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Abstract

In this paper we study the short time behavior of heat semigroup in connection with
the geometry of sets with finite perimeter; we assume C

1,1 regularity and we relate the
heat semigroup with curvatures of the initial datum. We also study the behavior when
singularities occur; this is the case when the mean curvature is no more a function, but has
to be considered as a Radon measure. This work is the natural continuation of [11] and is
in the spirit of [4].

1 Introduction

The connections between the theory of semigroups and that of perimeters have been the subject
of recent mathematical researches.
The interest in such results comes from the possibility to deduce geometric properties of a set
E ⊂ Rn by means of the solution of suitable partial differential equations.
The pioneering paper where the first link between these theories has been established is [5] where
De Giorgi noticed that by taking the heat semigroup Tt in Rn, defined by means of the convolution
with the Gauss–Weierstrass kernel,

TtχE(x) = gt ∗ χE(x) =
1

(4πt)n/2

∫

E

e−
|x−y|2

4t dy,

the map

t 7→
∫

Rn

|∇TtχE |dx

is monotone decreasing, showing the existence of the limit

lim
t→0

∫

Rn

|∇TtχE |dx

defined as the perimeter of E and denoted by P (E), for any measurable set E ⊂ Rn.
A characterization of the perimeter of a set, similar to the original definition of De Giorgi can
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also be found in [8], where a characterization of isoperimetric property is provided. In [8], Ledoux
introduced the diffusion functional defined by

Kt(E,F ) =

∫

F

TtχE(x)dx, t > 0 (1)

and he proved the following formula

lim
t→0

√
π

t
Kt(B,B

c) = P (B) (2)

where B is the Euclidean ball in Rn. Recently, in [11], the authors proved that equation (2)
holds for any set with finite perimeter and, moreover, an equivalent characterization of sets with
finite perimeter is given, in the sense that

lim inf
t→0

Kt(E,E
c)√

t
< +∞

if and only if E has finite perimeter. In that case

P (E) = lim
t→0

√
π

t
Kt(E,E

c)

Summarizing, for a set E with finite measure and perimeter, the following expansion holds

Kt(E,E
c) =

√
t

π
P (E) + o(

√
t),

as t goes to 0. More generally, for any two sets E and F with finite perimeter, the following
formula holds

∫

F

TtχE(x)dx = |E ∩ F | −
√
t

π

∫

FE∩FF

〈νE(x), νF (x)〉dHn−1(x) + o(
√
t). (3)

where FE, FF are respectively the reduced boundary of E and F .
On the other hand, in the recent paper [1], two different characterizations of P (E,Ω), the perime-
ter of a set in a domain are given in terms of the short-time behavior of the solution of a parabolic
initial boundary value problem in Ω.
These results are similar in the spirit to that contained in [4], where it is proved that

QD(t) = |D| − 2
√
tP (D)√
π

+
t

2

∫

∂D

HD(x)dHn−1(x) + o(t)

with D a bounded connected domain such that ∂D is of class C3 and HD is the mean curvature
of ∂D; here QD(t) =

∫
D u(t, x)dx and u is the solution of the Dirichlet Laplacian on D





∂tu = ∆u (0,+∞)×D
u(t, x) = 0 (0,+∞)× ∂D
u(0, x) = 1 D.

More recently, the same authors generalized the result in order to consider also Neumann bound-
ary conditions; they also considered mixed, Dirichlet and Neumann, boundary conditions and
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initial data other then χD (see for instance [2], [3] and the references therein).
In this paper, we are interested in studying the higher order expansion of Kt(E,F ) for two
subsets E,F ⊂ Rn with finite perimeter; due to the presence of

√
t, we introduce the functions

fE,F (t) = Kt2(E,F ) and fE(t) = Kt2(E,E
c). A way to prove (3) simply consists in considering

the limits
lim
t→0

fE,F (t) = |E ∩ F |

and (see [11, Theorem 3.1] for a detailed proof)

lim
t→0

f ′
E,F (t) = lim

t→0
2t

∫

F

∆Tt2χE(x)dx = − 1√
π

∫

FE∩FF

〈νE(x), νF (x)〉dHn−1(x).

In [11], a more accurate description of the function fE(t) is given under additional regularity of
the boundary of E; in fact, assuming C1,1 regularity of ∂E, it is possible to prove that, for small
time, the heat amount is essentially contained in a neighborhood Er \ E, with

Er = {x ∈ R
n : dist(x,E) < r},

that is fE(t) ∼ fE,Er\E(t). So, the fact that

lim
t→0

fE(t)

t
= lim

t→0

fE,Er\E(t)

t
=
P (E)√
π

resembles the characterization of the perimeter measure by the Minkowski content

P (E) = lim
r→0

|Er \ E|
r

,

justifying the terminology of heat content for fE(t). It is worth noticing that the heat content is
much more accurate than the Minkowski content, since it gives the perimeter measure without
any further condition on the regularity of the reduced boundary of E.
The study of the higher order expansion of fE,F as t goes to 0 is similar to the analogue com-
putation for the Minkowski content. Indeed it has been proved that under suitable properties
on E (for instance by Steiner in the case of convex sets, and by Weyl for C2-regular sets and by
Federer [7] for sets of positive reach), the quantity |Er|, for r small enough, is a polynomial in r
whose coefficients are geometric invariants of the set E.

However there is a crucial difference between the heat and the Minkowski content also in
the class of convex sets. In fact, from the argument used, the expansion found does not reduce
always to a polynomial in

√
t. This happens, up to a term that is infinitesimal of exponential

type, when E is a polyhedral set, that is a finite intersection of halfspaces. It is easy to check
that by taking the second derivative of fE,F , the following formula

f ′′
E,F (t) =− 1

(4π)n/2tn+2

∫

FF

∫

FE

〈νF (x), y − x〉〈νE(y), y − x〉e−
|x−y|2

4t2 dHn−1(y)dHn−1(x)

=:− 1

(4π)n/2tn+2
It(FF ;FE)

holds.
The behavior of the function t 7→ It(FF ;FE) as t → 0+ is crucial in order to deduce an

higher order expansion for Kt(E,F ). Indeed in this paper we make a deep analysis of the
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quantity It(Σ; Γ) for two general oriented pieces of uniform C1,1 hypersurfaces. In particular we
are interested in the case when Σ and Γ are parts of the boundaries of sets of finite perimeter E,F
and under mild assumption on ∂E ∩ ∂F we prove our main result which is stated in Theorem
1.1 below.

The proof of this theorem is a direct consequence of all the results contained in Section 3 and
Section 4, Propositions 3.1, 3.3, 4.9 and 4.15 and of the occurrence of the simple formulas

‖TtχE‖2L2(Rn) =

∫

Rn

T2tχEdx =|E| −
∫

Ec

T2tχEdx = |E| −K2t(E,E
c). (4)

and

‖TtχE − χE‖L1(Rn) = 2

∫

Ec

TtχE(x)dx. (5)

(see [11, Remark 3.5] for details about (5)).
To understand the statement, we refer to Section 2.1 for the definition of the mean curvature

Hx
Σ and the square of the length of the second fundamental form c2Σ, Definition 4.1 for the notion

of regular skeleton, and finally to Lemma 4.6 and Lemma 4.14 for the definitions of the quantities
Ik0 and δ1I

1
0 . Finally, we point out that this result can be easily extended to the case of two sets

E,F ⊂ Rn with piecewice C1,1–regularity, simply splitting

∂E = (∂E ∩ F ) ∪ (∂E ∩ F̄ c) ∪ (∂E ∩ ∂F ), ∂F = (∂F ∩ E) ∪ (∂F ∩ Ēc) ∪ (∂F ∩ ∂E).

Theorem 1.1 Let E be a set with finite perimeter such that ∂E is a finite union of C1,1–regular
surfaces; let us assume also that ∂E \ FE has regular skeleton and

∂E = Σ =

m⋃

i=i

Σi.

Then, setting Ai := {j 6= i : Si,j = Σi ∩ Σj 6= ∅}, we get

‖TtχE‖2L2(Rn) = |E| −
√

2t

π
P (E) + t

m∑

i=1

∑

j∈Ai

I10 (Σi; Σj)+

−
√
2t3
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 (n− 1)2

2
√
π

∫

Σ

(
(Hx

Σ)
2 +

2

(n− 1)2
c2Σ

)
dHn−1 −

m∑

i=1

∑

j∈Ai

(
I20 (Σi; Σj) + δ1I

1
0 (Σi; Σj)

)



+ o(t3/2).

and

‖TtχE − χE‖L1(Rn) = 2

√
t

π
P (E)− t

m∑

i=1

∑

j∈Ai

I10 (Σi; Σj)+

+

√
t3

3


 (n− 1)2

2
√
π

∫

Σ

(
(Hx

Σ)
2 +

2

(n− 1)2
c2Σ

)
dHn−1 −

m∑

i=1

∑

j∈Ai

(
I20 (Σi; Σj) + δ1I

1
0 (Σi; Σj)

)



+ o(t3/2).
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The paper is organized as follows; in Section 2 we fix the notations we shall use in the paper
and we give the standing hypotheses on our surfaces FE and FF ; in Section 3 we consider the
case of a single regular surface. We study the asymptotic behavior of It(∂E; ∂E) as t goes to 0,
when ∂E is a piece of C1,1–regular hypersurface proving that if E has finite perimeter, then

Kt(E,E
c) =

√
t

π
P (E)− t

√
t
(n− 1)2

2
√
π

∫

∂E

(
(Hx

∂E)
2 +

2

(n− 1)2
c2∂E(x)

)
dHn−1(x),

where

Hx
∂E =

1

n− 1

n−1∑

i=1

κ∂Ei (x), c2∂E(x) =

n−1∑

i=1

κ∂Ei (x)
2
.

and the κ∂Ei (x)’s are the principal curvatures of ∂E at x. In Section 4 we study the asymptotic
behavior of It(∂E; ∂F ) and the related expansion for Kt(E,F ). In this case, the coefficient of t is
non trivial and depends on the presence of the singular set ∂E ∩ ∂F . Under suitable hypothesis
on the set ∂E ∩ ∂F , we are able to go further in the expansion deducing also in this case the
coefficient of t

√
t; we obtain this result essentially using the fact that the set ∂E∩∂F has positive

reach in both ∂E and ∂F . If ∂E and ∂F meet transversally, this is equivalent to say that ∂E∩∂F
has positive reach in Rn, which is not too far to require that it is C1,1–regular, that is in fact
our standing hypothesis. Finally, examples of sets to which the main results of this paper apply
are provided in Section 5.

We end this introduction by pointing out that a similar expansion should be true by consid-
ering convolution kernels other than the Gauss–Weierstrass one; for instance, a possibility is to
take any positive symmetric regularizing kernel with some decay conditions at infinity.

2 Notations

In this section we fix the main definitions we shall use later. By Br(x) we denote the open ball
centered at x and with radius r > 0; if x = 0, we simply write Br. We also denote by B+

r the
set of points y ∈ Br ⊂ Rn such that yn > 0. Given a set M ⊂ Rn, we shall use the notation
Mx

r =M ∩Br(x).
We shall use the notations introduced by Federer in [7]; in particular, given a set M ⊂ R

n,
we define the tangent cone of M at x by

Tan(M,x) =

{
λu : u = lim

M∋y→x

y − x

|y − x| , λ ≥ 0

}
.

If Tan(M,x) is a vector space, we shall denote it by TxM ; if in general Tan(M,x) is only a cone,
we shall denote by TxM its span, that is the smallest vector space containing it. We shall also
denote by Πx

M : Rn → TxM the orthogonal projection on TxM .
We also denote the normal space to M at x by

Nor(M,x) = {v ∈ R
n : 〈v, u〉 ≤ 0, ∀u ∈ Tan(M,x)} ;

by NxM we shall denote the orthogonal complement of TxM , that is the linear space such that

R
n = TxM ⊗NxM.

We define Mx
r =M ∩Br(x). We recall that a map ϕ is said to be L–bilipschitz, L ≥ 1, if

1

L
|y1 − y2| ≤ |ϕ(y1)− ϕ(y2)| ≤ L|y1 − y2|.
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Definition 2.1 Let M be a closed subset of Rn such that Hm(M \ im(M)) = 0, m > 0, where

im(M) = {x ∈M : ∃̺ > 0 with Mx
̺ is C1,1–diffeomorphic to an open set of Rm}

is m–dimensional interior part of M . We shall say that:

• M is a piece of an uniform (C1.1,m, L, r)–regular manifold, r > 0 and L ≥ 1, if for any
x ∈M there exists a C1,1 L bilipschitz map ϕx

M : BLr ⊂ Rm → Rn such that

1. ϕx
M (0) = x and {∂iϕx

M (0)}i=1,...,m orthonormal;

2. ϕx
M (Br/L) ⊂Mx

r ⊂ ϕx
M (BLr).

• M is (C1,1,m, L, r)–regular at x ∈M if

(i) for x ∈ im(M), in addition to requirements 1. and 2., we have that

ϕx
M (B r

L
) ⊂Mx

r ⊂ ϕx
M (BLr);

(ii) for x ∈M \ im(M), in addition to requirements 1. and 2., we have that

ϕx
M (B+

r
L
) ⊂Mx

r ⊂ ϕx
M (B+

Lr);

We shall simply say a piece of and C1,1–regular manifold if the dimension m is clear from the
context and there exist L, r > 0 such that the manifold is a piece of or (C1,1,m, L, r)–regular
manifold. We extend this definition to the case m = 0 by meaning that M reduces to a single
point.

Remark 2.2 In view of the previous definition, if M is C1,1–regular and x ∈ im(M), we shall
use the same notation Mx

r to mean both, M ∩ Br(x) or the image ϕx
M (Br) (or ϕ

x
M (Br) ∩M in

case M is a piece of C1,1–regular manifold). Moreover, if the part of M inside Br(x) is strictly

contained in ϕx
M (Br), we can extend M adding a disjoint set M̃ to M with Mx

r ∪ M̃ = ϕx
M (Br).

The same argument can be repeated also in the case x ∈M \ im(M), replacing Br with B+
r . We

shall call this procedure the tangential completion of M at x.

2.1 Manifolds of codimension one

We consider now the case M = Σ a surface of dimension (n− 1); with a little abuse of notation,
we shall write It(Σ;Σ

x
r ) to mean the integral

It(Σ;Σ
x
r ) =

∫

Σ

dHn−1(x)

∫

Σx
r

〈νΣ(x), y − x〉〈νΣ(y), y − x〉e−
|y−x|2

4t2 dHn−1(y).

The second fundamental form ~II
x

Σ : TxΣ × TxΣ → NxΣ for an hypersurface Σ at a point x is a
bilinear map and is related to the scalar second fundamental form Ax

Σ by equality

~II
x

Σ(v, w) = Ax
Σ(v, w)νΣ(x), ∀v, w ∈ TxΣ.

The principal curvatures κxΣ,i, i = 1, . . . , n − 1, are defined as the eigenvalues of Ax
Σ; moreover,

fixed a vector v ∈ TxΣ, the sectional curvature in x of Σ in direction v is defined as

κxΣ[v] = Ax
Σ(v, v).
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In this way, if {vi}i=1,...,n−1 are the eigenvectors of Ax
Σ associated to the κxΣ,i’s, we have

κxΣ,i = κxΣ[vi].

If no confusion may arise, we simply denote by κi the principal curvatures.
The mean curvature of Σ in x is defined by

Hx
Σ =

1

n− 1

n−1∑

i=1

κi;

in addition, the square of the length of the second fundamental form is given by

c2Σ(x) =

n−1∑

i=1

κ2i .

Remark 2.3 With the previous assumptions, we notice that if Σ is a piece of a C1,1–regular
hypersurface, then for every x ∈ in−1(Σ) and r is small enough, we can parametrize Σx

r by

ϕx
Σ : Ax

r → Σx
r , ϕx

Σ(w) = x+ w + u(w)νΣ(x), (6)

where Ax
r = Πx

Σ(Σ
x
r ) is an open set containing 0 and diameter less then r and u(0) = 0; u is

a function with the same regularity in 0 as that of the surface Σ in x, then in particular u is
differentiable in 0 and ∇u(0) = 0. Using the Lipschitz regularity of ∇u, we also obtain that

|∇u(w)| ≤ L|w|, |u(w)| ≤ L

2
|w|2. (7)

In other terms, Σx
r is contained in the graph of u on the tangent space TxΣ; if x has been chosen

in such a way that u is twice differentiable in 0, then the second fundamental form of Σ in x is
then given by

~II
x

Σ(w, z) = 〈Hu(0)w, z〉νΣ(x) (8)

and the eigenvalues of Hu(0) are the principal curvatures of Σ at x. For the normal unit field
νΣ : Σ → Sn−1, we have that for y ∈ Σx

r

|νΣ(y)− νΣ(x)| ≤ L|y − x|; (9)

moreover, dxνΣ : TxΣ → TνxS
n−1 = TxΣ and, by setting γxz (t) = x + tz + u(tz)νΣ(x), the

following holds

dxνΣ[z] =
d

dt
νΣ(γ

x
z (t))|t=0 = lim

t→0

νΣ(x + tz + u(tz)νΣ(x)) − νΣ(x)

t
= −Hu(0)z. (10)

Finally, if x ∈ Σ \ in−1(Σ), we can define as before the parametrization ϕx
Σ : Ax

r → Σx
r , but in

this case 0 ∈ ∂Ax
r . By the C1,1 assumption, the function u can be extended to 0 in such a way

that u(0) = ∇u(0) = 0, and (7)-(10) continue to hold.
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2.2 Submanifolds of higher codimension

Let M ⊂ Rn be a manifold with codimension k > 1; then, for any x ∈ M , TxM and NxM
have, respectively, dimension n − k and k. The second fundamental form is a bilinear form
~II
x

M : TxM ×TxM → NxM , so for any η ∈ NxM we have the scalar second fundamental form in
direction η

Ax
M,η(v, w) =

〈
~II

x

M (v, w), η
〉
, ∀v, w ∈ TxM.

The principal curvatures of M in direction η are the eigenvalues of Ax
M,η, and are denoted by

(κxM,η,i)i=1,...,n−k. It is then defined the mean curvature of M at x in direction η by the identity

Hx
M [η] =

1

n− k

n−k∑

i=1

κxM,η,i.

Finally, ifM is a parametrized manifold and ϕ : A→ Rn, A ⊂ Rn−k is an open set with ϕ(0) = x,
then the metric tensor at x is given by

gi,j(x) = 〈∂iϕ(0), ∂jϕ(0)〉;

using such a metric, the quadratic form Ax
M,η is determined by the matrix

n−k∑

h=1

gi,h
〈
∂2h,jϕ(0), η

〉
,

where gih are the coefficients of the inverse of the metric g. In particular, if M is a piece of a
C1,1–regular manifold, x ∈M and ϕx

M given in Definition 2.1, then the metric induced by ϕx
M is

the identity in x, so that the second fundamental form is determined by the matrix

(Ax
M,η)i,j =

〈
∂2i,jϕ(0), η

〉
;

as a consequence, the mean curvature of M at x in direction η is given by

Hx
M [η] =

1

n− k

n−k∑

i=1

〈
∂2i,iϕ(0), η

〉
.

3 The functional It(Σ)

In this section we study It(Σ) for Σ a piece of C1,1–regular hypersurface. First of all, due to the
exponential map, the part of It with |y − x| ≥ r, r > 0 fixed, goes to 0 exponentially as t → 0.
With a little abuse of notation, we shall write It(Σ,Σ

x
r ) by meaning that x ∈ Σ is a fixed point

in the first integral of It and Σx
r = {y ∈ Σ : |y − x| < r}. With the change of variable z = y−x

t ,
we can write

It(Σ,Σ
x
r ) =t

n+1

∫

Σ

dHn−1(x)

∫
Σx
r−x

t

〈νΣ(x), z〉〈νΣ(x+ tz), z〉e− |z|2

4 dHn−1(z)

=tn+1

∫

Σ

dHn−1(x)

∫
〈νΣ(x), z〉〈νΣ(x+ tz), z〉e− |z|2

4 dµt(z).

We then need a time expansion of both νΣ(x+ tz) and the measures µt = Hn−1
(

Σx
r−x
t

)
.
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Proposition 3.1 Let Σ be a piece of a C1,1–regular hypersurface; then

lim
t→0

It(Σ)

(4π)n/2tn+2
= 0. (11)

Proof. We start with the decomposition

It(Σ) = It(Σ;Σ
x
r ) + It(Σ;Σ \Σx

r ).

A direct computation shows that if 2t < r

|It(Σ;Σ \ Σx
r )| ≤ r2e−

r2

4t2
(
Hn−1(Σ)

)2
, (12)

and then
It(Σ;Σ) = It(Σ;Σ

x
r ) + o(tk), ∀k > 0, (13)

so we can restrict our attention on It(Σ;Σ
x
r ). We can write

It(Σ;Σ
x
r ) =

∫

Σ

grt (x)dHn−1(x);

we fix x ∈ Σ and, with the change of variable y = x+ tz we obtain

grt (x) =t
n+1

∫
Σx
r−x

t

〈νΣ(x), z〉2e−
|z|2

4 dHn−1(z)+

+ tn+1

∫
Σx
r−x

t

〈νΣ(x), z〉〈νΣ(x+ tz)− νΣ(x), z〉e−
|z|2

4 dHn−1(z).

Using the parametrization ϕx
Σ of Remark 2.3 and a change of variable, we can write

grt (x) = tn+1

∫

Ax
r/t

e−
|w|2

4 e−
u(tw)2

4t2

√
1 + |∇u(tw)|2

(
u(tw)2

t2
+

+
u(tw)

t

〈
νΣ(x + tw + u(tw)νΣ(x)) − νΣ(x), w +

u(tw)

t
νΣ(x)

〉)
dw. (14)

As a consequence, by (7) and (9), we get

|grt (x)| ≤ tn+3 3

2
L5

∫

TxΣ

|w|4(1 + |w|2)3/2e− |w|2

4 dw = ctn+3 (15)

with c = c(L, n) a constant depending only on L and the integral of |w|4(1 + |w|2)3/2e− |w|2

4 on
Rn−1. This implies (11). �

Remark 3.2 In the previous proof the C1,1–regularity essentially shows that the dominated
convergence theorem can be used; the same argument, each time C1,1–regularity holds, can be
used in the sequel, also in the case of manifolds with higher codimension, To keep the proofs a
little shorter, we shall use the dominated convergence without repeating the check of it.

We can go further in the expansion, in order to obtain the following result.
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Theorem 3.3 Let Σ be a piece of a C1,1–regular hypersurface; then

lim
t→0

It(Σ)

(4π)n/2tn+3
=− 1

4(4π)n/2

∫

Σ

dHn−1(x)

∫

TxΣ

Ax
Σ(z, z)

2e−
|z|2

4 dz (16)

=− (n− 1)2

2
√
π

∫

Σ

(
(Hx

Σ)
2 +

2

(n− 1)2
c2Σ(x)

)
dHn−1(x).

Proof. Thanks to estimate (15), we can use the dominated convergence and compute the
pointwise limit

lim
t→0

grt (x)

(4π)n/2tn+3
.

So we fix x ∈ Σ and denote simply by ν the vector νΣ(x); we also use the parametrization ϕx
Σ of

Remark 2.3. We can also assume that the point x has been chosen in such a way that u ∈ C1,1

and u twice differentiable in 0. By (14), we can write

grt (x) =t
n+3

∫

Ax
r/t

e−
|w|2

4 − |u(tw)|2

4t2

√
1 + |∇u(tw)|2

(u(tw)2
t4

+

+
u(tw)

t2

〈
νΣ(x+ tw + u(tw)ν) − ν

t
, w +

u(tw)

t
ν

〉)
dw

where in the last integral we have performed the change of variable z = tw. By the dominated
convergence, it suffices to consider the pointwise limits as t→ 0 of u(tw)/t, ∇u(tw) and u(tw)/t2.
We have that

lim
t→0

u(tw)

t
= 0, lim

t→0
∇u(tw) = 0, lim

t→0

u(tw)

t2
=

1

2
〈Hu(0)w,w〉.

We also have that

lim
t→0

〈
νΣ(x+ tw + u(tw)ν) − ν

t
, w +

u(tw)

t
ν

〉
= −〈Hu(0)w,w〉,

as can be easily proved by assuming ν = en, the last element of the canonical base of Rn and by
writing

νΣ(x+ tw + u(tw)ν) =
(−∇u(tw), 1)√
1 + |∇u(tw)|2

.

Summarizing, we can conclude that

lim
t→0

grt (x)

(4π)n/2tn+3
=− 1

4(4π)n/2

∫

TxΣ

〈Hu(0)w,w〉2e− |w|2

4 dw := I(x).
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We take then an orthonormal basis in TxΣ of eigenvector (τi)i=1,...,n−1 with Hu(0)τi = κiτi, κi
the principal curvatures of Σ at x; so we can write w =

∑n−1
i=1 wiτi so that we have

I(x) = − 1

4(4π)n/2

∫

TxΣ

〈Hu(0)w,w〉2e− |w|2

4 dw

= − 1

4(4π)n/2

∫

Rn−1

( n−1∑

i=1

κiw
2
i

)2
e−

w2
1+...+w2

n−1
4 dw1 . . . dwn−1

= − 1

4(4π)n/2

n−1∑

i,j=1

κiκj

∫

Rn−1

w2
iw

2
j e

− |w|2

4 dw

= − 1

2
√
π

n−1∑

i,j=1

κiκj −
1√
π

n−1∑

i=1

κ2i = − (n− 1)2

2
√
π

(Hx
Σ)

2 − 1√
π
c2Σ(x).

�

4 The functional It(Σ; Γ)

In this section we study the quantity It(Σ; Γ) for two oriented pieces of uniform C1,1 hypersur-
faces. In this computation, a crucial rôle is played by the intersection S = Σ ∩ Γ of the two
manifolds. Since we are interested in the case when Σ and Γ are parts of the boundaries of sets
of finite perimeter, we can restrict to the case when for Hn−2–almost every x0 ∈ S, Tan(Σ, x0)
and Tan(Γ, x0) are both half hyperplanes. On S we shall always assume the following regularity.

Definition 4.1 (Regular skeleton) We shall say that a set S with Hn−2(S) < +∞ has regular
skeleton if, denoting by S0 = S, the sets Sk = Sk−1 \ in−k(Sk−1) k = 1, . . . , n− 1 are finite union
of closed pieces of C1,1–regular (n−1−k)–dimensional manifolds. Notice that with this definition
we have that S1 = S0.

Given Σ and Γ, we define the sets

Σr = {x ∈ Σ : dist(x, S) ≤ r}, Γr = {y ∈ Γ : dist(y, S) ≤ r};

we point out that if y ∈ Γ \ Γr, then

dist(y,Σ) ≥ cr (17)

for some positive constant c > 0. This in particular implies that

It(Σ; Γ) = It(Σr; Γr) + o(tm), ∀m ∈ N. (18)

In fact, we can write

It(Σ; Γ) = It(Σr; Γr) + It(Σ \ Σr; Γr) + It(Σ; Γ \ Γr),

and, as in (12), there holds

|It(Σ; Γ \ Γr)| ≤ r2e−
r2

4t2 Hn−1(Σ)Hn−1(Γ). (19)

11



Same estimate holds for It(Σ \ Σr; Γr).
From now on we consider Σr; the same considerations and constructions can be done also for

Γr. Most of this considerations and notations are based on the paper of Federer [7] and Zähle [19]
and a fundamental tool is the Federer coarea formula (see also Thäle [16]); our setting is a little
bit simpler, since we are assuming regular skeleton. If r is small enough, it is well defined the
projection π : Σr → S; for any k = 0, . . . , n− 1, we define the sets

Sk = {x0 ∈ S : dimπ−1(x0) = k}, Σk,x0
r = π−1(x0), x0 ∈ Sk.

By the fact that S has regular skeleton, we deduce that

in−1−k(Sk) ⊂ Sk ⊂ Sk, k = 1, . . . n− 1 (20)

and, since Hn−1−k(Sk+1) = 0, Hn−1−k a.e. point of Sk belongs to Sk. The sets Σk
r = π−1(Sk)

are (n−1)–dimensional manifolds for any k ≥ 1, while Hn−1(Σ0
r) = 0; we then have the following

disjoint decomposition

Σr =

n−1⋃

k=0

Σk
r . (21)

Moreover, by (20), for Hn−1−k a.e. x0 ∈ Sk, we have the decomposition

Tan(Σk
r , x0) = Tx0S

k ⊕ Tan(Σk,x0
r , x0). (22)

In the same way we can define the sets Γk
r and Γk,x0

r . For Hn−1−k a.e. x0 ∈ Sk the cones
Tan(Σk,x0

r , x0) and Tan(Γk,x0
r , x0) are k–dimensional and are generated by k vectors that we

shall denote by {σk
j (x0)}j=1,...,k and {γkj (x0)}j=1,...,k. Eventually dividing Σ and Γ in two parts

in case that they pass through each other, we can assume that Tan(Σk,x0
r , x0) and Tan(Γk,x0

r , x0)
are positive cones, meaning by positive cone generated by the vectors v1, . . . , vm any combination
of the type

λ1v1 + . . .+ λmvm, λi ≥ 0, i = 1, . . . ,m.

We give the following definition.

Definition 4.2 We say that Σ meets Γ transversally if there exists c > 0 such that for almost
every x0 ∈ S, −1 + c ≤

〈
σ1
1(x0), γ

1
1(x0)

〉
≤ 1− c, or equivalently |σ1

1(x0) ∧ γ11(x0)| ≥ c.

Remark 4.3 In what follows, the transversality can also be replaced by a weaker condition,
requiring the existence of a function ω ∈ L1(S,Hn−2) such that

1

|σ1
1(x0) ∧ γ11(x0)|

≤ ω(x0), Hn−2 − a.e. x0 ∈ S.

We also define, for Hn−1−k a.e. x0 ∈ Sk, the cone

V k
x0

= Tan(Γk,x0
r , x0)− Tan(Σk,x0

r , x0);

which can be parametrized by using the maps QΣk
x0

: Rk
+ → Tan(Σk,x0

r , x0), QΓk
x0

: Rk
+ →

Tan(Γk,x0
r , x0)

QΣk
x0
(α) =

k∑

i=1

αiσ
k
i (x0), QΓk

x0
(β) =

k∑

i=1

βiγ
k
i (x0);

12



such a parametrization is given by Qk
x0

: R2k
+ → V k

x0
,

Qk
x0
(α, β) = QΓk

x0
(β) −QΣk

x0
(α)

and is determined by the matrix
(
−σk

1 (x0) . . . −σk
k(x0) γk1 (x0) . . . γkk (x0)

)
. (23)

The dimension of V k
x0

is given by the rank of (23), that is, due to the transversality condition on
Σ and Γ, always equals to k + 1. We shall then denote by JkQ

k
x0

the factor

DkQ
k
x0

=





|σ1
1(x0) ∧ γ11(x0)| if k = 1

JkdQΣk
x0
JkdQΓk

x0

CkdQk
x0

if k > 1,
(24)

where by JkdQΣk
x0

and JkdQΓk
x0

we denote the area factor of the maps QΣk
x0

and QΓk
x0
, and by

CkdQ
k
x0

the coarea factor associated to Qk
x0
.

For the restrictions πk : Σk
r → Sk of π, we can consider, for any measurable function g, the

coarea formula ∫

Σk
r

g(x)CkdxπkdHn−1(x) =

∫

Sk

dHn−1−k(x0)

∫

Σ
k,x0
r

g(x)dHk(x),

where Ckdxπk is the coarea factor associated to πk. Equivalently, since Ckdxπk 6= 0 on Σk
r ,

∫

Σk
r

g(x)dHn−1(x) =

∫

Sk

dHn−1−k(x0)

∫

Σ
k,x0
r

g(x)

Ckdxπk
dHk(x).

Remark 4.4 We can write the coarea factor using local parametrizations; we do it explicitly
since we shall use it in Lemma 4.5. Using a partition of unity argument, we can assume that Σk

r

is a parametrized surface in a neighbourhood of a fixed point x0 ∈ Sk. We shall then assume to
have a map ψ : Ak

x0
× Ikx0

→ Rn with the following properties:

1. Ak
x0

is an open subset of Rn−1−k and Ikx0
⊂ Rk, both sets containing 0;

2. ψ(0, 0) = x0;

3. the map a 7→ φ(a) = ψ(a, 0) is a parametrization for Sk;

4. for any a ∈ Ak
x0
, the map a′ 7→ ψ(a, a′) is a parametrization of Σk

r ∩ Nor(Sk, φ(a));

5. the set {∂iψ(0, 0)}i=1,...,n−1−k is an orthonormal basis of Tx0S
k and

∂n−1−k+jψ(0, 0) = σk
j (x0), j = 1, . . . , k.

We shall also write ψ−1 and φ−1 to denote the inverses of ψ and φ defined on Σk
r and Sk

respectively. With the previous assumptions, it is clear that

πk(ψ(a, a
′)) = φ(a).

Moreover, the parametrization ψ induces then metrics gn−1, gn−1−k and gk on Σk
r , S

k and Σk,y
r ,

y ∈ Sk so that the coarea factor tunrs out to be given by

Ckdxπk =

√
det[gn−1−k(φ−1(πk(x)), 0)]det[gk(ψ−1(x))]

det[gn−1(ψ−1(x))]
. (25)
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The following lemma contains the main properties of the coarea factor Ckdx0πk we use in the
sequel; we omit the proof since it uses standard arguments.

Lemma 4.5 Let Ckdπk be the k–th coarea factor associated to πk; then, if x0 ∈ Sk,

Ckdx0πk = 1, (26)

while for z ∈ Tan(Σk,x0
r , x0),

dx0Ckdx0πk[z] = (n− 1− k)Hx0

Sk [z], (27)

where Hx0

Sk [z] is the mean curvature of Sk at x0 in direction z ∈ Nx0S
k.

Using the decomposition (21), we can write

It(Σr; Γ) =
n−1∑

k=1

It(Σ
k
r ; Γ); (28)

the following result holds.

Lemma 4.6 The quantity It(Σ
k
r ; Γ) is asymptotic to tn+k+1 and there holds

Ik0 (Σ; Γ) := lim
t→0

It(Σ
k
r ; Γ)

(4π)n/2tn+1+k
=

∫

Sk

Θk(x0)dHn−1−k(x0),

where, if k = 1,

Θ1(x0) =
1

4π|σ1(x0) ∧ γ11(x0))|

∫

V 1
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉 exp
(
−|v|2

4

)
dv

and if k > 1,

Θk(x0) =
DkQ

k
x0

(4π)
k+1
2

∫

V k
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 Hk−1((Qk
x0
)−1(v))dv

with DkQ
k
x0

given by (24).

Proof. First of all we note that, using the changes of variables x = x0 + tz and y = x0+ tw,

It(Σ
k
r ; Γ) =

∫

Σk
r

dHn−1(x)

∫

Γ

〈νΣ(x), y − x〉〈νΓ(x), y − x〉e−
|y−x|2

4t2 dHn−1(y)

=

∫

Sk

dHn−1−k(x0)

∫

Σ
k,x0
r

dHk(x)

∫

Γ

〈νΣ(x), y − x〉〈νΓ(x), y − x〉
Ckdxπk

e−
|y−x|2

4t2 dHn−1(y)

=tn+1+k

∫

Sk

dHn−1−k(x0)

∫

Σ
k,x0
r −x0

t

dHk(z)

∫

Γ−x0
t

F k
x0
(t, z, w)dHn−1(w),

with

F k
x0
(t, z, w) =

〈νΣ(x0 + tz), w − z〉〈νΓ(x0 + tw), w − z〉
Ckdx0+tzπk

e−
|w−z|2

4 .
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Using the convergences

lim
t→0

F k
x0
(t, z, w) = 〈νΣ(x0), w − z〉〈νΓ(x0), w − z〉e− |w−z|2

4 ,

Hk

(
Σk,x0

r − x0
t

)
⇀Lk Tan(Σk,x0

r , x0), Hn−1

(
Γ− x0
t

)
⇀Ln−1 Tan(Γ, x0)

and the decomposition Tan(Γ, x0) = Tx0S
k ⊕ Tan(Γk,x0

r , x0), we get

lim
t→0

It(Σ
k
r ; Γ)

(4π)n/2tn+1+k
=

∫

Sk

Θk(x0)dHn−1−k(x0),

with

Θk(x0) =
1

(4π)
k+1
2

∫

Tan(Σ
k,x0
r ,x0)

dz

∫

Tan(Γ
k,x0
r ,x0)

〈νΣ(x0), w − z〉〈νΓ(x0), w − z〉e− |w−z|2

4 dw.

To compute the last integral we distinguish the cases k = 1 and k > 1; in the first case we
parametrize Tan(Σ1,x0 , x0) and Tan(Γ1,x0 , x0) using the maps

QΣ1
x0
(α) = ασ1

1(x0), QΓ1
x0
(β) = βγ11(x0),

whose area factor is 1, so that we obtained

Θ1(x0) =
1

4π

∫

R
2
+

〈
νΣ(x0), Q

1
x0
(α, β)

〉〈
νΓ(x0), Q

1
x0
(α, β)

〉
e−

|Q1
x0

(α,β)|2

4 d(α, β)

=
1

4π|σ1
1(x0) ∧ γ11(x0)|

∫

V 1
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 dv

The case k > 1 is similar, but since Qk
x0

maps R2k onto the (k + 1)–dimensional cone V k
x0
, we

have to use the coarea formula, that is

Θk(x0) =
JkdQΣk

x0
JkdQΓk

x0

(4π)
k+1
2

∫

R
2k
+

〈
νΣ(x0), Q

k
x0
(α, β)

〉〈
νΓ(x0), Q

k
x0
(α, β)

〉
e−

|Qk
x0

(α,β)|2

4 d(α, β)

=
DkQ

k
x0

(4π)
k+1
2

∫

V k
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 Hk−1((Qk
x0
)−1(v))dv.

�

Remark 4.7 We point out some consequence and possible generalization of the previous result;
it states that the quantity It(Σ; Γ) is infinitesimal of order strictly related to the dimension of the
intersection Σ∩Γ. In general, if M1 and M2 are two oriented manifolds meeting transversally of
dimensions m1 and m2 respectively, S12 =M1 ∩M2 has dimension m < min{m1,m2} and ξ1, ξ2
are two vector fields in Rn, then the quantity

It(M1, ξ1;M2, ξ2) :=

∫

M1

dHm1(x)

∫

M2

〈ξ1(x), y − x〉〈ξ2(y), y − x〉e−
|y−x|2

4t2 dHm2(y)

is infinitesimal of order tm1+m2−m+2. The proof of this essentially uses the projection on the
intersection S12; this fact has been exploited in the previous lemma by the quantity It(Σ

k; Γ),
since in this case the intersection between Σk and Γ, having dimension n− 1, is contained in Sk,
which has dimension n− 1− k.
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Since we are interested in the cases k = 1, we compute Θ1 explicitly. In order to do this, we
define the angle ϑ0 as the unique ϑ0 ∈ [0, π) such that

〈
σ1
1(x0), γ

1
1(x0)

〉
= cosϑ0.

With this choice, we also have that

〈
νΣ(x0), γ

1
1(x0)

〉
= ± sinϑ0,

〈
νΓ(x0), σ

1
1(x0)

〉
= ± sinϑ0

where the signs depend on the orientations of Σ and Γ.

Lemma 4.8 Let us fix x0 ∈ S1; for k = 1, we have that

Θ1(x0) = −
〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉

π sin2 ϑ0

(
1 + (π − ϑ0)ctgϑ0

)
.

Proof. For η ∈ V 1
x0
, we write η = η1v1 + η2v2 where {v1, v2} is the orthogonal system

determined by

v1 = σ1
1(x0), v2 =

1√
1− 〈σ1

1(x0), γ
1
1(x0)〉

2
(
〈
σ1
1(x0), γ

1
1(x0)

〉
σ1
1(x0)− γ11(x0)).

With this choice, we obtain

4π
(
1−
〈
σ1
1(x0), γ

1
1(x0)

〉2)
Θ1(x0) = −

〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉 ∫

V 1
x0

η1η2e
− |η|2

4 dη+

−
〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉〈
σ1
1(x0), γ

1
1(x0)

〉
√
1− 〈σ1

1(x0), γ
1
1(x0)〉

2

∫

V 1
x0

η22e
− |η|2

4 dη

=−
〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉 ∫ +∞

0

̺3e−
̺2

4 d̺

∫ α

0

sinϑ cosϑdϑ+

−
〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉〈
σ1
1(x0), γ

1
1(x0)

〉
√
1− 〈σ1

1(x0), γ
1
1(x0)〉

2

∫ +∞

0

̺3e−
̺2

4 d̺

∫ α

0

sin2 ϑdϑ,

with α = π − ϑ0 since V 1
x0

is the positive cone generated by σ1
1(x0) and −γ11(x0). �

Proposition 4.9 Let Σ and Γ two pieces of C1,1–regular surfaces such that S = Σ∩Γ has regular
skeleton; then

lim
t→0

It(Σ; Γ)

(4π)n/2tn+2
= I10 (Σ; Γ) =

∫

S1

Θ1(x0)dHn−2(x0).

Proof. The proposition follows by using the decomposition (28), the estimate (19) and
applying Lemma 4.6. �

Remark 4.10 In the proof of Lemma 4.6, we have essentially used the weak convergence of

µ
Σk,x0

r
t = Hk

(
Σk,x0

r − x0
t

)
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to the measure
µ
Σk,x0

r
0 = Lk Tan(Σk,x0

r , x0)

and the weak convergence of

µΓr
t = Hn−1

(
Γr − x0

t

)

to the measure
µΓr
0 = Ln−1 Tan(Γ, x0).

In the next lemma we shall investigate the behavior of the distributions defined by

δ1µ
Σ1,x0

r
0 = lim

t→0

µ
Σ1,x0

r
t − µ

Σ1,x0
r

0

t
, δ1µ

Γx0
r

0 = lim
t→0

µ
Γx0
r

t − µ
Γx0
r

0

t
. (29)

in the case that Σ1,x0
r and Γx0

r are C1,1–regular at x0 (see Definition 2.1).

Lemma 4.11 If φ ∈ C1
c (R

n); if x0 ∈ S and Σ1,x0
r is C1,1–regular at x0, then there holds

〈
φ, δ1µ

Σ1,x0
r

0

〉
=

1

2

∫

Tan(Σ
1,x0
r ,x0)

〈∇φ(z), νΣ(x0)〉κx0

Σ [z]dz. (30)

Moreover, if x0 ∈ S and Γ is C1,1–regular at x0,

〈
φ, δ1µ

Γx0
r

0

〉
=

1

2

∫

Tan(Γ,x0)

〈∇φ(w), νΓ(x0)〉Ax0

Γ (w,w)dw − 1

2

∫

Tx0S

φ(s)Ax0

S,γ1
1(x0)

(s, s)ds. (31)

Proof. We start by proving (31); we use the parametrization of
Γx0
r −x0

t given in Remark

2.3; this parametrization is given by ϕt : B
+
r/t → Rn

ϕt(w, b) =
ϕ(tw, tb)− x0

t
=

n−2∑

h=1

∂hϕ(0)wh + ∂n−1ϕ(0)b+

+
t

2




n−2∑

h,k=1

∂2h,kϕ(0)whwk + 2

n−2∑

h=1

∂2h,n−1ϕ(0)whb+ ∂2n−1,n−1ϕ(0)b
2


+ o(t).

We may also assume that ∂iϕ(0) coincide with the elements ei of the standard basis for i =
1, . . . , n− 1. Moreover, for the metric we have

d

dt

√
detg(tw, tb)t=0 =

n−2∑

h,k=1

∂2h,kϕ
k(0)wh +

n−2∑

h=1

∂2n−1,hϕ
h(0)b+

+

n−2∑

h=1

∂2h,n−1ϕ
n−1(0)wh + ∂2n−1,n−1ϕ

n−1(0)b.

We now use the fact that for φ ∈ C1
c (R

n) and t small enough, we have that

spt(φ) ∩ Γr − x0
t

⊂ ϕt(B
+
r/t).
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We also have that for i ∈ {1, . . . , n− 2} there hold

∫

R
n−1
+

∂iφ(w, b, 0)whwkdwdb = −
∫

R
n−1
+

φ(w, b, 0)(δihwk + whδik)dwdb,

∫

R
n−1
+

∂iφ(w, b, 0)whbdwdb = −
∫

R
n−1
+

φ(w, b, 0)δihbdwdb,

and ∫

R
n−1
+

∂iφ(w, b, 0)b
2dwdb = 0,

while ∫

R
n−1
+

∂n−1φ(w, b, 0)whwkdwdb = −
∫

Rn−2

φ(w, 0, 0)whwkdw,

∫

R
n−1
+

∂n−1φ(w, b, 0)whbdwdb = −
∫

R
n−1
+

φ(w, b, 0)whdwdb,

and ∫

R
n−1
+

∂n−1φ(w, b, 0)b
2dwdb = −2

∫

R
n−1
+

φ(w, b, 0)bdwdb.

In this way we obtain that

∫
φdµ

Γx0
r

t =

∫

R
n−1
+

φ(w, b, 0)dwdb +
t

2

( n−2∑

h,k=1

∂2h,kϕ
n(0)

∫

R
n−1
+

∂nφ(w, b, 0)whwkdwdb+

+ 2

n−2∑

h=1

∂2h,n−1ϕ
n(0)

∫

R
n−1
+

∂nφ(w, b, 0)whbdwdb + ∂2n−1,n−1ϕ
n(0)

∫

R
n−1
+

∂nφ(w, b, 0)b
2dwdb

)
+

− t

2

n−2∑

h,k=1

∂2h,kϕ
n−1(0)

∫

Rn−2

φ(w, 0, 0)whwkdw + o(t)

=

∫
φdµ

Γx0
r

0 +
t

2

∫

Tan(Γ,x0)

〈∇φ(w), νΓ(x0)〉Ax0

Γ (w,w)dw − t

2

∫

Tx0S

φ(s)Ax0

S,γ1
1(x0)

(s, s)ds+ o(t)

and this proves (31). The proof of (30) is similar. �

Remark 4.12 Lemma 4.11 applies also to function in the Schwarz space and in particular, as
in our case, to a polynomial times the Gaussian.

Remark 4.13 In the proof of next result we need to compute integrals of the type

Fhk =

∫ +∞

0

dα

∫ +∞

0

dβαhβk exp

(
−α

2 + β2 − 2αβ cosϑ0
4

)
.

The integrals we are interested in are F10, F21, F30 and F32. With standard computation, we get

F10 =
2
√
π

1− cosϑ0
, F30 =

4
√
π(2− cosϑ0)

(1− cosϑ0)2
, F21 =

4
√
π

(1− cosϑ0)2
, F32 =

16
√
π

(1 − cosϑ0)3
.
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In order to go further in the expansion of It(Σ; Γ) we have to compute the derivative of the

function t 7→ It(Σ
1
r ;Γ)

(4π)n/2tn+2 . In such derivative, the distributions δ1µ
Σ1,x0

r
0 and δ1µ

Γx0
r

0 defined in (29)

are involved. By Lemma 4.11 we know how these distribution act on smooth functions when
Σ1,x0

r and Γx0
r are C1,1-regular at x0. Since, in general, this is not the case, we have to complete

our surfaces Σ and Γ in such a way that the assumptions of Lemma 4.11 are satisfied.
In the next lemma we will consider points belonging to S2 = S \ in−2(S); for Hn−3–almost

every x0 ∈ S2 ⊂ S2, we have the (n − 3)–dimensional tangent space Tx0S
2 and a vector s11(x0),

pointing inside S, in such a way that the (n− 2)–dimensional cone Tan(S, x0) is given by

Tan(S, x0) = Tx0S
2 ⊗ R+〈s11(x0)〉.

Moreover, for such x0 ∈ S2, Tan(Σ, x0) is the product of Tx0S
2 and a positive cone generated by

two vectors, s11(x0) and a second vector σ̃1
1(x0), belonging to the plane generated by σ1

1(x0) (a
vector orthogonal to s11(x0)) and s

1
1(x0). If

〈
σ̃1
1(x0), s

1
1(x0)

〉
> 0, then Σ2,x0

r = ∅ and then Σ has
a defect of orthogonality around x0, that is for points x ∈ S1 ∩ Br(x0) close to x0, Σ

1,x
r is not

C1,1–regular at x. Then we can complete Σ1,x
r using the sets Σ̃1,x

r of Remark 2.2; we set

Σ̃r =
⋃

x0∈S2

⋃

x∈S∩Br(x0)

Σ̃1,x
r .

In case
〈
σ̃1
1(x0), s

1
1(x0)

〉
< 0, then Σ has an excess of orthogonality and then Σ2,x0

r 6= ∅ and as
sets of generators of Tan(Σ2,x0

r , x0) we can choose σ2
1(x0) = σ1

1(x0), σ
2
2(x0) = σ̃1

1(x0). In case〈
σ̃1
1(x0), s

1
1(x0)

〉
= 0, then both Σ2,x0

r and Σ̃r ∩ Br(x0) are empty. In the same way, for Γ, we
have the vectors γ11(x0) and γ̃11(x0) such that Tan(Γ, x0) is given by the product of Tx0S

2 and
the cone generated by s11(x0) and γ̃11(x0). The fact that Γ can be not C1,1–regular at x0 ∈ S2

means that Γ has a defect of tangentiality at x0; in this case, Tan(Γ2,x0
r , x0) is the positive cone

generated by s11(x0) and γ̃11(x0), that is we can set γ21(x0) = s11(x0) and γ22(x0) = γ̃11(x0). We
also use the definition of

Γ̃r =
⋃

x0∈S2

⋃

x∈Br(x0)

Γ̃x
r ,

given by Remark 2.2 is such a way that Γ ∪ Γ̃r is C1,1–regular at any point of S; finally, for
almost any point x0 ∈ S2, we notice that Tan(Γ̃r, x0) is given by Tx0S

2 and the positive cone
generated by γ̃21(x0) = −s11(x0) and γ̃22(x0) = γ̃11(x0).

Since the following decomposition

It(Σr; Γr) = It(Σr ∪ Σ̃r; Γr ∪ Γ̃r)− It(Σ̃r; Γr ∪ Γ̃r)− It(Σr; Γ̃r),

holds, we shall deal with the quantities It(Σ̃r; Γr ∪ Γ̃r) and It(Γ̃r; Σr) which (as pointed out in
Remark 4.7) are infinitesimal with order n− 3. We need to consider the dimensional decomposi-
tions of Σ̃r, Γ̃r and Γr ∪ Γ̃r induced by the projections on S2 and with an abuse of notation, we
continue to denote by Σ̃k,x0

r , (Γ̃r)
k,x0 and (Γr ∪ Γ̃r)

k,x0 such slicings. We shall use in particular
the spaces

Ṽ 2
x0

= Tan((Γ ∪ Γ̃r)
2,x0
r , x0)− Tan(Σ̃2,x0

r , x0), W̃ 2
x0

= Tan(Γ̃2,x0
r , x0)− Tan(Σ2,x0

r , x0)

and the linear maps Q̃2
x0

: R3
+ × R → Ṽ 2

x0
and Q̂2

x0
: R4

+ → W̃ 2
x0
, defined by

Q̃2
x0
(α, β) = −α1σ

1
1(x0)− α2σ̃

1
1(x0) + β1γ

1
1(x0) + β2s

1
1(x0).

and
Q̂2

x0
(α, β) = −α1σ̃

1
1(x0)− α2s

1
1(x0) + β1γ̃

1
1(x0)− β2s

1
1(x0).
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Lemma 4.14 Let Σ and Γ as before; then

δ1I
1
0 (Σ; Γ) := lim

t→0

1

t

(
It(Σ

1
r ; Γ)

(4π)n/2tn+2
− I10 (Σ; Γ)

)
=

∫

S

T2(x0)dHn−2 −
∫

S2

Θ̃2(x0)dHn−3(x0),

where

T2(x0) =
(cosϑ0 − 2)√
π(1− cosϑ0)2

[〈
νΓ(x0), σ

1
1(x0)

〉
κx0

Σ [σ1
1(x0)] +

〈
νΣ(x0), γ

1
1(x0)

〉
κx0

Γ [γ11(x0)]

+
(n− 2) cosϑ0
(cosϑ0 − 2)

(〈
νΣ(x0), γ

1
1(x0)

〉
Hx0

S [νΓ(x0)] +
〈
νΓ(x0), σ

1
1(x0)

〉
Hx0

S [νΣ(x0)]
)]

(32)

and

Θ̃2(x0) =
D2Q̃

2
x0

(4π)3/2

∫

Ṽ 2
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 H1((Q̃2
x0
)−1(v))dv+

+
D2Q̂

2
x0

(4π)3/2

∫

W̃ 2
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 H1((Q̂2
x0
)−1(v))dv.

Proof. By (19), we have to compute the derivative of

It(Σ
1
r; Γr)

(4π)n/2tn+2
=

∫

S

dHn−2(x0)

∫
dµ

Σ1,x0
r

t (z)

∫
Fx0(t, z, w)dµ

Γr
t (w)

where

Fx0(t, z, w) =
1

(4π)n/2
〈νΣ(x0 + tz), w − z〉〈νΓ(x0 + tw), w − z〉

Jπ1(x0 + tz)
e−

|w−z|2

4 .

First of all, we have that

∂tFx0(0, z, w) =
e−

|w−z|2

4

(4π)n/2

(
〈dx0νΣ[z], w − z〉〈νΓ(x0), w − z〉+

+ 〈νΣ(x0), w − z〉〈dx0νΓ[w], w − z〉 − (n− 2)〈νΣ(x0), w − z〉〈νΓ(x0), w − z〉Hx0

S [z]
)

=
e−

|w−z|2

4

(4π)n/2

(
〈νΓ(x0), z〉Ax0

Σ (z,Πx0

Σ (w) − z)+

− 〈νΣ(x0), w〉Ax0

Γ (w,w −Πx0

Γ (z)) + (n− 2)〈νΣ(x0), w〉〈νΓ(x0), z〉Hx0

S [z]
)
, (33)

where in the last line we have used the fact that z ∈ Tan(Σ1,x0
r , x0) and w ∈ Tan(Γ, x0). If

we write w = wτ + ζ, with wτ ∈ Tx0S and ζ ∈ Tan(Γ1,x0
r , x0) and fix an orthonormal basis

{e1, . . . , en−2} of Tx0S. Using the fact that Tx0S is a vector space, we can discard the summand
of (33) that are odd in the variable wτ ; in addition, we use the fact that 〈νΣ(x0), w〉 = 〈νΣ(x0), ζ〉
and the decompositions wτ =

∑n−2
i=1 w

i
τei and

ζ =
〈
ζ, σ1

1(x0)
〉
σ1
1(x0) + 〈ζ, νΣ(x0)〉νΣ(x0), z =

〈
z, γ11(x0)

〉
γ11(x0) + 〈z, νΓ(x0)〉νΓ(x0),

whence the fact that

Πx0

Σ (ζ) =
〈
ζ, σ1

1(x0)
〉
σ1
1(x0), Πx0

Γ (z) =
〈
z, γ11(x0)

〉
γ11(x0).
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In this way we obtain

∫

Tan(Σ
1,x0
r ,x0)

dz

∫

Tan(Γ,x0)

∂tFx0(0, z, w)dw =

=

∫

Tx0S

dwτ
e−

|wτ |2

4

(4π)n/2

∫

Tan(Σ
1,x0
r ,x0)

dz

∫

Tan(Γ
1,x0
r ,x0)

(
〈νΓ(x0), z〉

〈
ζ, σ1

1(x0)
〉
Ax0

Σ (z, σ1
1(x0))+

− 〈νΓ(x0), z〉Ax0

Σ (z, z)− 〈νΣ(x0), ζ〉Ax0

Γ (wτ , wτ )− 〈νΣ(x0), ζ〉Ax0

Γ (ζ, ζ)+

+ 〈νΣ(x0), ζ〉
〈
z, γ11(x0)

〉
Ax0

Γ (ζ, γ11 (x0)) + (n− 2)〈νΣ(x0), ζ〉〈νΓ(x0), z〉Hx0

S [z]
)
e−

|ζ−z|2

4 dζ.

We also need the fact that

∫

Tx0S

Ax0

Γ (wτ , wτ )e
− |wτ |2

4 dwτ =2(4π)
n−2
2

n−2∑

i=1

Ax0

Γ (ei, ei) = 2(4π)
n−2
2 (n− 2)Hx0

S [νΓ(x0)],

so we get

∫
Tan(Σ

1,x0
r ,x0)

dz

∫

Tan(Γ,x0)

∂tFx0(0, z, w)dw =

=
1

4π

[
κx0

Σ [σ1
1(x0)]

(〈
γ11(x0), σ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉
F21 −

〈
νΓ(x0), σ

1
1(x0)

〉
F30

)
+

+ κx0

Γ [γ11(x0)]
(〈
γ11(x0), σ

1
1(x0)

〉〈
νΣ(x0), γ

1
1(x0)

〉
F12 −

〈
νΣ(x0), γ

1
1(x0)

〉
F03

)
+

+ (n− 2)
〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉
Hx0

S [σ1
1(x0)]F21+

− 2(n− 2)
〈
νΣ(x0), γ

1
1(x0)

〉
Hx0

S [νΓ(x0)]F01

]
; (34)

here the Fhk are the coefficients defined in Remark 4.13. We now have to consider the derivatives

of the measures µ
Σ1,x0

r
t and µΓr

t ; in order to apply Lemma 4.11, we need that for any x0 ∈ S1,

Σ1,x0
r and Γ have to be C1,1–regular at x0. So, in case, we can consider the completions Σ̃r of

Σr and Γ̃r of Γ. We also notice that

It(Σr; Γr) = It(Σr ∪ Σ̃r; Γr ∪ Γ̃r)− It(Σ̃r; Γr ∪ Γ̃r)− It(Σr; Γ̃r).

To deal with It(Σ̃r; Γr ∪ Γ̃r), we consider the projection π̃Σ : Σ̃r → S2 and define the sets

(S2)
k = {x0 ∈ S2 : dimπ̃−1(x0) = k}, and Σ̃k

r = π̃−1((S2)
k).

Since S2 is an (n− 3)–dimensional set, we deduce that Hn−1(Σ̃0
r) = Hn−1(Σ̃1

r) = 0, so that

It(Σ̃r; Γr ∪ Γ̃r) =

n−1∑

k=2

It(Σ̃
k
r ; Γr ∪ Γ̃r)

and, arguing as in Lemma 4.6, the term It(Σ̃
k
r ; Γr ∪ Γ̃r) is asymptotic to tn+1+k. In the same

way, by considering the projection π̃Γ : Γ̃r → S2, we can write

It(Γ̃r; Σr) =
n−1∑

k=2

It(Γ̃
k
r ; Σr).
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We shall still denote by Σ̃2,x0
r and by (Γ ∪ Γ̃r)

2,x0
r the sections induced by the projection’s π̃.

We are interested in the term asymptotic to tn+3; we have that

lim
t→0

It(Σ̃
2
r; Γr ∪ Γ̃r)

(4π)n/2tn+3
:= Ĩ0(Σ; Γ) (35)

=

∫

S2

dHn−3(x0)

∫

Tan(Σ̃
2,x0
r ,x0)

dz

∫

Tan(Γ∪Γ̃r,x0)

〈νΣ(x0), w − z〉〈νΓ(x0), w − z〉
(4π)n/2

e−
|w−z|2

4 dw

=

∫

S2

dHn−3(x0)

∫

Tan(Σ̃
2,x0
r ,x0)

dz

∫

Tan((Γ∪Γ̃
2,x0
r ,x0)

〈νΣ(x0), w − z〉〈νΓ(x0), w − z〉
(4π)3/2

e−
|w−z|2

4 dw

=

∫

S2

dHn−3(x0)
D2Q̃

2
x0

(4π)3/2

∫

Ṽ 2
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 H1((Q̃2
x0
)−1(v))dv;

moreover we get that

lim
t→0

It(Γ̃
2
r; Σr)

(4π)n/2tn+3
:= Ĩ1(Σ; Γ) (36)

=
D2Q̂

2
x0

(4π)3/2

∫

S2

dHn−3(x0)

∫

W̃ 2
x0

〈νΣ(x0), v〉〈νΓ(x0), v〉e−
|v|2

4 H1((Q̂2
x0
)−1(v))dv,

For the term It(Σr ∪ Σ̃r; Γ ∪ Γ̃r) we can apply Lemma 4.11 and the fact that Tan(Σ1,x0
r , x0) =

Tan((Σ ∪ Σ̃r)
1,x0
r , x0), so that

δ1I
1
0 (Σ;Γ) =

∫

S

dHn−2(x0)

∫

Tan(Σ
1,x0
r ,x0)

dz

∫

Tan(Γ,x0)

∂tF (0, z, w)dw+

+

∫

S

(〈
φΓ, δ1µ

(Σ∪Σ̃r)
1,x0
r

0

〉
+
〈
φΣ, δ1µ

Γ∪Γ̃r
0

〉)
dHn−2(x0)− Ĩ0(Σ; Γ)− Ĩ1(Σ; Γ),

where

φΓ(z) =

∫

Tan(Γ,x0)

Fx0(0, z, w)dw, φΣ(w) =

∫

Tan(Σ
1,x0
r ,x0)

Fx0(0, z, w)dz.

We start with φΓ; using the decomposition Tan(Γ, x0) = Tx0S ⊕ Tan(Γ1,x0
r , x0), we deduce that

φΓ(z) = −〈νΓ(x0), z〉
4π

∫

Tan(Γ
1,x0
r ,x0)

〈νΣ(x0), w − z〉e− |w−z|2

4 dw,

so that

∇φΓ(z) =− 1

4π

∫

Tan(Γ
1,x0
r ,x0)

(
〈νΣ(x0), w − z〉νΓ(x0)− 〈νΓ(x0), z〉νΣ(x0)+

+
1

2
〈νΣ(x0), w − z〉〈νΓ(x0), z〉(w − z)

)
e−

|w−z|2

4 dw.
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We then obtain that
〈
φΓ, δ1µ

Σ1,x0
r

0

〉
=− 1

8π

∫

Tan(Σ
1,x0
r ,x0)

dz

∫

Tan(Γ
1,x0
r ,x0)

(
〈νΣ(x0), w〉〈νΣ(x0), νΓ(x0)〉+

− 〈νΓ(x0), z〉+
1

2
〈νΣ(x0), w〉2〈νΓ(x0), z〉

)
κx0

Σ [z]e−
|w−z|2

4 dw

=− 1

8π
κx0

Σ [σ1
1(x0)]

(
〈νΣ(x0), νΓ(x0)〉

〈
νΣ(x0), γ

1
1(x0)

〉
F21+

−
〈
νΓ(x0), σ

1
1(x0)

〉
F30 +

1

2

〈
νΣ(x0), γ

1
1(x0)

〉2〈
νΓ(x0), σ

1
1(x0)

〉
F32

)
. (37)

Concerning ∇φΣ, we have

∇φΣ(w) =
1

(4π)
n
2

∫

Tan(Σ
1,x0
r ,x0)

(〈νΓ(x0), w − z〉νΣ(x0) + 〈νΣ(x0), w〉νΓ(x0)+

−1

2
〈νΣ(x0), w〉〈νΓ(x0), w − z〉(w − z)

)
e−

|w−z|2

4 dz;

we also get
〈
φΣ, δ1µ

Γx0
r

0

〉
=

1

8π
κx0

Γ [γ11(x0)]
(
− 〈νΣ(x0), νΓ(x0)〉

〈
νΓ(x0), σ

1
1(x0)

〉
F12+

+
〈
νΣ(x0), γ

1
1(x0)

〉
F03 −

1

2

〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉2
F23

)
+

+
(n− 2)

4π
Hx0

S [νΓ(x0)]
(
−
〈
νΓ(x0), σ

1
1(x0)

〉
〈νΣ(x0), νΓ(x0)〉F10+

+
〈
νΣ(x0), γ

1
1(x0)

〉
F01 −

1

2

〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉2
F21

)
(38)

Summing the three terms (34), (37) and (38), we obtain the term

T2(x0) =
1

4π

{
κx0

Σ [σ1
1(x0)]

(
− 1

2
〈νΣ(x0), νΓ(x0)〉

〈
νΣ(x0), γ

1
1(x0)

〉
F21 −

1

2

〈
νΓ(x0), σ

1
1(x0)

〉
F30+

− 1

4

〈
νΣ(x0), γ

1
1(x0)

〉2〈
νΓ(x0), σ

1
1(x0)

〉
F32 +

〈
γ11(x0), σ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉
F21

)
+

+ κx0

Γ [γ11(x0)]
(
− 1

2
〈νΣ(x0), νΓ(x0)〉

〈
νΓ(x0), σ

1
1(x0)

〉
F12 −

1

2

〈
νΣ(x0), γ

1
1(x0)

〉
F03+

− 1

4

〈
νΓ(x0), σ

1
1(x0)

〉2〈
νΣ(x0), γ

1
1(x0)

〉
F23 +

〈
γ11(x0), σ

1
1(x0)

〉〈
νΣ(x0), γ

1
1(x0)

〉
F12

)
+

+ (n− 2)Hx0

S [νΓ]
(
− 〈νΣ(x0), νΓ(x0)〉

〈
νΓ(x0), σ

1
1(x0)

〉
F10 −

〈
νΣ(x0), γ

1
1(x0)

〉
F01+

− 1

2

〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉2
F21

)
+

+ (n− 2)Hx0

S [σ1
1(x0)]

〈
νΣ(x0), γ

1
1(x0)

〉〈
νΓ(x0), σ

1
1(x0)

〉
F21

}
.

We write σ1
1(x0) as a combination of νΣ(x0) and νΓ

σ1
1(x0) = ανΣ(x0) + βνΓ(x0),

where, since
〈
νΣ(x0), σ

1
1(x0)

〉
= 0 and 1 =

〈
σ1
1(x0), σ

1
1(x0)

〉
,

α =
cosϑ0

〈νΣ(x0), γ11(x0)〉
, β =

1

〈νΓ(x0), σ1
1(x0)〉

.
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By the fact that cosϑ0 =
〈
σ1
1(x0), γ

1
1(x0)

〉
, we also obtain that

〈νΣ(x0), νΓ(x0)〉 = −cosϑ0
〈
νΓ(x0), σ

1
1(x0)

〉

〈νΣ(x0), γ11(x0)〉
.

whence equation (32). �

The results obtained so far immediately prove the following.

Proposition 4.15 Let Σ and Γ as before, then there holds

It(Σ; Γ)

(4π)n/2tn+2
= I10 (Σ; Γ) + t

(
I20 (Σ; Γ) + δ1I

1
0 (Σ; Γ)

)
+ o(t)

Remark 4.16 It is clear that the previous expansion can also continue for higher powers of t;
this expansion will contains higher derivatives of the objects involved so far, but also the higher
codimensional part of the skeleton of S.

5 Examples

5.1 Two-dimensional region

Example 5.1 Let γ : [0, L] → R2 be a C1,1 planar simple curve parametrized by arclength; then

lim
t→0

It(γ)

4πt5
= − 3

2
√
π

∫ L

0

κ2γ(α)dα,

with κγ the curvature of γ. In particular, if E is a bounded set with ∂E parametrized by γ, then

‖TtχE‖2L2(R2) = |E| −
√

2t

π
L−

√
t3

2π

∫ L

0

κ2γ(α)dα + o(t3/2).

A first example is given by the circle E = Br(0) in the plane; in this case ∂E is parametrized
by γ(α) = (r cos α

r , r sin
α
r ), and κγ(α) = r−1 for every α ∈ [0, 2πr). Then

‖TtχE‖2L2(R2) = πr2 − 2r
√
2πt−

√
2πt3

r
+ o(t3/2).

The following example shows how the second order expansion of the heat content of a set E with
finite perimeter takes into account the behavior of the boundary ∂E along the 0-singular set of
∂E.

Example 5.2 Let E be a simple oriented polygonal region in the plane with angles αi ∈
(0, π), i = 1, . . . ,m, then in the expansion of its heat content the coefficients of t is not zero
and depends on the not C1,1 contact of pair of consecutive segments; indeed if Σ and Γ are two
segments that have a common endpoint x0 and generate an angle α ∈ (0, π), by Lemma 4.8 we
get that

I10 (Σ; Γ) = Θ1(x0) = − 1

π

(
1 + (π − α)ctgα

)
.
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In the case of E as before we have to consider m segments and for each of them two contacts
with the adjacent segments; moreover, since the curvature of a line is zero, the heat content of
E is, up to an exponential infinitesimal term, a quadratic polynomial in

√
t

‖TtχE‖2L2(R2) = |E| −
√

2t

π
P (E)− 2t

(m
π

+

m∑

i=1

ctgαi

π
(π − αi)

)
+ o(th) ∀h > 1.

In the case of the square E = [0, 1]2 ⊂ R2, ∂E is the union of four orthogonal segments and

lim
t→0

‖TtχE‖2L2(R2) − |E|+
√

2t
π P (E)

t
= − 8

π

being αi =
π
2 , i = 1, .., 4. Hence,

‖TtχE‖2L2(R2) = 1− 4

√
2t

π
− 8

π
t+ o(th) ∀h > 1.

5.2 Three-dimensional region

Example 5.3 Let E = Br(0) ⊂ R3, then ∂E is C1,1- regular and being κx∂E,i = r−1 for i = 1, 2
and for every x ∈ ∂E, as immediate consequence of Theorem 1.1 we get that

‖TtχBr(0)‖2L2(R3) =
4

3
πr3 − 4

√
2πtr2 − 16

3

√
2πt3 + o(t3/2)

Example 5.4 We consider now the set E = B+
r (0) = Br(0) ∩ {(x, y, z) : z > 0}; we divide

∂E = Σ1 ∪ Σ2, where Σ1 = {(x, y, z) : x2 + y2 < r2, z = 0} and Σ2 = {(x, y, z) : x2 + y2 + z2 =
r2, z > 0}; both Σ1 and Σ2 can be parametrized by uniformly Lipschitz functions. The presence
of the 1-singular set S = {x2+y2 = r2, z = 0} gives a nontrivial coefficient of t in the asymptotic
expansion of the heat content of E. We have that

−(4π)3/2t5f ′′
E(t) = It(∂E) =

2∑

i,j=1

It(Σi; Σj)

By Theorem 3.3, it holds that

It(Σi) = It(Σi; Σi) = −16πt6
∫

Σi

(
(Hx

Σi
)2 +

1

2
c2Σi

(x))
)
dH2(x) + o(t6) i = 1, 2.

Since κxΣ1,i
= 0 for i = 1, 2, x ∈ Σ1 and κxΣ2,i

= 1
r for i = 1, 2, x ∈ Σ2 then It(Σ1) = 0 and

lim
t→0

It(Σ2)

(4π)3/2t6
= −8

√
π

Whereas for i, j = 1, 2 and i 6= j we have that

It(Σi; Σj) = It(Σj ; Σi) = (4π)3/2t5
∫

S

Θ1(x)dH1(x) + o(t5)

and

I10 (Σ1; Σ2) = I10 (Σ2; Σ1) = lim
t→0

It(Σ2; Σ1)

(4π)3/2t5
=

∫

S

Θ1(x)dH1(x) = −2r
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being θ0 = π
2 and Θ1(x0) = − 1

π for every x0 ∈ S. In addition, since κx0

Σ2
[e3] =

1
r for any x0 ∈ S,

we also deduce that T2(x0) = − 2
r
√
π
for any x0 ∈ S. Since S2 = ∅, we can conclude that

‖TtχB+
r (0)‖2L2(R3) =

2

3
πr3 − 3

√
2πtr2 − 4rt− 16

3

√
2πt3 + o(t3/2).

Example 5.5 The example of the square in R2 can be easily extended to the case E = [0, 1]3 ⊂
R3; in this case

∂E =

6∑

1=1

Σi,

where the Σi’s are 1 side-squares and |Ai| = |{j 6= i : Si,j = Σi ∩ Σj 6= ∅}| = 4 for every
i = 1, . . . , 6. Moreover, there holds that

I10 (Σi; Σj) =

∫

Si,j

Θ1(x)dH1(x) = − 1

π
, i = 1, . . . , 6, j ∈ Ai.

Since κxΣi
= 0 for every x ∈ Σi and S

2
i,j = ∅ the coefficient of

√
t3 in the asymptotic expansion

of the heat content of E reduces to
∑6

i=1

∑
j∈Ai

δ1I
1
0 (Σi; Σj). In order to describe a generic

term of the form δ1I
1
0 (Σi; Σj) we consider an orthogonal coordinate system, we fix Σ = Σi and

Γ = Σj with S = Σ ∩ Γ 6= ∅ and, without loss of generality, we assume that Σ = {0} × [0, 1]2

and Γ = [0, 1]2×{0}, then the origin of the axis belongs to S2. Using the notation introduced in
Section 4 we have that

νΣ(0) = e1, νΓ(0) = e3, σ
1
1(0) = e3, γ

1
1(0) = e1, s

1
1(0) = e2,

where {ei}i=1,2,3 denote the canonical basis in R3. It is obvious that, being κxΣi
= 0, κxSi,j

= 0

respectively for every x ∈ Σi and x ∈ Si,j and Σ̃2,0
r = ∅, there holds that δ1I

1
0 (Σ; Γ) reduces to

−Ĩ1(Σ; Γ) which depends on the defect of tangentiality of Γ in 0; in this case we have to consider
Γ̃2,0
r in such a way that Γ∪ Γ̃2,0

r is C1,1-regular at 0, then Tan(Γ̃2,0
r , 0) is generated by −e2 and e1.

We have to consider π̄ : Σr → (Γ ∪ Γ̃2,0
r ) ∩ Σr and Σ2,0

r,π̄ = π̄−1(0) = Σr; in this case Tan(Σ2,0
r,π̄, 0)

is generated by e2 and e3. In this case we get that

W̃ 2
0 = Tan(Γ̃2,0

r , 0)− Tan(Σ2,0
r,π̄, 0) = (0,+∞)× (−∞, 0)2

and
Q̂2

0 : R4
+ → W̃ 2

0 , (α, β) 7→ (β1,−α2 − β2,−α1),

then D2Q̂
2
0 = 1√

2

Ĩ1(Σ; Γ) =
1

8π
√
2π

∫

W̃ 2
0

v2〈νΣ(0), v〉〈νΓ(0), v〉e−
|v|2

4 H1((Q̂2
0)

−1(v))dv = − 1√
π3
.

Hence, we get

‖TtχE‖2L2(R3) = 1− 6

√
2t

π
− 24

π
t− 8

√
2t3

π3
+ o(th) ∀h > 3/2.
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Example 5.6 Let E be an oriented regular tetrahedron, that is a polyhedron whose four faces
are triangles equilateral Ti (with side equal to a), three of which meet at each vertex. In this case

|E| =
√
2

12 a
3, P (E) =

√
3a2; moreover ∂E =

∑4
i=1 Ti and |Ai| = |{j 6= i : Ti,j = Ti ∩ Tj 6= ∅}| = 3

for every i = 1, .., 4. We notice that ϑ0 = π
3 and for every x0 ∈ Ti,j, Θ1(x0) = −( 1π + 2√

3
), hence

I10 (Ti;Tj) = −a
(
1

π
+

2√
3

)
, i = 1, . . . , 4, j ∈ Ai.

It is easy to see that in the expansion of the heat content of E all the terms which depend on the
curvatures of Ti and Ti,j will be zero. However, in order to go further in the expansion we first
observe that, since (Ti)

2
r = ∅ then I20 (Ti;Tj) = 0 for every i = 1, .., 4 and j ∈ Ai; moreover, fixed

Ti, Tj (with i = 1, . . . , 4, j ∈ Ai), δ1I
1
0 (Ti;Tj) reduces to Ĩ0(Ti;Tj) + Ĩ1(Ti;Tj) = 2Θ̃2(x0) with

x0 ∈ ∂Ti,j. Without loss of generality, we fix an orthogonal coordinate system, we assume that
x0 coincides with the origin of the axis and that Γ and Σ are two faces of the tetrahedron whose
common side coincides with the segment of endpoints the origin O and A(a, 0, 0). Assume that Γ

belongs to z = 0 whereas Σ is contained in the plane z−
√
3y = 0. In order to compute Θ̃2(0) we

have to complete Σ1,0
r which has a defect of orthogonality around 0 using the set Σ̃1,0

r , and also

Γ, which has a defect of tangentiality around 0 using the set Γ̃r both introduced in Remark 4.13.

In this case νΓ = (0, 0, 1), γ = (0, 1, 0), γ̃ = (12 ,
√
3
2 , 0), νΣ = (0,

√
3
2 ,− 1

2 ), σ = (0, 12 ,
√
3
2 ), σ̃ =(

1
2 ,

√
3
4 ,

3
4

)
. By (35), we get that

Ĩ0 = Ĩ0(Σ; Γ) =
2D2Q̃

2
0

(4π)3/2

∫

Ṽ 2
0

〈νΣ, v〉〈νΓ, v〉e−
|v|2

4 H1(Q̃2
0)

−1(v)dv

where

Q̃2
0 : R3

+ × R → Ṽ 2
0 , (α, β) 7→

(
−1

2
α2 + β1,−

1

2
α1 −

√
3

4
α2 + β2,−

√
3

2
α1 −

3

4
α2

)
,

and Ṽ 2
0 = {v3 ≤ 0} ∩ {v3 −

√
3v2 ≤ 0}. Analogously, by (36), we get

Ĩ1 = Ĩ1(Σ; Γ) =
2D2Q̂

2
0

(4π)3/2

∫

W̃ 2
0

〈νΣ, v〉〈νΓ, v〉e−
|v|2

4 H1(Q̂2
0)

−1(v)dv,

where

Q̂2
0 : R4

+ → W̃ 2
0 , (α, β) 7→

(
−α1 −

1

2
α2 − β1 +

1

2
β2,−

√
3

4
α2 +

√
3

2
β2,−

3

4
α2

)
,

and W̃ 2
0 = {v2 ≥ max{0, v1

√
3}, 3v1 − v2

√
3 ≤ v3 ≤ 0} ∪ {v1

√
3
2 ≤ v2 ≤ 0, 3v1 − v2

√
3 ≤ v3 ≤√

3v2}. Finally, summing all the terms obtained, we get

‖TtχE‖2L2(R3) =

√
2

12
a3 − a2

√
6t

π
− 12a

(
1

π
+

2√
3

)
t+ 4

√
2t3(Ĩ0 + Ĩ1) + o(th) ∀h > 3/2.
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