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Abstract

Results concerning geometric regularity of minimizers for average distance functional in the
static case were first presented in [7], [8] and [9], while [10] does a survey. They mainly prove
that such minimizers cannot contain crosses or loops, and must verify some regularity condition,
in two dimension case; [14] extended those results to higher dimension case. In [11] and [12]
these results were discussed for two types of discrete evolution schemes, in two dimensional
domains. In this paper we analyze the case of higher dimensions, and prove that similar results,
i.e. absence of loops and Ahlfors regularity, hold. Finally, we will show that when key geometric
properties on the domain are not verified, Ahlfors regularity is not true anymore.
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1 Introduction

In [7], [8] and [9] the authors proved that in a sufficiently regular domain, under fairly general condi-
tions, local minimizers for the average distance functional must verify certain geometric properties,
namely the absence of loops and crosses. Moreover, they proved that (under some general condi-
tions) these optimal sets are always finite union of Lipschitz curves, and verify Ahlfors regularity.
A review was done in [10].

Let Ω ⊆ RN be a sufficiently regular domain, compact, connected, closure of an open set, we
define

Al(Ω) := {S ⊆ Ω : S compact, connected by path, dimHS = 1,H1(S) ≤ l}, A(Ω) :=
⋃
j≥0

Aj(Ω).

(1.1)
In the following we will omit the dependence on domain Ω if there is no risk of confusion.
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Then given a non decreasing function A : [0,diam Ω] −→ [0,∞), a measure f ∈ L1(Ω,LN ),
where LN denotes the Lebesgue measure in RN , we define the functional

Ff : A −→ (0,∞), Ff (S) :=
∫

Ω
A(dist(x, S))df(x), (1.2)

where dist(·, ·) represents the path distance in Ω (i.e. for any couple of points x1, x2 ∈ Ω, dist(x1, x2)
is given by minβ∈P(x1,x2)H1(β([0, 1])), withP(x1, x2) denoting the set of continuous path β : [0, 1] −→
Ω, x1, x2 ∈ β([0, 1])). While dist(·, ·) a priori depends on the domain Ω, for sake of brevity we will
omit this dependence when no risk of confusion arises (e.g. when the domain is clearly given).

This will be referred as “average distance functional”. The associated minimization problem, i.e.
given l > 0 find an element

Sopt ∈ argminAl
Ff

will be referred as “average distance problem”, and such Sopt as “average distance minimizer”.
This formulation arises from urban planning/network optimization problems. Indeed an easy

interpretation is: given a region Ω, with population distribution f , transport cost A (i.e. A(s) is the
cost to cover a distance s), find the optimal optimal transportation network Sopt among all networks
with length not exceeding l, minimizing the cost of reaching the network. For a wider overview see
[8]

It has been proven in [14] that under quite general conditions any average distance minimizer
could not contain loops; moreover, under additional summability of the measure f , those minimiz-
ers are Ahlfors regular.

1.1 Evolutions

The evolutionary variants of the average distance problem are the Euler schemes. Similarly, they
arise from urban planning/network optimization problems, when the additional time variable and
related constraints are considered. Given similar Ω ⊆ RN , f, A as in the average distance problem,
and an initial datum S0 ∈ A, a time step ε > 0, consider

w(0) := S0

w(n) ∈ argminAH1(S0)+nε
Ff

w(n) ⊇ w(n− 1)

. (1.3)

In all the paper, when we will write “X ∈ argmin G”, where X is an element and G a functional,
we will mean that X is an arbitrary element of argmin G (]argmin G > 1 is possible in general).

From the third condition every set in the evolution must contain all previous sets: this property
will be called “irreversibility” in the following. This property can be used to model irreversible
network expansion, e.g. rapid transit system expansion, where removing existing network is highly
uneconomical. It has been proven in [12] that evolutions like (1.3) in the two dimension case verify
the absence of loops, i.e. if S0 does not contain loops, then w(n) does not contain loops for any n,
and the proof used an idea very similar to that used in [7]. In the same paper it has been proven
that the absence of crosses is false, by showing an explicit counterexample.
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In (1.3) the only constraint is the length of the evolving set at each step. Another type of evo-
lution does not impose constraints on length, but requires a second function, which we will call
“dissipation”:

Definition 1.1. A function Dε : A×A −→ [0,∞] is a “dissipation” if it verifies:

1. for any S ∈ A, Dε(S, S) = 0,

2. for any S0, S1, S2 ∈ A, satisfying S0 ⊆ S1, S0 ⊆ S2 andH1(S2\S0) ≥ H1(S1\S0) inequality

Dε(S2\S0) ≥ Dε(S1\S0)

holds.

The dissipation represents the “cost” to pass from one configuration to another. Given Ω ⊆
RN , f, A as in the average distance problem, an initial datum S0 ∈ A parameter ε > 0, and a
dissipation Dε : A×A −→ [0,∞] we consider

w(0) := S0

w(n) ∈ argminX⊇w(n)Ff (X ) +Dε(X , w(n))

w(n) ⊇ w(n− 1)

. (1.4)

It has been proven in [11] that, similarly to evolution (1.3), in the two dimension case the absence
of loops is true (when initial datum does not contain loops), while the absence of crosses is false, by
showing an explicit counterexample.

For both problems (1.3) and (1.4) a solution will be a sequence {w(k)}∞k=0 of elements of A,
verifying the constraints and minimality properties imposed. In this paper we aim to extend some
results about evolution cases to domain in higher dimensions. In particular we will prove that
the absence of loops is valid even in higher dimensions, along with some weak analytic regularity
(Ahlfors regularity).

It is worth mentioning that taking the limit ε → 0 in (1.3) leads to the class of quasi static evo-
lutions, while taking the limit ε → 0 in (1.4) leads to the dynamic evolutions (with Dε(S1, S2) :=
d(S1, S2)2

2ε
, where d is a suitable distance, being the most classic case). We refer to [3] for more

discussion.
The paper will be structured as follows:

• Section 2 will recall estimates about the average distance functional in higher dimension do-
mains,

• Section 3 will analyze the the absence of loops for solutions of problem (1.3) and (1.4),

• Section 4 will discuss Ahlfors regularity for solutions of problem (1.3) and (1.4),

• Section 5 will present some counterexamples to Ahlfors regularity of solutions, when key
geometric regularity properties are not assumed.
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1.2 Notations

Now we define the notion of “loop”:

Definition 1.2. Let Ω ⊆ RN be a domain, W ∈ A, we say that W is a “loop” if there exists an homeomor-
phism ϕ : W −→ S1 ⊆ R2.

We will use frequently the expression “adding a set I to the set Σ”, with I,Σ ∈ A: with this we
will mean (and implicitly assume):

• Σ ∪ I ∈ A,H1(I ∩ Σ) = 0,

• there exist points x∗ ∈ I ∩Σ, x′ ∈ I\Σ and a path γ : [0, 1] −→ I such that γ(0) = x′, γ(1) = x∗,
γ([0, 1]) ∩W = {x∗}.

Moreover, some symbols (e.g. ε, ρ,Ω, f , etc.) will be used several times, in different state-
ments: unless explicitly mentioned, if a symbol is used in two different Theorem/Proposition/
Lemma/Definition, there is no connection between them. The only notable isA, which (when there
is no risk of confusion about the domain) will always refer to the set defined in (1.1).

We list some common used symbols:

• ε, η, ξ, r, ρ to denote small positive numbers,

• n to denote integers, like mute counters or even the dimension,

• p to denote the summability class, and q the conjugate exponent of p,

• Ω to denote the domain,

• f to denote the measure,

• Λ to denote the Lipschitz constant.

1.3 Basic conditions

We have imposed in (1.2) that the average distance function (given a domain Ω ⊆ RN , a function
A : [0,diam Ω] −→ [0,∞), a measure f ) must have form

Ff (S) :=
∫

Ω
A(dist(x, S))df(x).

Under this generality very little can be said about its minimizers: indeed, if no additional condition
is put, any set can be the optimal set for Ff . This because given an arbitrary set X ∈ A, putting
χX · H1 the Hausdorff measure restricted on X , i.e. χX · H1(Y ) := H1(Y ∩ X) for any Lebesgue
measurable Y ⊆ Ω

FχX ·H1(X) =
∫

Ω
A(dist(w,X))χX(w)dw = 0.
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The first condition we put is that we consider only measures f not charging ridges, i.e. given an
arbitrary W ∈ A, the set

RW := {x ∈ Ω : there exist distinct y1, y2 ∈W such that dist(x, y1) = dist(x, y2) = dist(x,W )}

is f -negligible. This is a quite weak condition, as from [13] these ridges are (H1, 1)-rectifiable. Thus
any measure absolutely continuous with respect to the Lebesgue measure does not charge ridges.

Then some restrictions on the functionA is required too: we will assume in all the paper, as done
in [14]:

(α1) A : [0,diam Ω] −→ R is Lipschitz continuous with Lipschitz constant Λ, A(0) = 0, monotone
increasing,

(α2) for any c > 0 there exists λ = λ(c) > 0 such that |A(x) − A(y)| ≥ λ|x − y| whenever |x − y| ∈
[c,diam Ω].

From above conditions (satisfied by several regular functions, like A(x) := xp for any p ≥ 1)
follows A injective on [c′,diamΩ] for any c′ ∈ (0,diam Ω).

Even if a priori the functional depends on A, for sake of brevity we will omit this dependence
when no confusion arises (e.g. in a statement where A is given in the hypothesis).

Moreover, unless explicitly stated, we will always assume that the domain Ω ⊆ RN is uniformly
locally convex, i.e.:

(∗) there exists positive constants ρ0,m−,m+ such for any point x ∈ Ω, ρ ∈ (0, ρ0), B(x, ρ) ∩ Ω is
convex and there exists an homeomorphism ϕ : B(x, ρ) ∩ Ω −→ B(x, ρ) such that

m−dist(ϕ(x1), ϕ(x2)) ≤ dist(x1, x2) ≤ m+dist(ϕ(x1), ϕ(x2)) (1.5)

for any points x1, x2 ∈ B(x, ρ) ∩ Ω.

2 Preliminaries

In this section we report some basic facts (for more details see [8], [9], [10] and [14]) about the average
distance functional. Most of these will concern estimates on the average distance functional when
small variations are done on a given set.

The above results were all proven with a similar technique: given a domain Ω ⊆ RN , a measure
f , suppose there exists L > 0 and an element

Σopt ∈ argminAL
Ff

containing a loop E ⊆ Σopt. Then

1. Remove a suitable (small) set J ⊆ E, and estimate the difference Ff (Σopt)− Ff (Σopt\J),

2. Choose a suitable set Σ′ ∈ AL verifying Σ′ ⊇ Σopt\J , and estimate the difference Ff (Σopt\J)−
Ff (Σ′).
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This procedure leads to Σ′ ∈ AL with Ff (Σ′) < Ff (Σopt), contradicting Σopt ∈ argminAL
Ff . In

order to apply it, we need several estimates on Ff ; most proofs can be found in [8], [9] and [14].

Lemma 2.1. Given a domain Ω ⊆ RN , a non negative measure f , a function A : [0, diam Ω] −→ R, for any
elements Σ1,Σ2 ∈ A with Σ1 ⊆ Σ2 inequality

Ff (Σ2) ≤ Ff (Σ1)

holds. In other words, Ff is not decreasing with respect to the inclusion.
Moreover, supposeH1(Σ2\Σ1) > 0. Then inequality

Ff (Σ2) < Ff (Σ1)

holds.

Proof. The proof is very simple: Σ1 ⊆ Σ2 gives

dist(x,Σ2) ≤ dist(x,Σ1) ∀x ∈ Ω,

thus
A(dist(x,Σ2)) ≤ A(dist(x,Σ1)) ∀x ∈ Ω,

and integrating on Ω ∫
Ω
A(dist(x,Σ2))df(x) ≤

∫
Ω
A(dist(x,Σ1))df(x) ∀x ∈ Ω.

For the second part, Σ1 ( Σ2 implies there exists an open set B such that for any z ∈ B the
inequality dist(z,Σ1) > dist(z,Σ2) holds, so using the strict monotonicity of A, and integrating on
Ω concludes the proof.

This result has a first consequence: under these hypothesis on Ω, f, A, for any l > 0

argminAl
Ff ⊆ Al\

⋃
0≤j<l

Aj .

The next three results are from [14], to which we refer for more details.

Lemma 2.2. Let Ω ⊆ RN be the domain, f a measure, and Σ ∈ A containing a cross E. Then for any x ∈ E
there exist a sequence of open, connected sets {Dk}∞k=0 such that:

• x ∈ Dk for k sufficiently large,

• E\Dk connected,

• diam Dk → 0 for k →∞.

The next result estimates the difference for the average distance functional when some small set
is removed from a loop.
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Lemma 2.3. Let Ω ⊆ Rn be the domain, f a given measure, Σ ∈ A containing a loop E ⊆ Σ. Then given
β ∈ (0, 1], forH1-almost any point x ∈ E, for any r > 0 there exists ρ ∈ (0, r) and Σ′ ∈ A such that:

• H1(Σ′) ≤ H1(Σ)− ρ/2 + (16n3/2 + 2)βρ,

• Σ\Σ′ ⊆ B(x, ρ), Σ′\Σ ⊆ B(x, 32nρ),

• dist(y,Σ′) ≤ dist(y,Σ) for any y /∈ B(x, 64n3/2ρ),

• dist(y,Σ′) ≤ dist(y,Σ) + ρ for any y ∈ B(x, 64n3/2ρ).

This lemma mainly says that given a set Σ ∈ A, it is possible to find a competitor for the loop
with smaller Hausdorff measure, and the variation for the average distance functional is totally
encompassed in B(x, 64n3/2ρ), while the “loss” in path is not greater than ρ.

Lemma 2.4. Let Ω ⊆ Rn be a given domain, l > 0 a given value, f a given measure, Borel sets H,K ⊆ Ω
such that f(K) > 0 and

r := inf{dist(x,H) : x ∈ K} > 0.

Then for any compact set Σ ⊆ H with H1(Σ) ≤ l there exists for any ε sufficiently small a set Σ′ ⊇ Σ such
that

H1(Σ′) ≤ H1(Σ) + 2nε, Ff (Σ′) ≤ Ff (Σ)− λ(r)f(K)
32nl

ε2.

This result affirms that adding some set with length ε sufficiently small to Σ, the gain for the
average distance functional is comparable with ε2 at least. In the two dimension case (see [7], [8] and
[9] for instance) a stronger result holds: the gain for the average distance functional is comparable
with ε3/2 at least.

From these lemmata it has been proven in [14] an average distance minimizer Σopt could not
contain loops:

1. Lemma 2.3 is used to estimate the variation for the average distance functional when some
small set is removed,

2. then Lemma 2.4 gives a suitable competitor which contradicts the optimality of Σopt.

3 Absence of loops

In Section 2 we have very sketchily recalled the technique used in the proof of absence of loops
for minimizers of the average distance problem in general N -dimension case, along with several
preliminary lemmata. Here we will adapt the proof to the discrete Euler scheme evolutions, and
prove that a similar result holds. The two dimension case has been already discussed in [12], for
problem (1.3), in [11] for (1.4) and the absence of loops was effectively extended in both cases, while
the absence of crosses proved false.
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As we are considering evolutions like (1.3) or (1.4), it may be possible that at some step k the
difference w(k)\w(k − 1) is not connected: if this is the case, we can write that

w(k)\w(k − 1) =
⋃
i∈J
Ci

where Ci are its connected components andJ is a suitable set of indexes. AsH1(w(k)\w(k−1)) <∞,
for at most countable h the component Ch verifiesH1(Ch) > 0, thus we can split the passage

w(k − 1)→ w(k)

in
w(k − 1)→ w(k − 1) ∪ Ci1 → w(k − 1) ∪ Ci1 ∪ Ci2 → w(k − 1) ∪ Ci1 ∪ Ci2 ∪ Ci3 → · · ·

where {is}∞s=1 are indexes for which H1(Cis) > 0, and analyze each single passage separately. This
process leads in at most countable steps to w(k), thus for any measure f the sequence {Ff (w(k −
1) ∪

⋃h
j=1 Cij )}∞h=1 converges to Ff (w(k)), so in the this section (but not in Sections 4 and 5) we can

assume w(k)\w(k − 1) connected.
The absence of loops can be generalized to the N -dimension case, using a similar idea (but

different estimates) from the two dimension case analyzed in [12]. The main result will be Theorem
3.3.

Lemma 3.1. Let Ω ⊆ Rn be a given domain, f a given measure, A a given function, S0 ∈ A with Ff (S0) <
∞ and not containing loops, and h > 0 a given positive value. Then any element

Σopt ∈ {S ∈ argminAH1(S0)+h
Ff : S ⊇ S0}

is such that Σopt\S0 does not contain loops.

Proof. Suppose there exists an element

Σopt ∈ {S ∈ argminAH1(S0)+h
Ff : S ⊇ S0}

such that the difference I := Σopt\S0 contains a loop E ⊆ I . From Lemma 2.1 follows that such Σopt

must verifyH1(Σopt) = H1(S0)+h. The goal will be creating a competitor Σ′ ∈ AH1(S0)+h satisfying
Ff (Σ′) < Ff (Σopt).

The idea used here is similar to that used in [14] to prove the absence of loops in minimizers of
the average distance problem (and in [12] for the two dimension case).

As f(Σopt) = 0 by hypothesis, there exists a not f -negligible compact set K such that Σopt ∩K =
∅, and put

R :=
1
2

min{dist(y,Σopt) : y ∈ K} > 0.

We have supposed the existence of loop E ⊆ Σopt, thus f(E) = 0, and

lim
r→0+

f(B(x, r))
r

= 0

forH1-almost every x ∈ E (see [2] for further details).

Let be β :=
1

64n3/2 + 8
, and t a free parameter for now. Applying Lemma 2.3 yields to the

existence of:
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• ρ ∈ (0, t) and Σ′ ∈ A such that

H1(Σ′) ≤ H1(Σopt)− ρ/4.

Choose x∗ ∈ E such that lim
r→0+

f(B(x∗, r))
r

= 0, this leads to

Ff (Σ′) ≤ Ff (Σopt) +
∫
B(x∗,64n3/2ρ)

(A(dist(w,Σopt) + ρ)−A(dist(w,Σopt)))df(w)

≤ Ff (Σopt) + ρf(B(x∗, 64n3/2ρ))Λ

= Ff (Σopt) + 64n3/2ρ2 f(B(x∗, 64n3/2ρ))
64n3/2ρ

Λ

. (3.1)

Lemma 2.4 applied to Σ′ gives the existence of a competitor Σ′′ verifying

H1(Σ′′) ≤ H1(Σ′) + 2nε ≤ H1(Σopt) + 2nε− ρ/4

and choosing ε := ρ/8n this yields
H1(Σ′′) ≤ H1(Σopt).

For the average distance functional

Ff (Σ′′) ≤ Ff (Σ′)− λ(R)f(K)
32nH1(Σ′)

ρ2

64n2
(3.2)

holds. Combining (3.1) and (3.2), for ρ sufficiently small, Σ′′ satisfies H1(Σ′′) ≤ H1(Σopt) and
Ff (Σ′′) < Ff (Σopt). Finally, the competitor Σ′′ contains S0, thus is admissible.

Lemma 3.2. Let Ω be a given domain, f a given measure, A a given function, S0 ∈ A with Ff (S0) < ∞
and not containing loops, and h > 0 a given positive value. Consider an arbitrary element

Σopt ∈ {S ∈ argminAH1(S0)+h
Ff : S ⊇ S0}.

Suppose there exists a loop E ∈ Σopt, and let ϕ : R2 ⊃ S1 −→ E be an arbitrary homeomorphism. Then the
set V := ϕ−1(E ∩ (Σopt\S0)) has non empty interior part.

Proof. From Lemma 3.1 follows that E * Σopt\S0. As by hypothesis E * S0, then both E ∩ S0 and
E∩Σopt\S0 are non empty. So V := ϕ−1(E∩ (Σopt\S0)) 6= ∅. Without loss of generality we can work
with another homeomorphism φ satisfying:

1. φ : [0, 1] −→ E, φ(0) = φ(1) = P ∈ E ∩ S0,

2. φ|(0,1) : (0, 1) −→ E\{P} is an homeomorphism.
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This choice is due to technical reasons only, as it is easier to work with φ. Proving that V has non
empty interior is equivalent to prove W := φ−1(E ∩ (Σopt\S0)) has non empty interior. Suppose the
opposite, i.e. W has empty interior (that is, as both φ and φ−1 are homeomorphism, E ∩ (Σopt\S0)
has empty interior). From assumption (2) on φ this means (E ∩ (Σopt\S0))\{P} has empty interior
in E\{P}, or equivalently (E ∩ S0)\{P} dense in E\{P}.

Since E\{P} dense in E, this leads to

(E ∩ S0)\{P} = E\{P} = E

which ultimately yields
E ∩ S0 = E

and considering E,S0 are closed sets, E ∩ S0 = E follows, contradicting the hypothesis.

Notice that the parameter h almost plays no role in the proof: indeed this is the case, and will be
used in the following result.

Theorem 3.3. Let Ω ⊆ RN be a given domain, f a given measure, A a given function, ε > 0 a given time
step S0 ∈ A an initial datum with Ff (S0) <∞ and not containing loops, and consider

w(0) := S0

w(n+ 1) ∈ argminAH1(S0)+(n+1)ε
Ff

w(n+ 1) ⊇ w(n)

. (3.3)

Then for any n ≥ 0 the set w(n) does not contain loops.
Then let Dε : A×A −→ [0,∞] a dissipation, and consider

w(0) := S0

w(n+ 1) ∈ argminAFf (X ) +Dε(X , w(n))
w(n+ 1) ⊇ w(n)

. (3.4)

Then for any n ≥ 0 the set w(n) does not contain loops.

We have deliberately used the same notation in both cases: indeed the proof is somewhat similar,
and unless explicitly specified, valid in both cases.

Proof. The proof is done by induction on n, and the first part is valid for both evolutions (3.3) and
(3.4):

• by hypothesis w(0) := S0 does not contain loops,

• suppose w(n) does not contain loops.

The goal is to prove that w(n + 1) does not contain loops. Suppose the contrary, i.e. there exists a
loop S ⊆ w(n+ 1): this may lead to two possibilities:

1. S ⊆ w(n+ 1)\w(n),
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or

2. S ∩ w(n+ 1)\w(n) and S ∩ w(n) are non empty,

with the third possibility S ⊆ w(n) excluded by inductive hypothesis.
Notice that by construction w(n+ 1) ⊇ w(n), and

w(n+ 1) ∈ {X ∈ argminAH1(w(n))+ε
Ff : X ⊇ w(n)},

so hypothesis of Lemma 3.1 and 3.2 are applicable to both possibility (1) and (2). Applying Lemma
3.1 would lead immediately S * w(n+ 1)\w(n), thus possibility (1) is excluded.

Now possibility (2) remains. Here the proofs for (3.3) and (3.4) are slightly different.

1. Case (3.3).
Let be φ : [0, 1] −→ S an homeomorphism like that chosen in the proof of Lemma 3.2; applying
the latter, φ−1(E ∩ (w(n+ 1)\w(n))) is not empty, thus contains an open ball (t∗ − ρ, t∗ + ρ) ⊆
φ−1(E ∩ (w(n+ 1)\w(n))), with ρ > 0. The image φ((t∗−ρ, t∗+ρ)) is an open connected arc in
E ∩ (w(n+ 1)\w(n)). Then it is possible to apply Lemma 2.3 and 2.4, similarly to what done in
[14], and create a competitor Σ′ ∈ {X ∈ AH1(w(n))+ε : X ⊇ w(n)}with Ff (Σ′) < Ff (w(n+ 1)),
contradicting the optimality of w(n+ 1).

2. Case (3.4).
Using the same technique, i.e. construct a competitor Σ′ satisfying H1(Σ′) ≤ H1(w′(n + 1))
and Ff (Σ′) < Ff (w′(n+ 1)), as done for case (3.3): this verifies

(a) w(n) ⊆ Σ′,

(b) H1(Σ′\w(n)) = H1(w(n+ 1)\w(n)),

thus
Ff (w(n+ 1)) +Dε(w(n+ 1), w(n)) > Ff (Σ′) +Dε(Σ′, w(n))

which contradicts the optimality of w(n+ 1).

Thus a loop is never present.

In this proof it was possible to apply results from the average distance minimizers case almost
without modifications, and the irreversibility condition in the evolution problems could be easily
solved, as Lemma 2.3 and Lemma 2.4 state the existence of suitable competitors forH1-almost every
x ∈ E, and these competitors differ from the original set in a small ball.

4 Ahlfors regularity

In [14] it has been proven that minimizers of the average distance functional exhibit Ahlfors regu-
larity, when the measure considered verifies some summability properties. In this section we aim
to extend these results to solutions of (1.3) and (1.4), by adapting the proof. We present now some
preliminary results about Ahlfors regularity.
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Definition 4.1. Let Ω ⊆ Rn be a given domain, a set Σ ∈ A is “Ahlfors regular” is there exists x1, c2 > 0
such that

c1 ≤
H1(Σ ∩B(x, r))

r
≤ c2 (4.1)

for any x ∈ Σ, r ∈ (0, diam Σ).

While a quite weak regularity property, it causes uniform rectifiability on Σ.

4.1 Discrete evolutions

In [14] it has been shown that the lower bound estimate in (4.1) is trivial: for any r ≤ diam Σ/2 the
border ∂B(x, r) must intersect Σ, thusH1(Σ ∩B(x, r)) ≥ r, or equivalently

H1(Σ ∩B(x, r))
r

≥ 1.

This argument applies to all elements of A, independently from minimality properties.
Thus the “hard” part of the proof is the upper bound estimate, which uses several properties

and results. As see in the following, condition f ∈ L1 may be not sufficient, and extra summability
is required.

We will first present some lemmata from [14], to which we refer for the proof.

Lemma 4.2. Given natural numbers n and k, x ∈ Rn, ρ >), points {zi}ki=1 ⊆ B(x, ρ), there exists
Σ ∈ A(B(x, ρ)) such that

• zi ∈ Σ for i = 1, · · · , k,

• H1(Σ) ≤ C∗k
n−1

n ρ, where C∗ depends only on n.

We present a sketch of the proof, and refer to [14] for more details.

Proof. (Sketch) Upon translation and rescaling we can suppose x = (0, · · · , 0), ρ = 1/2 and {zi}ki=1 ⊆
[0, 1]n. Let Γj be a uniform one dimensional grid with step j ({(x1, · · · , xn) : jxi ∈ N for at least n−
1 indexes}): we have

H1(Γj) ≤ n(j + 1)n−1, max
y∈[0,1]n

dist(y,Γj) ≤
√
n

2j
. (4.2)

Let zi,j one arbitrary projection of zi on Γj for j = 1, · · · , k, and put

Γ∗j := Γj ∪
k⋃
i=1

{szi + (1− s)zi,j : s ∈ [0, 1]}. (4.3)

It is obvious that zi ∈ Γ∗j for any i, j; from (4.2) inequality

H1(Γ∗j ) ≤ n(j + 1)n−1 +
k
√
n

2j

12



follows, and choice j := [k1/n] gives

H1(Γ∗
[k1/n]

) ≤ n([k1/n] + 1)n−1 +
k
√
n

2[k1/n]

which concludes the proof.

Remark 4.3. Let M ⊆ Rn be convex set, and assume there exists a homeomorphism ϕ : M −→ B(x, ρ)
verifying:

• there exists m1,m2 > 0 such that

m1dist(ϕ(z1), ϕ(z2)) ≤ dist(z1, z2) ≤ m2dist(ϕ(z1), ϕ(z2)) (4.4)

for any z1, z2 ∈M .

Then the conclusion of Lemma 4.2 can be applied for points {yi}Ki=1 ⊆M : indeed given k points {zi}ki=1

of M , upon translation and rescaling, we can apply Lemma 4.2 to points {ϕ(zi)}ki=1 in the domain [0, 1]n.
Using the same construction, let be Γj the same set defined in the proof of Lemma 4.2, and put

Γ′j := Γj ∪
k⋃
i=1

{sϕ(zi) + (1− s)zϕ,i,j : s ∈ [0, 1]}

where zϕ,i,j denote an arbitrary projection of ϕ(zi) on Γj .
Now it is clear that ϕ−1(Γj) ⊆ M , as well ϕ−1({sϕ(zi) + (1 − s)zϕ,i,j : s ∈ [0, 1]}) ⊆ M for any

i = 1, · · · , k. From (4.4) there exists m′1,m
′
2 such that

m′1H1(Γj) ≤ H1(ϕ−1(Γj)) ≤ m′2H1(Γj)

and
m′1(dist(ϕ(zi), zϕ,i,j)) ≤ dist(zi, ϕ−1(zϕ,i,j)) ≤ m′2(dist(ϕ(zi), zϕ,i,j))

thus the same conclusion of Lemma 4.2 holds for points {zi}ki=1 ⊆M .

Lemma 4.4. Let Ω ⊆ Rn be a given domain, Σ ∈ A, then for any x ∈ Σ there exists Σ′ ∈ A such that for
any ρ > 0

• H1(Σ′) ≤ H1(Σ)−H1(Σ ∩B(x, ρ)) + C(
(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 1)ρ,

• Σ\Σ′ ⊆ B(x, 2ρ), Σ′\Σ ⊆ B(x, 8
√
nρ),

• dist(z,Σ′) < dist(z,Σ) for any z /∈ B(x, 4nρ),

• dist(z,Σ′) ≤ dist(z,Σ) + ρ for any z ∈ B(x, 4nρ).

where C is a positive constant depending only on n.
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Lemma 4.5. Let Ω ⊆ Rn be a given domain, Σ ∈ A and suppose there exists r > 0 such that for any x ∈ Σ,
0 < ρ < r the inequality

H1(Σ ∩B(x, ρ))
ρ

≤ aH
1(Σ ∩B(x, 2ρ))

2ρ

α

+ b

holds for some fixed a > 0, b ≥ 0, α ∈ (0, 1). Then there exists a constant K = K(a, b, α, r,H1(Σ)) such
that

H1(Σ ∩B(x, ρ))
ρ

≤ K.

The proof for the evolution cases must deal with the irreversibility conditions. We recall a brief
sketch for the proof in the averager distance case (and refer to [14] for more details):

Theorem 4.6. Let be Ω ⊆ Rn a given domain, f ∈ Lp, p ≥ n

n− 1
a given measure, A : [0, diam Ω] −→

[0,∞) a given function, and Σopt ∈ argminAL
Ff for some L ≥ 0. Then Σopt is Ahlfors regular.

Proof. First suppose L > 0, otherwise Σopt is a single point.

1. f(Σopt) = 0, thus there exists a compact set K with f(K) > 0 and K ∩ Σopt = ∅. This can be
chosen as K := Ω\(Σopt)2c, with c ∈ (0,diam Σopt) and (Σopt)2c := {y ∈ Ω : dist(y,Σopt) < 2c};
choose a small ρ > 0;

2. let be Σ′ the competitor given in Lemma 4.4, and using Hölder inequality follows

Ff (Σ′) ≤ Ff (Σopt) + 2Λρf(B(x, 4nρ)) ≤ Ff (Σopt) + 2Λρ||f ||1/pLp Ln(B(x, 4nρ))1/q

where Ln(B(x, 4nρ)) clearly has order O(ρn),

3. inequality

H1(Σ′) ≥ H1(Σopt ∩B(x, ρ))− ρH(
H1(Σopt ∩B(x, 2ρ))

2ρ
+ 1) (4.5)

holds, and two cases arise:

(a) if

H1(Σopt ∩B(x, ρ))− ρH(
Σopt ∩B(x, 2ρ)

2ρ
+ 1) ≤ 0

Lemma 4.5 concludes
H1(Σopt ∩B(x, ρ))

ρ
≤ K ′ for some K ′ > 0.

(b) ifH1(Σopt ∩B(x, ρ))− ρH(
Σopt ∩B(x, 2ρ)

2ρ
+ 1) > 0 then for ρ sufficiently small inclusion

Σ′ ⊆ {z ∈ Ω : dist(x,Σopt) < c} holds. Applying Lemma 2.4 yields to the existence of a
set Σ′′ ∈ A such that

Ff (Σ′′) ≤ Ff (Σ′)−H ′(H1(Σ′ ∩B(x, ρ))− ρH ′′(
(
H1(Σ′ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 1))2 (4.6)
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where H ′, H ′′ are positive constants not dependent on ρ and x. Combining

Ff (Σ′) ≤ Ff (Σopt) +O(ρ
n
q

+1) (4.7)

with (4.6) and the optimality of Σopt (i.e. Ff (Σopt) ≤ Ff (Σ′′)) yields

H1(Σ′ ∩B(x, ρ))− ρH ′′(
(
H1(Σ′ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 1) ≤ H∗ρ
n
2q
− 1

2 ≤ H∗(diam Σopt)
n
2q
− 1

2

with H∗ independent from x and ρ, and applying Lemma 4.5 concludes the proof.

Lemma 4.4 cannot be used when irreversibility condition is added. A weaker variant is required.

Lemma 4.7. Let Ω ⊆ Rn be a given domain, Σ∗ ∈ A Ahlfors regular, Σ ⊇ Σ∗, then for any x ∈ Σ there
exists Σ′ ∈ A, Σ′ ⊇ Σ∗, such that for any ρ > 0

• H1(Σ′) ≤ H1(Σ)−H1(Σ ∩B(x, ρ)) + C(
(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 1)ρ,

• Σ\Σ′ ⊆ B(x, 2ρ), Σ′\Σ ⊆ B(x, 8
√
nρ),

• dist(z,Σ′) < dist(z,Σ) for any z /∈ B(x, 4nρ),

• dist(z,Σ′) ≤ dist(z,Σ) + ρ for any z ∈ B(x, 4nρ).

where C is a positive constant depending only on n and Σ∗.

Proof. The proof uses an idea similar to that found for 4.4 (see [14] for instance), with corrections
due to irreversibility condition.

Given a point x ∈ Σ, ρ ∈ (0, δ) (δ given by condition (∗)), put k(x, ρ) := ]{Σ ∩ ∂B(x, ρ)}; from
coarea formula

H1(Σ ∩B(x, 2ρ)) ≥
∫ 2ρ

0
k(x, t)dx ≥

∫ 2ρ

ρ
k(x, t)dt

which implies there exists t ∈ [ρ, 2ρ] such that

k(x, t) ≤ 2
H1(Σ ∩B(x, 2ρ))

ρ
.

Lemma 4.2, with condition (∗) and Remark 4.3 guarantee the existence of Σ0(t) ∈ A such that
{Σ ∩B(x, t)} ⊆ Σ0(t), andH1(Σ0(t)) ≤ C∗(n)k(x, t)

n−1
n t.

Let be Σ1(t) := x+ ∪nj=1{sej : s ∈ [−t, t]}, where ej denotes the j-th unit vector
(ej = (0, · · · , 0, 1, 0, · · · , 0), with the only “1” occupying the j-th place).

Some discussion about Σ1(t) is required, as we have only Σ1(t) ⊆ B(x, t) but not Σ1(t) ⊆ Ω,
thus we should prove Σ1(t)∩Ω connected first. Thus given an arbitrary point z0 ∈ (Σ1(t)\{x})∩Ω,
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there exists t(z0) ∈ [−t, t] and j(z0) ∈ {1, · · · , n} such that z0 = x+ t(z0)ej(z0), and since B(x, t) ∩ Ω
convex by condition (∗), {x + uej(z0) : u ∈ [0, t(z0)]} ⊆ Ω follows. This guarantees that every point
z ∈ Σ1(t) ∩ Ω is connected by a path (as {x+ uej(z0) : u ∈ [0, t(z0)]} ⊆ Ω) to x ∈ Ω, thus Σ1(t) ∩ Ω is
connected. In the following we will write Σ1(t) instead of Σ1(t) ∩ Ω.

Upon a rotation Σ0(t) ∩ Σ1(t) 6= ∅. Put

Σ′ := Σ\B(x, t) ∪ (Σ∗ ∩B(x, t)) ∪ Σ0(t) ∪ Σ1(t),

and inequality

H1(Σ′) ≤ H1(Σ)−H1(Σ ∩B(x, t)) +H1(Σ∗ ∩B(x, t)) +H1(Σ0(t)) +H1(Σ1(t))

follows.
By constructionH1(Σ1(t)) ≤ 4n3/2t; combining

H1(Σ0(t)) ≤ C∗(n)k(x, t)
n−1

n

given by Lemma 4.2 and

k(x, t) ≤ 2
H1(Σ ∩B(x, 2ρ))

ρ
,

inequality

H1(Σ0(t)) ≤ 2C∗(n)
(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

t

follows, yielding

H1(Σ′) ≤ H1(Σ)−H1(Σ ∩B(x, t)) +H1(Σ∗ ∩B(x, t)) + 2C∗(n)
(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

t+ 4n3/2t

≤ H1(Σ)−H1(Σ ∩B(x, t)) +H1(Σ∗ ∩B(x, t)) + 4C∗(n)
(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

ρ+ 8n3/2ρ

= H1(Σ)−H1(Σ ∩B(x, ρ)) +H1(Σ∗ ∩B(x, t)) +

(
4C∗(n)

(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 8n3/2

)
ρ

.

As Σ∗ is Ahlfors regular by hypothesis, there exists K > 0 such that

H1(Σ∗ ∩B(x, t))
t

≤ K,

thus

H1(Σ′) ≤ H1(Σ)−H1(Σ ∩B(x, ρ)) +Kt

(
4C∗(n)

(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 8n3/2

)
ρ

≤ H1(Σ)−H1(Σ ∩B(x, ρ)) +

(
2K + 4C∗(n)

(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 8n3/2

)
ρ

and putting C := 2K + 4C∗(n)
(
H1(Σ ∩B(x, 2ρ))

2ρ

)n−1
n

+ 8n3/2 concludes the proof.
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Notice that assumption (∗) is crucial, as guarantees Σ0(t),Σ1(t) ⊆ Ω for all ρ sufficiently small.
Now we can present the result about evolution cases:

Theorem 4.8. Let be Ω ⊆ RN a given domain, f ∈ Lp with p >
N

N − 1
a given measure, A : [0, diam] −→

[0,∞) a given function, S0 ∈ A an Ahlfors regular initial datum, ε > 0 a given time step, and consider
w(0) := S0

w(n+ 1) ∈ argminAH1(S0)+(n+1)ε
Ff

w(n+ 1) ⊇ w(n)

. (4.8)

Then for any n the set w(n) is Ahlfors regular.
Let Dε : A×A −→ [0,∞] a dissipation, and consider

w(0) := S0

w(n+ 1) ∈ argminF (S) +Dε(S,w(n))
w(n+ 1) ⊇ w(n)

. (4.9)

Then for any n the set w(n) is Ahlfors regular.

Notice that we deliberately omitted using different notations for the two cases: indeed the proof
is similar, and unless specified, will be intended valid in both cases.

Proof. Similarly to Theorem 3.3 on the absence of loops, the proof is done by induction. By hypoth-
esis w(0) := S0 is Ahlfors regular. Suppose that w(n) is Ahlfors regular, and the goal is to prove
w(n+ 1) is Ahlfors regular too.

First notice that f(w(n + 1)) = 0 forces the existence of a compact set K ⊆ Ω with f(K) > 0
(similarly to what done in the proof of Theorem 4.6, available in [14], the choice K := Ω\{ω ∈ Ω :
dist(ω,w(n+ 1)) < 2c} is acceptable for some c ∈ (0,diam w(n+ 1)).

Consider a point y ∈ w(n + 1). Applying Lemma 4.7 (with Σ∗ = w(n)) yields the existence of
Σ′ ∈ A verifying

• Σ′ ⊇ w(n),

• inequality

H1(Σ′) ≤ H1(w(n+ 1))−H1(w(n+ 1) ∩B(y, ρ)) + C((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1)ρ

for some C > 0 depending on N and w(n).

Moreover

Ff (Σ′) ≤ Ff (w(n+ 1)) + 2Λρf(B(y, 4Nρ)) ≤ Ff (w(n+ 1)) + 2Λ||f ||1/pLp(B(y,4Nρ))|B(y, 4Nρ)|1/q = Ff (w(n+ 1))

= Ff (w(n+ 1)) + C ′ρ
N
q

+1

(4.10)
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for ρ sufficiently small (so that condition (∗) applies), with Λ denoting the Lipschitz constant of
A and C ′ a constant not dependent on y and ρ.

Then the argument found in Theorem 4.6 follows:

H1(w(n+ 1))−H1(Σ′) ≥ H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1)

and if

H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1) ≤ 0

Lemma 4.5 (applied with a = C, α = N−1
N , b = C, r = diam w(n + 1),Σ = w(n + 1)) concludes the

proof. If

H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1) > 0

then put

ξ := (H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1))/2N ;

using Lemma 2.4 there exists Σ′′ ∈ A, Σ′′ ⊇ Σ′, such that

Ff (Σ′′) ≤ Ff (Σ′)− C1ξ
2, H1(Σ′′) ≤ H1(Σ′) + 2Nξ (4.11)

with C1 > 0 not dependent on y and ρ, thus combined withH1(w(n+ 1))−H1(Σ′) ≥ 2Nξ gives

H1(Σ′′) ≤ H1(w(n+ 1)). (4.12)

Now a slightly different argument has to be made for the two cases:

• if considering evolution (4.8): combining Σ′′ ⊇ Σ′ ⊇ w(n), (4.12) and
w(n+ 1) ∈ argminS⊃w(n),H1(S)≤H1(w(n))+εFf , we get Ff (Σ′′) ≥ Ff (w(n+ 1)),

• if considering evolution (4.9): combining Σ′′ ⊇ Σ′ ⊇ w(n) and (4.12) (along with the definition
of dissipation) leads to

Dε(Σ′′, w(n)) ≤ Dε(w(n+ 1), w(n)),

thus Ff (Σ′′) ≥ Ff (w(n+ 1)) is required to satisfy

Ff (Σ′′) +Dε(Σ′′, w(n)) ≥ Ff (w(n+ 1)) +Dε(w(n+ 1), w(n)).

Thus in both cases the competitor Σ′′ verifies Ff (Σ′′) ≥ Ff (w(n + 1)), and from now the proof
returns to be valid in both cases. Combining (4.10) and Ff (Σ′′) ≥ Ff (w(n+ 1)) leads to

H1(Σ′′) ≤ H1(Σ′) + 2Nξ Ff (w(n+ 1)) + C ′ρ
N
q

+1 − C1ξ
2 ≥ Ff (Σ′′) ≥ Ff (w(n+ 1)).

From direct computation

(H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1))2 ≤ C ′ρ

N
q

+1
,
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thus

H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1) ≤ C ′ρ

N
2q
− 1

2

and by hypothesis N
2q ≥

1
2 , thus forcing

ρ
N
2q
− 1

2 ≤ (diam w(n+ 1))
N
2q
− 1

2

and Lemma 4.5 concludes the proof.

Notice that in the proof the value of time step ε > 0 plays almost no role: indeed it holds for any
Euler scheme (having form (4.8) or (4.9)).

In [8] it has been proven that Ahlfors regularity for average distance minimizers in R2 requires
weaker conditions on the measure compared to Theorem 4.6: indeed Lp summability with p > 4/3
is enough, instead of Lp, p > 2 given in Theorem 4.6. This is due to a result similar to Lemma 2.4,
which proves stronger in the two dimension case and weaker in higher dimensions:

Lemma 4.9. Let Ω ⊆ RN a given domain, f << LN a measure, A : [0, diam Ω] −→ [0,∞) a function, and
{Σk}∞k=0 a sequence of closed sets with

⋂∞
k=0 Σk 6= ∅. Let be T the set of points y ∈ Ω such that

0 < dist(y,
∞⋂
k=0

Σk) < dist(y,Σk\
∞⋂
k=0

Σk) ∀k ≥ 0

and suppose f(T ) > 0. Then there exists ξ0 for every ξ ∈ (0, ξ0) there exists a segment Iξ ∈ Aξ\
⋃

0≤j<ξ Aj
such that

Ff (Σk ∪ Iξ) ≤ Ff (Σk)− Cξ
N+1

2

for any k, where C > 0 is a constant not dependent on ξ0, ξ, k.

The proof can be found in [8].
A similar sharper estimate holds for solutions of (4.8) and (4.9):

Theorem 4.10. Let be Ω ⊆ R2 a given domain, f ∈ Lp, p > 4
3

a given measure, A : [0, diam Ω] −→ [0,∞)

a function, S0 ∈ A an Ahlfors regular initial datum, ε > 0 a given time step, Dε : A × A −→ [0,∞] a
dissipation, and consider evolution

w(0) := S0

w(n+ 1) ∈ argminAH1(S0)+(n+1)ε
Ff

w(n+ 1) ⊇ w(n)

. (4.13)

Then for any n the set w(n) is Ahlfors regular.
Now consider evolution 

w(0) := S0

w(n+ 1) ∈ argminF (S) +Dε(S,w(n))
w(n+ 1) ⊇ w(n)

. (4.14)

Then for any n the set w(n) is Ahlfors regular.
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As in Theorem 4.8, we deliberately use the same notations for both cases. Here we will give two
different proofs. The first one is closely based on the idea used in Theorem 4.8, while the second
strongly relies on the fact Ω ⊆ R2.

Proof. A first proof can be obtained by closely following the proof of Theorem 4.8: by hypothesis
X0 is Ahlfors regular, and suppose w(n) is Ahlfors regular. The goal is to prove w(n + 1) Ahlfors
regular.

All passages before (4.11) follow without modifications (as they are true even for the two dimen-
sion case). The difference is that in the two dimension case, estimate (4.11) can be replaced by the
stronger variant given by Lemma 4.9: putting N = 2 (we deliberately use N to put in evidence the
sharper estimate given by Lemma 4.9),

Ff (Σ′′) ≤ Ff (Σ′)− C1(H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1))3/2 (4.15)

where C1, C > 0 are constants not dependent on y, ρ, and this leads to (combined with Ff (Σ′′) ≥
Ff (w(n+ 1)), see the proof of Theorem 4.8 for more details)

(H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1))3/2 ≤ C ′ρ

N
q

+1

with C ′ > 0 a constant not depending on y and ρ, thus

H1(w(n+ 1) ∩B(y, ρ))− ρC((
H1(w(n+ 1) ∩B(y, 2ρ))

2ρ
)

N−1
N + 1) ≤ C ′ρ

2N
3q
− 1

3

and by hypothesis 2N
3q ≥

1
3 holds, finally yielding

ρ
2
3q
− 1

3 ≤ (diam w(n+ 1))
2N
3q
− 1

3

and Lemma 4.5 concludes the proof.

The second proof strongly relies on Ω ⊆ R2:

Proof. Similarly to the previous proof, it is done by induction on n: by hypothesis S0 is Ahlfors
regular, and suppose w(n) Ahlfors regular. The goal is to prove w(n+ 1) Ahlfors regular.

Consider an arbitrary ρ <
ε

2π + 3
. Put U := w(n+ 1)\w(n), clearly

H1(w(n+ 1) ∩B(y, ρ)) = H1(w(n) ∩B(ρ)) +H1(U ∩B(y, ρ)).

IfH1(U ∩B(y, ρ)) ≥Mρ with M > 2π + 3, then consider the competitor

Σ′ := w(n+ 1)\(U ∩B(y, ρ)) ∪ (∂B(y, ρ) ∩ Ω) ∪ Seg ∪ Seg′

with Seg a suitable chord of B(y, ρ), and Seg′ a suitable radius.
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Condition (∗) gives that it is possible to choose Seg, Seg′ such that Seg, Seg′Ω, and B(y, ρ) ∩ Ω
connected; then with basic topological considerations compactness and connection follow.

Considering M > 2π + 3, this competitor verifies

H1(Σ′) ≤ H1(w(n+ 1))−H1(U ∩B(y, ρ)) + (2π + 3)ρ ≤ H1(w(n+ 1));

points Q ∈ Ω projecting to w(n + 1)\(U ∩ B(y, ρ)) (i.e Q ∈ {x ∈ Ω : ∃P ∈ w(n + 1)\(U ∩
B(y, ρ)) such that dist(x,w(n+ 1)) = dist(x, P )}) verify dist(Q,w(n+ 1)) ≥ dist(Q,Σ′).

Thus |Ff (w(n + 1)) − Ff (Σ′)| ≤ ρf(B(y, ρ)) ≤ Cρ
1+ 2

q , with C positive constant not dependent
on y, ρ. Applying Lemma 4.9, there exists Σ′′ ⊇ Σ′ such that Ff (Σ′′) ≤ Ff (Σ′)− C∗ρ3/2 where C∗ is
a positive constant not dependent on y and ρ. As by hypothesis we have p > 4/3, thus q < 4, there
exists ρ > 0 (independent from ρ and y) such that for any ρ < ρ0 inequality Ff (w(n+ 1)) > Ff (Σ′′)
follows, contradicting w(n+ 1) ∈ argminAH1(S0)+(n+1)ε

Ff and concluding the proof for (4.13).

For case (4.14), as we haveH1(Σ′′) ≤ H1(w(n+ 1)), inequality

Dε(Σ′′, w(n)) ≤ Dε(w(n+ 1), w(n))

holds, which combined with Ff (w(n+ 1)) > Ff (Σ′′) yields

Ff (w(n+ 1)) +Dε(w(n+ 1), w(n)) > Ff (Σ′′) +Dε(Σ′′, w(n))

contradicting w(n+ 1) ∈ argminF (S) +Dε(S,w(n)).
Thus for any ρ < ρ0, M > 2π + 3, we have

H1(U ∩B(y, ρ)) ≤Mρ;

as by inductive hypothesis w(n) is Ahlfors regular, there exists Cn > 0 such that

H1(w(n) ∩B(y, ρ)) ≤ Cnρ

finally yielding
H1(w(n+ 1) ∩B(y, ρ)) ≤ (Cn + 2π + 3)ρ

and the proof is complete.

Notice that the proof relies on two fundamental properties of two dimension domains:

1. Lemma 4.9 gives a sharper estimate than Lemma 2.4,

2. a Hausdorff one-dimensional Jordan curve can divide the rest of the domain in two connected
components.

5 Counterexamples

In Section 4 we have proven that solutions for evolution (1.3) and (1.4), when the initial datum is
Ahlfors regular, are always Ahlfors regular too. An important condition about domain was (∗), as
it allowed us to apply Lemmas 4.2. In this section we prove that condition (∗) is utterly essential,
without which Theorems 4.8 and 4.10 are false.

In the following condition (∗) will not be assumed.
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5.1 Discrete evolutions

Given α ∈ (1, 2) (and this α will be fixed in all the section), k ∈ N, impose a cartesian coordinate
system in R2 (see Figure 1), and define sets

Ck :=
{

(x, y) ∈ R2 :
√
x2 + y2 ∈

[
1
kα
,

1
kα

+ 4−k
]}

and Lk the rectangle of R2 with vertexes:

•
(

1
kα
, 0
)

,
(

1
kα
,

1
4k+1

)
,
(

1
(k + 1)α

, 0
)

,
(

1
(k + 1)α

,
1

4k+1

)
if k even,

•
(
− 1
kα
, 0
)

,
(
− 1
kα
,− 1

4k+1

)
,
(
− 1

(k + 1)α
, 0
)

,
(
− 1

(k + 1)α
,− 1

4k+1

)
if k odd.

Fig. 1: This is a schematic representation of Ω.

Let

Ω :=
∞⋃
k=1

Ck ∪ {(0, 0)} ∪
∞⋃
k=1

Lk

be our domain, endowed with the geodesic distance (i.e. the distance between two points x1, x2 ∈ Ω
is given by the length of the shortest path β : [0, 1] −→ Ω, β(0) = x1, β(1) = x2).

Lemma 5.1. The set Ω is sequentially compact.

Proof. The proof is straightforward, using basic topological considerations. Let {xj}∞j=0 ⊆ Ω be an
arbitrary sequence. If I := {i : xi = (0, 0)} verifies ]I =∞ then {xi}i∈I is a converging sequence.
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IF ]I <∞, we can consider the sequence {xj}∞j=0\{xi}i∈I since removing finitely many elements
from a sequence has no influence on Cauchy condition. Thus without loss of generality we will
assume I = ∅ in the following. The following dichotomy is possible:

1. if there exists M > 0 such that {xj}∞j=0 ⊆
M⋃
i=1

(Ci ∪ Li), then {xj}∞j=0 admits a convergent sub-

sequence, since
M⋃
i=1

(Ci ∪ Li) is a finite union of compact sets,

2. if a similar M does not exist, then for any K > 0 we have

{xj}∞j=0\
K⋃
s=0

(Cs ∪ Ls) 6= ∅,

or equivalently

{xj}∞j=0 ∩
∞⋃

s=K+1

(Cs ∪ Ls) 6= ∅,

and as
∞⋃

s=K+1

(Cs ∪ Ls) ⊆ B((0, 0),K−α) for any K > 0,

{xj}∞j=0 ∩B((0, 0),K−α) 6= ∅.

Thus there exists a subsequence {xjg}∞g=0 ⊆ {xj}∞j=0 converging to (0, 0).

Thus Ω is sequentially compact.

Now we provide some estimate on the distance between two points in Ω.

Lemma 5.2. Given arbitrary a, b ∈ N, a < b, for any couple of points x1 ∈ Ca, x2 ∈ Cb inequality

2
3
π

b−2∑
j=a+1

1
jα
≤ dist(x1, x2) ≤ 4

3
π

b∑
j=a−1

1
jα

(5.1)

holds.

Proof. The proof is split on several passages:

• We first estimate dist(Ck, Ck+1) for a given k ∈ N.

By construction for any k ∈ N we have

dist(Ck, Ck+1) ≥ 1
kα
− 1

(k + 1)α
− 1

4k+1

.
On the other hand:
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• if k even, there exists γ : [0, 1] −→ Ω, γ(0) = (k−α, 0) ∈ Ck ∩ Lk, γ(1) = ((k + 1)−α, 0) ∈
Ck+1 ∩ Lk, as γ(s) := (1− s)(k−α, 0) + s((k + 1)−α, 0) is admissible due to convexity of Lk

• if k odd there exists γ′ : [0, 1] −→ Ω, γ′(0) = (−k−α, 0) ∈ Ck, γ′(1) = (−(k + 1)−α, 0) ∈ Ck+1,
as γ′(s) := (1− s)(−k−α, 0) + s(−(k + 1)−α, 0) is admissible due to convexity of Lk.

thus in both cases dist(Ck, Ck+1) ≤ k−α − (k + 1)−α, and

1
kα
− 1

(k + 1)α
− 1

4k+1
≤ dist(Ck, Ck+1) ≤ 1

kα
− 1

(k + 1)−α
(5.2)

holds.

• Now we have to estimate dist(Lk, Lk+1) for a given k ∈ N.

By construction the only way to connect arbitrary points p0 ∈ Lk and p1 ∈ Lk+1 is through a
path β : [0, 1] −→ Ω verifying β([0, 1])∩Lk ⊇ {p0}, β([0, 1])∩Lk+1 ⊇ {p1}, and this path must “pass
through” Ck+1.

As p0 and p1 are almost antipodal (i.e. dist(p0,−p1) ≤ 2 · 4−(k+1), where −p1 denotes the point
symmetric to p1 with respect to (0, 0)), any such path β′ must verify

2π
3(k + 1)α

≤ π

(k + 1)−α
− 2

4k+1
≤ H1(β([0, 1])).

On the other hand, as both p0, p1 ∈ Ck+1, the path β can be chosen verifying

H1(β([0, 1])) ≤ π

(k + 1)α
+

2
4k+1

≤ 4π
3(k + 1)α

,

thus
2π

3(k + 1)α
≤ dist(Lk, Lk+1) ≤ 4π

3(k + 1)α
(5.3)

Similarly, given x1 ∈ Ca, x2 ∈ Cb, we have dist(x1, La) ≤
4π
3aα

and dist(x2, Lb−1) ≤ 4π
3bα

. Com-
bining with (5.2) and (5.3), with simple algebraic passages, leads to

2
3

 1
aα
− 1
bα

+ π
b−1∑

j=a+1

1
jα

 ≤ dist(x1, x2) ≤ 4
3

 1
aα
− 1
bα

+ π
b∑

j=a

1
jα


and the thesis follows with simple estimates.

If we let b→∞, point x2 converges to (0, 0), and (5.1) reads

2
3
π

∞∑
j=a+1

1
jα
≤ dist(x1, (0, 0)) ≤ 4

3
π

∞∑
j=a−1

1
jα
. (5.4)

Notice that although we had better estimates for (5.3), the less accurate one is sufficient for our
goals.

Before proceeding with the main result, another important lemma is required.
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Lemma 5.3. Any element of A(Ω)\A0(Ω) containing (0, 0) is not Ahlfors regular.

Proof. LetW ∈ A(Ω)\A0(Ω) be an arbitrary element, andH the smallest index for whichW∩CH 6= ∅
(if such H does not exist, i.e. W ∩ Cg = ∅ for any g ∈ N, would lead W = {(0, 0)} contradicting
H1(W ) > 0), and choose X ∈ W ∩ CH : as W ⊇ (0, 0), there exists a path ϕ : [0, 1] −→ W with
ϕ(0) = X , ϕ(1) = (0, 0). From (5.4) we have

2
3
π

∞∑
j=H+1

1
jα
≤ dist(X, (0, 0)) ≤ 4

3
π

∞∑
j=H−1

1
jα
,

and using
∞∑
i=n

1
iα
≥ 1
α− 1

1
(n+ 1)α−1

, (5.5)

we get
2
3
π

1
α− 1

1
(H + 2)α−1

≤ dist(X, (0, 0)).

From the construction of Ω, for any n ≥ 0 there exists Xn ∈ ϕ([0, 1])∩CH+n. From (5.4) and (5.5)
we have that

2
3
π

1
α− 1

1
(H + n+ 2)α−1

≤ dist(Xn, (0, 0)),

holds for an n ≥ 1.

Let rs :=
1
sα

: for any k ≥ 1

H1(W ∩B((0, 0), rH+k))
rH+k

≥ H
1(ϕ([0, 1]) ∩B((0, 0), rH+k))

rH+k

≥ dist(Xk, (0, 0))
rH+k

≥ 1
rH+k

2
3
π

1
α− 1

1
(H + k + 2)α−1

=
2
3
π

1
α− 1

(H + k)α

(H + k + 2)α−1

leading do

lim
k→∞

H1(W ∩B((0, 0), rH+k))
rH+k

≥ lim
k→∞

2
3
π

1
α− 1

(H + k)α

(H + k + 2)α−1
=∞,

thus W cannot be Ahlfors regular.

Now we can present the main result of this section. Given a parameter ε > 0 consider the
evolution 

w(0) := {(0, 0)}
w(n+ 1) ∈ argminA(Ω)(n+1)ε

F

w(n+ 1) ⊇ w(n)

(5.6)
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where
F : A(Ω) −→ (0,∞), F (S) :=

∫
Ω

dist(x, S)dx.

Proposition 5.4. For any parameter ε > 0, any solution {w(j)}∞j=0 of (5.6) is such that w(1) is not Ahlfors
regular.

Proof. From
dist(x, (0, 0)) ≤ dist(x,w(1)) + max

y∈w(1)
dist(y, (0, 0))

integrating on Ω leads to

F ({(0, 0)})− F (w(1)) =
∫

Ω
dist(x, (0, 0))dx−

∫
Ω

dist(x,w(1))dx

≤
∫

Ω
dist(x,w(1)) + max

y∈w(1)
dist(y, (0, 0))dx−

∫
Ω

dist(x,w(1))dx

≤ max
y∈w(1)

dist(y, (0, 0))L2(Ω)

.

AsH1(w(1)) = ε is admissible, we can choose S ∈ Aε containing (0, 0) such that maxy∈S dist(S, (0, 0)) =
ε, with {z ∈ Ω : dist(z, (0, 0)) = ε} is not empty as t 7→ dist(t, (0, 0)) is continuous on Ω. Let H be
the smallest index for which S ∩ CH 6= ∅: this forces S ∩ LH 6= ∅; moreover, as S intersects both CH

and CH+1, diam(S ∩ LH) ≥ 1
2

(
1
Hα
− 1

(H + 1)α

)
, thus the set

{w ∈ Ω : dist(w, (0, 0)) < dist(w, S))}

contains at least {w ∈ LH : dist(w, S) ≤ 1
2

dist(CH+2, (0, 0))}, which has positive measure. Thus

F (S) < F ({(0, 0)}), and w(1) 6= {(0, 0)} as by definition w(1) ∈ argminS′⊇(0,0), H1(S′)≤εF (S′).
Lemma 5.3 concludes the proof.

5.2 Minimizing movements

In (5.6) we can let the time step ε go to 0: this yields the “continuous” variant of Euler schemes, i.e.
minimizing movements.

Definition 5.5. Given a metric space (X, τ), a functional F , an initial datum u0 ∈ X , a time T > 0,
a function Σ : [0, T ] −→ X is a minimizing movement with initial datum u0 if there exists a sequence
{εk}∞k=0 ↓ 0 and Euler schemes {

w(0) := u0

w(n+ 1) ∈ argminConstF
,

where Const are constraints (potentially dependent on many quantities), with associated functions

Σεk
: [0, T ] −→ X, Σεk

(t) := w([t/εk])

satisfying
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Σ(s) = lim
k→∞

Σεk
(s)

for any s ∈ [0, T ].

In our case (X, τ) = (A(Ω), dH), F = F , u0 = {(0, 0)}, and Euler schemes considered have form{
w(0) := {(0, 0)}
w(n+ 1) ∈ argminS⊇w(n),H1(S)≤(n+1)εF (S)

, (5.7)

and associated functions

Σε : [0, T ] −→ A(Ω), Σε(t) := w([t/ε]) (5.8)

Existence of minimizing movements is discussed in [5], to which we refer for more details: here
we limit to remark that

1. the domain A(Ω) is sequentially compact,

2. for any sequences {Xk}∞k=0 ⊆ A(Ω) converging to X ∈ A(Ω), {Yk}∞k=0 ⊆ A(Ω) converging to
Y ∈ A(Ω), verifying Xk ⊆ Yk for any k, inclusion X ⊆ Y holds,

3. any non decreasing function ψ : R −→ A(Ω) admits at most countable discontinuity points:
indeed let {xi}i∈I the set of discontinuity points of ψ, then putting

φ : R −→ R, φ(x) := H1(ψ(x))

leads to {xi}i∈I discontinuity points for φ, possible only if I is at most countable.

These conditions are sufficient to guarantee the existence of minimizing movements (see [5] for
more details): given an initial datum X0, for every sequence {εk}∞k=0 ↓ 0 there exists a subsequence
{εkh
}∞h=0, Euler schemes{

w(0) := X0

w(n+ 1) ∈ argminS⊇w(n),H1(S)≤H1(X0)+(n+1)εkh
F (S)

,

with associated functions

Σεkh
: [0, T ] −→ A(Ω), Σεkh

(t) := w([t/εkh
]),

and a function Σ : [0, T ] −→ A(Ω) such that

Σ(s) = lim
h→∞

Σεkh
(s) ∀s ∈ [0, T ].

Proposition 5.6. Given a time T ≥ 0, a minimizing movement Σ : [0, T ] −→ A(Ω) with Σ(0) = {(0, 0)},
for any s ∈ [0, T ] the set Σ(s) is not Ahlfors regular unless Σ(s) = {(0, 0)}.
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Proof. As Σ : [0, T ] −→ A(Ω) is a minimizing movement, there exists a sequence {εk}∞n=0 ↓ 0, Euler
schemes {

w(0) := {(0, 0)}
w(n+ 1) ∈ argminS⊇w(n),H1(S)≤(n+1)εk

F (S)
,

with associated functions

Σεk
: [0, T ] −→ A(Ω), Σεk

(t) := w([t/εk])

such that

Σ(s) = lim
k→∞

Σεk
(s)

for any s ∈ [0, T ]. Thus Σ(s) ⊇ {(0, 0)} for any s ∈ [0, T ].
Choose an arbitrary t ∈ [0, T ]: if Σ(t) 6= {(0, 0)}, then H1(Σ(t)) > 0, and Σ(t) ⊇ {(0, 0)}. Apply-

ing Lemma 5.3 yields Σ(t) not Ahlfors regular.

Notice that hypothesis Σ : [0, T ] −→ A(Ω) is minimizing movement is used only to guarantee
(0, 0) ∈ Σ(s) for any s ∈ [0, T ], allowing us to apply Lemma 5.3.
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