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1. Introduction

Linearization in Continuum Mechanics is usually carried out under the assumption that the
main quantities involved in the problem are suitably small , together with their derivatives. Within
this framework, a Taylor expansion is employed to simplify the equations governing the various
models. Checking a posteriori that the assumptions under which the equations were derived are
actually satisfied is a hard issue, as existence of solutions is usually proved in a weak sense.

Sometimes it may happen that successful linear theories manifestly violate the assumptions
under which they were derived, an example being linear elasticity in fracture mechanics. Indeed,
it is well known that in a two-dimensional domain with a crack, under suitable loads at the
boundary, the linear elastic displacement (or more precisely its gradient, the strain) exhibits a
singularity at the crack tip. Such a singularity is the crucial property of the configuration in
connection with the propagation of the crack according to Griffith’s theory, so that any reasonable
classical justification for employing linear elasticity in this context is doomed to failure.

A way to overcome the above mentioned difficulties is to resort to variational arguments. In
their pioneering paper [1], Dal Maso, Negri and Percivale justify linear elasticity as a variational
limit of nonlinear elasticity. They consider a nonlinear elastic energy of the form

(1.1)

∫
Ω

W (∇Φ) dx,
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where Ω ⊆ RN is a sufficiently smooth domain, W : MN → [0,+∞] a frame indifferent bulk
energy density and Φ : Ω → RN an admissible elastic deformation of Ω (here MN denotes the set
of N × N matrices). Considering body forces with density εf , being ε > 0 a small parameter,
and vanishing boundary displacements, they show, under suitable assumptions on W , that the
corresponding equilibrium elastic configuration Φε, written in the form Φε = Id + εuε, is such
that uε converges in the weak sense of Sobolev spaces to the linearized equilibrium displacement
u of Ω under the action of the forces f and with vanishing boundary conditions. Moreover, the
linearized theory is characterized by the elastic moduli C := ∂2W (Id). The main tool used in [1]
is a Γ -convergence result for a suitable rescaling of (1.1).

In the present paper we are interested in a linearization problem arising in the study of quasi-
static evolutions in plasticity theory. The main difference between the nonlinear and the linear
regime is given by the way in which elastic and plastic strains are linked to the total strain of
a configuration. At a finite strain level, a configuration is given by (Φ, Fel, Fpl), where Φ is
the deformation, Fel the elastic strain and Fpl the plastic strain. They are linked through the
multiplicative decomposition

(1.2) ∇Φ = Fel ◦ Fpl.

The elastic behaviour is described by an energy of the form (1.1) acting only on Fel; moreover,
if plastic deformations are assumed to be isochoric, then Fpl takes values in SL(N), the space
of matrices with determinant 1. In a linearized context, configurations are described by triplets
(u, e, p), where u : Ω → RN is the displacement, e : Ω → MN

sym is the elastic strain, and p :

Ω → MN
D is the plastic strain. Here MN

sym is the space of symmetric matrices and MN
D the space of

symmetric and deviatoric matrices (which is the tangent space to SL(N) at Id). The link between
the strains and the displacement is given by the additive decomposition

(1.3) Eu = e+ p,

where Eu is the symmetrized gradient of u.
Both in the nonlinear and in the linear setting, quasi-static evolutions under time-dependent

external loads are usually characterized in terms of balance equations and a flow rule. The latter
involves an interplay between the stress and the plastic strain: the stress belongs to a yield region,
and plastic strains are activated only when the boundary, the so called yield surface, is reached,
the direction of flow being determined by the normal to the surface. If the yield region increases or
moves depending on the developed plastic deformations, we say that the model involves hardening.

Decompositions (1.2) and (1.3) are classically related via a Taylor expansion. For a variational
justification of such a link in the evolutionary case it is convenient to resort to the variational
approach to rate independent evolutions developed by Mielke and co-authors in several papers:
we refer the reader to [7] for the specific case of elasto-plasticity with finite strains, and to the
survey [9] for further applications in continuum mechanics. In that framework, a quasi-static
evolution t 7→ (Φ(t), Fpl(t)) (and the same applies also to a linearized evolution) is seen as a
time-parametrized family of solutions of minimum problems, determined by the elastic and plastic
properties of the material, satisfying furthermore an energy inequality which is a sort of second
principle of thermodynamics. The flow rule is expressed by a suitable dissipation distance acting
on the plastic strains. Hardening, if present, is dealt with a hardening potential.

Mielke and Stefanelli have recently proved in [10] that in the presence of hardening, linearized
evolutions can be obtained as a variational limit of evolutions in the finite strain regime. More
precisely, they show that under vanishing boundary displacements, external loads of the form
εΛ(t), with ε > 0 a small parameter, and suitable assumptions for W and the other functionals
governing the system, a quasi-static evolution t 7→ (Φε(t), F εpl(t)) at finite strain, rewritten in the
form

(1.4) Φε(t) = Id+ εuε(t) and F εpl(t) = Id+ εpε(t),

converges as ε→ 0 in a suitable sense to an evolution t 7→ (u(t), p(t)) for a linear plasticity model
with (kinematic) hardening. While an existence and uniqueness result is available for the linearized
evolution with hardening (see e.g. [4]), for which (u(t), p(t)) ∈ H1(Ω;RN ) × L2(Ω; MN

D), general
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existence results in the finite strain regime are still not available (some results have been obtained
if further strain gradient terms are introduced, see [6]). Therefore Mielke and Stefanelli assume the
existence of quasi-static evolutions of the form t 7→ (Φε(t), F εpl(t)) ∈ H1(Ω;RN ) × L2(Ω;SL(N))
to perform their analysis. Actually, their result also holds for a suitable notion of discrete in time
evolutions which is largely used in the engineering community.

The aim of the present paper is to address the problem of a variational justification of linear
perfect plasticity starting from a finite strain theory. Contrary to the case with hardening, in perfect
plasticity the yield region does not change in time, and concentrations of the plastic strain along
shear bends can happen. Existence results for quasi-static evolutions in linear perfect plasticity
have been first obtained by Suquet [11] and more recently by Dal Maso, De Simone and Mora [2]
in a variational framework. In order to capture concentrations of the plastic strains, the functional
framework employed in these results require that

(u(t), e(t), p(t)) ∈ BD(Ω)× L2(Ω; MN
sym)×Mb(Ω; MN

D),

i.e., p(t) is modeled as a bounded Radon measure, while the displacements, in view of the additive
decomposition (1.3), belong to the space of functions with bounded deformation BD(Ω) (see [12]).
The low regularity of the displacements and of the plastic strains entails several technical difficulties
in the mathematical analysis of the problem: a particular care is required to deal with boundary
conditions (as the trace operator is not continuous, even in a weak sense), and also with external
loads, which have to satisfy a condition usually referred to as safe load condition.

In this paper we restrict our attention to the one-dimensional setting, the general case presenting
several technical difficulties which will be hopefully addressed in a future study. In order to rely
on a rigorous existence result at the finite strain level, we concentrate on a particular model
proposed by Mielke (see [8, Sections 5 and 6]) concerning one-dimensional quasi-static evolutions
with hardening modeled through internal variables. To our knowledge, this is the only existence
result in standard finite plasticity available in the literature.

A configuration of Ω = (0, `) is given by the triplet (ϕ, Fpl, ζ). The internal variable ζ describes
the hardening, while the plastic strain Fpl is assumed to take values in R+, avoiding incompress-
ibility constraints which would be too severe in one dimension. The precise form of the bulk
energy and of the dissipation distance governing the system are specified in Section 3 (see (3.7)
and (3.8)).

In order to obtain perfect plasticity by linearization, we force the hardening to vanish by suitably
choosing the constants in the dissipation distance (see Remark 3.4) depending on a small parameter
ε > 0. Considering external loads of the type εΛ(t), with Λ(t) satisfying the safe load condition
(4.17), and employing the decomposition (1.4), we show in Theorem 4.4 that t 7→ (uε(t), pε(t))
determines in the limit a quasi-static evolution for a model in perfect plasticity, whose elastic
modulus and yield region are set by the finite strain model (see (4.14)).

Clearly the one-dimensional setting simplifies some aspects of the analysis. On the one hand,
displacements belong to the space BV of functions with bounded variation, rather than to BD,
and the additive decomposition (1.3) does not represent a severe restriction in the constructions
required by our analysis (see in particular Step 2 in Subsection 5.3). On the other hand, invariance
requirements for the nonlinear elastic energy W become trivial, since the set of rotations reduce to
the identity map: some compactness issues are then handled more easily. Nevertheless, in spite of
the mentioned advantages, the transition from the multiplicative to the additive decomposition,
the problem of boundary conditions and the issue of the safe load condition still require a careful
analysis.

The paper is organized as follows. In Section 2 we recall some basic facts about Radon measures
and BV functions which are used throughout the paper. In Section 3 we recall Mielke’s model in
finite strain elasto-plasticity, formulated in the framework of the energetic approach, together with
his existence result for quasi-static evolutions. The last part of the section contains an informal
linearization of the model, which leads to perfect plasticity. The heuristic argument is formalized in
Section 4: the precise rescaling assumptions on the external loads and on the dissipation distance
are specified in Subsection 4.1, while the mathematical description of linearized evolutions is
contained in Subsection 4.2; the rigorous formulation of the linearization result, which employs a
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safe load condition for the external loads, is given in Theorem 4.4. The entire Section 5 is devoted
to the proof of Theorem 4.4. A careful analysis is needed in order to exploit suitable a priori
bounds for both the elastic and plastic strains and the internal variable: we make use of a delicate
interplay between the dissipation potential and the external loads which takes advantage of the
safe load condition (see Subsection 5.1). The compactness results involving the transition from
the multiplicative to the additive decomposition are contained in Subsection 5.2. Finally the proof
of the convergence result is given in Subsection 5.3.

2. Notation and preliminaries

In this Section we fix the notation and collect some basic facts about Radon measures and BV
functions which are used to deal with quasi-static evolutions in perfect plasticity.

General notation. Lp(a, b) with p ∈ [1,∞[ will denote the space of p-summable functions on
the interval [a, b] ⊆ R. ‖f‖∞ will stand for the sup norm of f . Finally if A ⊆ R, 1A will denote
the characteristic function of A, i.e., 1A(x) = 1 if x ∈ A, 1A(x) = 0 if x 6∈ A.

Measures. If E ⊆ R is locally compact, Mb(E) will denote the space of finite Radon measures
on E. For µ ∈Mb(E), we denote by |µ| its total variation. We say that

µn
∗
⇀ µ weakly∗ in Mb(E)

provided that

lim
n

∫
E

ϕdµn =

∫
E

ϕdµ

for every ϕ ∈ C0(E) which “vanish at the boundary”, i.e., such that for every ε > 0 there exists a
compact set K ⊆ E with |ϕ(x)| < ε for x 6∈ K. Sequences inMb(E) with bounded total variation
always admit a weakly* convergent subsequence.

Functions with bounded variation. For [a, b] ⊆ R, we denote by BV (a, b) the space of
functions u ∈ L1(a, b) such that u′ ∈ Mb(]a, b[). BV (a, b) is a Banach space with respect to the
norm

‖u‖BV := ‖u‖L1(a,b) + |u′|(]a, b[).
Functions in BV (a, b) admit boundary values at the extremes of [a, b] such that the usual integra-
tion by parts formula ∫

]a,b[

ϕ′u dx = [ϕ(b)u(b)− ϕ(a)u(a)]−
∫
]a,b[

ϕdu′

holds for every ϕ ∈ C1([a, b]). If c ∈]a, b[, then u′({c}) = u(c+)− u(c−), where u(c+) and u(c−)
are the traces at c of the restriction of u on ]c, b[ and ]a, c[ respectively.

We will say that

un
∗
⇀ u weakly∗ in BV (a, b)

if un → u strongly in L1(a, b) and u′n
∗
⇀ u′ weakly∗ in Mb(]a, b[). Bounded sequences in BV

always admit weakly∗ convergent subsequences. Notice that the boundary values are not stable
under weak* convergence: this will be a source of difficulty for our analysis.

3. Quasi-static evolutions in one-dimensional finite plasticity

In this section we recall the homogeneous one-dimensional model for quasi-static evolution in
finite plasticity proposed by Mielke in [8] and based on the energetic approach to rate independent
evolutions [9]. In the last part of the section the model is studied from a classical viewpoint:
arguing on the associated balance equations and flow rule, a suitable rescaling is found which
formally leads to linear perfect plasticity.
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Let the elasto-plastic body be given by the one-dimensional open interval (0, `) with ` > 0. We
assume that the body is constrained at x = 0, and that body forces on (0, `) and a traction force
at x = ` are applied.

A configuration is given by a triplet

(ϕ, Fpl, ζ)

where

• the deformation ϕ belongs to the family

(3.1) F := {ϕ : [0, `]→ R : ϕ(0) = 0, ϕ is absolutely continuous and ϕ′ > 0 a.e. in (0, `)};

• Fpl : (0, `)→ R+ denotes the plastic strain;

• ζ : (0, `)→ R is a measurable field of internal variables, which keeps track of the irreversible
plastic processes taking place during a loading history.

The elements of the set

(3.2) Z := {z = (Fpl, ζ) : (0, `)→ R+ × R : z is measurable}

are called admissible internal states. The sign condition on the total strain ϕ′ prevents interpen-
etration of matter, and the same holds true for the plastic deformation associated to Fpl. Notice
that the requirement that plastic deformations be isochoric, which is usually considered in two or
three dimensional plasticity, is a too severe constraint in the one dimensional setting.

Finite elasto-plasticity is based on the multiplicative decomposition

(3.3) ϕ′ = Fel Fpl,

where Fel is referred to as the elastic strain of the configuration. The elastic properties of (0, `)
are given in terms of a stored elastic energy

W(ϕ, Fpl, ζ) :=

∫ `

0

W (Fel(x), ζ) dx =

∫ `

0

W

(
ϕ′(x)

Fpl(x)
, ζ

)
dx,

where W : R × R → [0,+∞]. The irreversibility associated to plastic deformations is given in
terms of a dissipation distance defined as follows: considering ∆ : (0, `)×R×R→ [0,+∞] convex
and positively homogeneous of degree one in the last variable, the dissipation distance on R+ ×R
at x is given by

D(x, z1, z2) := inf

{∫ 1

0

∆(x, z(s), ż(s)) ds : z ∈ C1([0, 1];R+ × R), z(0) = z0, z(1) = z1

}
.

The total dissipation between two internal states zj ∈ Z is obtained by the dissipation distance
integrating on (0, `):

D(z0, z1) :=

∫ `

0

D(x, z0(x), z1(x)) dx.

Finally, the external loads on the time interval [0, T ] are given by

〈Λ(t), ϕ〉 := g(t)ϕ(`) +

∫ `

0

f(t, x)ϕ(x) dx

for some

(3.4) f ∈ C1([0, T ];C0([0, `])) and g ∈ C1([0, T ]).

The notion of quasi-static evolution for the elasto-plastic system is the following.

Definition 3.1 (Quasi-static evolution). We say that a map

t ∈ [0, T ] 7→ (ϕ(t), Fpl(t), ζ(t)) ∈ F × Z

is a quasi-static evolution relative to the loading history t 7→ Λ(t) provided that the following facts
hold for every t ∈ [0, T ].
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(a) Global stability: for every (ψ,Q, ξ) ∈ F × Z
(3.5) W(ϕ(t), Fpl(t), ζ(t))− 〈Λ(t), ϕ(t)〉 ≤ W(ψ,Q, ξ)− 〈Λ(t), ψ〉+D((Q, ξ), (Fpl(t), ζ(t))).

(b) Energy inequality: setting for every [a, b] ⊆ [0, T ]

Diss(a, b; (Fpl, ζ)) := inf

{
N∑
i=1

D
(

(Fpl(ti−1), ζ(ti−1)), (Fpl(ti), ζ(ti))
)

: a = t0 < · · · < tN = b

}
the following inequality holds

(3.6) W(ϕ(t), Fpl(t), ζ(t))− 〈Λ(t), ϕ(t)〉+Diss(0, t; (Fpl, ζ))

≤ W(ϕ(0), Fpl(0), ζ(0))− 〈Λ(0), ϕ(0)〉 −
∫ t

0

〈Λ̇(τ), ϕ(τ)〉 dτ.

In order to obtain a rigorous existence result for a quasi-static evolution, Mielke considered in
[8] the elastic energy density W : R→ [0,+∞] (independent of the internal variable)

(3.7) W (F ) :=

{
1
α (Fα + F−α − 2) for F > 0

+∞ otherwise,

for some α > 0, and the dissipation distance (independent of x)

(3.8) D((a1, b1), (a2, b2)) :=

{
c(eαb2 − eαb1) for b2 ≥ b1 + | ln a2

a1
|

+∞ otherwise.

Notice that W is finite only for positive elastic strains, and diverges as F → 0+ or F → +∞ as
usual in finite elasticity. Moreover, the dissipation distance is obtained by choosing

∆((Fpl, ζ), (Ḟpl, ζ̇)) :=

{
cαeαζ ζ̇ for ζ̇ ≥

∣∣∣ ḞplFpl

∣∣∣
+∞ otherwise.

The existence result proved by Mielke in [8, Sections 5 and 6] is the following.

Theorem 3.2 (Existence of a quasi-static evolution). Let α > 3 and ϕ0 ∈ F , (F 0
pl, ζ

0) ∈
C0([0, `];R2) with F 0

pl > 0 on [0, `] and such that (ϕ0, F 0
pl, ζ

0) is globally stable according to (3.5).
Then there exists a quasi-static evolution

t ∈ [0, T ] 7→ (ϕ(t), Fpl(t), ζ(t)) ∈ F × Z
with (ϕ(0), Fpl(0), ζ(0)) = (ϕ0, F 0

pl, ζ
0) and such that for every t ∈ [0, T ]

ϕ(t) ∈W 1,α/3(0, `), Fpl(t) ∈ Lα(0, `), eζ(t) ∈ Lα(0, `).

Moreover, the maps t 7→ ϕ(t), t 7→ Fpl(t) are continuous from [0, T ] to W 1,α/3(0, `) and Lα(0, `)
respectively. Finally, the energy inequality (3.6) holds as an equality.

Remark 3.3 (Classical formulation). Let t 7→ (ϕ(t), Fpl(t), ζ(t)) be a quasi-static evolution.
Assuming enough regularity, it can be proved that the quasi-static evolution is described in more
classical terms by the following conditions which involve the nonlinear stress

Σ(t, x) :=
1

Fpl(t, x)
W ′
(
ϕ′(t, x)

Fpl(t, x)

)
:

(a) for every t ∈ [0, T ] {
−Σ′(t) = f(t) on (0, `)

Σ(t, `) = g(t);

(b) for every t ∈ [0, T ] and x ∈ (0, `)

ζ(t, x) =

∫ t

0

|Ḟpl(τ, x)|
Fpl(τ, x)

dτ ;
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(c) for every t ∈ [0, T ] and x ∈ (0, `)

(3.9) |ϕ′(t, x)Σ(t, x)| ≤ cαeαζ(t,x);

(d) for every t ∈ [0, T ] and x ∈ (0, `)

|ϕ′(t, x)Σ(t, x)| < cαeαζ(t,x) =⇒ Ḟpl(t, x) = 0

and

|ϕ′(t, x)Σ(t, x)| = cαeαζ(t,x) =⇒ sign(Ḟpl(t, x)) = sign (ϕ′(t, x)Σ(t, x)) .

Item (a) represents a balance equation for the nonlinear stress Σ(t, x), while (c) can be interpreted
as a confinement condition: it indeed expresses that Σ(t, x), multiplied by ϕ′(t, x), belongs to a
yield surface depending on the internal variable ζ(t, x), which is related to the plastic deformation
history by (b). Item (d) corresponds to a flow rule for the plastic strain Fpl(t, x): plastic defor-
mations occur if and only if the yield surface is reached, and they flow along the normal to the
surface (in the one-dimensional setting, this amounts in a condition on the sign of the deforma-
tion). Finally, notice that the confinement condition (3.9) gives a hardening effect which depends
on the effective accumulated plastic deformation∫ t

0

|Ḟpl(τ, x)|
Fpl(τ, x)

dτ.

We conclude this section with some naive considerations concerning the linearization of the
quasi-static evolution given in Theorem 3.2, which will be the focus of the analysis of the subsequent
sections.

If Λ(t) ≡ 0, and if the initial conditions are given by

ϕ0(x) = x, F 0
pl(x) = 1, ζ0(x) = 0,

then it is readily seen that

(3.10) (ϕ(t, x), Fpl(t, x), ζ(t, x)) = (x, 1, 0) for every t ∈ [0, T ]

is an admissible evolution. It is natural to expect that small external loads would produce an
evolution which is near configuration (3.10), and that the corresponding evolution can be described
in terms of linear plasticity.

In order to formalize this intuition, let us consider external loads of the form Λε(t) := εΛ(t),
with ε > 0. Moreover, let us assume that the constant c in the dissipation distance (3.8) is replaced
by cε := dε for some d > 0. We write the associated quasi-static evolution t 7→ (ϕε(t), F εpl(t), ζ

ε(t))
in the form

ϕε(t, x) = x+ εuε(t, x), F εpl(t, x) = 1 + εpε(t, x), ζε(t, x) = εzε(t, x).

The balance equations and the confinement condition outlined in Remark 3.3 can be rewritten in
terms of (uε, pε, zε) as

−
(

1

1 + εpε(t)
W ′
(

1 + εu′ε(t)

1 + εpε(t)

))′
= εf(t) on (0, `)

1

1 + εpε(t, `)
W ′
(

1 + εu′ε(t, `)

1 + εpε(t, `)

)
= εg(t)

and ∣∣∣∣W ′(1 + εu′ε(t)

1 + εpε(t)

)
1 + εu′ε(t)

1 + εpε(t)

∣∣∣∣ ≤ dεαeαεzε(t) on (0, `).

In view of the confinement condition, the flow rule can be expressed as

W ′
(

1 + εu′ε(t)

1 + εpε(t)

)
1 + εu′ε(t)

1 + εpε(t)
ṗε(t) = dεαeαεzε(t)|ṗε(t)| on (0, `).

If for ε→ 0 we have, in a suitable sense

uε(t)→ u(t), pε(t)→ p(t), zε(t)→ z(t),
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then, taking into account that W ′(1) = 0 and setting

σ(t) := cW (u′(t)− p(t)),
where cW := W ′′(1), we obtain the balance equation{

−σ′(t) = f(t) on (0, `)

σ(t, `) = g(t),

the confinement condition

(3.11) |σ(t)| ≤ SY on (0, `)

and the flow rule

(3.12) σ(t)ṗ(t) = SY |ṗ(t)| on (0, `),

where SY := dα. We can thus interpret u(t) and p(t)) as the displacement and the plastic strain
for a linearly elastic-perfectly plastic material. The multiplicative decomposition is replaced by
the additive decomposition

u′(t) = e(t) + p(t).

The constant cW can be interpreted as the elastic constant of the “new” material, so that we
obtain the usual constitutive equation σ(t) = cW e(t) for the Cauchy stress. Relations (3.11) and
(3.12) express the yield condition and the flow rule of perfect plasticity with yield constant SY .

The aim of the present paper is to provide a rigorous justification of the previous linearization
argument.

Remark 3.4. Notice that we rescaled the yield constant in (3.9) to cε := dε. This is somehow
mandatory since otherwise the nonlinear stress ϕ′(t)Σ(t), which should be almost null at every x in
the present linearization, would never reach the yield surface. Consequently plastic deformations
could not activate, and we fall in a purely elastic deformation process. We conclude that a
linearized plasticity description of quasi-static evolutions under ε-small external loads requires
that also the yield surface for the nonlinear stress is assumed to be ε-small.

4. The linearization result

In this section we formulate in rigorous terms the intuitive linearization argument outlined at
the end of the previous section. In Subsection 4.1 we exploit the precise rescaling concerning the
external loads and the dissipation distance in terms of a small parameter ε > 0 adopted in our
analysis. The quasi-static evolution in the finite deformation regime is rewritten (see Proposition
4.1) in terms of “linearized quantities” (uε, pε, zε) which will be studied as ε → 0. Subsection
4.2 is devoted to the mathematical description of the linearized evolution in perfect plasticity
involving Radon measures and BV functions. Finally, the rigorous linearization result is stated in
Subsection 4.3.

4.1. Setting of the problem. Given ε > 0, let us consider as above the elastic energy density

(4.1) W (F ) :=

{
1
α (Fα + F−α − 2) for F > 0

+∞ otherwise,
α > 3,

and the (rescaled) dissipation distance

(4.2) Dε((a1, b1), (a2, b2)) :=

{
dε(eαb2 − eαb1) for b2 ≥ b1 + | ln a2

a1
|

+∞ otherwise,
d > 0.

Notice that Dε depends on the yield constant cε := dε (see Remark 3.4).
Given f ∈ C1([0, T ];C0([0, `])) and g ∈ C1([0, T ]) with

(4.3) g(0) = 0 and f(0, ·) = 0 on [0, `],

we consider external loads Λε(t) determined by fε := εf and gε := εg, i.e.,

(4.4) 〈Λε(t), ϕ〉 := ε〈Λ(t), ϕ〉
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with

(4.5) 〈Λ(t), ϕ〉 := g(t)ϕ(`) +

∫ `

0

f(t, x)ϕ(x) dx.

According to Theorem 3.2, let us consider a quasi-static evolution

t 7→ (ϕε(t), F εpl(t), ζ
ε(t))

associated with the choices (4.1) for the elastic energy, (4.2) for the dissipation functional, (4.4)
for the external loads, and with initial conditions

ϕε(0, x) = x, F εpl(0, x) := 1, ζε(0, x) := 0.

In the study of the asymptotic behavior of this evolution for ε→ 0, following the considerations
of the previous section it is useful to write

(4.6) ϕε(t, x) := x+ εuε(t, x), F εpl(t, x) := 1 + εpε(t, x), ζε(t, x) := εzε(t, x)

and to concentrate on the evolution

t 7→ (uε(t), pε(t), zε(t)).

Now consider the spaces

Fε := {v : [0, `]→ R : v is absolutely continuous and 1 + εv′ > 0 a.e. in (0, `)}
and

Zε := {(q, ξ) : (0, `)→ R2 measurable and such that 1 + εq > 0 a.e. in (0, `)}.
These spaces are a rewriting of the spaces F and Z given in (3.1) and (3.2) in terms of the
linearized structure ϕ(x) = x+ εv(x) and Fpl(x) = 1 + εq(x) for the admissible deformations and
plastic strains.

For (u, p, z) ∈ Fε ×Zε let us set

Wε(u, p) :=
1

ε2

∫ `

0

W

(
1 + ε

u′ − p
1 + εp

)
dx

and, given (q, ξ) ∈ Zε,

Hε((p, z), (q, ξ)) :=
d

ε

∫ `

0

D̃ε((p, z), (q, ξ)) dx,

where

(4.7) D̃ε((a1, b1), (a2, b2)) :=

eαεb2 − eαεb1 if b2 ≥ b1 +
1

ε

∣∣∣∣ln 1 + εa2
1 + εa1

∣∣∣∣
+∞ otherwise.

By interpreting the global stability condition and the energy equality in Definition 3.1 for (ϕε, F εpl, ζ
ε)

in terms of the functions (uε, pε, zε) given in (4.6), we readily obtain the following result.

Proposition 4.1. Assume (4.1), (4.2), (4.4) and let

t ∈ [0, T ] 7→ (ϕε(t), F εpl(t), ζ
ε(t))

be a quasi-static evolution according to Theorem 3.2 such that (ϕε(0, x), F εpl(0, x), ζε(0, x)) =

(x, 1, 0) for x ∈ (0, `).
Let

t ∈ [0, T ] 7→ (uε(t), pε(t), zε(t))

be the evolution given by (4.6). Then the following items hold true.

(a) The functions t 7→ uε(t) and t 7→ pε(t) are absolutely continuous from [0, T ] to W 1,α/3(0, `)
and Lα(0, `)) respectively. Moreover zε(t) : (0, `) → R is measurable for every t ∈ [0, T ]
and

(4.8) zε(t2) ≥ zε(t1) +
1

ε

∣∣∣∣ln 1 + εpε(t2)

1 + εpε(t1)

∣∣∣∣ a.e. in (0, `) for every 0 ≤ t1 ≤ t2 ≤ T.

Finally (uε(0), pε(0), zε(0)) = (0, 0, 0).



10 A. GIACOMINI AND A. MUSESTI

(b) Global stability: for every t ∈ [0, T ] and (v, q, ξ) ∈ Fε ×Zε
Wε(uε(t), pε(t))− 〈Λ(t), uε(t)〉 ≤ Wε(v, q)− 〈Λ(t), v〉+Hε((pε(t), zε(t)), (q, ξ)).

(c) Energy equality: for every t ∈ [0, T ]

(4.9) Wε(uε(t), pε(t))− 〈Λ(t), uε(t)〉+Dissε(0, t; (pε, zε)) = −
∫ t

0

〈Λ̇(τ), uε(τ)〉 dτ,

where

(4.10) Dissε(0, t; (pε, zε)) :=
d

ε

∫ `

0

(
eαεzε(t) − 1

)
dx.

Notice that the expression (4.10) for the dissipation on [0, t] is readily computed from (4.7).

4.2. Quasi-static evolutions for linearly elastic-perfectly plastic materials. As discussed
at the end of Section 3, we expect that t ∈ [0, T ] 7→ (uε(t), pε(t), zε(t)) converges as ε → 0 to a
quasi-static evolution for a linearly elastic-perfectly plastic material whose elastic modulus and
yield constant are given respectively by

(4.11) cW := W ′′(1) and SY := dα,

and under external loads Λ(t) given in (4.5). Following the energetic approach adopted in [2], we
detail in this subsection the mathematical setting required to describe such an evolution.

As explained in the Introduction, in linear perfect elasto-plasticity the plastic strains are mod-
eled as Radon measures in order to capture possible concentrations. As a consequence of the
one-dimensional context, displacements turn out to be functions of bounded variation. More
precisely, we adopt the following

Definition 4.2 (Admissible configurations). The family A of admissible configuration is given
by the triplets

(u, e, p) ∈ BV (0, `)× L2(0, `)×Mb([0, `[)

such that

(4.12) u′ = e+ p on (0, `)

and

(4.13) p({0}) = u(0),

where u(0) is the trace of u at x = 0.

The function u denotes the displacement of the body, e is the associated elastic strain and p is
the corresponding plastic strain. In the linear context, the multiplicative decomposition (3.3) is
replaced by the additive decomposition (4.12) of the total strain u′ into elastic and plastic parts.

Condition (4.13) is a relaxed version of the Dirichlet boundary condition at x = 0: if u(0) 6= 0,
then we assume that a plastic strain has been created at x = 0 in the form of a Dirac delta with
coefficient u(0): this plastic strain will be penalized in terms of dissipation along the evolution, so
that it is not convenient for the system to violate the boundary condition.

For every (u, e, p) ∈ A we set

(4.14) Q(e) := cW

∫ `

0

e2 dx and H(p) := SY |p|([0, `[),

where cW and SY are the constants given in (4.11). Q(e) stands for the elastic energy of the
configuration, while the functional H :Mb([0, `[)→ [0;∞[ is the associated dissipation potential.

For t ∈ [0, T ] 7→ p(t) ∈Mb([0, `[) and [a, b] ⊆ [0, T ] the dissipation on [a, b] is given by

Diss(a, b; p) := sup

{
N∑
i=1

H(p(ti)− p(ti−1)) : a = t0 < t1 < · · · < tN = b

}
.

We are now in a position to define rigorously the linearized evolution.
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Definition 4.3 (Quasi-static evolution in linear perfect plasticity). We say that a map

t ∈ [0, T ] 7→ (u(t), e(t), p(t)) ∈ A, (u(0), e(0), p(0)) = (0, 0, 0)

is a quasi-static evolution relative to the external loads Λ given in (4.5) and satisfying Λ(0) = 0
provided that the following conditions hold true.

(a) Global stability: for every t ∈ [0, T ] and (v, η, q) ∈ A
(4.15) Q(e(t))− 〈Λ(t), u(t)〉 ≤ Q(η)− 〈Λ(t), v〉+H(q − p).

(b) Energy equality: for every t ∈ [0, T ]

(4.16) Q(e(t))− 〈Λ(t), u(t)〉+Diss(0, t; p) = −
∫ t

0

〈Λ̇(τ), u(τ)〉 dτ.

4.3. The main result. As mentioned in the Introduction, existence of quasi-static evolutions
in linear perfect plasticity can be proved by means of variational methods under an additional
assumption on the external loads, the so called safe load condition.

We say that the external loads t 7→ Λ(t) given in (4.5) satisfy the safe load condition if there
exists ρ ∈ C1([0, T ]× [0, `]) such that for every t ∈ [0, T ]

(4.17)

{
−ρ′(t) = f(t) in (0, `),

ρ(t, `) = g(t)
SY − ‖ρ‖∞ =: β > 0,

where SY is given in (4.11). It is readily seen that for every u ∈ Fε

(4.18) 〈Λ(t), u〉 =

∫ `

0

ρ(t, x)u′(x) dx,

and that for every (u, e, p) ∈ A

(4.19) 〈Λ(t), u〉 =

∫ `

0

ρ(t, x)e(x) dx+

∫
[0,`[

ρ(t, x) dp(x) =: 〈ρ(t), e〉+ 〈ρ(t), p〉,

with

(4.20) H(p)− 〈ρ(t), p〉 ≥ β|p|([0, `[),
where H is given in (4.14).

We can now state precisely the main result of the paper.

Theorem 4.4 (The linearization result). Let f ∈ C1([0, T ];C0([0, `])) and g ∈ C1([0, T ]) with

g(0) = 0 and f(0, x) = 0 on (0, `)

satisfy the safe load condition (4.17) for some ρ ∈ C1([0, T ]× [0, `]).
For every ε > 0, let t ∈ [0, T ] 7→ (ϕε(t), F εpl(t), ζ

ε(t)) be a quasi-static evolution according

to Theorem 3.2 such that (ϕε(0, x), F εpl(0, x), ζε(0, x)) = (x, 1, 0) for every x ∈ (0, `), under the

choices (4.1) for the elastic energy density, (4.2) for the dissipation distance, (4.4) for the external
loads, and let

t ∈ [0, T ] 7→ (uε(t), pε(t), zε(t))

be the evolution defined through relation (4.6).
Then there exist a quasi-static evolution in linear perfect plasticity

t ∈ [0, T ] 7→ (u(t), e(t), p(t))

according to Definition 4.3 and a sequence εn → 0 such that, setting

un := uεn , pn := pεn , zn := zεn ,

then for every t ∈ [0, T ]

un(t)
∗
⇀ u(t) weakly∗ in BV (0, `),(4.21)

un(t)− pn(t) ⇀ e(t) weakly in L1(0, `),(4.22)

pn(t)
∗
⇀ p(t) weakly∗ in Mb([0, `[),(4.23)
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and

(4.24) lim
n
Wεn(un(t), pn(t)) = Q(e(t)).

The proof of Theorem 4.4 will be given in the next section.

5. Proof of the linearization result

This section contains the proof of Theorem 4.4. Given ε > 0, let t ∈ [0, T ] 7→ (ϕε(t), F εpl(t), ζ
ε(t))

be a quasi-static evolution for the finite plasticity model, and let

t ∈ [0, T ] 7→ (uε(t), pε(t), zε(t))

be the evolution defined through (4.6).
As a first step, in Proposition 5.1 we derive suitable a priori bounds satisfied by the evolution.

As a second step, in Proposition 5.6 we show how configurations in linear perfect plasticity arise
as ε→ 0. Finally Subsection 5.3 is devoted to the proof that the linearized evolution satisfies the
properties of a quasi-static evolution in perfect plasticity.

5.1. A priori bounds. This section is devoted to the proof of the following

Proposition 5.1. There exists C > 0 such that for every ε > 0 and t ∈ [0, T ]

(5.1)

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(0,`)

+
1

ε

∫ `

0

(
eαεzε(t) − 1

)
dx+ VL1(0, t; pε) ≤ C,

where VL1(a, b; pε) denotes the total variation on [a, b] ⊆ [0, T ] of t 7→ pε(t) as a map from [0, T ]
to L1(0, `).

In order to prove Proposition 5.1, we need two technical lemmas.

Lemma 5.2. The following inequality holds: for every x, y > −1 and α > 1

eα| ln(1+x)|

eα
∣∣∣∣ln 1 + y

1 + x

∣∣∣∣
− 1

 ≥ α|y − x|.
Proof. Setting

ln(1 + x) = v, ln(1 + y) = t,

we have to prove that

∀v, t ∈ R : eα|v|
[
eα|t−v| − 1

]
≥ α|et − ev|.

Consider the real functions

g1(x) := eαx − αex, g2(x) := e−αx + αex;

being α > 1, it is easy to see that g1,2 have global minimum in 0 and g1(0) = 1−α, g2(0) = 1 +α.
Hence we have

eαx − 1 ≥ α(ex − 1), e−αx − 1 ≥ α(1− ex).

Moreover, it is clear that eα|x| ≥ e±αx, so that

eα|x| − 1 ≥ α|ex − 1|.

Now take x := t − v and multiply the left-hand side by eα|v| and the right-side by ev. Since
eα|v| ≥ ev and all the terms are positive, it follows that

eα|v|
[
eα|t−v| − 1

]
≥ evα|et−v − 1| = α|et − ev|,

which completes the proof. �



LINEAR PERFECT PLASTICITY AS A LIMIT OF FINITE PLASTICITY 13

Lemma 5.3. Let ρ ∈ C1([0, T ]× [0, `]) be the function associated to the safe load condition (4.17)
satisfied by the external loads. For every t ∈ [0, T ], ε > 0, and S subdivision of [0, t], there exists
a refinement of S given by

0 = t0 < t1 < · · · < tN = t,

with maxi=1,...,N (ti − ti−1) < ε and such that

∫ t

0

〈ρ̇(τ), pε(τ)〉dτ = 〈ρ(t), pε(t)〉 −
N∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉+

N−1∑
i=0

〈riε(t), pε(ti)〉+ rε(t),

where |rε(t)| < ε and riε(t) : (0, `)→ R are such that ‖riε(t)‖∞ < ε(ti+1 − ti) for i = 0, . . . , N − 1.

Proof. Since by Proposition 4.1 the map τ 7→ 〈ρ̇(τ), pε(τ)〉 is continuous on [0, T ], we can find a
refinement 0 = t0 < t1 < · · · < tN = t of S with maxi=1,...,N (ti − ti−1) < ε and such that

(5.2)

∫ t

0

〈ρ̇(τ), pε(τ)〉dτ =

N−1∑
i=0

(ti+1 − ti)〈ρ̇(ti), pε(ti)〉+ rε(t),

where |rε(t)| < ε. Thanks to the regularity of ρ, we can assume that the subdivision is so fine
that for every i = 0, . . . , N − 1 ∥∥∥∥ρ(ti+1)− ρ(ti)

ti+1 − ti
− ρ̇(ti)

∥∥∥∥
∞
< ε.

Being pε(0) = 0, we obtain

(5.3)

N−1∑
i=0

(ti+1 − ti)〈ρ̇(ti), pε(ti)〉

=

N−1∑
i=0

〈ρ(ti+1)− ρ(ti), pε(ti)〉+

N−1∑
i=0

〈riε(t), pε(ti)〉

=

N∑
i=1

〈ρ(ti), pε(ti−1)〉 −
N−1∑
i=0

〈ρ(ti), pε(ti)〉+

N−1∑
i=0

〈riε(t), pε(ti)〉

= 〈ρ(t), pε(tN−1)〉 −
N−1∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉+

N−1∑
i=0

〈riε(t), pε(ti)〉

= 〈ρ(t), pε(t)〉 −
N∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉+

N−1∑
i=0

〈riε(t), pε(ti)〉,

where riε(t) := (ti+1 − ti)ρ̇(ti) − ρ(ti+1) + ρ(ti) is such that ‖riε(t)‖∞ < ε(ti+1 − ti). The result
follows by combining (5.2) and (5.3). �

We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1. Let t ∈ [0, T ] and ε > 0 be fixed, and let S := {0 = s0 < · · · < sM = t}
be a subdivision of [0, t] such that

(5.4) VL1(0, t; pε) ≤ ε+

M∑
j=1

‖pε(sj)− pε(sj−1)‖L1(0,`).

Let 0 = t0 < · · · < tN = t be the refinement of S given by Lemma 5.3.
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In view of the energy equality (4.9), the representation (4.18) for the external load, and Lemma
5.3, we get for every t ∈ [0, T ]

1

ε2

∫ `

0

W

(
1 + ε

u′ε(t)− pε(t)
1 + εpε(t)

)
dx

+
d

ε

∫ `

0

(
eαεzε(t) − 1

)
dx−

N∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉

= 〈ρ(t), u′ε(t)− pε(t)〉 −
∫ t

0

〈ρ̇(τ), u′ε(τ)− pε(τ)〉dτ −
N−1∑
i=0

〈riε(t), pε(ti)〉 − rε(t),

where |rε(t)| < ε and ‖riε(t)‖∞ < ε(ti+1 − ti) for i = 0, . . . , N − 1.
We proceed now in three steps, estimating both sides of the previous equality and drawing the

conclusion.

Step 1: Estimate of the left-hand side. Since

∫ `

0

(
eαεzε(t) − 1

)
dx =

N∑
i=1

∫ `

0

(
eαεzε(ti) − eαεzε(ti−1)

)
dx

=

N∑
i=1

∫ `

0

eαεzε(ti−1)
[
eαε[zε(ti)−zε(ti−1)] − 1

]
dx

≥
N∑
i=1

∫ `

0

eα| ln(1+εpε(ti−1))|
[
e
α
∣∣∣ln 1+εpε(ti)

1+εpε(ti−1)

∣∣∣ − 1

]
dx,

where the last inequality is a consequence of the relation (4.8) linking the internal variable εzε to
the plastic strain 1 + εpε, by Lemma 5.2 we can write for d = d1 + d2

d

ε

∫ `

0

(
eαεzε(t) − 1

)
dx ≥ d1

ε

∫ `

0

(
eαεzε(t) − 1

)
dx+ αd2

N∑
i=1

∫ `

0

|pε(ti)− pε(ti−1)| dx.

Taking into account the safe load condition (4.17), we can assume that d1 > 0 is so small that

αd2 − ‖ρ‖∞ >
β

2
> 0.

In view of (5.4) we conclude that

d

ε

∫ `

0

(
eαεzε(t) − 1

)
dx−

N∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉

>
d1
ε

∫ `

0

(
eαεzε(t) − 1

)
dx+ (αd2 − ‖ρ‖∞)

N∑
i=1

‖pε(ti)− pε(ti−1)‖L1(0,`)

≥ d1
ε

∫ `

0

(
eαεzε(t) − 1

)
dx+ (αd2 − ‖ρ‖∞)

m∑
j=1

‖pε(sj)− pε(sj−1)‖L1(0,`)

>
d1
ε

∫ `

0

(
eαεzε(t) − 1

)
dx+

β

2
(VL1(0, t; pε)− ε) .

On the other hand, by the very definition of W , there exists β1 > 0 such that

1

ε2

∫ 1

0

W

(
1 + ε

u′ε(t)− pε(t)
1 + εpε(t)

)
dx ≥ β1

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(0,`)

,



LINEAR PERFECT PLASTICITY AS A LIMIT OF FINITE PLASTICITY 15

so that we infer

(5.5)
1

ε2

∫ `

0

W

(
1 + ε

u′ε(t)− pε(t)
1 + εpε(t)

)
dx

+
d

ε

∫ `

0

(
eαεzε(t) − 1

)
dx−

N∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉

> β1

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(0,`)

+
d1
ε

∫ `

0

(
eαεzε(t) − 1

)
dx+

β

2
(VL1(0, t; pε)− ε) .

Step 2: Estimate of the right-hand side. Notice that since α > 3

‖1 + εpε(t)‖L2(0,`) =

√∫ `

0

(1 + εpε(t))2 dx ≤

√∫ `

0

e2| ln(1+εpε(t))| dx

≤

√∫ `

0

eα| ln(1+εpε(t))| dx ≤

√∫ `

0

[
eα| ln(1+εpε(t))| − 1

]
dx+

√
`.

As a consequence

(5.6) |〈ρ(t), u′ε(t)− pε(t)〉| ≤ ‖ρ‖∞‖u′ε(t)− pε(t)‖L1(0,`)

≤ ‖ρ‖∞
∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥
L2(0,`)

‖1 + εpε(t)‖L2(0,`)

≤ ‖ρ‖∞
∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥
L2(0,`)

√∫ `

0

[
eα| ln(1+εpε(t))| − 1

]
dx+

√
`

 .
By Cauchy-Schwartz inequality we can write for every Ĉ > 0

‖ρ‖∞
∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥
L2(0,`)

√∫ `

0

[
eα| ln(1+εpε(t))| − 1

]
dx

≤ ε‖ρ‖2∞
2Ĉ

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(0,`)

+
Ĉ

2ε

∫ `

0

[
eα| ln(1+εpε(t))| − 1

]
dx,

so that from (5.6) we infer

(5.7) |〈ρ(t), u′ε(t)− pε(t)〉| ≤ ‖ρ‖∞
√
`

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥
L2(0,`)

+
ε‖ρ‖2∞

2Ĉ

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(0,`)

+
Ĉ

2ε

∫ `

0

[
eα| ln(1+εpε(t))| − 1

]
dx.

In a similar way, for every 0 ≤ τ ≤ t we obtain the following estimate

|〈ρ̇(τ), (u′ε(τ)− pε(τ))〉| ≤ ‖ρ̇‖∞
√
`

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥
L2(0,`)

+
ε‖ρ̇‖2∞

2Ĉ

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥2
L2(0,`)

+
Ĉ

2ε

∫ `

0

[
eα| ln(1+εpε(τ))| − 1

]
dx.
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Since | ln(1 + εpε(τ))| ≤ εzε(τ) ≤ εzε(t) on (0, `) thanks to (4.8), we get for every Ĉ > 0

(5.8)

∣∣∣∣∫ t

0

〈ρ̇(τ), u′ε(τ)− pε(τ)〉 dτ
∣∣∣∣ ≤ t‖ρ̇‖∞√` sup

0≤τ≤t

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥
L2(0,`)

+
εt‖ρ̇‖2∞

2Ĉ
sup

0≤τ≤t

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥2
L2(0,`)

+
Ĉt

2ε

∫ `

0

[
eαεzε(t) − 1

]
dx.

Let us come to the third term. Since pε(0) = 0, for every i = 0, . . . , N

‖pε(ti)‖L1(0,`) ≤
N∑
j=1

‖pε(tj)− pε(tj−1)‖L1(0,`) ≤ VL1(0, t; pε),

and we deduce, recalling that ‖riε(t)‖∞ < ε(ti+1 − ti),

(5.9)

∣∣∣∣∣
N−1∑
i=0

〈riε(t), pε(ti)〉

∣∣∣∣∣ ≤ VL1(0, t; pε)

N−1∑
i=0

‖riε(t)‖∞ ≤ εtVL1(0, t; pε).

In view of (5.7), (5.8), (5.9), and since |rε(t)| < ε, we obtain the following estimate for the
right-hand side:

(5.10) 〈ρ(t), u′ε(t)− pε(t)〉 −
∫ t

0

〈ρ̇(τ), u′ε(τ)− pε(τ)〉 dτ −
N−1∑
i=0

〈riε(t), pε(ti)〉 − rε(t)

≤ C1 sup
0≤τ≤t

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥
L2(0,`)

+ εC2 sup
0≤τ≤t

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥2
L2(0,`)

+
C3

ε

∫ `

0

[
eαεzε(t) − 1

]
dx+ εtVL1(0, t; pε) + ε,

for suitable C1, C2, C3 > 0. Moreover C3 can be chosen arbitrarily small.

Step 3: Conclusion. Combining (5.5) and (5.10) we deduce that for every t ∈ [0, T ]

β1

∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(0,`)

+
d1
ε

∫ `

0

(
eαεzε(t) − 1

)
dx+

β

2
(VL1(0, t; pε)− ε)

≤ C1 sup
0≤τ≤t

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥
L2(0,`)

+ εC2 sup
0≤τ≤t

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥2
L2(0,`)

+
C3

ε

∫ `

0

[
eαεzε(t) − 1

]
dx+ εT VL1(0, T ; pε) + ε,

where d1, C1, C2, C3 > 0, and with C3 which can be chosen arbitrarily small. By choosing C3 < d1,
and using the fact that zε is increasing in time (see (4.8)), we deduce that there exists C > 0 such
that for ε small enough

sup
0≤τ≤T

∥∥∥∥u′ε(τ)− pε(τ)

1 + εpε(τ)

∥∥∥∥2
L2(0,`)

+
1

ε

∫ `

0

[
eαεzε(T ) − 1

]
dx+ VL1(0, T ; pε) ≤ C,

so that (5.1) is proved. �

Remark 5.4. Following the computation at the beginning of Step 2, and in view of the a priori
bound (5.1), we can prove that there exists C > 0 such that for every ε > 0 and t ∈ [0, T ]

‖1 + εpε(t)‖Lα(0,`) ≤ C.

Moreover there exists C ′ > 0 such that for every ε > 0 and t ∈ [0, T ]

(5.11) ‖u′ε(t)− pε(t)‖L1(0,`) ≤ C ′.
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Indeed∫ `

0

|u′ε(t)− pε(t)| dx =

∫ `

0

∣∣∣∣u′ε(t)− pε(t)1 + εpε(t)

∣∣∣∣ (1 + εpε(t)) dx

≤
∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥
L2(0,`)

‖1 + εpε(t)‖L2(0,`) ≤ C ′.

Finally, following the computation of Step 1, for every subdivision 0 = s0 < s1 < · · · < sm = t,
the following inequality holds

(5.12) Dissε(0, t; (pε, zε)) ≥ αd
m∑
i=1

∫ `

0

|pε(sj)− pε(sj−1)| dx =

m∑
i=1

H(pε(sj)− pε(sj−1)).

In view of the a priori bound (5.1), we can obtain the following variant of Lemma 5.3 which
will be useful in the asymptotic analysis as ε→ 0.

Lemma 5.5. Let ρ ∈ C1([0, T ]×[0, `]) be the function associated with the safe load condition (4.17)
satisfied by the external loads. Then for every t ∈ [0, T ] and every subdivision S = {0 = s0 < s1 <
· · · < sm = t} of [0, t] we have

(5.13)

∫ t

0

〈ρ̇(τ), pε(τ)〉dτ = 〈ρ(t), pε(t)〉 −
m∑
j=1

〈ρ(sj), pε(sj)− pε(sj−1)〉+ oε,δ(t),

where

δ := max
j=1,...,m

(sj − sj−1)

and

(5.14) lim
δ→0

lim sup
ε→0

|oε,δ(t)| = 0.

Proof. Let us consider the refinement {0 = t0 < t1 < · · · < tN = t} of S given by Lemma 5.3.
Then in view of the a priori bound on VL1(0, t; pε) and since pε(0) = 0 we have∫ t

0

〈ρ̇(τ), pε(τ)〉dτ = 〈ρ(t), pε(t)〉 −
N∑
i=1

〈ρ(ti), pε(ti)− pε(ti−1)〉+ r̂ε(t),

where limε→0 r̂ε(t) = 0. Replacing ρ(ti) with ρ(sj) on those intervals [ti−1, ti] which lie in the
same interval [sj−1, sj ], we get in view of the regularity of ρ∫ t

0

〈ρ̇(τ), pε(τ)〉dτ = 〈ρ(t), pε(t)〉 −
m∑
j=1

〈ρ(sj), pε(sj)− pε(sj−1)〉+ r̃ε,δ(t) + r̂ε(t),

where
|r̃ε,δ(t)| ≤ δ‖ρ̇‖∞VL1(0, t; pε).

Then (5.13) and (5.14) follow by setting oε,δ(t) := r̃ε,δ(t) + r̂ε(t). �

5.2. Compactness. In this subsection we prove that t 7→ (uε(t), pε(t), zε(t)) determines as ε→ 0
a map t 7→ (u(t), e(t), p(t)) ∈ A, where A is the family of admissible configurations in linear perfect
plasticity introduced in Definition 4.2.

In order to handle the boundary condition at x = 0, we extend uε(t) and pε(t) to ] − `, 0[ by
setting

uε(t) = pε(t) = 0.

From Proposition 5.1 we can say that there exists C > 0 such that for every t ∈ [0, T ] and ε > 0∥∥∥∥u′ε(t)− pε(t)1 + εpε(t)

∥∥∥∥2
L2(−`,`)

+
1

ε

∫ `

0

(
eαεzε(t) − 1

)
dx+ ṼL1(0, t; pε) ≤ C,

where ṼL1(a, b; pε) denotes the total variation on [a, b] ⊆ [0, T ] of t 7→ pε(t) as a map from [0, T ]
to L1(−`, `).
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Proposition 5.6. The following properties hold true for every t ∈ [0, T ].

(a) There exist p ∈ BV (0, T ;Mb(] − `, `[)) and a sequence εn → 0 such that setting pn(t) :=
pεn(t), for every t ∈ [0, T ]

(5.15) pn(t)
∗
⇀ p(t) weakly∗ on Mb(]− `, `[).

In particular p(t) = 0 on ]− `, 0[.

(b) Setting un(t) := uεn(t), there exist e(t) ∈ L2(−`, `) and u(t) ∈ BV (−`, `) with e(t) =
u(t) = 0 on ]− `, 0[ and a subsequence nk depending possibly on t such that

(5.16) u′nk(t)− pnk(t) ⇀ e(t) weakly in L1(−`, `),
and

(5.17) unk(t)
∗
⇀ u(t) weakly∗ in BV (−`, `)

with

(5.18) u′(t) = e(t) + p(t) on ]− `, `[.
Finally, setting for every M > 1

AnM := {x ∈]− `, `[ : 1 + εnpn(t, x) ≤M},
then

(5.19) (u′nk(t)− pnk(t))1AnkM
⇀ e(t) weakly in L2(−`, `).

(c) Setting zn(t) := zεn(t), we have

(5.20) eαεnzn(t) → 1 strongly in L1(0, `).

Proof. Since ṼL1(0, T ; pε) ≤ C for every ε > 0, by the generalized version of Helly’s theorem (see
[5, Theorem 3.2]) we deduce that there exist

p ∈ BV (0, T ;Mb(]− `, `[))
and a sequence εn → 0 such that, setting

(un(t), pn(t), zn(t)) := (uεn(t), pεn(t), zεn(t)),

for every t ∈ [0, T ]

pn(t)
∗
⇀ p(t) weakly∗ on Mb(]− `, `[).

Hence (5.15) holds true. Moreover, since pn(t) = 0 on ]− `, 0[, we obtain p(t) = 0 on ]− `, 0[, and
property (a) is proved.

For every M > 1 let us also set

BnM := {x ∈]− `, `[ : 1 + εnpn(t, x) > M}.
Since

1

εn

∫ `

0

(
eαεnzn(t) − 1

)
dx ≤ C,

and εnzn(t) ≥ ln(1 + εnpn(t)) on (0, `) by (4.8), keeping into account that BnM ⊆ [0, `[ we infer

(5.21) |BnM | ≤
Cεn

Mα − 1
.

As

C ≥
∫ `

−`

∣∣∣∣u′n(t)− pn(t)

1 + εnpn(t)

∣∣∣∣2 dx ≥ 1

M2

∫
AnM

|u′n(t)− pn(t)|2 dx,

using a diagonal argument we deduce that there exists a subsequence (nk)k∈N, depending possibly
on t, such that for every M ∈ N,M > 1,

(5.22) (u′nk(t)− pnk(t))1AnkM
⇀ eM (t) weakly in L2(−`, `),

as k →∞, where eM (t) ∈ L2(−`, `) with eM (t) = 0 on ]− `, 0[.
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We claim that eM (t) =: e(t) does not depend on M , and that

u′nk(t)− pnk(t) ⇀ e(t) weakly in L1(−`, `).
Indeed

u′nk(t)− pnk(t) = (u′nk(t)− pnk(t))1AnkM
+ (u′nk(t)− pnk(t))1BnkM

,

and in view of Remark 5.4 (recall that α > 3) and of (5.21)∫ `

−`
|u′nk(t)− pnk(t)|1BnkM dx =

∫ `

−`

∣∣∣∣u′nk(t)− pnk(t)

1 + εnkpnk(t)

∣∣∣∣ (1 + εnkpnk(t))1BnkM
dx

≤
∥∥∥∥u′nk(t)− pnk(t)

1 + εnkpnk(t)

∥∥∥∥
L2(−`,`)

‖(1 + εnkpnk(t))1BnkM
‖L2(−`,`)

≤ C
∥∥∥∥u′nk(t)− pnk(t)

1 + εnkpnk(t)

∥∥∥∥
L2(−`,`)

‖(1 + εnkpnk(t))‖
2
α

Lα(−`,`)|B
nk
M |

α−2
α → 0.

Then taking into account (5.22), the claim follows. In particular we deduce that (5.16) holds true.
Moreover, we can let the truncation level M vary in R, obtaining thus (5.19).

Finally, in view of (5.16) and (5.15), we deduce that there exists u(t) ∈ BV (−`, `) with u(t) = 0
on ]−`, 0[ and such that (5.17) is satisfied. Moreover, (5.18) is obtained taking the limit as k →∞
in

u′nk(t) = (u′nk(t)− pnk(t)) + pnk(t),

so that (b) is now completely proved.
Coming to property (c), from

1

εn

∫ `

0

(
eαεnzn(t) − 1

)
dx ≤ C

and recalling that zn(t) ≥ 0 on (0, `), we immediately deduce that (5.20) holds, and the proof is
concluded. �

5.3. Proof of the linearization result. We now prove Theorem 4.4.
Let (εn)n∈N with εn → 0,

p ∈ BV (0, T ;Mb(]− `, `[))
and

t 7→ (u(t), e(t)) ∈ BV (−`, `)× L2(−`, `)
be given by Proposition 5.6.

Let us restrict u(t), e(t) to (0, `), and p(t) to [0, `[. Recalling that u(t) = e(t) = p(t) = 0 on
]− `, 0[, in view of (5.18) we get

u′(t) = e(t) + p(t) on ]0, `[

and
p(t)({0}) = u(t, 0),

being u(t, 0) the trace of u(t) at x = 0. We thus deduce that for every t ∈ [0, T ]

(u(t), e(t), p(t)) ∈ A.
In order to complete the proof of Theorem 4.4, we need to show that t ∈ [0, T ] 7→ (u(t), e(t), p(t))

satisfies the conditions qualifying a quasi-static evolution in linear perfect plasticity, and that
convergences (4.21) and (4.22) hold along the entire sequence εn (and not only along εnk as in
(5.17) and (5.16)). Finally we need to prove that the convergence for the elastic energy (4.24)
holds true.

We proceed in four steps.

Step 1: Lower semicontinuity for the elastic energy. First of all we prove that for every
t ∈ [0, T ], being nk the subsequence given by Proposition 5.6,

(5.23) Q(e(t)) ≤ lim inf
k
Wεnk

(unk(t), pnk(t)).
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Indeed for every c̃ < cW := W ′′(1) there exists a neighborhood A of 0 such that

∀y ∈ A : W (1 + y) ≥ c̃

2
y2.

Since
u′nk

(t)−pnk (t)
1+εnkpnk (t)

is bounded in L2(0, `) in view of the a priori bound (5.1), we infer

εnk
u′nk(t)− pnk(t)

1 + εnkpnk(t)
→ 0 strongly in L2(0, `).

Up to a subsequence (not relabeled), the convergence is almost uniform, hence for every η > 0
there exists Eη ⊆ [0, `] with |Eη| < η and such that for x 6∈ Eη and for k large enough

εnk
u′nk(t, x)− pnk(t, x)

1 + εnkpnk(t, x)
∈ A.

In particular, taking into account (5.19), for every M > 1 we deduce that

lim inf
k

1

ε2nk

∫ `

0

W

(
1 + εnk

u′nk(t)− pnk(t)

1 + εnkpnk(t)

)
dx ≥ lim inf

k

c̃

2

∫
[0,`]\Eη

∣∣∣∣u′nk(t)− pnk(t)

1 + εnkpnk(t)

∣∣∣∣2 dx
≥ lim inf

k

c̃

2M2

∫
[0,`]\Eη

∣∣∣(u′nk(t)− pnk(t))1AnkM

∣∣∣2 dx ≥ c̃

2M2

∫
[0,`]\Eη

|e(t)|2 dx.

Letting c̃→ cW , M → 1 and η → 0, inequality (5.23) follows.

Step 2: Global stability. Let us show that (u(t), e(t), p(t)) ∈ A is a globally stable configuration
according to (4.15) for every t ∈ [0, T ].

Given (v, η, q) ∈ A, let us consider ξj ∈ C∞([0, `]) such that

(5.24) ξj
∗
⇀ q − p(t) weakly∗ in Mb([0, `[)

with

(5.25) lim
j→∞

‖ξj‖L1(0,`) = |q − p(t)|([0, `[).

Let moreover ηj ∈ C∞([0, `]) be such that

(5.26) ηj → η strongly in L2(0, `).

Notice that ηj can be constructed by a regularization via convolution, while ξj can be obtained
by translating the measure q − p(t) infinitesimally to the right, regularizing by convolution, and
employing a diagonal argument.

We construct a configuration (vnk , qnk , ζnk) ∈ Fεnk ×Zεnk in the following way.

(1) Let qnk : ]0, `[→ R be such that

(5.27)
1 + εnkqnk

1 + εnkpnk(t)
= 1 + εnkξj ,

that is

(5.28) qnk := ξj + pnk(t) + εnkpnk(t)ξj .

Since ξj is smooth on [0, `], for k large enough we have

(5.29) 1 + εnkqnk > 0 a.e. in ]0, `[.

(2) For k large enough let

(5.30) ζnk := znk(t) +
1

εnk

∣∣∣∣ln 1 + εnkqnk
1 + εnkpnk(t)

∣∣∣∣ ,
so that in view of (5.29)

(qnk , ζnk) ∈ Zεnk .
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(3) Let finally vnk : [0, `]→ R be such that

(5.31)
v′nk − qnk
1 + εnkqnk

= ηj ,

that is

(5.32) v′nk := qnk + ηj + εnkqnkηj , vnk(0) = 0.

Since

1 + εnkv
′
nk

= (1 + εnkqnk)(1 + εnkηj),

we deduce in view of (5.29) that vnk ∈ Fnk for k large enough.

Thanks to (5.31) we get

(5.33) lim
k
Wεnk

(vnk , qnk) = lim
k

1

ε2nk

∫ `

0

W

(
1 + εnk

v′nk − qnk
1 + εnkqnk

)
dx

= lim
k

1

ε2nk

∫ `

0

W (1 + εnkηj) dx =
W ′′(1)

2

∫ `

0

|ηj |2 dx = Q(ηj).

Moreover, taking into account (5.30) and (5.27), we obtain

(5.34) lim
k
Hεnk

(
(pnk(t), znk(t)), (qnk , ζnk)

)
= lim

k

d

εnk

∫ `

0

eαεnkznk (t)
[
eα| ln(1+εnkξj)| − 1

]
dx

= lim
k
d

∫ `

0

eαεnkznk (t)

[
eα| ln(1+εnkξj)| − 1

εnk

]
dx = αd

∫ `

0

|ξj | dx = H(ξj)

where we used (5.20) to compute the limit.
Since (unk(t), pnk(t), znk(t)) is globally stable we can write

(5.35) Wεnk
(unk(t), pnk(t))− 〈Λ(t), unk(t)〉

≤ Wεnk
(vnk , qnk)− 〈Λ(t), vnk〉+Hεnk

(
(pnk(t), znk(t)), (qnk , ζnk)

)
.

In view of (5.32) and of (5.28) we get

v′nk = ηj + ξj + pnk(t) + αk

where αk → 0 strongly in L1(0, `) as k →∞. Then

〈Λ(t), vnk〉 = 〈ρ(t), ηj + ξj + pnk(t)〉+ ok(t),

where ok(t)→ 0 as k →∞. Erasing the terms 〈ρ(t), pnk(t)〉 from both sides, we can rewrite (5.35)
as

Wεnk
(unk(t), pnk(t))− 〈ρ(t), enk(t)〉

≤ Wεnk
(vnk , qnk)− 〈ρ(t), ηj + ξj〉+Hεnk

(
(pnk(t), znk(t)), (qnk , ζnk)

)
+ ok(t).

Taking the limit as k →∞, and keeping into account (5.23), (5.16), (5.33) and (5.34), we obtain

Q(e(t))− 〈ρ(t), e(t)〉 ≤ Q(ηj)− 〈ρ(t), ηj + ξj〉+H(ξj).

Let now j →∞; in view of (5.24), (5.25) and (5.26) we deduce that

Q(e(t))− 〈ρ(t), e(t)〉 ≤ Q(η)− 〈ρ(t), η〉 −
∫
[0,`[

ρ(t) d(q − p(t)) +H(q − p(t))

(recall that (5.24) and (5.25) entail strict convergence of ξj to the measure q−p(t) on [0, `[, so that
integrals on [0, `[ of bounded and continuous functions, like ρ(t), pass to the limit). The global
stability (4.15) now easily follows.

Step 3: Consequences of the global stability. We claim that (u(t), e(t)) are uniquely deter-
mined by p(t), so that (5.16) and (5.17) hold without passing to a subsequence nk depending on
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t, and the lower semicontinuity (5.23) for the elastic energy holds along the entire sequence εn (in
particular (4.21) and (4.22) will follow).

Since the map
(v, η, q) ∈ A 7→ Q(η)− 〈Λ(t), v〉+H(q)

is convex, the analysis of the first-order optimality condition entails that the global stability of
(u(t), e(t), p(t)) is equivalent to the inequalities

(5.36) ∀(v, η, q) ∈ A : −H(q) ≤ cW
∫ `

0

e(t)η dx− 〈Λ(t), v〉 ≤ H(−q).

Assume that (ũ(t), ẽ(t)) is a limit point of (un(t), u′n(t)− pn(t)). By Step 2, (ũ(t), ẽ(t), p(t)) ∈ A
is globally stable, and thanks to (5.36) with (v, η, q) = (ũ(t)− u(t), ẽ(t)− e(t), 0) we can write∫ `

0

e(t)(ẽ(t)− e(t)) dx = 0 and

∫ `

0

ẽ(t)(ẽ(t)− e(t)) dx = 0,

so that Q(ẽ(t)− e(t)) = 0, hence ẽ(t) = e(t).
Since ũ′(t) = ẽ(t) + p(t) = e(t) + p(t) = u′(t), and ũ(t, 0) = p(t)({0}) = u(t, 0), we deduce that

ũ(t) = u(t), so that the claim follows.

Step 4: Conclusion. In view of the above steps, in order to conclude the proof we need to show
that t ∈ [0, T ] 7→ (u(t), e(t), p(t)) satisfies the energy equality (4.16) and that the convergence
(4.24) holds true.

For every δ > 0, let S = {0 = s0 < s1 < · · · < sm = t} be a subdivision of [0, t] with
maxi=1,...,m(si − si−1) < δ and such that

(5.37)

m∑
j=1

[H(p(sj)− p(sj−1))− 〈ρ(sj), p(sj)− p(sj−1)〉]

≥ Diss(0, t; p)− 〈ρ(t), p(t)〉+

∫ t

0

〈ρ̇(τ), p(τ)〉 dτ − δ.

Such a subdivision can be found by choosing a first subdivision S′ = {0 = s′0 < s′1 < · · · < s′m = t}
with

m∑
j=1

H(p(s′j)− p(s′j−1) ≥ Diss(0, t; p)− δ/2.

Then we refine S′ in order to approximate the integral
∫ t
0
〈ρ̇(τ), p(τ)〉 dτ following the arguments

of Lemma 5.3. Notice that p(t) is now a measure, rather than an L1-function, which is uniformly
bounded in Mb([0, `[) as t ∈ [0, T ]. Hence τ 7→ 〈ρ(τ), p(τ)〉 is only measurable and bounded: for
the approximation of the associated Lebesgue integral by means of Riemann sums we refer the
reader to [3, Lemma 4.12].

Writing the energy equality with the help of the function ρ(t) as

Wn(un(t), pn(t)) +Dissn(0, t; (pn, zn))− 〈ρ(t), pn(t)〉+

∫ t

0

〈ρ̇(τ), pn(τ)〉 dτ

= −
∫ t

0

〈ρ̇(τ), u′n(τ)− pn(τ)〉 dτ + 〈ρ(t), u′n(t)− pn(t)〉,

in view of Lemma 5.5 and of (5.12), we obtain

Wn(un(t), pn(t)) +

m∑
j=1

[H(pn(sj)− pn(sj−1))− 〈ρ(sj), pn(sj)− pn(sj−1)〉]

≤ −
∫ t

0

〈ρ̇(τ), u′n(τ)− pn(τ)〉 dτ + 〈ρ(t), u′n(t)− pn(t)〉+ on,δ(t),

where on,δ(t) is such that
lim
δ→0

lim sup
n→∞

|on,δ(t)| = 0.
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Letting ψη ∈ C∞([0, `]) be such that
0 ≤ ψη ≤ 1 on [0, `]

ψη = 1 on [0, `− η]

ψη = 0 on [l − η/2, `],

we can write for every j in view of the safe load condition (4.17)

H(pn(sj)− pn(sj−1))− 〈ρ(sj), pn(sj)− pn(sj−1)〉
≥ H(ψη(pn(sj)− pn(sj−1)))− 〈ρ(sj), ψη(pn(sj)− pn(sj−1))〉.

Hence

Wn(un(t), pn(t)) +

m∑
j=1

[H(ψη(pn(sj)− pn(sj−1)))− 〈ρ(sj), ψη(pn(sj)− pn(sj−1))〉]

≤ −
∫ t

0

〈ρ̇(τ), u′n(τ)− pn(τ)〉 dτ + 〈ρ(t), u′n(t)− pn(t)〉+ on,δ(t).

Now take the limit as n → ∞ and then as η → 0: since ψηρ(t) has compact support in [0, `[, we
get in view of (5.15)

lim
n
〈ρ(sj), ψη(pn(sj)− pn(sj−1))〉 = lim

n

∫ `

0

ρ(sj)ψη(pn(sj)− pn(sj−1)) dx

=

∫
[0,`[

ρ(sj)ψη d(p(sj)− p(sj−1)).

Taking into account (5.23) (along the entire sequence in view of Step 3), (5.37), and (4.22) together
with (5.11), we obtain

(5.38) Q(e(t)) +Diss(0, t; p)− 〈ρ(t), p(t)〉+

∫ t

0

〈ρ̇(τ), p(τ)〉 dτ − δ

≤ −
∫ t

0

〈ρ̇(τ), u′(τ)− p(τ)〉 dτ + 〈ρ(t), e(t)〉+ õδ(t),

where õδ(t)→ 0 as δ → 0. Letting δ → 0, we obtain the energy inequality

(5.39) Q(e(t))− 〈Λ(t), u(t)〉+Diss(0, t; p) ≤ −
∫ t

0

〈Λ̇(τ), u(τ)〉 dτ.

The reverse inequality is a standard consequence of the global stability condition (4.15): it suffices
to set sim := i

m t for i = 0, . . . ,m, to test the minimality of the configuration (u(si), e(si), p(si)) by
(u(si+1), e(si+1), p(si+1)), summing over i, and to let m→∞. We refer the reader to [2, Theorem
4.7] for the details. We conclude that

Q(e(t))− 〈Λ(t), u(t)〉+Diss(0, t; p) = −
∫ t

0

〈Λ̇(τ), u(τ)〉 dτ

so that t ∈ [0, T ] 7→ (u(t), e(t), p(t)) is a quasi-static evolution according to Definition 4.3.
In order to complete the proof, we need to show the convergence (4.24) for the elastic energies.

Note that by lower semicontinuity (see Step 1), any limit point of (Wεn(un(t), pn(t)))n∈N is greater
than Q(e(t)). If by contradiction one of them, achieved along a subsequence (nk)k∈N, is strictly
greater than Q(e(t)), then performing the argument above along that sequence we would get a
strict inequality in (5.38), which would be maintained in (5.39): this is against energy equality. �
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