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Abstract. We consider a sequence of linear Dirichlet problems as follows
(

−div(σε∇uε) = f in Ω,

uε ∈ H1

0
(Ω),

with (σε) uniformly elliptic and possibly non-symmetric. Using purely variational arguments we give
an alternative proof of the compactness of H-convergence, originally proved by Murat and Tartar.

Keywords: linear elliptic operators, Γ-convergence, H-convergence.

2000 Mathematics Subject Classification: 35J15, 35J20, 49J45.

1. Introduction

The notion of H-convergence was introduced by Murat and Tartar in [10, 12] to study a wide class
of homogenization problems for possibly non-symmetric elliptic equations. Let σε ∈ L∞(Ω; Rn×n) be a
sequence of matrices satisfying uniform ellipticity and boundedness conditions on a bounded open set
Ω ⊂ R

n. We say that σε H-converges to matrix σ0 ∈ L∞(Ω; Rn×n) satisfying the same ellipticity and
boundedness conditions if for every f ∈ H−1(Ω) the sequence uε of the solutions to the problems

{

−div(σε∇uε) = f in Ω,

uε ∈ H1
0 (Ω),

(1.1)

satisfy

uε ⇀ u0 weakly in H1
0 (Ω) and σε∇uε ⇀ σ0∇u0 weakly in L2(Ω; Rn),

where u0 is the solution to
{

−div(σ0∇u0) = f in Ω,

u0 ∈ H1
0 (Ω).

The notion of Γ-convergence was introduced by De Giorgi and Franzoni in [5, 6] to study the asymptotic
behavior of the solutions of a wide class of minimization problems depending on a parameter ε > 0, which
varies in a sequence converging to 0. Let (X, d) be a metric space and let Fε : X → R be a sequence of
functionals, we say that Fε Γ(d)-converges to a functional F0 : X → R if for all x ∈ X we have

(i) (liminf inequality) for every sequence xε
d

−→x in X

F0(x) ≤ lim inf
ε→0

Fε(xε);

(ii) (limsup inequality) there exists a sequence x̄ε
d

−→x in X such that

F0(x) ≥ lim sup
ε→0

Fε(x̄ε).
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It has been proved that when σε is symmetric, the equation (1.1) has a variational structure since it
can be seen as the Euler-Lagrange equation associated with

Fε(u) =
1

2

∫

Ω

σε(x)∇u · ∇u dx−

∫

Ω

f u dx ,

or, equivalently, as the solution to the minimization problem

min{Fε(u) : u ∈ H1
0 (Ω)}. (1.2)

Therefore, in this case (1.2) provides a variational principle for the Dirichlet problem (1.1) and the
convergence of the solutions of (1.1) can be equivalently studied by means of the Γ-convergence, with
respect to the weak topology of H1

0 (Ω), of the associated functionals Fε or in terms of the G-convergence
of the uniformly elliptic, symmetric matrices (σε) (see De Giorgi and Spagnolo [7]).

In this paper we consider the equivalence between H-convergence and Γ-convergence in the possibly
non-symmetric case. To every elliptic matrix σ ∈ L∞(Ω; Rn×n) we associate a suitable quadratic integral
functional F : L2(Ω; Rn)×H1

0 (Ω) → [0,+∞) (see (2.12)) and we consider the Γ-convergence with respect
to the distance d defined by

d((α, ϕ), (β, ψ)) = ‖α− β‖H−1(Ω;Rn) + ‖div(α− β)‖H−1(Ω) + ‖ϕ− ψ‖L2(Ω) .

We prove (Theorem 3.2) that the H-convergence of σε to σ0 is equivalent to the Γ(d)-convergence of
the functionals Fε corresponding to σε to the functional F0 corresponding to σ0. In [2] this result was
proved using compactness properties of H-convergence [10, 12], while in the present paper the equivalence
is obtained as a consequence of a general compactness theorem for integral functionals with respect to
Γ(d)-convergence [1]. Moreover, as a consequence of the results proved in [1], we also give an independent
proof (Theorem 3.1) of the compactness of H-convergence based only on Γ-convergence arguments.

2. Notation and preliminaries

In this section we introduce a few notation and we recall some preliminary results we employ in the
sequel. For any A ∈ R

n×n we denote by As and Aa the symmetric and the anti-symmetric part of A,
respectively; i.e.,

As :=
A+AT

2
, Aa :=

A−AT

2
,

where AT is the transpose matrix of A. We use bold capital letters to denote matrices in R
2n×2n. The

scalar product of two vectors ξ and η is denoted by ξ · η.

Let Ω be an open bounded subset of R
n. For 0 < c0 ≤ c1 < +∞, M(c0, c1,Ω) denotes the set of

matrix-valued functions σ ∈ L∞(Ω; Rn×n) satisfying

σ(x)ξ · ξ ≥ c0|ξ|
2, σ−1(x)ξ · ξ ≥ c−1

1 |ξ|2, for every ξ ∈ R
n, for a.e. x ∈ Ω, (2.1)

or, equivalently, satisfying

σ(x)ξ · ξ ≥ c0|ξ|
2, σ(x)ξ · ξ ≥ c−1

1 |σ(x)ξ|2, for every ξ ∈ R
n, for a.e. x ∈ Ω. (2.2)

Note that (2.1) (or (2.2)) implies that

|σ(x)| ≤ c1 for a.e. x ∈ Ω,

and that necessarily c0 ≤ c1. To not overburden notation, in all that follows we always write σ in place
of σ(x).

Given σ ∈ M(c0, c1,Ω) we consider the (2n× 2n)-matrix-valued function Σ ∈ L∞(Ω; R2n×2n) having
the following block structure

Σ :=

(

(σs)−1 −(σs)−1σa

σa(σs)−1 σs − σa(σs)−1σa

)

. (2.3)
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Notice that Σ is symmetric. Moreover, the assumption σ ∈ M(c0, c1,Ω) easily implies that Σ is uniformly
coercive (see [2, Section 3.1.1] for the details); specifically, there exists a constant C(c0, c1) > 0, depending
only on c0 and c1, such that

Σw · w ≥ C(c0, c1)|w|2, (2.4)

for every w ∈ R
2n, and a.e. in Ω.

If we consider the matrix-valued functions A,B,C ∈ L∞(Ω; Rn×n) defined as

A = (σs)−1, B = −(σs)−1σa, C = σs − σa(σs)−1σa, (2.5)

the matrix Σ can be rewritten as

Σ =

(

A B

BT C

)

. (2.6)

We notice that, for a.e. x ∈ Ω, the matrix Σ belongs to the indefinite special orthogonal group SO(n, n);
i.e.,

ΣJΣ = J a.e. in Ω, with J =

(

0 I

I 0

)

, (2.7)

where I ∈ R
n×n is the identity matrix (see [2, Section 3.1.1]). Moreover, taking into account the symmetry

of Σ, it is immediate to show that (2.7) is equivalent to the following system of identities for the block
decomposition (2.6):











ABT +BA = 0

AC +B2 = I,

CB +BTC = 0

a.e. in Ω. (2.8)

Conversely, one can prove that, if M ∈ L∞(Ω; R2n×2n) is symmetric and has the block decomposition

M =

(

A B

BT C

)

, (2.9)

with A,B,C ∈ L∞(Ω; Rn×n), A and C symmetric, and detA 6= 0, then the first two equations in
(2.8) imply the third one, and (2.8) implies that M is equal to the matrix Σ defined in (2.3) with
σ = A−1 −A−1B (see [2, Proposition 3.1]).

Throughout the paper the parameter ε varies in a strictly decreasing sequence of positive real num-
bers converging to zero. Let (σε) be a sequence in M(c0, c1,Ω) and consider the sequence (Σε) ⊂
L∞(Ω; R2n×2n) defined by (2.3) with σ = σε. Let Qε : L2(Ω; Rn) × L2(Ω; Rn) → [0,+∞) be the qua-
dratic forms associated with Σε; i.e.,

Qε(a, b) :=

∫

Ω

Σε

(

a

b

)

·
(

a

b

)

dx. (2.10)

Their gradients gradQε : L2(Ω; Rn) × L2(Ω; Rn) → L2(Ω; Rn) × L2(Ω; Rn) are given by

gradQε(a, b) = (Aεa+Bεb, B
T
ε a+ Cεb), (2.11)

where Aε, Bε, and Cε are as in (2.5) with σ = σε. We also consider the quadratic forms Fε : L2(Ω; Rn)×
H1

0 (Ω) → [0,+∞) defined by
Fε(α, ψ) := Qε(α,∇ψ) (2.12)

For every λ, µ ∈ H−1(Ω); we consider the sequence of constrained functionals Fλ,µ
ε : L2(Ω; Rn)×H1

0 (Ω) →
[0,+∞] defined as follows

Fλ,µ
ε (α, ψ) :=

{

Fε(α, ψ) − 〈µ, ψ〉 if − divα = λ,

+∞ otherwise,
(2.13)

where 〈·, ·〉 denotes the dual paring between H−1(Ω) and H1
0 (Ω).
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Given a symmetric matrix M ∈ L∞(Ω; R2n×2n), we consider the quadratic functionalsQM : L2(Ω; Rn)×
L2(Ω; Rn) → [0,+∞) and FM : L2(Ω; Rn) ×H1

0 (Ω) → [0,+∞) defined by

QM(a, b) :=

∫

Ω

M
(

a

b

)

·
(

a

b

)

dx and FM(α, ψ) := QM(α,∇ψ) . (2.14)

Considering the block decomposition (2.9), the gradient of QM is given by

gradQM(a, b) = (Aa+Bb,BTa+ Cb) . (2.15)

Finally, for every λ, µ ∈ H−1(Ω); we consider the constrained functional Fλ,µ
M

: L2(Ω; Rn) × H1
0 (Ω) →

[0,+∞] defined as follows

F
λ,µ
M

(α, ψ) :=

{

FM(α, ψ) − 〈µ, ψ〉 if − divα = λ,

+∞ otherwise.

Let w be the weak topology of L2(Ω; Rn) × H1
0 (Ω) and let d be the distance in L2(Ω; Rn) × H1

0 (Ω)
defined by

d((α, ϕ), (β, ψ)) = ‖α− β‖H−1(Ω;Rn) + ‖div(α− β)‖H−1(Ω) + ‖ϕ− ψ‖L2(Ω) .

The following result is proved in [1, Corollary 2.9].

Theorem 2.1. Let (σε) be a sequence in M(c0, c1,Ω). There exist a subsequences of ε, not relabeled, and
a symmetric matrix M ∈ L∞(Ω; R2n×2n), such that the functionals Fε defined by (2.12) Γ(d)-converge to
the functional FM defined in (2.14). Moreover, M is positive definite and satisfies the coercivity condition
(2.4).

The following result is a consequence of [1, Theorem 3.3] and of the stability of Γ-convergence under
continuous perturbations.

Theorem 2.2. Let (σε) be a sequence in M(c0, c1,Ω) and let M ∈ L∞(Ω; R2n×2n) be a symmetric,
positive define matrix satisfying (2.4). Assume that the functionals Fε defined by (2.12) Γ(d)-converge to
the functional FM defined in (2.14). Then, for every λ, µ ∈ H−1(Ω), the functionals (Fλ,µ

ε ) defined by
(2.13) Γ(w)-converges to the functional Fλ,µ defined by

Fλ,µ(α, ψ) :=

{

FM(α, ψ) − 〈µ, ψ〉 if − divα = λ,

+∞ otherwise.

For the reader’s sake, here we briefly recall a fundamental tool we employ in what follows, the
Cherkaev-Gibiansky variational principle [3] (see also Fannjiang-Papanicolaou [8] and Milton [9]) , which
will be presented in the notational setting which is suitable for our purposes. Loosely speaking, this
variational principle amounts to associate to the two following Dirichlet problems

{

−div(σε∇uε) = f in Ω,

uε ∈ H1
0 (Ω),

{

−div(σT
ε ∇vε) = g in Ω,

vε ∈ H1
0 (Ω).

(2.16)

with f, g ∈ H−1(Ω), a quadratic functional whose Euler-Lagrange equation is solved by a suitable com-
bination of solutions to (2.16) and of their momenta. We set

aε := σε∇uε and bε := σT
ε ∇vε . (2.17)
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For every ε > 0, λ, µ ∈ H−1(Ω) the unique minimizer (αε, ψε) of Fλ,µ
ε satisfies the constraint −divαε =

λ and the following system of Euler-Lagrange equations:














∫

Ω

(Aεαε +Bε∇ψε) · β dx = 0,

∫

Ω

(BT
ε αε + Cε∇ψε) · ∇ϕdx = 〈µ, ϕ〉,

(2.18)

for every β ∈ L2(Ω; Rn) with divβ = 0 and for every ϕ ∈ H1
0 (Ω).

If uε, vε satisfy (2.16) then we can prove (see [2, Section 3.2] for details) that the pair

(aε + bε, uε − vε) (2.19)

solves (2.18), with λ = f + g, µ = f − g, and thus minimizes F f+g,f−g
ε .

In the same way, it can be seen that the pair

(aε − bε, uε + vε) (2.20)

minimizes F f−g,f+g
ε .

3. The main result

In this section we state and prove the main result of this paper: an alternative and purely variational
proof of the sequential compactness of M(c0, c1,Ω) with respect to H-convergence, originally proved by
Murat and Tartar [10, 12].

Theorem 3.1 (Compactness of H-convergence). Let (σε) be a sequence in M(c0, c1,Ω). Then there
exist a subsequence (not relabeled) and a matrix σ0 ∈ M(c0, c1,Ω) such that (σε) H-converges to σ0 and
(σT

ε ) H-converges to σT
0 .

Proof. By Theorem 2.1 there exist a subsequence of Fε, not relabeled, and a symmetric, positive definite
matrix M ∈ L∞(Ω; R2n×2n), with the block decomposition (2.9), such that Fε Γ(d)-converges to FM.
In the rest of this proof we show that (σε) H-converges to σ0 and (σT

ε ) H-converges to σT
0 , where

σ0 := A−1 −A−1B.
Let f, g ∈ H−1(Ω), let uε, vε be as in (2.16), and let aε, bε be as in (2.17). By standard variational

estimates we have that (uε) and (vε) are bounded in H1
0 (Ω) while (aε) and (bε) are bounded in L2(Ω; Rn).

Therefore, up to subsequences (not relabeled),

uε ⇀ u0, vε ⇀ v0 weakly in H1
0 (Ω) and aε ⇀ a0, bε ⇀ b0 weakly in L2(Ω; Rn), (3.1)

for some u0, v0 ∈ H1
0 (Ω) and a0, b0 ∈ L2(Ω; Rn).

Since (aε + bε, uε − vε) are minimizers of F f+g,f−g
ε and these functionals Γ-converge to F f+g,f−g

M
by

Theorem 2.2, appealing to the fundamental property of Γ-convergence we find that

lim
ε→0

F f+g,f−g
ε (aε + bε, uε − vε) = F

f+g,f−g
M

(a0 + b0, u0 − v0) = minF f+g,f−g
M

. (3.2)

Similarly, since (aε − bε, uε + vε) minimizes F f−g,f+g
ε , we have also

lim
ε→0

F f−g,f+g
ε (aε − bε, uε + vε) = F

f−g,f+g
M

(a0 − b0, u0 + v0) = minF f−g,f+g
M

. (3.3)

Thanks to Theorem 2.2, (3.2), (3.3), and in view of [1, Proposition 2.10] we are now in a position to
invoke the result about the convergence of momenta proved in [1, Corollary 4.6], hence we obtain

gradQε(aε + bε,∇uε −∇vε) ⇀ gradQM(a+ b,∇u−∇v) , (3.4)

gradQε(aε − bε,∇uε + ∇vε) ⇀ gradQM(a0 − b0,∇u0 + ∇v0) (3.5)
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weakly in L2(Ω; Rn) × L2(Ω; Rn). By (2.11) and (2.15), considering only the first component, we get

Aε(aε + bε) +Bε(∇uε −∇vε) ⇀ A(a0 + b0) +B(∇u0 −∇v0), (3.6)

Aε(aε − bε) +Bε(∇uε + ∇vε) ⇀ A(a0 − b0) +B(∇u0 + ∇v0) (3.7)

weakly in L2(Ω; Rn). Since by (2.5) Aε(aε + bε) + Bε(∇uε − ∇vε) = ∇uε + ∇vε and Aε(aε − bε) +
Bε(∇uε + ∇vε) = ∇uε −∇vε, from (3.6) and (3.7) we deduce that

∇uε + ∇vε ⇀ A(a0 + b0) +B(∇u0 −∇v0), (3.8)

∇uε −∇vε ⇀ A(a0 − b0) +B(∇u0 + ∇v0) (3.9)

weakly in L2(Ω; Rn). Hence, adding up (3.8) and (3.9) entails ∇uε ⇀ Aa0 + B∇u0 in L2(Ω; Rn), which
gives ∇u0 = Aa0 +B∇u0 by (3.1). This implies

a0 = σ0 ∇u0, (3.10)

with

σ0 := A−1 −A−1B. (3.11)

Since −divaε = f , by (2.16) and (2.17) we get that −diva0 = f . Hence, (3.10) implies that u0 is the
solution to

{

−div(σ0∇u0) = f in Ω,

u0 ∈ H1
0 (Ω).

(3.12)

So far we have proved that for every f ∈ H−1(Ω) the solutions uε of (2.16) converge weakly in H1
0 (Ω)

to the solution u0 of (3.12) and their momenta σε∇uε converge weakly in L2(Ω; Rn) to σ0∇u0. Thus, to
conclude the proof of the H-convergence of (σε) to σ0 it remains to show that σ0 belongs to M(c0, c1,Ω).
To this end, let u ∈ H1

0 (Ω) and choose

f := −div(σ0∇u); (3.13)

in this way the solution u0 of the equation (3.12) coincides with u.
Let ϕ ∈ C∞

c (Ω). Using ϕuε as a test function in the equation −div(σε∇uε) = f and then passing to
the limit on ε we get

∫

Ω

fϕu0 dx = lim
ε→0

∫

Ω

fϕuε dx = lim
ε→0

(

∫

Ω

(σε∇uε · ∇uε)ϕdx
)

+

∫

Ω

σ0∇u0 · u0∇ϕdx, (3.14)

where to compute the limit of the last term in (3.14) we appealed to the strong L2(Ω) convergence of uε

to u0. On the other hand, since by (3.12)
∫

Ω

fϕu0 dx =

∫

Ω

(σ0∇u0 · ∇u0)ϕdx +

∫

Ω

σ0∇u0 · u0∇ϕdx

from (3.14) we deduce that

lim
ε→0

∫

Ω

(σε∇uε · ∇uε)ϕdx =

∫

Ω

(σ0∇u0 · ∇u0)ϕdx, (3.15)

for every ϕ ∈ C∞

c (Ω). Hence, choosing ϕ ≥ 0, combining (3.15), the first condition in (2.1), and the
equality u = u0, we have

∫

Ω

(σ0∇u · ∇u)ϕdx ≥ c0 lim inf
ε→0

∫

Ω

|∇uε|
2ϕdx ≥ c0

∫

Ω

|∇u|2ϕdx,

the second inequality following from ∇uε ⇀ ∇u0 = ∇u in L2(Ω; Rn). Since this inequality holds true for
every ϕ ∈ C∞

c (Ω), ϕ ≥ 0, we get that

σ0∇u · ∇u ≥ c0|∇u|
2 a.e. in Ω, (3.16)
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for every u ∈ H1
0 (Ω). Using the second condition in (2.2), we find
∫

Ω

(σ0∇u · ∇u)ϕdx ≥ c−1
1 lim inf

ε→0

∫

Ω

|σε∇uε|
2ϕdx ≥ c−1

1

∫

Ω

|σ0∇u|
2ϕdx,

since σε∇uε ⇀ σ0∇u0 = σ0∇u in L2(Ω; Rn). From the previous inequality we deduce

σ0∇u · ∇u ≥ c−1
1 |σ0∇u|

2 a.e. in Ω, (3.17)

for every u ∈ H1
0 (Ω). Finally, (2.2) follows from (3.16) and (3.17) by taking u to be affine in an open set

ω ⊂⊂ Ω.

We now prove that σT
ε H-converges to σT

0 . Subtracting (3.9) from (3.8) gives ∇vε ⇀ Ab0 − B∇v0
weakly in L2(Ω; Rn); the latter combined with (3.1) imply that ∇v0 = Ab −B∇v0. We deduce then

b0 = σ̃∇v0, (3.18)

where

σ̃ := A−1 +A−1B. (3.19)

Since −divbε = g by (2.16) and (2.17), we get −divb0 = g, so that (3.18) implies that v0 is the solution
to

{

−div(σ̃∇v0) = g in Ω,

v0 ∈ H1
0 (Ω).

(3.20)

As in the previous part of the proof, this implies that σT
ε H-converges to σ̃. We want to prove that

σ̃ = σT
0 .

To this end, we argue as in the previous step. Let u, v ∈ H1
0 (Ω). We choose f := −div(σ0∇u) and

g := −div(σ̃∇v) and we consider the corresponding solutions uε and vε of (2.16). Since u coincides with
the solution u0 of (3.12) and v coincides with the solution v0 of (3.20), the H-convergence of σε entails

uε ⇀ u0 = u weakly in H1
0 (Ω) and σε∇uε ⇀ σ0∇u0 = σ0∇u weakly in L2(Ω; Rn),

while the H-convergence of (σT
ε ) yields

vε ⇀ v0 = v weakly in H1
0 (Ω) and σT

ε ∇vε ⇀ σ̃∇v0 = σ̃∇v weakly in L2(Ω; Rn).

Let ϕ ∈ C∞

c (Ω); using ϕvε as test function in the equation for uε, we get
∫

Ω

f(ϕvε) dx =

∫

Ω

(σε∇uε · ∇vε)ϕdx +

∫

Ω

σε∇uε · vε∇ϕdx.

Therefore, appealing to the strong L2(Ω) convergence of vε to v and using ϕv as a test function in (3.12),
we obtain

lim
ε→0

∫

Ω

(σε∇uε · ∇vε)ϕdx =

∫

Ω

f(ϕv) dx−

∫

Ω

σ0∇u · v∇ϕdx

=

∫

Ω

σ0∇u · ∇(ϕv) dx −

∫

Ω

σ0∇u · v∇ϕdx =

∫

Ω

(σ0∇u · ∇v)ϕdx. (3.21)

Moreover, arguing in a similar way, using now ϕuε as test function in the equation for vε, it is easy to
show that

lim
ε→0

∫

Ω

(σT
ε ∇vε · ∇uε)ϕdx =

∫

Ω

(σ̃∇v · ∇u)ϕdx. (3.22)

Then (3.21) and (3.22) yield
∫

Ω

(σ0∇u · ∇v)ϕdx =

∫

Ω

(σ̃∇u · ∇v)ϕdx for every ϕ ∈ C∞

c (Ω).
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Arguing as in the previous proof of (2.2) we deduce from this equality that

σ0ξ · η = σ̃η · ξ a.e. in Ω,

for every ξ, η ∈ R
n. This implies that σ̃ = σT

0 a.e. in Ω which concludes the proof of the theorem. �

Given σ0 ∈ M(c0, c1,Ω), the matrix Σ0 and the functionals Q0, F0, and Fλ,µ
0 are defined as in (2.6),

(2.10), (2.12), and (2.13) with σ = σ0.

Theorem 3.2. Let (σε) be a sequence in M(c0, c1,Ω) and let σ0 ∈ M(c0, c1,Ω). The following conditions
are equivalent:

(a) σε H-converges to σ0;
(b) σT

ε H-converges to σT
0 ;

(c) Fε Γ(d)-converges to F0;

(d) Fλ,µ
ε Γ(w) to Fλ,µ

0 for every λ, µ ∈ H−1(Ω).

Proof. The equivalence between (a) and (b) follows immediately from Theorem 3.1. The implication (c)
⇒ (d) is given by Theorem 2.2. The implication (d) ⇒ (a) is obtained in the proof of Theorem 3.1. It
remains to prove that (a) and (b) imply (c). By Theorem 2.1 we may assume that Fε Γ(d)-converges to
FM where M ∈ L∞(Ω; R2n×2n) is a positive definite, symmetric matrix satisfying the coercivity condition
(2.4).

To prove that M ∈ SO(n, n) we consider the block decomposition (2.9). In Theorem 3.1 we proved
that σ0 = A−1 −A−1B and σT

0 = σ̃ = A−1 +A−1B; hence, we immediately deduce that

ABT +BA = 0 a.e. in Ω. (3.23)

It remains to prove the second condition in (2.8). Let us fix f, g ∈ H−1(Ω) and let uε, vε, aε, bε be as in
(2.16) and (2.17). By (2.11), (2.15), (3.4), and (3.5) using only the second component we get

BT
ε (aε + bε) + Cε(uε − vε) = σε∇uε − σT

ε ∇vε ⇀ BT (a0 + b0) + C(∇u0 −∇v0) (3.24)

BT
ε (aε − bε) + Cε(uε + vε) = σε∇uε + σT

ε ∇vε ⇀ BT (a0 − b0) + C(∇u0 −∇v0) (3.25)

weakly in L2(Ω; Rn). Then, adding up (3.24) and (3.25) we get

σε∇uε ⇀ BT a0 + C∇u0

weakly in L2(Ω; Rn); on the other hand, since σε∇uε = aε ⇀ a0 weakly in L2(Ω; Rn), we obtain

a0 = BTa0 + C∇u0.

Since in the proof of Theorem 3.1 we already showed that a0 = (A−1 −A−1B)∇u0, we finally obtain

(I −BT )(A−1 −A−1B)∇u0 = C∇u0 a.e. in Ω.

Therefore, suitably choosing f as in (3.13) and arguing as in the proof of Theorem 3.1 we can easily
deduce that

(I −BT )(A−1 −A−1B) ξ = C ξ a.e. in Ω, for every ξ ∈ R
n,

thus, by the arbitrariness of ξ ∈ R
n, we get

(I −BT )(A−1 −A−1B) = C a.e. in Ω.

The latter combined with (3.23) leads to

AC +B2 = I a.e. in Ω. (3.26)

Eventually, by (3.23) and (3.26) we can apply [2, Proposition 3.1] and we deduce that M ∈ SO(n, n) a.e.
in Ω and that M is equal to the matrix Σ defined in (2.3) with σ = A−1 − A−1B. Since we have also
σ0 = A−1 −A−1B, we conclude that M = Σ0. �
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