Γ-CONVERGENCE AND H-CONVERGENCE OF LINEAR ELLIPTIC OPERATORS

NADIA ANSINI, GIANNI DAL MASO, AND CATERINA IDA ZEPPIERI

AbStract. We consider a sequence of linear Dirichlet problems as follows

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon}\right)=f \text { in } \Omega, \\
u_{\varepsilon} \in H_{0}^{1}(\Omega),
\end{array}\right.
$$

with $\left(\sigma_{\varepsilon}\right)$ uniformly elliptic and possibly non-symmetric. Using purely variational arguments we give an alternative proof of the compactness of H-convergence, originally proved by Murat and Tartar.

Keywords: linear elliptic operators, Γ-convergence, H-convergence.
2000 Mathematics Subject Classification: 35J15, 35J20, 49J45.

1. Introduction

The notion of H-convergence was introduced by Murat and Tartar in [10, 12] to study a wide class of homogenization problems for possibly non-symmetric elliptic equations. Let $\sigma_{\varepsilon} \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ be a sequence of matrices satisfying uniform ellipticity and boundedness conditions on a bounded open set $\Omega \subset \mathbb{R}^{n}$. We say that $\sigma_{\varepsilon} H$-converges to matrix $\sigma_{0} \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ satisfying the same ellipticity and boundedness conditions if for every $f \in H^{-1}(\Omega)$ the sequence u_{ε} of the solutions to the problems

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon}\right)=f \text { in } \Omega, \tag{1.1}\\
u_{\varepsilon} \in H_{0}^{1}(\Omega),
\end{array}\right.
$$

satisfy

$$
u_{\varepsilon} \rightharpoonup u_{0} \text { weakly in } H_{0}^{1}(\Omega) \quad \text { and } \quad \sigma_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup \sigma_{0} \nabla u_{0} \text { weakly in } L^{2}\left(\Omega ; \mathbb{R}^{n}\right),
$$

where u_{0} is the solution to

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\sigma_{0} \nabla u_{0}\right)=f \text { in } \Omega, \\
u_{0} \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

The notion of Γ-convergence was introduced by De Giorgi and Franzoni in $[5,6]$ to study the asymptotic behavior of the solutions of a wide class of minimization problems depending on a parameter $\varepsilon>0$, which varies in a sequence converging to 0 . Let (X, d) be a metric space and let $F_{\varepsilon}: X \rightarrow \overline{\mathbb{R}}$ be a sequence of functionals, we say that $F_{\varepsilon} \Gamma(d)$-converges to a functional $F_{0}: X \rightarrow \overline{\mathbb{R}}$ if for all $x \in X$ we have
(i) (liminf inequality) for every sequence $x_{\varepsilon} \xrightarrow{d} x$ in X

$$
F_{0}(x) \leq \liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(x_{\varepsilon}\right) ;
$$

(ii) (limsup inequality) there exists a sequence $\bar{x}_{\varepsilon} \xrightarrow{d} x$ in X such that

$$
F_{0}(x) \geq \limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(\bar{x}_{\varepsilon}\right) .
$$

Preprint SISSA 04/2012/M (March 2012).

It has been proved that when σ_{ε} is symmetric, the equation (1.1) has a variational structure since it can be seen as the Euler-Lagrange equation associated with

$$
\mathcal{F}_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega} \sigma_{\varepsilon}(x) \nabla u \cdot \nabla u d x-\int_{\Omega} f u d x
$$

or, equivalently, as the solution to the minimization problem

$$
\begin{equation*}
\min \left\{\mathcal{F}_{\varepsilon}(u): u \in H_{0}^{1}(\Omega)\right\} \tag{1.2}
\end{equation*}
$$

Therefore, in this case (1.2) provides a variational principle for the Dirichlet problem (1.1) and the convergence of the solutions of (1.1) can be equivalently studied by means of the Γ-convergence, with respect to the weak topology of $H_{0}^{1}(\Omega)$, of the associated functionals $\mathcal{F}_{\varepsilon}$ or in terms of the G-convergence of the uniformly elliptic, symmetric matrices $\left(\sigma_{\varepsilon}\right)$ (see De Giorgi and Spagnolo [7]).

In this paper we consider the equivalence between H-convergence and Γ-convergence in the possibly non-symmetric case. To every elliptic matrix $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ we associate a suitable quadratic integral functional $F: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times H_{0}^{1}(\Omega) \rightarrow[0,+\infty)$ (see (2.12)) and we consider the Γ-convergence with respect to the distance d defined by

$$
d((\alpha, \varphi),(\beta, \psi))=\|\alpha-\beta\|_{H^{-1}\left(\Omega ; \mathbb{R}^{n}\right)}+\|\operatorname{div}(\alpha-\beta)\|_{H^{-1}(\Omega)}+\|\varphi-\psi\|_{L^{2}(\Omega)}
$$

We prove (Theorem 3.2) that the H-convergence of σ_{ε} to σ_{0} is equivalent to the $\Gamma(d)$-convergence of the functionals F_{ε} corresponding to σ_{ε} to the functional F_{0} corresponding to σ_{0}. In [2] this result was proved using compactness properties of H-convergence [10, 12], while in the present paper the equivalence is obtained as a consequence of a general compactness theorem for integral functionals with respect to $\Gamma(d)$-convergence [1]. Moreover, as a consequence of the results proved in [1], we also give an independent proof (Theorem 3.1) of the compactness of H-convergence based only on Γ-convergence arguments.

2. Notation and preliminaries

In this section we introduce a few notation and we recall some preliminary results we employ in the sequel. For any $A \in \mathbb{R}^{n \times n}$ we denote by A^{s} and A^{a} the symmetric and the anti-symmetric part of A, respectively; i.e.,

$$
A^{s}:=\frac{A+A^{T}}{2}, \quad A^{a}:=\frac{A-A^{T}}{2}
$$

where A^{T} is the transpose matrix of A. We use bold capital letters to denote matrices in $\mathbb{R}^{2 n \times 2 n}$. The scalar product of two vectors ξ and η is denoted by $\xi \cdot \eta$.

Let Ω be an open bounded subset of \mathbb{R}^{n}. For $0<c_{0} \leq c_{1}<+\infty, \mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ denotes the set of matrix-valued functions $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ satisfying

$$
\begin{equation*}
\sigma(x) \xi \cdot \xi \geq c_{0}|\xi|^{2}, \quad \sigma^{-1}(x) \xi \cdot \xi \geq c_{1}^{-1}|\xi|^{2}, \quad \text { for every } \xi \in \mathbb{R}^{n}, \text { for a.e. } x \in \Omega \tag{2.1}
\end{equation*}
$$

or, equivalently, satisfying

$$
\begin{equation*}
\sigma(x) \xi \cdot \xi \geq c_{0}|\xi|^{2}, \quad \sigma(x) \xi \cdot \xi \geq c_{1}^{-1}|\sigma(x) \xi|^{2}, \quad \text { for every } \xi \in \mathbb{R}^{n}, \text { for a.e. } x \in \Omega \tag{2.2}
\end{equation*}
$$

Note that (2.1) (or (2.2)) implies that

$$
|\sigma(x)| \leq c_{1} \quad \text { for a.e. } x \in \Omega
$$

and that necessarily $c_{0} \leq c_{1}$. To not overburden notation, in all that follows we always write σ in place of $\sigma(x)$.

Given $\sigma \in \mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ we consider the $(2 n \times 2 n)$-matrix-valued function $\boldsymbol{\Sigma} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$ having the following block structure

$$
\boldsymbol{\Sigma}:=\left(\begin{array}{cc}
\left(\sigma^{s}\right)^{-1} & -\left(\sigma^{s}\right)^{-1} \sigma^{a} \tag{2.3}\\
\sigma^{a}\left(\sigma^{s}\right)^{-1} & \sigma^{s}-\sigma^{a}\left(\sigma^{s}\right)^{-1} \sigma^{a}
\end{array}\right) .
$$

Notice that $\boldsymbol{\Sigma}$ is symmetric. Moreover, the assumption $\sigma \in \mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ easily implies that $\boldsymbol{\Sigma}$ is uniformly coercive (see [2, Section 3.1.1] for the details); specifically, there exists a constant $C\left(c_{0}, c_{1}\right)>0$, depending only on c_{0} and c_{1}, such that

$$
\begin{equation*}
\boldsymbol{\Sigma} \mathrm{w} \cdot \mathrm{w} \geq C\left(c_{0}, c_{1}\right)|\mathrm{w}|^{2}, \tag{2.4}
\end{equation*}
$$

for every $\mathrm{w} \in \mathbb{R}^{2 n}$, and a.e. in Ω.
If we consider the matrix-valued functions $A, B, C \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ defined as

$$
\begin{equation*}
A=\left(\sigma^{s}\right)^{-1}, \quad B=-\left(\sigma^{s}\right)^{-1} \sigma^{a}, \quad C=\sigma^{s}-\sigma^{a}\left(\sigma^{s}\right)^{-1} \sigma^{a} \tag{2.5}
\end{equation*}
$$

the matrix $\boldsymbol{\Sigma}$ can be rewritten as

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
A & B \tag{2.6}\\
B^{T} & C
\end{array}\right) .
$$

We notice that, for a.e. $x \in \Omega$, the matrix $\boldsymbol{\Sigma}$ belongs to the indefinite special orthogonal group $S O(n, n)$; i.e.,

$$
\boldsymbol{\Sigma} \mathbf{J} \boldsymbol{\Sigma}=\mathbf{J} \quad \text { a.e. in } \Omega, \quad \text { with } \quad \mathbf{J}=\left(\begin{array}{cc}
0 & I \tag{2.7}\\
I & 0
\end{array}\right)
$$

where $I \in \mathbb{R}^{n \times n}$ is the identity matrix (see [2, Section 3.1.1]). Moreover, taking into account the symmetry of $\boldsymbol{\Sigma}$, it is immediate to show that (2.7) is equivalent to the following system of identities for the block decomposition (2.6):

$$
\left\{\begin{array}{l}
A B^{T}+B A=0 \tag{2.8}\\
A C+B^{2}=I, \\
C B+B^{T} C=0
\end{array} \quad \text { a.e. in } \Omega .\right.
$$

Conversely, one can prove that, if $\mathbf{M} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$ is symmetric and has the block decomposition

$$
\mathbf{M}=\left(\begin{array}{cc}
A & B \tag{2.9}\\
B^{T} & C
\end{array}\right)
$$

with $A, B, C \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$, A and C symmetric, and $\operatorname{det} A \neq 0$, then the first two equations in (2.8) imply the third one, and (2.8) implies that \mathbf{M} is equal to the matrix $\boldsymbol{\Sigma}$ defined in (2.3) with $\sigma=A^{-1}-A^{-1} B$ (see [2, Proposition 3.1]).

Throughout the paper the parameter ε varies in a strictly decreasing sequence of positive real numbers converging to zero. Let $\left(\sigma_{\varepsilon}\right)$ be a sequence in $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ and consider the sequence $\left(\boldsymbol{\Sigma}_{\varepsilon}\right) \subset$ $L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$ defined by (2.3) with $\sigma=\sigma_{\varepsilon}$. Let $Q_{\varepsilon}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow[0,+\infty)$ be the quadratic forms associated with $\boldsymbol{\Sigma}_{\varepsilon}$; i.e.,

$$
\begin{equation*}
Q_{\varepsilon}(a, b):=\int_{\Omega} \boldsymbol{\Sigma}_{\varepsilon}\binom{a}{b} \cdot\binom{a}{b} d x \tag{2.10}
\end{equation*}
$$

Their gradients $\operatorname{grad} Q_{\varepsilon}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ are given by

$$
\begin{equation*}
\operatorname{grad} Q_{\varepsilon}(a, b)=\left(A_{\varepsilon} a+B_{\varepsilon} b, B_{\varepsilon}^{T} a+C_{\varepsilon} b\right), \tag{2.11}
\end{equation*}
$$

where $A_{\varepsilon}, B_{\varepsilon}$, and C_{ε} are as in (2.5) with $\sigma=\sigma_{\varepsilon}$. We also consider the quadratic forms $F_{\varepsilon}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times$ $H_{0}^{1}(\Omega) \rightarrow[0,+\infty)$ defined by

$$
\begin{equation*}
F_{\varepsilon}(\alpha, \psi):=Q_{\varepsilon}(\alpha, \nabla \psi) \tag{2.12}
\end{equation*}
$$

For every $\lambda, \mu \in H^{-1}(\Omega)$; we consider the sequence of constrained functionals $F_{\varepsilon}^{\lambda, \mu}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times H_{0}^{1}(\Omega) \rightarrow$ $[0,+\infty]$ defined as follows

$$
F_{\varepsilon}^{\lambda, \mu}(\alpha, \psi):= \begin{cases}F_{\varepsilon}(\alpha, \psi)-\langle\mu, \psi\rangle & \text { if }-\operatorname{div} \alpha=\lambda \tag{2.13}\\ +\infty & \text { otherwise }\end{cases}
$$

where $\langle\cdot, \cdot\rangle$ denotes the dual paring between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Given a symmetric matrix $\mathbf{M} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$, we consider the quadratic functionals $Q_{\mathbf{M}}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times$ $L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow[0,+\infty)$ and $F_{M}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times H_{0}^{1}(\Omega) \rightarrow[0,+\infty)$ defined by

$$
\begin{equation*}
Q_{\mathbf{M}}(a, b):=\int_{\Omega} \mathbf{M}\binom{a}{b} \cdot\binom{a}{b} d x \quad \text { and } \quad F_{\mathbf{M}}(\alpha, \psi):=Q_{\mathbf{M}}(\alpha, \nabla \psi) \tag{2.14}
\end{equation*}
$$

Considering the block decomposition (2.9), the gradient of $Q_{\mathbf{M}}$ is given by

$$
\begin{equation*}
\operatorname{grad} Q_{\mathbf{M}}(a, b)=\left(A a+B b, B^{T} a+C b\right) \tag{2.15}
\end{equation*}
$$

Finally, for every $\lambda, \mu \in H^{-1}(\Omega)$; we consider the constrained functional $F_{\mathrm{M}}^{\lambda, \mu}: L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times H_{0}^{1}(\Omega) \rightarrow$ $[0,+\infty]$ defined as follows

$$
F_{\mathbf{M}}^{\lambda, \mu}(\alpha, \psi):= \begin{cases}F_{\mathbf{M}}(\alpha, \psi)-\langle\mu, \psi\rangle & \text { if }-\operatorname{div} \alpha=\lambda \\ +\infty & \text { otherwise }\end{cases}
$$

Let w be the weak topology of $L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times H_{0}^{1}(\Omega)$ and let d be the distance in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times H_{0}^{1}(\Omega)$ defined by

$$
d((\alpha, \varphi),(\beta, \psi))=\|\alpha-\beta\|_{H^{-1}\left(\Omega ; \mathbb{R}^{n}\right)}+\|\operatorname{div}(\alpha-\beta)\|_{H^{-1}(\Omega)}+\|\varphi-\psi\|_{L^{2}(\Omega)}
$$

The following result is proved in [1, Corollary 2.9].
Theorem 2.1. Let $\left(\sigma_{\varepsilon}\right)$ be a sequence in $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$. There exist a subsequences of ε, not relabeled, and a symmetric matrix $\mathbf{M} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$, such that the functionals F_{ε} defined by (2.12) $\Gamma(d)$-converge to the functional F_{M} defined in (2.14). Moreover, \mathbf{M} is positive definite and satisfies the coercivity condition (2.4).

The following result is a consequence of $[1$, Theorem 3.3] and of the stability of Γ-convergence under continuous perturbations.

Theorem 2.2. Let $\left(\sigma_{\varepsilon}\right)$ be a sequence in $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ and let $\mathbf{M} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$ be a symmetric, positive define matrix satisfying (2.4). Assume that the functionals F_{ε} defined by (2.12) $\Gamma(d)$-converge to the functional $F_{\mathbf{M}}$ defined in (2.14). Then, for every $\lambda, \mu \in H^{-1}(\Omega)$, the functionals $\left(F_{\varepsilon}^{\lambda, \mu}\right)$ defined by (2.13) $\Gamma(w)$-converges to the functional $F^{\lambda, \mu}$ defined by

$$
F^{\lambda, \mu}(\alpha, \psi):= \begin{cases}F_{\mathbf{M}}(\alpha, \psi)-\langle\mu, \psi\rangle & \text { if }-\operatorname{div} \alpha=\lambda, \\ +\infty & \text { otherwise } .\end{cases}
$$

For the reader's sake, here we briefly recall a fundamental tool we employ in what follows, the Cherkaev-Gibiansky variational principle [3] (see also Fannjiang-Papanicolaou [8] and Milton [9]), which will be presented in the notational setting which is suitable for our purposes. Loosely speaking, this variational principle amounts to associate to the two following Dirichlet problems
with $f, g \in H^{-1}(\Omega)$, a quadratic functional whose Euler-Lagrange equation is solved by a suitable combination of solutions to (2.16) and of their momenta. We set

$$
\begin{equation*}
a_{\varepsilon}:=\sigma_{\varepsilon} \nabla u_{\varepsilon} \quad \text { and } \quad b_{\varepsilon}:=\sigma_{\varepsilon}^{T} \nabla v_{\varepsilon} \tag{2.17}
\end{equation*}
$$

For every $\varepsilon>0, \lambda, \mu \in H^{-1}(\Omega)$ the unique minimizer $\left(\alpha_{\varepsilon}, \psi_{\varepsilon}\right)$ of $F_{\varepsilon}^{\lambda, \mu}$ satisfies the constraint - $\operatorname{div} \alpha_{\varepsilon}=$ λ and the following system of Euler-Lagrange equations:

$$
\left\{\begin{array}{l}
\int_{\Omega}\left(A_{\varepsilon} \alpha_{\varepsilon}+B_{\varepsilon} \nabla \psi_{\varepsilon}\right) \cdot \beta d x=0 \tag{2.18}\\
\int_{\Omega}\left(B_{\varepsilon}^{T} \alpha_{\varepsilon}+C_{\varepsilon} \nabla \psi_{\varepsilon}\right) \cdot \nabla \varphi d x=\langle\mu, \varphi\rangle
\end{array}\right.
$$

for every $\beta \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ with $\operatorname{div} \beta=0$ and for every $\varphi \in H_{0}^{1}(\Omega)$.
If $u_{\varepsilon}, v_{\varepsilon}$ satisfy (2.16) then we can prove (see [2, Section 3.2] for details) that the pair

$$
\begin{equation*}
\left(a_{\varepsilon}+b_{\varepsilon}, u_{\varepsilon}-v_{\varepsilon}\right) \tag{2.19}
\end{equation*}
$$

solves (2.18), with $\lambda=f+g, \mu=f-g$, and thus minimizes $F_{\varepsilon}^{f+g, f-g}$.
In the same way, it can be seen that the pair

$$
\begin{equation*}
\left(a_{\varepsilon}-b_{\varepsilon}, u_{\varepsilon}+v_{\varepsilon}\right) \tag{2.20}
\end{equation*}
$$

minimizes $F_{\varepsilon}^{f-g, f+g}$.

3. The main result

In this section we state and prove the main result of this paper: an alternative and purely variational proof of the sequential compactness of $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ with respect to H-convergence, originally proved by Murat and Tartar [10, 12].

Theorem 3.1 (Compactness of H-convergence). Let $\left(\sigma_{\varepsilon}\right)$ be a sequence in $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$. Then there exist a subsequence (not relabeled) and a matrix $\sigma_{0} \in \mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ such that (σ_{ε}) H-converges to σ_{0} and $\left(\sigma_{\varepsilon}^{T}\right) H$-converges to σ_{0}^{T}.

Proof. By Theorem 2.1 there exist a subsequence of F_{ε}, not relabeled, and a symmetric, positive definite matrix $\mathbf{M} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$, with the block decomposition (2.9), such that $F_{\varepsilon} \Gamma(d)$-converges to $F_{\mathbf{M}}$. In the rest of this proof we show that $\left(\sigma_{\varepsilon}\right) H$-converges to σ_{0} and $\left(\sigma_{\varepsilon}^{T}\right) H$-converges to σ_{0}^{T}, where $\sigma_{0}:=A^{-1}-A^{-1} B$.

Let $f, g \in H^{-1}(\Omega)$, let $u_{\varepsilon}, v_{\varepsilon}$ be as in (2.16), and let $a_{\varepsilon}, b_{\varepsilon}$ be as in (2.17). By standard variational estimates we have that $\left(u_{\varepsilon}\right)$ and $\left(v_{\varepsilon}\right)$ are bounded in $H_{0}^{1}(\Omega)$ while $\left(a_{\varepsilon}\right)$ and $\left(b_{\varepsilon}\right)$ are bounded in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Therefore, up to subsequences (not relabeled),

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u_{0}, \quad v_{\varepsilon} \rightharpoonup v_{0} \quad \text { weakly in } H_{0}^{1}(\Omega) \quad \text { and } \quad a_{\varepsilon} \rightharpoonup a_{0}, \quad b_{\varepsilon} \rightharpoonup b_{0} \quad \text { weakly in } L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \tag{3.1}
\end{equation*}
$$

for some $u_{0}, v_{0} \in H_{0}^{1}(\Omega)$ and $a_{0}, b_{0} \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$.
Since $\left(a_{\varepsilon}+b_{\varepsilon}, u_{\varepsilon}-v_{\varepsilon}\right)$ are minimizers of $F_{\varepsilon}^{f+g, f-g}$ and these functionals Γ-converge to $F_{\mathrm{M}}^{f+g, f-g}$ by Theorem 2.2, appealing to the fundamental property of Γ-convergence we find that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{f+g, f-g}\left(a_{\varepsilon}+b_{\varepsilon}, u_{\varepsilon}-v_{\varepsilon}\right)=F_{\mathrm{M}}^{f+g, f-g}\left(a_{0}+b_{0}, u_{0}-v_{0}\right)=\min F_{\mathrm{M}}^{f+g, f-g} \tag{3.2}
\end{equation*}
$$

Similarly, since $\left(a_{\varepsilon}-b_{\varepsilon}, u_{\varepsilon}+v_{\varepsilon}\right)$ minimizes $F_{\varepsilon}^{f-g, f+g}$, we have also

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{f-g, f+g}\left(a_{\varepsilon}-b_{\varepsilon}, u_{\varepsilon}+v_{\varepsilon}\right)=F_{\mathbf{M}}^{f-g, f+g}\left(a_{0}-b_{0}, u_{0}+v_{0}\right)=\min F_{\mathbf{M}}^{f-g, f+g} \tag{3.3}
\end{equation*}
$$

Thanks to Theorem 2.2, (3.2), (3.3), and in view of [1, Proposition 2.10] we are now in a position to invoke the result about the convergence of momenta proved in [1, Corollary 4.6], hence we obtain

$$
\begin{gather*}
\operatorname{grad} Q_{\varepsilon}\left(a_{\varepsilon}+b_{\varepsilon}, \nabla u_{\varepsilon}-\nabla v_{\varepsilon}\right) \rightharpoonup \operatorname{grad} Q_{\mathbf{M}}(a+b, \nabla u-\nabla v), \tag{3.4}\\
\operatorname{grad} Q_{\varepsilon}\left(a_{\varepsilon}-b_{\varepsilon}, \nabla u_{\varepsilon}+\nabla v_{\varepsilon}\right) \rightharpoonup \operatorname{grad} Q_{\mathbf{M}}\left(a_{0}-b_{0}, \nabla u_{0}+\nabla v_{0}\right) \tag{3.5}
\end{gather*}
$$

weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \times L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. By (2.11) and (2.15), considering only the first component, we get

$$
\begin{array}{r}
A_{\varepsilon}\left(a_{\varepsilon}+b_{\varepsilon}\right)+B_{\varepsilon}\left(\nabla u_{\varepsilon}-\nabla v_{\varepsilon}\right) \rightharpoonup A\left(a_{0}+b_{0}\right)+B\left(\nabla u_{0}-\nabla v_{0}\right), \\
A_{\varepsilon}\left(a_{\varepsilon}-b_{\varepsilon}\right)+B_{\varepsilon}\left(\nabla u_{\varepsilon}+\nabla v_{\varepsilon}\right) \rightharpoonup A\left(a_{0}-b_{0}\right)+B\left(\nabla u_{0}+\nabla v_{0}\right) \tag{3.7}
\end{array}
$$

weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Since by (2.5) $A_{\varepsilon}\left(a_{\varepsilon}+b_{\varepsilon}\right)+B_{\varepsilon}\left(\nabla u_{\varepsilon}-\nabla v_{\varepsilon}\right)=\nabla u_{\varepsilon}+\nabla v_{\varepsilon}$ and $A_{\varepsilon}\left(a_{\varepsilon}-b_{\varepsilon}\right)+$ $B_{\varepsilon}\left(\nabla u_{\varepsilon}+\nabla v_{\varepsilon}\right)=\nabla u_{\varepsilon}-\nabla v_{\varepsilon}$, from (3.6) and (3.7) we deduce that

$$
\begin{align*}
& \nabla u_{\varepsilon}+\nabla v_{\varepsilon} \rightharpoonup A\left(a_{0}+b_{0}\right)+B\left(\nabla u_{0}-\nabla v_{0}\right) \tag{3.8}\\
& \nabla u_{\varepsilon}-\nabla v_{\varepsilon} \rightharpoonup A\left(a_{0}-b_{0}\right)+B\left(\nabla u_{0}+\nabla v_{0}\right) \tag{3.9}
\end{align*}
$$

weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Hence, adding up (3.8) and (3.9) entails $\nabla u_{\varepsilon} \rightharpoonup A a_{0}+B \nabla u_{0}$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, which gives $\nabla u_{0}=A a_{0}+B \nabla u_{0}$ by (3.1). This implies

$$
\begin{equation*}
a_{0}=\sigma_{0} \nabla u_{0} \tag{3.10}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma_{0}:=A^{-1}-A^{-1} B \tag{3.11}
\end{equation*}
$$

Since $-\operatorname{div} a_{\varepsilon}=f$, by (2.16) and (2.17) we get that $-\operatorname{div} a_{0}=f$. Hence, (3.10) implies that u_{0} is the solution to

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\sigma_{0} \nabla u_{0}\right)=f \quad \text { in } \Omega \tag{3.12}\\
u_{0} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

So far we have proved that for every $f \in H^{-1}(\Omega)$ the solutions u_{ε} of (2.16) converge weakly in $H_{0}^{1}(\Omega)$ to the solution u_{0} of (3.12) and their momenta $\sigma_{\varepsilon} \nabla u_{\varepsilon}$ converge weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ to $\sigma_{0} \nabla u_{0}$. Thus, to conclude the proof of the H-convergence of $\left(\sigma_{\varepsilon}\right)$ to σ_{0} it remains to show that σ_{0} belongs to $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$. To this end, let $u \in H_{0}^{1}(\Omega)$ and choose

$$
\begin{equation*}
f:=-\operatorname{div}\left(\sigma_{0} \nabla u\right) \tag{3.13}
\end{equation*}
$$

in this way the solution u_{0} of the equation (3.12) coincides with u.
Let $\varphi \in C_{c}^{\infty}(\Omega)$. Using φu_{ε} as a test function in the equation $-\operatorname{div}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon}\right)=f$ and then passing to the limit on ε we get

$$
\begin{equation*}
\int_{\Omega} f \varphi u_{0} d x=\lim _{\varepsilon \rightarrow 0} \int_{\Omega} f \varphi u_{\varepsilon} d x=\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon}\right) \varphi d x\right)+\int_{\Omega} \sigma_{0} \nabla u_{0} \cdot u_{0} \nabla \varphi d x \tag{3.14}
\end{equation*}
$$

where to compute the limit of the last term in (3.14) we appealed to the strong $L^{2}(\Omega)$ convergence of u_{ε} to u_{0}. On the other hand, since by (3.12)

$$
\int_{\Omega} f \varphi u_{0} d x=\int_{\Omega}\left(\sigma_{0} \nabla u_{0} \cdot \nabla u_{0}\right) \varphi d x+\int_{\Omega} \sigma_{0} \nabla u_{0} \cdot u_{0} \nabla \varphi d x
$$

from (3.14) we deduce that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon}\right) \varphi d x=\int_{\Omega}\left(\sigma_{0} \nabla u_{0} \cdot \nabla u_{0}\right) \varphi d x \tag{3.15}
\end{equation*}
$$

for every $\varphi \in C_{c}^{\infty}(\Omega)$. Hence, choosing $\varphi \geq 0$, combining (3.15), the first condition in (2.1), and the equality $u=u_{0}$, we have

$$
\int_{\Omega}\left(\sigma_{0} \nabla u \cdot \nabla u\right) \varphi d x \geq c_{0} \liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \varphi d x \geq c_{0} \int_{\Omega}|\nabla u|^{2} \varphi d x
$$

the second inequality following from $\nabla u_{\varepsilon} \rightharpoonup \nabla u_{0}=\nabla u$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Since this inequality holds true for every $\varphi \in C_{c}^{\infty}(\Omega), \varphi \geq 0$, we get that

$$
\begin{equation*}
\sigma_{0} \nabla u \cdot \nabla u \geq c_{0}|\nabla u|^{2} \quad \text { a.e. in } \Omega \tag{3.16}
\end{equation*}
$$

for every $u \in H_{0}^{1}(\Omega)$. Using the second condition in (2.2), we find

$$
\int_{\Omega}\left(\sigma_{0} \nabla u \cdot \nabla u\right) \varphi d x \geq c_{1}^{-1} \liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\sigma_{\varepsilon} \nabla u_{\varepsilon}\right|^{2} \varphi d x \geq c_{1}^{-1} \int_{\Omega}\left|\sigma_{0} \nabla u\right|^{2} \varphi d x
$$

since $\sigma_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup \sigma_{0} \nabla u_{0}=\sigma_{0} \nabla u$ in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. From the previous inequality we deduce

$$
\begin{equation*}
\sigma_{0} \nabla u \cdot \nabla u \geq c_{1}^{-1}\left|\sigma_{0} \nabla u\right|^{2} \quad \text { a.e. in } \Omega, \tag{3.17}
\end{equation*}
$$

for every $u \in H_{0}^{1}(\Omega)$. Finally, (2.2) follows from (3.16) and (3.17) by taking u to be affine in an open set $\omega \subset \subset \Omega$.

We now prove that $\sigma_{\varepsilon}^{T} H$-converges to σ_{0}^{T}. Subtracting (3.9) from (3.8) gives $\nabla v_{\varepsilon} \rightharpoonup A b_{0}-B \nabla v_{0}$ weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$; the latter combined with (3.1) imply that $\nabla v_{0}=A b-B \nabla v_{0}$. We deduce then

$$
\begin{equation*}
b_{0}=\tilde{\sigma} \nabla v_{0} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\sigma}:=A^{-1}+A^{-1} B . \tag{3.19}
\end{equation*}
$$

Since $-\operatorname{div} b_{\varepsilon}=g$ by (2.16) and (2.17), we get $-\operatorname{div} b_{0}=g$, so that (3.18) implies that v_{0} is the solution to

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\tilde{\sigma} \nabla v_{0}\right)=g \quad \text { in } \Omega \tag{3.20}\\
v_{0} \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

As in the previous part of the proof, this implies that $\sigma_{\varepsilon}^{T} H$-converges to $\tilde{\sigma}$. We want to prove that $\tilde{\sigma}=\sigma_{0}^{T}$.

To this end, we argue as in the previous step. Let $u, v \in H_{0}^{1}(\Omega)$. We choose $f:=-\operatorname{div}\left(\sigma_{0} \nabla u\right)$ and $g:=-\operatorname{div}(\tilde{\sigma} \nabla v)$ and we consider the corresponding solutions u_{ε} and v_{ε} of (2.16). Since u coincides with the solution u_{0} of (3.12) and v coincides with the solution v_{0} of (3.20), the H-convergence of σ_{ε} entails

$$
u_{\varepsilon} \rightharpoonup u_{0}=u \quad \text { weakly in } H_{0}^{1}(\Omega) \quad \text { and } \quad \sigma_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup \sigma_{0} \nabla u_{0}=\sigma_{0} \nabla u \quad \text { weakly in } L^{2}\left(\Omega ; \mathbb{R}^{n}\right),
$$

while the H-convergence of $\left(\sigma_{\varepsilon}^{T}\right)$ yields

$$
v_{\varepsilon} \rightharpoonup v_{0}=v \quad \text { weakly in } H_{0}^{1}(\Omega) \quad \text { and } \quad \sigma_{\varepsilon}^{T} \nabla v_{\varepsilon} \rightharpoonup \tilde{\sigma} \nabla v_{0}=\tilde{\sigma} \nabla v \quad \text { weakly in } L^{2}\left(\Omega ; \mathbb{R}^{n}\right) .
$$

Let $\varphi \in C_{c}^{\infty}(\Omega)$; using φv_{ε} as test function in the equation for u_{ε}, we get

$$
\int_{\Omega} f\left(\varphi v_{\varepsilon}\right) d x=\int_{\Omega}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon}\right) \varphi d x+\int_{\Omega} \sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot v_{\varepsilon} \nabla \varphi d x
$$

Therefore, appealing to the strong $L^{2}(\Omega)$ convergence of v_{ε} to v and using φv as a test function in (3.12), we obtain

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(\sigma_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon}\right) \varphi d x=\int_{\Omega} f(\varphi v) d x-\int_{\Omega} \sigma_{0} \nabla u \cdot v \nabla \varphi d x \\
= & \int_{\Omega} \sigma_{0} \nabla u \cdot \nabla(\varphi v) d x-\int_{\Omega} \sigma_{0} \nabla u \cdot v \nabla \varphi d x=\int_{\Omega}\left(\sigma_{0} \nabla u \cdot \nabla v\right) \varphi d x . \tag{3.21}
\end{align*}
$$

Moreover, arguing in a similar way, using now φu_{ε} as test function in the equation for v_{ε}, it is easy to show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(\sigma_{\varepsilon}^{T} \nabla v_{\varepsilon} \cdot \nabla u_{\varepsilon}\right) \varphi d x=\int_{\Omega}(\tilde{\sigma} \nabla v \cdot \nabla u) \varphi d x \tag{3.22}
\end{equation*}
$$

Then (3.21) and (3.22) yield

$$
\int_{\Omega}\left(\sigma_{0} \nabla u \cdot \nabla v\right) \varphi d x=\int_{\Omega}(\tilde{\sigma} \nabla u \cdot \nabla v) \varphi d x \quad \text { for every } \varphi \in C_{c}^{\infty}(\Omega)
$$

Arguing as in the previous proof of (2.2) we deduce from this equality that

$$
\sigma_{0} \xi \cdot \eta=\tilde{\sigma} \eta \cdot \xi \quad \text { a.e. in } \Omega
$$

for every $\xi, \eta \in \mathbb{R}^{n}$. This implies that $\tilde{\sigma}=\sigma_{0}^{T}$ a.e. in Ω which concludes the proof of the theorem.
Given $\sigma_{0} \in \mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$, the matrix Σ_{0} and the functionals Q_{0}, F_{0}, and $F_{0}^{\lambda, \mu}$ are defined as in (2.6), (2.10), (2.12), and (2.13) with $\sigma=\sigma_{0}$.

Theorem 3.2. Let $\left(\sigma_{\varepsilon}\right)$ be a sequence in $\mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$ and let $\sigma_{0} \in \mathcal{M}\left(c_{0}, c_{1}, \Omega\right)$. The following conditions are equivalent:
(a) $\sigma_{\varepsilon} H$-converges to σ_{0};
(b) $\sigma_{\varepsilon}^{T} H$-converges to σ_{0}^{T};
(c) $F_{\varepsilon} \Gamma(d)$-converges to F_{0};
(d) $F_{\varepsilon}^{\lambda, \mu} \Gamma(w)$ to $F_{0}^{\lambda, \mu}$ for every $\lambda, \mu \in H^{-1}(\Omega)$.

Proof. The equivalence between (a) and (b) follows immediately from Theorem 3.1. The implication (c) $\Rightarrow(\mathrm{d})$ is given by Theorem 2.2. The implication $(\mathrm{d}) \Rightarrow(\mathrm{a})$ is obtained in the proof of Theorem 3.1. It remains to prove that (a) and (b) imply (c). By Theorem 2.1 we may assume that $F_{\varepsilon} \Gamma(d)$-converges to $F_{\mathbf{M}}$ where $\mathbf{M} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2 n \times 2 n}\right)$ is a positive definite, symmetric matrix satisfying the coercivity condition (2.4).

To prove that $\mathbf{M} \in S O(n, n)$ we consider the block decomposition (2.9). In Theorem 3.1 we proved that $\sigma_{0}=A^{-1}-A^{-1} B$ and $\sigma_{0}^{T}=\tilde{\sigma}=A^{-1}+A^{-1} B$; hence, we immediately deduce that

$$
\begin{equation*}
A B^{T}+B A=0 \quad \text { a.e. in } \Omega \tag{3.23}
\end{equation*}
$$

It remains to prove the second condition in (2.8). Let us fix $f, g \in H^{-1}(\Omega)$ and let $u_{\varepsilon}, v_{\varepsilon}, a_{\varepsilon}, b_{\varepsilon}$ be as in (2.16) and (2.17). By (2.11), (2.15), (3.4), and (3.5) using only the second component we get

$$
\begin{align*}
& B_{\varepsilon}^{T}\left(a_{\varepsilon}+b_{\varepsilon}\right)+C_{\varepsilon}\left(u_{\varepsilon}-v_{\varepsilon}\right)=\sigma_{\varepsilon} \nabla u_{\varepsilon}-\sigma_{\varepsilon}^{T} \nabla v_{\varepsilon} \rightharpoonup B^{T}\left(a_{0}+b_{0}\right)+C\left(\nabla u_{0}-\nabla v_{0}\right) \tag{3.24}\\
& B_{\varepsilon}^{T}\left(a_{\varepsilon}-b_{\varepsilon}\right)+C_{\varepsilon}\left(u_{\varepsilon}+v_{\varepsilon}\right)=\sigma_{\varepsilon} \nabla u_{\varepsilon}+\sigma_{\varepsilon}^{T} \nabla v_{\varepsilon} \rightharpoonup B^{T}\left(a_{0}-b_{0}\right)+C\left(\nabla u_{0}-\nabla v_{0}\right) \tag{3.25}
\end{align*}
$$

weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$. Then, adding up (3.24) and (3.25) we get

$$
\sigma_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup B^{T} a_{0}+C \nabla u_{0}
$$

weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$; on the other hand, since $\sigma_{\varepsilon} \nabla u_{\varepsilon}=a_{\varepsilon} \rightharpoonup a_{0}$ weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$, we obtain

$$
a_{0}=B^{T} a_{0}+C \nabla u_{0}
$$

Since in the proof of Theorem 3.1 we already showed that $a_{0}=\left(A^{-1}-A^{-1} B\right) \nabla u_{0}$, we finally obtain

$$
\left(I-B^{T}\right)\left(A^{-1}-A^{-1} B\right) \nabla u_{0}=C \nabla u_{0} \quad \text { a.e. in } \Omega .
$$

Therefore, suitably choosing f as in (3.13) and arguing as in the proof of Theorem 3.1 we can easily deduce that

$$
\left(I-B^{T}\right)\left(A^{-1}-A^{-1} B\right) \xi=C \xi \quad \text { a.e. in } \Omega, \text { for every } \xi \in \mathbb{R}^{n}
$$

thus, by the arbitrariness of $\xi \in \mathbb{R}^{n}$, we get

$$
\left(I-B^{T}\right)\left(A^{-1}-A^{-1} B\right)=C \quad \text { a.e. in } \Omega .
$$

The latter combined with (3.23) leads to

$$
\begin{equation*}
A C+B^{2}=I \quad \text { a.e. in } \Omega \tag{3.26}
\end{equation*}
$$

Eventually, by (3.23) and (3.26) we can apply [2, Proposition 3.1] and we deduce that $\mathbf{M} \in S O(n, n)$ a.e. in Ω and that \mathbf{M} is equal to the matrix $\boldsymbol{\Sigma}$ defined in (2.3) with $\sigma=A^{-1}-A^{-1} B$. Since we have also $\sigma_{0}=A^{-1}-A^{-1} B$, we conclude that $\mathbf{M}=\boldsymbol{\Sigma}_{0}$.

Acknowledgments. This material is based on work supported by the Italian Ministry of Education, University, and Research under the Project "Variational Problems with Multiple Scales" 2008 and by the European Research Council under Grant No. 290888 "Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture".

References

[1] N. Ansini, G. Dal Maso, and C. I. Zeppieri, New results on Γ-limits of integral functionals, preprint SISSA, Trieste (2012).
[2] N. Ansini and C. I. Zeppieri, Asymptotic analysis of non-symmetric linear operators via Γ-convergence. SIAM J. Math. Anal. (2012) to appear.
[3] A. V. Cherkaev and L. V. Gibiansky, Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys. (1), 35 (1994), 127-145.
[4] G. Dal Maso, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
[5] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat. 8 (1975), 277-294.
[6] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Fis. Natur. 58 (1975), 842-850.
[7] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 8 (1973), 391-411.
[8] A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994), 333-408.
[9] G. W. Milton, On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. 43 (1990), no. 1, 63-125.
[10] F. Murat, H-convergence. Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, 1977.
[11] L. Tartar, Quelques remarques sur l'homogénéisation. Proc. of Japan-France seminar 1976 "Functional analysis and numerical analysis", 469-482, Japan Society for the Promotion of Science, 1978.
[12] L. Tartar, Cours Peccot au Collège de France. Paris 1977.
[13] L. Tartar, The general theory of homogenization. A personalized introduction. Lecture Notes of the Unione Matematica Italiana, 7. Springer-Verlag, Berlin; UMI, Bologna, 2009.
(Nadia Ansini) Dipartimento di Matematica "G. Castelnuovo", Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy

E-mail address, Nadia Ansini: ansini@mat.uniroma1.it
(Gianni Dal Maso) SISSA, Via Bonomea 265, 34136 Trieste, Italy
E-mail address, Gianni Dal Maso: dalmaso@sissa.it
(Caterina Ida Zeppieri) Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115
Bonn, Germany
E-mail address, Caterina Ida Zeppieri: zeppieri@uni-bonn.de

