the set W × B1+k

s (0). Denoting by
ψ : W → U the inverse of ϕ, the inverse Ψ := Φ−1 : W ×B1+k

s (0)→ NU (s) is

Ψ(ξ′, ξn, y) := Φ−1(ξ′, ξn, y) = (1 + ξn)ψ(ξ′) + (0, y),

whenever ξ′ ∈ W and (ξn, y) ∈ B1+k
s (0). We note that Ψ maps a fiber {ξ′} × B1+k

s (0)
with ξ′ ∈W isometrically onto ψ(ξ′) + {v ∈ T⊥ψ(ξ′)(S

n−1 × {0}) : |v| < s}.
Without loss of generality we assume that W ≡ Bn−1

% (0) ⊂ Rn−1 for some % ∈ (0, 1],
ψ(0) = en ∈ Rn+k and Dψ(0) = In−1. This can be achieved by a rotation in Rn+k

keeping {0} × Rk fixed and a particular choice of the coordinate chart ϕ, for example
by choosing ψ : Bn−1

% (0) → Rn+k as ψ(ξ′) := (ξ′,
√

1− |ξ′|2, 0). We first compute
the derivative of Ψ. With σ = (τ ′, τn, w) ∈ Rn−1 × R × Rk and z = (ξ′, ξn, y) with
ξ′ ∈ Bn−1

% (0) and (ξn, y) ∈ B1+k
s (0) we have

DΨ(z)σ = DΨ(ξ′, ξn, y)(τ ′, τn, w) = (1 + ξn)Dψ(ξ′)(τ ′, 0)︸ ︷︷ ︸
∈Tψ(ξ′)(S

n−1×{0})

+ψ(ξ′)(0, τn, 0) + (0, w)︸ ︷︷ ︸
∈T⊥

ψ(ξ′)(S
n−1×{0})

.

Therefore, taking into account that 0 < s ≤ 1
2 , we have

|DΨ(z)σ| ≤ (1 + s)|τ ′| sup
Bn−1
% (0)

‖Dψ‖+ |τn|+ |w|

≤ 4 sup
Bn−1
% (0)

‖Dψ‖|σ| = C(ψ) |σ|.

This allows us, whenever z = (ξ′, ξn, y), z̃ = (ξ̃′, ξ̃n, ỹ) ∈ Bn−1
% (0) × B1+k

s (0), to
estimate

|DΨ(z)σ −DΨ(z̃)σ|

≤
∣∣((1 + ξn)(Dψ(ξ′)−Dψ(ξ̃′)) + (ξn − ξ̃n)Dψ(ξ̃′)

)
τ ′
∣∣+
∣∣ψ(ξ′)− ψ(ξ̃′)

∣∣|τn|
≤ |1 + ξn|‖Dψ(ξ′)−Dψ(ξ̃′)‖|τ ′|+ ‖Dψ(ξ̃′)‖|ξn − ξ̃n||τ ′|+ |ψ(ξ′)− ψ(ξ̃′)||τn|
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≤ (1 + s) sup
Bn−1
% (0)

‖D2ψ‖|ξ′ − ξ̃′||τ ′|+ sup
Bn−1
% (0)

‖Dψ‖
(
|ξ̃n − ξ̃n||τ ′|+ |ξ′ − ξ̃′||τn|

)
≤
(

(1 + s) sup
Bn−1
% (0)

‖D2ψ‖+ sup
Bn−1
% (0)

‖Dψ‖
)(
|ξ′ − ξ̃′|+ |ξ̃n − ξ̃n|

)(
|τ ′|+ |τn|

)
≤ 4
(

sup
Bn−1
% (0)

‖D2ψ‖+ sup
Bn−1
% (0)

‖Dψ‖
)
|(ξ′, ξn)− (ξ̃′, ξ̃n)||(τ ′, τn)|

= C(ψ) |(ξ′, ξn)− (ξ̃′, ξ̃n)||(τ ′, τn)|.

The preceding estimate yields the Lipschitz continuity of DΨ, that is

‖DΨ(z)−DΨ(z̃)‖ ≤ C(ψ) |(ξ′, ξn)− (ξ̃′, ξ̃n)|,

whenever z = (ξ′, ξn, y), z̃ = (ξ̃′, ξ̃n, ỹ) ∈ Bn−1
% (0) × B1+k

s (0). A straightforward
computation now shows that also the map z ∈ Bn−1

% (0) × B1+k
s (0) 7→

∧
n−1DΨ(z) ∈

L(
∧
n−1 Rn+k,

∧
n−1 Rn+k) is Lipschitz continous, i.e. we have∥∥∥∧
n−1

DΨ(z)−
∧

n−1
DΨ(z̃)

∥∥∥ ≤ C(n, ψ) |(ξ′, ξn)− (ξ̃′, ξ̃n)|.(6.16)

Taking into account that Dψ(0) = In−1 where In−1 : Rn−1 → Rn+k denotes the em-
bedding of Rn−1 into Rn+k via the inclusion Rn−1 × {0} ⊂ Rn+k, we obtain that
DΨ(0) = In+k. Hence, from (6.16) we infer the following bounds:

1− C(n, ψ)(%+ s) ≤
∥∥∥∧

n−1
DΨ(z)

∥∥∥ ≤ 1 + C(n, ψ)(%+ s).(6.17)

Step 2: Estimates for the parametric integrand. We define a parametric integrand

F : Bn−1
% (0)×B1+k

s (0)×
∧

n−1
Rn+k → [0,∞)

by letting

F (z, ζ) :=
∣∣∣∧

n−1
DΨ(z)ζ

∣∣∣.
Then, apart from the fact that the constant in the bound from below is not equal to one,
(6.17) corresponds to the hypothesis [10, (1.1)]. Moreover, the assumption [10, (1.5)] with
the Lipschitz modulus κ(t) = Ct follows from estimate (6.16). The remaining hypothe-
ses [10, (1.2), (1.3), (1.6)] can be easily verified to hold. We omit the straightforward
computations and state only the corresponding estimates:∥∥D(2)F (z, ζ)

∥∥ ≤ C∥∥D2
(2)F (z, ζ)

∥∥ ≤ C

1− C(%+ s)
|ζ|−1

∥∥D(2)F (z, ζ)−D(2)F (z̃, ζ)
∥∥ ≤ C

1− C(%+ s)
|z − z̃|

for all z, z̃ ∈ Bn−1
% (0)×B1+k

s (0) and 0 6= ζ ∈
∧
n−1 Rn+k. Here the constant C depends

only on n and ψ. Finally, the quantitative continuity of ζ 7→ D2
(2)F (x, ζ) follows from the

fact that D2
(2)F (x, ζ) is continuous on

∧
n−1 Rn+k \ {0}. Therefore, we have∥∥D(2)F (z, ζ)−D(2)F (z, η)

∥∥ ≤ ν(|ζ − η|)

whenever ζ, η ∈
∧
n−1 Rn+k with |ζ| = 1 = |η|. Actually, a direct computation shows

that ν(t) = C t
1−C(%+s) .

Step 3: Reduction to (F, ω)-minimizing currents. Now, let s ∈ (0, 1
2 ]. From the

Kuratowski convergence sptSj → Sn−1 × {0} we conclude that the currents Sj have
compact support inNSn−1×{0}(s) for j ∈ N large enough. Since ∂(π#Sj) = π#(∂Sj) =
0, by the constancy theorem [13, 4.1.7] we find mj ∈ Z such that π#Sj = mj [[Sn−1 ×
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{0}]]. We claim that mj = 1. But this follows from the weak convergence Sj → [[Sn−1 ×
{0}]], because

[[Sn−1 × {0}]] = π#[[Sn−1 × {0}]] = lim
j→∞

π#Sj = lim
j→∞

mj [[Sn−1 × {0}]]

implies that mj = 1 for j large. Therefore, discarding finitely many indices j ∈ N if
necessary, we can assume that

π#Sj = [[Sn−1 × {0}]] and sptSj b NSn−1×{0}(s)

for all j ∈ N. This allows us to define a global excess functional by

E(Sj) := M(Sj)−M(π#Sj) = M(Sj)− nωn = nωnD(Sj).

Note that M(Sj)→ nωn as j →∞ since ‖Sj‖ → ‖[[Sn−1×{0}]]‖ in the sense of Radon
measures.

We now fix s, % ∈ (0, 1
2 ] small enough to have

C(n, ψ)(%+ s) ≤ 1
2 ,

where ψ : Bn−1
% (0) → Sn−1 × {0} is the local parametrization from the Step 2. ¿From

now on we omit in our notation the center 0 and write Bn−1
% × B1+k

s for short. We set
S′j := Sj xNψ(Bn−1

% )(s) and S′′j := Φ#S
′
j . Then S′′j ∈ Rn−1(Bn−1

% × B1+k
s ) and

S′j = Ψ#S
′′
j . We have

M(S′j) = M(Ψ#S
′′
j ) =

∫ ∣∣(DΨ)#
~S′′j
∣∣ d‖S′′j ‖ =:

∫
F (z, ~S′′j ) d‖S′′j ‖ =: F(S′′j ).

Here the associated elliptic integrand is defined by

F (z, ζ) :=
∣∣(DΨ(z))#ζ

∣∣ =
∣∣∣∧

n−1
DΨ(z)ζ

∣∣∣
whenever z ∈ Bn−1

% ×B1+k
s and ζ ∈

∧
n−1 Rn+k. Note that F is homogeneous of degree

one in the second variable. We now consider a compact set K which is contained in a
ball Bn+k

r (zo) ⊂ Bn−1
% ×B1+k

s . For the radius r we assume that the smallness condition
C(ψ)r ≤ 2/Cω holds true. Then, Ψ(Bn+k

r (zo)) is contained in a ball Bn+k
C(ψ)r(Ψ(zo)).

We now consider X ∈ Rn−1(Rn+k) with ∂X = 0 and sptX ⊂ K. By the (M, ω)
minimality of Sj (applied with the comparison current Ψ#X , the compact set Ψ(K) which
is contained in the ball Bn+k

C(ψ)r(Ψ(zo))) we obtain that

F(S′′j ) = M(S′j) ≤M(S′j + Ψ#X) + C(ψ)CωrM
(
S′j xΨ(K) + Ψ#X

)
= F(S′′j +X) + C(ψ)Cωr F(S′′j xK +X)

≤ F(S′′j +X) + 3
2C(ψ)CωrM(S′′j xK +X).(6.18)

In the last line we used the bound from above for the integrand F , i.e. the fact that
F (z, ζ) ≤ 3

2 . Note here, that we have chosen %, s small enough. Hence, S′′j is (F, ω)-
minimizing in Bn−1

% × B1+k
s for the modulus ω(r) := 3

2C(ψ)Cωr. Moreover, since
sptSj ⊂ NSn−1×{0}(s), we have spt ∂S′′j ⊂ ∂Bn−1

% × B1+k
s . Actually, we can assume

that sptS′′j ⊂ Bn−1
% ×B1+k

µs , spt ∂S′′j ⊂ ∂Bn−1
% ×B1+k

µs for a given fixed 0 < µ ≤ 1 which
is still at our disposal, and moreover that S′′j is (F, ω)-minimizing in C% := Bn−1

% ×R1+k.
For this we only need to discard finitely many j from our sequence. At this stage we keep
in mind that ‖S′′j ‖ → ‖[[Bn−1

% × {0}]]‖ in the sense of Radon measures on C% and in the
sense of Kuratowski convergence.

Step 4: Regularity. In this step we want to apply the ε-regularity theorem from [10] to
the currents S′′j for large j ∈ N. Therefore we need to check that hypothesis (1.18) – (1.20)
of [10] hold true. We first note that S′′j ∈ Rn−1(Rn+k) and that S′′j = S′′j xC%. Moreover,
we have ∂S′′j xC% = 0. We denote by p : Rn+k → Rn−1 and q : Rn+k → R1+k the
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orthogonal projections of Rn+k on Rn−1, respectively on R1+k, i.e. for z = (ξ, η) ∈
Rn−1 × R1+k we have p(z) = ξ and q(z) = η. Then, p#(S′′j ) ∈ Rn−1(Rn−1) has no
boundary in Bn−1

% . By the constancy theorem [13, 4.1.7] there exist mj ∈ Z such that
p#(S′′j ) = mj [[Bn−1

% ]]. ¿From the weak convergence of S′′j → [[Bn−1
% × {0}]] we easily

see that

[[Bn−1
% ]] = p#([[Bn−1

% × {0}]]) = lim
j→∞

p#S
′′
j = lim

j→∞
mj [[Bn−1

% ]],

and this implies that mj = 1 for large j and therefore p#S
′′
j = [[Bn−1

% ]]. Hence (1.18)
– (1.20) of [10] are fulfilled except from the fact that we can at this stage not ensure
that 0 ∈ sptS′′j . At this point we note that the weak convergence in the sense of Radon
measures implies

E(S′′j , %) := %1−n[M(
S′′j xC%

)
−M

(
p#

(
S′′j xC%

))]
= %1−n[M(

S′′j xC%
)
−M

(
[[Bn−1

% × {0}]]
)]
→ 0,(6.19)

as j → ∞. Next, we claim that there exist zj = (0, ηj) ∈ sptS′′j with |ηj | → 0. Indeed,
if such ηj would not exist, then 0 6∈ p#S

′′
j and ηj → 0 follows from the Kuratowski

convergence of sptS′′j → Bn−1
% × {0}. Instead of S′′j we now consider Tj := S′′j − zj =

τ−1
zj#

S′′j , where τ zj (z) := z + zj denotes the translation in Rn+k. For the projection
of Tj onto Rn−1 we obtain p#Tj = [[Bn−1

% ]]. Moreover, we have 0 ∈ sptTj and also
Tj = Tj xC%. Finally, we obtain

∂Tj xC% = ∂
(
τ−1
zj#

S′′j
)
xC% = τ−1

zj#
∂S′′j xC% = τ−1

zj#

(
∂S′′j xC%

)
= 0.

This proves that (1.18) – (1.20) of [10] are fulfilled by the currents Tj and it remains to
show that they are also (F̃j , ω)-minimizing inC% for an elliptic integrand F̃j and a modulus
ω. For z ∈ Bn−1

% ×B1+k
(1−µ)s and and ζ ∈

∧
n−1 Rn+k we define the integrand F̃j by

F̃j(z, ζ) := F (z + zj , ζ)

and the corresponding parametric integral F̃j by

F̃j(T ) :=
∫
F̃j(z, ~T (z)) d‖T‖

whenever T ∈ Rn−1

(
Bn−1
% ×B1+k

(1−µ)s

)
. Since |ξ| ≤ % and |η| ≤ µs for any z = (ξ, η) ∈

sptS′′j we infer that |ξ| ≤ % and |η| ≤ 2µs for any z = (ξ, η) ∈ sptTj . In order to
have sptTj ⊂ clos

(
Bn−1
% × B1+k

(1−µ)s

)
we need that 0 < µ < 1

3 , which we will assume

from now on. At this stage it is straightforward to check that Tj is (F̃j , ω)-minimizing in
Bn−1
% ×B1+k

(1−µ)s. To be more precise: Let K be a compact set which is contained in a ball

Bn+k
r (zo) ⊂ Bn−1

% ×B1+k
(1−µ)s and X ∈ Rn−1(Rn+k) with ∂X = 0 and sptX ⊂ K and

C(ψ)r ≤ 2/Cω . Then, from (6.18) we deduce that

F̃j(Tj) ≤ F̃j(Tj +X) + 3
2C(ψ)CωrM(Tj xK +X) .

Hence, the currents Tj are (F̃j , ω)-minimizing inBn−1
% ×Bn−1

(1−µ)s for the modulus ω(r) :=
3
2C(ψ)Cωr. The elliptic integrands F̃j fulfill the assumptions (1.1) – (1.6) of [10] with
(C(n, ψ), C(n, ψ)t, C(n, k, ψ)) instead of (Λ, κ, ν) and with the modulus ω(r). We note
that ω(r) = C(ψ,Cω)r. In particular the functions K(r) and Ω(r) introduced in [10,
(1.15)] are given by K(r) = C(n, ψ)r and Ω(r) = C(ψ,Cω)r. Finally, (6.19) yields also
that

E(Tj , %) := %1−n[M(
Tj xC%

)
−M

(
p#

(
Tj xC%

))]
→ 0 as j →∞.
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It remains to check that F̃j is an elliptic integrand in the sense that [10, (1.12)] holds true.
This means that there exists a positive constant C such that the inequality

(F̃j)zo(T )− (F̃j)zo(S) ≥ C
[
M(T )−M(S)

]
holds true whenever S, T ∈ Rn−1(Rn+k) with the same boundary ∂S = ∂T and S
is represented by an Hn−1 measurable subset of some (n − 1)-dimensional subspace in
Rn+k with constant orientation (n− 1)-vector field and Hn−1 summable positive integer
valued multiplicity. ¿From [13, 5.1.3] we infer that this property is implied in case that〈
D2

(2)F (zo, ζ)η, η
〉

=
1

|
∧
n−1DΨ(z)ζ |

[∣∣∧
n−1

DΨ(z)η
∣∣2 − 〈∧n−1DΨ(z)ζ, η〉2

|
∧
n−1DΨ(z)ζ |2

]

≥ C

|ζ|

[
|η|2 − 〈ζ, η 〉

2

|ζ|2

]
holds true for some constant C > 0. Again, from [13, 5.1.3] we see that any choice of 0 <
C < ‖L−1‖−4‖L‖3 suffices, where L :=

∧
n−1DΨ(z) :

∧
n−1 Rn+k →

∧
n−1 Rn+k.

Now, (6.17) yields that C can be chosen in dependence of n and ψ. Altogether we have
shown that the hypotheses of the interior ε-regularity theorem [10, Theorem 6.1] hold true
in the present situation. Therefore from [10, Theorem 6.1] we infer the existence of a
C1-map gj : Bn−1

%/34 → R1+k such that

Tj x
(
Bn−1
%/34 × R1+k

)
= [[graph(gj)]].

Moreover, the derivative of gj has the modulus of continuity

|Dgj(ξ)−Dgj(ξ′)| ≤ C
[
E(Tj , %) + 1

] 1
2
√
|x− x′| ≤ C

√
|x− x′|

whenever ξ, ξ′ ∈ Bn−1
%/34, where C = C(n, k, ψ). Here we used in the last step the fact

that E(Tj , %) → 0 as j → ∞. Therefore, also the original currents S′′j admit local graph
representations. In fact, we have

S′′j xBn−1
%/34 × R1+k = [[ηj + graph(gj)]].

Note that ηj → 0 as j → ∞. Thus, we obtained a uniform C1, 12 bound for the local
graph representations of S′′j . Therefore, by the Arzelà & Ascoli theorem a subsequence
of (ηj + gj)j�1 converges in C1,α to a C1,α map g for any α ∈ (0, 1

2 ). But from the
Kuratowski convergence we must have g ≡ 0. Therefore, the subsequence converges to
0 in C1,α, and since the limit does not depend on the subsequence (as seen before it is
uniquely identified as g ≡ 0) the whole sequence converges in C1,α to 0. Now, from the
local graph representation of S′′j the spherical graph representation onNψ(Bn−1

%/34)(s) of the
original sequence Sj follows. Indeed

Sj xNψ(Bn−1
%/34)(s) = Ψ#[[ηj + graph(gj)]].

Since finitely many sets of the form Nψ(Bn−1
%/34)(s) cover the tubular neighborhood

NSn−1×{0}(s) we obtain the desired spherical graph representation. �

Proof of Theorem 2.1. The proof is divided into several steps. First, since the asymmetry
index d(T ) and the isoperimetric gap D(T ) are scaling invariant, we may assume without
loss of generality that m(T ) = ωn. In this case the quantitative isoperimetric inequality
(2.1) reduces to

D(T ) ≡ M(T )− nωn
nωn

≥ C d2
1(T ).

Step 1: Reduction to currents with uniform bounded support and small isoperi-
metric gap. Here, we establish that it is sufficient to prove the quantitative isoperimet-
ric inequality in the following form: There exists a constant δo > 0 such that whenever
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T ∈ Rn−1(Rn+k) fulfills ∂T = 0, m(T ) = ωn, sptT ⊂ BRo and D(T ) ≤ δo then the
quantitative isoperimetric inequality

(6.20) D(T ) ≥ C1 d1(T )2

holds true with a universal constant C1 = C1(n, k). Here, Ro = Ro(n) denotes the
radius from Lemma 6.1. Assume for the moment that such δo > 0 exists. Then, for T ∈
Rn−1(Rn+k) satisfying ∂T = 0, m(T ) = ωn and D(T ) > δo/C̃, where C̃ = C̃(n, k) is
the constant from Lemma 6.1, we have

d2
1(T ) ≤ 4ω2

n <
4ω2

nC̃

δo
D(T ),

i.e. the quantitative isoperimetric inequality with the constant 4ω2
nC̃/δo. Here, we used

the fact that d1(T ) ≤m(T )+ωn = 2ωn. Now, if D(T ) ≤ δo/C̃ then Lemma 6.1 ensures
the existence of T ′ ∈ Rn−1(Rn+k) satisfying ∂T ′ = 0, m(T ′) = ωn and sptT ′ ⊂ BRo
such that d1(T ) ≤ C̃(d1(T ′) + D(T )) and D(T ′) ≤ C̃D(T ) ≤ δo hold true. Therefore,
we can apply (6.20) to T ′ in order to have

d1(T )2 ≤ 2C̃2
(
d1(T ′)2 + D(T )2

)
≤ 2C̃2

(
1
C1

D(T ′) + δoeC D(T )
)
≤ 2C̃2

( eC
C1

+ δoeC )D(T ),

and this yields the quantitative isoperimetric inequality with the constant [2C̃2( eC
C1

+
δoeC )]−1.

Step 2: The contradiction assumption. In the following we argue by contradiction
assuming (6.20) to be false. Then, there exists a sequence of (n− 1)-dimensional currents
Tj ∈ Rn−1(Rn+k) with ∂Tj = 0, m(Tj) = ωn and sptTj ⊂ BRo satisfying

δj := D(Tj) ≡
M(Tj)− nωn

nωn
→ 0 as j →∞,

and

(6.21) δj < C1 d2
1(Tj).

Step 3: Convergence to a flat n-dimensional unit disk. We choose mass minimizers
Q(Tj) ∈ Rn(Rn+k) with ∂Q(Tj) = Tj such that ωn = m(Tj) = M(Q(Tj)). We note
that since sptTj ⊂ BRo these mass minimizers can be chosen to have also support in
BRo , i.e. sptQ(Tj) ⊂ BRo . Since M(Q(Tj)) + M(Tj) = ωn + M(Tj) → (1 + n)ωn
in the limit j → ∞, we have a uniform bound supj∈N(M(Q(Tj)) + M(Tj)) < ∞ and
therefore we can apply the compactness Theorem 3.2 to infer the existence of a currentQ ∈
Rn(Rn+k) with support in BRo and a (not relabeled) subsequence such that Q(Tj) → Q
with respect to the Floc-topology. In particular, we have FB2Ro

(Q(Tj) − Q) → 0 and
FB2Ro

(Tj − ∂Q) → 0 in the limit j → ∞, because sptTj , sptQ(Tj) ⊂ BRo for any
j ∈ N.

Next, we claim the the limit Q is an n-dimensional flat unit disk in Rn+k. Applying
Lemma 3.3 we find that

m(Tj − ∂Q) ≤
[
c(n) M(Tj − ∂Q) + 1

]
FB2Ro

(Tj − ∂Q)→ 0

in the limit j → ∞. Note that this implies m(Tj) → m(∂Q) as j → ∞. Using also
the lower semicontinuity of the mass with respect to weak convergence, i.e. the fact that
M(Q) ≤ lim infj→∞M(Q(Tj)) = ωn, we obtain

ωn = lim
j→∞

M(Q(Tj)) = lim
j→∞

m(Tj) = m(∂Q) ≤M(Q) ≤ ωn.

Hence M(Q) = ωn. Therefore, by the optimal isoperimetric inequality from Theorem 3.4
we must have M(∂Q) ≥ nωn. On the other hand, by the weak convergence Tj → ∂Q the
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lower semicontinuity of the mass together with the convergence M(Tj)→ nωn implies

M(∂Q) ≤ lim inf
j→∞

M(Tj) ≤ nωn.

Therefore, we have M(∂Q) = nωn and M(Q) = ωn which implies that in the isoperi-
metric inequality we have equality, so that Q = [[D]] for some n-dimensional flat unit disk
[[D]] ⊂ Rn+k. Hence, we know that Q(Tj) → [[D]] and Tj → ∂[[D]] with respect to the
Floc-topology and also with respect to the weak topology. This implies in particular that
d1(Tj)→ 0 when j →∞.

Step 4: Penalization. Let Λ > 2n. For j ∈ N we define penalized variational function-
als Fj : Rn−1(Rn+k)→ [0,∞) by

Fj(T ) := M(T ) + C1|d1(T )− d1(Tj)|+ Λ|m(T )− ωn|.

Here, C1 > 0 is fixed and will be chosen later on in a universal way in dependence on
n and k. ¿From Lemma 5.1 we infer the existence of Sj ∈ Rn−1(Rn+k) with support
sptSj ⊂ BRo minimizing the functional Fj amongst all closed T ∈ Rn−1(Rn+k) sat-
isfying sptT ⊂ BRo . By the convex hull property we can choose mass minimizing cur-
rents Q(Sj) ∈ Rn(Rn+k) with boundary ∂Q(Sj) = Sj and support in BRo . Note that
m(Sj) = M(Q(Sj)). Since Sj is Fj-minimizing we have

Fj(Sj) ≤ Fj(Tj) = M(Tj).

On the other hand, the following bound from below holds:

Fj(Sj) ≥M(Sj) + Λ(m(Sj)− ωn).

The two preceding estimates imply the following mass bound

M(Sj) + m(Sj) ≤M(Sj) + Λm(Sj) ≤ Fj(Sj) + Λωn ≤M(Tj) + Λωn,

yielding a uniform mass bound for the sequences (Sj)j∈N and (Q(Sj))j∈N. ¿From The-
orem 3.2 we infer the existence of a mass minimizing current Q∞ ∈ Rn(Rn+k) (mass
minimizing with respect to its own boundary ∂Q∞) such that (up to a subsequence)
Q(Sj) → Q∞ with respect to the Floc-topology. We also have ∂Q(Sj) = Sj → ∂Q∞ in
the Floc-topology (and therefore also in the sense of weak convergence of currents). Next,
we define the functional F∞ : Rn−1(Rn+k)→ [0,∞) by

F∞(T ) := M(T ) + Λ|m(T )− ωn|.

¿From Lemma 5.8 we infer that the boundary ∂[[D]] of a flat n-dimensional unit disk with
support in BRo minimizes F∞. Using the minimality of Sj and ∂[[D]] and the definition
of δj we obtain

Fj(Sj) ≤ Fj(Tj) = M(Tj) = nωn(1 + δj) = M(∂[[D]]) + nωnδj

= F∞(∂[[D]]) + nωnδj ≤ F∞(Sj) + nωnδj .

By the definitions of Fj and F∞ and (6.21) the preceding inequality can be rewritten in
the form

(6.22) C1|d1(Sj)− d1(Tj)| ≤ nωnδj < nωnC1 d2
1(Tj).

Now, since d1(Tj) → 0 as j → ∞ we also have d1(Sj) → 0 as j → ∞. Therefore, by
the definition of d1 for any j ∈ N we can choose a flat n-dimensional unit disk [[Dj ]] such
that m(Sj − ∂[[Dj ]]) < d1(Sj) + 1

j . Therefore, Sj − ∂[[Dj ]] → 0 as j → ∞ in the flat
metric (and also weakly). Now, since Sj → ∂Q∞ we also have ∂[[Dj ]] → ∂Q∞. But this
implies [[Dj ]]→ [[D]] for some flat n-dimensional unit disk with support in BRo ; the latter
holds because sptQ∞ ⊂ BRo . Therefore we have ∂Q∞ = ∂[[D]]. Since Q∞ is mass
minimizing subject to the boundary ∂[[D]] we have Q∞ = [[D]]. Here we use the convex
hull property (cf. [21, Remark 34.2 (2)] and the constancy theorem [13, 4.1.7]). Thus we
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have shown that Q(Sj) → [[D]] as j → ∞. Using again the minimality of Sj and (6.21)
we further get

M(Sj) + Λ|m(Sj)− ωn| ≤ Fj(Sj) ≤ Fj(Tj) = M(Tj)

= nωn(1 + δj) < nωn
(
1 + C1 d2

1(Tj)
)
.(6.23)

Step 5: λ-mass minimality and almost minimality of Sj . By Lemma 5.3 we know
that the currents Sj are λ-minimizing in Rn+k with λ := C1 + Λ, that is for any P ∈
Rn(Rn+k) it holds

M(Sj) ≤M(Sj + ∂P ) + λM(P ).
Moreover, they are (M, ω)-minimizing for the modulus ω(%) := 4λ% and with %o =
1/(2λ), in the sense that there holds

M(Sj) ≤M(Sj +X) + 4λ%M(Sj xK +X)

whenever X ∈ Rn−1(Rn+k) with ∂X = 0 and support contained in a compact set K
which is contained in a ball of radius % ≤ 1/(2λ). Recalling the uniform mass bound
supj∈N M(Sj) < ∞ and the convergence Sj → ∂[[D]] in the Floc-topology we can con-
clude by Lemma 5.5 that ‖Sj‖ → ‖∂[[D]]‖ in the sense of Radon measures and, moreover
by Lemma 5.6 that sptSj → spt ∂[[D]] in the Kuratowski convergence. Moreover, for the
mass minimizersQ(Sj) we can conclude (by the same arguments) that ‖Q(Sj)‖ → ‖[[D]]‖
in the sense of Radon measures.

Step 6: Adjusting the mass constraint by rescaling. Here, we rescale Sj in order to
have for the rescaled currents S′j the mass constraint m(S′j) = ωn. We set

S′j := λjSj where λj :=
(

ωn
m(Sj)

) 1
n

such that m(S′j) = M(Q(S′j)) = λnjm(Sj) = ωn. Here, Q(S′j) is the mass minimizing
current obtained by scaling the mass minimizing current Q(Sj) by λj , that is Q(S′j) =
Q(λjSj) := λjQ(Sj). From [11, Chapter 1.9, Theorem 1] and the weak convergence of
Radon measures ‖Q(Sj)‖ → ‖[[D]]‖ we infer that m(Sj) = M(Q(Sj)) → ωn. Using
this and d1(Tj) → 0 in (6.23) we see that lim supj→∞M(Sj) ≤ nωn. Combining this
with nωn = M(∂[[D]]) and the lower semicontinuity of the mass with respect to weak
convergence (note that Sj → ∂[[D]]) we obtain that

lim
j→∞

M(Sj) = nωn.

Since supj∈N M(Sj) < ∞ and λj → 1 the rescaled currents S′j also converge to ∂[[D]]
in the Floc-topology, weakly as currents and in the Kuratowski convergence. Further,
‖S′j‖ → ‖∂[[D]]‖ in the sense of Radon measures. Finally, since λj ∈ [ 1

2 , 2] (for j large
enough) the rescaled currents S′j are (M, ω)-minimizing in the sense that

M(S′j) ≤M(S′j +X) + 8λ%M(S′j xK +X)(6.24)

holds true for anyX ∈ Rn−1(Rn+k) with ∂X = 0 and support contained in a compact set
K ⊂ B%(xo) where % ∈ (0, 1/(4λ)]. Since M(Sj)/m(Sj) → n as j → ∞ and Λ > 2n
we may assume for j large enough that M(Sj) < 1

2Λm(Sj). Therefore, we have

|M(S′j)−M(Sj)| = |λn−1
j − 1|M(Sj) ≤ 1

2Λ|λn−1
j − 1|m(Sj)

≤ 1
2Λ|λnj − 1|m(Sj) = 1

2Λ|ωn −m(Sj)|.

Note that from (6.22) it follows for j large d1(Tj) ≤ 2d1(Sj). Therefore, the previous
inequality, together with (6.23), yields

M(S′j)− nωn ≤M(Sj) + 1
2Λ|m(Sj)− ωn| − nωn

≤ nωnC1 d2
1(Tj)− 1

2Λ|m(Sj)− ωn|
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≤ 4nωnC1 d2
1(Sj)− 1

2Λ|m(Sj)− ωn|.(6.25)

For j ∈ N we now define the homotopy h : [0, 1] × Rn+k → Rn+k by h(s, x) := (1 −
s)x + sλjx. Then, h(0, ·) = id and h(1, ·) = ηλj , where ηλj (x) := λjx. Therefore, by
the homotopy formula we have

∂h#

(
[[0, 1]]× Sj

)
= h#∂

(
[[0, 1]]× Sj

)
= h#

(
{1} × Sj − {0} × Sj − [[0, 1]]× ∂Sj

)
= h#

(
{1} × Sj − {0} × Sj

)
= (ηλj )#Sj − id# Sj = S′j − Sj .

and therefore by [21, 26.23], the facts that sptSj ⊂ BRo and λj → 1 (especially that
λj ≤ 2 for j large enough) and M(Sj) < 1

2Λm(Sj) we obtain

m(S′j − Sj) ≤M
(
h#([[0, 1]]× Sj)

)
≤ sup
x∈sptSj

|x− λjx|(1 + λj)n−1M(Sj)

≤ 3n−1Ro|λj − 1|M(Sj) ≤ 1
23n−1ΛRo|λnj − 1|m(Sj)

= 1
23n−1ΛRo |m(Sj)− ωn|.

To proceed further we denote by [[Dj ]] a flat n-dimensional unit disk realizing d1(S′j) up
to an error ε > 0, i.e. m(S′j − ∂[[Dj ]]) < d1(S′j) + ε. Moreover, since m(Sj) → ωn
we may assume that |m(Sj) − ωn| ≤ (2 · 32n−1nωnC1ΛR2

o)
−1 for j large enough. We

therefore obtain

d2
1(Sj) ≤m2(Sj − ∂[[Dj ]]) ≤

(
m(Sj − S′j) + m(S′j − ∂[[Dj ]])

)2
<
(
m(S′j − Sj) + d1(S′j) + ε

)2 ≤ 3m2(S′j − Sj) + 3d2
1(S′j) + 3ε2

≤ 1
432n−1Λ2R2

o|m(Sj)− ωn|2 + 3d2
1(S′j) + 3ε2

≤ Λ
8nωnC1

|m(Sj)− ωn|+ 3d2
1(S′j) + 3ε2.

Since ε > 0 can be chosen arbitrarily small we can pass to the limit ε ↓ 0 and obtain

d2
1(Sj) ≤ 3d2

1(S′j) + Λ
8nωnC1

|m(Sj)− ωn|,
whenever j is large enough. Using this to estimate to bound the right-hand side in (6.25)
from above we find that

M(S′j)− nωn ≤ 12nωnC1 d2
1(S′j).(6.26)

Step 7: Adjusting the barycenter condition. Here we establish that we can assume
without loss of generality that the barycenter of S′j is the origin in Rn+k, i.e.

bar(S′j) :=
1

M(S′j)

∫
z d‖S′j‖ = 0

holds true for all j ∈ N. First of all the barycenter of S′j is well defined since sptS′j ⊂
BRo . Moreover, since ‖S′j‖ → ‖∂[[D]]‖ = Hn−1x(Sn−1 × {0}) as j → ∞ in the sense
of Radon measures we have∫

z d‖S′j‖ →
∫
z dHn−1 = 0 and M(S′j)→ nωn

in the limit j → ∞, and this implies bar(S′j) → 0. Therefore we can replace S′j by
S′′j := S′j−bar(S′j). The new sequence now fulfills the barycenter condition bar(S′′j ) = 0
and also ‖S′′j ‖ → ‖∂[[D]]‖ = Hn−1x(Sn−1×{0}). Finally, the currents S′′j have support
in BRo and satisfy (6.26), that is we have

M(S′′j )− nωn ≤ 12nωnC1 d2
1(S′′j ).(6.27)

Step 8: Adjusting the mixed second order moments. We define the second order
moments of S′′j by

MS′′j
:= ω−1

n

∫
z ⊗ z d‖S′′j ‖.
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Note thatMS′′j
is well defined since sptS′′j ⊂ BRo . Since ‖S′′j ‖ → ‖∂[[D]]‖ in the sense of

Radon measures the second order moments of S′′j converge to the second order moments
of the unit sphere Sn−1 × {0}, i.e.

lim
j→∞

MS′′j
= MSn−1×{0} := ω−1

n

∫
Sn−1×{0}

z ⊗ z dHn−1 = In,

where In : Rn+k → Rn+k is defined by In(x, y) := (x, 0). Therefore, we have

lim
j→∞

‖MS′′j
− In‖ = 0,

and this allows us to apply Lemma 4.2 for j ∈ N large enough, to be precise for those j for
which ‖MS′′j

− In‖ < εo holds true, where εo = εo(n, k) > 0 is the constant from Lemma
4.2. Hence, we find Rj ∈ SO(n+ k) satisfying

‖Rj − I‖ ≤ c(n, k)‖MS′′j
− In‖

such that for the second order moments of the tilted currents S′′′j := (R−1
j )#S

′′
j , i.e. for

MS′′′j
:= ω−1

n

∫
z ⊗ z d‖S′′′j ‖,

the mixed moments are zero, i.e. for i = 1, . . . , n and α = 1, . . . , k we have(
MS′′′j

)
i,n+α

≡
∫
xiyα d‖S′′′j ‖ = 0,

and moreover
‖MS′′′j

− In‖ ≤ c(n, k)‖MS′′j
− In‖.

The tilted currents are of course again (M, ω)-minimizing and, since S′′j → ‖∂[[D]]‖,
they also converge in the sense of Radon measures to ‖∂[[D]]‖. Moreover, the barycen-
ter condition also holds true for the tilted currents. Furthermore, we have M(S′′′j ) =
M((R−1

j )#S
′′
j ) = M(S′′j ) and m(S′′′j ) = m((R−1

j )#S
′′
j ) = m(S′′j ). Since d1 is invari-

ant by rotations, we have d1(S′′′j ) = d1(S′′j ). But this shows, that also (6.27) holds true
for the tilted currents S′′′j , that is we have

M(S′′′j )− nωn ≤ 12nωnC1 d2
1(S′′′j ).(6.28)

To avoid an overburdened notation, from now on we write Sj instead of S′′′j , but we keep
in mind that Sj → ∂[[D]] in the Floc-topology, weakly as currents and in the Kuratowski
convergence and ‖Sj‖ → ‖∂[[D]]‖ in the sense of Radon measures. Further, the Sj are
(M, ω)-minimizing in the sense that (6.24) holds true for Sj . For the associated mass
minimizing currents we have m(Sj) = ωn.

Step 9: Regularity and conclusion. We recall that the flat n-dimensional unit disk [[D]]
is the closed unit disk centered at the origin in Rn×{0} ⊂ Rn+k. We write [[Sn−1]] for the
boundary of EnxBn1 (0). At this stage we apply the regularity theorem to our sequence Sj
which is build up by (M, ω)-minimizing currents for the modulus ω(%) = 8λ% (meaning
that we have Cω = 8λ = 8(C1 + Λ) in Theorem 6.2). The application of Theorem
6.2 yields for j large enough spherical graph representations Sj = (Xj)#[[Sn−1]] with
maps uj , vj on Sn−1 of class C1, 12 . The supports Γj := sptSj = X(Sn−1) are C1, 12

submanifolds of Rn+k. Since the currents Sj fulfill the barycenter condition and have
vanishing mixed second order moments also the spherical graphs Γj have their barycenter
in the origin and vanishing mixed second order moments. By construction also the mass
constaint m(Sj) = m([[Γj ]]) = ωn is satisfied. Finally, by (6.15) and D(Sj) → 0 we can
apply the higher codimension version of the Fuglede’s Theorem for spherical graphs for j
large enough, i.e. Theorem 4.1 is applicable since all hypotheses hold true. Thus we have

M(Sj)− nωn
nωn

≡ H
n−1(Γj)− nωn

nωn
≥ Co d2

1([[Γj ]]) ≡ Co d2
1(Sj).
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But this contradicts (6.28), provided we choose 0 < C1 < 1
3Co. Here, we used

Hn−1(Γj) = M(Sj) and d1([[Γj ]]) = d1(Sj), since Sj = X#[[Sn−1]]. This is the contra-
diction we were looking for and therefore finishes the proof of Theorem 2.1. �
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