Geometric properties of the heat content

Luciana Angiuli, Umberto Massari, Michele Miranda Jr ${ }^{\dagger}$

March 6, 2012

Abstract

In this paper we study the short time behavior of heat semigroup in connection with the geometry of sets with finite perimeter; we assume $C^{1,1}$ regularity and we relate the heat semigroup with curvatures of the initial datum. We also study the behavior when singularities occur; this is the case when the mean curvature is no more a function, but has to be considered as a Radon measure. This work is the natural continuation of [11] and is in the spirit of [4].

1 Introduction

The connections between the theory of semigroups and that of perimeters have been the subject of recent mathematical researches.
The interest in such results comes from the possibility to deduce geometric properties of a set $E \subset \mathbb{R}^{n}$ by means of the solution of suitable partial differential equations.
The pioneering paper where the first link between these theories has been established is [5] where De Giorgi noticed that by taking the heat semigroup T_{t} in \mathbb{R}^{n}, defined by means of the convolution with the Gauss-Weierstrass kernel,

$$
T_{t} \chi_{E}(x)=g_{t} * \chi_{E}(x)=\frac{1}{(4 \pi t)^{n / 2}} \int_{E} e^{-\frac{|x-y|^{2}}{4 t}} d y
$$

the map

$$
t \mapsto \int_{\mathbb{R}^{n}}\left|\nabla T_{t} \chi_{E}\right| d x
$$

is monotone decreasing, showing the existence of the limit

$$
\lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}}\left|\nabla T_{t} \chi_{E}\right| d x
$$

defined as the perimeter of E and denoted by $P(E)$, for any measurable set $E \subset \mathbb{R}^{n}$.
A characterization of the perimeter of a set, similar to the original definition of De Giorgi can

[^0]also be found in [8], where a characterization of isoperimetric property is provided. In [8], Ledoux introduced the diffusion functional defined by
\[

$$
\begin{equation*}
K_{t}(E, F)=\int_{F} T_{t} \chi_{E}(x) d x, \quad t>0 \tag{1}
\end{equation*}
$$

\]

and he proved the following formula

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sqrt{\frac{\pi}{t}} K_{t}\left(B, B^{c}\right)=P(B) \tag{2}
\end{equation*}
$$

where B is the Euclidean ball in \mathbb{R}^{n}. Recently, in [11], the authors proved that equation (2) holds for any set with finite perimeter and, moreover, an equivalent characterization of sets with finite perimeter is given, in the sense that

$$
\liminf _{t \rightarrow 0} \frac{K_{t}\left(E, E^{c}\right)}{\sqrt{t}}<+\infty
$$

if and only if E has finite perimeter. In that case

$$
P(E)=\lim _{t \rightarrow 0} \sqrt{\frac{\pi}{t}} K_{t}\left(E, E^{c}\right)
$$

Summarizing, for a set E with finite measure and perimeter, the following expansion holds

$$
K_{t}\left(E, E^{c}\right)=\sqrt{\frac{t}{\pi}} P(E)+o(\sqrt{t}),
$$

as t goes to 0 . More generally, for any two sets E and F with finite perimeter, the following formula holds

$$
\begin{equation*}
\int_{F} T_{t} \chi_{E}(x) d x=|E \cap F|-\sqrt{\frac{t}{\pi}} \int_{\mathcal{F} E \cap \mathcal{F} F}\left\langle\nu_{E}(x), \nu_{F}(x)\right\rangle d \mathcal{H}^{n-1}(x)+o(\sqrt{t}) . \tag{3}
\end{equation*}
$$

where $\mathcal{F} E, \mathcal{F} F$ are respectively the reduced boundary of E and F.
On the other hand, in the recent paper [1], two different characterizations of $P(E, \Omega)$, the perimeter of a set in a domain are given in terms of the short-time behavior of the solution of a parabolic initial boundary value problem in Ω.
These results are similar in the spirit to that contained in [4], where it is proved that

$$
Q_{D}(t)=|D|-\frac{2 \sqrt{t} P(D)}{\sqrt{\pi}}+\frac{t}{2} \int_{\partial D} H_{D}(x) d \mathcal{H}^{n-1}(x)+o(t)
$$

with D a bounded connected domain such that ∂D is of class C^{3} and H_{D} is the mean curvature of ∂D; here $Q_{D}(t)=\int_{D} u(t, x) d x$ and u is the solution of the Dirichlet Laplacian on D

$$
\begin{cases}\partial_{t} u=\Delta u & (0,+\infty) \times D \\ u(t, x)=0 & (0,+\infty) \times \partial D \\ u(0, x)=1 & D\end{cases}
$$

More recently, the same authors generalized the result in order to consider also Neumann boundary conditions; they also considered mixed, Dirichlet and Neumann, boundary conditions and
initial data other then χ_{D} (see for instance [2], [3] and the references therein).
In this paper, we are interested in studying the higher order expansion of $K_{t}(E, F)$ for two subsets $E, F \subset \mathbb{R}^{n}$ with finite perimeter; due to the presence of \sqrt{t}, we introduce the functions $f_{E, F}(t)=K_{t^{2}}(E, F)$ and $f_{E}(t)=K_{t^{2}}\left(E, E^{c}\right)$. A way to prove (3) simply consists in considering the limits

$$
\lim _{t \rightarrow 0} f_{E, F}(t)=|E \cap F|
$$

and (see [11, Theorem 3.1] for a detailed proof)

$$
\lim _{t \rightarrow 0} f_{E, F}^{\prime}(t)=\lim _{t \rightarrow 0} 2 t \int_{F} \Delta T_{t^{2}} \chi_{E}(x) d x=-\frac{1}{\sqrt{\pi}} \int_{\mathcal{F} E \cap \mathcal{F} F}\left\langle\nu_{E}(x), \nu_{F}(x)\right\rangle d \mathcal{H}^{n-1}(x) .
$$

In [11], a more accurate description of the function $f_{E}(t)$ is given under additional regularity of the boundary of E; in fact, assuming $C^{1,1}$ regularity of ∂E, it is possible to prove that, for small time, the heat amount is essentially contained in a neighborhood $E_{r} \backslash E$, with

$$
E_{r}=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, E)<r\right\},
$$

that is $f_{E}(t) \sim f_{E, E_{r} \backslash E}(t)$. So, the fact that

$$
\lim _{t \rightarrow 0} \frac{f_{E}(t)}{t}=\lim _{t \rightarrow 0} \frac{f_{E, E_{r} \backslash E}(t)}{t}=\frac{P(E)}{\sqrt{\pi}}
$$

resembles the characterization of the perimeter measure by the Minkowski content

$$
P(E)=\lim _{r \rightarrow 0} \frac{\left|E_{r} \backslash E\right|}{r},
$$

justifying the terminology of heat content for $f_{E}(t)$. It is worth noticing that the heat content is much more accurate than the Minkowski content, since it gives the perimeter measure without any further condition on the regularity of the reduced boundary of E.
The study of the higher order expansion of $f_{E, F}$ as t goes to 0 is similar to the analogue computation for the Minkowski content. Indeed it has been proved that under suitable properties on E (for instance by Steiner in the case of convex sets, and by Weyl for C^{2}-regular sets and by Federer [7] for sets of positive reach), the quantity $\left|E_{r}\right|$, for r small enough, is a polynomial in r whose coefficients are geometric invariants of the set E.

However there is a crucial difference between the heat and the Minkowski content also in the class of convex sets. In fact, from the argument used, the expansion found does not reduce always to a polynomial in \sqrt{t}. This happens, up to a term that is infinitesimal of exponential type, when E is a polyhedral set, that is a finite intersection of halfspaces. It is easy to check that by taking the second derivative of $f_{E, F}$, the following formula

$$
\begin{aligned}
f_{E, F}^{\prime \prime}(t) & =-\frac{1}{(4 \pi)^{n / 2} t^{n+2}} \int_{\mathcal{F} F} \int_{\mathcal{F} E}\left\langle\nu_{F}(x), y-x\right\rangle\left\langle\nu_{E}(y), y-x\right\rangle e^{-\frac{|x-y|^{2}}{4 t^{2}}} d \mathcal{H}^{n-1}(y) d \mathcal{H}^{n-1}(x) \\
& =:-\frac{1}{(4 \pi)^{n / 2} t^{n+2}} I_{t}(\mathcal{F} F ; \mathcal{F} E)
\end{aligned}
$$

holds.
The behavior of the function $t \mapsto I_{t}(\mathcal{F F} ; \mathcal{F} E)$ as $t \rightarrow 0^{+}$is crucial in order to deduce an higher order expansion for $K_{t}(E, F)$. Indeed in this paper we make a deep analysis of the
quantity $I_{t}(\Sigma ; \Gamma)$ for two general oriented pieces of uniform $C^{1,1}$ hypersurfaces. In particular we are interested in the case when Σ and Γ are parts of the boundaries of sets of finite perimeter E, F and under mild assumption on $\partial E \cap \partial F$ we prove our main result which is stated in Theorem 1.1 below.

The proof of this theorem is a direct consequence of all the results contained in Section 3 and Section 4, Propositions 3.1, 3.3, 4.9 and 4.15 and of the occurrence of the simple formulas

$$
\begin{equation*}
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}} T_{2 t} \chi_{E} d x=|E|-\int_{E^{c}} T_{2 t} \chi_{E} d x=|E|-K_{2 t}\left(E, E^{c}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{t} \chi_{E}-\chi_{E}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=2 \int_{E^{c}} T_{t} \chi_{E}(x) d x \tag{5}
\end{equation*}
$$

(see [11, Remark 3.5] for details about (5)).
To understand the statement, we refer to Section 2.1 for the definition of the mean curvature H_{Σ}^{x} and the square of the length of the second fundamental form c_{Σ}^{2}, Definition 4.1 for the notion of regular skeleton, and finally to Lemma 4.6 and Lemma 4.14 for the definitions of the quantities I_{0}^{k} and $\delta_{1} I_{0}^{1}$. Finally, we point out that this result can be easily extended to the case of two sets $E, F \subset \mathbb{R}^{n}$ with piecewice $C^{1,1}$-regularity, simply splitting

$$
\partial E=(\partial E \cap F) \cup\left(\partial E \cap \bar{F}^{c}\right) \cup(\partial E \cap \partial F), \quad \partial F=(\partial F \cap E) \cup\left(\partial F \cap \bar{E}^{c}\right) \cup(\partial F \cap \partial E)
$$

Theorem 1.1 Let E be a set with finite perimeter such that ∂E is a finite union of $C^{1,1}$-regular surfaces; let us assume also that $\partial E \backslash \mathcal{F} E$ has regular skeleton and

$$
\partial E=\Sigma=\bigcup_{i=i}^{m} \Sigma_{i} .
$$

Then, setting $A_{i}:=\left\{j \neq i: S_{i, j}=\Sigma_{i} \cap \Sigma_{j} \neq \emptyset\right\}$, we get

$$
\begin{aligned}
& \left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=|E|-\sqrt{\frac{2 t}{\pi}} P(E)+t \sum_{i=1}^{m} \sum_{j \in A_{i}} I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)+ \\
& -\frac{\sqrt{2 t^{3}}}{3}\left[\frac{(n-1)^{2}}{2 \sqrt{\pi}} \int_{\Sigma}\left(\left(H_{\Sigma}^{x}\right)^{2}+\frac{2}{(n-1)^{2}} c_{\Sigma}^{2}\right) d \mathcal{H}^{n-1}-\sum_{i=1}^{m} \sum_{j \in A_{i}}\left(I_{0}^{2}\left(\Sigma_{i} ; \Sigma_{j}\right)+\delta_{1} I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)\right)\right] \\
& +o\left(t^{3 / 2}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|T_{t} \chi_{E}-\chi_{E}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=2 \sqrt{\frac{t}{\pi}} P(E)-t \sum_{i=1}^{m} \sum_{j \in A_{i}} I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)+ \\
& +\frac{\sqrt{t^{3}}}{3}\left[\frac{(n-1)^{2}}{2 \sqrt{\pi}} \int_{\Sigma}\left(\left(H_{\Sigma}^{x}\right)^{2}+\frac{2}{(n-1)^{2}} c_{\Sigma}^{2}\right) d \mathcal{H}^{n-1}-\sum_{i=1}^{m} \sum_{j \in A_{i}}\left(I_{0}^{2}\left(\Sigma_{i} ; \Sigma_{j}\right)+\delta_{1} I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)\right)\right] \\
& +o\left(t^{3 / 2}\right)
\end{aligned}
$$

The paper is organized as follows; in Section 2 we fix the notations we shall use in the paper and we give the standing hypotheses on our surfaces $\mathcal{F} E$ and $\mathcal{F} F$; in Section 3 we consider the case of a single regular surface. We study the asymptotic behavior of $I_{t}(\partial E ; \partial E)$ as t goes to 0 , when ∂E is a piece of $C^{1,1}$-regular hypersurface proving that if E has finite perimeter, then

$$
K_{t}\left(E, E^{c}\right)=\sqrt{\frac{t}{\pi}} P(E)-t \sqrt{t} \frac{(n-1)^{2}}{2 \sqrt{\pi}} \int_{\partial E}\left(\left(H_{\partial E}^{x}\right)^{2}+\frac{2}{(n-1)^{2}} c_{\partial E}^{2}(x)\right) d \mathcal{H}^{n-1}(x),
$$

where

$$
H_{\partial E}^{x}=\frac{1}{n-1} \sum_{i=1}^{n-1} \kappa_{i}^{\partial E}(x), \quad c_{\partial E}^{2}(x)=\sum_{i=1}^{n-1} \kappa_{i}^{\partial E}(x)^{2} .
$$

and the $\kappa_{i}^{\partial E}(x)$'s are the principal curvatures of ∂E at x. In Section 4 we study the asymptotic behavior of $I_{t}(\partial E ; \partial F)$ and the related expansion for $K_{t}(E, F)$. In this case, the coefficient of t is non trivial and depends on the presence of the singular set $\partial E \cap \partial F$. Under suitable hypothesis on the set $\partial E \cap \partial F$, we are able to go further in the expansion deducing also in this case the coefficient of $t \sqrt{t}$; we obtain this result essentially using the fact that the set $\partial E \cap \partial F$ has positive reach in both ∂E and ∂F. If ∂E and ∂F meet transversally, this is equivalent to say that $\partial E \cap \partial F$ has positive reach in \mathbb{R}^{n}, which is not too far to require that it is $C^{1,1}$-regular, that is in fact our standing hypothesis. Finally, examples of sets to which the main results of this paper apply are provided in Section 5.

We end this introduction by pointing out that a similar expansion should be true by considering convolution kernels other than the Gauss-Weierstrass one; for instance, a possibility is to take any positive symmetric regularizing kernel with some decay conditions at infinity.

2 Notations

In this section we fix the main definitions we shall use later. By $B_{r}(x)$ we denote the open ball centered at x and with radius $r>0$; if $x=0$, we simply write B_{r}. We also denote by B_{r}^{+}the set of points $y \in B_{r} \subset \mathbb{R}^{n}$ such that $y_{n}>0$. Given a set $M \subset \mathbb{R}^{n}$, we shall use the notation $M_{r}^{x}=M \cap B_{r}(x)$.

We shall use the notations introduced by Federer in [7]; in particular, given a set $M \subset \mathbb{R}^{n}$, we define the tangent cone of M at x by

$$
\operatorname{Tan}(M, x)=\left\{\lambda u: u=\lim _{M \ni y \rightarrow x} \frac{y-x}{|y-x|}, \lambda \geq 0\right\}
$$

If $\operatorname{Tan}(M, x)$ is a vector space, we shall denote it by $T_{x} M$; if in general $\operatorname{Tan}(M, x)$ is only a cone, we shall denote by $T_{x} M$ its span, that is the smallest vector space containing it. We shall also denote by $\Pi_{M}^{x}: \mathbb{R}^{n} \rightarrow T_{x} M$ the orthogonal projection on $T_{x} M$.

We also denote the normal space to M at x by

$$
\operatorname{Nor}(M, x)=\left\{v \in \mathbb{R}^{n}:\langle v, u\rangle \leq 0, \quad \forall u \in \operatorname{Tan}(M, x)\right\} ;
$$

by $N_{x} M$ we shall denote the orthogonal complement of $T_{x} M$, that is the linear space such that

$$
\mathbb{R}^{n}=T_{x} M \otimes N_{x} M
$$

We define $M_{r}^{x}=M \cap B_{r}(x)$. We recall that a map φ is said to be L-bilipschitz, $L \geq 1$, if

$$
\frac{1}{L}\left|y_{1}-y_{2}\right| \leq\left|\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right| .
$$

Definition 2.1 Let M be a closed subset of \mathbb{R}^{n} such that $\mathcal{H}^{m}\left(M \backslash i_{m}(M)\right)=0$, $m>0$, where

$$
i_{m}(M)=\left\{x \in M: \exists \varrho>0 \text { with } M_{\varrho}^{x} \text { is } C^{1,1} \text {-diffeomorphic to an open set of } \mathbb{R}^{m}\right\}
$$

is m-dimensional interior part of M. We shall say that:

- M is a piece of an uniform $\left(C^{1.1}, m, L, r\right)$-regular manifold, $r>0$ and $L \geq 1$, if for any $x \in M$ there exists a $C^{1,1} L$ bilipschitz map $\varphi_{M}^{x}: B_{L r} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ such that

1. $\varphi_{M}^{x}(0)=x$ and $\left\{\partial_{i} \varphi_{M}^{x}(0)\right\}_{i=1, \ldots, m}$ orthonormal;
2. $\varphi_{M}^{x}\left(B_{r / L}\right) \subset M_{r}^{x} \subset \varphi_{M}^{x}\left(B_{L r}\right)$.

- M is $\left(C^{1,1}, m, L, r\right)$-regular at $x \in M$ if
(i) for $x \in i_{m}(M)$, in addition to requirements 1. and 2., we have that

$$
\varphi_{M}^{x}\left(B_{\frac{r}{L}}\right) \subset M_{r}^{x} \subset \varphi_{M}^{x}\left(B_{L r}\right) ;
$$

(ii) for $x \in M \backslash i_{m}(M)$, in addition to requirements 1. and 2., we have that

$$
\varphi_{M}^{x}\left(B_{\frac{r}{L}}^{+}\right) \subset M_{r}^{x} \subset \varphi_{M}^{x}\left(B_{L r}^{+}\right) ;
$$

We shall simply say a piece of and $C^{1,1}$-regular manifold if the dimension m is clear from the context and there exist $L, r>0$ such that the manifold is a piece of or $\left(C^{1,1}, m, L, r\right)$-regular manifold. We extend this definition to the case $m=0$ by meaning that M reduces to a single point.

Remark 2.2 In view of the previous definition, if M is $C^{1,1}$-regular and $x \in i_{m}(M)$, we shall use the same notation M_{r}^{x} to mean both, $M \cap B_{r}(x)$ or the image $\varphi_{M}^{x}\left(B_{r}\right)$ (or $\varphi_{M}^{x}\left(B_{r}\right) \cap M$ in case M is a piece of $C^{1,1}$-regular manifold). Moreover, if the part of M inside $B_{r}(x)$ is strictly contained in $\varphi_{M}^{x}\left(B_{r}\right)$, we can extend M adding a disjoint set \widetilde{M} to M with $M_{r}^{x} \cup \widetilde{M}=\varphi_{M}^{x}\left(B_{r}\right)$. The same argument can be repeated also in the case $x \in M \backslash i_{m}(M)$, replacing B_{r} with B_{r}^{+}. We shall call this procedure the tangential completion of M at x.

2.1 Manifolds of codimension one

We consider now the case $M=\Sigma$ a surface of dimension $(n-1)$; with a little abuse of notation, we shall write $I_{t}\left(\Sigma ; \Sigma_{r}^{x}\right)$ to mean the integral

$$
I_{t}\left(\Sigma ; \Sigma_{r}^{x}\right)=\int_{\Sigma} d \mathcal{H}^{n-1}(x) \int_{\Sigma_{r}^{x}}\left\langle\nu_{\Sigma}(x), y-x\right\rangle\left\langle\nu_{\Sigma}(y), y-x\right\rangle e^{-\frac{|y-x|^{2}}{4 t^{2}}} d \mathcal{H}^{n-1}(y)
$$

The second fundamental form $\overrightarrow{\mathrm{I}}_{\Sigma}^{x}: T_{x} \Sigma \times T_{x} \Sigma \rightarrow N_{x} \Sigma$ for an hypersurface Σ at a point x is a bilinear map and is related to the scalar second fundamental form A_{Σ}^{x} by equality

$$
\overrightarrow{\mathrm{I}}_{\Sigma}^{x}(v, w)=A_{\Sigma}^{x}(v, w) \nu_{\Sigma}(x), \quad \forall v, w \in T_{x} \Sigma
$$

The principal curvatures $\kappa_{\Sigma, i}^{x}, i=1, \ldots, n-1$, are defined as the eigenvalues of A_{Σ}^{x}; moreover, fixed a vector $v \in T_{x} \Sigma$, the sectional curvature in x of Σ in direction v is defined as

$$
\kappa_{\Sigma}^{x}[v]=A_{\Sigma}^{x}(v, v) .
$$

In this way, if $\left\{v_{i}\right\}_{i=1, \ldots, n-1}$ are the eigenvectors of A_{Σ}^{x} associated to the $\kappa_{\Sigma, i}^{x}$'s, we have

$$
\kappa_{\Sigma, i}^{x}=\kappa_{\Sigma}^{x}\left[v_{i}\right] .
$$

If no confusion may arise, we simply denote by κ_{i} the principal curvatures.
The mean curvature of Σ in x is defined by

$$
H_{\Sigma}^{x}=\frac{1}{n-1} \sum_{i=1}^{n-1} \kappa_{i}
$$

in addition, the square of the length of the second fundamental form is given by

$$
c_{\Sigma}^{2}(x)=\sum_{i=1}^{n-1} \kappa_{i}^{2}
$$

Remark 2.3 With the previous assumptions, we notice that if Σ is a piece of a $C^{1,1}$-regular hypersurface, then for every $x \in i_{n-1}(\Sigma)$ and r is small enough, we can parametrize Σ_{r}^{x} by

$$
\begin{equation*}
\varphi_{\Sigma}^{x}: A_{r}^{x} \rightarrow \Sigma_{r}^{x}, \quad \varphi_{\Sigma}^{x}(w)=x+w+u(w) \nu_{\Sigma}(x), \tag{6}
\end{equation*}
$$

where $A_{r}^{x}=\Pi_{\Sigma}^{x}\left(\Sigma_{r}^{x}\right)$ is an open set containing 0 and diameter less then r and $u(0)=0 ; u$ is a function with the same regularity in 0 as that of the surface Σ in x, then in particular u is differentiable in 0 and $\nabla u(0)=0$. Using the Lipschitz regularity of ∇u, we also obtain that

$$
\begin{equation*}
|\nabla u(w)| \leq L|w|, \quad|u(w)| \leq \frac{L}{2}|w|^{2} \tag{7}
\end{equation*}
$$

In other terms, Σ_{r}^{x} is contained in the graph of u on the tangent space $T_{x} \Sigma$; if x has been chosen in such a way that u is twice differentiable in 0 , then the second fundamental form of Σ in x is then given by

$$
\begin{equation*}
\overrightarrow{\mathrm{I}}_{\Sigma}^{x}(w, z)=\langle H u(0) w, z\rangle \nu_{\Sigma}(x) \tag{8}
\end{equation*}
$$

and the eigenvalues of $H u(0)$ are the principal curvatures of Σ at x. For the normal unit field $\nu_{\Sigma}: \Sigma \rightarrow \mathbb{S}^{n-1}$, we have that for $y \in \Sigma_{r}^{x}$

$$
\begin{equation*}
\left|\nu_{\Sigma}(y)-\nu_{\Sigma}(x)\right| \leq L|y-x| \tag{9}
\end{equation*}
$$

moreover, $d_{x} \nu_{\Sigma}: T_{x} \Sigma \rightarrow T_{\nu_{x}} \mathbb{S}^{n-1}=T_{x} \Sigma$ and, by setting $\gamma_{z}^{x}(t)=x+t z+u(t z) \nu_{\Sigma}(x)$, the following holds

$$
\begin{equation*}
d_{x} \nu_{\Sigma}[z]=\frac{d}{d t} \nu_{\Sigma}\left(\gamma_{z}^{x}(t)\right)_{\mid t=0}=\lim _{t \rightarrow 0} \frac{\nu_{\Sigma}\left(x+t z+u(t z) \nu_{\Sigma}(x)\right)-\nu_{\Sigma}(x)}{t}=-H u(0) z \tag{10}
\end{equation*}
$$

Finally, if $x \in \Sigma \backslash i_{n-1}(\Sigma)$, we can define as before the parametrization $\varphi_{\Sigma}^{x}: A_{r}^{x} \rightarrow \Sigma_{r}^{x}$, but in this case $0 \in \partial A_{r}^{x}$. By the $C^{1,1}$ assumption, the function u can be extended to 0 in such a way that $u(0)=\nabla u(0)=0$, and (7)-(10) continue to hold.

2.2 Submanifolds of higher codimension

Let $M \subset \mathbb{R}^{n}$ be a manifold with codimension $k>1$; then, for any $x \in M, T_{x} M$ and $N_{x} M$ have, respectively, dimension $n-k$ and k. The second fundamental form is a bilinear form $\overrightarrow{\mathrm{I}}_{M}^{x}: T_{x} M \times T_{x} M \rightarrow N_{x} M$, so for any $\eta \in N_{x} M$ we have the scalar second fundamental form in direction η

$$
A_{M, \eta}^{x}(v, w)=\left\langle\overrightarrow{\mathrm{I}}_{M}^{x}(v, w), \eta\right\rangle, \quad \forall v, w \in T_{x} M
$$

The principal curvatures of M in direction η are the eigenvalues of $A_{M, \eta}^{x}$, and are denoted by $\left(\kappa_{M, \eta, i}^{x}\right)_{i=1, \ldots, n-k}$. It is then defined the mean curvature of M at x in direction η by the identity

$$
H_{M}^{x}[\eta]=\frac{1}{n-k} \sum_{i=1}^{n-k} \kappa_{M, \eta, i}^{x}
$$

Finally, if M is a parametrized manifold and $\varphi: A \rightarrow \mathbb{R}^{n}, A \subset \mathbb{R}^{n-k}$ is an open set with $\varphi(0)=x$, then the metric tensor at x is given by

$$
g_{i, j}(x)=\left\langle\partial_{i} \varphi(0), \partial_{j} \varphi(0)\right\rangle ;
$$

using such a metric, the quadratic form $A_{M, \eta}^{x}$ is determined by the matrix

$$
\sum_{h=1}^{n-k} g^{i, h}\left\langle\partial_{h, j}^{2} \varphi(0), \eta\right\rangle,
$$

where $g^{i h}$ are the coefficients of the inverse of the metric g. In particular, if M is a piece of a $C^{1,1}$-regular manifold, $x \in M$ and φ_{M}^{x} given in Definition 2.1, then the metric induced by φ_{M}^{x} is the identity in x, so that the second fundamental form is determined by the matrix

$$
\left(A_{M, \eta}^{x}\right)_{i, j}=\left\langle\partial_{i, j}^{2} \varphi(0), \eta\right\rangle ;
$$

as a consequence, the mean curvature of M at x in direction η is given by

$$
H_{M}^{x}[\eta]=\frac{1}{n-k} \sum_{i=1}^{n-k}\left\langle\partial_{i, i}^{2} \varphi(0), \eta\right\rangle .
$$

3 The functional $I_{t}(\Sigma)$

In this section we study $I_{t}(\Sigma)$ for Σ a piece of $C^{1,1}$-regular hypersurface. First of all, due to the exponential map, the part of I_{t} with $|y-x| \geq r, r>0$ fixed, goes to 0 exponentially as $t \rightarrow 0$. With a little abuse of notation, we shall write $I_{t}\left(\Sigma, \Sigma_{r}^{x}\right)$ by meaning that $x \in \Sigma$ is a fixed point in the first integral of I_{t} and $\Sigma_{r}^{x}=\{y \in \Sigma:|y-x|<r\}$. With the change of variable $z=\frac{y-x}{t}$, we can write

$$
\begin{aligned}
I_{t}\left(\Sigma, \Sigma_{r}^{x}\right) & =t^{n+1} \int_{\Sigma} d \mathcal{H}^{n-1}(x) \int_{\frac{\Sigma x-x}{t}}\left\langle\nu_{\Sigma}(x), z\right\rangle\left\langle\nu_{\Sigma}(x+t z), z\right\rangle e^{-\frac{|z|^{2}}{4}} d \mathcal{H}^{n-1}(z) \\
& =t^{n+1} \int_{\Sigma} d \mathcal{H}^{n-1}(x) \int\left\langle\nu_{\Sigma}(x), z\right\rangle\left\langle\nu_{\Sigma}(x+t z), z\right\rangle e^{-\frac{|z|^{2}}{4}} d \mu_{t}(z)
\end{aligned}
$$

We then need a time expansion of both $\nu_{\Sigma}(x+t z)$ and the measures $\mu_{t}=\mathcal{H}^{n-1}\left\llcorner\left(\frac{\Sigma_{x}^{x}-x}{t}\right)\right.$.

Proposition 3.1 Let Σ be a piece of a $C^{1,1}$-regular hypersurface; then

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{I_{t}(\Sigma)}{(4 \pi)^{n / 2} t^{n+2}}=0 \tag{11}
\end{equation*}
$$

Proof. We start with the decomposition

$$
I_{t}(\Sigma)=I_{t}\left(\Sigma ; \Sigma_{r}^{x}\right)+I_{t}\left(\Sigma ; \Sigma \backslash \Sigma_{r}^{x}\right)
$$

A direct computation shows that if $2 t<r$

$$
\begin{equation*}
\left|I_{t}\left(\Sigma ; \Sigma \backslash \Sigma_{r}^{x}\right)\right| \leq r^{2} e^{-\frac{r^{2}}{4 t^{2}}}\left(\mathcal{H}^{n-1}(\Sigma)\right)^{2} \tag{12}
\end{equation*}
$$

and then

$$
\begin{equation*}
I_{t}(\Sigma ; \Sigma)=I_{t}\left(\Sigma ; \Sigma_{r}^{x}\right)+o\left(t^{k}\right), \quad \forall k>0, \tag{13}
\end{equation*}
$$

so we can restrict our attention on $I_{t}\left(\Sigma ; \Sigma_{r}^{x}\right)$. We can write

$$
I_{t}\left(\Sigma ; \Sigma_{r}^{x}\right)=\int_{\Sigma} g_{t}^{r}(x) d \mathcal{H}^{n-1}(x)
$$

we fix $x \in \Sigma$ and, with the change of variable $y=x+t z$ we obtain

$$
\begin{aligned}
g_{t}^{r}(x)= & t^{n+1} \int_{\frac{\Sigma x-x}{t}}\left\langle\nu_{\Sigma}(x), z\right\rangle^{2} e^{-\frac{|z|^{2}}{4}} d \mathcal{H}^{n-1}(z)+ \\
& +t^{n+1} \int_{\frac{\Sigma x-x}{t}}\left\langle\nu_{\Sigma}(x), z\right\rangle\left\langle\nu_{\Sigma}(x+t z)-\nu_{\Sigma}(x), z\right\rangle e^{-\frac{|z|^{2}}{4}} d \mathcal{H}^{n-1}(z) .
\end{aligned}
$$

Using the parametrization φ_{Σ}^{x} of Remark 2.3 and a change of variable, we can write

$$
\begin{align*}
g_{t}^{r}(x)=t^{n+1} & \int_{A_{r}^{x} / t} e^{-\frac{|w|^{2}}{4}} e^{-\frac{u(t w)^{2}}{4 t^{2}}} \sqrt{1+|\nabla u(t w)|^{2}}\left(\frac{u(t w)^{2}}{t^{2}}+\right. \\
& \left.+\frac{u(t w)}{t}\left\langle\nu_{\Sigma}\left(x+t w+u(t w) \nu_{\Sigma}(x)\right)-\nu_{\Sigma}(x), w+\frac{u(t w)}{t} \nu_{\Sigma}(x)\right\rangle\right) d w \tag{14}
\end{align*}
$$

As a consequence, by (7) and (9), we get

$$
\begin{equation*}
\left|g_{t}^{r}(x)\right| \leq t^{n+3} \frac{3}{2} L^{5} \int_{T_{x} \Sigma}|w|^{4}\left(1+|w|^{2}\right)^{3 / 2} e^{-\frac{|w|^{2}}{4}} d w=c t^{n+3} \tag{15}
\end{equation*}
$$

with $c=c(L, n)$ a constant depending only on L and the integral of $|w|^{4}\left(1+|w|^{2}\right)^{3 / 2} e^{-\frac{|w|^{2}}{4}}$ on \mathbb{R}^{n-1}. This implies (11).

Remark 3.2 In the previous proof the $C^{1,1}$-regularity essentially shows that the dominated convergence theorem can be used; the same argument, each time $C^{1,1}$-regularity holds, can be used in the sequel, also in the case of manifolds with higher codimension, To keep the proofs a little shorter, we shall use the dominated convergence without repeating the check of it.

We can go further in the expansion, in order to obtain the following result.

Theorem 3.3 Let Σ be a piece of a $C^{1,1}$-regular hypersurface; then

$$
\begin{align*}
\lim _{t \rightarrow 0} \frac{I_{t}(\Sigma)}{(4 \pi)^{n / 2} t^{n+3}} & =-\frac{1}{4(4 \pi)^{n / 2}} \int_{\Sigma} d \mathcal{H}^{n-1}(x) \int_{T_{x} \Sigma} A_{\Sigma}^{x}(z, z)^{2} e^{-\frac{|z|^{2}}{4}} d z \tag{16}\\
& =-\frac{(n-1)^{2}}{2 \sqrt{\pi}} \int_{\Sigma}\left(\left(H_{\Sigma}^{x}\right)^{2}+\frac{2}{(n-1)^{2}} c_{\Sigma}^{2}(x)\right) d \mathcal{H}^{n-1}(x) .
\end{align*}
$$

Proof. Thanks to estimate (15), we can use the dominated convergence and compute the pointwise limit

$$
\lim _{t \rightarrow 0} \frac{g_{t}^{r}(x)}{(4 \pi)^{n / 2} t^{n+3}}
$$

So we fix $x \in \Sigma$ and denote simply by ν the vector $\nu_{\Sigma}(x)$; we also use the parametrization φ_{Σ}^{x} of Remark 2.3. We can also assume that the point x has been chosen in such a way that $u \in C^{1,1}$ and u twice differentiable in 0 . By (14), we can write

$$
\begin{aligned}
g_{t}^{r}(x)= & t^{n+3} \int_{A_{r}^{x} / t} e^{-\frac{|w|^{2}}{4}-\frac{\mid u(t w)^{2}}{4 t^{2}}} \sqrt{1+|\nabla u(t w)|^{2}}\left(\frac{u(t w)^{2}}{t^{4}}+\right. \\
& \left.+\frac{u(t w)}{t^{2}}\left\langle\frac{\nu_{\Sigma}(x+t w+u(t w) \nu)-\nu}{t}, w+\frac{u(t w)}{t} \nu\right\rangle\right) d w
\end{aligned}
$$

where in the last integral we have performed the change of variable $z=t w$. By the dominated convergence, it suffices to consider the pointwise limits as $t \rightarrow 0$ of $u(t w) / t, \nabla u(t w)$ and $u(t w) / t^{2}$. We have that

$$
\lim _{t \rightarrow 0} \frac{u(t w)}{t}=0, \quad \lim _{t \rightarrow 0} \nabla u(t w)=0, \quad \lim _{t \rightarrow 0} \frac{u(t w)}{t^{2}}=\frac{1}{2}\langle H u(0) w, w\rangle .
$$

We also have that

$$
\lim _{t \rightarrow 0}\left\langle\frac{\nu_{\Sigma}(x+t w+u(t w) \nu)-\nu}{t}, w+\frac{u(t w)}{t} \nu\right\rangle=-\langle H u(0) w, w\rangle
$$

as can be easily proved by assuming $\nu=e_{n}$, the last element of the canonical base of \mathbb{R}^{n} and by writing

$$
\nu_{\Sigma}(x+t w+u(t w) \nu)=\frac{(-\nabla u(t w), 1)}{\sqrt{1+|\nabla u(t w)|^{2}}}
$$

Summarizing, we can conclude that

$$
\lim _{t \rightarrow 0} \frac{g_{t}^{r}(x)}{(4 \pi)^{n / 2} t^{n+3}}=-\frac{1}{4(4 \pi)^{n / 2}} \int_{T_{x} \Sigma}\langle H u(0) w, w\rangle^{2} e^{-\frac{|w|^{2}}{4}} d w:=I(x)
$$

We take then an orthonormal basis in $T_{x} \Sigma$ of eigenvector $\left(\tau_{i}\right)_{i=1, \ldots, n-1}$ with $H u(0) \tau_{i}=\kappa_{i} \tau_{i}, \kappa_{i}$ the principal curvatures of Σ at x; so we can write $w=\sum_{i=1}^{n-1} w_{i} \tau_{i}$ so that we have

$$
\begin{aligned}
I(x) & =-\frac{1}{4(4 \pi)^{n / 2}} \int_{T_{x} \Sigma}\langle H u(0) w, w\rangle^{2} e^{-\frac{|w|^{2}}{4}} d w \\
& =-\frac{1}{4(4 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}}\left(\sum_{i=1}^{n-1} \kappa_{i} w_{i}^{2}\right)^{2} e^{-\frac{w_{1}^{2}+\ldots+w_{n-1}^{2}}{4}} d w_{1} \ldots d w_{n-1} \\
& =-\frac{1}{4(4 \pi)^{n / 2}} \sum_{i, j=1}^{n-1} \kappa_{i} \kappa_{j} \int_{\mathbb{R}^{n-1}} w_{i}^{2} w_{j}^{2} e^{-\frac{|w|^{2}}{4}} d w \\
& =-\frac{1}{2 \sqrt{\pi}} \sum_{i, j=1}^{n-1} \kappa_{i} \kappa_{j}-\frac{1}{\sqrt{\pi}} \sum_{i=1}^{n-1} \kappa_{i}^{2}=-\frac{(n-1)^{2}}{2 \sqrt{\pi}}\left(H_{\Sigma}^{x}\right)^{2}-\frac{1}{\sqrt{\pi}} c_{\Sigma}^{2}(x) .
\end{aligned}
$$

4 The functional $I_{t}(\Sigma ; \Gamma)$

In this section we study the quantity $I_{t}(\Sigma ; \Gamma)$ for two oriented pieces of uniform $C^{1,1}$ hypersurfaces. In this computation, a crucial rôle is played by the intersection $S=\Sigma \cap \Gamma$ of the two manifolds. Since we are interested in the case when Σ and Γ are parts of the boundaries of sets of finite perimeter, we can restrict to the case when for \mathcal{H}^{n-2}-almost every $x_{0} \in S, \operatorname{Tan}\left(\Sigma, x_{0}\right)$ and $\operatorname{Tan}\left(\Gamma, x_{0}\right)$ are both half hyperplanes. On S we shall always assume the following regularity.

Definition 4.1 (Regular skeleton) We shall say that a set S with $\mathcal{H}^{n-2}(S)<+\infty$ has regular skeleton if, denoting by $S_{0}=S$, the sets $S_{k}=S_{k-1} \backslash i_{n-k}\left(S_{k-1}\right) k=1, \ldots, n-1$ are finite union of closed pieces of $C^{1,1}$-regular $(n-1-k)$-dimensional manifolds. Notice that with this definition we have that $S_{1}=S_{0}$.

Given Σ and Γ, we define the sets

$$
\Sigma_{r}=\{x \in \Sigma: \operatorname{dist}(x, S) \leq r\}, \quad \Gamma_{r}=\{y \in \Gamma: \operatorname{dist}(y, S) \leq r\}
$$

we point out that if $y \in \Gamma \backslash \Gamma_{r}$, then

$$
\begin{equation*}
\operatorname{dist}(y, \Sigma) \geq c r \tag{17}
\end{equation*}
$$

for some positive constant $c>0$. This in particular implies that

$$
\begin{equation*}
I_{t}(\Sigma ; \Gamma)=I_{t}\left(\Sigma_{r} ; \Gamma_{r}\right)+o\left(t^{m}\right), \quad \forall m \in \mathbb{N} . \tag{18}
\end{equation*}
$$

In fact, we can write

$$
I_{t}(\Sigma ; \Gamma)=I_{t}\left(\Sigma_{r} ; \Gamma_{r}\right)+I_{t}\left(\Sigma \backslash \Sigma_{r} ; \Gamma_{r}\right)+I_{t}\left(\Sigma ; \Gamma \backslash \Gamma_{r}\right),
$$

and, as in (12), there holds

$$
\begin{equation*}
\left|I_{t}\left(\Sigma ; \Gamma \backslash \Gamma_{r}\right)\right| \leq r^{2} e^{-\frac{r^{2}}{4 t^{2}}} \mathcal{H}^{n-1}(\Sigma) \mathcal{H}^{n-1}(\Gamma) \tag{19}
\end{equation*}
$$

Same estimate holds for $I_{t}\left(\Sigma \backslash \Sigma_{r} ; \Gamma_{r}\right)$.
From now on we consider Σ_{r}; the same considerations and constructions can be done also for Γ_{r}. Most of this considerations and notations are based on the paper of Federer [7] and Zähle [19] and a fundamental tool is the Federer coarea formula (see also Thäle [16]); our setting is a little bit simpler, since we are assuming regular skeleton. If r is small enough, it is well defined the projection $\pi: \Sigma_{r} \rightarrow S$; for any $k=0, \ldots, n-1$, we define the sets

$$
S^{k}=\left\{x_{0} \in S: \operatorname{dim} \pi^{-1}\left(x_{0}\right)=k\right\}, \quad \Sigma_{r}^{k, x_{0}}=\pi^{-1}\left(x_{0}\right), x_{0} \in S^{k}
$$

By the fact that S has regular skeleton, we deduce that

$$
\begin{equation*}
i_{n-1-k}\left(S_{k}\right) \subset S^{k} \subset S_{k}, \quad k=1, \ldots n-1 \tag{20}
\end{equation*}
$$

and, since $\mathcal{H}^{n-1-k}\left(S_{k+1}\right)=0, \mathcal{H}^{n-1-k}$ a.e. point of S_{k} belongs to S^{k}. The sets $\Sigma_{r}^{k}=\pi^{-1}\left(S^{k}\right)$ are ($n-1$)-dimensional manifolds for any $k \geq 1$, while $\mathcal{H}^{n-1}\left(\Sigma_{r}^{0}\right)=0$; we then have the following disjoint decomposition

$$
\begin{equation*}
\Sigma_{r}=\bigcup_{k=0}^{n-1} \Sigma_{r}^{k} \tag{21}
\end{equation*}
$$

Moreover, by (20), for \mathcal{H}^{n-1-k} a.e. $x_{0} \in S^{k}$, we have the decomposition

$$
\begin{equation*}
\operatorname{Tan}\left(\Sigma_{r}^{k}, x_{0}\right)=T_{x_{0}} S^{k} \oplus \operatorname{Tan}\left(\Sigma_{r}^{k, x_{0}}, x_{0}\right) \tag{22}
\end{equation*}
$$

In the same way we can define the sets Γ_{r}^{k} and $\Gamma_{r}^{k, x_{0}}$. For \mathcal{H}^{n-1-k} a.e. $x_{0} \in S^{k}$ the cones $\operatorname{Tan}\left(\sum_{r}^{k, x_{0}}, x_{0}\right)$ and $\operatorname{Tan}\left(\Gamma_{r}^{k, x_{0}}, x_{0}\right)$ are k-dimensional and are generated by k vectors that we shall denote by $\left\{\sigma_{j}^{k}\left(x_{0}\right)\right\}_{j=1, \ldots, k}$ and $\left\{\gamma_{j}^{k}\left(x_{0}\right)\right\}_{j=1, \ldots, k}$. Eventually dividing Σ and Γ in two parts in case that they pass through each other, we can assume that $\operatorname{Tan}\left(\sum_{r}^{k, x_{0}}, x_{0}\right)$ and $\operatorname{Tan}\left(\Gamma_{r}^{k, x_{0}}, x_{0}\right)$ are positive cones, meaning by positive cone generated by the vectors v_{1}, \ldots, v_{m} any combination of the type

$$
\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}, \quad \lambda_{i} \geq 0, i=1, \ldots, m
$$

We give the following definition.
Definition 4.2 We say that Σ meets Γ transversally if there exists $c>0$ such that for almost every $x_{0} \in S,-1+c \leq\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle \leq 1-c$, or equivalently $\left|\sigma_{1}^{1}\left(x_{0}\right) \wedge \gamma_{1}^{1}\left(x_{0}\right)\right| \geq c$.

Remark 4.3 In what follows, the transversality can also be replaced by a weaker condition, requiring the existence of a function $\omega \in L^{1}\left(S, \mathcal{H}^{n-2}\right)$ such that

$$
\frac{1}{\left|\sigma_{1}^{1}\left(x_{0}\right) \wedge \gamma_{1}^{1}\left(x_{0}\right)\right|} \leq \omega\left(x_{0}\right), \quad \mathcal{H}^{n-2}-\text { a.e. } x_{0} \in S .
$$

We also define, for \mathcal{H}^{n-1-k} a.e. $x_{0} \in S^{k}$, the cone

$$
V_{x_{0}}^{k}=\operatorname{Tan}\left(\Gamma_{r}^{k, x_{0}}, x_{0}\right)-\operatorname{Tan}\left(\Sigma_{r}^{k, x_{0}}, x_{0}\right)
$$

which can be parametrized by using the maps $Q \Sigma_{x_{0}}^{k}: \mathbb{R}_{+}^{k} \rightarrow \operatorname{Tan}\left(\Sigma_{r}^{k, x_{0}}, x_{0}\right), Q \Gamma_{x_{0}}^{k}: \mathbb{R}_{+}^{k} \rightarrow$ $\operatorname{Tan}\left(\Gamma_{r}^{k, x_{0}}, x_{0}\right)$

$$
Q \Sigma_{x_{0}}^{k}(\alpha)=\sum_{i=1}^{k} \alpha_{i} \sigma_{i}^{k}\left(x_{0}\right), \quad Q \Gamma_{x_{0}}^{k}(\beta)=\sum_{i=1}^{k} \beta_{i} \gamma_{i}^{k}\left(x_{0}\right) ;
$$

such a parametrization is given by $Q_{x_{0}}^{k}: \mathbb{R}_{+}^{2 k} \rightarrow V_{x_{0}}^{k}$,

$$
Q_{x_{0}}^{k}(\alpha, \beta)=Q \Gamma_{x_{0}}^{k}(\beta)-Q \Sigma_{x_{0}}^{k}(\alpha)
$$

and is determined by the matrix

$$
\left(\begin{array}{llllll}
-\sigma_{1}^{k}\left(x_{0}\right) & \ldots & -\sigma_{k}^{k}\left(x_{0}\right) & \gamma_{1}^{k}\left(x_{0}\right) & \ldots & \gamma_{k}^{k}\left(x_{0}\right) \tag{23}
\end{array}\right) .
$$

The dimension of $V_{x_{0}}^{k}$ is given by the rank of (23), that is, due to the transversality condition on Σ and Γ, always equals to $k+1$. We shall then denote by $J_{k} Q_{x_{0}}^{k}$ the factor

$$
D_{k} Q_{x_{0}}^{k}= \begin{cases}\left|\sigma_{1}^{1}\left(x_{0}\right) \wedge \gamma_{1}^{1}\left(x_{0}\right)\right| & \text { if } k=1 \tag{24}\\ \frac{J_{k} d Q \Sigma_{x_{0}}^{k} J_{k} d Q \Gamma_{x_{0}}^{k}}{C_{k} d Q_{x_{0}}^{k}} & \text { if } k>1\end{cases}
$$

where by $J_{k} d Q \Sigma_{x_{0}}^{k}$ and $J_{k} d Q \Gamma_{x_{0}}^{k}$ we denote the area factor of the maps $Q \Sigma_{x_{0}}^{k}$ and $Q \Gamma_{x_{0}}^{k}$, and by $C_{k} d Q_{x_{0}}^{k}$ the coarea factor associated to $Q_{x_{0}}^{k}$.

For the restrictions $\pi_{k}: \Sigma_{r}^{k} \rightarrow S^{k}$ of π, we can consider, for any measurable function g, the coarea formula

$$
\int_{\Sigma_{r}^{k}} g(x) C_{k} d_{x} \pi_{k} d \mathcal{H}^{n-1}(x)=\int_{S^{k}} d \mathcal{H}^{n-1-k}\left(x_{0}\right) \int_{\Sigma_{r}^{k, x_{0}}} g(x) d \mathcal{H}^{k}(x),
$$

where $C_{k} d_{x} \pi_{k}$ is the coarea factor associated to π_{k}. Equivalently, since $C_{k} d_{x} \pi_{k} \neq 0$ on Σ_{r}^{k},

$$
\int_{\Sigma_{r}^{k}} g(x) d \mathcal{H}^{n-1}(x)=\int_{S^{k}} d \mathcal{H}^{n-1-k}\left(x_{0}\right) \int_{\Sigma_{r}^{k, x_{0}}} \frac{g(x)}{C_{k} d_{x} \pi_{k}} d \mathcal{H}^{k}(x)
$$

Remark 4.4 We can write the coarea factor using local parametrizations; we do it explicitly since we shall use it in Lemma 4.5. Using a partition of unity argument, we can assume that Σ_{r}^{k} is a parametrized surface in a neighbourhood of a fixed point $x_{0} \in S^{k}$. We shall then assume to have a map $\psi: A_{x_{0}}^{k} \times I_{x_{0}}^{k} \rightarrow \mathbb{R}^{n}$ with the following properties:

1. $A_{x_{0}}^{k}$ is an open subset of \mathbb{R}^{n-1-k} and $I_{x_{0}}^{k} \subset \mathbb{R}^{k}$, both sets containing 0 ;
2. $\psi(0,0)=x_{0}$;
3. the map $a \mapsto \phi(a)=\psi(a, 0)$ is a parametrization for S^{k};
4. for any $a \in A_{x_{0}}^{k}$, the map $a^{\prime} \mapsto \psi\left(a, a^{\prime}\right)$ is a parametrization of $\Sigma_{r}^{k} \cap \operatorname{Nor}\left(S^{k}, \phi(a)\right)$;
5. the set $\left\{\partial_{i} \psi(0,0)\right\}_{i=1, \ldots, n-1-k}$ is an orthonormal basis of $T_{x_{0}} S^{k}$ and

$$
\partial_{n-1-k+j} \psi(0,0)=\sigma_{j}^{k}\left(x_{0}\right), \quad j=1, \ldots, k .
$$

We shall also write ψ^{-1} and ϕ^{-1} to denote the inverses of ψ and ϕ defined on Σ_{r}^{k} and S^{k} respectively. With the previous assumptions, it is clear that

$$
\pi_{k}\left(\psi\left(a, a^{\prime}\right)\right)=\phi(a)
$$

Moreover, the parametrization ψ induces then metrics g_{n-1}, g_{n-1-k} and g_{k} on Σ_{r}^{k}, S^{k} and $\Sigma_{r}^{k, y}$, $y \in S^{k}$ so that the coarea factor tunrs out to be given by

$$
\begin{equation*}
C_{k} d_{x} \pi_{k}=\sqrt{\frac{\operatorname{det}\left[g_{n-1-k}\left(\phi^{-1}\left(\pi_{k}(x)\right), 0\right)\right] \operatorname{det}\left[g_{k}\left(\psi^{-1}(x)\right)\right]}{\operatorname{det}\left[g_{n-1}\left(\psi^{-1}(x)\right)\right]}} . \tag{25}
\end{equation*}
$$

The following lemma contains the main properties of the coarea factor $C_{k} d_{x_{0}} \pi_{k}$ we use in the sequel; we omit the proof since it uses standard arguments.

Lemma 4.5 Let $C_{k} d \pi_{k}$ be the k-th coarea factor associated to π_{k}; then, if $x_{0} \in S^{k}$,

$$
\begin{equation*}
C_{k} d_{x_{0}} \pi_{k}=1, \tag{26}
\end{equation*}
$$

while for $z \in \operatorname{Tan}\left(\Sigma_{r}^{k, x_{0}}, x_{0}\right)$,

$$
\begin{equation*}
d_{x_{0}} C_{k} d_{x_{0}} \pi_{k}[z]=(n-1-k) H_{S^{k}}^{x_{0}}[z], \tag{27}
\end{equation*}
$$

where $H_{S^{k}}^{x_{0}}[z]$ is the mean curvature of S^{k} at x_{0} in direction $z \in N_{x_{0}} S^{k}$.
Using the decomposition (21), we can write

$$
\begin{equation*}
I_{t}\left(\Sigma_{r} ; \Gamma\right)=\sum_{k=1}^{n-1} I_{t}\left(\sum_{r}^{k} ; \Gamma\right) ; \tag{28}
\end{equation*}
$$

the following result holds.
Lemma 4.6 The quantity $I_{t}\left(\Sigma_{r}^{k} ; \Gamma\right)$ is asymptotic to t^{n+k+1} and there holds

$$
I_{0}^{k}(\Sigma ; \Gamma):=\lim _{t \rightarrow 0} \frac{I_{t}\left(\Sigma_{r}^{k} ; \Gamma\right)}{(4 \pi)^{n / 2} t^{n+1+k}}=\int_{S^{k}} \Theta_{k}\left(x_{0}\right) d \mathcal{H}^{n-1-k}\left(x_{0}\right),
$$

where, if $k=1$,

$$
\Theta_{1}\left(x_{0}\right)=\frac{1}{\left.4 \pi \mid \sigma^{1}\left(x_{0}\right) \wedge \gamma_{1}^{1}\left(x_{0}\right)\right) \mid} \int_{V_{x_{0}}^{1}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle \exp \left(-\frac{|v|^{2}}{4}\right) d v
$$

and if $k>1$,

$$
\Theta_{k}\left(x_{0}\right)=\frac{D_{k} Q_{x_{0}}^{k}}{(4 \pi)^{\frac{k+1}{2}}} \int_{V_{x_{0}}^{k}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{k-1}\left(\left(Q_{x_{0}}^{k}\right)^{-1}(v)\right) d v
$$

with $D_{k} Q_{x_{0}}^{k}$ given by (24).
Proof. First of all we note that, using the changes of variables $x=x_{0}+t z$ and $y=x_{0}+t w$,

$$
\begin{aligned}
I_{t}\left(\Sigma_{r}^{k} ; \Gamma\right) & =\int_{\Sigma_{r}^{k}} d \mathcal{H}^{n-1}(x) \int_{\Gamma}\left\langle\nu_{\Sigma}(x), y-x\right\rangle\left\langle\nu_{\Gamma}(x), y-x\right\rangle e^{-\frac{|y-x|^{2}}{4 t^{2}}} d \mathcal{H}^{n-1}(y) \\
& =\int_{S^{k}} d \mathcal{H}^{n-1-k}\left(x_{0}\right) \int_{\Sigma_{r}^{k, x_{0}}} d \mathcal{H}^{k}(x) \int_{\Gamma} \frac{\left\langle\nu_{\Sigma}(x), y-x\right\rangle\left\langle\nu_{\Gamma}(x), y-x\right\rangle}{C_{k} d_{x} \pi_{k}} e^{-\frac{|y-x|^{2}}{4 t^{2}}} d \mathcal{H}^{n-1}(y) \\
& =t^{n+1+k} \int_{S^{k}} d \mathcal{H}^{n-1-k}\left(x_{0}\right) \int_{\frac{\Sigma_{r}^{k, x_{0}-x_{0}}}{t}} d \mathcal{H}^{k}(z) \int_{\frac{\Gamma-x_{0}}{t}} F_{x_{0}}^{k}(t, z, w) d \mathcal{H}^{n-1}(w),
\end{aligned}
$$

with

$$
F_{x_{0}}^{k}(t, z, w)=\frac{\left\langle\nu_{\Sigma}\left(x_{0}+t z\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}+t w\right), w-z\right\rangle}{C_{k} d_{x_{0}+t z} \pi_{k}} e^{-\frac{|w-z|^{2}}{4}} .
$$

Using the convergences

$$
\begin{gathered}
\lim _{t \rightarrow 0} F_{x_{0}}^{k}(t, z, w)=\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle e^{-\frac{|w-z|^{2}}{4}}, \\
\mathcal{H}^{k}\left\llcorner(\frac { \sum _ { r } ^ { k , x _ { 0 } } - x _ { 0 } } { t }) \rightharpoonup \mathcal { L } ^ { k } \left\llcorner\operatorname{Tan}\left(\sum_{r}^{k, x_{0}}, x_{0}\right), \quad \mathcal{H}^{n-1}\left\llcorner(\frac { \Gamma - x _ { 0 } } { t }) \rightharpoonup \mathcal { L } ^ { n - 1 } \left\llcorner\operatorname{Tan}\left(\Gamma, x_{0}\right)\right.\right.\right.\right.
\end{gathered}
$$

and the decomposition $\operatorname{Tan}\left(\Gamma, x_{0}\right)=T_{x_{0}} S^{k} \oplus \operatorname{Tan}\left(\Gamma_{r}^{k, x_{0}}, x_{0}\right)$, we get

$$
\lim _{t \rightarrow 0} \frac{I_{t}\left(\sum_{r}^{k} ; \Gamma\right)}{(4 \pi)^{n / 2} t^{n+1+k}}=\int_{S^{k}} \Theta_{k}\left(x_{0}\right) d \mathcal{H}^{n-1-k}\left(x_{0}\right)
$$

with

$$
\Theta_{k}\left(x_{0}\right)=\frac{1}{(4 \pi)^{\frac{k+1}{2}}} \int_{\operatorname{Tan}\left(\Sigma_{r}^{k, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma_{r}^{k, x_{0}}, x_{0}\right)}\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle e^{-\frac{|w-z|^{2}}{4}} d w .
$$

To compute the last integral we distinguish the cases $k=1$ and $k>1$; in the first case we parametrize $\operatorname{Tan}\left(\Sigma^{1, x_{0}}, x_{0}\right)$ and $\operatorname{Tan}\left(\Gamma^{1, x_{0}}, x_{0}\right)$ using the maps

$$
Q \Sigma_{x_{0}}^{1}(\alpha)=\alpha \sigma_{1}^{1}\left(x_{0}\right), \quad Q \Gamma_{x_{0}}^{1}(\beta)=\beta \gamma_{1}^{1}\left(x_{0}\right)
$$

whose area factor is 1 , so that we obtained

$$
\begin{aligned}
\Theta_{1}\left(x_{0}\right) & =\frac{1}{4 \pi} \int_{\mathbb{R}_{+}^{2}}\left\langle\nu_{\Sigma}\left(x_{0}\right), Q_{x_{0}}^{1}(\alpha, \beta)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), Q_{x_{0}}^{1}(\alpha, \beta)\right\rangle e^{-\frac{\left|Q_{x_{0}}^{1}(\alpha, \beta)\right|^{2}}{4}} d(\alpha, \beta) \\
& =\frac{1}{4 \pi\left|\sigma_{1}^{1}\left(x_{0}\right) \wedge \gamma_{1}^{1}\left(x_{0}\right)\right|} \int_{V_{x_{0}}^{1}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} d v
\end{aligned}
$$

The case $k>1$ is similar, but since $Q_{x_{0}}^{k}$ maps $\mathbb{R}^{2 k}$ onto the $(k+1)$-dimensional cone $V_{x_{0}}^{k}$, we have to use the coarea formula, that is

$$
\begin{aligned}
\Theta_{k}\left(x_{0}\right) & =\frac{J_{k} d Q \Sigma_{x_{0}}^{k} J_{k} d Q \Gamma_{x_{0}}^{k}}{(4 \pi)^{\frac{k+1}{2}}} \int_{\mathbb{R}_{+}^{2 k}}\left\langle\nu_{\Sigma}\left(x_{0}\right), Q_{x_{0}}^{k}(\alpha, \beta)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), Q_{x_{0}}^{k}(\alpha, \beta)\right\rangle e^{-\frac{\left|Q_{x_{0}}^{k}(\alpha, \beta)\right|^{2}}{4}} d(\alpha, \beta) \\
& =\frac{D_{k} Q_{x_{0}}^{k}}{(4 \pi)^{\frac{k+1}{2}}} \int_{V_{x_{0}}^{k}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{k-1}\left(\left(Q_{x_{0}}^{k}\right)^{-1}(v)\right) d v .
\end{aligned}
$$

Remark 4.7 We point out some consequence and possible generalization of the previous result; it states that the quantity $I_{t}(\Sigma ; \Gamma)$ is infinitesimal of order strictly related to the dimension of the intersection $\Sigma \cap \Gamma$. In general, if M_{1} and M_{2} are two oriented manifolds meeting transversally of dimensions m_{1} and m_{2} respectively, $S_{12}=M_{1} \cap M_{2}$ has dimension $m<\min \left\{m_{1}, m_{2}\right\}$ and ξ_{1}, ξ_{2} are two vector fields in \mathbb{R}^{n}, then the quantity

$$
I_{t}\left(M_{1}, \xi_{1} ; M_{2}, \xi_{2}\right):=\int_{M_{1}} d \mathcal{H}^{m_{1}}(x) \int_{M_{2}}\left\langle\xi_{1}(x), y-x\right\rangle\left\langle\xi_{2}(y), y-x\right\rangle e^{-\frac{|y-x|^{2}}{4 t^{2}}} d \mathcal{H}^{m_{2}}(y)
$$

is infinitesimal of order $t^{m_{1}+m_{2}-m+2}$. The proof of this essentially uses the projection on the intersection S_{12}; this fact has been exploited in the previous lemma by the quantity $I_{t}\left(\Sigma^{k} ; \Gamma\right)$, since in this case the intersection between Σ^{k} and Γ, having dimension $n-1$, is contained in S^{k}, which has dimension $n-1-k$.

Since we are interested in the cases $k=1$, we compute Θ_{1} explicitly. In order to do this, we define the angle ϑ_{0} as the unique $\vartheta_{0} \in[0, \pi)$ such that

$$
\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle=\cos \vartheta_{0}
$$

With this choice, we also have that

$$
\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle= \pm \sin \vartheta_{0}, \quad\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle= \pm \sin \vartheta_{0}
$$

where the signs depend on the orientations of Σ and Γ.
Lemma 4.8 Let us fix $x_{0} \in S^{1}$; for $k=1$, we have that

$$
\Theta_{1}\left(x_{0}\right)=-\frac{\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle}{\pi \sin ^{2} \vartheta_{0}}\left(1+\left(\pi-\vartheta_{0}\right) \operatorname{ctg} \vartheta_{0}\right)
$$

Proof. For $\eta \in V_{x_{0}}^{1}$, we write $\eta=\eta_{1} v_{1}+\eta_{2} v_{2}$ where $\left\{v_{1}, v_{2}\right\}$ is the orthogonal system determined by

$$
v_{1}=\sigma_{1}^{1}\left(x_{0}\right), \quad v_{2}=\frac{1}{\sqrt{1-\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}}}\left(\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle \sigma_{1}^{1}\left(x_{0}\right)-\gamma_{1}^{1}\left(x_{0}\right)\right) .
$$

With this choice, we obtain

$$
\begin{aligned}
4 \pi(1- & \left.\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}\right) \Theta_{1}\left(x_{0}\right)=-\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle \int_{V_{x_{0}}^{1}} \eta_{1} \eta_{2} e^{-\frac{|\eta|^{2}}{4}} d \eta+ \\
& -\frac{\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle}{\sqrt{1-\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}}} \int_{V_{x_{0}}^{1}} \eta_{2}^{2} e^{-\frac{|\eta|^{2}}{4}} d \eta \\
= & -\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle \int_{0}^{+\infty} \varrho^{3} e^{-\frac{\varrho^{2}}{4}} d \varrho \int_{0}^{\alpha} \sin \vartheta \cos \vartheta d \vartheta+ \\
& -\frac{\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle}{\sqrt{1-\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}}} \int_{0}^{+\infty} \varrho^{3} e^{-\frac{\varrho^{2}}{4}} d \varrho \int_{0}^{\alpha} \sin ^{2} \vartheta d \vartheta
\end{aligned}
$$

with $\alpha=\pi-\vartheta_{0}$ since $V_{x_{0}}^{1}$ is the positive cone generated by $\sigma_{1}^{1}\left(x_{0}\right)$ and $-\gamma_{1}^{1}\left(x_{0}\right)$.
Proposition 4.9 Let Σ and Γ two pieces of $C^{1,1}$-regular surfaces such that $S=\Sigma \cap \Gamma$ has regular skeleton; then

$$
\lim _{t \rightarrow 0} \frac{I_{t}(\Sigma ; \Gamma)}{(4 \pi)^{n / 2} t^{n+2}}=I_{0}^{1}(\Sigma ; \Gamma)=\int_{S^{1}} \Theta_{1}\left(x_{0}\right) d \mathcal{H}^{n-2}\left(x_{0}\right)
$$

Proof. The proposition follows by using the decomposition (28), the estimate (19) and applying Lemma 4.6.

Remark 4.10 In the proof of Lemma 4.6, we have essentially used the weak convergence of

$$
\mu_{t}^{\Sigma_{r}^{k, x_{0}}}=\mathcal{H}^{k}\left\llcorner\left(\frac{\sum_{r}^{k, x_{0}}-x_{0}}{t}\right)\right.
$$

to the measure

$$
\mu_{0}^{\Sigma_{r}^{k, x_{0}}}=\mathcal{L}^{k}\left\llcorner\operatorname{Tan}\left(\Sigma_{r}^{k, x_{0}}, x_{0}\right)\right.
$$

and the weak convergence of

$$
\mu_{t}^{\Gamma_{r}}=\mathcal{H}^{n-1}\left\llcorner\left(\frac{\Gamma_{r}-x_{0}}{t}\right)\right.
$$

to the measure

$$
\mu_{0}^{\Gamma_{r}}=\mathcal{L}^{n-1}\left\llcorner\operatorname{Tan}\left(\Gamma, x_{0}\right) .\right.
$$

In the next lemma we shall investigate the behavior of the distributions defined by

$$
\begin{equation*}
\delta_{1} \mu_{0}^{\Sigma_{r}^{1, x_{0}}}=\lim _{t \rightarrow 0} \frac{\mu_{t}^{\Sigma_{r}^{1, x_{0}}}-\mu_{0}^{\Sigma_{r}^{1, x_{0}}}}{t}, \quad \delta_{1} \mu_{0}^{\Gamma_{r}^{x_{0}}}=\lim _{t \rightarrow 0} \frac{\mu_{t}^{\Gamma_{r}^{x_{0}}}-\mu_{0}^{\Gamma_{r}^{x_{0}}}}{t} \tag{29}
\end{equation*}
$$

in the case that $\Sigma_{r}^{1, x_{0}}$ and $\Gamma_{r}^{x_{0}}$ are $C^{1,1}$-regular at x_{0} (see Definition 2.1).
Lemma 4.11 If $\phi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$; if $x_{0} \in S$ and $\Sigma_{r}^{1, x_{0}}$ is $C^{1,1}$-regular at x_{0}, then there holds

$$
\begin{equation*}
\left\langle\phi, \delta_{1} \mu_{0}^{\Sigma_{r}^{1, x_{0}}}\right\rangle=\frac{1}{2} \int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)}\left\langle\nabla \phi(z), \nu_{\Sigma}\left(x_{0}\right)\right\rangle \kappa_{\Sigma}^{x_{0}}[z] d z . \tag{30}
\end{equation*}
$$

Moreover, if $x_{0} \in S$ and Γ is $C^{1,1}$-regular at x_{0},

$$
\begin{equation*}
\left\langle\phi, \delta_{1} \mu_{0}^{\Gamma_{r}^{x_{0}}}\right\rangle=\frac{1}{2} \int_{\operatorname{Tan}\left(\Gamma, x_{0}\right)}\left\langle\nabla \phi(w), \nu_{\Gamma}\left(x_{0}\right)\right\rangle A_{\Gamma}^{x_{0}}(w, w) d w-\frac{1}{2} \int_{T_{x_{0} S}} \phi(s) A_{S, \gamma_{1}^{1}\left(x_{0}\right)}^{x_{0}}(s, s) d s \tag{31}
\end{equation*}
$$

Proof. We start by proving (31); we use the parametrization of $\frac{\Gamma_{r}^{x_{0}}-x_{0}}{t}$ given in Remark 2.3 ; this parametrization is given by $\varphi_{t}: B_{r / t}^{+} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
\varphi_{t}(w, b)= & \frac{\varphi(t w, t b)-x_{0}}{t}=\sum_{h=1}^{n-2} \partial_{h} \varphi(0) w_{h}+\partial_{n-1} \varphi(0) b+ \\
& +\frac{t}{2}\left(\sum_{h, k=1}^{n-2} \partial_{h, k}^{2} \varphi(0) w_{h} w_{k}+2 \sum_{h=1}^{n-2} \partial_{h, n-1}^{2} \varphi(0) w_{h} b+\partial_{n-1, n-1}^{2} \varphi(0) b^{2}\right)+o(t)
\end{aligned}
$$

We may also assume that $\partial_{i} \varphi(0)$ coincide with the elements e_{i} of the standard basis for $i=$ $1, \ldots, n-1$. Moreover, for the metric we have

$$
\begin{aligned}
\frac{d}{d t} \sqrt{\operatorname{det} g(t w, t b)}_{t=0}= & \sum_{h, k=1}^{n-2} \partial_{h, k}^{2} \varphi^{k}(0) w_{h}+\sum_{h=1}^{n-2} \partial_{n-1, h}^{2} \varphi^{h}(0) b+ \\
& +\sum_{h=1}^{n-2} \partial_{h, n-1}^{2} \varphi^{n-1}(0) w_{h}+\partial_{n-1, n-1}^{2} \varphi^{n-1}(0) b
\end{aligned}
$$

We now use the fact that for $\phi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ and t small enough, we have that

$$
\operatorname{spt}(\phi) \cap \frac{\Gamma_{r}-x_{0}}{t} \subset \varphi_{t}\left(B_{r / t}^{+}\right)
$$

We also have that for $i \in\{1, \ldots, n-2\}$ there hold

$$
\begin{gathered}
\int_{\mathbb{R}_{+}^{n-1}} \partial_{i} \phi(w, b, 0) w_{h} w_{k} d w d b=-\int_{\mathbb{R}_{+}^{n-1}} \phi(w, b, 0)\left(\delta_{i h} w_{k}+w_{h} \delta_{i k}\right) d w d b \\
\int_{\mathbb{R}_{+}^{n-1}} \partial_{i} \phi(w, b, 0) w_{h} b d w d b=-\int_{\mathbb{R}_{+}^{n-1}} \phi(w, b, 0) \delta_{i h} b d w d b
\end{gathered}
$$

and

$$
\int_{\mathbb{R}_{+}^{n-1}} \partial_{i} \phi(w, b, 0) b^{2} d w d b=0
$$

while

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{n-1}} \partial_{n-1} \phi(w, b, 0) w_{h} w_{k} d w d b & =-\int_{\mathbb{R}^{n-2}} \phi(w, 0,0) w_{h} w_{k} d w \\
\int_{\mathbb{R}_{+}^{n-1}} \partial_{n-1} \phi(w, b, 0) w_{h} b d w d b & =-\int_{\mathbb{R}_{+}^{n-1}} \phi(w, b, 0) w_{h} d w d b
\end{aligned}
$$

and

$$
\int_{\mathbb{R}_{+}^{n-1}} \partial_{n-1} \phi(w, b, 0) b^{2} d w d b=-2 \int_{\mathbb{R}_{+}^{n-1}} \phi(w, b, 0) b d w d b
$$

In this way we obtain that

$$
\begin{aligned}
& \int \phi d \mu_{t}^{\Gamma_{r}^{x_{0}}}=\int_{\mathbb{R}_{+}^{n-1}} \phi(w, b, 0) d w d b+\frac{t}{2}\left(\sum_{h, k=1}^{n-2} \partial_{h, k}^{2} \varphi^{n}(0) \int_{\mathbb{R}_{+}^{n-1}} \partial_{n} \phi(w, b, 0) w_{h} w_{k} d w d b+\right. \\
& \left.\quad+2 \sum_{h=1}^{n-2} \partial_{h, n-1}^{2} \varphi^{n}(0) \int_{\mathbb{R}_{+}^{n-1}} \partial_{n} \phi(w, b, 0) w_{h} b d w d b+\partial_{n-1, n-1}^{2} \varphi^{n}(0) \int_{\mathbb{R}_{+}^{n-1}} \partial_{n} \phi(w, b, 0) b^{2} d w d b\right)+ \\
& \quad-\frac{t}{2} \sum_{h, k=1}^{n-2} \partial_{h, k}^{2} \varphi^{n-1}(0) \int_{\mathbb{R}^{n-2}} \phi(w, 0,0) w_{h} w_{k} d w+o(t) \\
& =\int \phi d \mu_{0}^{\Gamma_{r}^{x_{0}}}+\frac{t}{2} \int_{\operatorname{Tan}\left(\Gamma, x_{0}\right)}\left\langle\nabla \phi(w), \nu_{\Gamma}\left(x_{0}\right)\right\rangle A_{\Gamma}^{x_{0}}(w, w) d w-\frac{t}{2} \int_{T_{x_{0} S} S} \phi(s) A_{S, \gamma_{1}^{1}\left(x_{0}\right)}^{x_{0}}(s, s) d s+o(t)
\end{aligned}
$$

and this proves (31). The proof of (30) is similar.
Remark 4.12 Lemma 4.11 applies also to function in the Schwarz space and in particular, as in our case, to a polynomial times the Gaussian.

Remark 4.13 In the proof of next result we need to compute integrals of the type

$$
F_{h k}=\int_{0}^{+\infty} d \alpha \int_{0}^{+\infty} d \beta \alpha^{h} \beta^{k} \exp \left(-\frac{\alpha^{2}+\beta^{2}-2 \alpha \beta \cos \vartheta_{0}}{4}\right)
$$

The integrals we are interested in are F_{10}, F_{21}, F_{30} and F_{32}. With standard computation, we get

$$
F_{10}=\frac{2 \sqrt{\pi}}{1-\cos \vartheta_{0}}, \quad F_{30}=\frac{4 \sqrt{\pi}\left(2-\cos \vartheta_{0}\right)}{\left(1-\cos \vartheta_{0}\right)^{2}}, \quad F_{21}=\frac{4 \sqrt{\pi}}{\left(1-\cos \vartheta_{0}\right)^{2}}, \quad F_{32}=\frac{16 \sqrt{\pi}}{\left(1-\cos \vartheta_{0}\right)^{3}} .
$$

In order to go further in the expansion of $I_{t}(\Sigma ; \Gamma)$ we have to compute the derivative of the function $t \mapsto \frac{I_{t}\left(\Sigma_{r}^{1} ; \Gamma\right)}{(4 \pi)^{n / 2} t^{n+2}}$. In such derivative, the distributions $\delta_{1} \mu_{0}^{\Sigma_{r}^{1, x_{0}}}$ and $\delta_{1} \mu_{0}^{\Gamma_{r}^{x_{0}}}$ defined in (29) are involved. By Lemma 4.11 we know how these distribution act on smooth functions when $\Sigma_{r}^{1, x_{0}}$ and $\Gamma_{r}^{x_{0}}$ are $C^{1,1}$-regular at x_{0}. Since, in general, this is not the case, we have to complete our surfaces Σ and Γ in such a way that the assumptions of Lemma 4.11 are satisfied.

In the next lemma we will consider points belonging to $S_{2}=S \backslash i_{n-2}(S)$; for \mathcal{H}^{n-3}-almost every $x_{0} \in S^{2} \subset S_{2}$, we have the $(n-3)$-dimensional tangent space $T_{x_{0}} S^{2}$ and a vector $s_{1}^{1}\left(x_{0}\right)$, pointing inside S, in such a way that the $(n-2)$-dimensional cone $\operatorname{Tan}\left(S, x_{0}\right)$ is given by

$$
\operatorname{Tan}\left(S, x_{0}\right)=T_{x_{0}} S^{2} \otimes \mathbb{R}_{+}\left\langle s_{1}^{1}\left(x_{0}\right)\right\rangle
$$

Moreover, for such $x_{0} \in S^{2}, \operatorname{Tan}\left(\Sigma, x_{0}\right)$ is the product of $T_{x_{0}} S^{2}$ and a positive cone generated by two vectors, $s_{1}^{1}\left(x_{0}\right)$ and a second vector $\tilde{\sigma}_{1}^{1}\left(x_{0}\right)$, belonging to the plane generated by $\sigma_{1}^{1}\left(x_{0}\right)$ (a vector orthogonal to $\left.s_{1}^{1}\left(x_{0}\right)\right)$ and $s_{1}^{1}\left(x_{0}\right)$. If $\left\langle\widetilde{\sigma}_{1}^{1}\left(x_{0}\right), s_{1}^{1}\left(x_{0}\right)\right\rangle>0$, then $\Sigma_{r}^{2, x_{0}}=\emptyset$ and then Σ has a defect of orthogonality around x_{0}, that is for points $x \in S^{1} \cap B_{r}\left(x_{0}\right)$ close to $x_{0}, \Sigma_{r}^{1, x}$ is not $C^{1,1}-$ regular at x. Then we can complete $\Sigma_{r}^{1, x}$ using the sets $\widetilde{\Sigma}_{r}^{1, x}$ of Remark 2.2 ; we set

$$
\widetilde{\Sigma}_{r}=\bigcup_{x_{0} \in S_{2}} \bigcup_{x \in S \cap B_{r}\left(x_{0}\right)} \widetilde{\Sigma}_{r}^{1, x}
$$

In case $\left\langle\widetilde{\sigma}_{1}^{1}\left(x_{0}\right), s_{1}^{1}\left(x_{0}\right)\right\rangle<0$, then Σ has an excess of orthogonality and then $\Sigma_{r}^{2, x_{0}} \neq \emptyset$ and as sets of generators of $\operatorname{Tan}\left(\Sigma_{r}^{2, x_{0}}, x_{0}\right)$ we can choose $\sigma_{1}^{2}\left(x_{0}\right)=\sigma_{1}^{1}\left(x_{0}\right), \sigma_{2}^{2}\left(x_{0}\right)=\widetilde{\sigma}_{1}^{1}\left(x_{0}\right)$. In case $\left\langle\widetilde{\sigma}_{1}^{1}\left(x_{0}\right), s_{1}^{1}\left(x_{0}\right)\right\rangle=0$, then both $\Sigma_{r}^{2, x_{0}}$ and $\widetilde{\Sigma}_{r} \cap B_{r}\left(x_{0}\right)$ are empty. In the same way, for Γ, we have the vectors $\gamma_{1}^{1}\left(x_{0}\right)$ and $\widetilde{\gamma}_{1}^{1}\left(x_{0}\right)$ such that $\operatorname{Tan}\left(\Gamma, x_{0}\right)$ is given by the product of $T_{x_{0}} S^{2}$ and the cone generated by $s_{1}^{1}\left(x_{0}\right)$ and $\widetilde{\gamma}_{1}^{1}\left(x_{0}\right)$. The fact that Γ can be not $C^{1,1}$-regular at $x_{0} \in S^{2}$ means that Γ has a defect of tangentiality at x_{0}; in this case, $\operatorname{Tan}\left(\Gamma_{r}^{2, x_{0}}, x_{0}\right)$ is the positive cone generated by $s_{1}^{1}\left(x_{0}\right)$ and $\widetilde{\gamma}_{1}^{1}\left(x_{0}\right)$, that is we can set $\gamma_{1}^{2}\left(x_{0}\right)=s_{1}^{1}\left(x_{0}\right)$ and $\gamma_{2}^{2}\left(x_{0}\right)=\widetilde{\gamma}_{1}^{1}\left(x_{0}\right)$. We also use the definition of

$$
\widetilde{\Gamma}_{r}=\bigcup_{x_{0} \in S_{2}} \bigcup_{x \in B_{r}\left(x_{0}\right)} \widetilde{\Gamma}_{r}^{x},
$$

given by Remark 2.2 is such a way that $\Gamma \cup \widetilde{\Gamma}_{r}$ is $C^{1,1}$-regular at any point of S; finally, for almost any point $x_{0} \in S^{2}$, we notice that $\operatorname{Tan}\left(\widetilde{\Gamma}_{r}, x_{0}\right)$ is given by $T_{x_{0}} S^{2}$ and the positive cone generated by $\widetilde{\gamma}_{1}^{2}\left(x_{0}\right)=-s_{1}^{1}\left(x_{0}\right)$ and $\widetilde{\gamma}_{2}^{2}\left(x_{0}\right)=\widetilde{\gamma}_{1}^{1}\left(x_{0}\right)$.

Since the following decomposition

$$
I_{t}\left(\Sigma_{r} ; \Gamma_{r}\right)=I_{t}\left(\Sigma_{r} \cup \widetilde{\Sigma}_{r} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)-I_{t}\left(\widetilde{\Sigma}_{r} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)-I_{t}\left(\Sigma_{r} ; \widetilde{\Gamma}_{r}\right),
$$

holds, we shall deal with the quantities $I_{t}\left(\tilde{\Sigma}_{r} ; \Gamma_{r} \cup \tilde{\Gamma}_{r}\right)$ and $I_{t}\left(\tilde{\Gamma}_{r} ; \Sigma_{r}\right)$ which (as pointed out in Remark 4.7) are infinitesimal with order $n-3$. We need to consider the dimensional decompositions of $\tilde{\Sigma}_{r}, \tilde{\Gamma}_{r}$ and $\Gamma_{r} \cup \tilde{\Gamma}_{r}$ induced by the projections on S_{2} and with an abuse of notation, we continue to denote by $\tilde{\Sigma}_{r}^{k, x_{0}},\left(\tilde{\Gamma}_{r}\right)^{k, x_{0}}$ and $\left(\Gamma_{r} \cup \tilde{\Gamma}_{r}\right)^{k, x_{0}}$ such slicings. We shall use in particular the spaces

$$
\widetilde{V}_{x_{0}}^{2}=\operatorname{Tan}\left(\left(\Gamma \cup \widetilde{\Gamma}_{r}\right)_{r}^{2, x_{0}}, x_{0}\right)-\operatorname{Tan}\left(\widetilde{\Sigma}_{r}^{2, x_{0}}, x_{0}\right), \quad \widetilde{W}_{x_{0}}^{2}=\operatorname{Tan}\left(\widetilde{\Gamma}_{r}^{2, x_{0}}, x_{0}\right)-\operatorname{Tan}\left(\Sigma_{r}^{2, x_{0}}, x_{0}\right)
$$

and the linear maps $\widetilde{Q}_{x_{0}}^{2}: \mathbb{R}_{+}^{3} \times \mathbb{R} \rightarrow \widetilde{V}_{x_{0}}^{2}$ and $\widehat{Q}_{x_{0}}^{2}: \mathbb{R}_{+}^{4} \rightarrow \widetilde{W}_{x_{0}}^{2}$, defined by

$$
\widetilde{Q}_{x_{0}}^{2}(\alpha, \beta)=-\alpha_{1} \sigma_{1}^{1}\left(x_{0}\right)-\alpha_{2} \widetilde{\sigma}_{1}^{1}\left(x_{0}\right)+\beta_{1} \gamma_{1}^{1}\left(x_{0}\right)+\beta_{2} s_{1}^{1}\left(x_{0}\right)
$$

and

$$
\widehat{Q}_{x_{0}}^{2}(\alpha, \beta)=-\alpha_{1} \tilde{\sigma}_{1}^{1}\left(x_{0}\right)-\alpha_{2} s_{1}^{1}\left(x_{0}\right)+\beta_{1} \tilde{\gamma}_{1}^{1}\left(x_{0}\right)-\beta_{2} s_{1}^{1}\left(x_{0}\right) .
$$

Lemma 4.14 Let Σ and Γ as before; then

$$
\delta_{1} I_{0}^{1}(\Sigma ; \Gamma):=\lim _{t \rightarrow 0} \frac{1}{t}\left(\frac{I_{t}\left(\Sigma_{r}^{1} ; \Gamma\right)}{(4 \pi)^{n / 2} t^{n+2}}-I_{0}^{1}(\Sigma ; \Gamma)\right)=\int_{S} T_{2}\left(x_{0}\right) d \mathcal{H}^{n-2}-\int_{S^{2}} \widetilde{\Theta}_{2}\left(x_{0}\right) d \mathcal{H}^{n-3}\left(x_{0}\right)
$$

where

$$
\begin{align*}
T_{2}\left(x_{0}\right)= & \frac{\left(\cos \vartheta_{0}-2\right)}{\sqrt{\pi}\left(1-\cos \vartheta_{0}\right)^{2}}\left[\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle \kappa_{\Sigma}^{x_{0}}\left[\sigma_{1}^{1}\left(x_{0}\right)\right]+\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle \kappa_{\Gamma}^{x_{0}}\left[\gamma_{1}^{1}\left(x_{0}\right)\right]\right. \\
& \left.+\frac{(n-2) \cos \vartheta_{0}}{\left(\cos \vartheta_{0}-2\right)}\left(\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle H_{S}^{x_{0}}\left[\nu_{\Gamma}\left(x_{0}\right)\right]+\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle H_{S}^{x_{0}}\left[\nu_{\Sigma}\left(x_{0}\right)\right]\right)\right] \tag{32}
\end{align*}
$$

and

$$
\begin{aligned}
\widetilde{\Theta}_{2}\left(x_{0}\right)= & \frac{D_{2} \widetilde{Q}_{x_{0}}^{2}}{(4 \pi)^{3 / 2}} \int_{\widetilde{V}_{x_{0}}^{2}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\left(\widetilde{Q}_{x_{0}}^{2}\right)^{-1}(v)\right) d v+ \\
& +\frac{D_{2} \widehat{Q}_{x_{0}}^{2}}{(4 \pi)^{3 / 2}} \int_{\widetilde{W}_{x_{0}}^{2}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\left(\widehat{Q}_{x_{0}}^{2}\right)^{-1}(v)\right) d v .
\end{aligned}
$$

Proof. By (19), we have to compute the derivative of

$$
\frac{I_{t}\left(\Sigma_{r}^{1} ; \Gamma_{r}\right)}{(4 \pi)^{n / 2} t^{n+2}}=\int_{S} d \mathcal{H}^{n-2}\left(x_{0}\right) \int d \mu_{t}^{\Sigma_{r}^{1, x_{0}}}(z) \int F_{x_{0}}(t, z, w) d \mu_{t}^{\Gamma_{r}}(w)
$$

where

$$
F_{x_{0}}(t, z, w)=\frac{1}{(4 \pi)^{n / 2}} \frac{\left\langle\nu_{\Sigma}\left(x_{0}+t z\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}+t w\right), w-z\right\rangle}{J \pi_{1}\left(x_{0}+t z\right)} e^{-\frac{|w-z|^{2}}{4}} .
$$

First of all, we have that

$$
\begin{align*}
& \partial_{t} F_{x_{0}}(0, z, w)=\frac{e^{-\frac{|w-z|^{2}}{4}}}{(4 \pi)^{n / 2}}\left(\left\langle d_{x_{0}} \nu_{\Sigma}[z], w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle+\right. \\
&\left.+\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle d_{x_{0}} \nu_{\Gamma}[w], w-z\right\rangle-(n-2)\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle H_{S}^{x_{0}}[z]\right) \\
&= \frac{e^{-\frac{|w-z|^{2}}{4}}}{(4 \pi)^{n / 2}}\left(\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle A_{\Sigma}^{x_{0}}\left(z, \Pi_{\Sigma}^{x_{0}}(w)-z\right)+\right. \\
&\left.\quad-\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle A_{\Gamma}^{x_{0}}\left(w, w-\Pi_{\Gamma}^{x_{0}}(z)\right)+(n-2)\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle H_{S}^{x_{0}}[z]\right) \tag{33}
\end{align*}
$$

where in the last line we have used the fact that $z \in \operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)$ and $w \in \operatorname{Tan}\left(\Gamma, x_{0}\right)$. If we write $w=w_{\tau}+\zeta$, with $w_{\tau} \in T_{x_{0}} S$ and $\zeta \in \operatorname{Tan}\left(\Gamma_{r}^{1, x_{0}}, x_{0}\right)$ and fix an orthonormal basis $\left\{e_{1}, \ldots, e_{n-2}\right\}$ of $T_{x_{0}} S$. Using the fact that $T_{x_{0}} S$ is a vector space, we can discard the summand of (33) that are odd in the variable w_{τ}; in addition, we use the fact that $\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle=\left\langle\nu_{\Sigma}\left(x_{0}\right), \zeta\right\rangle$ and the decompositions $w_{\tau}=\sum_{i=1}^{n-2} w_{\tau}^{i} e_{i}$ and

$$
\zeta=\left\langle\zeta, \sigma_{1}^{1}\left(x_{0}\right)\right\rangle \sigma_{1}^{1}\left(x_{0}\right)+\left\langle\zeta, \nu_{\Sigma}\left(x_{0}\right)\right\rangle \nu_{\Sigma}\left(x_{0}\right), \quad z=\left\langle z, \gamma_{1}^{1}\left(x_{0}\right)\right\rangle \gamma_{1}^{1}\left(x_{0}\right)+\left\langle z, \nu_{\Gamma}\left(x_{0}\right)\right\rangle \nu_{\Gamma}\left(x_{0}\right)
$$

whence the fact that

$$
\Pi_{\Sigma}^{x_{0}}(\zeta)=\left\langle\zeta, \sigma_{1}^{1}\left(x_{0}\right)\right\rangle \sigma_{1}^{1}\left(x_{0}\right), \quad \Pi_{\Gamma}^{x_{0}}(z)=\left\langle z, \gamma_{1}^{1}\left(x_{0}\right)\right\rangle \gamma_{1}^{1}\left(x_{0}\right)
$$

In this way we obtain

$$
\begin{aligned}
& \int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma, x_{0}\right)} \partial_{t} F_{x_{0}}(0, z, w) d w= \\
= & \int_{T_{x_{0} S} S} d w_{\tau} \frac{e^{-\frac{\left|w_{\tau}\right|^{2}}{4}}}{(4 \pi)^{n / 2}} \int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma_{r}^{1, x_{0}}, x_{0}\right)}\left(\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle\left\langle\zeta, \sigma_{1}^{1}\left(x_{0}\right)\right\rangle A_{\Sigma}^{x_{0}}\left(z, \sigma_{1}^{1}\left(x_{0}\right)\right)+\right. \\
& -\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle A_{\Sigma}^{x_{0}}(z, z)-\left\langle\nu_{\Sigma}\left(x_{0}\right), \zeta\right\rangle A_{\Gamma}^{x_{0}}\left(w_{\tau}, w_{\tau}\right)-\left\langle\nu_{\Sigma}\left(x_{0}\right), \zeta\right\rangle A_{\Gamma}^{x_{0}}(\zeta, \zeta)+ \\
& \left.+\left\langle\nu_{\Sigma}\left(x_{0}\right), \zeta\right\rangle\left\langle z, \gamma_{1}^{1}\left(x_{0}\right)\right\rangle A_{\Gamma}^{x_{0}}\left(\zeta, \gamma_{1}^{1}\left(x_{0}\right)\right)+(n-2)\left\langle\nu_{\Sigma}\left(x_{0}\right), \zeta\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle H_{S}^{x_{0}}[z]\right) e^{-\frac{|\zeta-z|^{2}}{4}} d \zeta .
\end{aligned}
$$

We also need the fact that

$$
\int_{T_{x_{0}} S} A_{\Gamma}^{x_{0}}\left(w_{\tau}, w_{\tau}\right) e^{-\frac{\left|w_{\tau}\right|^{2}}{4}} d w_{\tau}=2(4 \pi)^{\frac{n-2}{2}} \sum_{i=1}^{n-2} A_{\Gamma}^{x_{0}}\left(e_{i}, e_{i}\right)=2(4 \pi)^{\frac{n-2}{2}}(n-2) H_{S}^{x_{0}}\left[\nu_{\Gamma}\left(x_{0}\right)\right]
$$

so we get

$$
\begin{align*}
& \int \operatorname{Tan}\left(\Sigma_{r}^{\left.1, x_{0}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma, x_{0}\right)} \partial_{t} F_{x_{0}}(0, z, w) d w=\right. \\
& =\frac{1}{4 \pi}\left[\kappa_{\Sigma}^{x_{0}}\left[\sigma_{1}^{1}\left(x_{0}\right)\right]\left(\left\langle\gamma_{1}^{1}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{21}-\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{30}\right)+\right. \\
& \quad+\kappa_{\Gamma}^{x_{0}}\left[\gamma_{1}^{1}\left(x_{0}\right)\right]\left(\left\langle\gamma_{1}^{1}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{12}-\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{03}\right)+ \\
& \quad+(n-2)\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle H_{S}^{x_{0}}\left[\sigma_{1}^{1}\left(x_{0}\right)\right] F_{21}+ \\
& \left.\quad-2(n-2)\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle H_{S}^{x_{0}}\left[\nu_{\Gamma}\left(x_{0}\right)\right] F_{01}\right] ; \tag{34}
\end{align*}
$$

here the $F_{h k}$ are the coefficients defined in Remark 4.13. We now have to consider the derivatives of the measures $\mu_{t}^{\Sigma^{1, x_{0}}}$ and $\mu_{t}^{\Gamma_{r}}$; in order to apply Lemma 4.11, we need that for any $x_{0} \in S^{1}$, $\Sigma_{r}^{1, x_{0}}$ and Γ have to be $C^{1,1}$-regular at x_{0}. So, in case, we can consider the completions $\widetilde{\Sigma}_{r}$ of Σ_{r} and $\widetilde{\Gamma}_{r}$ of Γ. We also notice that

$$
I_{t}\left(\Sigma_{r} ; \Gamma_{r}\right)=I_{t}\left(\Sigma_{r} \cup \widetilde{\Sigma}_{r} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)-I_{t}\left(\widetilde{\Sigma}_{r} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)-I_{t}\left(\Sigma_{r} ; \widetilde{\Gamma}_{r}\right) .
$$

To deal with $I_{t}\left(\widetilde{\Sigma}_{r} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)$, we consider the projection $\widetilde{\pi}_{\Sigma}: \widetilde{\Sigma}_{r} \rightarrow S_{2}$ and define the sets

$$
\left(S_{2}\right)^{k}=\left\{x_{0} \in S_{2}: \operatorname{dim} \widetilde{\pi}^{-1}\left(x_{0}\right)=k\right\}, \quad \text { and } \quad \widetilde{\Sigma}_{r}^{k}=\widetilde{\pi}^{-1}\left(\left(S_{2}\right)^{k}\right)
$$

Since S_{2} is an $(n-3)$-dimensional set, we deduce that $\mathcal{H}^{n-1}\left(\widetilde{\Sigma}_{r}^{0}\right)=\mathcal{H}^{n-1}\left(\widetilde{\Sigma}_{r}^{1}\right)=0$, so that

$$
I_{t}\left(\widetilde{\Sigma}_{r} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)=\sum_{k=2}^{n-1} I_{t}\left(\widetilde{\Sigma}_{r}^{k} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)
$$

and, arguing as in Lemma 4.6, the term $I_{t}\left(\widetilde{\Sigma}_{r}^{k} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)$ is asymptotic to t^{n+1+k}. In the same way, by considering the projection $\widetilde{\pi}_{\Gamma}: \widetilde{\Gamma}_{r} \rightarrow S_{2}$, we can write

$$
I_{t}\left(\widetilde{\Gamma}_{r} ; \Sigma_{r}\right)=\sum_{k=2}^{n-1} I_{t}\left(\widetilde{\Gamma}_{r}^{k} ; \Sigma_{r}\right)
$$

We shall still denote by $\widetilde{\Sigma}_{r}^{2, x_{0}}$ and by $\left(\Gamma \cup \widetilde{\Gamma_{r}}\right)_{r}^{2, x_{0}}$ the sections induced by the projection's $\widetilde{\pi}$.
We are interested in the term asymptotic to t^{n+3}; we have that

$$
\begin{align*}
& \lim _{t \rightarrow 0} \frac{I_{t}\left(\widetilde{\Sigma}_{r}^{2} ; \Gamma_{r} \cup \widetilde{\Gamma}_{r}\right)}{(4 \pi)^{n / 2} t^{n+3}}:=\widetilde{I}_{0}(\Sigma ; \Gamma) \tag{35}\\
& =\int_{S_{2}} d \mathcal{H}^{n-3}\left(x_{0}\right) \int_{\operatorname{Tan}\left(\widetilde{\Sigma}_{r}^{2, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma \cup \widetilde{\Gamma}_{r}, x_{0}\right)} \frac{\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle}{(4 \pi)^{n / 2}} e^{-\frac{|w-z|^{2}}{4}} d w \\
& =\int_{S_{2}} d \mathcal{H}^{n-3}\left(x_{0}\right) \int_{\operatorname{Tan}\left(\widetilde{\Sigma}_{r}^{2, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\left(\Gamma \cup \widetilde{\Gamma}_{r}^{2, x_{0}}, x_{0}\right)\right.} \frac{\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle}{(4 \pi)^{3 / 2}} e^{-\frac{|w-z|^{2}}{4}} d w \\
& =\int_{S_{2}} d \mathcal{H}^{n-3}\left(x_{0}\right) \frac{D_{2} \widetilde{Q}_{x_{0}}^{2}}{(4 \pi)^{3 / 2}} \int_{\widetilde{V}_{x_{0}}^{2}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\left(\widetilde{Q}_{x_{0}}^{2}\right)^{-1}(v)\right) d v ;
\end{align*}
$$

moreover we get that

$$
\begin{align*}
& \lim _{t \rightarrow 0} \frac{I_{t}\left(\widetilde{\Gamma}_{r}^{2} ; \Sigma_{r}\right)}{(4 \pi)^{n / 2} t^{n+3}}:=\widetilde{I}_{1}(\Sigma ; \Gamma) \tag{36}\\
& \quad=\frac{D_{2} \widehat{Q}_{x_{0}}^{2}}{(4 \pi)^{3 / 2}} \int_{S_{2}} d \mathcal{H}^{n-3}\left(x_{0}\right) \int_{\widetilde{W}_{x_{0}}^{2}}\left\langle\nu_{\Sigma}\left(x_{0}\right), v\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\left(\widehat{Q}_{x_{0}}^{2}\right)^{-1}(v)\right) d v
\end{align*}
$$

For the term $I_{t}\left(\Sigma_{r} \cup \widetilde{\Sigma}_{r} ; \Gamma \cup \widetilde{\Gamma}_{r}\right)$ we can apply Lemma 4.11 and the fact that $\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)=$ $\operatorname{Tan}\left(\left(\Sigma \cup \widetilde{\Sigma}_{r}\right)_{r}^{1, x_{0}}, x_{0}\right)$, so that

$$
\begin{aligned}
& \delta_{1} I_{0}^{1}(\Sigma ; \Gamma)=\int_{S} d \mathcal{H}^{n-2}\left(x_{0}\right) \int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma, x_{0}\right)} \partial_{t} F(0, z, w) d w+ \\
& \quad+\int_{S}\left(\left\langle\phi_{\Gamma}, \delta_{1} \mu_{0}^{\left(\Sigma \cup \widetilde{\Sigma}_{r}\right)_{r}^{1, x_{0}}}\right\rangle+\left\langle\phi_{\Sigma}, \delta_{1} \mu_{0}^{\Gamma \cup \widetilde{\Gamma}_{r}}\right\rangle\right) d \mathcal{H}^{n-2}\left(x_{0}\right)-\widetilde{I}_{0}(\Sigma ; \Gamma)-\widetilde{I}_{1}(\Sigma ; \Gamma)
\end{aligned}
$$

where

$$
\phi_{\Gamma}(z)=\int_{\operatorname{Tan}\left(\Gamma, x_{0}\right)} F_{x_{0}}(0, z, w) d w, \quad \phi_{\Sigma}(w)=\int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)} F_{x_{0}}(0, z, w) d z
$$

We start with ϕ_{Γ}; using the decomposition $\operatorname{Tan}\left(\Gamma, x_{0}\right)=T_{x_{0}} S \oplus \operatorname{Tan}\left(\Gamma_{r}^{1, x_{0}}, x_{0}\right)$, we deduce that

$$
\phi_{\Gamma}(z)=-\frac{\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle}{4 \pi} \int_{\operatorname{Tan}\left(\Gamma_{r}^{1, x_{0}}, x_{0}\right)}\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle e^{-\frac{|w-z|^{2}}{4}} d w
$$

so that

$$
\begin{aligned}
\nabla \phi_{\Gamma}(z)= & -\frac{1}{4 \pi} \int_{\operatorname{Tan}\left(\Gamma_{r}^{1, x_{0}}, x_{0}\right)}\left(\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle \nu_{\Gamma}\left(x_{0}\right)-\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle \nu_{\Sigma}\left(x_{0}\right)+\right. \\
& \left.+\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), w-z\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle(w-z)\right) e^{-\frac{|w-z|^{2}}{4}} d w .
\end{aligned}
$$

We then obtain that

$$
\begin{align*}
\left\langle\phi_{\Gamma}, \delta_{1} \mu_{0}^{\Sigma_{r}^{1, x_{0}}}\right\rangle= & -\frac{1}{8 \pi} \int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)} d z \int_{\operatorname{Tan}\left(\Gamma_{r}^{1, x_{0}}, x_{0}\right)}\left(\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle+\right. \\
& \left.-\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle+\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle^{2}\left\langle\nu_{\Gamma}\left(x_{0}\right), z\right\rangle\right) \kappa_{\Sigma}^{x_{0}}[z] e^{-\frac{|w-z|^{2}}{4}} d w \\
= & -\frac{1}{8 \pi} \kappa_{\Sigma}^{x_{0}}\left[\sigma_{1}^{1}\left(x_{0}\right)\right]\left(\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{21}+\right. \\
& \left.-\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{30}+\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{32}\right) . \tag{37}
\end{align*}
$$

Concerning $\nabla \phi_{\Sigma}$, we have

$$
\begin{aligned}
\nabla \phi_{\Sigma}(w)= & \frac{1}{(4 \pi)^{\frac{n}{2}}} \int_{\operatorname{Tan}\left(\Sigma_{r}^{1, x_{0}}, x_{0}\right)}\left(\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle \nu_{\Sigma}\left(x_{0}\right)+\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle \nu_{\Gamma}\left(x_{0}\right)+\right. \\
& \left.-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), w\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), w-z\right\rangle(w-z)\right) e^{-\frac{|w-z|^{2}}{4}} d z
\end{aligned}
$$

we also get

$$
\begin{align*}
\left\langle\phi_{\Sigma}, \delta_{1} \mu_{0}^{\Gamma_{r}^{x_{0}}}\right\rangle & =\frac{1}{8 \pi} \kappa_{\Gamma}^{x_{0}}\left[\gamma_{1}^{1}\left(x_{0}\right)\right]\left(-\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{12}+\right. \\
& \left.+\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{03}-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle^{2} F_{23}\right)+ \\
& +\frac{(n-2)}{4 \pi} H_{S}^{x_{0}}\left[\nu_{\Gamma}\left(x_{0}\right)\right]\left(-\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle F_{10}+\right. \\
& \left.+\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{01}-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle^{2} F_{21}\right) \tag{38}
\end{align*}
$$

Summing the three terms (34), (37) and (38), we obtain the term

$$
\begin{aligned}
T_{2}\left(x_{0}\right)= & \frac{1}{4 \pi}\left\{\kappa _ { \Sigma } ^ { x _ { 0 } } [\sigma _ { 1 } ^ { 1 } (x _ { 0 })] \left(-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{21}-\frac{1}{2}\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{30}+\right.\right. \\
& \left.-\frac{1}{4}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{32}+\left\langle\gamma_{1}^{1}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{21}\right)+ \\
& +\kappa_{\Gamma}^{x_{0}}\left[\gamma_{1}^{1}\left(x_{0}\right)\right]\left(-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{12}-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{03}+\right. \\
& \left.-\frac{1}{4}\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle^{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{23}+\left\langle\gamma_{1}^{1}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{12}\right)+ \\
& +(n-2) H_{S}^{x_{0}}\left[\nu_{\Gamma}\right]\left(-\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{10}-\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle F_{01}+\right. \\
& \left.-\frac{1}{2}\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{21}\right)+ \\
& \left.+(n-2) H_{S}^{x_{0}}\left[\sigma_{1}^{1}\left(x_{0}\right)\right]\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle F_{21}\right\} .
\end{aligned}
$$

We write $\sigma_{1}^{1}\left(x_{0}\right)$ as a combination of $\nu_{\Sigma}\left(x_{0}\right)$ and ν_{Γ}

$$
\sigma_{1}^{1}\left(x_{0}\right)=\alpha \nu_{\Sigma}\left(x_{0}\right)+\beta \nu_{\Gamma}\left(x_{0}\right)
$$

where, since $\left\langle\nu_{\Sigma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle=0$ and $1=\left\langle\sigma_{1}^{1}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle$,

$$
\alpha=\frac{\cos \vartheta_{0}}{\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle}, \quad \beta=\frac{1}{\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle}
$$

By the fact that $\cos \vartheta_{0}=\left\langle\sigma_{1}^{1}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle$, we also obtain that

$$
\left\langle\nu_{\Sigma}\left(x_{0}\right), \nu_{\Gamma}\left(x_{0}\right)\right\rangle=-\frac{\cos \vartheta_{0}\left\langle\nu_{\Gamma}\left(x_{0}\right), \sigma_{1}^{1}\left(x_{0}\right)\right\rangle}{\left\langle\nu_{\Sigma}\left(x_{0}\right), \gamma_{1}^{1}\left(x_{0}\right)\right\rangle} .
$$

whence equation (32).
The results obtained so far immediately prove the following.
Proposition 4.15 Let Σ and Γ as before, then there holds

$$
\frac{I_{t}(\Sigma ; \Gamma)}{(4 \pi)^{n / 2} t^{n+2}}=I_{0}^{1}(\Sigma ; \Gamma)+t\left(I_{0}^{2}(\Sigma ; \Gamma)+\delta_{1} I_{0}^{1}(\Sigma ; \Gamma)\right)+o(t)
$$

Remark 4.16 It is clear that the previous expansion can also continue for higher powers of t; this expansion will contains higher derivatives of the objects involved so far, but also the higher codimensional part of the skeleton of S.

5 Examples

5.1 Two-dimensional region

Example 5.1 Let $\gamma:[0, L] \rightarrow \mathbb{R}^{2}$ be a $C^{1,1}$ planar simple curve parametrized by arclength; then

$$
\lim _{t \rightarrow 0} \frac{I_{t}(\gamma)}{4 \pi t^{5}}=-\frac{3}{2 \sqrt{\pi}} \int_{0}^{L} \kappa_{\gamma}^{2}(\alpha) d \alpha
$$

with κ_{γ} the curvature of γ. In particular, if E is a bounded set with ∂E parametrized by γ, then

$$
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=|E|-\sqrt{\frac{2 t}{\pi}} L-\sqrt{\frac{t^{3}}{2 \pi}} \int_{0}^{L} \kappa_{\gamma}^{2}(\alpha) d \alpha+o\left(t^{3 / 2}\right) .
$$

A first example is given by the circle $E=B_{r}(0)$ in the plane; in this case ∂E is parametrized by $\gamma(\alpha)=\left(r \cos \frac{\alpha}{r}, r \sin \frac{\alpha}{r}\right)$, and $\kappa_{\gamma}(\alpha)=r^{-1}$ for every $\alpha \in[0,2 \pi r)$. Then

$$
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=\pi r^{2}-2 r \sqrt{2 \pi t}-\frac{\sqrt{2 \pi t^{3}}}{r}+o\left(t^{3 / 2}\right) .
$$

The following example shows how the second order expansion of the heat content of a set E with finite perimeter takes into account the behavior of the boundary ∂E along the 0 -singular set of ∂E.

Example 5.2 Let E be a simple oriented polygonal region in the plane with angles $\alpha_{i} \in$ $(0, \pi), i=1, \ldots, m$, then in the expansion of its heat content the coefficients of t is not zero and depends on the not $C^{1,1}$ contact of pair of consecutive segments; indeed if Σ and Γ are two segments that have a common endpoint x_{0} and generate an angle $\alpha \in(0, \pi)$, by Lemma 4.8 we get that

$$
I_{0}^{1}(\Sigma ; \Gamma)=\Theta_{1}\left(x_{0}\right)=-\frac{1}{\pi}(1+(\pi-\alpha) \operatorname{ctg} \alpha) .
$$

In the case of E as before we have to consider m segments and for each of them two contacts with the adjacent segments; moreover, since the curvature of a line is zero, the heat content of E is, up to an exponential infinitesimal term, a quadratic polynomial in \sqrt{t}

$$
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=|E|-\sqrt{\frac{2 t}{\pi}} P(E)-2 t\left(\frac{m}{\pi}+\sum_{i=1}^{m} \frac{\operatorname{ctg} \alpha_{i}}{\pi}\left(\pi-\alpha_{i}\right)\right)+o\left(t^{h}\right) \quad \forall h>1
$$

In the case of the square $E=[0,1]^{2} \subset \mathbb{R}^{2}, \partial E$ is the union of four orthogonal segments and

$$
\lim _{t \rightarrow 0} \frac{\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-|E|+\sqrt{\frac{2 t}{\pi}} P(E)}{t}=-\frac{8}{\pi}
$$

being $\alpha_{i}=\frac{\pi}{2}, i=1, . ., 4$. Hence,

$$
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=1-4 \sqrt{\frac{2 t}{\pi}}-\frac{8}{\pi} t+o\left(t^{h}\right) \quad \forall h>1 .
$$

5.2 Three-dimensional region

Example 5.3 Let $E=B_{r}(0) \subset \mathbb{R}^{3}$, then ∂E is $C^{1,1}$ - regular and being $\kappa_{\partial E, i}^{x}=r^{-1}$ for $i=1,2$ and for every $x \in \partial E$, as immediate consequence of Theorem 1.1 we get that

$$
\left\|T_{t} \chi_{B_{r}(0)}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=\frac{4}{3} \pi r^{3}-4 \sqrt{2 \pi t} r^{2}-\frac{16}{3} \sqrt{2 \pi t^{3}}+o\left(t^{3 / 2}\right)
$$

Example 5.4 We consider now the set $E=B_{r}^{+}(0)=B_{r}(0) \cap\{(x, y, z): z>0\}$; we divide $\partial E=\Sigma_{1} \cup \Sigma_{2}$, where $\Sigma_{1}=\left\{(x, y, z): x^{2}+y^{2}<r^{2}, z=0\right\}$ and $\Sigma_{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=\right.$ $\left.r^{2}, z>0\right\}$; both Σ_{1} and Σ_{2} can be parametrized by uniformly Lipschitz functions. The presence of the 1 -singular set $S=\left\{x^{2}+y^{2}=r^{2}, z=0\right\}$ gives a nontrivial coefficient of t in the asymptotic expansion of the heat content of E. We have that

$$
-(4 \pi)^{3 / 2} t^{5} f_{E}^{\prime \prime}(t)=I_{t}(\partial E)=\sum_{i, j=1}^{2} I_{t}\left(\Sigma_{i} ; \Sigma_{j}\right)
$$

By Theorem 3.3, it holds that

$$
\left.I_{t}\left(\Sigma_{i}\right)=I_{t}\left(\Sigma_{i} ; \Sigma_{i}\right)=-16 \pi t^{6} \int_{\Sigma_{i}}\left(\left(H_{\Sigma_{i}}^{x}\right)^{2}+\frac{1}{2} c_{\Sigma_{i}}^{2}(x)\right)\right) d \mathcal{H}^{2}(x)+o\left(t^{6}\right) \quad i=1,2 .
$$

Since $\kappa_{\Sigma_{1}, i}^{x}=0$ for $i=1,2, x \in \Sigma_{1}$ and $\kappa_{\Sigma_{2}, i}^{x}=\frac{1}{r}$ for $i=1,2, x \in \Sigma_{2}$ then $I_{t}\left(\Sigma_{1}\right)=0$ and

$$
\lim _{t \rightarrow 0} \frac{I_{t}\left(\Sigma_{2}\right)}{(4 \pi)^{3 / 2} t^{6}}=-8 \sqrt{\pi}
$$

Whereas for $i, j=1,2$ and $i \neq j$ we have that

$$
I_{t}\left(\Sigma_{i} ; \Sigma_{j}\right)=I_{t}\left(\Sigma_{j} ; \Sigma_{i}\right)=(4 \pi)^{3 / 2} t^{5} \int_{S} \Theta_{1}(x) d \mathcal{H}^{1}(x)+o\left(t^{5}\right)
$$

and

$$
I_{0}^{1}\left(\Sigma_{1} ; \Sigma_{2}\right)=I_{0}^{1}\left(\Sigma_{2} ; \Sigma_{1}\right)=\lim _{t \rightarrow 0} \frac{I_{t}\left(\Sigma_{2} ; \Sigma_{1}\right)}{(4 \pi)^{3 / 2} t^{5}}=\int_{S} \Theta_{1}(x) d \mathcal{H}^{1}(x)=-2 r
$$

being $\theta_{0}=\frac{\pi}{2}$ and $\Theta_{1}\left(x_{0}\right)=-\frac{1}{\pi}$ for every $x_{0} \in S$. In addition, since $\kappa_{\Sigma_{2}}^{x_{0}}\left[e_{3}\right]=\frac{1}{r}$ for any $x_{0} \in S$, we also deduce that $T_{2}\left(x_{0}\right)=-\frac{2}{r \sqrt{\pi}}$ for any $x_{0} \in S$. Since $S^{2}=\emptyset$, we can conclude that

$$
\left\|T_{t} \chi_{B_{r}^{+}(0)}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=\frac{2}{3} \pi r^{3}-3 \sqrt{2 \pi t} r^{2}-4 r t-\frac{16}{3} \sqrt{2 \pi t^{3}}+o\left(t^{3 / 2}\right)
$$

Example 5.5 The example of the square in \mathbb{R}^{2} can be easily extended to the case $E=[0,1]^{3} \subset$ \mathbb{R}^{3}; in this case

$$
\partial E=\sum_{1=1}^{6} \Sigma_{i}
$$

where the Σ_{i} 's are 1 side-squares and $\left|A_{i}\right|=\left|\left\{j \neq i: S_{i, j}=\Sigma_{i} \cap \Sigma_{j} \neq \emptyset\right\}\right|=4$ for every $i=1, \ldots, 6$. Moreover, there holds that

$$
I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)=\int_{S_{i, j}} \Theta_{1}(x) d \mathcal{H}^{1}(x)=-\frac{1}{\pi}, \quad i=1, \ldots, 6, j \in A_{i} .
$$

Since $\kappa_{\Sigma_{i}}^{x}=0$ for every $x \in \Sigma_{i}$ and $S_{i, j}^{2}=\emptyset$ the coefficient of $\sqrt{t^{3}}$ in the asymptotic expansion of the heat content of E reduces to $\sum_{i=1}^{6} \sum_{j \in A_{i}} \delta_{1} I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)$. In order to describe a generic term of the form $\delta_{1} I_{0}^{1}\left(\Sigma_{i} ; \Sigma_{j}\right)$ we consider an orthogonal coordinate system, we fix $\Sigma=\Sigma_{i}$ and $\Gamma=\Sigma_{j}$ with $S=\Sigma \cap \Gamma \neq \emptyset$ and, without loss of generality, we assume that $\Sigma=\{0\} \times[0,1]^{2}$ and $\Gamma=[0,1]^{2} \times\{0\}$, then the origin of the axis belongs to S_{2}. Using the notation introduced in Section 4 we have that

$$
\nu_{\Sigma}(0)=e_{1}, \nu_{\Gamma}(0)=e_{3}, \sigma_{1}^{1}(0)=e_{3}, \gamma_{1}^{1}(0)=e_{1}, s_{1}^{1}(0)=e_{2}
$$

where $\left\{e_{i}\right\}_{i=1,2,3}$ denote the canonical basis in \mathbb{R}^{3}. It is obvious that, being $\kappa_{\Sigma_{i}}^{x}=0, \kappa_{S_{i, j}}^{x}=0$ respectively for every $x \in \Sigma_{i}$ and $x \in S_{i, j}$ and $\tilde{\Sigma}_{r}^{2,0}=\emptyset$, there holds that $\delta_{1} I_{0}^{1}(\Sigma ; \Gamma)$ reduces to $-\tilde{I}_{1}(\Sigma ; \Gamma)$ which depends on the defect of tangentiality of Γ in 0 ; in this case we have to consider $\tilde{\Gamma}_{r}^{2,0}$ in such a way that $\Gamma \cup \tilde{\Gamma}_{r}^{2,0}$ is $C^{1,1}$-regular at 0 , then $\operatorname{Tan}\left(\tilde{\Gamma}_{r}^{2,0}, 0\right)$ is generated by $-e_{2}$ and e_{1}. We have to consider $\bar{\pi}: \Sigma_{r} \rightarrow\left(\Gamma \cup \tilde{\Gamma}_{r}^{2,0}\right) \cap \Sigma_{r}$ and $\Sigma_{r, \bar{\pi}}^{2,0}=\bar{\pi}^{-1}(0)=\Sigma_{r}$; in this case $\operatorname{Tan}\left(\Sigma_{r, \pi}^{2,0}, 0\right)$ is generated by e_{2} and e_{3}. In this case we get that

$$
\widetilde{W}_{0}^{2}=\operatorname{Tan}\left(\tilde{\Gamma}_{r}^{2,0}, 0\right)-\operatorname{Tan}\left(\Sigma_{r, \tilde{\pi}}^{2,0}, 0\right)=(0,+\infty) \times(-\infty, 0)^{2}
$$

and

$$
\widehat{Q}_{0}^{2}: \mathbb{R}_{+}^{4} \rightarrow \widetilde{W}_{0}^{2},(\alpha, \beta) \mapsto\left(\beta_{1},-\alpha_{2}-\beta_{2},-\alpha_{1}\right)
$$

then $D_{2} \widehat{Q}_{0}^{2}=\frac{1}{\sqrt{2}}$

$$
\tilde{I}_{1}(\Sigma ; \Gamma)=\frac{1}{8 \pi \sqrt{2 \pi}} \int_{\widetilde{W}_{0}^{2}} v_{2}\left\langle\nu_{\Sigma}(0), v\right\rangle\left\langle\nu_{\Gamma}(0), v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\left(\hat{Q}_{0}^{2}\right)^{-1}(v)\right) d v=-\frac{1}{\sqrt{\pi^{3}}} .
$$

Hence, we get

$$
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=1-6 \sqrt{\frac{2 t}{\pi}}-\frac{24}{\pi} t-8 \sqrt{\frac{2 t^{3}}{\pi^{3}}}+o\left(t^{h}\right) \quad \forall h>3 / 2
$$

Example 5.6 Let E be an oriented regular tetrahedron, that is a polyhedron whose four faces are triangles equilateral T_{i} (with side equal to a), three of which meet at each vertex. In this case $|E|=\frac{\sqrt{2}}{12} a^{3}, P(E)=\sqrt{3} a^{2}$; moreover $\partial E=\sum_{i=1}^{4} T_{i}$ and $\left|A_{i}\right|=\left|\left\{j \neq i: T_{i, j}=T_{i} \cap T_{j} \neq \emptyset\right\}\right|=3$ for every $i=1, . .4$. We notice that $\vartheta_{0}=\frac{\pi}{3}$ and for every $x_{0} \in T_{i, j}, \Theta_{1}\left(x_{0}\right)=-\left(\frac{1}{\pi}+\frac{2}{\sqrt{3}}\right)$, hence

$$
I_{0}^{1}\left(T_{i} ; T_{j}\right)=-a\left(\frac{1}{\pi}+\frac{2}{\sqrt{3}}\right), \quad i=1, \ldots, 4, j \in A_{i}
$$

It is easy to see that in the expansion of the heat content of E all the terms which depend on the curvatures of T_{i} and $T_{i, j}$ will be zero. However, in order to go further in the expansion we first observe that, since $\left(T_{i}\right)_{r}^{2}=\emptyset$ then $I_{0}^{2}\left(T_{i} ; T_{j}\right)=0$ for every $i=1, . ., 4$ and $j \in A_{i}$; moreover, fixed T_{i}, T_{j} (with $\left.i=1, \ldots, 4, j \in A_{i}\right), \delta_{1} I_{0}^{1}\left(T_{i} ; T_{j}\right)$ reduces to $\widetilde{I}_{0}\left(T_{i} ; T_{j}\right)+\widetilde{I}_{1}\left(T_{i} ; T_{j}\right)=2 \widetilde{\Theta}_{2}\left(x_{0}\right)$ with $x_{0} \in \partial T_{i, j}$. Without loss of generality, we fix an orthogonal coordinate system, we assume that x_{0} coincides with the origin of the axis and that Γ and Σ are two faces of the tetrahedron whose common side coincides with the segment of endpoints the origin O and $A(a, 0,0)$. Assume that Γ belongs to $z=0$ whereas Σ is contained in the plane $z-\sqrt{3} y=0$. In order to compute $\widetilde{\Theta}_{2}(0)$ we have to complete $\Sigma_{r}^{1,0}$ which has a defect of orthogonality around 0 using the set $\widetilde{\Sigma}_{r}^{1,0}$, and also Γ, which has a defect of tangentiality around 0 using the set $\widetilde{\Gamma}_{r}$ both introduced in Remark 4.13. In this case $\nu_{\Gamma}=(0,0,1), \gamma=(0,1,0), \tilde{\gamma}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \nu_{\Sigma}=\left(0, \frac{\sqrt{3}}{2},-\frac{1}{2}\right), \sigma=\left(0, \frac{1}{2}, \frac{\sqrt{3}}{2}\right), \tilde{\sigma}=$ $\left(\frac{1}{2}, \frac{\sqrt{3}}{4}, \frac{3}{4}\right)$. By (35), we get that

$$
\widetilde{I}_{0}=\widetilde{I}_{0}(\Sigma ; \Gamma)=\frac{2 D_{2} \widetilde{Q}_{0}^{2}}{(4 \pi)^{3 / 2}} \int_{\widetilde{V}_{0}^{2}}\left\langle\nu_{\Sigma}, v\right\rangle\left\langle\nu_{\Gamma}, v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\widetilde{Q}_{0}^{2}\right)^{-1}(v) d v
$$

where

$$
\widetilde{Q}_{0}^{2}: \mathbb{R}_{+}^{3} \times \mathbb{R} \rightarrow \widetilde{V}_{0}^{2},(\alpha, \beta) \mapsto\left(-\frac{1}{2} \alpha_{2}+\beta_{1},-\frac{1}{2} \alpha_{1}-\frac{\sqrt{3}}{4} \alpha_{2}+\beta_{2},-\frac{\sqrt{3}}{2} \alpha_{1}-\frac{3}{4} \alpha_{2}\right)
$$

and $\widetilde{V}_{0}^{2}=\left\{v_{3} \leq 0\right\} \cap\left\{v_{3}-\sqrt{3} v_{2} \leq 0\right\}$. Analogously, by (36), we get

$$
\widetilde{I}_{1}=\widetilde{I}_{1}(\Sigma ; \Gamma)=\frac{2 D_{2} \widehat{Q}_{0}^{2}}{(4 \pi)^{3 / 2}} \int_{\widetilde{W}_{0}^{2}}\left\langle\nu_{\Sigma}, v\right\rangle\left\langle\nu_{\Gamma}, v\right\rangle e^{-\frac{|v|^{2}}{4}} \mathcal{H}^{1}\left(\widehat{Q}_{0}^{2}\right)^{-1}(v) d v
$$

where

$$
\widehat{Q}_{0}^{2}: \mathbb{R}_{+}^{4} \rightarrow \widetilde{W}_{0}^{2},(\alpha, \beta) \mapsto\left(-\alpha_{1}-\frac{1}{2} \alpha_{2}-\beta_{1}+\frac{1}{2} \beta_{2},-\frac{\sqrt{3}}{4} \alpha_{2}+\frac{\sqrt{3}}{2} \beta_{2},-\frac{3}{4} \alpha_{2}\right)
$$

and $\widetilde{W}_{0}^{2}=\left\{v_{2} \geq \max \left\{0, v_{1} \sqrt{3}\right\}, 3 v_{1}-v_{2} \sqrt{3} \leq v_{3} \leq 0\right\} \cup\left\{v_{1} \frac{\sqrt{3}}{2} \leq v_{2} \leq 0,3 v_{1}-v_{2} \sqrt{3} \leq v_{3} \leq\right.$ $\left.\sqrt{3} v_{2}\right\}$. Finally, summing all the terms obtained, we get

$$
\left\|T_{t} \chi_{E}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}=\frac{\sqrt{2}}{12} a^{3}-a^{2} \sqrt{\frac{6 t}{\pi}}-12 a\left(\frac{1}{\pi}+\frac{2}{\sqrt{3}}\right) t+4 \sqrt{2 t^{3}}\left(\widetilde{I}_{0}+\widetilde{I}_{1}\right)+o\left(t^{h}\right) \quad \forall h>3 / 2
$$

Acknowledgments We would like to thank Diego Pallara and Fabio Paronetto; the collaboration and useful discussions with them was the starting point of this paper.

References

[1] L. Angiuli, M. Miranda Jr., D. Pallara, F. Paronetto. BV functions and parabolic initial boundary value problems on domains Ann. Mat. Pura et Applicata, 188(2):297-331, 2009.
[2] M. van den Berg, P. Gilkey, and R. Seeley. Heat content asymptotics with singular initial temperature distributions. J. Funct. Anal., 254(12):3093-3122, 2008.
[3] M. van den Berg, P. Gilkey, K. Kirsten, and V. A. Kozlov. Heat content asymptotics for Riemannian manifolds with Zaremba boundary conditions. Potential Anal., 26(3):225-254, 2007.
[4] M. van den Berg and J.-F. Le Gall. Mean curvature and the heat equation. Math. Z., 215(3):437-464, 1994.
[5] E. De Giorgi. Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura Appl. (4), 36:191-213, 1954.
[6] E. De Giorgi. Nuovi teoremi relativi alle misure ($r-1$)-dimensionali in uno spazio ad r dimensioni. Ricerche Mat., 4:95-113, 1955.
[7] H. Federer. Curvature measures Trans. Amer. Math. Soc., 93:418-491, 1959.
[8] M. Ledoux. Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space. Bull. Sci. Math., 118(6):485-510, 1994.
[9] U. Menne. Second order rectifiability of integral varifolds of locally bounded first variation arXiv:0808.3665v1, 0808.3665v1, 27 Aug 2008.
[10] U. Menne. Some applications of the isoperimetric inequality for integral varifolds. $A d v$. Calc. Var., 2(3):247-269, 2009.
[11] M. Miranda, Jr., D. Pallara, F. Paronetto, and M. Preunkert. Short-time heat flow and functions of bounded variation in R^{N}. Ann. Fac. Sci. Toulouse Math. (6), 16(1):125-145, 2007.
[12] J. Rataj and M. Zähle. Curvatures and Currents for Unions of Sets with Positive Reach II. Ann. Glob. An. and Geom., (20):1-21, 2001.
[13] J. Rataj and M. Zähle. Normal cycles of Lipschitz manifolds by approximation with parallel sets. Differential Geom. Appl., 19(1):113-126, 2003.
[14] J. Rataj and S. Winter. A note on measures of parallel sets. Preprint., arXiv:0905.327v1
[15] R. Schätzle. Quadratic tilt-excess decay and strong maximum principle for varifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3(1):171-231, 2004.
[16] C. Thäle. 50 years sets with positive reach-a survey. Surv. Math. Appl., 3:123-165, 2008.
[17] F.-Y. Wang. Second fundamental form and gradient of Neumann semigroups. J. Funct. Anal., 256(10):3461-3469, 2009.
[18] H. Weyl. On the Volume of Tubes. Amer. J. Math., 61(2):461-472, 1939.
[19] M. Zähle. Integral and current representation of Federer's curvature measures. Arch. Math., 46(6):557-567, 1986.

[^0]: *Dipartimento di Matematica "Ennio De Giorgi", Università del Salento, C.P. 193, I-73100 Lecce, Italy; e-mail: luciana.angiuli@unisalento.it
 ${ }^{\dagger}$ Dipartimento di Matematica, via Machiavelli 35, I-44100 Ferrara, Italy; e-mail: umberto.massari@unife.it, michele.miranda@unife.it

