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THOMAS SCHMIDT

Abstract. We establish partial and local C1,α-regularity results for vectorial
almost-minimizers of convex variational integrals in BV. In particular, we
investigate cases with a degenerate or singular behavior of p-Laplace type,
and we cover (local) minimizers of the exemplary integrals∫

Ω
(1 + |∇w|p)

1
p dx

with 1 < p < ∞. We also treat some related models with lower-order terms,
which are motivated by image restoration.
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1. Introduction

We are concerned with variational integrals of the type
∫

Ω

[
f( · ,∇w) + g( · , w)

]
dx for w : Ω → R

N ,

where throughout this paper Ω denotes a non-empty bounded open set in R
n,

and the dimension n ∈ N and the codimension N ∈ N are arbitrary. Moreover,
f : Ω × R

Nn → R and g : Ω × R
N → R are a suitable Borel integrands, and we

will permanently assume that f is convex in the gradient variable and has linear
growth in the sense of

(1.1) |f(x, z)| ≤ C|z|+ C for all (x, z) ∈ Ω×R
Nn ,
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where C is a fixed positive constant. Then, if w is in the space BV(Ω)N of RN -
valued functions of bounded variation on Ω, we set

(1.2) F [w,Ω] :=

∫

Ω

f( · ,Dw) and G[w,Ω] :=

∫

Ω

g( · , w) dx .

Here, G[w,Ω] is only explained for g( · , w) ∈ L1(Ω), and the definition of F [w,Ω]
is understood in a generalized sense, namely as a convex functional of measures.
For the moment we only remark that this interpretation of F [w,Ω] is quite natural
and fruitful in the existence theory of minimizers, and we refer to Section 4.5 for
the precise definition; see also Section 4 as a whole for further terminology.

We will work with the following notion of local minimizers, thus including min-
imizers of different boundary value problems and also unconstrained minimizers in
our analysis.

Definition 1.1 (local minimizers). We say that u ∈ BVloc(Ω)
N is a local minimizer

of F+G if we have g( · , u) ∈ L1
loc(Ω), and if

(1.3) F [u,B̺(x0)] +G[u,B̺(x0)] ≤ F [u+ϕ,B̺(x0)] +G[u+ϕ,B̺(x0)]

holds for all balls B̺(x0) ⊂⊂ Ω and all ϕ ∈ BV(Ω)N with sptϕ ⊂ B̺(x0) and
g( · , u+ϕ) ∈ L1(B̺(x0)).

In this paper we study interior gradient regularity of local minimizers for func-
tionals of the type F+G. We first state and discuss two exemplary results which
illustrate our intentions and which are already new and interesting; compare the
introductory discussions in [34, 7, 40].

1.1. Degenerate model problems. The first result guarantees almost-everywhere
Hölder continuity of the gradient of a local minimizer — for some particularly sim-
ple choice of f and for g ≡ 0.

Theorem 1.2 (almost-everywhere gradient regularity). For p ∈ (1,∞) suppose
that u ∈ BVloc(Ω)

N is a local minimizer of

(1.4) w 7→
∫

Ω

(1 + |Dw|p) 1
p .

Then there exists an open subset Ω0 of Ω with L n(Ω \ Ω0) = 0 such that u is of
class C1,α/max{p,2} locally on Ω0 for every exponent α < γp. Here, γp is a positive
constant, depending only on n, N , and p, whose optimality will be discussed below.

The case p = 2 of Theorem 1.2 (with γ2 = 2) is a direct consequence of the local
regularity result of Anzellotti & Giaquinta [8] (see Theorem 2.1 for a restatement
in our setting). For p 6= 2 their result still yields the existence of an open and
dense regular set Ω0 on which u is C1,α/2 for all α ∈ (0, 2). However, the crucial
point in Theorem 1.2 is that the regular set Ω0 has even full measure, and in the
above generality this stronger assertion seems to be new even in the scalar1 case
N = 1. In order to establish this improvement we will work near the zeros of Du
(in the sense of Definition 4.13) — which is peculiar since the second derivative

of z 7→ (1+|z|p) 1
p either vanishes at z = 0 (p > 2) or becomes singular there

(p < 2). Our approach relies heavily on the observation that this degenerate or

1In the subcase p = 2, N = 1, everywhere regularity follows from the classical theory of
the area integral, which is detailed in [35] (see also [51, 34] for extensions to broader classes of
variational problems). The scalar Dirichlet problem with p 6= 2 has been discussed in [55], but only
under restrictions on the domain and the boundary datum. However, imposing such restrictions
everywhere regularity can be inferred via the boundary gradient estimates of [50, 57].
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singular behavior resembles the one of the p-energy density z 7→ 1
p |z|p, and indeed

— adapting ideas of Duzaar & Mingione [26] — we will base our proof on the
comparison of u with vector-valued p-harmonic functions (that are minimizers of
the p-energy). Consequently, the limiting Hölder exponent γp/max{p, 2} is the
same one achievable for p-harmonic functions themselves (compare Theorem 4.18),
but for p 6= 2 the optimal value of this exponent is not explicitly known.

We remark that for the particular integrands of Theorem 1.2 — contrary to the
general settings of Sections 2 and 3 below — it remains possible that everywhere
regularity Ω0 = Ω always holds. In fact, for 1 < p < 2 we even prove this in a
forthcoming joint work [10] with L. Beck, while for the limit case p = 2 we could at
least show in [9] that the singular part of Du always vanishes (see also [12, 14, 41] for
previous closely related results). However, for p > 2 it seems difficult to establish
everywhere regularity, and in this case we consider Theorem 1.2 as most relevant.

1.2. Image restoration models. As a second exemplary case we discuss theo-
retical consequences of our results for some well-known image restoration models.
These models are concerned with the recovery a good approximation u of an n-
dimensional picture when only a corrupted recording S of this picture is available.
Here, one should think of a corruption caused by noise and blur, and u and S are
modeled as RN -valued functions on Ω ⊂ R

n, typically with n ∈ {2, 3, 4}. Moreover,
the choice N = 1 is suitable for modeling the grayscales of monochrome pictures,
while for colored pictures (or pictures with other special features) it might be rele-
vant to take N > 1.

Given S is has been suggested by Rudin & Osher & Fatemi [46] to determine u
from a constrained minimization problem. Reformulating this problem Chambolle
& Lions [20] proposed to take u as the unique unconstrained minimizer of

w 7→
∫

Ω

[
|Dw| + λ|w − S|ζL n

]

with some (typically large) Lagrange multiplier λ > 0 and originally with ζ = 2.
Eventually, Chan & Esedoḡlu [21] studied the choice ζ = 1 (leading to possible non-
uniqueness of minimizers), and in the following we will consider arbitrary ζ > 0.
This approach is nowadays known as TV (Lζ) regularization, since the leading
regularization term

∫
Ω |Dw| is the total variation of the gradient measure Dw. In

fact, the basic idea is that the total variation has a mild regularizing effect: one may
hope that u is smoother — and thus less noisy — than S, but that it also inherits
jumps — and thus preserves or even sharpens edges; compare [18, 19]. Evidently,
the fidelity term λ

∫
Ω
|w − S|ζ dx forces u to stay close to S in addition.

Since the handling of the total variation near zeros of the gradient is quite diffi-
cult in both numerical and theoretical regards (nevertheless see [44, 43, 52, 2, 19] for
some regularity results), it is convenient to use regularizations with similar prop-
erties. Among the various suggestions which have been made we here focus on the
regularizing terms ∫

Ω

mε
p(Dw) and

∫

Ω

m̃ε
p(Dw) ,

where we have set

mε
p(z) := (εp + |z|p) 1

p − ε ,(1.5)

m̃ε
p(z) :=

{
1

pεp−1 |z|p for |z| ≤ ε

|z| − p−1
p ε for |z| ≥ ε

(1.6)
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for all z ∈ R
Nn with p > 1 and ε > 0; for p = 2, compare [21, Section7] and [20,

formula (31)], respectively, for the usage of these integrals in image restoration and
[39] for an occurrence of the latter one in a quite different context.

We would like to make the following two points about these regularizations.
First, we stress that both mε

p(z) and m̃ε
p(z) converge to |z| when we send either

p ց 1 or ε ց 0. This double convergence gives some flexibility in the choices
of p and ε when approximating the total variation. Second, in order to avoid the
occurrence of piecewise constant minimizers, sometimes called the staircase effect,
one may indeed want to strengthen the regularizing effect of the total variation
slightly. Therefore, regularized models are also interesting in their own right. In this
regard our results support the hypothesis that the usage of m̃ε

p is more promising
than the one of mε

p: actually, in the latter case we have an almost-everywhere
smoothing effect regardless of the size of the gradients (see Corollary 3.4), and even
though this effect does not rule out jump discontinuous of u, it could result in
blurred reconstructions. In contrast, in the former case we keep the desired milder
regularization properties of the total variation near points of large gradient (thus
retaining edges), while we also gain an additional selective smoothing property in
regions of small gradient. Understanding Lebesgue points and Lebesgue values in
the sense of Definition 4.13 below, this last effect can be made rigorous as follows.

Theorem 1.3 (selective smoothing). For p ∈ (1,∞), λ ∈ [0,∞), ε, ζ ∈ (0,∞),
and S ∈ L∞

loc(Ω)
N suppose that u ∈ BVloc(Ω)

N is a local minimizer of

w 7→
∫

Ω

[
m̃ε

p(Dw) + λ|w − S|ζL n
]
,

where m̃ε
p is defined in (1.6). Then

Ωε := {x ∈ Ω : x is a Lebesgue point of Du with Lebesgue value z and |z| < ε}
is open and u is of class C1,α/max{p,2} locally on Ωε for all those α < γp such that
we have α ≤ min{1, ζ}.

We point out that for p = 2 and ζ ≤ 1 Theorem 1.3 follows immediately from [8,
Section 6]. Moreover, motivated by image restoration Chen & Rao & Tonegawa &
Wunderli [22, Theorem 1.2] established the scalar quadratic case N = 1, p = ζ = 2
of the theorem. Some interest in the cases p 6= 2 has eventually been raised in [59],
where however only certain non-degenerate approximations could be treated. To
our knowledge Theorem 1.3 is new in all the remaining cases and provides the first
regularity result for the degenerate and singular situations p > 2 and 1 < p < 2,
respectively.

We remark that in the case p = 2 of Theorem 1.3 (recall γ2 = 2) the requirement
α ≤ min{1, ζ} and thus the Hölder exponent for the gradient of u on Ωε can indeed

be improved: for ζ < 1 the theorem gives the exponent ζ
2 , while a posteriori the

optimal exponent ζ
2−ζ of Phillips [45] can be obtained as in [31, 38, 48]. Similarly,

for ζ ≥ 1 the theorem yields the exponent 1
2 , while a posteriori one reaches every

exponent < 1 by standard estimates for the Poisson equation. Hence, it is likely
that the condition α ≤ min{1, ζ} can be improved for p 6= 2 as well, but we believe
that a further discussion is rather pointless, as we also require α < γp and the
optimal value of γp is not known for p 6= 2.

1.3. Methodology of the proofs. Our regularity proofs crucially rely on the
localization method of Anzellotti & Giaquinta [8] and the comparison technique of
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Duzaar & Mingione [26]. Let us comment on these techniques and their application
to the model situation of Theorem 1.2 already at this preliminary stage.

To clarify notation and setup we first record that the integrand in (1.4) can be
written as 1+m1

p(Dw) with the function m1
p from (1.5). Furthermore, we fix a local

minimizer u of the integral (1.4) and a Lebesgue point x0 ∈ Ω of Du with Lebesgue
value z0 ∈ R

Nn, which implies in particular that the mean values (Du)BR(x0) con-
verge to z0 for R ց 0. In Section 4.7 we will a introduce an integral quantity
Φ(u,BR(x0)), called the excess of u on BR(x0), which measures the deviation of u
from being affine on BR(x0). The general strategy of proof is then to obtain esti-
mates for the decay of Φ(u,BR(x0)) in R, which are equivalent with C1,α-regularity
near x0. This common basic strategy has also been employed in [8], and regularity
near x0 is known, whenever ∇2m1

p(z0) is positive (see also Theorem 2.1 below).
Thus, we will now confine ourselves to discussing the case p 6= 2, z0 = 0, where
∇2m1

p(z0) vanishes or does not exist.

We are then in a degenerate2 situation, and we will derive decay estimates
by comparison with solutions of the p-Laplace system, which features a simi-
lar degenerate behavior. However, potentially the resulting estimates on balls
BR(x0) may explode for R ց 0, and indeed this can happen when the ratio
|(Du)BR(x0)|p/Φ(u,BR(x0)) blows up. As it turns out, when this ratio is suffi-
ciently large, one should rather compare u with solutions of a linear system —
even for R + |(Du)BR(x0)| ≪ 1. Therefore, we will actually distinguish between a
truly degenerate case, based on comparison with p-Laplace systems, and a somehow
non-degenerate case, based on comparison with linear systems. Notice that the lat-
ter situation is indeed a non-uniformly non-degenerate one, in which non-uniform
factors like |(Du)BR(x0)|p−2 occur and need to be handled with care.

A comparison technique featuring the described case distinction has first been
employed by Esposito & Mingione [29] in a blow-up argument, and eventually
Duzaar & Mingione [26] implemented a similar strategy based on the p-harmonic
approximation lemma of [27]; see also [47, 15, 16, 11] for further refinements and
adaptions. While in all these references u is a priori in W1,p, in this paper u and its
blow-ups are only in BV and are not easily approachable by the regularity theory
for the p-Laplace system. This difficulty seems to rule out a direct usage of blow-up
or harmonic approximation in our situation.

Consequently, we keep the general strategy of [26], but we rather implement the
comparison arguments themselves via the direct localization method of Anzellotti &
Giaquinta [8], which we customize to the degenerate situation. This method draws
from earlier ideas of Schoen & Simon [49] in the setting of rectifiable currents, and
it is based on a localization in the gradient variable z (which is highly non-trivial,
as Du is not a continuous function). In addition, the usage of this method is also
desirable for a couple of additional reasons: first, it works well with BV-functions;
second, it yields localized statements in z; and third, it allows to ignore the non-
uniformly elliptic behavior of ∇2m1

p(z) for |z| → ∞, that is the fact that the ratio

between the largest and the smallest eigenvalue of ∇2m1
p(z) blows up like |z|p.

Finally, we stress that the localization procedure of [8] relies on up-to-the-
boundary C1,α-estimates for solutions h of the comparison systems. By these es-
timates, whenever the boundary values of h are C1,α-close to an affine function,
then ∇h is almost constant; thus, comparison with h can — to some extent —

2More precisely, the situation is degenerate only for p > 2, and it is singular for p < 2, but
from now on we often use the word “degenerate” to summarize these cases.
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be localized, in the sense that one can restrict the gradient variable z to a small
ball. While the relevant up-to-the-boundary C1,α-estimates are well-known for the
linear comparison systems in [49, 8], they are not available for the p-Laplace system
(where their validity is in fact a major open problem) and thus for our degenerate
situation. We will however show that this difficulty can be overcome by a refine-
ment of the localization method, which we obtain as a side benefit: our comparison
procedure requires only up-to-the-boundary W1,q-estimates, and in some instances
it avoids up-to-the-boundary estimates at all; compare Remarks 5.3 and 5.6.

2. Assumptions and statement of the main result

Postponing the treatment of the general integrals F+G from (1.2), in the present
section we restrict ourselves to autonomous integrals F ; we thus consider

(2.1) F [w,Ω] :=

∫

Ω

f(Dw) for w ∈ BV(Ω)N

with an integrand f : RNn → R, for which we assume the following global hypoth-
esis:

(H1) f is convex and Lipschitz continuous on R
Nn with Lipschitz constant ≤ Γ.

Here, global Lipschitz continuity is not restrictive in the sense that it follows from
convexity and linear growth of f .

For comparison and future reference we now restate a version3 of the local reg-
ularity result [8, Theorem 1.1], which we already mentioned in the introduction.
Notice that in this statement and in the following we use (once more) the notions
of Lebesgue points and Lebesgue values from Definition 4.13.

Theorem 2.1 (Anzellotti & Giaquinta [8]). Assume that f satisfies (H1). More-
over, suppose that f is C2 near some point z0 ∈ R

Nn and that ∇2f(z0) is positive.
Then for every local minimizer u ∈ BVloc(Ω)

N of F and every Lebesgue point
x0 ∈ Ω of Du with Lebesgue value z0 there is some neighborhood of x0 in which u
is of class C1,α/2 for every α ∈ (0, 2).

Our main regularity result provides a degenerate version of Theorem 2.1. In
order to state it we impose the following localized hypotheses, which require that
f behaves near some fixed point z0 ∈ R

Nn similar to the p-energy density

(2.2) ep(z) :=
1

p
|z|p for z ∈ R

Nn

with p ∈ (1,∞):

(H2) p-growth near z0: f is C2 on BNn
σ (z0) \ {z0} and there holds

0 < |z| < σ =⇒ σ|z|p−2|ξ|2 ≤ ∇2f(z0+z)(ξ, ξ) ≤ σ−1|z|p−2|ξ|2

for all z, ξ ∈ R
Nn and some constant 0 < σ ≤ 1

4 ;

3In fact, [8, Theorem 1.1] covers local minimizers of functionals with polynomial m-growth
for any m ∈ [1,∞), and we believe that our results hold in this generality as well. However,
in Theorem 2.1 and the whole present paper we restrict ourselves to the case m = 1 which we
consider as the most interesting one. Notice also that [8, Theorem 1.1] imposes an additional
coercivity condition of the type f(z) ≥ c|z|m. We can omit this condition for m = 1, since —
after reduction to the case f(z0) > 0, ∇f(z0) = 0 — it automatically follows from convexity of f .
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(H3) ep-closeness near z0: f is differentiable at z0 and resembles ep there in
the sense of

lim
z→0

f(z0+z)− f(z0)−∇f(z0)z − θep(z)

|z|p = 0

for some θ > 0.

We remark that in place of (H3) we could also require closeness to a general
integrand of Uhlenbeck type (on which we would also impose suitable smoothness
and p-growth conditions). However, to avoid further technicalities, we dispense
with generalizations in this direction.

In the case p ≥ 2 it follows from (H2) and (H3) that f is C2 near z0 with

∇2f(z0) = θ∇2ep(0)
p>2
= 0. For p < 2, in contrast, both ∇2f(z0+z) and ∇2ep(z)

blow up as z → 0. Furthermore, we record that the convergence in (H3) can be
conveniently reformulated by saying that there exists some modulus ηd : (0,∞) →
(0, 12 ] such that the following implication is true for all µ > 0 and z ∈ R

Nn:

(2.3) |z| ≤ ηd(µ) =⇒ |f(z0+z)− f(z0)−∇f(z0)z − θep(z)| ≤ µ|z|p .
In some sense the role of (2.3) on {z0} is taken over on BNn

σ/2(z0) \ {z0} by the

following requirement with another modulus ηn:

(H4) scaled uniform continuity property near z0: there is some constant
0 < σ ≤ 1

4 (which we assume equals the one in (H2)) such that f is C2

on BNn
σ (z0) \ {z0} and there exists some function ηn : (0,∞) → (0, 12 ] such

that there holds

|ξ| < 1

2
σ , 0 < |z| ≤ ηn(µ)|ξ| =⇒ |∇2f(z0+ξ)−∇2f(z0+ξ+z)| ≤ µ|ξ|p−2

for all µ > 0 and z, ξ ∈ R
Nn.

A sufficient criterion for the validity of (H4) is a scaled local Hölder condition
|∇2f(z0+ξ)−∇2f(z0+ξ+z)| ≤ C|ξ|p−2−β |z|β for 0 < 2|z| ≤ |ξ| ≪ 1 with C, β > 0.
Moreover, as noted in [47] there is a simple criterion for the validity of all three
localized assumptions:

Remark 2.2. The assumptions (H2), (H3), and (H4) all follow if f is C2 on
BNn

σ (z0) \ {z0} for some σ > 0 with

(2.4) lim
z→0

∇2f(z0+z)− θ∇2ep(z)

|z|p−2
= 0

for some θ > 0.

A proof of Remark 2.2 is sketched in Appendix B.
In order to cover several types of variational problems at once we will formu-

late our main result for almost-minimizers, thus following classical ideas in geo-
metric measure theory; see for instance [3, 17, 53, 54, 5, 28]. In the present
non-parametric setup, Anzellotti [6] and Duzaar & Gastel & Grotowski [23] em-
ployed almost-minimizers to treat different constraints — for instance obstacles
and volume-constraints — in a unified way. Indeed, adapting [23, Definition 2.1]
to the linear growth case, an adequate type of almost-minimizers u ∈ BVloc(Ω)

N

of F may be defined by requiring the inequality

(2.5) F [u,B̺(x0)] ≤ F [u+ ϕ,B̺(x0)] + L̺α
∫

B̺(x0)

(L n + |Du|+ |Dϕ|)
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for all balls B̺(x0) ⊂⊂ Ω and all ϕ ∈ BV(Ω)N with sptϕ ⊂ B̺(x0), where α ∈
(0,∞) and L ∈ [0,∞) are fixed. However, it turns out that the previous notion
is still too restrictive for the purposes of Section 3 — where we want to include
lower-order terms such as in Theorem 1.3. Thus, we will include almost-minimizers
in the sense of (2.5) in our analysis, but in fact we will work with the following more
general definitions, which will turn out to be particularly convenient in connection
with Proposition 3.1.

Definition 2.3 (α-minimizers). For α ∈ (0,∞) we say that u ∈ BVloc(Ω)
N is an

α-minimizer of F at x0 ∈ Ω if there exists some function ω : [0,∞) → [0,∞) such
that the following property is valid: For all balls B̺(x0) ⊂⊂ Ω, all ϕ ∈ BV(Ω)N

with sptϕ ⊂ B̺(x0), and all M ∈ [0,∞) with

(2.6) −
∫

B̺(x0)

(
|Du|+ |Dϕ|

)
≤ M

there holds

F [u,B̺(x0)] ≤ F [u+ ϕ,B̺(x0)] + ω(M)̺αL
n(B̺) .

We call u an α-minimizer of F if it is an α-minimizer of F at every x0 ∈ Ω in
such a way that the function ω can be chosen independent of x0.

Definition 2.4 (Lq-α-minimizers). For q ∈ [0,∞] we say that u ∈ BVloc(Ω)
N

is an Lq-α-minimizer of F (at x0 ∈ Ω) if the almost-minimizing property from
Definition 2.3 holds for only those ϕ satisfying in addition to (2.6) also

(2.7) ‖ϕ‖Lq(B̺(x0))N ≤ M
(
̺1+

n
q + ‖u− uB̺(x0)‖Lq(B̺(x0))N

)
.

For q ∈ [0, n
n−1 ] it turns out as a consequence of Sobolev’s embedding that Lq-α-

minimizers are the same as α-minimizers and thus in this range the notion is in fact
independent of q. However, for q > n

n−1 the Lq-α-minimizers form an even more
general class than the α-minimizers since for given M we have further restricted —
at least on those balls where ‖u‖Lq(B̺(x0))N is finite — the class of test-functions
ϕ, allowing only for those which are in some Lq-sense controlled by the minimizer
itself.

Our main result for integrals of the type (2.1) reads:

Theorem 2.5 (local regularity for Lq-α-minimizers near degenerate points). Sup-
pose that f satisfies the above assumptions (H1), (H2), (H3), and (H4) for some
z0 ∈ R

Nn and p ∈ (1,∞). If u ∈ BVloc(Ω,R
N ) is an Lq-α-minimizer of F

with q ∈ [0,∞] and 0 < α < γp, then for every Lebesgue point x0 ∈ Ω of Du
with Lebesgue value z0 there is some neighborhood of x0 in which u is of class
C1,α/max{p,2};

Here, the constant γp(n,N, p) ∈ (0, 2] is the one introduced in Theorem 4.18.

Remark 2.6 (the non-degenerate case). For p = 2 the theorem remains true with
γ2 = 2 if the role of θe2 in (H3) is taken by any positive symmetric bilinear form
on R

Nn. Then (H2), (H3), and (H4) altogether just correspond to saying that f is
C2 near z0 and that ∇2f(z0) is positive as in Theorem 2.1. An analogous remark
applies to Proposition 2.7 and Corollary 3.3 below.

We point out that in the case p = 2 > α Theorem 2.5 gives the Hölder exponent
α
2 for the gradient of u. It follows from [23, Example 3] that this exponent is optimal
already for almost-minimizers in the sense of (2.5).

Assuming Theorem 2.5 we now provide a formal deduction of Theorem 1.2.
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Proof of Theorem 1.2. We set f(z) := (1+|z|p) 1
p . Then f satisfies (H1), and

∇2f(z0) is positive for all 0 6= z0 ∈ R
Nn. Consequently, Theorem 2.1 implies

C1,α/max{p,2} regularity of u near the Lebesgue points of Du with Lebesgue value
different from 0. Moreover, one easily checks (2.4) for the present f (with θ = 1),
and thus (H2), (H3), and (H4) are satisfied. Therefore, Theorem 2.5, specialized
to local minimizers, yields C1,α/max{p,2} regularity of u near the Lebesgue points
of Du with Lebesgue value 0. In particular, it follows that the set of all Lebesgue
points of Du is open, and choosing Ω0 as this set we arrive at the claim. �

We remark that in a similar fashion Theorem 2.5 applies to integrands f with
multiple degeneration points in R

Nn. More precisely, we infer the following partial
regularity statement: if ∇2f(z) is positive for all but at most countably many
z ∈ R

Nn, and if at those countably many z ∈ R
Nn it features a degenerate behavior

of the above type, then every local minimizer u of F is C1 near all Lebesgue points
of Du (and thus L n-almost-everywhere).

For the purposes of the next section we record an additional slight refinement of
Theorem 2.5. If f : Ω×R

Nn → R is such that f(x0, · ) satisfies (H1), we introduce
the frozen functional Fx0 by

Fx0 [w,Ω] :=

∫

Ω

f(x0,Dw)

for w ∈ BV(Ω)N and x0 ∈ Ω. Then — inspired by [23] — we say that u ∈
BVloc(Ω)

N is an α-minimizer of (Fx)x∈Ω if u is an α-minimizer of Fx0 at every
x0 ∈ Ω such that the function ω in Definition 2.3 can be chosen independent of x0.
Analogously, we define Lq-α-minimizers of (Fx)x∈Ω.

Proposition 2.7. For f : Ω × R
Nn → R suppose that f(x, · ) satisfies the above

assumptions (H1), (H2), (H3), and (H4) for all x ∈ Ω, some z0 ∈ R
Nn, and some

p ∈ (1,∞) in such a way that Γ, σ, ηd, and ηn can be chosen (locally) uniform
in x. If u ∈ BVloc(Ω,R

N ) is an Lq-α-minimizer of (Fx)x∈Ω with q ∈ [0,∞] and
0 < α < γp, then for every Lebesgue point x0 ∈ Ω of Du with Lebesgue value z0
there is some neighborhood of x0 in which u is of class C1,α/max{p,2}.

The proof of Theorem 2.5, Remark 2.6, and Proposition 2.7 will be completed
in Section 5.4.

3. Integrals with lower-order terms

In this section we return to the setting of (1.2), and we treat variational integrals
F+G with an explicit dependence on x and u. Indeed, we will show that regularity
results for local minimizers of F+G follow from Proposition 2.7, and as a particular
case we will obtain Theorem 1.3.

Notice that in this section we use the notation Lq,α(Ω) from Definition 4.9 for
Morrey spaces.

Proposition 3.1. Suppose that f : Ω×R
Nn → R and g : Ω×R

N → R are Borel
functions, that f is convex in its second argument and satisfies (1.1), and that the
following Hölder conditions hold with a positive constant C, 0 < α ≤ β ≤ 1 and
β ≤ ζ < ∞:

|f(x2, z)− f(x1, z)| ≤ C(1 + |z|)|x2 − x1|α ,(3.1)

|g(x, y1)− g(x, y2)| ≤ C(P (x) + |y1|+ |y2|)ζ−β |y2 − y1|β(3.2)
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for all x, x1, x2 ∈ Ω, y1, y2 ∈ R
N , z ∈ R

Nn. Moreover, assume that P : Ω → [0,∞)
and u ∈ BVloc(Ω)

N satisfy

(3.3) |u|, P ∈ Lq,n−(β−α)n∗(Ω) ,

where we have set n∗ := n
n−βn+β ∈ [1, n] and q := (ζ−β)n∗ ∈ [0,∞[. Then, if u is

a local minimizer of F+G, it is also an Lq-α-minimizer of (Fx)x∈Ω.

Remark 3.2. The proposition holds analogously for ζ = q = ∞ if we understand
L∞,n−(β−α)n∗ = L∞ and replace the Hölder condition for g with the requirement
that |g(x, y1)−g(x, y2)| ≤ H(|y1|+|y2|)|y2−y1|β holds for all x ∈ Ω and y1, y2 ∈ R

N ,
and for some non-decreasing function H : [0,∞) → [0,∞). In this case the proof is
a simplified variant of the one given below.

Combining Propositions 2.7 and 3.1 we immediately get the following local reg-
ularity result for functionals of the type F+G.

Corollary 3.3. Suppose that f satisfies the hypotheses of Proposition 2.7 for some
z0 ∈ R

Nn and p ∈ (1,∞), and that moreover f and g satisfy all the assumptions of
Proposition 3.1 (including condition (3.3) for P ) with α < γp. If u ∈ BVloc(Ω)

N is
a local minimizer of F+G satisfying the Morrey condition in (3.3), then for every
Lebesgue point x0 ∈ Ω of Du with Lebesgue value z0 there is some neighborhood of
x0 in which u is of class C1,α/max{p,2}.

Before proving Proposition 3.1 we make some comments on the meaning and
justification of the extra Morrey assumption (3.3).

First and most importantly we stress that in many relevant cases boundedness of
P is a reasonable assumption, which automatically implies (local) boundedness of
u, see Appendix A. Thus, in many cases it suffices to impose an a priori assumption
only on P , but not on u.

Moreover, we notice that the situation is particularly simple, if g is uniformly
Hölder continuous in y, that is β = ζ ≤ 1 and thus q = 0: in this case (3.3) is void.

In contrast, if g(x, y) grows super-linearly in y, it cannot be uniformly Hölder
continuous and we necessarily have β < ζ. In this case we require the extra regu-
larity (3.3) of P and u to compensate for the growth of g. The extra assumption is
strongest (an L∞-assumption), if we want to obtain an Lq-α-minimizer with α = β.
For α < β (3.3) is weaker, and we remark that it follows via (the limit case of) the
embedding (4.10) from the condition

(3.4) |u|, P ∈ L
ζ−β
β−αn(Ω)

on the scale of Lebesgue spaces. Moreover, sometimes (3.4) is trivially satisfied: for
instance, if for β = 1 < ζ < n

n−1 the natural integrability |u|, P ∈ Lζ(Ω) is available

(as in Corollaries 3.4 and 3.5 below with P := |S|), then we have ζ−β
β n < ζ, and

thus (3.4) holds automatically for some positive α.

Proof of Proposition 3.1. We assume that u is a local minimizer of F+G. Then for
B̺(x0) ⊂⊂ Ω and ϕ ∈ BV(Ω)N with sptϕ ⊂ B̺(x0) we write

(3.5) Fx0 [u,B̺(x0)]− Fx0 [u+ ϕ,B̺(x0)] = I + II + III + IV
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with

I :=

∫

B̺(x0)

f(x0,Du)−
∫

B̺(x0)

f( · ,Du) ,

II := (F+G)[u,B̺(x0)]− (F+G)[u + ϕ,B̺(x0)] ,

III :=

∫

B̺(x0)

f( · ,Du+Dϕ) −
∫

B̺(x0)

f(x0,Du+Dϕ) ,

IV :=

∫

B̺(x0)

[
g( · , u+ ϕ)− g( · , u)

]
dx .

Here, we exploited that g( · , u) ∈ L1(B̺(x0)) by Definition 1.1, and we also used
that g( · , u+ϕ) ∈ L1(B̺(x0)), which will follow from the below estimate showing
the finiteness of IV . Relying on the latter condition once more we observe II ≤ 0
by the minimality property in (1.3). Moreover, if (2.6) holds for M ∈ [0,∞), then
by the Hölder condition (3.1) we get

I + III ≤ C̺α
∫

B̺(x0)

[
L

n + |Du|+ |Dϕ|
]
≤ C(1+M)̺αL

n(B̺) .

For the treatment of the remaining term IV on the right-hand side of (3.5) we will
work with constants C which may depend on n, α, β, ζ, the diameter of Ω, the
constant C from (3.2), and the Morrey bounds for |u| and P . We first deduce from
the Hölder condition (3.2) and Hölder’s inequality

IV ≤ C

∫

B̺(x0)

(P + |u|+ |u+ ϕ|)ζ−β |ϕ|β dx

≤ C

(∫

B̺(x0)

(P + |u|+ |ϕ|)(ζ−β)n∗ dx

) 1
n∗

(∫

B̺(x0)

|ϕ| n
n−1 dx

)n−1
n β

.

Keeping (ζ − β)n∗ = q in mind, involving also (2.7), and using a Sobolev-Poincaré
inequality for ϕ we further get

IV ≤ C(M ζ−β+1)

(
̺n+(ζ−β)n∗ +

∫

B̺(x0)

(P q + |u|q) dx
) 1

n∗
(∫

B̺(x0)

|Dϕ|
)β

.

Via (2.6) and the Morrey assumption (3.3) we arrive at

IV ≤ C(M ζ−β+1)
(
̺n+(ζ−β)n∗ + ̺n−(β−α)n∗

) 1
n∗

Mβ̺βn

= C(M ζ+Mβ)
(
̺(ζ−α)n∗ + 1

) 1
n∗

̺
n
n∗

+βn−β+α .

Since ̺ is bounded by the diameter of Ω, in view of ζ ≥ α and n
n∗

+ βn− β = n we
find

IV ≤ C(M ζ+Mβ)̺αL
n(B̺) .

Collecting all the estimates we have shown that (2.6) and (2.7) imply

Fx0 [u,B̺(x0)] ≤ Fx0 [u+ ϕ,B̺(x0)] + C(1+M+M ζ+Mβ)̺αL
n(B̺) .

Hence, u is an Lq-α-minimizer of Fx0 at x0. �

To conclude this section we specialize Corollary 3.3 to the case where f is the
integrand from either (1.5) or (1.6) and where g is given by g(x, y) = λ|y − S(x)|ζ
with a suitable function S, positive ζ, and an arbitrary real factor λ. We then get
the following two statements.
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Corollary 3.4. For p ∈ (1,∞), λ ∈ R, ε, ζ ∈ (0,∞), and S ∈ Lζ
loc(Ω)

N suppose
that u ∈ BVloc(Ω) is a local minimizer of

w 7→
∫

Ω

[
mε

p(Dw) + λ|w − S|ζL n
]
.

Then the set Ω0 of Lebesgue points of Du is open with L
n(Ω \ Ω0) = 0 and u

is of class C1,α/max{p,2} locally on Ω0 for all those α < γp such that we have
α ≤ min{1, ζ} and, in the case ζ > 1, also

|u|, |S| ∈ L
(ζ−1)n,αn
loc (Ω) .

Corollary 3.5. For p ∈ (1,∞), λ ∈ R, ε, ζ ∈ (0,∞), and S ∈ Lζ
loc(Ω)

N suppose
that u ∈ BVloc(Ω)

N is a local minimizer of

w 7→
∫

Ω

[
m̃ε

p(Dw) + λ|w − S|ζL n
]
.

Then

Ωε := {x ∈ Ω : x is Lebesgue point of Du with Lebesgue value z and |z| < ε} .
is open and u is of class C1,α/max{p,2} locally on Ωε for all those α < γp such that
we have α ≤ min{1, ζ} and, in the case ζ > 1, also

|u|, |S| ∈ L
(ζ−1)n,αn
loc (Ω)N .

Proof of Corollaries 3.4 and 3.5. For the choices f(x, z) = mε
p(z) and f(x, z) =

m̃ε
p(z) we first verify the assumptions of Proposition 2.7, which actually reduce to

those of Theorem 2.5, since f is independent of x. First we notice that ∇2mε
p(z0) is

positive for z0 6= 0 and ∇2m̃ε
p(z0) is positive for 0 < |z0| < ε. Thus, in these cases

the required assumptions hold in the modified form of Remark 2.6. Moreover in
the case z0 = 0 the original assumptions follow — as in the proof of Theorem 1.2
in Section 2 — via Remark 2.2 (with θ = 1

εp−1 ).
Next we check that, locally on Ω, the assumptions of Proposition 3.1 are valid

for the above f and for the choice g(x, y) = λ|y − S(x)|ζ . Evidently, f and g are
Borel functions, and f satisfies (1.1). Moreover, (3.2) holds with β := min{1, ζ}
and P := |S| (for ζ > 1 this follows from the computation of ∇yg(x, y), for ζ ≤ 1
it is immediate). In addition, (3.3) is void for ζ ≤ 1 (since q = 0) and reduces to
the (localized) Morrey assumption of Corollaries 3.4 and 3.5 for ζ > 1 (since β = 1,
n∗ = n). Finally, (3.1) is trivially valid for all α ≤ min{1, ζ}.

Consequently, for α < γp Corollary 3.3 yields the claimed statements. �

Specializing to the case λ ≥ 0, S ∈ L∞
loc(Ω)

N and involving Appendix A we
finally obtain the second model result of the introduction.

Proof of Theorem 1.3. The claim follows from Corollary 3.5, once we show that the
additional Morrey assumption of this corollary is satisfied. We can restrict ourselves
to the case ζ > 1, λ > 0 (as the assumption is only imposed for ζ > 1 and for λ = 0
we can trivially reduce to ζ = 1). Then, using S ∈ L∞

loc(Ω)
N and Lemma A.2 we see

that g(x, y) := λ|y−S(x)|ζ satisfies the assumptions of Theorem A.1. Moreover,

we have u ∈ Lζ
loc(Ω)

N by the integrability assumption in Definition 1.1, and it
is straightforward to check that also f(x, z) := m̃ε

p(z) satisfies the assumption of

Theorem A.1. In conclusion, from this theorem we infer u ∈ L∞
loc(Ω)

N , and we
obtain the required Morrey assumption as a special case. �
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4. Preliminaries

In this section we collect several preliminaries. Some of them are already closely
related to the proof of the main result.

4.1. General notation. As most of our notation is standard, we just comment on
a couple of features.

Throughout the paper, C and c denote positive constants, possibly varying from
line to line, where we mostly use C for large and c for small constants. For s ≤ t
in R ∪ {∞,−∞} we write (s, t) and [s, t] for the open and the closed interval with
endpoints s and t, respectively, and we also use (s, t] and [s, t) in the obvious
meaning. We write Bn

̺ (x) := {y ∈ R
n : |y − x| < ̺} for open balls in R

n (where
the upper index n is often omitted), and we employ the abbreviation S ⊂⊂ Ω to
indicate that a set S is relatively compact in Ω, in other words the closure of S is
compact and is contained in Ω. Furthermore, 1S denotes the characteristic function
of S and spt η the closure of the set of zeros of a function η. We usually identify the
space of (N×n)-matrices with R

Nn, and we write | · | for several norms, namely the
modulus of a real number, the Euclidean norm of a vector (consequently also for
the Hilbert-Schmidt norm of a matrix), and the operator norm of a bilinear form.
Finally, we adopt the convention that we think of first derivatives as vectors and of
second derivatives as bilinear forms.

Further terminology is introduced below; see in particular Sections 4.3, 4.5, and
4.6 for notations related to measures and integrals.

4.2. Several inequalities for auxiliary functions. For this subsection we fix

1 < p < ∞ .

We first record that the p-energy density ep from (2.2) is convex with the following
bound for its second derivatives.

Lemma 4.1. For z, ξ ∈ R
Nn (with z 6= 0 if p < 2) one has

min{1, p−1}|z|p−2|ξ|2 ≤ ∇2ep(z)(ξ, ξ) ≤ max{p−1, 1}|z|p−2|ξ|2

and consequently |∇2ep(z)| ≤ max{p−1, 1}|z|p−2.

Proof. The claims follow easily from the calculation

∇2ep(z)(ξ, ξ) = |z|p−2|ξ|2 + (p−2)|z|p−4(z · ξ)2

and the Cauchy-Schwarz inequality. �

Next we restate another simple estimate which is useful in connection with ∇2ep;
see [1, Lemma 2.1] for a proof in the case p < 2 which can easily be adapted to the
general case.

Lemma 4.2. For z0, z ∈ R
Nn (with |z0|+|z| 6= 0 if p < 2) there holds

C−1(|zo|+ |z|)p−2 ≤
∫ 1

0

|z0 + s(z−z0)|p−2 ds ≤ C(|zo|+ |z|)p−2

with a positive constant C depending only on p.

Also the following slightly refined variant will be convenient.

Lemma 4.3. For z0, z ∈ R
Nn (with |z0|+|z| 6= 0 if p < 2) there holds

C−1(|zo|+ |z|)p−2 ≤
∫ 1

0

∫ 1

0

|z0 + st(z−z0)|p−2 ds t dt ≤ C(|zo|+ |z|)p−2
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with a positive constant C depending only on p.

Proof. We first provide a proof of the right-hand estimate in the case p ≤ 2: ap-
plying Lemma 4.2 twice we have
∫ 1

0

∫ 1

0

|z0 + st(z−z0)|p−2 ds t dt ≤ C

∫ 1

0

(|z0|+ |z0 + t(z−z0)|)p−2t dt

≤ C

∫ 1

0

|z0 + t(z−z0)|p−2 dt ≤ C(|z0|+ |z|)p−2 .

Similarly, applying Lemma 4.2 just once in the last step we derive the left-hand
estimate in the case p ≥ 2:

(|z0|+ |z|)p−2 ≤ 2p−1

∫ 1

1
2

(t|z0|+ t|z|)p−2t dt

≤ 2p−1

∫ 1

0

(|z0|+ |tz| − |(1−t)z0|)p−2t dt

≤ 2p−1

∫ 1

0

(|z0|+ |z0 + t(z−z0)|)p−2t dt

≤ C

∫ 1

0

∫ 1

0

|z0 + st(z−z0)|p−2 ds t dt .

The remaining cases are much simpler and can be treated directly without relying
on Lemma 4.2; we omit further details. �

We also work with the auxiliary function Ap which is given by

(4.1) Ap(t) := (1 + t)
1
p − 1 for t ≥ 0 .

We record Ap(t
p) = m1

p(t) holds for the function m1
p defined in (1.5), and we find it

worth remarking that the role of Ap in the following lemmas and this entire paper

could be taken over by Ãp with Ãp(t
p) := m̃1

p(t) and m̃1
p defined in (1.6). Anyhow,

retaining the choice from (4.1) we note that Ap is increasing and concave, while
z 7→ Ap(|z|p) is convex. Moreover, we have

(4.2) Ap(|z|p) ≤ min{|z|, |z|p/p} for all z ∈ R
Nn .

Lemma 4.4. For all z, ξ ∈ R
Nn, and C ≥ 1 there hold

Ap(C|z|p) ≤ CAp(|z|p) ,
Ap(|z|p + |ξ|p) ≤ 2[Ap(|z|p) + Ap(|ξ|p)] .

Proof. The inequality Ap(C|z|p) ≤ CAp(|z|p) is a consequence of the concavity of
Ap. Exploiting this inequality and the fact that Ap is increasing we estimate

Ap(|z|p + |ξ|p) ≤ Ap(2max{|z|, |ξ|}p)
≤ 2Ap(max{|z|, |ξ|}p) ≤ 2[Ap(|z|p) + Ap(|ξ|p)] . �

Lemma 4.5. For all z ∈ R
Nn and t > 0 we have the implications

|z| ≥ t =⇒ Ap(|z|p) ≥ c|z| ,
|z| ≤ t =⇒ Ap(|z|p) ≥ c|z|p

with positive constants c depending only on p and t. For t = 2 the first claim holds
with c = 2−1 and the second one with c = 2−p.
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Proof. For |z| ≥ t we have

(1 + |z|p) 1
p = (1− (1 + tp)−

1
p )(1 + |z|p) 1

p + (1 + tp)−
1
p (1 + |z|p) 1

p

≥ (1− (1 + tp)−
1
p )|z|+ 1

and for 0 < |z| ≤ t we deduce

Ap(t
p)

tp
|z|p =

|z|p
tp

Ap

( tp

|z|p |z|
p
)
≤ Ap(|z|p)

with the help of Lemma 4.4. Finally, the case |z| = 0 is trivial, and the claim for
the case t = 2 is easily checked. �

Introducing yet other auxiliary functions we now turn to the well-studied quan-
tities (see for instance [25, Section 3] for a discussion)

Vp(z) := |z| p−2
2 z ,(4.3)

Wξ
p(z) :=

{
(|ξ|2+|z|2) p−2

2 |z|2 for p ≥ 2

(|ξ|+|z|)p−2|z|2 for 1 < p ≤ 2

for ξ, z ∈ R
Nn. Here and in the following we understand Vp(0) and W0

p(0) as 0 even
for 1 < p ≤ 2, and without further mentioning we will adopt analogous reasonable
conventions for similar singular expressions.

It can be checked by an explicit computation (a simplified version of those in
the proof of Lemma 4.7 below) that Wξ

p is a convex function on R
Nn. Moreover,

we record some useful estimates for Wξ
p which are basically known. Nevertheless,

we provide a brief proof.

Lemma 4.6. For z, z̃, ξ ∈ R
Nn there hold

C−1
1

∣∣Vp(z)−Vp(ξ)
∣∣2 ≤ Wξ

p(z−ξ) ≤ C1

∣∣Vp(z)−Vp(ξ)
∣∣2 ,(4.4)

Wz̃
p(z−z̃) ≤ C1

[
Wξ

p(z̃−ξ) +Wξ
p(z−ξ)

]
,(4.5)

Ap(W
z̃
p(z−z̃)) ≤ C1

[
Ap(W

ξ
p(z̃−ξ)) + Ap(W

ξ
p(z−ξ))

]
,(4.6)

Wξ
p(z+z̃) ≤ C1

[
Wξ

p(z) +Wξ
p(z̃)

]
(4.7)

with a positive constant C1 depending only on p.

Proof. We first prove (4.4). To this end we set p̃ := 2 + p−2
2 , and we observe

(4.8) Vp(z)−Vp(ξ) = ∇ep̃(z)−∇ep̃(ξ) =

∫ 1

0

∇2ep̃(ξ + s(z−ξ)) ds (z−ξ, · ) .

From Lemmas 4.1 and 4.2 (with p̃ in place of p) we thus infer
∣∣Vp(z)−Vp(ξ)

∣∣ ≤ C(|ξ|+|z|) p−2
2 |z−ξ| .

Multiplying (4.8) with (z−ξ) and using the lemmas again we also get

(|ξ|+|z|) p−2
2 |z−ξ|2 ≤ C

∣∣Vp(z)−Vp(ξ)
∣∣ |z−ξ| .

In conclusion, we infer that
∣∣Vp(z) − Vp(ξ)

∣∣ is comparable to (|ξ|+|z|) p−2
2 |z−ξ|,

and the last quantity is easily seen to be comparable to

√
Wξ

p(z−ξ) as well. Thus,

(4.4) is established. Now the claim (4.5) becomes obvious when we replace all
three Wp-terms with the comparable quantities according to (4.4). Moreover, (4.6)
is a consequence of (4.5) and the properties of Ap from Lemma 4.4. Finally,
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since Wξ
p(z) is a non-increasing function of |z|, we get the estimate Wξ

p(z+z̃) ≤
Wξ

p(2max{|z|, |z̃|}) ≤ Cmax{Wξ
p(z),W

ξ
p(z̃)}, and (4.7) follows. �

Next we notice that Wξ
p(z) behaves roughly like |z|p for |ξ|≪|z|≪1 and like

|ξ|p−2|z|2 for |z|≪|ξ|≪1. This behavior will be crucial in our regularity proof in
order to compare with both p-Laplacian and linear systems. However, in view
of the BV-context we actually look for a quantity which, in addition, has linear
growth and is convex in z, and it will turn out that a suitable choice is given by
Ap(W

ξ
p(z)). The convexity of this composition in z is not immediate (Ap itself is

indeed concave), but nevertheless it is guaranteed by the the following lemma, at
least for sufficiently many ξ.

Lemma 4.7. For all ξ ∈ R
Nn with |ξ| ≤ 1

2 the function

R
Nn → R, z 7→ Ap(W

ξ
p(z))

is convex.

Before proving the lemma, we briefly comment on the imposition of an upper
bound for |ξ|. Indeed, for p ≤ 2, the following computations show convexity for all
ξ ∈ R

Nn, and such a bound is not necessary. For p > 2, in contrast, it follows from
the same computations that there exist sufficiently large ξ such that Ap(W

ξ
p(z))

is not convex in z ∈ R
Nn, and thus some upper bound for |ξ| seems unavoidable

(though, needless to say, the stated bound 1
2 is not optimal). We remark that this

situation remains unchanged when we replace Ap with the function Ãp mentioned
after (4.1).

Proof of Lemma 4.7. For ξ = 0 the claimed convexity has already been recorded at
the beginning of this section, thus we assume ξ 6= 0. Since Ap(W

ξ
p(z)) is rotationally

symmetric in z and non-decreasing in |z|, it suffices to check in the 1-dimensional

case Nn = 1 that d2

dt2Ap(W
ξ
p(t)) ≥ 0 holds for t ≥ 0. For p ≤ 2 this requirement is

immediate from the computation

d2

dt2
Ap(W

ξ
p(t)) =

1

p
(1+Wξ

p(t))
1−2p

p (|ξ|+t)p−4

[
2
2−p

p
(|ξ|+t)p−2t2|ξ|2

+ p(p−1)t2 + 4(p−1)|ξ|t+ 2|ξ|2
]
.

Similarly, for p ≥ 2 we have

d2

dt2
Ap(W

ξ
p(t)) =

1

p
(1+Wξ

p(t))
1−2p

p (|ξ|2+t2)
p−6
2

[
p−2

p
(|ξ|2+t2)

p−2
2 t2

[
p|ξ|2t2−2|ξ|4

]

+p(p−1)t4+(5p−6)|ξ|2t2+2|ξ|4
]
,

and we can argue as follows: in case t ≥ |ξ| we evidently have p|ξ|2t2 − 2|ξ|4 ≥ 0
and the above expression is non-negative as required; in case t ≤ |ξ| ≤ 1

2 we first

observe p−2
p (|ξ|2+t2)

p−2
2 t2 ≤ 1 and get the same conclusion. �

Finally, we state a lemma which relates the integrands f of Section 2 to the
quantity Ap(W

ξ
p(z)). This lemma will later be very convenient in order to compare

the integral F with the excess Φ of Section 4.7 below.
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Lemma 4.8. Suppose that f : RNn → R satisfies (H1) and (H2) with z0 = 0 and
the fixed p ∈ (1,∞). Then for all z, ξ ∈ R

Nn with |ξ| ≤ 1
2σ there holds

(4.9) C−1Ap(W
ξ
p(z−ξ)) ≤ f(z)− f(ξ)−∇f(ξ)(z−ξ) ≤ CAp(W

ξ
p(z−ξ)) ,

where C depends only p, Γ, and σ.

Proof. We first assume |z| ≤ σ. In this case by (H2) and Lemma 4.3 we find

f(z)− f(ξ)−∇f(ξ)(z−ξ) =

∫ 1

0

∫ 1

0

∇2f(ξ + st(z−ξ)) ds t dt (z−ξ, z−ξ)

≤ σ−1

∫ 1

0

∫ 1

0

|ξ + st(z−ξ)|p−2 ds t dt |z−ξ|2

≤ C(|ξ|+|z|)p−2|z−ξ|2

≤ CWξ
p(z−ξ) .

SinceWξ
p(z−ξ) can be bounded by a constant depending only on σ and p, Lemma 4.5

gives Wξ
p(z−ξ) ≤ CAp(W

ξ
p(z−ξ)) and the right-hand inequality in (4.9) follows.

Still in the case |z| ≤ σ the left-hand estimate in (4.9) is obtained by a completely
analogous reasoning with (4.2) instead of Lemma 4.5.

Next we assume |z| ≥ σ. In this case we have

|z−ξ| ≥ |z| − |ξ| ≥ 1

2
σ

and thus

f(z)− f(ξ)−∇f(ξ)(z−ξ) ≤ 2Γ|z−ξ| ≤ CAp(|z−ξ|p) ≤ CAp(W
ξ
p(z−ξ)) ,

where for p ≥ 2 we used only (H1), Lemma 4.5, and the fact that Ap is increasing.
For p < 2 the last estimate follows as well, when we additionally notice |z−ξ|p ≤
22−pWξ

p(z−ξ) and use Lemma 4.4 in the last step. Thus, the right-hand inequality
in (4.9) is generally verified. Finally, to establish the remaining left-hand estimate
in the case |z| ≥ σ, we denote by z̃ the unique point on the line segment from ξ to
z with |z̃| = 3

4σ. Writing

f(z)− f(ξ)−∇f(ξ)(z−ξ) =
[
f(z)− f(z̃)−∇f(z̃)(z−z̃)

]

+
[
f(z̃)− f(ξ)−∇f(ξ)(z̃−ξ)

]
+ (∇f(z̃)−∇f(ξ))(z−z̃)

the two terms in square brackets are non-negative by the convexity of f . Using
this, the fact that z̃− ξ and z− ξ point in the same direction, (H2), and Lemma 4.2
we infer

f(z)− f(ξ)−∇f(ξ)(z−ξ) ≥
∫ 1

0

∇2f(ξ + s(z̃−ξ)) ds (z̃−ξ, z−ξ)

≥
∫ 1

0

|ξ + s(z̃−ξ)|p−2 ds |z̃−ξ| |z−ξ|

≥ c(|ξ|+|z̃|)p−2|z̃−ξ| |z−ξ|
≥ c|z−ξ| .

By (4.2) and |ξ| ≤ |z−ξ| we moreover have

Ap(W
ξ
p(z−ξ)) ≤ Wξ

p(z−ξ)
1
p ≤ C|z−ξ| ,

and combining the last two inequalities the proof is complete in all cases. �
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4.3. Signed and vector-valued measures. In this paper a non-negative measure
on Ω is a σ-additive function from the Borel-σ-algebra of Ω to [0,∞]. Moreover, a
signed or Rm-valued measure ν on Ω is a σ-additive function which is initially de-
fined only on the relatively compact Borel subsets of Ω and takes values in (−∞,∞]
or R

m (compare [4, Definition 1.40] for a similar method of approach). We write
|ν| for the variation measure of ν which is given by

|ν|(A) := sup

{ ∞∑

i=1

|ν(Ai)| : Ai disjoint relatively compact Borel subsets of A

}

for all Borel subsets A of Ω. Evidently, |ν| is always a non-negative measure, and, in
the particular case of a signed ν with only non-negative values, it provides a canon-
ical extension to the full Borel-σ-algebra (this partially justifies our terminology).
We call ν finite or locally finite if |ν| has the respective property in the usual sense,
and we observe that also every finite ν has a unique extension — which we identify
with ν in the following — to a σ-additive function on the full Borel-σ-algebra of Ω.
In the locally finite case, in contrast, such an extension need not necessarily exist.

Integration with respect to (locally) finite measures ν is explained and notated as
usual. Additionally, we agree on the less usual abbreviations

∫
A
ν :=

∫
A
dν = ν(A)

and fν(A) =
∫
A fν :=

∫
A f dν for (relatively compact) Borel subsets A of Ω and

Borel functions f on A. Finally, the symbol dx is used synonymous with dL
n and

indicates integration with respect to the Lebesgue measure L n.
For a non-negative measure µ and an R

m-valued measure ν on Ω we say that ν
is absolutely continuous with respect to µ if |ν|(A) = 0 holds for all Borel subsets
A of Ω with µ(A) = 0. We record that if ν is (locally) finite and absolutely
continuous with respect to µ, then by the Radon-Nikodým theorem there exists
a Borel function h : Ω → R

m such that ν(A) =
∫
A
h dµ holds for all (relatively

compact) Borel subsets A of Ω. The density h is µ-a. e. uniquely determined and

is denoted by dν
dµ . In addition, µ-a. e. we have

∣∣ dν
dµ

∣∣ = d|ν|
dµ . Finally, we say that ν

is singular to µ if for some Borel subset A of Ω we have |ν|(A) = 0 = µ(Ω \A).
By Lebesgue decomposition every (locally) finite Rm-valued measure ν on Ω can

be written as

ν = νa + νs ,

where νa and νs are uniquely determined (locally) finite R
m-valued measures on Ω

such that νa is absolutely continuous with respect to L n and νs is singular to L n.
Moreover, |ν| = |νa|+ |νs| is the Lebesgue decomposition of |ν|.

4.4. Function spaces.

4.4.1. Lebesgue, Sobolev, and Hölder spaces. Our notation for Lebesgue, Sobolev,
and Hölder spaces (mainly Lq, W1,p, C1,α) is quite standard and we just mention
a few additional conventions.

We use Lq(Ω) for all values q ∈ [0,∞]: extending the common definition, Lq(Ω)
with 0 < q < 1 is defined as the collection of all Lebesgue measurable functions
w : Ω → R such that the integral

∫
Ω
|w|q dx is finite. Moreover, the qth root of

this integral is denoted by ‖w‖Lq(Ω) — regardless of the fact that for 0 < q < 1

it is not a norm (but a quasinorm). Finally, L0(Ω) is the space of all Lebesgue
measurable functions Ω → R, and we adopt the convention that ‖w‖L0(Ω) stands
for the essential infimum of |w| on Ω.
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We identify vector-valued functions with tuples of R-valued functions. Conse-
quently, notations like Lq(Ω)N correspond to spaces of RN -valued functions. More-
over, we use a subscript loc to indicate that a function is of the required class on
all balls B̺(x0) ⊂⊂ Ω.

4.4.2. Functions of bounded variation. The space BV(Ω) of functions of bounded
variation on Ω is defined as the collection of all functions w ∈ L1(Ω) whose distri-
butional gradient can be represented by a finite R

n-valued measure Dw. We also
use the variants BV(Ω)N and BVloc(Ω)

N as explained above, and in these cases we
understand Dw as a (locally) finite R

Nn-valued measure.
In contrast to the notation Dw for the gradient measure we use ∇w for the

density d(Dw)a

dL n of its absolutely continuous part (Dw)a. In particular, whenever the

distributional derivative of w can be represented by an (L1
loc-)function, we denote

this function by ∇w.

4.4.3. Morrey spaces. Morrey spaces are only used in Section 3. Our terminology
for them is as follows.

Definition 4.9 (Morrey spaces). Fix q, α ∈ [0,∞). Writing diamΩ for the diam-
eter of Ω, the Morrey space Lq,α(Ω) is defined as the collection of all w ∈ Lq(Ω)
whose Morrey bound

sup
x∈Ω

0<̺<diamΩ

̺−α

∫

Ω∩B̺(x0)

|w|q dx

is finite (where in the case q = 0 of this definition, we exceptionally adopt the
convention 00 = 0). The local Morrey spaces Lq,α

loc (Ω) are then defined in the sense
of the preceding convention.

We notice L0,α(Ω) = L0(Ω) for α ≤ n, Lq,0(Ω) = Lq(Ω), Lq,n(Ω) = L∞(Ω) for
q > 0, and Lq,α(Ω) = {0} for α > n. Moreover, Hölder’s inequality yields the
embedding

(4.10) Lq̃,n−α̃(Ω) ⊂ Lq,n−α(Ω) for q̃ ≥ max{1, α̃/α}q .

4.5. Functionals of measures. With the terminology of Section 4.3 we can give
the following definitions in the spirit of Goffman & Serrin [36].

Definition 4.10 (recession function). If ϕ : Ω × R
m → R is convex in its second

argument, we introduce the recession function ϕ∞ : Ω×R
m → (−∞,∞] of ϕ by

ϕ∞(x, z) := lim
sց0

sϕ(x, z/s) for (x, z) ∈ Ω×R
m .

Under the assumptions of Definition 4.10, ϕ∞ is convex and 1-homogeneous in
its second argument. Moreover, if ϕ is a Borel function, then ϕ∞ is a Borel function
as well.

Definition 4.11 (functionals of measures). Consider a locally finite R
m-valued

measure ν on Ω and a Borel function ϕ : Ω×R
m → R which is convex in its second

argument. Then we introduce a new signed measure ϕ( · , ν) on Ω by letting

ϕ( · , ν)(A) =
∫

A

ϕ( · , ν) :=
∫

A

ϕ
(
· , dνa

dL n

)
dx+

∫

A

ϕ∞
(
· , dνs

d|νs|
)
d|νs|

for all relatively compact Borel subsets A of Ω.
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We observe that, if ϕ has linear growth in the sense of (1.1), then ϕ( · , ν) inherits
(local) finiteness from ν. Furthermore, we remark that our notation for the variation
measure is consistent with the choice ϕ(x, z) = |z| in Definition 4.11.

In this paper we mostly use Definition 4.11 with m = Nn for the finite R
Nn-

valued gradient measures Dw of functions w ∈ BV(Ω)N : in this setting the defini-
tion enables us to give a precise meaning to the functionals F [w; Ω] =

∫
Ω
f( · ,Dw)

in (1.2) — and as special case also to those from (2.1). For further motivation and
discussion of such functionals of BV-functions as well as for corresponding existence
results for minimizers we refer for instance to [34, 8, 13, 9]; notice however that we
do not need to take into account the additional boundary terms in [34, 9], as in this
paper we are exclusively concerned with interior regularity properties.

4.6. Mean values, Lebesgue points, and Lebesgue values of measures. For
the mean values of a function w ∈ L1(Ω)N and a finite R

m-valued measure ν on Ω
we introduce the notations

wΩ := −
∫

Ω

w dx :=
1

L n(Ω)

∫

Ω

w dx and νΩ := −
∫

Ω

ν :=
ν(Ω)

L n(Ω)
.

Next we state a Jensen type inequality with mean values of measures. A similar
inequality has been proved in [8, Proposition 2.4] via approximation, but here we
suggest a different argument which works directly with the given measure.

Lemma 4.12 (Jensen inequality). If ν is a finite R
m-valued measure on Ω, then

for any convex function ϕ : Rm → R and any ξ ∈ R
m there holds

ϕ

(
−
∫

Ω

ν

)
≤ −
∫

Ω

ϕ(ν) .

Proof. Following [34] we define a 1-homogeneous, lower semicontinuous, and convex
function ϕ : [0,∞) × R

Nn → (−∞,∞] by ϕ(s, z) := sϕ(z/s) for s > 0 and by
ϕ(s, z) := ϕ∞(z) for s = 0. Then we set µ := L n+|νs| and estimate

ϕ

(
−
∫

Ω

ν

)
=

µ(Ω)

L n(Ω)
ϕ
(

L n(Ω)

µ(Ω)
,
ν(Ω)

µ(Ω)

)
=

µ(Ω)

L n(Ω)
ϕ

(
1

µ(Ω)

∫

Ω

(dL n

dµ
,
dν

dµ

)
dµ

)

≤ 1

L n(Ω)

∫

Ω

ϕ
(dL n

dµ
,
dν

dµ

)
dµ =: I ,

where we used the common version of Jensen’s inequality in the last step. For a
Borel subset B of Ω with |νs|(B) = 0 = L n(Ω \ B) we now integrate separately
over B and Ω \ B, and we exploit the above choice of µ. In this way I can be
rewritten as

I =
1

L n(Ω)

[ ∫

B

ϕ
(
1,

dνa

dL n

)
dL

n +

∫

Ω\B

ϕ
(
0,

dνs

d|νs|
)
d|νs|

]

=
1

L n(Ω)

[ ∫

Ω

ϕ
( dνa

dL n

)
dL

n +

∫

Ω

ϕ∞
( dνs

d|νs|
)
d|νs|

]
= −
∫

Ω

ϕ(ν) ,

and we arrive at the claim. �

In a certain sense we now assign pointwise values to R
m-valued measures. Once

more we mostly use this concept with m = Nn for the gradient measure Dw of
w ∈ BVloc(Ω)

N .
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Definition 4.13 (Lebesgue points and Lebesgue values). Consider a locally finite
R

m-valued measure ν on Ω. We say that x0 ∈ Ω is a Lebesgue point of ν if there
exists some z0 ∈ R

m such that

(4.11) lim
Rց0

−
∫

BR(x0)

|ν − z0L
n| = 0 .

If x0 is a Lebesgue point of ν, then z0 is uniquely determined by (4.11) and is called
the Lebesgue value of ν at x0.

By the Lebesgue differentiation theorem for measures, L n-almost every x0 ∈ Ω
is a Lebesgue point of a locally finite Rm-valued measure ν on Ω, and moreover the
function which maps x0 to z0 is a representative of the density dνa

dL n .

4.7. Energy and excess functionals. Throughout this subsection we again fix
1 < p < ∞. Relying on the auxiliary functions of Section 4.2 and the notation of
Sections 4.3, 4.5, and 4.6 we now introduce for u ∈ BV(Ω)N the scaled energy

E(u,Ω) := −
∫

Ω

Ap(|Du|p)

and the excess

Φ(u,Ω) := −
∫

Ω

Ap(W
(Du)Ω
p (Du − (Du)ΩL

n)) .

Here, by Lemma 4.7 the excess Φ(u,Ω) is well-defined (at least) for |(Du)Ω| ≤ 1
2 .

Occasionally, we will also use the respective p-integrable quantities. Those are
defined for w ∈ W1,p(Ω)N as

E∗(w,Ω) := −
∫

Ω

|∇w|p dx

and

Φ∗(w,Ω) := −
∫

Ω

W(∇w)Ω
p (∇w − (∇w)Ω) dx .

We now record a number of useful estimates for Φ(u,Ω) and Φ∗(w,Ω).

Lemma 4.14. For all u ∈ BV(Ω)N with |(Du)Ω| ≤ 1
2 and all ξ ∈ R

Nn with |ξ| ≤ 1
2

there holds

Φ(u,Ω) ≤ C−
∫

Ω

Ap(W
ξ
p(Du − ξL n)) ,

where C depends only on p.

Proof. Using (4.6) we find

Φ(u,Ω) ≤ C

[
Ap(W

ξ
p((Du)Ω−ξ)) +−

∫

Ω

Ap(W
ξ
p(Du−ξL n))

]
.

Moreover, the Jensen inequality of Lemma 4.12, applied with the convex function
of Lemma 4.7, yields

Ap(W
ξ
p((Du)Ω−ξ)) ≤ −

∫

Ω

Ap(W
ξ
p(Du−ξL n)) .

Combining the last two estimates we arrive at the claim. �
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Lemma 4.15. For all w ∈ W1,p(Ω)N and ξ ∈ R
Nn there hold

Φ∗(w,Ω) ≤ C−
∫

Ω

Wξ
p(∇w − ξ) dx ,(4.12)

Φ∗(w,Ω) ≤ C−
∫

Ω

W(∇w)Ω
p (∇w − ξ) dx ,(4.13)

where C depends only on p.

Proof. Basically, the proof of Lemma 4.14 applies in a simplified version, where
we just consider functions instead of measures, and where Ap does not occur. Ac-
cordingly, in place of (4.6) we apply either (4.5) (for the first claim) or (4.7) (for
the second claim). Moreover, it suffices to use the standard version of Jensen’s
inequality for the convex function Wξ

p. �

Lemma 4.16. For all w, h ∈ W1,p(Ω)N there holds

Φ∗(w,Ω) ≤ C

[
Φ∗(h,Ω) +−

∫

Ω

W(∇w)Ω
p (∇w −∇h) dx

]

with a constant C depending only on p.

Proof. We first assume that we have

(4.14) either p ≥ 2, |(∇w)Ω| ≥ |(∇h)Ω| or p ≤ 2, |(∇w)Ω| ≤ |(∇h)Ω| .

Then we use in turn (4.12), (4.7), and (4.14) to estimate

Φ∗(w,Ω) ≤ C−
∫

Ω

W(∇h)Ω
p (∇w − (∇h)Ω) dx

≤ C

[
−
∫

Ω

W(∇h)Ω
p (∇h− (∇h)Ω) dx+−

∫

Ω

W(∇h)Ω
p (∇w −∇h) dx

]

≤ C

[
Φ∗(h,Ω) +−

∫

Ω

W(∇w)Ω
p (∇w −∇h) dx

]
.

In the remaining cases we have

(4.15) either p ≥ 2, |(∇w)Ω| ≤ |(∇h)Ω| or p ≤ 2, |(∇w)Ω| ≥ |(∇h)Ω| .

In this situation we get via (4.13), (4.7), and (4.15)

Φ∗(w,Ω) ≤ C−
∫

Ω

W(∇w)Ω
p (∇w − (∇h)Ω) dx

≤ C

[
−
∫

Ω

W(∇w)Ω
p (∇h− (∇h)Ω) dx+−

∫

Ω

W(∇w)Ω
p (∇w −∇h) dx

]

≤ C

[
Φ∗(h,Ω) +−

∫

Ω

W(∇w)Ω
p (∇w −∇h) dx

]
. �

4.8. Regularity estimates for comparison systems. We first record some basic
estimates for weak solutions of linear systems; see for instance [32, Lemma 5.20] for
the interior Campanato type estimate (4.17) and [32, Theorem 7.1] for the global
W1,p-estimate (4.18). Finally, the global Lq-estimate (4.19) follows from (4.18) via
a Poincaré inequality.
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Proposition 4.17 (estimates for linear systems). For a positive symmetric bilinear

form B on R
Nn and w ∈ W1,∞(BR/2(x0))

N suppose that h ∈ w+W1,2
0 (BR/2(x0))

N

satisfies

(4.16)

∫

BR/2(x0)

B(∇h,∇ϕ) dx = 0 for all ϕ ∈ W1,2
0 (BR/2(x0))

N .

Then there holds

(4.17) −
∫

B2τR(x0)

|∇h− (∇h)B2τR(x0)|2 dx ≤ Cτ2−
∫

BR/2(x0)

|∇h− (∇h)BR/2(x0)|2 dx

for all τ ∈ (0, 1
4 ]. Moreover, for every p ∈ [2,∞) one has

(4.18) −
∫

BR/2(x0)

|∇h|p dx ≤ C−
∫

BR/2(x0)

|∇w|p dx ,

and for every q ∈ [1,∞] there holds

(4.19) ‖h− hBR/2(x0)‖Lq(BR/2(x0))N ≤ CR1+n
q sup

BR/2(x0)

|∇w| .

Here C depends only on n, N , an upper bound for the ellipticity ratio of B (that
means the quotient of the largest and the smallest eigenvalue of B), and in case of
(4.18) also on p.

In the following theorem we collect similar estimates for weak solutions of the
p-Laplace system, that is the Euler-Lagrange system associated with the p-energy
density ep from (2.2) (notice ∇ep(z) = |z|p−2z for z ∈ R

Nn). In particular, the first
estimate of the theorem is essentially equivalent with interior C1,α regularity, first
proved in Uhlenbeck’s famous paper [58] for p ≥ 2 and then extended to all p > 1
in [56].

Theorem 4.18 (estimates for the p-Laplace system). For 1 < p < ∞ and w ∈
W1,∞(BR/2(x0))

N suppose that h ∈ w +W1,p
0 (BR/2(x0))

N satisfies

(4.20)

∫

BR/2(x0)

∇ep(∇h)∇ϕdx = 0 for all ϕ ∈ W1,p
0 (BR/2(x0))

N .

Then one has

(4.21) Φ∗(h,B2τR(x0)) ≤ CτγpΦ∗(h,BR/2(x0))

for all τ ∈ (0, 1
4 ] and

(4.22) −
∫

BR/2(x0)

|∇h|p+κd dx ≤ C−
∫

BR/2(x0)

|∇w|p+κd dx .

Moreover, for all q ∈ [1,∞] there holds

(4.23) ‖h− hBR/2(x0)‖Lq(BR/2(x0))N ≤ CR1+n
q sup

BR/2(x0)

|∇w| .

Here, γp ∈ (0, 2] and κd ∈ (0,∞) are constants, fixed for the whole paper, which
depend only on n, N , and p. In addition, also C depends only on n, N , and p.

We now explain how the estimates (4.21), (4.22), and (4.23) can be extracted
from the existing literature. To this end we first record that h is the unique mini-
mizer of the p-energy in w +W1,p

0 (BR/2(x0))
N , and in particular we thus have

(4.24)

∫

BR/2(x0)

ep(∇h) dx ≤
∫

BR/2(x0)

ep(∇w) dx .
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A decay estimate similar to (4.21) can be found in [33, Theorem 3.1] for the case
p ≥ 2 and in [37, Theorem 4.1] for all 1 < p < ∞. Precisely, from these references
we infer

(4.25) −
∫

B2τR(x0)

∣∣Vp(∇h)−
[
Vp(∇h)

]
B2τR(x0)

∣∣2 dx

≤ Cτγp−
∫

BR(x0)

∣∣Vp(∇h)−
[
Vp(∇h)

]
BR(x0)

∣∣2 dx ,

with the function Vp defined in (4.3). In order to convert this estimate into (4.21)
we argue as follows: on the right-hand side of (4.25) we estimate with the help of
(4.4)

−
∫

BR(x0)

∣∣Vp(∇h)−
[
Vp(∇h)

]
BR(x0)

∣∣2 dx ≤ −
∫

BR(x0)

∣∣Vp(∇h) −Vp

(
(∇h)BR(x0)

)∣∣2 dx ,

≤ CΦ∗(h,BR(x0)) ,

and for the left-hand side of (4.25) we use that by (4.12) and (4.4) we have

Φ∗(h,B2τR(x0)) ≤ C−
∫

B2τR(x0)

Wξ
p(∇h− ξ) dx ≤ C−

∫

B2τR(x0)

∣∣Vp(∇h)−Vp(ξ)
∣∣2 dx ,

where ξ ∈ R
Nn is such that Vp(ξ) =

[
Vp(∇h)

]
B2τR(x0)

. Combining the last three

estimates we arrive at (4.21). Finally, we mention that in the case p ≥ 2 the
estimate (4.21) can be directly inferred from [30, Theorem 4.2].

The global higher gradient integrability (4.22) is proved in [24, Lemma 3.2]
with an additional term on the right-hand side, but this extra term can easily be
eliminated via (4.24).

Finally, we come to the global Lq-estimate (4.23): in the case4 q ≤ p∗ it follows
easily from a Sobolev-Poincaré inequality and (4.24); otherwise we obtain (4.23) as
a special case of [42, Theorem 2], first for q = ∞ and as a consequence for all q.

4.9. Some estimates for mollifications. For u ∈ BV(BR(x0)) and 0 < λ < R
we will extensively work with the (mean-)mollifications

uλ(x) := uBλ(x) for x ∈ BR−λ(x0) .

We notice that uλ is in W1,∞(BR−λ(x0)) since we have

|∇uλ(x)| = |(Du)Bλ(x)| ≤
|Du|(BR(x0))

L n(Bλ)
for all x ∈ BR−λ(x0) .

Following [49, 8] we will choose the smoothing radius λ depending on the excess
Φ(u,BR(x0)) on the ball under consideration. We provide some estimates for the
corresponding mollifications, which are quite close to those in [8, Lemma 4.2].

Lemma 4.19. For u ∈ BV(BR(x0))
N set

ξ0 := (Du)BR(x0) ,

and assume |ξ0| ≤ 1
2 . If there holds

{
Φ(u,BR(x0)) ≤ 1

Φ(u,BR(x0)) ≤ |ξ0|p 6= 0

}
,

4As usual we understand p∗ := np
n−p

in the case p < n, while q ≤ p∗ stands for q < ∞ in the

case p = n and for q ≤ ∞ in the case p > n.
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then choosing 



λ :=
1

2
Φ(u,BR(x0))

1
2nR

λ :=
1

2

(
|ξ0|−pΦ(u,BR(x0))

) 1
2nR





we have

(4.26)





sup
BR/2(x0)

|∇uλ − ξ0| ≤ CΦ(u,BR(x0))
1

2max{p,2}

sup
BR/2(x0)

|∇uλ − ξ0| ≤ C
(
|ξ0|−pΦ(u,BR(x0))

) 1
2max{p,2} |ξ0|





.

Here, the statement is valid choosing always the first alternative inside {. . .}, and
it is also true choosing always second one. Moreover, in both cases we have the
energy and excess estimates

E∗(uλ,BR/2(x0)) ≤ CE(u,BR(x0)) ,

−
∫

BR/2(x0)

Wξ0
p (∇uλ − ξ0) dx ≤ CΦ(u,BR(x0)) ,

and all the constants C in this lemma depend only on n and p.

Proof. Using the Jensen inequality of Lemma 4.12 for the convex function z 7→
Ap(W

ξ0
p (z)) of Lemma 4.7 we find for x ∈ BR/2(x0)

Ap(W
ξ0
p (∇uλ(x) − ξ0)) = Ap

(
Wξ0

p

(
−
∫

Bλ(x)

(Du− ξ0L
n)

))

≤ −
∫

Bλ(x)

Ap(W
ξ0
p (Du− ξ0L

n))

≤
(R
λ

)n

Φ(u,BR(x0))

=





2nΦ(u,BR(x0))
1
2

2n
(
|ξ0|−pΦ(u,BR(x0))

) 1
2 |ξ0|p



 .

From the assumed smallness of Φ(u,BR(x0)) and the bound |ξ0| ≤ 1
2 we infer that

Wξ0
p (∇uλ − ξ0) is bounded on BR/2(x0) by a constant depending only on n and p.

Thus, in view of Lemma 4.5 we also get

(4.27) sup
BR/2(x0)

Wξ0
p (∇uλ − ξ0) ≤





CΦ(u,BR(x0))
1
2

C
(
|ξ0|−pΦ(u,BR(x0))

) 1
2 |ξ0|p



 .

For p < 2 we now employ (4.27) on the right-hand side of the elementary inequality

|∇uλ−ξ0| ≤ CWξ0
p (∇uλ−ξ0)

1
p + C

(
|ξ0|2−pWξ0

p (∇uλ−ξ0)
) 1

2 . Then simplifying via

|ξ0| ≤ 1
2 and the smallness of Φ(u,BR(x0)) the claim (4.26) follows. In the case p ≥ 2

the same conclusion is immediate by the trivial bound |∇uλ−ξ0| ≤ Wξ0
p (∇uλ−ξ0)

1
p .

Back to the general case we use the boundedness of Wξ0
p (∇uλ − ξ0) on BR/2(x0)

together with Lemma 4.5, the Jensen inequality of Lemma 4.12, and the estimate
∫

BR/2(x0)

[
−
∫

Bλ(x)

ν

]
dx ≤

∫

BR(x0)

ν
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for non-negative measures ν (note λ ≤ R/2 by assumption). In this way we derive

−
∫

BR/2(x0)

Wξ0
p (∇uλ − ξ0) dx ≤ C−

∫

BR/2(x0)

Ap

(
Wξ0

p

(
−
∫

Bλ(x)

(Du− ξ0L
n)

))
dx

≤ C−
∫

BR/2(x0)

[
−
∫

Bλ(x)

Ap(W
ξ0
p (Du − ξ0L

n))

]
dx

≤ C−
∫

BR(x0)

Ap(W
ξ0
p (Du − ξ0L

n)) = CΦ(u,BR(x0))

and we have established all claims apart from the estimate for E∗. This estimate
is however obtained by an analogous calculation with 0 in place of ξ0. �

The following three elementary lemmas are based on the Jensen inequality of
Lemma 4.12 and are essentially restatements of Lemma 5.1, Lemma 5.2, and
Lemma 5.3 in [8, Section 5]. We restate them in a slightly adapted version with a
single mollification step instead of the two-step procedure of [8]. Nevertheless, the
proofs are almost unchanged (and even a bit simpler) in our situation, and we do
not repeat them.

Lemma 4.20. Consider a convex function ϕ : RNn → R, u ∈ BV(BR(x0))
N , and

positive numbers λ, t∗, and t∗ such that there holds

t∗ < t∗ ≤ R− λ .

Then there exists some t with t∗ < t < t∗ such that one has∫

Bt(x0)

ϕ(∇uλ) dx−
∫

Bt(x0)

ϕ(Du) ≤ 2λ

t∗ − t∗

∫

BR(x0)

ϕ(Du) .

Lemma 4.21. Consider a convex function ϕ : RNn → R, u ∈ BV(BR(x0))
N , and

positive numbers λ, r∗, r
∗, s∗, and s∗ such that there holds

r∗ < r∗ ≤ s∗ < s∗ ≤ R− λ .

Then there exist further radii r∗ < r < r∗ and s∗ < s < s∗ such that one has
∫

Bs(x0)\Br(x0)

ϕ(∇uλ) dx−
∫

Bs(x0)\Br(x0)

ϕ(Du)

≤
(

2λ

r∗ − r∗
+

2λ

s∗ − s∗

)∫

BR(x0)

ϕ(Du) .

Lemma 4.22 (Poincaré type inequality). Let a non-decreasing, convex function
ϕ : [0,∞) → R, u ∈ BV(BR(x0))

N , and positive numbers λ, s, and t be given such
that there hold

λ ≤ s < t ≤ R− λ and t− s ≥ λ .

Then one has∫

Bt(x0)\Bs(x0)

ϕ
( |u− uλ|

t− s

)
dx ≤

∫

Bt+λ(x0)\Bs−λ(x0)

ϕ(|Du|) .

We mention the following difference between our statement of Lemma 4.22 and
its counterpart [8, Lemma 5.3]: the extra assumption t−s ≥ λ does not occur in
[8], but in contrast to [8] it allows us to state the conclusion of lemma without an
additional constant factor on the right-hand side. This modification causes only
marginal changes in the proof which is quite standard anyway: to establish the
lemma for smooth functions u one recalls uλ(x) = uBλ(x) and argues by integration
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along line segments and via Jensen’s inequality. By approximation the claim then
follows for arbitrary u ∈ BV(BR(x0))

N .

5. Proof of the main result

In this section we prove the main result stated in Theorem 2.5. Moreover, we
establish the addenda of Remark 2.6 and Proposition 2.7.

Outline of the proof. Our reasoning is divided into the following four subsections:

5.1. Estimates for competitors. We derive estimates for certain competitors in
the minimization problem for F . We distinguish between the degenerate case
of Section 5.1.1 and the non-degenerate case of Section 5.1.2, which are based
on the comparison with p-Laplace and linear systems, respectively.

5.2. Estimates for almost-minimizers. We turn to Lq-α-minimizers, and in
Section 5.2.1 we establish some crucial estimates based on the minimality prop-
erty. Distinguishing once more between the degenerate and the non-degenerate
case, we combine these minimality estimates with the outcome of Section 5.1,
and we state the respective corollaries in Sections 5.2.2 and 5.2.3.

5.3. Iteration. We implement an iteration procedure. Specifically, Section 5.3.1
is concerned with a purely non-degenerate case, while Section 5.3.2 finally
combines all the previous considerations in the single excess-decay estimate of
Proposition 5.12.

5.4. Conclusion. We deduce Theorem 2.5, Remark 2.6, and Proposition 2.7 from
Proposition 5.12.

Setup and general conventions. In this section we permanently assume that
(H1), (H2), (H3), and (H4) are satisfied for some p ∈ (1,∞) and f : RNn → R with

(5.1) z0 = 0 , f(0) = 0 , ∇f(0) = 0 , and θ = 1 .

The normalization (5.1) will be justified in Section 5.4 (but is anyway valid for the
most relevant cases of the introduction). Moreover, in this section F always denotes
the functional given by (2.1).

Notice that we do not generally assume in this section that u is Lq-α-minimizer.
However, when we make this assumption, then we also suppose

q ≥ 1 ,

which is possible by the discussion after Definition 2.4.

5.1. Estimates for competitors. In this subsection we do not use any minimality
property, and in fact we supply two kinds of statements: the first one applies
to arbitrary w ∈ W1,∞(BR/2(x0))

N , while the second one specializes to the case

that w is the mollification (as in Section 4.9) of an arbitrary u ∈ BV(BR(x0))
N .

The significance of these estimates depends crucially on a quantity Ψ(w,BR/2(x0)),
which measures the deviation of w from being minimizing and is defined as follows.

Definition 5.1 (deviation fromminimality). For q ∈ [1,∞] we measure the (scaled)
deviation of a function w ∈ W1,∞(BR/2(x0))

N from being minimizing for F in
terms of the quantity

Ψ(w,BR/2(x0)) := (R/2)−n
(
F [w,BR/2(x0)]− inf

Aq
w

F [ · ,BR/2(x0)]
)
,
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where the admissible class Aq
w is defined as

{
h ∈ w+W1,1

0 (BR/2(x0))
N : ‖h−hBR/2(x0)‖Lq(BR/2(x0))N ≤ CAR

1+n
q sup
BR/2(x0)

|∇w|
}
.

Here, the constant CA is chosen as the maximum of the two constants C in (4.19)
and (4.23) (when we use σ−2 as an upper bound for the ellipticity ratio in Propo-
sition 4.17), and consequently CA depends only on n, N , p, and σ.

We point out that in order to deal just with α-minimizers or local minimizers
it suffices to choose Aq

w as the Dirichlet class w + W1,1
0 (B̺(x0))

N . The previous
more specific choice is only relevant for the treatment of Lq-α-minimizers, where it
is used to verify (2.7) for a certain test-function; see the proof of Proposition 5.8
and in particular (5.30).

5.1.1. Degenerate case. We record that as a consequence of (H1), (H2), and (5.1)
we have

(5.2) |f(z)| ≤ C|z|p for all z ∈ R
Nn

with a constant C depending only on p, Γ, and σ.

Proposition 5.2. Assume p ≥ 2. If w ∈ W1,∞(BR/2(x0))
N satisfies

sup
BR/2(x0)

|∇w| ≤ µ1/κdηd(µ)

for a given µ ∈ (0, 1], then there holds

Φ(w,B2τR(x0)) ≤ Cτγp(1 + τ−(n+γp)
p
2µ)

[
E∗(w,BR/2(x0)) + µ−1Ψ(w,BR/2(x0))

]

for all 0 < τ ≤ 1
4 . Here, the constants γp = γp(n,N, p) and κd = κd(n,N, p) have

been fixed in Theorem 4.18, and C depends only on n, N , p, Γ, and σ.

Before proving the proposition, we remark that Φ(w,B2τR(x0)) is indeed well-
defined, by the bound |(∇w)B2τR(x0)| ≤ ηd(µ) ≤ 1

2 and Lemma 4.7. Similar bounds
keep Φ well-defined also in the sequel, but will not be highlighted anymore.

Proof. By standard results there exists a minimizer h of the p-energy in the Dirichlet
class w +W1,p

0 (BR/2(x0))
N . This minimizer h is weakly p-harmonic (in the sense

that it satisfies (4.20)) and all the estimates of Theorem 4.18 are available for h.
In the following we now employ (4.2) and Lemma 4.16. In addition, we apply the
easy estimate Wξ

p(z) ≤ C
[
|ξ|p−2|z|2 + |z|p

]
, which exploits the assumption p ≥ 2,

and Hölder’s inequality. In this way we deduce

(5.3) Φ(w,B2τR(x0))

≤ 1

p
Φ∗(w,B2τR(x0))

≤ C

[
Φ∗(h,B2τR(x0)) +−

∫

B2τR(x0)

W
(∇w)B2τR(x0)

p (∇w −∇h) dx

]

≤ C

[
Φ∗(h,B2τR(x0)) + E∗(w,B2τR(x0))

p−2
p

(
−
∫

B2τR(x0)

|∇w −∇h|p dx
) 2

p

+−
∫

B2τR(x0)

|∇w −∇h|p dx
]
.
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Using Young’s inequality and recalling τ ≤ 1
4 this estimate simplifies to

(5.4) Φ(w,B2τR(x0)) ≤ C

[
Φ∗(h,B2τR(x0)) + τγpE∗(w,BR/2(x0))

+ τγp−(n+γp)
p
2−
∫

BR/2(x0)

|∇w −∇h|p dx
]
.

By (4.12) and (4.24) we furthermore get

(5.5) Φ∗(h,BR/2(x0)) ≤ C−
∫

BR/2(x0)

|∇h|p dx ≤ CE∗(w,BR/2(x0)) .

Combining (4.21), (5.4), and (5.5) we end up with

(5.6) Φ(w,B2τR(x0))

≤ Cτγp

[
E∗(w,BR/2(x0)) + τ−(n+γp)

p
2−
∫

BR/2(x0)

|∇w −∇h|p dx
]
.

Thus, to finish the proof of the proposition it remains to deal with the term
−
∫
BR/2(x0)

|∇w −∇h|p dx. Using Lemma 4.3, Lemma 4.1, and (4.20) we find

−
∫

BR/2(x0)

|∇w −∇h|p dx

≤ C−
∫

BR/2(x0)

∫ 1

0

∫ 1

0

|∇h+ st(∇w −∇h)|p−2 ds t dt |∇w −∇h|2 dx

≤ C−
∫

BR/2(x0)

∫ 1

0

∫ 1

0

∇2ep(∇h+ st(∇w −∇h)) ds t dt (∇w −∇h,∇w −∇h) dx

= C−
∫

BR/2(x0)

[
ep(∇w) − ep(∇h) −∇ep(∇h)(∇w −∇h)

]
dx

= C−
∫

BR/2(x0)

[
ep(∇w) − ep(∇h)

]
dx

= C

(
−
∫

BR/2(x0)

[
ep(∇w) − f(∇w)

]
dx

+−
∫

BR/2(x0)

[
f(∇w)− f(∇h)

]
dx+−

∫

BR/2(x0)

[
f(∇h)− ep(∇h)

]
dx

)

=: C(I + II + III)

Taking into account supBR/2(x0) |∇w| ≤ µ1/κdηd(µ) ≤ ηd(µ), we get from (2.3) and

(5.1)

I ≤ µE∗(w,BR/2(x0)) .

Moreover, by Definition 5.1 (recall in particular the choice of the constant CA) and
(4.23) the function h is in the admissible class Aq

w on BR/2(x0) and we get

II ≤ CΨ(w,BR/2(x0)) .

Finally, we will estimate III taking advantage of the integrability improvement
in (4.22). Splitting the domain of integration, and then using (5.2), (2.3), (5.1),
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(4.24), (4.22) we have

III ≤ C

Rn

[ ∫

{|∇h|<ηd(µ)}

|f(∇h)− ep(∇h)| dx +

∫

{|∇h|≥ηd(µ)}

|∇h|p dx
]

≤ C

[
µ−
∫

BR/2(x0)

|∇h|p dx+ ηd(µ)
−κd−

∫

BR/2(x0)

|∇h|p+κd dx

]

≤ C

[
µ−
∫

BR/2(x0)

|∇w|p dx+ ηd(µ)
−κd−

∫

BR/2(x0)

|∇w|p+κd dx

]
.

Remembering supBR/2(x0) |∇w| ≤ µ1/κdηd(µ) we arrive at

III ≤ CµE∗(w,BR/2(x0)) ,

and consequently we have

−
∫

BR/2(x0)

|∇w −∇h|p dx ≤ Cµ
[
E∗(w,BR/2(x0)) + µ−1Ψ(w,BR/2(x0))

]
.

Using this last estimate on the right-hand side of (5.6) we arrive at the claim. �

The case p < 2 in Proposition 5.2: The statement of the proposition holds analo-
gously for p < 2 when we just replace the occurrence of τ−(n+γp)

p
2 with τ−2(n+γp).

In the proof we modify the last step of (5.3) by usage of the inequality

(5.7) Wξ0
p (z) ≤ Wξ

p(z) + |ξ| p2
√
Wξ

p(z) for z, ξ, ξ0 ∈ R
Nn

(for |ξ0| ≥ |ξ| this estimate holds trivially, while for |ξ0| ≤ |ξ| one gets it elemen-
tarily via Wξ0

p (z) ≤ (|ξ0|+|z|)p−1|z| ≤ (|ξ|+|z|)p−1|z| = Wξ
p(z)+(|ξ|+|z|)p−2|ξ||z|).

Applying (5.7) pointwisely to (∇w−∇h,∇w, (∇w)B2τR(x0)) in place of (z, ξ, ξ0)
and reasoning as before, we find variants of (5.4) and (5.6), where — apart from
the exponents of τ — only the last integrals have the slightly different shape
−
∫
B2τR(x0)

W∇w
p (∇w−∇h) dx. Starting the following estimates from the comparable

quantity −
∫
B2τR(x0)

(|∇w|+ |∇h|)p−2|∇w−∇h|2 dx, the remainder of the proof works

just as before. �

Remark 5.3. In some cases not all the estimates of Theorem 4.18 are really nec-
essary for the proof of Proposition 5.2. Indeed, if we have f(z) ≤ ep(z) for all
z ∈ R

Nn, then the term III in the above proof is obviously non-positive, and thus
(4.22) is not needed. For instance, this happens for f = m1

p or f = m̃1
p. Moreover,

(4.23) is much simpler in the case q ≤ p∗, and it is not needed at all in the case
q ≤ n

n−1 of α-minimizers; compare the end of Section 4.8 and the comment after
Definition 5.1, respectively.

Proposition 5.4. For u ∈ BV(BR(x0))
N set

w := uλ

with λ from the first alternative in Lemma 4.19. Then for every χ > 0 and every
0 < τ ≤ 1

4 there exists some constant ε∗d ∈ (0, 1], depending only on n, N , p, ηd, χ,
and τ , such that for all Q ≥ 0 the conditions

χ|(Du)BR(x0))|p ≤ Φ(u,BR(x0)) +Q ≤ ε∗d ,

together imply

Φ(w,B2τR(x0)) ≤ Cτγp

[
Φ(u,BR(x0)) +Q+ (ε∗d)

−1Ψ(w,BR/2(x0))
]
,

where C depends only on n, N , p, Γ, σ, and χ.
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Here, the choice of λ and the bound Φ(u,BR(x0)) ≤ ε∗d ≤ 1 guarantee in particu-
lar that λ ≤ R/2 holds and hence that w is defined and of class W1,∞ on BR/2(x0).
Similarly, λ ≤ R/2 is also ensured in Propositions 5.7 and 5.8 below.

Proof. We first assume p ≥ 2. Setting

ξ0 := (Du)BR(x0)

we have by assumption

Φ(u,BR(x0)) ≤ ε∗d ≤ 1 and |ξ0| ≤ (ε∗d/χ)
1
p , .

Thus, assuming

(5.8) (ε∗d/χ)
1
p ≤ 1

2

the assumptions of Lemma 4.19 (first alternative) are satisfied, the resulting esti-
mates are available, and in particular we have

sup
BR/2(x0)

|∇w| ≤ |ξ0|+ C2Φ(u,BR(x0))
1
2p ≤ (ε∗d/χ)

1
p + C2(ε

∗
d)

1
2p

with a positive constant C2 depending only on n and p. Assuming also

(5.9) (ε∗d/χ)
1
p + C2(ε

∗
d)

1
2p ≤ µ1/κdηd(µ)

with 0 < µ ≤ 1 to be chosen later we may therefore apply Proposition 5.2. We infer

Φ(w,B2τR(x0)) ≤ Cτγp(1 + τ−(n+γp)
p
2 µ)

[
E∗(w,BR/2(x0)) + µ−1Ψ(w,BR/2(x0))

]
.

By the energy estimate of Lemma 4.19 this reduces to

Φ(w,B2τR(x0)) ≤ Cτγp(1 + τ−(n+γp)
p
2 µ)

[
E(u,BR(x0)) + µ−1Ψ(w,BR/2(x0))

]
,

where via (4.6) and our assumption we control the energy term

E(u,BR(x0)) = −
∫

BR(x0)

Ap(W
0
p(Du))

≤ C

[
Ap(W

ξ0
p (ξ0)) +−

∫

BR(x0)

Ap(W
ξ0
p (Du− ξ0))

]

≤ C
[
|ξ0|p +Φ(u,BR(x0))

]

≤ C(χ−1+1)[Φ(u,BR(x0)) +Q] .

Connecting the last two estimates we come out with

Φ(w,B2τR(x0))

≤ C(χ−1+1)τγp(1 + τ−(n+γp)
p
2 µ)

[
Φ(u,BR(x0)) +Q+ µ−1Ψ(w,BR/2(x0))

]
.

Now we first fix

µ = τ (n+γp)
p
2 ,

and then we choose ε∗d such that the smallness assumptions (5.8) and (5.9) are valid
and we moreover have

ε∗d ≤ µ .

In view of these choices we conclude

Φ(w,B2τR(x0)) ≤ C(χ−1+1)τγp

[
Φ(u,BR(x0)) +Q+ (ε∗d)

−1Ψ(w,BR/2(x0))
]
.
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Finally, in the case p < 2 all arguments remain valid, if — according to the
changes in (4.26) and Proposition 5.2 — we just replace the occurrences of the
exponent 1

2p with 1
4 and those of (n+γp)

p
2 with 2(n+γp). �

5.1.2. Non-degenerate case.

Proposition 5.5. Fix p > 2 and κn := p − 2 > 0. If w ∈ W1,∞(BR/2(x0))
N

satisfies

(5.10) sup
BR/2(x0)

|∇w − ξ0| ≤ µ1/κnηn(µ)|ξ0|

for a given µ ∈ (0, 1] and some ξ0 ∈ R
Nn with |ξ0| < 1

2σ, then there holds

Φ(w,B2τR(x0))

≤ Cτ2(1 + τ−n−2µ)

[
|ξ0|p−2−

∫

BR/2(x0)

|∇w − ξ0|2 dx+ µ−1Ψ(w,BR/2(x0))

]

for all 0 < τ ≤ 1
4 , where C depends only on n, N , p, Γ, and σ.

Proof. We may assume ξ0 6= 0 since otherwise w is affine and the proposition holds
trivially. In view of (H2) the symmetric bilinear form B := ∇2f(ξ0) is positive with
ellipticity ratio controlled by σ−2. By standard results we can thus find a weak
solution h ∈ w + W1,2

0 (BR/2(x0))
N of the linear system of second-order partial

differential equations associated with B, that is some function h satisfying (4.16).
Consequently, all the estimates of Proposition 4.17 are available for h. Eventually
we will also use these estimates with ∇h replaced by (∇h− ξ0); this is allowed, as
h minus an affine function solves the same system. From (4.2) and the observation
supBR/2(x0) |∇w| ≤ |ξ0|+ ηn(µ)|ξ0| ≤ 2|ξ0| we now deduce

(5.11) Φ(w,B2τR(x0))

≤ 1

p
Φ∗(w,B2τR(x0))

≤ C

(
sup

BR/2(x0)

|∇w|
)p−2

−
∫

B2τR(x0)

|∇w − (∇w)B2τR(x0)|2 dx

≤ C|ξ0|p−2

[
−
∫

B2τR(x0)

|∇h− (∇h)B2τR(x0)|2 dx+−
∫

B2τR(x0)

|∇w −∇h|2 dx
]
.

Moreover, we have

−
∫

BR/2(x0)

|∇h− (∇h)BR/2(x0)|2 dx

≤ −
∫

BR/2(x0)

|∇h− ξ0|2 dx

≤ 2

[
−
∫

BR/2(x0)

|∇w − ξ0|2 dx+ −
∫

BR/2(x0)

|∇h−∇w|2 dx
]
.
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Combining the last two estimates with (4.17), and exploiting τ ≤ 1
4 we end up with

(5.12) Φ(w,B2τR(x0)) ≤ Cτ2
[
|ξ0|p−2−

∫

BR/2(x0)

|∇w − ξ0|2 dx

+ τ−n−2|ξ0|p−2−
∫

BR/2(x0)

|∇w −∇h|2 dx
]
.

In the remainder of the proof we will be concerned with an estimate for the last
term on the right-hand side. Exploiting (H2), (4.16), and h−w ∈ W1,2

0 (BR/2(x0))
N

we get

|ξ0|p−2−
∫

BR/2(x0)

|∇w −∇h|2 dx

≤ 1

σ
−
∫

BR/2(x0)

∇2f(ξ0)(∇w −∇h,∇w −∇h) dx

=
2

σ

[
−
∫

BR/2(x0)

1
2∇

2f(ξ0)(∇w − ξ0,∇w − ξ0) dx

−−
∫

BR/2(x0)

1
2∇

2f(ξ0)(∇h− ξ0,∇h− ξ0) dx

]

=
2

σ

[
−
∫

BR/2(x0)

[
1
2∇

2f(ξ0)(∇w−ξ0,∇w−ξ0)+∇f(ξ0)(∇w−ξ0)+f(ξ0)−f(∇w)
]
dx

+−
∫

BR/2(x0)

[
f(∇w)−f(∇h)

]
dx

+−
∫

BR/2(x0)

[
f(∇h)−f(ξ0)−∇f(ξ0)(∇h−ξ0)− 1

2∇
2f(ξ0)(∇h−ξ0,∇h−ξ0)

]
dx

]

=:
2

σ

[
I + II + III

]
.

Integrating, taking into account |∇w−ξ0| ≤ ηn(µ)|ξ0| and |ξ0| < 1
2σ, and employing

(H4) we control the first term via

I = −
∫

BR/2(x0)

∫ 1

0

∫ 1

0

[
∇2f(ξ0)−∇2f(ξ0+st(∇w−ξ0))

]
ds t dt (∇w−ξ0,∇w−ξ0) dx

≤ Cµ|ξ0|p−2−
∫

BR/2(x0)

|∇w − ξ0|2 dx .

Moreover, by Definition 5.1 (in particular the choice of CA) and (4.19) we have
h ∈ Aq

w and

II ≤ CΨ(w,BR/2(x0))

for the second term. Writing [. . .] for the integrand in the integral III we next
decompose

III =
1

L n(BR/2)

∫

{|∇h−ξ0|<ηn(µ)|ξ0|}

[. . .] dx

+
1

L n(BR/2)

∫

{|∇h−ξ0|≥ηn(µ)|ξ0|}

[. . .] dx

=: III1 + III2
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For III1 we argue as we did before in order to estimate I and we exploit (4.18)
(with exponent 2) coming out with

III1 ≤ Cµ|ξ0|p−2−
∫

BR/2(x0)

|∇h− ξ0|2 dx ≤ Cµ|ξ0|p−2−
∫

BR/2(x0)

|∇w − ξ0|2 dx .

In order to control III2 we first use (4.9), (H2), and (4.2) to control the integrand
by Wξ0

p (∇h − ξ0). Then we take advantage from (4.18) (this time with exponent

p) and finally conclude via the assumption |∇w − ξ0| ≤ µ1/κnηn(µ)|ξ0|. We derive

III2 ≤ C

L (BR/2)

∫

{|∇h−ξ0|≥ηn(µ)|ξ0|}

Wξ0
p (∇h− ξ0) dx

≤ Cηn(µ)
2−p−

∫

BR/2(x0)

|∇h− ξ0|p dx

≤ Cηn(µ)
2−p−

∫

BR/2(x0)

|∇w − ξ0|p dx

≤ Cµ
p−2
κn |ξ0|p−2−

∫

BR/2(x0)

|∇w − ξ0|2 dx .

Recalling κn = p−2 and collecting the above estimates we have

|ξ0|p−2−
∫

BR/2(x0)

|∇w −∇h|2 dx

≤ Cµ

[
|ξ0|p−2−

∫

BR/2(x0)

|∇w − ξ0|2 dx+ µ−1Ψ(w,BR/2(x0))

]
,

and plugging this into (5.12) we conclude the proof. �

The case p ≤ 2 in Proposition 5.5: The statement of the proposition remains true
for p ≤ 2 if we replace κn by any positive constant, but in order to preserve the
stated dependency of C let us assume in the following that κn > 0 is fixed depending
only on n, N , p, Γ, and σ.

In the proof of the proposition the estimate (5.11) does not follow analogously,
but at least the resulting estimate remains true, as we have

Φ∗(w,B2τR(x0)) ≤
(

inf
BR/2(x0)

|∇w|
)p−2

−
∫

B2τR(x0)

|∇w − (∇w)B2τR(x0)|2 dx

and infBR/2(x0) |∇w| ≥ |ξ0| − ηn(µ)|ξ0| ≥ 1
2 |ξ0|. Otherwise the proof remains un-

changed apart from the following modification of the estimate for III2. Similar as
above we control the integrand first by Wξ0

p (∇h − ξ0) ≤ |ξ0|p−2|∇h − ξ0|2. Then,

via (4.18) (with exponent 2+κn) and the assumption |∇w − ξ0| ≤ µ1/κnηn(µ)|ξ0|,
we infer

III2 ≤ C

L (BR/2)

∫

{|∇h−ξ0|≥ηn(µ)|ξ0|}

|ξ0|p−2|∇h− ξ0|2 dx

≤ Cηn(µ)
−κn |ξ0|p−2−κn−

∫

BR/2(x0)

|∇h− ξ0|2+κn dx

≤ Cηn(µ)
−κn |ξ0|p−2−κn−

∫

BR/2(x0)

|∇w − ξ0|2+κn dx

≤ Cµ|ξ0|p−2−
∫

BR/2(x0)

|∇w − ξ0|2 dx . �
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Remark 5.6. The previous reasoning for the case p ≤ 2 just requires a W1,2+κn-
estimate for h, possibly with arbitrarily small κn. The proof of such an estimate
is in fact simpler (one may deduce it via Gehring’s lemma) than the derivation of
(4.18) for the full range of exponents, and thus it would be desirable to get by with
small κn in all cases. However, for p > 2 I have not been able to avoid the usage of
the slightly harder W1,p-estimate with the given exponent p from the assumptions on
f . Furthermore, turning to the estimate (4.19) we notice that it is much simpler in
the case q ≤ 2∗, and that it is not required at all for q ≤ n

n−1 ; compare Remark 5.3.

Proposition 5.7. For u ∈ BV(BR(x0))
N with 0 < |(Du)BR(x0)| < 1

2σ we set

w := uλ

with λ from the second alternative in Lemma 4.19. Then for every 0 < τ ≤ 1
4 there

exists some constant ε∗n ∈ (0, 1], depending only on n, N , p, Γ, σ, ηn, and τ , such
that the condition

Φ(u,BR(x0)) ≤ ε∗n|(Du)BR(x0))|p

implies

Φ(w,B2τR(x0)) ≤ Cτ2
[
Φ(u,BR(x0)) + (ε∗n)

−1Ψ(w,BR/2(x0))
]
,

where C depends only on n, N , p, Γ, and σ.

Proof. Setting

ξ0 := (Du)BR(x0)

we have by assumption

|ξ0| ≤
1

2
σ ≤ 1

2
and Φ(u,BR(x0)) ≤ ε∗n|ξ0|p ≤ |ξ0|p .

Thus, we may deduce from Lemma 4.19 (second alternative)

sup
BR/2(x0)

|∇w − ξ0| ≤ C3

(
|ξ0|−pΦ(u,BR(x0))

) 1
2max{p,2} |ξ0| ≤ C3(ε

∗
n)

1
2 max{p,2} |ξ0|

with a positive constant C3 depending only on n and p. Assuming

(5.13) C3(ε
∗
n)

1
2 max{p,2} ≤ µ1/κnηn(µ)

with 0 < µ ≤ 1 to be chosen later we may therefore apply Proposition 5.5. In the
resulting estimate we replace the term

|ξ0|p−2−
∫

BR/2(x0)

|∇w − ξ0|2 dx by −
∫

BR/2(x0)

Wξ0
p (∇w − ξ0) dx

(for p ≥ 2 this is trivially possible, while for p < 2 it relies on (5.10) which we have
just verified), and thus we infer

Φ(w,B2τR(x0))

≤ Cτ2(1 + τ−n−2µ)

[
−
∫

BR/2(x0)

Wξ0
p (∇w − ξ0) dx+ µ−1Ψ(w,BR/2(x0))

]
.

By the excess estimate of Lemma 4.19 the preceding inequality reduces to

Φ(w,B2τR(x0)) ≤ Cτ2(1 + τ−n−2µ)
[
Φ(u,BR(x0)) + µ−1Ψ(w,BR/2(x0))

]]
.

Now we first fix

µ = τn+2 ,
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and then we choose ε∗n such that the smallness assumption (5.13) is valid and we
moreover have

ε∗n ≤ µ .

In view of these choices we finally conclude

Φ(w,B2τR(x0)) ≤ Cτ2
[
Φ(u,BR(x0)) + (ε∗n)

−1Ψ(w,BR/2(x0))
]
. �

5.2. Estimates for almost-minimizers.

5.2.1. General minimality estimates. In this subsection we follow the arguments of
[8, Section 5]. However, though the basic ideas remain unchanged, the generaliza-
tion to Lq-α-minimizers, the different shape of our excess, and the refined smoothing
procedure lead to several non-trivial changes. Therefore, we give a rereading of the
arguments from [8, Section 5] in our setting. Exactly as in Lemma 4.19 we shall
partially provide two alternatives, where the first alternative always corresponds to
the first choice of λ in Lemma 4.19, and the second alternative corresponds to the
second choice.

Proposition 5.8. Consider an Lq-α-minimizer u ∈ BVloc(Ω)
N of F at x0 ∈ Ω,

and set

w := uλ

with the choices of λ from Lemma 4.19, where we assume (Du)BR(x0) 6= 0 in case

of the second alternative. Then for every 0 < τ ≤ 1
4 and every 0 < ε ≤ 1 there

exists some 0 < δ ≤ 1, depending only on n, N , p, Γ, σ, ω, τ , and ε, such that for
every ball BR(x0) ⊂ Ω the smallness condition

{
Φ(u,BR(x0)) ≤ δ

Φ(u,BR(x0)) ≤ δ|(Du)BR(x0)|p

}

together with the bound

|(Du)BR(x0)| ≤
1

2
σ

implies the estimates

Φ(u,BτR(x0)) ≤ C
[
τ−nRα +Φ(w,B2τR(x0))

]
+ εΦ(u,BR(x0)) ,

Ψ(w,BR/2(x0)) ≤ CRα + εΦ(u,BR(x0)) ,

where C depends only on n, N , p, Γ, σ, and ω.

Proof. We may assume Φ(u,BR(x0)) > 0, since otherwise u is affine on BR(x0) and
equals w on BR−λ(x0) so that the claims are trivially valid. For radii

τR < r < 2τR ≤ R/2 < s < t ≤ R− λ

to be fixed later we set

ξ0 := (Du)BR(x0) and ξ := (∇w)Br(x0) ,

and to avoid to many distinctions of cases we abbreviate

Φ̃ :=

{
Φ(u,BR(x0))

|ξ0|−pΦ(u,BR(x0))

}
,



DEGENERATE VARIATIONAL PROBLEMS IN BV 37

depending on the alternative we are considering. We note 0 < Φ̃ ≤ δ, and we record
that by Lemma 4.19 (using also |ξ0| ≤ σ ≤ 1 in case of the second alternative) there
holds

|ξ − ξ0| ≤ −
∫

Br(x0)

|∇w − ξ0| dx ≤ C4Φ̃
1

2 max{p,2}

with some positive constant C4 depending only on n and p. Imposing the smallness
condition

(5.14) C4δ
1

2 max{p,2} <
1

2
σ

we consequently have

|ξ − ξ0| <
1

2
σ and |ξ| < σ ≤ 1

4
and we may introduce the auxiliary non-negative convex function fξ by

fξ(z) := f(z)− f(ξ)−∇f(ξ)(z − ξ) for z ∈ R
Nn .

Then Lemma 4.14 and (4.9) give

(5.15) Φ(u,BτR(x0)) ≤ C−
∫

BτR(x0)

Ap(W
ξ
p(Du − ξL n)) ≤ C

(τR)n

∫

Br(x0)

fξ(Du) .

Exploiting fξ ≥ 0, the fact that u is Lq-α-minimizing for F at x0, and
∫
Bt(x0)

Dϕ = 0

we have

(5.16)

∫

Br(x0)

fξ(Du)

≤
∫

Bt(x0)

fξ(Du)−
∫

Bs(x0)\Br(x0)

fξ(Du)

≤ ω(M)tαL
n(Bt) +

∫

Bt(x0)

fξ(Du+Dϕ) −
∫

Bs(x0)\Br(x0)

fξ(Du)

for all ϕ ∈ BV(Ω)N with sptϕ ⊂ Bt(x0) and all M ∈ [0,∞) with (2.6) and (2.7).
Postponing the specification of M to the end of this proof we next choose

ϕ = η(w − u) ,

where η is a smooth and compactly supported function on Bt(x0) with

1Bs(x0) ≤ η ≤ 1B(s+t)/2(x0) and |∇η| ≤ 3/(t−s) on Bt(x0) .

Then the right-hand side of (5.16) equals T + I + II + III, where we have set

T := ω(M)tαL
n(Bt) ,

I :=

∫

Br(x0)

fξ(∇w) dx ,

II :=

∫

Bs(x0)\Br(x0)

fξ(∇w) dx −
∫

Bs(x0)\Br(x0)

fξ(Du) ,

III :=

∫

Bt(x0)\Bs(x0)

fξ((1−η)Du + η∇wL
n + (w−u)⊗∇ηL n) .

Clearly, we have
T ≤ CRn+γp

with a constant C depending on n, M , and ω, and by (4.9) and the definition of ξ
there holds

I ≤ CrnΦ(w,Br(x0)) .



38 THOMAS SCHMIDT

we next derive estimates for II and III. Here, by (4.9) — once more — and
Lemma 4.4 we may split

III ≤ C

∫

Bt(x0)\Bs(x0)

Ap(W
ξ
p((1−η)(Du−ξL n)+η(∇w−ξ)L n+(w−u)⊗∇ηL n))

≤ C

[ ∫

Bt(x0)\Bs(x0)

Ap(W
ξ
p(Du − ξL n)) +

∫

Bt(x0)\Bs(x0)

Ap(W
ξ
p(∇w − ξ)) dx

+

∫

Bt(x0)\Bs(x0)

Ap

(
Wξ

p

(u− w

t− s

))
dx

]

=: C
[
III1 + III2 + III3

]
.

Recalling w = uλ we apply the Jensen inequality of Lemma 4.12 with the convex
function of Lemma 4.7. Using also a standard estimate for mollifications we infer

III2 ≤
∫

Bt+λ(x0)\Bs−λ(x0)

Ap(W
ξ
p(Du − ξL n)) .

When we assume

t− s ≥ λ

(which will be satisfied by the choice of radii to come), we can also use the Poincaré
inequality of Lemma 4.22, with x 7→ u(x)−ξx in place of u, to get

III3 ≤
∫

Bt+λ(x0)\Bs−λ(x0)

Ap(W
ξ
p(Du − ξL n)) .

Consequently, we may control

III ≤ C

∫

Bt+λ(x0)\Bs−λ(x0)

Ap(W
ξ
p(Du− ξL n)) .

We will now determine good radii r, s, and t. To this end we first choose

K := ⌊Φ̃− 1
4n /8⌋ − 1

(here, ⌊x⌋ denotes the integer with x−1 < ⌊x⌋ ≤ x). Imposing the smallness
condition

(5.17) δ ≤ 16−4n

we ensure K ≥ 1 and may thus deduce from Lemma 4.21 that for every k ∈
{1, 2, 3, . . . ,K} there exist radii rk and sk with

τR < rk < 2τR

and

R/2 + (4k − 1)Φ̃
1
4nR < sk < R/2 + 4kΦ̃

1
4nR

(note that by choice of K the right-hand bound is at most R− 4Φ̃
1
4nR and is thus

smaller than R− λ = R− 1
2 Φ̃

1
2nR) such that we may estimate

(5.18)

∫

Bsk
(x0)\Brk

(x0)

fξ(∇uλ) dx−
∫

Bsk
(x0)\Brk

(x0)

fξ(Du)

≤
(
2λ

τR
+

2λ

Φ̃
1
4nR

)∫

BR(x0)

fξ(Du) .

Via Lemma 4.20 we choose further radii tk with

sk + Φ̃
1
4nR < tk < sk + 2Φ̃

1
4nR
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(again that the right-hand bound is always smaller than R − λ) such that the
estimate

(5.19)

∫

Btk
(x0)

fξ(∇uλ) dx −
∫

Btk
(x0)

fξ(Du) ≤ 2λ

Φ̃
1
4nR

∫

BR(x0)

fξ(Du)

is valid. Note that (5.19) will only be needed at another point of the proof, while

for our momentary purposes it would also suffice to define tk simply as sk + Φ̃
1
4nR.

Anyway, recalling 2λ = Φ̃
1
2nR ≤ Φ̃

1
4nR we observe that the sets

Btk+λ(x0) \ Bsk−λ(x0) with k ∈ {1, 2, 3, . . . ,K}

are pairwise disjoint in BR(x0). Thus, there is some k0 ∈ {1, 2, 3, . . . ,K} such that
there holds

∫

Btk0
+λ(x0)\Bsk0

−λ(x0)

Ap(W
ξ
p(Du − ξL n)) ≤ 1

K

∫

BR(x0)

Ap(W
ξ
p(Du − ξL n)) .

Fixing s := sk0 and t := tk0 we have t− s ≥ λ as required before and for later use

we record even t− s ≥ 2λ. In view of K ≥ 1
3 (K+2) ≥ Φ̃− 1

4n /24 this leaves us with
the estimate

III ≤ C

K

∫

BR(x0)

Ap(W
ξ
p(Du − ξL n)) ≤ CΦ̃

1
4n

∫

BR(x0)

Ap(W
ξ
p(Du − ξL n)) .

Fixing also r := rk0 and inserting λ = 1
2 Φ̃

1
2nR into (5.18) we moreover have

II ≤ (τ−1Φ̃
1
4n + 1)Φ̃

1
4n

∫

BR(x0)

fξ(Du)

≤ C(τ−1Φ̃
1
4n + 1)Φ̃

1
4n

∫

BR(x0)

Ap(W
ξ
p(Du − ξL n)) ,

where we used also (4.9). Combining the final estimates for T , I, II, and III with
(5.15) and (5.16) we arrive at

(5.20) Φ(u,BτR(x0)) ≤ C(τR)−n

[
Rn+α + rnΦ(w,Br(x0))

+ (τ−1Φ̃
1
4n + 1)Φ̃

1
4n

∫

BR(x0)

Ap(W
ξ
p(Du − ξL n))

]

For the second term on the right-hand side of (5.20) Lemma 4.14 yields

(5.21)
rnΦ(w,Br(x0)) ≤ C

∫

Br(x0)

Ap(W
(∇w)B2τR(x0)

p (∇w − (∇w)B2τR(x0))) dx

≤ C(2τR)nΦ(w,B2τR(x0)) ,

and our next aim is to control the last term on the right-hand side of (5.20) in
terms of the excess Φ(u,BR(x0)) (which actually means to pass from ξ to ξ0 in this
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term). To this end we estimate via (4.9)

−
∫

BR(x0)

Ap(W
ξ
p(Du − ξL n))

≤ C−
∫

BR(x0)

(
f(Du)− f(ξ)L n −∇f(ξ)(Du − ξL n)

)

= C

[
−
∫

BR(x0)

(
f(Du)− f(ξ0)L

n −∇f(ξ0)(Du − ξ0L
n)
)

+
(
f(ξ0) +∇f(ξ0)(ξ − ξ0)− f(ξ)

)

+
(
∇f(ξ0)−∇f(ξ)

)
−
∫

BR(x0)

(Du − ξL n)

]
.

For two terms on the right-hand side we easily derive

−
∫

BR(x0)

(
f(Du)− f(ξ0)L

n −∇f(ξ0)(Du − ξ0L
n)
)
≤ CΦ(u,BR(x0))

by (4.9) and the definition of ξ0 and

f(ξ0) +∇f(ξ0)(ξ − ξ0)− f(ξ) ≤ 0

by the convexity of f . To estimate the remainder term we use in turn the bounds
|ξ0| ≤ 1

2σ ≤ 1
8 and |ξ| ≤ σ ≤ 1

4 , (H2), Lemma 4.2, the definition of ξ, the Jensen
inequality from Lemma 4.12, and the definition of ξ0. In this way we infer

(
∇f(ξ0)−∇f(ξ)

)
−
∫

BR(x0)

(Du − ξL n)

=

∫ 1

0

∇2f(ξ + s(ξ0 − ξ)) ds (ξ0 − ξ, ξ0 − ξ)

≤ C

∫ 1

0

|ξ + s(ξ0 − ξ)|p−2 ds |ξ − ξ0|2

≤ CWξ0
p (ξ − ξ0)

≤ CAp(W
ξ0
p (ξ − ξ0))

= CAp

(
Wξ0

p

(
−
∫

Br(x0)

(Du − ξ0L
n)

))

≤ C−
∫

Br(x0)

Ap(W
ξ0
p (Du − ξ0L

n))

≤ C
(R
r

)n

Φ(u,BR(x0))

and recalling τR < r < R we have established

(5.22) −
∫

BR(x0)

Ap(W
ξ
p(Du − ξL n)) ≤ Cτ−nΦ(u,BR(x0)) .

Plugging (5.21) and (5.22) into (5.20) we conclude

Φ(u,BτR(x0))

≤ C5

[
τ−nRα +Φ(w,B2τR(x0)) + (τ−1Φ̃

1
4n + 1)τ−2nΦ̃

1
4nΦ(u,BR(x0))

]
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with a positive constant C5 depending only on n, p, Γ, σ, M , and ω. Imposing still
another smallness condition, namely

(5.23) C5(τ
−1δ

1
4n + 1)τ−2nδ

1
4n ≤ ε

this estimate indeed reduces to

Φ(u,BτR(x0)) ≤ C
[
τ−nRα +Φ(w,B2τR(x0))

]
+ εΦ(u,BR(x0))

and we arrive at the first claim of the proposition.
To establish the second claim we consider an arbitrary number 0 < κ ≤ 1. Then

by the definition of Ψ there is a function w̃ ∈ Aq
w such that we have

(5.24) (R/2)nΨ(w,BR/2(x0)) ≤ (R/2)nκ+ F [w,BR/2(x0)]− F [w̃,BR/2(x0)] .

Using the notation introduced above and in particular the radii R/2 < s < t < R−λ
we rewrite this inequality as

(R/2)nΨ(w,BR/2(x0)) ≤ (R/2)nκ+

∫

Bt(x0)

fξ(∇w) dx −
∫

Bt(x0)

fξ(∇w̃) dx ,

where we understand w̃ = w outside BR/2(x0). Coming back to the cut-off η
between Bs(x0) and Bt(x0), setting

ϕ̃ := η(w̃ − u)

and exploiting the Lq-α-minimality of u once more, we arrive at

(R/2)nΨ(w,BR/2(x0))

≤ (R/2)nκ+ ω(M)tαL
n(Bt) +

∫

Bt(x0)

fξ(∇w) dx −
∫

Bt(x0)

fξ(Du)

+

∫

Bt(x0)

fξ(Du +Dϕ̃)−
∫

Bt(x0)

fξ(∇w̃) dx

≤ (R/2)nκ+ T + ĨI + III

for all M satisfying (2.6) and (2.7) with ϕ̃ in place of ϕ. Here we have set

ĨI :=

∫

Bt(x0)

fξ(∇w) dx −
∫

Bt(x0)

fξ(Du) ,

while T = ω(M)tαL n(Bt) and

III =

∫

Bt(x0)\Bs(x0)

fξ((1 − η)Du + η∇wL
n + (w − u)⊗∇ηL n)

denote precisely the same terms as before. We now essentially follow the arguments

used for the first claim. Bounding ĨI via (5.19) (recall t = tk0) in place of (5.18)
we deduce

(R/2)nΨ(w,BR/2(x0)) ≤ (R/2)nκ+C

[
Rn+α + Φ̃

1
4n

∫

BR(x0)

Ap(W
ξ
p(Du− ξL n))

]
.

Combined with (5.22) this implies

Ψ(w,BR/2(x0)) ≤ κ+ C6

[
Rα + τ−nΦ̃

1
4nΦ(u,BR(x0))

]

with some positive constant C6 depending only on n, p, Γ, σ, M , and ω. Sending
κ → 0 and assuming

(5.25) C6τ
−nδ

1
4n ≤ ε
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the second claim of the proposition is verified.
To end the proof it remains to implement the choices of M and δ postponed

before. To this aim we first collect a couple of related bounds. Indeed, recalling
R/2 < t < R we first notice

(5.26) −
∫

Bt(x0)

|Du| ≤ 2n|(Du)BR(x0)| ≤ 2n−1σ .

Now we essentially repeat the arguments which we used for the term III, but
simply with the modulus as the convex function. Keeping in mind ϕ = η(w−u)
with 0 ≤ η ≤ 1B(s+t)/2(x0) and t− s ≥ 2λ we thus obtain

(5.27) −
∫

Bt(x0)

|Dϕ|

≤ 1

L n(Bt)

[ ∫

Bt(x0)

|Du|+
∫

Bt−λ(x0)

|∇w| dx + 5

∫

Bt−λ(x0)\Bs(x0)

∣∣∣ u−w

t− λ− s

∣∣∣dx
]

≤ 5−
∫

Bt(x0)

|Du|

≤ 2n−15σ .

Furthermore, recalling w = uλ we have

(5.28)
‖ϕ‖Lq(Bt(x0))N ≤ ‖w − uBt(x0)‖Lq(Bt−λ(x0))N + ‖u− uBt(x0)‖Lq(Bt(x0))N

≤ 2‖u− uBt(x0)‖Lq(Bt(x0))N .

We also provide similar estimates for ϕ̃ instead of ϕ. Using |z| ≤ 1 + Ap(|z|p),
(4.9), (5.1), (5.24), κ ≤ 1 and the bound supBR/2(x0) |∇w| ≤ C (which results from

Lemma 4.19 and the assumptions of the proposition) we first get

−
∫

BR/2(x0)

|∇w̃| dx ≤ 1 +−
∫

BR/2(x0)

Ap(|∇w̃|p) dx

≤ 1 + C−
∫

BR/2(x0)

f(∇w̃) dx

≤ 1 + C

(
κ+−

∫

BR/2(x0)

f(∇w) dx

)
≤ C .

As ϕ̃ = w̃−u holds on BR/2(x0) and ϕ̃ equals ϕ outside BR/2(x0), in combination
with (5.26) and (5.27) we infer

(5.29) −
∫

Bt(x0)

|Dϕ̃| ≤ −
∫

BR/2(x0)

|∇w̃| dx+−
∫

Bt(x0)

|Du|+−
∫

Bt(x0)

|Dϕ| ≤ C7 ,

where the positive constant C7 depends only on n, p, Γ, and σ. Finally, we exploit
w̃ ∈ Aq

w, the choice of the admissible class Aq
w in Definition 5.1, and Sobolev-

Poincaré inequalities (remember that w̃−w has zero boundary values on BR/2(x0)).
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Relying also the above observations we then get

(5.30) ‖ϕ̃‖Lq(Bt(x0))N

≤ ‖w̃ − w‖Lq(BR/2(x0))N + ‖ϕ‖Lq(Bt(x0))N

≤ ‖w̃ − w̃BR/2(x0)‖Lq(BR/2(x0))N + (R/2)
n
q |(w̃ − w)BR/2(x0)|

+ ‖w − wBR/2(x0)‖Lq(BR/2(x0))N + ‖ϕ‖Lq(Bt(x0))N

≤ C(R/2)1+
n
q

[
−
∫

BR/2(x0)

|∇w̃| dx+ sup
BR/2(x0)

|∇w|
]
+ ‖ϕ‖Lq(Bt(x0))N

≤ C8

[
t1+

n
q + ‖u− uBt(x0)‖Lq(Bt(x0))N

]

with a positive constant C8 depending only on n, N , p, Γ, and σ. In summary,
from (5.28), (5.29), and (5.30) we infer that all the bounds in (2.6) and (2.7), which
we used in testing the Lq-α-minimizing property of u against u+ ϕ and u+ ϕ̃, are
indeed valid on Bt(x0) if we set M := max{2, C7, C8}. At this stage we finally fix
0 < δ ≤ 1 small enough that all the imposed conditions (5.14), (5.17), (5.23), and
(5.25) are satisfied. �

5.2.2. Degenerate case. We combine Proposition 5.4 and Proposition 5.8.

Corollary 5.9. Suppose that u ∈ BVloc(Ω)
N is an Lq-α-minimizer of F at x0 ∈ Ω.

Then for every 0 < β < γp and every χ > 0 there exist numbers 0 < τd ≤ 1
4 and

0 < εd ≤ 1 such that for every ball BR(x0) ⊂ Ω the conditions

χ|(Du)BR(x0)|p ≤ Φ(u,BR(x0)) +Rα ≤ εd

imply the estimate

Φ(u,BτdR(x0)) ≤ τβd Φ(u,BR(x0)) + ε−1
d Rα.

Here, the constant γp(n,N, p) has been fixed in Theorem 4.18, and the dependencies
are given by τd(n,N, p,Γ, σ, ω, β, χ) and εd(n,N, p,Γ, σ, ηd, ω, β, χ).

Proof. We consider the number ε∗d from Proposition 5.4 corresponding to the given
χ and the choice τ = τd with 0 < τd ≤ 1

4 to be fixed later on. Moreover, we take
the number δ from Proposition 5.8 corresponding once more to τ = τd and to the
choice

ε = min
{
ε∗d,

1

2
τβd

}
,

and we set

εd = min{δ, ε∗d, χ(σ/2)p, τ
n+γp

d } .
In view of this choice our assumption guarantees both

Φ(u,BR(x0)) ≤ δ and |(Du)BR(x0)| ≤
1

2
σ .

Hence we may apply Proposition 5.8, and we come out with the estimates

Φ(u,BτdR(x0)) ≤ C
[
τ−n
d Rα +Φ(w,B2τdR(x0))

]
+

1

2
τβdΦ(u,BR(x0)) ,(5.31)

Ψ(w,BR/2(x0)) ≤ CRα + ε∗dΦ(u,BR(x0)) ,

where w = uλ is the mollification corresponding to the first alternative choice of
λ in Lemma 4.19. By our assumption we are moreover in the position to apply
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Proposition 5.4 with Q := Rα which we combine with the last inequality arriving
at

(5.32) Φ(w,B2τdR(x0)) ≤ Cτ
γp

d

[
Φ(u,BR(x0)) + (ε∗d)

−1Rα
]
.

Inserting (5.32) into (5.31) and exploiting the choice of εd we find the inequality

Φ(u,BτdR(x0)) ≤
(
C9τ

γp

d +
1

2
τβd

)[
Φ(u,BR(x0)) + ε−1

d Rα
]

with a positive constant C9 depending only on n, N , p, Γ, σ, ω, and χ. Finally,
when we fix 0 < τd ≤ 1

4 small enough that there holds

C9τ
γp

d ≤ 1

2
τβd ,

we arrive at the claim. �

5.2.3. Non-degenerate case. We combine Proposition 5.7 and Proposition 5.8.

Corollary 5.10. Consider an Lq-α-minimizer u ∈ BVloc(Ω)
N of F at x0 ∈ Ω.

Then for every 0 < β < 2 there exist numbers 0 < τn ≤ 1
4 and 0 < εn ≤ 1 such that

for every ball BR(x0) ⊂ Ω the condition

Φ(u,BR(x0)) ≤ εn|(Du)BR(x0)|p

together with |(Du)BR(x0)| < 1
2σ implies the estimate

Φ(u,BτnR(x0)) ≤ τβn Φ(u,BR(x0)) + ε−1
n Rα.

Here, the dependencies are given by τn(n,N, p,Γ, σ, ω, β) and εn(n,N, p,Γ, σ, ηn, ω, β).

Proof. We assume (Du)BR(x0) 6= 0 since otherwise also Φ(u,BR(x0)) vanishes, u is
affine on BR(x0) and the claim is clearly valid. We consider the number ε∗n from
Proposition 5.7 corresponding to the choice τ = τn with 0 < τn ≤ 1

4 to be fixed
later on. Moreover, we take the number δ from Proposition 5.8 corresponding once
more to τ = τd and to the choice

ε = min
{
ε∗n,

1

2
τβn

}
,

and we set

εn = min{δ, ε∗n, τn+2
n } .

In view of this choice our assumption guarantees

Φ(u,BR(x0)) ≤ δ|(Du)BR(x0)|p

so that we may apply Proposition 5.8. We come out with the estimates

Φ(u,BτnR(x0)) ≤ C
[
τ−n
n Rα +Φ(w,B2τnR(x0)

]
+

1

2
τβnΦ(u,BR(x0)) ,(5.33)

Ψ(w,BR/2(x0)) ≤ CRα + ε∗nΦ(u,BR(x0)) ,

where w = uλ is the mollification corresponding to the second alternative choice
of λ in Lemma 4.19. By our assumption we are moreover in the position to apply
Proposition 5.7 which we combine with the last inequality arriving at

(5.34) Φ(w,B2τnR(x0)) ≤ Cτ2n

[
Φ(u,BR(x0)) + (ε∗n)

−1Rα
]
.

We plug (5.34) into (5.33) and exploit the choice of εn to get

Φ(u,BτnR(x0)) ≤
(
C10τ

2
n +

1

2
τβn

)[
Φ(u,BR(x0)) + ε−1

n Rα
]
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with a positive constant C10 depending only on n, N , p, Γ, σ, and ω. Finally, when
we fix 0 < τn ≤ 1

4 small enough that there holds

C10τ
2
n ≤ 1

2
τβn ,

we arrive at the claim. �

5.3. Iteration. We now iterate Corollaries 5.9 and 5.10 in order to obtain a relation
between the excess on two concentric balls with an arbitrary ratio of the radii.

5.3.1. Non-degenerate case. We start with the simpler consideration for the non-
degenerate case.

Proposition 5.11. Suppose that u ∈ BV(Ω)N is an Lq-α-minimizer of F at x0 ∈ Ω
with α ∈ (0, 2). Then there exists a number 0 < ε̃n ≤ 1, depending only on n, N ,
p, Γ, σ, ηn, ω, and α such that for every ball BR(x0) ⊂ Ω the condition

Φ(u,BR(x0)) +Rα ≤ ε̃n|(Du)BR(x0)|p

together with |(Du)BR(x0)| < 1
3σ implies the decay estimate

Φ(u,B̺(x0)) ≤ C

[( ̺

R

)α+2
2

Φ(u,BR(x0)) + ̺α
]

for all 0 < ̺ ≤ R .

Here, C depends only on n, N , p, Γ, σ, ηn, ω, and α.

Proof. We set

β :=
α+ 2

2
∈ (α, 2)

and choose
√
ε̃n := min{εn(ταn − τβn ), 2

−pεn, (100C1)
−12−pτnpn (1 − τα/2n )2} ,

with the constant C1 in (4.4) and the numbers 0 < τn ≤ 1
4 and 0 < εn ≤ 1 from

Corollary 5.10. We now prove by induction that there holds

(5.35) Φ(u,Bτk
nR(x0)) ≤ τkβn Φ(u,BR(x0)) +

(τknR)α

εnταn

k−1∑

l=0

τ l(β−α)
n

for all k ∈ N0. Obviously, (5.35) is true for k = 0 and assuming it to be true for
all k ∈ {0, 1, 2, . . . ,m} we shall now establish it for k = m+1 ∈ N. To this end we
first deduce from this inductive assumption, the estimate

1

ταn

k−1∑

l=0

τ l(β−α)
n ≤ 1

ταn − τβn

for the sum on the right-hand side of (5.35), and the smallness hypothesis of the
corollary that there holds

Φ(u,Bτk
nR(x0)) ≤ τkβn Φ(u,BR(x0)) +

τkαn Rα

εn(ταn − τβn )

≤ τkαn

ε̃n

(ταn − τβn )εn
|(Du)BR(x0)|p ≤ τkαn

√
ε̃n|(Du)BR(x0)|p ≤ 1



46 THOMAS SCHMIDT

for all k ∈ {0, 1, 2, . . . ,m}. Using the abbreviation ξk := (Du)B
τk
n R

(x0), (4.4), and

the inequality |z|p ≤ 2p
[
Ap(|z|p) + Ap(|z|p)p

]
from Lemma 4.5 we conclude

(5.36)
∣∣Vp(ξm)−Vp(ξ0)

∣∣

≤
m−1∑

k=0

∣∣Vp(ξk+1)−Vp(ξk)
∣∣

≤ C
1
2
1

m−1∑

k=0

Wξk
p (ξk+1−ξk)

1
2

≤ (2pC1)
1
2

m−1∑

k=0

[
Ap(W

ξk
p (ξk+1−ξk))

1
2 +Ap(W

ξk
p (ξk+1−ξk))

p
2

]

≤ (2pC1)
1
2

m−1∑

k=0

[(
−
∫

B
τ
k+1
n R

(x0)

Ap(W
ξk
p (Du − ξkL

n))

) 1
2

+

(
−
∫

B
τ
k+1
n R

(x0)

Ap(W
ξk
p (Du− ξkL

n))

) p
2
]

≤ (2pC1τ
−np
n )

1
2

m−1∑

k=0

[
Φ(u,Bτk

nR(x0))
1
2 +Φ(u,Bτk

nR(x0))
p
2

]

≤ 2(2pC1τ
−np
n

√
ε̃n)

1
2

∞∑

k=0

τkα/2n |(Du)BR(x0)|p/2

= 2
(2pC1τ

−np
n

√
ε̃n)

1
2

1− τ
α/2
n

|Vp(ξ0)| ≤
1

5
|Vp(ξ0)| ,

where we exploited in the last line the definition of ε̃n. The previous estimate yields

4

5
|Vp(ξ0)| ≤ |Vp(ξm)| ≤ 6

5
|Vp(ξ0)| ,

and via the definition of Vp in (4.3) and the choice of ξk we infer

1

2
|(Du)BR(x0)| ≤

(4
5

) 2
p |(Du)BR(x0)| ≤ |(Du)Bτm

n R(x0)| ≤
(6
5

) 2
p |(Du)BR(x0)| <

1

2
σ .

Consequently, we get

Φ(u,Bτm
n R(x0)) ≤ τmα

n

√
ε̃n|(Du)BR(x0)|p

≤ 2pτmα
n

√
ε̃n|(Du)Bτm

n R(x0)|p ≤ εn|(Du)Bτm
n R(x0)|p ,

where we used the definition of ε̃n once more. In view of the preceding estimates
we are in the position to apply Corollary 5.10 on the ball Bτm

n R(x0). Using also the
inductive hypothesis we come out with

Φ(u,Bτm+1
n R(x0)) ≤ τβnΦ(u,Bτm

n R(x0)) + ε−1
n (τmn R)α

≤ τβn τ
mβ
n Φ(u,BR(x0)) + τβn

(τmn R)α

εnταn

m−1∑

l=0

τ l(β−α)
n +

(τmn R)α

εn

= τ (m+1)β
n Φ(u,BR(x0)) +

(τm+1
n R)α

εnταn

m∑

l=0

τ l(β−α)
n ,

and the induction is completed.
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Finally, for 0 < ̺ ≤ R we choose some k ∈ N0 with τk+1
n R ≤ ̺ ≤ τknR. Then

using Lemma 4.14 and (5.35) we arrive at

Φ(u,B̺(x0)) ≤
(τknR

̺

)n

Φ(u,Bτk
nR(x0))

≤
(R
̺

)n

τk(n+β)
n Φ(u,BR(x0)) +

(R
̺

)n τ
k(n+α)
n Rα

εn(ταn − τβn )
(5.37)

≤ τ−n−β
n

εn(ταn − τβn )

[( ̺

R

)β

Φ(u,BR(x0)) + ̺α
]
. �

5.3.2. General case. Following ideas from [26] we finally merge our degenerate and
non-degenerate estimates. Specifically, we combine Corollary 5.9 and Proposi-
tion 5.11.

Proposition 5.12. Suppose that u ∈ BV(Ω)N is an Lq-α-minimizer of F at x0 ∈ Ω
with α ∈ (0, γp). Then there exists a number ε0, depending only on n, N , p, Γ, σ,
ηd, ηn, ω, and α, such that for every ball BR(x0) ⊂ Ω the condition

Φ(u,BR(x0)) +Rα ≤ ε0

together with |(Du)BR(x0)| < 1
8σ implies the decay estimate

Φ(u,B̺(x0)) ≤ C

[( ̺

R

)α+γp
2

Φ(u,BR(x0)) + ̺α
]

for all 0 < ̺ ≤ R .

Here, C depends only on n, N , p, Γ, σ, ηd, ηn, ω, and α.

Proof. We set

β :=
α+ γp

2
∈ (α, γp)

and fix √
ε0 := min{εd(ταd − τβd ), (4C1)

−148−pτnpd (1 − τ
α/2
d )2σp} ,

where C1 is the constant in (4.4). Furthermore, 0 < τd ≤ 1
4 and 0 < εd ≤ 1 are the

constants from Corollary 5.9 corresponding to the choice χ := ε̃n with the constant
ε̃n from Proposition 5.11. For the constant τd from Corollary 5.9 we now denote
by m the smallest number in N0 such that there holds

Φ(u,Bτm
d

R(x0)) + Rα < χ|(Du)Bτm
d

R(x0)|p,

where we set m := ∞ if no such number exists at all. Following a similar — but
somewhat simpler — line of argument as in the proof of Proposition 5.11 we apply
Corollary 5.9 inductively on the balls BR(x0), BτdR(x0), Bτ2

dR
(x0), . . . , Bτm−1

d R(x0)

and infer

(5.38)
Φ(u,Bτk

dR(x0)) ≤ τkβd Φ(u,BR(x0)) +
(τkdR)α

εdταd

k−1∑

l=0

τ
l(β−α)
d

for all k ∈ N0 with k ≤ m.

Here we exploited that the previous inequality implies

Φ(u,Bτk
dR(x0)) + (τkdR)α ≤ ε0

εd(ταd − τβd )
≤ √

ε0 ≤ εd

by our choice of ε0 and thus in every inductive step one hypothesis of Corollary 5.9
is available on a smaller ball (while the other hypothesis is ensured on all relevant
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balls by the definition of m). Moreover, if m is finite, then by essentially the same
reasoning as for (5.36) above and again the choice of ε0 we have

|Vp((Du)Bτm
d

R(x0)
)−Vp((Du)BR(x0))| ≤ 2

(2pC1τ
−np
d

√
ε0)

1
2

1− τ
α/2
d

≤
(

1
24σ

) p
2 ,

and as a consequence we get

|(Du)Bτm
d

R(x0)
| <

[(
1
8σ

) p
2 +

(
1
24σ

) p
2

] 2
p

<
1

3
σ .

By the definition of m and the choice of χ we may thus apply Proposition 5.11 on
Bτm

d
R(x0) coming out with

(5.39)
Φ(u,Bτk

dR(x0)) ≤ C
[
τ
(k−m)β
d Φ(u,Bτm

d R(x0)) + (τkdR)α
]

for all k ∈ N0 with k ≥ m,

where we also used α+2
2 ≥ β. Putting together the decay estimates (5.38) and

(5.39) we have

Φ(u,Bτk
dR(x0)) ≤ C

[
τkβd Φ(u,BR(x0)) +

(τkdR)α

εd(ταd − τβd )

]
for all k ∈ N0

and in any case. The proof of the proposition is now completed by a computation
analogous to (5.37). �

5.4. Conclusion. We now assume that we are in the situation of either Theo-
rem 2.5 or Proposition 2.7, and we finalize the proof of these results.

We first notice that Theorem 2.5 can indeed be reduced to the case where
the normalization (5.1) is valid. Indeed, to this end it suffices to consider in

place of u the Lq-α-minimizer ũ of F̃ , where we have set ũ(x) := u(x) − z0x,

f̃(z) := θ−1
[
f(z0+z)− f(z0) −∇f(z0)z

]
, and F̃ [w] :=

∫
Ω f̃(Dw). In the situation

of Proposition 2.7 we may analogously pass on to the case where (5.1) holds for
each f(x0, · ) in place of f .

Having said this, the previous proposition is applicable, and it suffices to consider
a Lebesgue point x0 ∈ Ω of Du with Lebesgue value z0 = 0. By Definition 4.13 we
can take a positive radius R with B2R(x0) ⊂⊂ Ω,

Rα ≤ 1

2
ε0 , and |(Du)B2R(x0)| < 2−n−3 min{ε0, σ} .

As a consequence we get

|(Du)BR(y)| ≤ 2n|(Du)B2R(x0)| <
1

8
σ ,

Φ(u,BR(y)) ≤ 4|(Du)BR(y)| ≤ 2n+2|(Du)B2R(x0)| ≤
1

2
ε0

for all x ∈ BR(x0). Hence, we are in the Position to apply Proposition 5.12 on the
balls BR(y), either using it for F or for the frozen functional Fy (in the later case
notice that ε0 and C do not depend on y). As we have (Ap ◦Wξ

p)
∞(z) = |z|, the

proposition yields

−
∫

B̺(y)

|Dsu| ≤ Φ(u,B̺(y)) ≤ C
( ̺

R

)α[
Φ(u,BR(y)) +Rα

]
≤ C

( ̺

R

)α

ε0

for all 0 < ̺ ≤ R and y ∈ BR(x0). In particular,
|Dsu|(B̺(y))
L n(B̺(y))

is uniformly bounded,

and thus the singular part Dsu in the Lebesgue decomposition of Du vanishes on



DEGENERATE VARIATIONAL PROBLEMS IN BV 49

BR(x0). In the case p ≥ 2 we now employ the estimate |z| ≤ 2Ap(|z|p)
1
p +2Ap(|z|p)

of Lemma 4.5 and Hölder’s inequality, and we control Φ(u,B̺(y)) as before to get

−
∫

B̺(y)

|∇u− (∇u)B̺(y)| dx

≤ 2−
∫

B̺(y)

Ap(|∇u− (∇u)B̺(y)|p)
1
p dx + 2−

∫

B̺(y)

Ap(|∇u− (∇u)B̺(y)|p) dx

≤ 2Φ(u,B̺(y))
1
p + 2Φ(u,B̺(y))

≤ C
( ̺

R

)α
p

ε
1
p

0

for all 0 < ̺ ≤ R and still all y ∈ BR(x0). From this bound we deduce by the
Campanato space characterization of Hölder continuity (see [32, Theorem 5.4])
that ∇u is Hölder continuous on BR(x0) with exponent α/p. In the case 1 < p < 2

in contrast we use (4.4) and the inequality |z| p2 ≤ C
[
Ap(|z|p)

1
2 + Ap(|z|p)

p
2

]
to

control similarly

−
∫

B̺(y)

∣∣Vp(∇u)−
[
Vp(∇u)

]
B̺(y)

∣∣dx ≤ 2−
∫

B̺(y)

∣∣Vp(∇u)−Vp((∇u)B̺(y))
∣∣ dx

≤ C−
∫

B̺(y)

[
W

(∇u)B̺(y)

p (∇u− (∇u)B̺(y))
] 1

2

dx

≤ C
[
Φ(u,B̺(y))

1
2 +Φ(u,B̺(y))

p
2

]

≤ C
( ̺

R

)α
2

ε
1
2
0 .

The preceding estimate gives Hölder continuity of Vp(∇u) on BR(x0) with exponent
α/2, and in particular ∇u is bounded on BR(x0). Relying on (4.4) once more we
therefore have

(
3 sup
Br(x0)

|∇u|
)p−2

|∇u(x)−∇u(y)|2 ≤ W∇u(x)
p (∇u(y)−∇u(x))

≤ |Vp(∇u(y))−Vp(∇u(x))|2

for all x, y ∈ BR(x0), and ∇u is Hölder continuous with the same exponent α/2 as
Vp(∇u) on BR/2(x0). In summary, we arrive at the claimed C1,α/max{p,2}-regularity
of u near x0 in all cases. �

Finally, we justify Remark 2.6. To this end we first record that we exploited (H3)
solely in the proof of Proposition 5.2, and even there the special form of ep entered
only through the estimate for the p-Laplace system. However, if for p = 2 any
positive bilinear form takes the role of e2 in (H3), then we can just use the estimate
(4.17) from linear theory in place of (4.21), and we find that Proposition 5.2 and
the whole reasoning of Section 5 remain valid. Needless to say, in this case many
arguments can be extensively simplified, and actually the distinction between the
degenerate and non-degenerate case is not necessary anymore. �

Appendix A. Local boundedness

In this appendix we consider the integrals from (1.2), and we provide interior
L∞-bounds for local minimizers of F+G, as they are needed for the purposes of
Theorem 1.3. We will only sketch the proof, which resembles an argument from [9].
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Theorem A.1. Assume that the Borel functions f : Ω × R
Nn → R and g : Ω ×

R
N → R are C1 in their second argument. Moreover, suppose that f is also convex

in the second argument, and that the following set of assumptions holds for all
x ∈ Ω, y ∈ R

N , z ∈ R
Nn, some ζ ∈ [1,∞), some positive C, and some function

P ∈ L∞
loc(Ω):

C−1|z| − C ≤ f(x, z) ≤ C|z|+ C ,

n∑

i=1

N∑

k,l=1

yk
∂f

∂zki
(x, z)zliy

l ≥ −C|y|2 ,

|∇yg(x, y)| ≤ C|y|ζ−1 + P (x) ,

∇yg(x, y)y ≥ −C|y| − P (x) .(A.1)

Then every local minimizer u ∈ BVloc(Ω)
N ∩ Lζ

loc(Ω)
N of F+G is in L∞

loc(Ω)
N .

Sketch of proof. We may assume that u ∈ BV(Ω)N ∩Lζ(Ω)N is a minimizer for the
Dirichlet problem on a Lipschitz domain Ω. If g vanishes and f(x, z) is independent
of x, then the claim follows from [9, Theorem 1.11], which has been proved in [9,
Section 4] by an adaption of Moser’s iteration technique. Moreover, it has been
pointed out in [9, Appendix C] that the x-dependence of f does in no way affect
this approach. Now we briefly explain why the occurrence of g does not suspend
the line of argument as well. Indeed, it suffices to cope with an extra term like

(A.2)

∫

Ω

∇yg( · , uk)ϕdx

on the left-hand side of the approximative Euler equation in [9, Section 4]. Here,

ϕ ∈ W1,1
0 (Ω)N ∩ Lζ(Ω)N is an arbitrary test-function, and the approximations

uk ∈ W1,1(Ω)N ∩ Lζ(Ω)N of u are obtained via Ekeland’s variational principle5.
When we insert the specific ϕ from [9, Proof of Lemma 4.1], then (A.2) can be
bounded from below via (A.1). The resulting terms, shifted to the right-hand side
of the estimates, are basically the same ones already treated in [9], and thus the
conclusion of [9, Lemma 4.1] remains valid (up to very minor adaptions, namely
passing to Mη := maxΩ(η+|∇η|) and replacing λ by C+‖P‖L∞(spt η)). Once the
lemma is available, the remaining arguments of [9, Section 4] apply unchanged. �

For further information and an extensive discussion of the above assumptions on
f we refer to [9, Section 1.2]. Concerning the assumptions on g, some refinements
are possible, but for simplicity we have limited ourselves to the above statement.
Anyway, in view of the following lemma this statement suffices for our purposes.

Lemma A.2. The assumptions of Theorem A.1 on g are satisfied in the case
g(x, y) := λ|y−S(x)|ζ with λ ∈ [0,∞), ζ ∈ (1,∞), and S ∈ L∞

loc(Ω)
N .

Proof. Evidently, g(x, y) is C1 in y, and from ∇yg(x, y) = λζ|y−S(x)|ζ−2(y−S(x))
we derive by Young’s inequality

|∇yg(x, y)| ≤ 2ζ−1λζ
[
|y|ζ−1 + |S(x)|ζ−1

]

5The Ekeland principle is applied on the Dirichlet class D of u as in [9, Section 4], but for

ζ > n
n−1

a technical adaption is needed in order to guarantee uk ∈ Lζ(Ω)N . One way of doing

this is to choose the wk of [9, Section 4] additionally in Lζ(Ω)N (this is possible since Lζ(Ω)N

is dense in D) and to apply the principle to the functionals F+G+εk‖ · ‖ζ
Lζ(Ω)N

with εk :=

k−2(1+‖wk‖
ζ

Lζ(Ω)N
)−1.
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and

∇yg(x, y)y = λζ
[
|y−S(x)|ζ − |y−S(x)|ζ−2(y−S(x))S(x)

]
≥ −λζ|S(x)|ζ . �

Appendix B. Sketch of proof for Remark 2.2

We show that (2.4) implies the conditions (H2), (H3), and (H4).
Regarding (H2) we first note that the condition holds for (ep, 0) instead of (f, z0)

with a positive constant σp ≤ 1 depending only on p; then by (2.4) we can pass
to some positive σ ≤ 1

2σp such that |∇2f(z0+z)−∇2ep(z)| ≤ 1
2σp|z|p−2 holds for

|z| ≤ σ. In view of this estimate (H2) carries over to (f, z0) in the required form.
Turning to (H3) we abbreviate h(z) := f(z0+z)− θep(z) and estimate

|h(z)− h(0)−∇h(0)z|
|z|p ≤

∫ 1

0

∫ 1

0

|∇2h(stz)|
|z|p−2

ds t dt

≤
∫ 1

0

∫ 1

0

|∇2h(stz)|
|stz|p−2

ds dt

for |z| < σ. By (2.4) the right-hand side of this estimate converges to 0 for z → 0.
Consequently, also the left-hand side vanishes in the limit which just corresponds
to (H3).

Finally, for (H4) we argue as follows: One first verifies by homogeneity that for
2|z| ≤ |ξ| there hold

|∇2ep(ξ)−∇2ep(ξ+z)| ≤ C|ξ|p−3|z| ,
||ξ+z|p−2 − |ξ|p−2| ≤ C|ξ|p−3|z|

with some constant C depending only on p. Setting

h(z) :=
∇2f(z0+z)− θ∇2ep(z)

|z|p−2
for |z| < σ

we thus get the estimate

|∇2f(z0+ξ)−∇2f(z0+ξ+z)| ≤ |ξ|p−2|h(ξ)− h(ξ+z)|
+ ||ξ|p−2 − |ξ+z|p−2| |h(ξ+z)|
+ θ|∇2ep(ξ) −∇2ep(ξ+z)|

≤ |ξ|p−2|h(ξ)− h(ξ+z)|+ C
[
|h(ξ + z)|+ θ

]
|ξ|p−3|z|

=: A+B

for 2|z| ≤ |ξ| < 1
2σ. Now we notice that by the assumption (2.4) h is uniformly

continuous and bounded near 0. Given µ > 0 we can thus choose ηn(µ) ∈ (0, 12 ]

such that |z| ≤ ηn(µ) implies A ≤ 1
2µ|ξ|p−2 and such that |z| ≤ ηn(µ)|ξ| implies

B ≤ 1
2µ|ξ|p−2. At this point, (H4) easily follows. �
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