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Abstract. Diffusion Magnetic Resonance Imaging (MRI) is used to (non-

invasively) study neuronal fibers in the brain white matter. Reconstructing
fiber paths from such data (tractography problem) is relevant in particular

to study the connectivity between two given cerebral regions. Fiber-tracking

models rely on how water molecules diffusion is represented in each MRI voxel.
The Diffusion Spectrum Imaging (DSI) technique represents the diffusion as

a probability density function (DDF) defined on a set of predefined directions

inside each voxel. DSI is able to describe complex tissue configurations (com-
pared e.g. with Diffusion Tensor Imaging), but ignores the actual density of

fibers forming bundle trajectories among adjacent voxels, preventing any eval-

uation of the real physical dimension of these fiber bundles.

By considering the fiber paths between two given areas as geodesics of a

suitable well-posed optimal control problem (related to optimal mass trans-
portation) which takes into account the whole information given by the DDF,

we are able to provide a quantitative criterion to estimate the connectivity

between two given cerebral regions, and to recover the actual distribution of
neuronal fibers between them.

1. Introduction.

1.1. General introduction. Diffusion magnetic resonance imaging (MRI) is a
powerful imaging modality for non-invasive and in vivo study of the anatomy of the
brain white matter. Starting from the observation that water molecules diffusion in
living tissues is highly affected by the cellular organization of the observed tissue,
MRI exploits this dependency to probe tissue structure architecture at a microscopic
scale far beyond the usual imaging resolution. Moreover, since it is well known
that in the brain there is a strong relationship between water diffusion and axonal
orientations (see [44], [18], [26]), in the last decade diffusion MRI has been widely
applied to the study of fiber bundle trajectories into the brain white matter yielding
a high number of “tractography” or “fiber-tracking” methods. In general terms, a
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Figure 1. Fiber-tracking algorithms exploit diffusion information
inside each voxel to infer fiber bundle trajectories capturing co-
herent orientations of maximum diffusion. Left: a subset of voxels,
each of them containing a diffusion distribution, and a set of 4 likely
fiber bundle trajectories (brown lines). Right: a representative set
of fiber trajectories reconstructed from an healthy subject.

fiber-tracking algorithm exploits water diffusion data of each 3D resolution element
(voxel) in order to reconstruct the fiber bundle trajectories present into the brain
white matter. Various models are used to describe the water molecules diffusion at
the scale of an MRI voxel.

In the simplest case of Diffusion Tensor Imaging (DTI), displacements of water
molecules subject to magnetic field are assumed to follow a Gaussian distribution
and therefore in each voxel there will be only one direction of maximum diffu-
sion. On the contrary, in the state-of-the-art technique Diffusion Spectrum Imag-
ing (DSI), the diffusion at each voxel is described by a displacement distribution
or equivalently by a probability density function (DDF) defined for a set of given
directions inside the voxel. The probability density function DDF is reduced to an
orientation distribution function (ODF) by summing the probabilities of diffusion
in each direction. As opposed to DTI, hence, DSI is able to successfully characterize
more complex axonal configurations, such as fiber crossing, fanning and bending.

From a medical point of view, fiber-tracking is relevant to get information about
the connectivity between different cerebral regions. It turns out to be important
to know not only whether or not two given regions are connected by a bundle of
fibers, but also the quantity of fibers forming that connecting bundle. This connec-
tivity problem is relevant in particular to describe situations where, due to medical
pathologies, we have two cerebral areas connected by fibers that pass through a
damaged region where the connection is interrupted or strongly hampered: if the
connection was ensured by several fibers, the damaged area will not jeopardize the
connection between the two given areas as much as in the case of a scarce number
of connecting fibers.

Despite some important progresses made by recent studies focused on assess-
ing the ability of diffusion tractography to estimates anatomically correct fiber
bundles, the validation of reconstructed fiber trajectories and their interpretation
remain the two major shortcomings. As regards the interpretation of tractography
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Figure 2. An example of Orientation Distribution Function
(ODF) obtained by the DSI technique. The technique allows us
to define an ODF for each voxel. An ODF is represented as a
spherical polar plot coloured according to local diffusion orienta-
tions, and it describes the “average amount of diffusion” along each
direction over the sphere.

results, present fiber-tracking methods, DSI-based included, build fiber trajectories
disregarding the “quantity” of fibers going to make up a bundle trajectory among
adjacent voxels, thus preventing any evaluation, for example, of the real physical
dimension of a fiber bundle or the global quantity of fibers crossing a brain region.

1.2. Related work. In the literature, diffusion fiber-tracking algorithms are gen-
erally divided into two major classes: deterministic and probabilistic ones.

Deterministic tractography algorithms [32],[11],[34] incrementally reconstruct
fiber trajectories starting from a seed point and following the maximum local diffu-
sion information (i.e., a streamline process). Such algorithms are relative fast and
easy to compute, but lack of robustness and errors are propagated exponentially.

To overcome the shortcomings of deterministic tractography in dealing with
the uncertainty in fiber orientations, probabilistic algorithms have been introduced
[35],[27],[24]. They generate multiple trajectories from a given seed point (up to
thousands) by independently repeating a streamline tracking process and randomly
choosing the next direction to follow at each step. Some of the reconstructed paths
will correspond to anatomically meaningful fiber bundles, others no. The output of
such algorithms is not a trajectory, but a map of “probability” for a given point to
be traversed by an anatomically genuine fiber bundle. The computation of these
maps is burdensome, and their interpretation is still controversial.



4 A. DADUCCI, A. MARIGONDA, G. ORLANDI AND R. POSENATO

More recently, a new approach called global tractography has been proposed by
means of some fiber-tracking algorithms [29],[45],[46],[23],[30]. These algorithms
share the idea of searching a fiber path as a global parameter optimization process
in order to improve robustness to the noise or to local errors of diffusion directions.
In [29], the authors model fiber trajectories as spline curves having control points
randomly drawn as a Bayesian based distribution. The obtained results are inter-
esting, but the method is computational expensive because the initialization of the
control points and the sampling process are two very time-consuming processes.

Another recent promising approach has been introduced by [23] and [30], in which
each fiber bundle trajectory is obtained by minimizing Ising spin glass-type model.
In general, such approach requires a very high computational time.

1.3. Comparison with previous Hamilton-Jacobi-Bellman based models.
In [36] it is proposed a variational model for diffusion MR, settled in a continuous
framework, based on ideas from control theory.

In this model, it is imagined that an infinite number of particles starts at time 0
from the boundary ∂S of a given seed region S evolving along the streamline given
by the gradient ∇C∗S of a suitable cost function C∗S which assigns to each point x
a cost to reach the seed region S related to an optimal control problem. At time t
the evolution front (i.e. the level curves of C∗S) will represent the propagation along
the medium. If the seed region is sufficiently small, for short time 0 < t < τ we
have an approximate picture of the neural net near the seed region.

More precisely, the procedure used by the authors is summarized here (see Section
§2 in [36] and Section 4 for the notations):

1. A current cost Ψ : Rd × Sd−1 →]0,+∞[ (called by the authors the local cost)
is defined. If Γ : [a, b]→ Rd is a curve, its total cost of is

C(Γ) :=

∫ b

a

Ψ

(
Γ(t),

Γ̇(t)

‖Γ(t)‖

)
ds.

2. Given a seed region S, it is defined the value function C∗S : Rd → [0,+∞[ as

C∗S(x) := inf{C(Γ) : Γ(b) = x, Γ(a) ∈ S}.

It turns out that the value function C∗S is the solution of the Hamilton-Jacobi-
Bellman equation H(x,Du) = 0 with boundary data u|S = 0 where

H(x, p) = max
v∈Sd−1

{〈p, v〉 −Ψ(x, v)}.

3. The propagation front is the level set of the value function C∗S , and it evolves
with normal speed F given by

‖∇C∗S(p)‖F
(
p,
∇C∗S(p)

‖∇C∗S(p)‖

)
= 1.

4. Diffusion data define the front speed propagation F . The local cost Ψ and
the front speed F are related by the Legendre transform:

Ψ(x, v) := max

{
〈v, n̂〉
F (x, n̂)

: 〈v, n̂〉 ≥ 0

}
,

and, in the setting of the problem, the proposed local cost function Ψ is related
to the diffusion tensor D(p) (see Section 4.1 in [36]).
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5. Finally, we can consider different cost functions, i.e. different functions Ψ1,
Ψ2, which yield different value functions C∗S,1, C∗S,2 related to the same seed

region. The quotient C∗S,1(x)/C∗S,2(x) can be used to compare different costs.

If we take Ψ1 to be identically 1, the related cost C∗S,1(x) is the Euclidean
distance of x from S.

This method turns out to be very useful to establish the connectivity of a single
point p with the region S, since it is sufficient to consider the optimal trajectory
(minimizer of the cost) steering p on S, but gives few information about the con-
nectivity between two regions.

Experimental data show that neuronal fibers are not uniformly distributed in the
brain, hence it is natural to associate also a neuronal density to the seed region and
let this density evolve along the streamlines. This approach is not covered by [36],
since they do not consider the possibility to associate a density to the seed region.
Indeed, this will provide more robust information about the real path of neuronal
fibers, moreover the problem can be set in the more general framework of optimal
transportation theory.

The basic problem that we are going to investigate is about the connectivity
between two regions, each endowed with a (possibly nonconstant) density. If we
represent initial and final densities as gray scale images, the problem can be seen
as a find a continuous interpolant (warping) from the first image to the second one.
In Section §5.2.3 of [7], it is described a technique, based on optimal transportation
theory, to obtain this interpolation. It can be viewed as a geodesic problem in the
space of probability measures endowed with a metric called Wasserstein distance.
According to this, if we have two compactly supported probability measures µ1,

µ2 (in the smooth case, µi = ρiL d), there is a unique vector field ~F (x) such

that ~F (x)]µ0 = µ1, moreover ~F (x) = ∇ψ(x) where ψ is a scalar convex function,
and the geodesic joining µ0 and µ1 according to the Wasserstein distance is µt :=
(tx+(1− t)∇ψ(x))]µ0, i.e. the push forward of the initial measure along the points
of the straight line segment joining IdRd and ∇ψ.

The fundamental idea of our approach is to combine the optimal control and
optimal transportation approaches, i.e. construct a continuous warping that, in a
certain sense, will take into account the geometry induced by the optimal control
metric (hence the transport will not be done on straight lines). In the smooth
case, where most of our computation are still developed, the problem is essentially
reduced to an optimal control problem where densities are transported along optimal
trajectories, but this quite general approach allows in principle to treat much more
difficult situations.

1.4. An optimal control approach based on optimal mass transport the-
ory. In this paper we propose a model that takes the microstructural information
into account during the fiber trajectories building process in the case of DSI tractog-
raphy. Exploiting microstructural information, our model can be used to investigate
some ambiguities that often occur in white matter and are difficult to deal with,
e.g. distinguish between fiber crossing and kissing, improving the specificity and
accuracy of tractography results.

We aim to take into account the whole information given by the DDF in order
to reconstruct the actual underlying diffusion process, which as observed above is
highly anisotropic and takes place essentially along the fiber paths.
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The knowledge of the underlying diffusion process allows in principle to recover
the whole neuronal fiber net by considering the streamlines corresponding to dis-
placements along high probability directions as encoded in the DDF. These should
correspond to the actual fibers. Moreover, the ratio between the actual number
of fibers crossing in a point associated to different directions will be equal to the
ratio between the respective direction probabilities. Another constraint to take into
account is that each fiber has no endpoints in the interior of the brain white matter:
in other words, the unit tangent field to each fiber has to be divergence free.

Having in mind the previous considerations, we will focus here on the connectivity
problem, i.e. the problem of finding the bundle of fibers connecting two given
(small) cerebral regions, by considering it as the superposition of paths that fulfill
the following requirements: their tangents form a solenoidal field that fits as much
as possible with the velocity distribution given by the DDF.

Observe that we may consider each single fiber path connecting two given regions
as the trajectory of a particle moving along this fiber, starting from the first region
and reaching the second one in a fixed lapse of time T > 0.

By considering in the first region a mass distribution given by one moving particle
on each fiber, we obtain an evolution law relating at each time 0 < t < T the
velocity of the particles with their distribution, which is quantitatively expressed
by the continuity equation (see 2.2). Since neither sources nor sinks are present
along the fibers (solenoidality assumption), the total mass during the process is
conserved.

We may thus formulate the following problem: consider two given regions, assign
to each one a mass distributions with same total mass, and transport the first mass
distribution to the second one by respecting as much as possible the probability
distribution on the velocities given by the DDF.

This amounts to assign a cost to any such mass transportation process that
penalizes particle trajectories (transport paths) with lower probability velocity dis-
tribution according to the DDF data.

The minimizing set of trajectories will give as a byproduct a reasonable picture
of the neuronal fiber bundle connecting the two regions.

This kind of problem is known as an optimal mass transportation problem, and
in general it admits a solution under mild hypothesis. However, without some
regularity assumption, solutions turn out to be difficult to interpret.

In the regular cases, the optimal transport solutions can be viewed as a su-
perposition of noncrossing trajectories (transport paths) starting from the initial
configuration to the final one (in our situation, they are the trajectories followed
by each particle), and the cost function can be expressed as an integral of a cost
function assigned to every single trajectory.

The optimization procedure reduces then to minimize the cost of every trajectory.
This can be done with standard techniques in the framework of optimal control
theory. The superposition of optimal trajectories will give us the picture of the
bundle of fibers connecting the two considered regions.

We propose here two different cost functions, which are described in Sections 2.3
and 2.4, which provide optimal transport paths solutions between two given region
thanks to Theorem 2.5, yielding in particular well-posedness of the proposed model.

In this way we are able to provide a quantitative criterion that measures the
connectivity between two localized cerebral regions (see formula (10)), extending
similar criteria in [36]. Roughly speaking, we compare the Euclidean distance of
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points belonging to the distinct regions with the geodesic distance measured along
the corresponding optimal transport paths, which in turn corresponds to the length
of the fibers connecting the two regions. For instance, a geodesic distance consider-
ably greater than the euclidean one has to be interpreted as a poor or totally absent
neuronal fiber connection between those regions.

The plan or the paper is the following. In the next section we first recall and
analyze those quantities related to the DSI data that will enter in our modelization.
We then recall basic theoretical background on mass transportation theory and its
relation with optimal control and Hamilton-Jacobi PDE’s, proving in particular
Theorem 2.5. We hence discuss two kind of cost functions related to our problem
and analyze their regularity properties to ensure existence of optimal transport
paths solutions according to Theorem 2.5.

The final section is devoted to the discussion on advantages and shortcomings
of our model, the formula giving our quantitative criterion for brain connectivity,
together with further remarks and open problems. In the Appendix we fix notations
and give some basic results.

2. Optimal transportation–based models.

2.1. Discussion of the DSI data. The DDF function assigns to each voxel a
probability distribution on the space of velocities. A voxel is represented by a set
Q(α), defined as the unit cube centered at α ∈ Z3. For each (α, v) ∈ Z3 × R3,
let N(α) be the total number of molecules contained in Q(α), and N(α, v) be the
number of molecules in Q(α) displaced of vδt in the time δt. Define the (averaged)
displacement density function (DDF) fD : Z3 × R3 → [0,+∞[ by setting:

fD(α, v) :=
N(α, v)

N(α)
.

Due to the highly anisotropic character of the medium where diffusion occurs, the
fraction of molecules displaced in the direction of a neuronal fiber will be significa-
tively different from the fraction of molecules displaced in the orthogonal directions.
Moreover, many fibers aligned in the same direction will result in an higher value
of the DDF corresponding to that direction than a single fiber.

By construction, we have ∫
R3

fD(α, v) dv = 1,

i.e. fD(α, ·) ∈ L1(R3) is a probability density on R3. This means that if we consider
all possible displacements v ∈ R3 and sum all the fractions of molecules which moved
in that directions, we recover the whole of the initial number of molecules in Q(α).

The main properties of fD are the following:

1. if we fix α and a direction w ∈ S2, we have that the probability of a displace-
ment in direction w follows a normal distribution according to its magnitude;

2. for α fixed, we have that if two directions are sufficiently close, the respective
distributions are close, i.e. w 7→ fD(α,w) is continuous;

Of particular significance for the construction of our model is the set M(α) of
displacements with cumulative probability less or equal 1/2. Remark that this set
may be different from the graph of the ODF usually considered in current models.

The set M(α) contains the zero vector and its boundary is given by those vectors
v whose modulus is the median of the magnitudes of observed displacements in the
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direction v/|v|. This set is in general nonconvex, however it is centrally symmetric.
We can think to ∂M(α) as a set of averaged observed velocities.

We associate the set M(α) to the center of the voxel. We consider a suitable
continuous extension f(x, v) of the DDF to the whole voxel in such a way that

fD(α, v) =

∫
Q(α)

f(x, v) dx,

and, for any direction w ∈ S2 and λ ∈ R, the profile of f(x, λw) is similar to
fD(α, λw). We set for instance

f (x, λw) = a(x,w)e−
λ2

2r(x,w) ,

where a, r : R3 × S2 →]0,+∞[ are continuous strictly positive functions bounded
away from 0 such that∫

w∈S2

∫ +∞

0

f(x, λw)λ2 dλ dΣ(w) = 1,

with dΣ the area element of S2. We assume that, for fixed x, w 7→ r(x,w) and
w 7→ a(x,w) are Lipschitz continuous functions.

We may hence define the following set of displacements M(x) for any x ∈M(α):

M(x) :=

{
v ∈ R3 \ {0} :

∫ |v|
0

f

(
x, s

v

|v|

)
ds ≤

∫ +∞

|v|
f

(
x, s

v

|v|

)
ds

}
∪ {0}

=

{
v ∈ R3 \ {0} : |v| ≤

√
2c

(
x,

v

|v|

)
Erf−1(1/2)

}
∪ {0},

where Erf−1 is the inverse function of

Erf(s) :=
2√
π

∫ s

0

e−x
2

dx.

Boundary points of this set are precisely those displacement with cumulative prob-
ability function 1/2. We also define the dual Z(x) of M(x) by setting:

Z(x) := {p ∈ R3 : 〈p, v〉 ≤ 1, ∀v ∈M(x)}.

The sets M(x) inherit from f some regularity properties: x 7→M(x) is continuous
with respect to the Hausdorff distance, moreover M(x) is compact, star-shaped
and centrally symmetric. These properties of M(x) will be crucial in the regularity
issues for the optimal mass transportation problem, defined in term of the sets
M(x), that we discuss in the next sections.
Let us summarize these and other immediate properties of the sets M(x) and Z(x).

Proposition 1. We give a first set of properties on the sets M(x):

(M1) x 7→M(x) is continuous with respect to the Hausdorff distance (see 4);
(M2) 0 ∈ int

(
M(x)

)
, for every x ∈ R3;

(M3) M(x) is a compact set of R3, for every x ∈ R3;

(M4) M(x) = int
(
M(x)

)
, for every x ∈ R3;

(M5) M(x) is strictly star-shaped with respect to 0, for every x ∈ R3.

Proof. All the listed properties follow immediately from the definition of M(x).

Remark 1. We briefly discuss the physical meaning of some of these properties:
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- Property (M2) implies that we should allow small displacements in all the
directions, due to possible measurement uncertainity. This follows from the
fact that r(x,w) > 0 and hence inf{r(x,w) : w ∈ S2} = min{r(x,w) : w ∈
S2} > 0.

- Property (M3) says that only bounded displacements are of physical signif-
icance, indeed the probability of a displacement in a given direction decays
exponentially with its magnitude. This follows from the fact that sup{r(x,w) :
w ∈ S2} = max{r(x,w) : w ∈ S2} < +∞.

- Property (M4) is justified by the fact that every displacement measurement
is affected by an error. It follows from the continuity of r(x, ·).

- Property (M5) implies that there are no holes in M(x): if v is a nonzero
probability displacement, so are the displacements λv for every λ ∈ [0, 1].
This follows from r(x,w) > 0.

Proposition 2. The dual Z(x) of M(x) enjoys the following properties:

(Z1) x 7→ Z(x) is a continuous with respect to the Hausdorff distance;
(Z2) 0 ∈ int

(
Z(x)

)
, for every x ∈ R3;

(Z3) Z(x) is a compact set of R3, for every x ∈ R3;

(Z4) Z(x) = int
(
Z(x)

)
, for every x ∈ R3;

(Z5) Z(x) is convex for every x ∈ R3.

Proof. (Z1) follows from (M1), (Z2) follows from the boundedness property (M3),
(Z3) follows from the nondegeneracy property (M2), (Z4) follows from (Z5) and
(Z2), while (Z5) is trivial.

These properties of M(x) will be crucial in the regularity issues for the optimal
mass transportation model, defined in term of the sets M(x), that we discuss in the
next sections.

2.2. Relation with optimal transportation and Hamilton-Jacobi theory.
Assume to have two compactly supported mass distributions with densities ρ0 and

ρ1, such that

∫
R3

ρ0(x) dx =

∫
R3

ρ1(x) dx, representing respectively the initial and

the final configuration of a distribution of particles transported trough the neuronal
fiber paths. As described in Subsection 1.4, a way to recover the neuronal fiber bun-
dle connecting ρ0 with ρ1 is to consider the superposition of the particle trajectories
as the solution of an optimal mass transportation problem with marginals ρ0 and
ρ1. Namely, we consider the problem of transporting ρ0 in ρ1 minimizing a suitable
cost which depends on the path followed by the mass particles and which reflects the
behavior of the extended DDF. This problem is referred to as a Monge-Kantorovich
problem, and it admits an equivalent fluid dynamics interpretation due to Benamou
and Brenier (see [12], [13], and Chapter 8 in [42]), that we describe next.
Adopting the Eulerian point of view, for 0 < t < 1 we denote by ρt(x) the density of
a fluid at time t, such that ρt=0(x) = ρ0(x) and ρt=1(x) = ρ1(x), and by vt(x) the
corresponding velocity field: these quantities are related by the continuity equation

∂tρt + div(vtρt) = 0,

expressing conservation of the fluid mass. For (ρt, vt) we consider the following
minimization problem:

minimize

∫ 1

0

∫
R3

L(x, vt(x))ρt dx dt, (1)
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among all the absolutely continuous solution t 7→ ρt dx of the continuity equation
(which must be understood in the weak sense, see Section 4) such that µt := ρt dx
converges in the sense of measure respectively to the initial and final data µ0 :=
ρ0 dx and µ1 := ρ1, dx when t → 0+ and t → 1−. The function L : R3 × R3 →
[0,+∞[ will be referred as a suitable current cost related to our problem. It will
penalize the velocities with lower probability according to the DDF. If the vector
field vt is sufficiently smooth, it is possible to consider the characteristic system

d

dt
Tt = vt ◦ Tt

Tt=0 = idR3 ,

(2)

and for each initial datum µ0 we have that the solution µt is given by µt = Tt]µ0,
where Tt]µ0 denotes the push forward of the measure µ0 by the vector field Tt,
namely ∫

R3

ϕ(x) dµt(x) =

∫
R3

ϕ(Tt(x)) dµ0(x).

In this case (1) reduces to

inf

{∫ 1

0

∫
R3

L(Tt(x), Ṫt(x)) dµ0 dt : T0(x) = x, T1]µ0 = µ1

}
,

which can be rewritten as:

inf

{∫
R3

∫ 1

0

L(γx(t), γ̇x(t)) dt dµ0 : γx(0) = x, γx(1)]µ0 = µ1

}
.

If we introduce the cost:

c(x, y) := inf

{∫ 1

0

L(γx(t), γ̇x(t)) dt, γx(0) = x, γx(1) = y

}
, (3)

the problem can be recasted in the Monge’s form:

inf

{∫
R3

c(x, γx(1)) dµ0 : γx(0) = x, γx(1)]µ0 = µ1

}
. (4)

In this case, if we set γx(t) = vt(x) and assume that vt is regular enough to solve
(2), we have that γx(t) is optimal for

inf

{∫
R3

c(x, γ̃x(t)) dµ0 : γx(0) = x, γ̃x(t)]µ0 = γx(t)]µ0

}
. (5)

We refer to such a vt as an optimal interpolating vector field, which allows us to
reconstruct the optimal trajectories.

It is well known that Monge’s problem requires some regularity assumptions to
admit a solution. But due to lack of compactness the problem cannot be restricted
in general to the class of absolutely continuous measures. A relaxed formulation on
the space of probability neasures, introduced by Kantorovich in 1942, involves the
notion of transport plans rather than transport paths or optimal transport vector
fields, leading to generalized solutions. Consider the set of transport plans from µ0

to µ1 defined by

Π(µ0, µ1) =

{
π ∈P(R3 × R3) :

π(A× R3) = µ0(A), for all µ0-measurable A
π(R3 ×B) = µ1(B), ∀ µ1-measurable B

}
,
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and the following class of functions:

F(µ0, µ1, c) := {(f, g) ∈L1(R3, µ0)× L1(R3, µ1)

: f(x) + g(y) ≤ c(x, y) for µ0-a.e. x, µ1-a.e. y}.

The Kantorovich’s problem is to find

inf
π∈Π(µ0,µ1)

∫
R3×R3

c(x, y) dπ(x, y). (6)

This is of course a relaxation of the Monge’s problem: indeed if γx(1) is optimal in
the Monge’s problem, then (id×γx(1))]µ0 is optimal in the Kantorovich’s problem.
We recall the following result (see Theorem 1.3 in Ref. [42]) ensuring existence of
a solution for Kantorovich’s problem:

Theorem 2.1. Let X = Y = R3, µ0, µ1 be probability measures on R3, and let
c : R3 × R3 → [0,+∞] be a l.s.c. cost function. Then

inf
π∈Π(µ0,µ1)

∫
R3×R3

c(x, y) dπ(x, y) = sup
(f,g)∈F(µ0,µ1,c)

∫
R3

f dµ0 +

∫
R3

g dµ1. (7)

Moreover the infimum in the left hand side is attained, and to compute the supre-
mum in the right hand side we can restrict to bounded and continuous functions in
F(µ0, µ1, c).

The model case is given by c(x, y) = |y − x|p, i.e. a power of the Euclidean
distance between x and y. In this case we can give the following:

Definition 2.2. Let X = Y = R3, 1 ≤ p < +∞, and µ0, µ1 be probability
measures on R3. We define the p-Wasserstein distance by setting

Wp(µ0, µ1) := inf
π∈Π(µ0,µ1)

(∫
R3×R3

|x− y|p dπ(x, y)

)1/p

,

this turns out to be a metric on the space of probability measures with compact
support (see Section 7.1 in [6]).

To have more insight on optimal transport plans, we recall the following (cfr.
Definition 2.33 in [42])

Definition 2.3. Let c : R3 × R3 → [0,+∞] be l.s.c. A function g : R3 → R is
c-concave if there exists a function ψ such that

g(y) = ψc(y) := inf
x∈R3
{c(x, y)− ψ(x)}.

c-concave functions possess a PDE characterization that turns out to be ex-
tremely useful in our setting (we refer to [10] for a comprehensive introduction to
the theory of viscosity solutions of Hamilton-Jacobi equations):

Proposition 3. Let f be a Lipschitz continuous function, and L : R3 × R3 → R
be continuous in x-variables and such that v 7→ L(x, v) is convex for every x ∈ R3.
Consider the function

ϕ(t, x) = inf

{
f(y) +

∫ t

0

L(ξ(t), ξ̇(t)) dt : ξ(0) = y, ξ(t) = x

}
(8)



12 A. DADUCCI, A. MARIGONDA, G. ORLANDI AND R. POSENATO

Then we have that ϕ(0, x) = f(x), ϕ(1, x) is c-concave, and ϕ(t, x) is the viscosity
solution of the following Hamilton-Jacobi equation:{

∂tϕ(t, x) +H(x,Dxϕ(t, x)) = 0,

ϕ(0, x) = f(x),
(9)

where H is the Legendre-Fenchel transform of L (see Corollary 3.6 p.151 in [10]).

We recall next the following characterization of optimal transport plans, referring
to Section 2.4 in Ref. [42] and [2] for the proof and further references:

Theorem 2.4. Assume that there exists a µ0-measurable function c1 : R3 → R
and a µ1-measurable function c2 : R3 → R such that c(x, y) ≤ c1(x) + c2(y) for all
(x, y) ∈ R3 × R3 and that

inf
π∈Π(µ0,µ1)

∫
R3×R3

c(x, y) dπ(x, y) < +∞.

Then:

1. there exists a c-concave function f ∈ L1(R3, µ0) such that f c ∈ L1(R3, µ1)
and (f, f c) achieves the supremum in (7).

2. Kantorovich’s problem (6) has a solution, and a plan π ∈ Π(µ0, µ1) is optimal
iff π is concentrated on the set

{(x, y) ∈ R3 × R3 : f(x) + f c(y) = c(x, y)}.
3. If c(x, y) is continuous, bounded below, and µ0, µ1 are compactly supported,

then f, f c are upper semicontinuous. If x 7→ c(x, y) is locally Lipschitz on a
set U and the Lipschitz constant is locally independent of y, then f can be
chosen to be locally Lipschitz on U .

We notice that Proposition 3 applied taking as f the c-concave function given by
Theorem 2.4 produces a function ϕ, solution of (9) (for further details on this, we
recall Subsection 2.5.2, Subsection 5.4.6 in Ref. [42]). If ϕ is sufficiently smooth,
problem (6) admits a solution in the original Monge’s formulation.

More precisely we have:

Theorem 2.5. Assume that

1. L : R3×R3 → R is continuous in the x-variables and convex in the v-variables;
2. L is symmetric in the v-variables, i.e. L(x, v) = L(x,−v) for every x, v ∈ R3;
3. the Legendre transform H of L belongs to Liploc(R3 ×R3) and it is C1 in the

p-variables;
4. the cost c(x, y) satisfies hypothesis of Theorem 2.4.

Then problem (6) admits a solution with a C1,1 displacement interpolation, and
the corresponding optimal interpolating velocity vector field vt in the characteristic
system Ṫt(x) = vt(Tt(x)), T0(x) = x, is given by vt(x) = ∇pH(x,Dxϕ(t, x)).

Proof. The proof is inspired by the remark at the beginning of p.181 in [42]. We
recall that a function h(x) is called semiconcave if there exist C > 0 such that the
function x 7→ h(x)− C|x|2 is concave.

According to Theorem 2.4, the initial datum f of Equation (8) can be chosen to
be locally Lipschitz continuous.

By Theorem 5.3.8 in Ref. [15], we have that viscosity solutions of Equation (8)
are locally semiconcave in ]0, T [×R3. Observe that since L(x, q), and hence H(x, p)
are even respectively in q and p, we have c(x, y) = c(y, x).
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Let us now consider the optimal transport from µ1 to µ0. By the strict convexity
assumption on L, it is unique and it is simply obtained by reversing the velocity
vector field vt into −vT−t, where vt is the optimal interpolating vector field related
to optimal transportation from µ0 to µ1 for 0 ≤ t ≤ T .

By Equation 13.5 in Ref. [43], we have

∂vL(x, vt) = Dxϕ(t, x) and ∂vL(x,−vT−t) = Dxψ(t, x)

a.e., where ψ solves the Hamilton Jacobi equation ∂tψ +H(x,Dxψ) = 0, ψ(0, x) =
f c(x) corresponding to the optimal transport from µ1 to µ0.

This yields Dxϕ(t, x) = −Dxψ(T − t, x). Since both ϕ and ψ are semiconcave in
]0, T [×R3, we have that there exists K > 0 such that for fixed s, t ∈]0, T [ we have
D2
xϕ(t, x) ≤ K and D2

xψ(s, x) ≤ K in the sense of distributions of R3, moreover
also −D2

xϕ(t, x) = D2
xψ(T − t, x) ≤ K. This implies that, for fixed t, x 7→ ϕ(t, x) is

semiconcave and semiconvex in R3 and hence it is C1,1(R3) (see [15] for details on
properties of semiconcave functions).

According to Chapter 13, Equation 13.5 in Ref. [43], the two relations

∇vL(x, vt(x)) = Dxϕ(t, x) and vt(x) = ∇pH(x,Dxϕ(t, x))

define a vector field vt which, through the solution Tt(x) of the characteristic system
(2), realizes the minimum in the transport problem between ρ0 and Tt]ρ0 for every
t ∈]0, T [, i.e. vt is the optimal interpolating velocity vector field.

In the models proposed in Subsections 2.3 and 2.4, we choose a current cost L
penalizing the deviations of velocities from being on the boundary of M(x) and
ensuring the regularity properties requested in Theorem 2.5. In particular, the
whole information on the optimal interpolating transport vector field vt is encoded
into the solution ϕ of the Hamilton-Jacobi equation (8) associated to the problem.

Viscosity solutions ϕ of Equation (8) can be viewed as value functions of a
suitable optimal control problem (cfr. [10]). We will actually formulate our models
relying on this point of view, partially following ideas from [21] and [2]. Recall that
there is a well-established literature to effectively treat, also from a numerical point
of view, such class of optimal control problems.

2.3. Minimum time model. The first model we propose corresponds essentially
to choose

L(x, v) :=

{
1, if v ∈M(x),

+∞, elsewhere .

The transport cost associated to this choice is given by:

c1(x, y) := inf{T > 0 : there exists γ : [0, T ]→ R3 such that

γ(0) = x, γ(T ) = y, γ̇(t) ∈M(γ(t)) for a.e. t ∈ [0, T ]},
i.e. c1 is the minimum time needed to steer x to y along absolutely continuous
curves ξ(·) satisfying ξ̇(t) ∈ M(ξ(t)) for a.e. t. Notice that according to Aumann’s
Theorem (see e.g. Theorem 5.15 in Ref. [17]), in the definition of c1, M(x) can be
replaced by its convex hull . If we set H1(x, p) = δM(x)(−p) − 1, where δC(p) :=
sup
q∈C

q · p is the support function, it is known (see Proposition IV.2.3 and Theorem

IV.2.6 in [10] for the proof) that for fixed x, the function y 7→ c1(x, y) is the unique
continuous and bounded below viscosity solution of H1(y,Du(y)) = 0 for y ∈ R3 \
{x} coupled with u(x) = 0. Moreover c1 is a metric on R3 and there are constants
k1, k2 > 0 such that k1|x−y| ≤ c1(x, y) ≤ k2|x−y|. Unfortunately H1 is not strictly
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convex, whence the solution of (8) may not satisfy the regularity assumptions in
Theorem 2.5. To tackle this difficulty, we add a quadratic perturbation depending
on a small parameter ε > 0 in order to obtain smooth approximate solutions. We
set:

cε1(x, y) := inf

{∫ T

0

(
1 + ε

|ż(t)|2

2

)
dt : z : [0, T ]→ R3,

z(0) = x, z(T ) = y, ż(t) ∈M(z(t)) for a.e. t ∈ [0, T ]}.

Notice that for ε→ 0+ we have cε1(x, y)→ c1(x, y). For every fixed x, the function
v 7→ Lε1(x, v) := 1 + ε|v|2/2 is strictly convex, and we denote by p 7→ Hε

1(x, p) its
Legendre transform, which turns out to be C1. We notice that, according to Propo-
sition 1, Theorem 2.5 applies for Lε1, yielding a C1,1 solution ϕε of (8). In particular,
the optimal interpolating vector field vεt is given by vεt (x) = ∇pHε

1(x,Dxϕε(t, x))
for a.e. x. We associate to this cost a generalized Wasserstein distance, defined, for
two given probability measures µ0, µ1, by

W
cε1
2 (µ0, µ1) = inf

π∈Π(µ0,µ1)

{∫
R3×R3

cε1(x, y) dπ

}1/2

.

In Section 2.5 we will formulate a quantitative brain connectivity criterion in term
of this distance.

2.4. Intrinsic metric model. In this second model, we modify the infinitesimal
metric on R3 in order to take into account the anisotropic character of the diffusion
as expressed by the DDF, by using the gauge function (see 4 for a definition) to
penalize vt(x) according to its distance to M(x). This equips R3 with the struc-
ture of a geodesic space, where the gedesics correspond to the optimal transport
trajectories.

Due to technical reasons (see Subsection 3.2), we relax the problem replacing the
set M(x) with its convex hull and set

L2(x, v) = γ2
coM(x)(v).

We define the following cost function for x, y ∈ R3:

c2(x, y) := inf

{∫ 1

0

γ2
coM(z(t))(ż(t)) dt : z(0) = x, z(1) = y

}
,

and accordingly we define the distance

W c2
2 (µ0, µ1) = inf

π∈Π(µ0,µ1)

{∫
R3×R3

c2(x, y) dπ

}1/2

.

In this case there are no constraints on velocities, so that the Hamiltonian H2

associated to the Lagrangian L2 is simply given by

H2(x, p) := sup{〈p, v〉 − δ2
Z(x)(v) : v ∈ R3}.

Also in this case, thanks to Propositions 1 and 2, Theorem 2.5 applies, due to strict
convexity of L2, so we obtain a solution of the Monge problem and the optimal
interpolating vector field vt is given by vt(x) = ∇pH2(x,Dxϕ(t, x)) for a.e. x.
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2.5. A quantitative brain connectivity criterion. From a medical point of
view, it turns out to be important to know not only whether or not two regions are
connected by a fiber bundle, but also the quantity of fibers forming that connecting
bundle. This connectivity problem is relevant in particular to describe situations
where, due to medical pathologies, we have two cerebral areas connected by fibers
that pass through a damaged region where the connection is interrupted or strongly
hampered: if the connection was ensured by several fibers, the damaged area will
not jeopardize the connection between the two given areas as much as in the case
of a scarce number of connecting fibers.

We suggest the following criterion in order to quantitatively estimate the con-
nectivity of two regions D0 and D1, by means of the transport distance W ci

2 : let
µ0 and µ1 be two absolutely continuous measures with the same mass, constant
densities, and support coinciding respectively with D0 and D1. Define the ratio

Q(D0, D1) =
W ci

2 (µ0, µ1)

dH(D0, D1)
, i = 1, 2, (10)

of the transport distance W ci
2 (related to the transport cost ci between µ0 and µ1,

as defined in Subsections 2.3 and 2.4) and the Hausdorff distance dH (related to the
Euclidean metric) between D0 and D1. A small quotient in (10) implies a high fiber
density connection between D0 and D1. This kind of information is apparently not
provided by other tractography models that ignore information on fiber density.

The comparison between the value of Q(D0, D1) obtained for the same brain
areas in healty (reference) and pathological subjects could be an indicator of the
effective damage occurred.

2.6. Exact solutions. In both the models described in Subsections 2.3 and 2.4,
in order to apply Theorem 2.5 to obtain the required smoothness yielding the op-
timal interpolating vector field vt, some manipulations to the cost functions were
performed. We underline the fact that, indeed, the transport problem admits a so-
lution in the Kantorovich’s reformulation even when, due to the lack of smoothness,
it is not possible to define a classical optimal interpolant vector field and a classical
solution to the characteristic system (see Theorem 2.4).

Indeed, considering the original cost function c1 of Subsection 2.3 (corresponding

to ε = 0) and the unmodified Lagrangian L̃2(x, v) = γ2
M(x)(v) of Subsection 2.4 does

not prevent the application of Theorem 2.4 and the definition of corresponding
generalized Wasserstein distances even in this case. In particular, the connectivity
criterion of Subsection 2.5 can be stated even in these cases.

The quadratic perturbation added to c1 in Subsection 2.3 is a regularizing term
in order to have a representation of quasi-optimal transport problem solutions by
means of interpolating vector fields, which is much more intuitive than to make use
of so-called dynamical transport plans, i.e. transporting plans depending on time,
which would characterize solutions in a more general setting.

In [38] and [39] it is shown that, under suitable assumptions, it is possible to
associate to an Hamilton-Jacobi equation H(x,Du) = 0 a generalized distance (the
model case is H(x, p) = |p|2 − 1, which is related to Euclidean distance). More
precisely, it is possible to construct a metric S(y, x) such that, for fixed x, the
Lipschitz continuous map u(y) := S(y, x) is a viscosity solution of H(y,Du(y)) = 0
in Rd \ {x}, with boundary datum u(x) = 0. This result, which is well known in
the convex case, still holds in certain nonconvex cases. Indeed, in our framework,
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if we set H(x, p) = γ2
M(x)(v) − 1, by Proposition 1, the results of Section 4 in [38]

can be applied, ensuring the existence of such metric. Accordingly, we can set
c(x, y) = S(x, y) and solve the Monge-Kantorovich transport problem, stating the
connectivity criterion.

However, in the nonconvex cases, it may happen that the metric S is not a path
metric: the distance between two points is no longer given by the infimum of the
(intrinsic) lenght of the curves joining x, y, i.e. it may happen that

S(y, x) < S`(y, x) := inf
ξ(·)

{
sup

∑
i

S(ξ(ti−1), ξ(ti))

}
,

where ξ : [0, T ] → Rd is a continuous curve joining x to y, and the supremum is
taken with respect all the finite increasing sequence t1 < ... < tn with t1 = 0 and
tn = T .

S` is a metric too, and it is called the path metric associated to S. We have
S` = S if and only if S is a path metric.

This fact prevents the recovering of an optimal interpolating vector field and the
solution of the characteristic system. Theorem 5.1 in [38] states that, however, in
our cases the path metric S`(y, x) is the metric associated to the convexification of
p 7→ H(x, p).

3. Final remarks and open problems. In this section we discuss some issues
related to our model, and present some directions that need further investigation.

3.1. Advantages of the proposed model. It is an experimental fact that the
measurements in each voxel enjoy very poor robustness properties, and sometimes
we can have a voxel where no information are available, surrounded by regular
voxels. This missing cell problem is not adequately faced by classical models, since
they assume that no fibers can cross such voxels. In order to avoid this situation, we
propose to assign to each empty voxel Qα a constant profile M(α) given by a ball,
whose radius should be determined by experimental data. In this way, the missing
information in the voxel will be in some sense reconstructed by the information
contained in the neighboring ones. Indeed, in our construction, if the infinitesimal
metric is given by (the dual of) a ball, it will not change the direction of integral
lines hence will not affect the data coming from the neighborhood. So fibers will
be propagated in the missing voxel according to the behavior in the nearby ones.
The smaller the radius of the assigned ball, the stronger must be the surrounding
information to have a fiber passing through the missing cell. The lowest possible
radius is given by the sensitivity of instruments.

3.2. Mathematical issues and drawbacks. From a mathematical point of view,
the main issue here is to provide from an optimal transport plan, solution of the
Monge-Kantorovich problem, a unique optimal interpolating velocity vector field vt
describing the evolutive process. The obstruction is given by the lack of smoothness
of vt, due to the presence in a voxel of multiple fibers crossing along different
directions. The strategy that can be used to overcome these difficulties are based on
explicit representation formulas for the solutions, regularization procedures and, in
the case of nonuniqueness, also on selection principles (e.g. selecting the smoothest
one among all the solutions). We refer to [6] and [5] for a complete analysis of these
topics, just recalling that the use of selection principles with respect to certain
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criteria (e.g. curvature of fibers) is extensively used also in other tractography
models (e.g. [45]).

In the second model, described in Subsection 2.4, the problem was relaxed by
making a convexification of the sets M(x), similar to the (implicit) convexification
made in [36] by using the Legendre transform. This relaxation has no physical
meaning, since the sets M(x), giving the average displacement probabilities, are
characterized by strong anisotropy, hence are nonconvex. However, in the noncon-
vex case, since Lax-Hopf’s representation formula no longer holds for the associated
Hamilton-Jacobi equation, it is not possible in general to define a optimal inter-
polating velocity vector field vt based on characteristic curves. For details and
counterexamples on this delicate point, we refer to [38].

3.3. Work in progress. Reconstructing a reliable picture of the whole net of neu-
ronal fibers will actually require a large number of implementations of our model,
choosing several pairs of brain areas according to experimental data and/or our
quantitative criterion. The algorithmic implementation and the numerical valida-
tion of our model is currently still under investigation. Our aim is to provide also
an equivalent description of this model in the framework of mean field games, and
take advantage of the associated numerical methods (see e.g. [1]).

4. Appendix. Our environment will be the Euclidean n-dimensional space Rn.
We will denote by L n and H n respectively the Lebesgue and the Hausdorff n-
dimensional measures.

4.1. General notations and definitions. Our main reference for the properties
of convex sets in Rn is [37]. A detailed introduction to the theory of viscosity
solutions and its applications is given in [10].

Definition 4.1. Let K1,K2 be compact subsets of Rn. The Hausdorff distance
between K1 and K2 is given by:

dH(K1,K2) := max

{
sup
x∈K1

dE(x,K2), sup
y∈K2

dE(y,K1)

}
.

This function is a pseudometric on the nonempty elements of the power set 2R
n

:=
{A : A ⊆ Rn} and a metric on the compact subsets of Rn. Unless explicitly stated,
we will always equip the compact subsets of Rn with this metric.

Definition 4.2. Let K ⊂ Rn, a ∈ K. We say that K is convex iff for every
x, y ∈ K, λ ∈ [0, 1] we have λx+ (1− λ)y ∈ K. Given K ⊆ Rn, we will denote by
co(K) its convex hull, namely the intersection of all convex subsets of Rn containing
K.

Definition 4.3. Let K be a closed convex subset of Rn. We define:

1. the support function to K is the function δK : Rn → R defined by

δK(q) = sup
p∈K
〈q, p〉,

and we recall that δK(q) = 〈p0, q〉 for some p0 ∈ K iff q ∈ NK(p0), where

NK(p0) := {v ∈ Rn : 〈v, p− p0〉 ≤ 0 for all p ∈ K}

is the normal cone in the sense of convex analysis.
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2. if 0 ∈ int(K), the gauge (Minkowski) function of K is defined by:

γK(q) = inf{λ > 0 : q/λ ∈ K}.

4.2. Measure theoretic solutions of the continuity equation. We collect here
the basic facts on the measure solutions of the continuity equation, we refer for all
the details to [6].

Definition 4.4. We denote by Mloc(Rd) the set of signed Radon measures on Rd,
by M+

loc(Rd) the set of non-negative Radon measures on Rd and by Mloc(Rd;Rh)

the set of Rh-valued Radon measures on Rd. We recall that the push-forward G]µ
of a measure µ on Rd through a measurable vector field G : Rd → Rd is defined by
setting for all ϕ ∈ C0

c (Rd) by∫
Rd
ϕ(x) dG]µ(x) =

∫
Rd
ϕ ◦G(x) dµ(x),

equivalently G]µ(B) = µ(G−1(B)) for every B ⊆ Rd.
We will denote by P(Rd) the set of all probability measures on Rd. For p ∈ R we
define the set

Pp(Rn) :=

{
µ ∈P(Rn) :

∫
Rn
|x|p dµ < +∞

}
.

Definition 4.5. Let {µn}n∈N, µ be measures on Rd. We say that µn converges
narrowly (or weakly∗) iff

lim

∫
Rd
f(x) dµn(x) =

∫
Rd
f(x) dµ(x),

for every continuous bounded function f : Rd → R.

Definition 4.6. Given T > 0, we consider the continuity equation:

∂tµt + div(νt) = 0, in Rd × (0, T ), (11)

where µt,νt are Borel families of measures in Mloc(Rd) and Mloc(Rd;Rd) respec-
tively, defined for t ∈ (0, T ) satisfying for all R > 0∫ T

0

|µt|(B(0, R)) dt < +∞, VR :=

∫ T

0

|νt|(B(0, R)) dt < +∞, (12)

and the equation (11) holds in the sense of distributions, i.e.∫ T

0

∫
Rd
∂tζ(x, t) dµt(x) dt+

∫ T

0

∫
Rd
∇x(ζ(x, t)) dνt(x) dt = 0, (13)

for every ζ ∈ C1
c (Rd × (0, T )).

We recall that, thanks to the disintegration theorem, we can identify (νt)t∈[0,T ]

with the measure ν =
∫ T

0
νt dt ∈Mloc(Rd × (0, T );Rd) defined by:

〈ν, ζ〉 =

∫ T

0

(∫
Rd
ζ(x, t)dνt

)
dt, ∀ζ ∈ C0

c (Rd × (0, T );Rd).

Similarly, we can identify (µt)t∈[0,T ] with a measure

µ =

∫ T

0

µt dt ∈Mloc(Rd × (0, T )).
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Lemma 4.7. Let T > 0 and (µt,νt)t∈(0,T ) be a Borel family of measures satisfying
(12) and (13). Then there exists a unique weakly* continuous curve [0, T ] 3 t 7→
µ̃t ∈Mloc(Rd) such that µt = µ̃t for L 1-a.e. t ∈ (0, T ); if ζ ∈ C1

c (Rd× (0, T )) and
t1, t2 ∈ [0, T ] with t1 ≤ t2 we have:∫

Rd
ζ(t2, x) dµt2 −

∫
Rd
ζ(t1, x) dµt1 =

=

∫ t2

t1

(∫
Rd
∂tζ(t, x) dµt(x) +

∫
Rd
∇x(ζ(t, x)) dνt(x)

)
dt.

Moreover if µ̃s(Rd) ∈ R for some s ∈ [0, T ] and lim
R→+∞

R−1VR = 0, then the total

mass µ̃t(Rd) ∈ R and is constant.

Definition 4.8 (Solution of continuity eq.). Let T > 0, we denote by CE([0, T ])
the set of time-dependent measures (µt,νt)t∈[0,T ] such that

1. t 7→ µt is weakly* continuous in Mloc(Rd) satisfying (12);
2. (νt)t∈[0,T ] is a Borel family satisfying (12);
3. (µ,ν) satisfies (13).

Given µ1, µ2 ∈Mloc(Rd), we denote the (possibly empty) set of solutions connecting
µ1 to µ2 by

CE([0, T ], µ1 → µ2) = {(µ,ν) ∈ CE([0, T ]) : µ0 = µ1, µT = µ2}.
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Mart́ınez-Montes, Y. Alemán-Gómez and J M Sánchez-Bornot, Characterizing brain anatom-
ical connections using diffusion weighted MRI and graph theory, Neuroimage, 36 (2007) n.3,

645–660.

[29] S. Jbabdi, M. W. Woolrich, J. L. Andersson and T. E. Behrens, A Bayesian framework for
global tractography, Neuroimage, 37 (2007) n.1, 116–129.

[30] B. W. Kreher, I. Mader and V. G. Kiselev, Gibbs tracking: a novel approach for the recon-
struction of neuronal pathways, Magn. Reson. Med., 60 (2008) n.4, 953–963.

[31] M. Lazar and A. L. Alexander, An error analysis of white matter tractography methods:

synthetic diffusion tensor field simulations, Neuroimage, 20 (2003) n.2, 1140–1153.
[32] M. Lazar, D. M. Weinstein, J. S. Tsuruda, K. M. Hasan, K. Arfanakis, M. E. Meyerand, B.

Badie, H. A. Rowley, V. Haughton, A. Field and A L Alexander, White matter tractography

using diffusion tensor deflection, Hum. Brain Mapp., 18 (2003) n.4, 306–321.

http://www.ams.org/mathscinet-getitem?mr=MR1660739&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1928314&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2041617&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1385289&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1488695&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1873023&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2106767&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1440931&return=pdf


NEUR. FIBER–TRACKING VIA OPTIMAL TRANSP. 21

[33] C. P. Lin, V. J. Wedeen, J. H. Chen, C. Yao and W Y Tseng, Validation of diffusion spectrum
magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms,

Neuroimage, 19 (2003) n.3, 482–495.

[34] Y. Lu, A. Aldroubi, J. C. Gore, A. W. Anderson and Z Ding, Improved fiber tractography
with Bayesian tensor regularization, Neuroimage, 31 (2006) n.3, 1061–1074.

[35] G. J. Parker, H. A. Haroon and C. A. Wheeler-Kingshott, A framework for a streamline-based
probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion

measurements, J. Magn. Reson. Imaging, 18 (2003) n.2, 242–254.

[36] Eric Pichon, Carl-Fredrik Westin and Allen Tannenbaum, A Hamilton–Jacobi–Bellman ap-
proach to high angular resolution diffusion tractography, in “Proceedings of MICCAI”, 2005,

180–187.

[37] R. Tyrrell Rockafellar, “Convex analysis”, Princeton Mathematical Series, No. 28, Princeton
University Press, Princeton, N.J., 1970.

[38] Antonio Siconolfi, Metric character of Hamilton-Jacobi equations, Transactions of the Amer-

ican Mathematical Society, 355 (2003) n.5, 1987–2009.
[39] Antonio Siconolfi, Errata to: “Metric character of Hamilton-Jacobi equations” [Trans. Amer.

Math. Soc. 355 (2003), no. 5, 1987–2009 (electronic), Transactions of the American Math-

ematical Society, 355 (2003) n.10, 4265.
[40] J. D. Tournier, F. Calamante, M. D. King, D. G. Gadian and A. Connelly, Limitations

and requirements of diffusion tensor fiber tracking: an assessment using simulations, Magn.
Reson. Med., 47 (2002) n.4, 701–708.

[41] J. D. Tournier, C. H. Yeh, F. Calamante, K. H. Cho, A. Connelly and C. P. Lin, Resolving

crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted
imaging phantom data, Neuroimage, 42 (2008) n.2, 617–625.

[42] Cédric Villani, “Topics in optimal transportation”, Graduate Studies in Mathematics, 58,

American Mathematical Society, Providence, RI, 2003.
[43] Cédric Villani, “Optimal transport”, Grundlehren der Mathematischen Wissenschaften [Fun-

damental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009.

[44] U. C. Wieshmann, C. A. Clark, M. R. Symms, F. Franconi, G. J. Barker and S. D. Shorvon,
Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with

diffusion tensor imaging, Magn. Reson. Imaging, 17 (1999) n.9, 1269–1274.

[45] X. Wu, Q. Xu, L. Xu, J. Zhou, A. W. Anderson and Z. Ding, Genetic white matter fiber
tractography with global optimization, J. Neurosci. Methods, 184 (2009) n.2, 375–379.

[46] A. Zalesky, DT-MRI fiber tracking: a shortest paths approach, IEEE Trans Med Imaging, 27
(2008) n.10, 1458–1471.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: alessandro.daducci@epfl.ch

E-mail address: antonio.marigonda@univr.it

E-mail address: giandomenico.orlandi@univr.it

E-mail address: roberto.posenato@univr.it

http://www.ams.org/mathscinet-getitem?mr=MR0274683&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1953535&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1990586&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1964483&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2459454&return=pdf

	1. Introduction
	1.1. General introduction
	1.2. Related work
	1.3. Comparison with previous Hamilton-Jacobi-Bellman based models
	1.4. An optimal control approach based on optimal mass transport theory

	2. Optimal transportation–based models
	2.1. Discussion of the DSI data
	2.2. Relation with optimal transportation and Hamilton-Jacobi theory
	2.3. Minimum time model
	2.4. Intrinsic metric model
	2.5. A quantitative brain connectivity criterion
	2.6. Exact solutions

	3. Final remarks and open problems
	3.1. Advantages of the proposed model
	3.2. Mathematical issues and drawbacks
	3.3. Work in progress

	4. Appendix
	4.1. General notations and definitions
	4.2. Measure theoretic solutions of the continuity equation

	REFERENCES

