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Abstract. We study strictly convex Alexandrov solutions u of the real Monge-
Ampère equation det(∇2u) = f , where f is measurable, positive, and bounded
away from 0 and ∞. Under only these assumptions we prove interior W2,1+ε-
regularity of u.
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1. Introduction

In this paper we study solutions u : Ω → R of the classical real Monge-Ampère
equation

(1.1) det(∇2u) = f on Ω .

We will permanently assume that Ω is a convex bounded open set in R
n, that n ∈ N

is arbitrary, and that f : Ω → (0,∞) is Lebesgue measurable.
The first general existence theorems for solutions u of (1.1), coupled with the

Dirichlet boundary condition

(1.2) u = ψ on ∂Ω ,

are due to Alexandrov [2] and Bakelman [4]. We limit our discussion to the related
class of generalized convex solutions, nowadays known as Alexandrov solutions,
and recall that for strictly convex Ω, f ∈ L1(Ω), and ψ ∈ C0(∂Ω) there exists a
unique Alexandrov solution u of (1.1)-(1.2); see for instance [29, Theorem 4.1] or
[24, Theorem 1.6.2].

With this existence statement at hand it is natural to investigate the regularity1

of solutions, and we refer to the monographs [22, Chapter 17] and [24, Chapter 4]
and the papers [27, 28, 13, 12, 32, 33] for classical (C2 or better) regularity results.
Here, we restate two more recent results of Caffarelli [8, 9], which require only very
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1Every convex function is locally Lipschitz continuous and has measures as distributional
second derivatives. Here we are concerned with properties which go beyond this generic regularity.
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mild assumptions on f . Indeed, for Alexandrov solutions u of (1.1)-(1.2) with zero

boundary values ψ ≡ 0 he proved: if f is continuous, then there holds u ∈ W2,p
loc(Ω)

for all p ∈ [1,∞); if f solely satisfies

(1.3) 0 < λ ≤ f ≤ Λ <∞ on Ω ,

for some constants λ and Λ, then one still has u ∈ C1,α
loc (Ω) for some α ∈ (0, 1).

These results leave open the question for the regularity of the second derivatives
of u under the sole assumption (1.3) (compare [3] for a discussion). Very recently,

De Philippis & Figalli [14] addressed this problem and established u ∈ W2,1
loc(Ω) and

|∇2u| logk(2+ |∇2u|) ∈ L1
loc(Ω) for all k ∈ N in this situation. In contrast, for every

p > 1 Wang [34] provided counterexamples of Alexandrov solutions u /∈ W2,p
loc(Ω).

However, in these examples the ratio Λ
λ of the bounds in (1.3) blows up for pց 1,

and thus — as pointed out in [14] — one may still hope for regularity u ∈ W2,1+ε
loc (Ω)

with some positive ε depending on Λ
λ . Taking [14] as a starting point we will prove

here that this is indeed the case.
Before stating our result we mention that the described regularity theory for

solutions of (1.1)-(1.2) is valid not only for zero boundary values, but more generally
for boundary data of class C1,β with some β ∈ (n−2

n , 1). Indeed, Caffarelli [7,
Corollary 4] (compare also [33, Theorem 1.3] and [24, Theorem 5.4.7]) showed that
under the C1,β-hypothesis2 u is necessarily strictly convex, and once strict convexity
is achieved interior regularity results can be reduced to the case of zero boundary
values — by local renormalization on sections; see for instance [24, Chapter 3.2].

We will now impose strict convexity of u as an assumption (which is automati-
cally valid in case of C1,β boundary data). Then we can formulate our main result in
the following localized fashion which avoids any reference to the boundary condition
(1.2) at all:

Theorem 1.1. Suppose that u : Ω → R is a strictly convex Alexandrov solution
of (1.1), where f satisfies (1.3). Then we have u ∈ W2,1+ε

loc (Ω) for some positive
constant ε, which depends only on n, λ, and Λ.

Moreover, for every section (see Definition 2.3) Su(x0, r0) ⊂⊂ Ω and every
γ > 0 there exists some ̺0(n, λ,Λ, Su(x0, r0), γ) > 0 with the following property:
whenever we have dist(Su(x, 2r),R

n\Su(x0, r0)) ≥ γ for another section Su(x, 2r)
with 0 < r < ̺0, then there holds3

(1.4) −

∫

Su(x,σr)

|∇2u|1+ε dy ≤ C

(
−

∫

Su(x,2r)

∆u dy

)1+ε

.

with constants σ(n, λ,Λ) ∈ (0, 1) and C(n, λ,Λ) ∈ [1,∞),

The proof of Theorem 1.1 will be carried out in Section 5 of this paper.
The integrability improvement of the theorem carries over to a couple of related

problems where the Monge-Ampère equation (1.1) naturally arises. Two such in-
stances are W2,1+ε-regularity for the boundary of convex sets with prescribed Gauss
curvature (the Minkowski problem) and W1,1+ε-regularity for optimal transport
maps (with respect to the quadratic cost) to convex targets. We will not enter into

2Explicit examples show that this hypothesis is sharp; see the discussion in [24, Chapter 5.5].
3Here, we use |∇2u| :=

√

∑n
i,j=1

(∂i∂ju)2 for the Hilbert-Schmidt norm of the Hessian and

∆u :=
∑n

i=1
∂i∂iu for the Laplacian as usual. We remark that due to the convexity of u we have

|∇2u| ≤ ∆u ≤ √
n|∇2u|.



W2,1+ε ESTIMATES FOR THE MONGE-AMPÈRE EQUATION 3

the details here, but refer the reader to [7, 8, 14] and [10, 3, 14], respectively, for
further discussion and references.

The basic idea in the proof of Theorem 1.1 is to combine the key estimate [14,
Lemma 3.4] of De Philippis & Figalli with a variant of Gehring’s higher integrability
lemma [19]. More precisely, [14, Lemma 3.4] yields a certain (weak-)L1-estimate
for a maximal function, and we will show that this estimate is sufficient to apply
an endpoint version of Gehring’s lemma, occasionally called Fefferman’s lemma;
see [16, 5]. Roughly speaking the latter lemma states that either a reverse L log L-
inequality4 ‖h‖L log L ≤ C‖h‖L1 or5 an L1-estimate ‖Mh‖L1 ≤ C‖h‖L1 for a maximal
function Mh (on all cubes or balls) already implies L1+ε-integrability of h.

For our purposes, such a result needs to be heavily adapted, and this will indeed
be our main concern: on the one hand we need to customize it to estimates on
Monge-Ampère sections (see Definition 2.3) instead of Euclidean cubes or balls.
On the other hand, as usual in PDE problems, we need to deal with increasing
supports in the starting reverse inequality. While these issues are well-understood
for the more common versions of Gehring’s lemma, both of them are new in case of
the endpoint version, and in fact it seems that this version has not yet been applied
to nonlinear PDEs at all.

Nonetheless, we will implement the required refinements, carrying out — in the
spirit of Caffarelli & Gutiérrez [9, 11] — all our analysis on sections. In fact, we first
follow the approach of Giaquinta & Modica [21], as described in [23, Chapter 6.4],
to derive the Gehring type statement of Proposition 3.2 on sections. We stress that
this first statement could alternatively be obtained by applying a result of Gianazza
[20, Theorem 4.1] in the homogeneous space of [1], but we will provide a simpler
self-contained proof in our situation, which also yields a more explicit control of
the relevant constants. Once this proof is completed, we involve a modified idea of
Fusco & Sbordone [18] and supply some additional arguments in order to reach the
corresponding endpoint version. This last result, which is stated as Proposition 3.4,
is the main technical contribution of the present paper.

Finally, we remark that our interest in endpoint versions of Gehring’s lemma has
originally emerged in connection with the L log L-estimate of [6]; however, in that
context, the applicability of Gehring type lemmas has remained an open problem.

The plan of the paper is as follows. In Section 2 we collect preliminaries on
Alexandrov solutions, Monge-Ampère sections, and the Gehring improvement. In
Section 3 we establish versions of Gehring’s lemma for sections, and in Section 4
we deduce higher integrability estimates for smooth Alexandrov solutions from the
maximal function estimate of [14]. Lastly, in Section 5 we conclude the proof of
Theorem 1.1 by an approximation procedure.

After the completion of this paper the author was informed that De Philippis &
Figalli & Savin [15] had just established the same regularity result for the Monge-
Ampère equation. They used related, but somewhat different methods.

Acknowledgement. The author thanks Lisa Beck for a careful reading of a pre-
liminary version of the manuscript.

4One may regard a reverse L log L-inequality as a reverse Jensen inequality in the sense of
[17, 18] for the function A(s) := s log(2+s). However, this choice of A does not satisfy the
assumptions of the higher integrability results in these papers, and thus the endpoint version is
not included there.

5By a classical result [30], the two alternative assumptions stated here are essentially equivalent.
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2. Preliminaries

2.1. General notation. Our notation is mostly standard, and therefore we just
highlight the following conventions at this point.

Dependencies of constants are often specified in brackets and are then understood
as full dependencies; for instance ε(n, λ,Λ) signifies that ε can be chosen depending
only on n, λ, and Λ.

Angle brackets 〈 · , · 〉 are used for the Euclidean inner product on R
n.

If E is a subset of Rn, then we write χE for its characteristic function and E for
its closure. Furthermore, E ⊂⊂ Ωmeans that E is compact and contained in Ω, and

for Ẽ ⊂ R
n and y ∈ R

n we set dist(Ẽ, E) := inf{
√
〈x̃−x, x̃−x〉 : x ∈ E, x̃ ∈ Ẽ}

and dist(y, E) := dist({y}, E).
For the n-dimensional Lebesgue measure on R

n we write Ln, and if B is a
measurable subset of Rn and f a measurable function on B, we abbreviate |B| :=
Ln(B),

∫
B f dx :=

∫
B f dL

n, and −
∫
B f dx := 1

|B|

∫
B f dx.

Concerning derivatives our convention is the following one: we write ∂u(x) for
the (set-valued) subdifferential of u at x. Moreover, ∇u stands either for the clas-
sical gradient of u or for the distributional gradient of u if it is represented as a
function. If the distributional gradient of u is represented by a measure, we denote
this measure by Du. Analogously, we use ∇2u and D2u for second derivatives as
functions and measures, respectively.

We write Lp(Ω), Wk,p(Ω), Lp
loc(Ω), and Wk,p

loc (Ω) for the common Lebesgue and

Sobolev spaces and their localized variants, respectively. Moreover, Ck(Ω) is the
spaces of functions u : Ω → R with continuous derivatives up to order k (where as
usual u and its derivatives need not be bounded on Ω). Finally, u ∈ Ck(Ω) means
that u can be extended to a function in Ck(N ) for an open neighborhood N of Ω.

2.2. Alexandrov solutions and Monge-Ampère sections. Here we collect
some preliminaries related to the Monge-Ampère equation. For a broader discussion
of these topics we refer to [24].

Definition 2.1 (Monge-Ampère measures). Suppose that u : Ω → R is a convex
function. The Monge-Ampère measure Mu of u is defined by6

Mu(B) :=

∣∣∣∣
⋃

x∈B

∂u(x)

∣∣∣∣ for Borel subsets B of Ω .

Definition 2.2 (Alexandrov solutions). A convex function u : Ω → R is called an
Alexandrov solution (or weak solution) of (1.1) if there holds

Mu(B) =

∫

B

f dx for all Borel subsets B of Ω .

Evidently, requiring Mu = µ one can define Alexandrov solutions of (1.1) with
a Borel measure µ instead of f as the right-hand side of (1.1). Indeed, many of the
previously mentioned results have been obtained in this more general framework
with a doubling assumption on µ. We stress that fLn is doubling under (1.3)
and hence these results are available in our case, while there is no7 hope for a
corresponding extension of Theorem 1.1.

6Notice that the set
⋃

x∈B ∂u(x) is Lebesgue measurable; see for instance [24, Theorem 1.1.13].
7As remarked in [14] there exist doubling singular measures µ, and for n = 1 one can solve

D2u = µ for any of them.
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Definition 2.3 (sections). Suppose u ∈ C1(Ω). For x ∈ Ω and r ∈ (0,∞) the
(cross-)section Su(x, r) is given by

Su(x, r) := {y ∈ Ω : u(y) < u(x) + 〈∇u(x), y−x〉+ r} .

Moreover, for τ ∈ (0,∞) we use the convention

τSu(x, r) := {x+ τ(y−x) : y ∈ Su(x, r)} ,

i. e. τSu(x, r) is the τ-dilation of Su(x, r) with respect to the center x.

If u is an Alexandrov solution of the Monge-Ampère equation, then the Su(x, r)
are called Monge-Ampère sections. It is clear that we generally have x ∈ Su(x, r) ⊂
Su(x,R) for 0 < r < R and

⋃
0<t<r Su(x, t) = Su(x, r). If u is strictly con-

vex, then it is also easy to see that Su(x, r) \ Su(x, r) has zero measure, and that

Su(x, r) =
⋂

t>r Su(x, t) holds whenever Su(x, r) ⊂⊂ Ω. In particular, combining
these observations and the additivity of the Lebesgue measure we have:

Lemma 2.4 (continuous dependence). Suppose that u ∈ C1(Ω) is strictly convex
and Su(x,R) ⊂⊂ Ω. Then |Su(x, r)| depends continuously on r ∈ (0, R].

Moreover, the sections have the convenient properties of the following proposition
which is essentially taken from [14, Proposition 2.1]; see also [25] and [24, Chapter 3]
for the original statements and the proofs on the whole R

n.

Proposition 2.5 (properties of the sections). Suppose that u ∈ C1(Ω) is a strictly
convex Alexandrov solution of (1.1), where f satisfies (1.3). Then there exists some
θ(n, λ,Λ) > 1 and for every E ⊂⊂ Ω there is a positive ̺(n, λ,Λ,Ω, E) such that
the following properties are valid:

(A) Su(x, r) ⊂⊂ Ω for all x ∈ E and 0 < r ≤ 2̺,

(B) τSu(x, r) ⊂ Su(x, τr) for all τ ∈ (0, 1], x ∈ E, and 0 < r ≤ 2̺,

(C) if Su(y, r) ∩ Su(x, r) 6= ∅ holds for x, y ∈ E and 0 < r ≤ 2̺/θ, then one has
Su(y, r) ⊂ Su(x, rθ)

In the following we will refer to the properties of Proposition 2.5 only as (A),
(B), and (C), and we will widely use them, where we consider the constant θ as
fixed for the remainder of the paper.

As pointed out in [31, 11, 14] the preceding properties of sections suffice to use
them like Euclidean balls in many regards. In particular, they allow to establish
the following lemma; see [31, Chapter 1.3.1].

Lemma 2.6 (Lebesgue points). Under the assumption of Proposition 2.5 consider
G ∈ L1(Ω). Then we have

lim
rց0

−

∫

Su(x,r)

Gdy = G(x) for Ln-a. e. x ∈ Ω .

Finally, we turn to [11, Lemma 1], which was originally formulated for an abstract
system of sections. However, the assumptions of [11] on this abstract system are
valid in our case by [24, Corollary 3.3.6, Theorem 3.3.8], and thus we may restate
the lemma as follows.
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Lemma 2.7 (Besicovitch type covering). Suppose that u : Ω → R is a strictly
convex Alexandrov solution of (1.1), where f satisfies (1.3). Moreover, fix E ⊂⊂ Ω,
the corresponding ̺ from Proposition 2.5, and a subset A of E. Then, given for
every x ∈ A some rx ∈ (0, ̺], one can find a finite or countable family (xi)i∈I of
points in A such that

(2.1) A ⊂
⋃

i∈I

Su(xi, rxi
) and

∑

i∈I

χSu(xi,ζrxi
) ≤

1

ζ
on Ω .

with a constant ζ(n, λ,Λ) ∈ (0, 1].

2.3. Gehring’s improvement. Here, we record two known lemmas. The first
one is a simple version of [23, Lemma 6.3]. The second one is a particular case
of a key lemma of Gehring [19] and corresponds to the choice m=0, ω≡0 in [23,
Proposition 6.1]. However, instead of using Riemann-Stieltjes integrals as in [23]
we prefer to regard monotone functions ϕ on the real line as BV-functions, and
thus consider the derivative Dϕ as a measure. Even besides that we have slightly
modified the statements, and for completeness and convenience of the reader we
decided to include the brief proofs.

Lemma 2.8. Consider q ∈ (0,∞), a measurable function G : S → R on a measur-
able subset S of R

n with |S| <∞, and set

(2.2) ϕ(s) := |S ∩ {G > s}|

for s ≥ 0. Then for all t ≥ 0 one has

−

∫

(t,∞)

sq dDϕ(s) =

∫

S∩{G>t}

Gq dy ,

where either both integrals are finite or both are infinite.

Proof. We note that ϕ is non-increasing and right-continuous with lims→∞ ϕ(s) =
0. Moreover, writing Φ(s) := sqϕ(s) we observe that Φ has locally bounded vari-
ation and that Φ(s) ≤ −

∫
(s,∞)

rq dDϕ(r) holds. Now we deal with the case that

the left-hand integral in the claim is finite for some — and consequently for all —
t ≥ 0. Then, from the preceding inequality for Φ(s) we infer lims→∞ Φ(s) = 0 and
thus

Φ(t) +

∫

(t,∞)

dDΦ = 0 for all t ≥ 0 .

Moreover, using the Fubini-Tonelli theorem we have

(2.3)

Φ(t) +

∫

(t,∞)

dDΦ = tqϕ(t) +

∫ ∞

t

qsq−1ϕ(s) ds+

∫

(t,∞)

sq dDϕ(s)

=

∫

S∩{G>t}

[
tq +

∫ G(y)

t

qsq−1 ds

]
dy +

∫

(t,∞)

sq dDϕ(s)

=

∫

S∩{G>t}

Gq dy +

∫

(t,∞)

sq dDϕ(s) .

Combining the previous equalities we arrive at the claim. To conclude the proof
it remains to exclude the case that the right-hand integral in the claim is finite,
but the left-hand integral is infinite. In this case (2.3) would still be valid and the
common value of the expressions in (2.3) would be −∞. In particular, we would
get

∫
(t,∞) dDΦ = −∞, which contradicts Φ ≥ 0 on (0,∞). �
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Lemma 2.9. Consider K ≥ 1, t0 > 0, and a non-increasing ϕ : (t0,∞) → [0,∞)
with limt→∞ ϕ(t) = 0. If one has

(2.4) −

∫

(t,∞)

s dDϕ(s) ≤ Ktϕ(t) for all t ≥ t0 ,

then for some positive ε(K) one also has

(2.5) −

∫

(t0,∞)

s1+ε dDϕ(s) ≤ −2tε0

∫

(t0,∞)

s dDϕ(s) .

In particular, the integral on the left-hand side of (2.5) is finite.

Proof. Setting ψ(t) := −
∫
(t,∞)

s dDϕ(s) ≥ 0 we get Dψ = w dDϕ, where w(s) := s.

Moreover, we have ψ(t) ≤ Ktϕ(t) by assumption. Now we first assume that ϕ(t)
vanishes for sufficiently large t. In this case we rely on the preceding observations
and integrate by parts twice to obtain (at first for arbitrary ε > 0)

−

∫

(t0,∞)

s1+ε dDϕ(s) = −

∫

(t0,∞)

sε dDψ(s)

= tε0ψ(t0) + ε

∫

(t0,∞)

sε−1ψ(s) ds

≤ tε0ψ(t0) + εK

∫

(t0,∞)

sεϕ(s) ds

= tε0ψ(t0)−
εK

ε+ 1
t1+ε
0 ϕ(t0)−

εK

ε+ 1

∫

(t0,∞)

s1+ε dDϕ(s) .

Now we choose ε such that εK
ε+1 = 1

2 , that is ε := (2K−1)−1. Then we can absorb
the last term and arrive at

−

∫

(t0,∞)

s1+ε dDϕ(s) ≤ 2tε0ψ(t0) ,

which is just the claim. If ϕ(t) does not vanish for large t, then we approximate ϕ
by the functions ϕT := χ(t0,T )ϕ with T ∈ (t0,∞). We observe that limt→∞ ϕ(t) = 0

implies DϕT ({T }) ≤ −
∫
[T,∞)

s dDϕ(s), and deduce that (2.4) holds also with ϕT

in place of ϕ (for t ≥ T this is trivial, for t < T it comes from the preceding
observation). Recalling what we already proved we infer that (2.5) is valid with ϕT

in place of ϕ. Letting T → ∞ we easily arrive at the final claim. �

3. Gehring type lemmas on Monge-Ampère sections

In the following we fix a strictly convex Alexandrov solution u ∈ C1(Ω) of (1.1),
where f satisfies (1.3), and we briefly write S(x, r) instead of Su(x, r) for the sections
of u. Moreover, we also fix E ⊂⊂ Ω and the corresponding ̺ from Proposition 2.5.

We start with a preparatory lemma which already contains an integrability im-
provement.

Lemma 3.1. For a measurable subset S of E and 0 ≤ G ∈ L1(S) suppose that
there are a constant L ≥ 1, a level t0 > 0, and for each x ∈ S some Rx ∈ (0, ̺]
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such that S(x,Rx) ⊂ S and

−

∫

S(x,Rx)

Gdy ≤ t0 ,(3.1)

−

∫

S(x,r)

Gdy ≤ L inf
S(x,r)

G for all r ∈ (0, Rx] .(3.2)

Then we have G ∈ L1+ε(S) and
∫

S

G1+ε dy ≤ 2tε0

∫

S

Gdy

for some positive constant ε(n, λ,Λ, L).

Proof. We introduce the abbreviation

mx(r) := −

∫

S(x,r)

Gdy

and record mx(Rx) ≤ t0 for all x ∈ S by assumption. For the moment we fix a
level t ≥ t0, and we introduce

A :=

{
x ∈ S : lim sup

rց0
mx(r) > Lt

}
.

Since mx(r) depends continuously on r by Lemma 2.4, for every x ∈ A we can find
some rx ∈ (0, Rx] with mx(rx) = Lt, that is

−

∫

S(x,rx)

Gdy = Lt .

Now by Lemma 2.7 there exists a finite or countable family (xi)i∈I of points in A
with the covering properties (2.1). Moreover, by Lemma 2.6 and the definition of
A we see that G ≤ Lt holds Ln-a. e. on S \A. Altogether we therefore get

(3.3)

∫

S∩{G>Lt}

Gdy ≤

∫

A

Gdy

≤
∑

i∈I

∫

S(xi,rxi
)

Gdy

= Lt
∑

i∈I

|S(xi, rxi
)| ≤

Lt

ζn

∑

i∈I

|S(xi, ζrxi
)| ,

where we also employed (B) in the last step. By our assumption (3.2) we have

inf
S(xi,rxi

)
G ≥

1

L
−

∫

S(xi,rxi
)

Gdy = t

for all k ∈ N and in particular G ≥ t on all sections S(xi, ζrxi
). Moreover, we know

S(xi, rxi
) ⊂ S(xi, Rxi

) ⊂ S. Combining this with the bounded-overlap property
from (2.1) we can further estimate the right-hand side of (3.3) ending up with

∫

S∩{G>Lt}

Gdy ≤
Lt

ζn+1
|S ∩ {G ≥ t}| .

In addition, we trivially have
∫

S∩{Lt≥G>t}

Gdy ≤ Lt|S ∩ {G ≥ t}| ,
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and combining the last two estimates we find

(3.4)

∫

S∩{G>t}

Gdy ≤ Kt|S ∩ {G ≥ t}| ,

where K := L
ζn+1 + L depends only on n, λ, Λ, and L. Since t ≥ t0 is arbitrary,

we can replace the right-hand side of (3.4) with Kt|S ∩ {G > t}| by a continuity
argument. Then by Lemma 2.8 we write (3.4) as

−

∫

(t,∞)

s dDϕ(s) ≤ Ktϕ(t) for t ≥ t0

with ϕ from (2.2). Noting limt→∞ ϕ(t) = 0 we can apply Lemma 2.9, and we
deduce

−

∫

(t0,∞)

s1+ε dDϕ(s) ≤ −2tε0

∫

(t0,∞)

s dDϕ(s)

for some positive ε(n, λ,Λ, L). Using Lemma 2.8 once more this can be rewritten
as ∫

S∩{G>t0}

G1+ε dy ≤ 2tε0

∫

S∩{G>t0}

Gdy .

Combining the previous inequality with the trivial estimate
∫

S∩{G≤t0}

G1+ε dy ≤ tε0

∫

S∩{G≤t0}

Gdy

we arrive at the claim. �

Next we will remove the assumption (3.1) in the previous lemma coming out
with the following Gehring type statement. A similar result with an inf-inequality
on standard cubes is implicitly contained in the work of Muckenhoupt [26] and is
stated as [18, Theorem 1.4]. Moreover, as already mentioned in the introduction
the following statement could essentially be obtained from [20, Theorem 4.1] and
[1], but the following self-contained proof is — in our situation — more manageable
than the one in [20].

Proposition 3.2. Consider a section S(x0, r0) ⊂ E with 0 < r0 < 2̺/θ2 and
0 ≤ g ∈ L1(S(x0, r0)). Suppose that there is a constant M ≥ 1 such that for each
enclosed section S(x, r) ⊂ S(x0, r0) there holds

−

∫

S(x,r)

g dy ≤M inf
S(x,r)

g .

Then we have g ∈ L1+ε(S(x0, r0/θ)) and

−

∫

S(x0,r0/θ)

g1+ε dy ≤ 2θ4n+5nε

(
−

∫

S(x0,r0)

g dy

)1+ε

for some positive constant ε = ε(n, λ,Λ,M).

Proof. We abbreviate

S := S(x0, r0) ,

for x ∈ S we set

δ(x) := sup{r ∈ (0,∞) : S(x, r) ⊂ S} ,(3.5)

v(x) := |S(x, δ(x)/θ)| ,
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and we notice δ(x) ≤ r0θ < 2̺/θ, since S = S(x0, r0) ⊂ S(x, r0θ) by (C). Moreover,
for all x ∈ S we claim

δ(x)/θ ≤ δ(y) ≤ δ(x)θ for y ∈ S(x, δ(x)/θ) ,(3.6)

v(x)/θ2n ≤ v(y) ≤ v(x)θ2n for y ∈ S(x, δ(x)/θ) .(3.7)

We first prove (3.6). By (C) and (3.5) we have S(y, δ(x)/θ) ⊂ S(x, δ(x)) ⊂ S.
Using (3.5) once more we infer the left-hand bound in (3.6). In order to derive
the right-hand bound we take an arbitrary 0 < r < 2̺/θ − r0θ. Then we have
S(x, δ(x) + r) 6⊂ S by (3.5), S(x, δ(x)+r) ⊂ S(y, (δ(x)+r)θ) by (C), and conse-
quently S(y, (δ(x)+r)θ) 6⊂ S. Since r can be made arbitrarily small, this and (3.5)
yield the right-hand bound in (3.6). Next, we establish (3.7). Indeed, using in
turn (B), (3.6), (C), and again (B) we have θ−1S(y, δ(y)/θ) ⊂ S(y, δ(y)/θ2) ⊂
S(y, δ(x)/θ) ⊂ S(x, δ(x)) ⊂ θS(x, δ(x)/θ), which yields θ−nv(y) ≤ θnv(x) and
gives the right-hand bound in (3.7). Similarly, by (C), (3.6), and (B) we get
S(x, δ(x)/θ) ⊂ S(y, δ(x)) ⊂ S(y, δ(y)θ) ⊂ θ2S(y, δ(y)/θ) and the left-hand bound
in (3.7).

Now we exploit the preceding observations in the context of the proposition: for
all x ∈ S we have S(x, δ(x)/θ) ⊂ S by (3.5), and in view of (3.6) and (3.7) our
assumptions imply

−

∫

S(x,r)

gv dy ≤Mθ4n inf
S(x,r)

gv for all r ∈ (0, δ(x)/θ]

and

−

∫

S(x,δ(x)/θ)

gv dy =

∫

S(x,δ(x)/θ)

v(y)

v(x)
g(y) dy ≤ θ2n

∫

S

g dy ,

still for all x ∈ S. In conclusion, we can apply Lemma 3.1 with the choices G := gv,
Rx := δ(x)/θ, L :=Mθ4n, and t0 := θ2n

∫
S g dy. We deduce gv ∈ L1+ε(S) and

(3.8)

∫

S

(gv)1+ε dy ≤ 2

(
θ2n

∫

S

g dy

)ε ∫

S

gv dy

for some positive ε = ε(n, λ,Λ,M). Recalling S = S(x0, r0) we notice δ(x0) = r0
and v(x0) = |S(x0, r0/θ)|. Applying (3.7) with x = x0 we get the lower bound
v(y) ≥ θ−2n|S(x0, r0/θ)| for all y ∈ S(x0, r0/θ). Moreover, by definition we have
the upper bound v(y) ≤ |S| for all y ∈ S, and plugging both bounds into (3.8) we
find g ∈ L1+ε(S(x0, r0/θ)) and

|S(x0, r0/θ)|
2+ε−

∫

S(x0,r0/θ)

g1+ε dy ≤ 2θ2n(1+2ε)|S|2+ε

(
−

∫

S

g dy

)1+ε

.

In view of |S| = |S(x0, r0)| ≤ θn|S(x0, r0/θ)| we arrive at the claim. �

Now we specify our terminology for maximal functions on sections.

Definition 3.3 (maximal function). Consider S(x,R) ⊂ E and 0 < R < 2̺/θ.
For every h ∈ L1(S(x,Rθ)) we define a maximal function MRh : S(x,R) → R by8

MRh(y) := sup
r∈(0,R]

−

∫

S(y,r)

|h| dy for y ∈ S(x,R) .

8Notice that in the case of the definition we have S(y, r) ⊂ S(y,R) ⊂ S(x,Rθ) by (C) and
thus |h| is indeed defined on S(y, r).
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Next we establish the aimed endpoint version of Gehring’s lemma on sections,
formulated with the maximal functions of Definition 3.3. The statement allows for
increasing supports in the starting inequality and this feature seems to be new even
for Euclidean balls, that is in the special case u(x) = 〈x, x〉. The proof is inspired by
an idea of [18] and aims at applying Proposition 3.2 to a suitable maximal function.

Proposition 3.4. For a section S(x0, 2r0) ⊂ E with 0 < r0 < ̺/θ2 and some
function 0 ≤ h ∈ L1(S(x0, 2r0)) suppose that there is a constant N ≥ 1 such that
for each section S(x, r) ⊂ S(x0, r0/θ

3) there holds

(3.9) −

∫

S(x,r)

Mrh dy ≤ N−

∫

S(x,2rθ)

h dy .

Then we have h ∈ L1+ε(S(x0, r0/θ
4)) and

(3.10) −

∫

S(x0,r0/θ4)

h1+ε dy ≤ C

(
−

∫

S(x0,2r0)

h dy

)1+ε

with positive constants ε(n, λ,Λ, N) and C(n, λ,Λ, N).

Before coming to the proof of the proposition we record some preliminaries on
the sections in the statement. We first notice that by assumption and (C) we have
S(x, r) ⊂ S(x0, r0/θ

3) ⊂ S(x, r0/θ
2), which implies r ≤ r0/θ

2. Relying on (C) once
more we get S(x, 2rθ) ⊂ S(x, 2r0/θ) ⊂ S(x0, 2r0). Consequently, h is well-defined
on S(x, 2rθ) and Mrh is well-defined on S(x, r); so, the integrals in the assumption
(3.9) are meaningful.

Proof of Proposition 3.4. We define H ∈ L1(Ω) by

H := χS(x0,2r0)h .

Since we assume r0 < ̺/θ2, we have S(x0, 2r0θ
2) ⊂ Ω by (A). In particular, H is

defined on S(x0, 2r0θ
2) and M2r0θH is defined on S(x0, 2r0θ) and consequently on

all sections in the following argument. Now we fix an enclosed section S(x, r) ⊂
S(x0, r0/θ

3) as in the statement. By Definition 3.3 we find

M2r0θH(y) ≤ Mrh(y) + sup

{
−

∫

S(y,r̃)

H dz : r < r̃ ≤ 2r0θ

}
for y ∈ S(x, r) ,

where we also used that S(y, r) ⊂ S(y, r0/θ
2) ⊂ S(x0, r0/θ) by (C) and thus H = h

on such sections. We integrate this inequality over S(x, r) and use the assumption
(3.9) to obtain

(3.11) −

∫

S(x,r)

M2r0θH dy ≤ (N+1) sup

{
−

∫

S(y,r̃)

H dz : y∈S(x, r), r ≤ r̃ ≤ 2r0θ

}
,

where we exploited H = h on S(x, 2rθ) ⊂ S(x0, 2r0). Now we deal with the
integrals on the right-hand side of (3.11), first in the case r ≤ r̃ ≤ 2r0/θ. For
arbitrary y, ỹ ∈ S(x, r) we then have

(3.12) S(y, r̃) ⊂ S(x, r̃θ) ⊂ S(ỹ, r̃θ2)

by (C). As a consequence (C) and (B) also yield S(ỹ, r̃θ2) ⊂ S(y, r̃θ3) ⊂ θ3S(y, r̃)
and

(3.13) |S(ỹ, r̃θ2)| ≤ θ3n|S(y, r̃)| .
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Combining (3.12) and (3.13) we have

(3.14) −

∫

S(y,r̃)

H dz ≤ θ3n−

∫

S(ỹ,r̃θ2)

H dz .

Since ỹ was arbitrary in S(x, r) and r̃θ2 ≤ 2r0θ, we have proved in particular

(3.15) −

∫

S(y,r̃)

H dz ≤ θ3n inf
S(x,r)

M2r0θH

for all y ∈ S(x, r) and r ≤ r̃ ≤ 2r0/θ. Next we come back to the remaining case on
the right-hand side of (3.11), that is y ∈ S(x, r) and 2r0/θ < r̃ ≤ 2r0θ. We again
take an arbitrary ỹ ∈ S(x, r) and get

−

∫

S(y,r̃)

H dz ≤
1

|S(y, 2r0/θ)|

∫

S(ỹ,2r0θ)

H dz ,

since we have S(x0, 2r0) ⊂ S(ỹ, 2r0θ) by (C) and thus H ≡ 0 outside S(ỹ, 2r0θ). In
view of y ∈ S(ỹ, 2r0θ) we also infer S(ỹ, 2r0θ) ⊂ S(y, 2r0θ

2) ⊂ θ3S(y, 2r0/θ) from
(C) and (B). Using the corresponding bound for the volumes and arguing as for
(3.15) we find

(3.16) −

∫

S(y,r̃)

H dz ≤ θ3n−

∫

S(ỹ,2r0θ)

H dz .

Consequently, (3.15) is also valid in the present case. Thus we can control the
right-hand side of (3.11) by (3.15) in all cases, and we get

−

∫

S(x,r)

M2r0θH dy ≤ (N+1)θ3n inf
S(x,r)

M2r0θH .

Now we recall that S(x, r) was arbitrary in S(x0, r0/θ
3). In particular, we can take

S(x, r) = S(x0, r0/θ
3) to infer g := M2r0θH ∈ L1(S(x0, r0/θ

3)). In conclusion,
we are in the position to apply Proposition 3.2 to g on S(x0, r0/θ

3) with M :=
(N+1)θ3n. We end up with M2r0θH ∈ L1+ε(S(x0, r0/θ

4)) and

(3.17) −

∫

S(x0,r0/θ4)

(M2r0θH)1+ε dy ≤ 2θ4n+5nε

(
−

∫

S(x0,r0/θ3)

M2r0θH dy

)1+ε

,

where ε(n, λ,Λ, N) > 0. Next we establish an estimate for the right-hand side of
(3.17). To this end we revisit (3.11), (3.14), and (3.16) with x = x0, r = r0/θ

3, and
ỹ = x0 coming out with

−

∫

S(x0,r0/θ3)

M2r0θH dy ≤ (N+1)θ3n sup

{
−

∫

S(x0,r̃θ2)

H dy : r0/θ
3 ≤ r̃ ≤ 2r0/θ

}
.

Recalling H = χS(x0,2r0)h and using the inclusion (2θ)−1S(x0, 2r0) ⊂ S(x0, r0/θ)
from (B) this gives

−

∫

S(x0,r0/θ3)

M2r0θH dy ≤ 2n(N+1)θ4n−

∫

S(x0,2r0)

h dy .

Combining the last estimate with (3.17) we find

−

∫

S(x0,r0/θ4)

(M2r0θH)1+ε dy ≤ 2n+1+nε(N+1)1+εθ8n+9nε

(
−

∫

S(x0,2r0)

h dy

)1+ε

.
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By the definition of H and Lemma 2.6 we additionally know that 0 ≤ h ≤ H ≤
M2r0θH holds Ln-a. e. on S(x0, r0/θ

4). Thus, we have h ∈ L1+ε(S(x0, r0/θ
4)) and

we finally arrive at (3.10) with C = 2n+1+nε(N+1)1+εθ8n+9nε. �

4. W2,1+ε estimates for C2-solutions

In this section we permanently fix a strictly convex Alexandrov solution u ∈
C2(Ω) of (1.1), we assume (1.3), we abbreviate S(x, r) := Su(x, r), and we also fix
E ⊂⊂ Ω and the corresponding ̺ from Proposition 2.5.

The next result is the starting point for our application of the Gehring type
results. It is a slightly reformulated version of the key lemma [14, Lemma 3.4] of
De Philippis & Figalli.

Theorem 4.1 (W2,1 estimate, [14]). For every section S(x, r) ⊂ E with r < ̺/θ
one has

|S(x, r) ∩ {Mr∇
2u ≥ t}| ≤ Γ|S(x, 2rθ) ∩ {|∇2u| ≥ Γ−1t}| for all t ≥ 0

with a constant Γ(n, λ,Λ) ≥ 1.

Theorem 4.1 can be proved along the lines of [14] without any essential modifica-
tion of the respective arguments. We do not provide a detailed proof here, but we
only comment on the slight differences between the above statement and the one in
[14]. Indeed, [14, Lemma 3.4] was formulated with an r-independent maximal func-
tion (M̺ in the present terminology), for solutions with zero boundary values on a
normalized convex domain U , and for the dilations 1

2U and 3
4U in place of S(x, r)

and S(x, 2rθ), respectively. However, for y ∈ S(x, r) we have S(y, 2r) ⊂ S(x, 2rθ)
by (C); that means for all sections S(y, r) in the definition of Mr∇2u(y) the en-
larged section S(y, 2r) is still contained in S(x, 2rθ), and this inclusion suffices for
the relevant arguments of [14]. Let us stress in particular that the section S(x, r)
in Theorem 4.1 need not be normalized and Γ is independent of S(x, r).

Combining Theorem 4.1 with our Gehring type result in Proposition 3.4 we
readily derive an higher integrability estimate for ∇2u.

Theorem 4.2 (W2,1+ε estimate). For every section S(x0, 2r0) ⊂ E with r0 < ̺/θ2

we have

−

∫

S(x0,r0/θ4)

|∇2u|1+ε dy ≤ C

(
−

∫

S(x0,2r0)

|∇2u| dy

)1+ε

with positive constants ε(n, λ,Λ) and C(n, λ,Λ).

Proof. We consider an arbitrary section S(x, r) ⊂ S(x0, r0). By (C) we then have
S(x, r) ⊂ S(x0, r0) ⊂ S(x, r0θ) and hence r ≤ r0θ < ̺/θ. In particular, we can
apply Theorem 4.1 on S(x, r), and using also the Fubini-Tonelli theorem we have

∫

S(x,r)

Mr∇
2u dy =

∫ ∞

0

|S(x, r) ∩ {Mr∇
2u ≥ t}| dt

≤ Γ

∫ ∞

0

|S(x, 2rθ) ∩ {|∇2u| ≥ Γ−1t}| dt

= Γ2

∫

S(x,2rθ)

|∇2u| dy .
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Taking into account S(x, 2rθ) ⊂ 2θS(x, r) by (B) and |S(x, 2rθ)| ≤ 2nθn|S(x, r)|
we also get

−

∫

S(x,r)

Mr∇
2u dy ≤ 2nθnΓ2−

∫

S(x,2rθ)

|∇2u| dy

for all S(x, r) ⊂ S(x0, r0) and in particular for S(x, r) ⊂ S(x0, r0/θ
3). Conse-

quently, we can apply Proposition 3.4 with h := |∇2u| and N := 2nθnΓ2. It follows
that ∇2u is in L1+ε(S(x0, r0/θ

4)) with the claimed estimate. �

5. Proof of the main result

In order to establish Theorem 1.1 it remains to remove in Theorem 4.2 the C2-
assumption of the previous section. Indeed, it seems that this can be achieved, if
one first uses the main result of [14] and then partially revisits the arguments of
[14] once more to obtain Theorem 4.1 and Theorem 4.2 without the smoothness
assumption. However, such a reasoning is somewhat awkward, and thus we prefer
to follow a different line of proof via an approximation procedure. Notice that
the approximation requires some care, since each approximating function brings its
own sections. For this reason we now return to the full notation of Definition 2.3,
indicating the function in question with an index, and we record the following simple
lemma which will be useful in order to relate the sections of different functions.

Lemma 5.1. Suppose that v ∈ C1(Ω) is strictly convex. If for t ∈ R and p ∈ R
n

we have

Av(p, t) := {y ∈ Ω : v(y) < 〈p, y〉+ t} ⊂⊂ Ω

and Av(p, t) 6= ∅, then there exist x ∈ Av(p, t) and r > 0 such that

Av(p, t) = Sv(x, r) , ∇v(x) = p , and v(x) + r = 〈p, x〉+ t .

Proof. By the strict convexity of v there is a unique r > 0 such that the graph of
y 7→ 〈p, y〉 + t − r is a tangent hyperplane at the graph of v, and the two graphs
touch each other in a single point (x, v(x)) = (x, 〈p, x〉 + t− r). �

Proof of Theorem 1.1. In order to work with the sections of u, as introduced in
Definition 2.3, we will make use of the fact that u ∈ C1(Ω) by [9, Theorem 2].
Fixing a section S0 := Su(x0, r0) ⊂⊂ Ω and γ > 0 we set

(5.1) E := {x ∈ Ω : dist(x,Rn\S0) > γ} ⊂⊂ S0 .

We denote by ̺ the positive number from Proposition 2.5, corresponding to the
strictly convex domain S0 (in place of Ω) and its subset E, and we record that in
the present setup ̺ depends only on n, λ, Λ, S0, and γ. Our aim is to establish the
estimate of Theorem 4.2 for u on another fixed section

Su(x, 2r) ⊂ E

with r < ̺/θ2, even though u need not be C2.
To this end we first choose a sequence of smooth functions fk ∈ C∞(S0) such

that λ ≤ fk ≤ Λ holds on S0 with the constants from (1.3) and such that fk
converges to f in L1(S0); for instance the fk can be taken as mollifications of f . By
the existence and interior regularity result [13, Theorem 3] we then find Alexandrov
solutions uk ∈ C2(S0) of

det(∇2uk) = fk on S0
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with uk = u on ∂S0 (here we do not need to worry about the regularity of the
boundary datum, since u coincides with an affine function on the boundary of the
section S0 and we can thus renormalize to zero boundary values). We record that
the uk — as C2 solutions — are obviously strictly convex. By [29, Theorem 3.7]
and the uniqueness of Alexandrov solutions (see for instance [24, Corollary 1.4.7]),
uk converges to u uniformly on S0. Passing to a subsequence we assume

sup
S0

|uk − u| ≤ 1/k .

Following [14] we now combine [24, Lemma 3.2.1] and [24, Theorem 1.4.2] to see
that the gradients ∇uk are uniformly bounded on every compact subset of S0. By
the divergence theorem this implies the bound supk∈N

∫
Su(x,2r)

∆uk dy <∞ for the

Laplacians (notice that ∆uk ≥ 0 because uk is convex). Passing to a subsequence
we can therefore assume that (∆uk)Ln weak-∗-converges to a non-negative measure

µ on Su(x, 2r), which represents on Su(x, 2r) the distributional Laplacian of u.
Next we assume that k is sufficiently large (k ≥ 8r suffices). We observe

Su(x, 2r−2/k) ⊂ {y ∈ S0 : uk(y) < u(x) + 〈∇u(x), y−x〉+ 2r − 1/k} ⊂ Su(x, 2r) .

Here, by Lemma 5.1 the intermediate set in the last formula can be written as a
section Suk

(xk, 2rk) of uk, so that we get

(5.2) Su(x, 2r−2/k) ⊂ Suk
(xk, 2rk) ⊂ Su(x, 2r) ,

∇uk(xk) = ∇u(x), and uk(xk) + 2rk = u(x) + 〈∇u(x), xk−x〉 + 2r − 1/k. By the
convexity of u the last equality implies in particular

2rk ≤ u(xk) + 2r − 1/k − uk(xk) ≤ 2r .

Similarly, the rearranged equality uk(xk)+〈∇uk(xk), x−xk〉+2rk = u(x)+2r−1/k
and the convexity of uk yield

2rk ≥ u(x) + 2r − 1/k − uk(x) ≥ 2r − 2/k ,

and in conclusion rk converges to r. Furthermore, Theorem 4.2, applied to the
approximations uk yields

(5.3)

−

∫

Suk
(xk,rk/θ4)

|∇2uk|
1+ε dy ≤ C

(
−

∫

Suk
(xk,2rk)

|∇2uk| dy

)1+ε

≤ C

(
−

∫

Suk
(xk,2rk)

∆uk dy

)1+ε

,

where we also exploited that |∇2uk| ≤ ∆uk due to convexity. In order to convert
this into an estimate on the sections of u we now record

Su(x, 2r − 2/k − rk(2−θ
−4))

⊂ {y ∈ S0 : uk(y) < u(x) + 〈∇u(x), y−x〉+ 2r − 1/k − rk(2−θ
−4)}

= {y ∈ S0 : uk(y) < uk(xk) + 〈∇uk(xk), y−xk〉+ rk/θ
4}

= Suk
(xk, rk/θ

4) .

By a quite similar computation we get

Suk
(xk, rk/θ

4) ⊂ Su(x, 2r − rk(2−θ
−4)) .
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Now we use both the inclusions from (5.2) on the right-hand side of (5.3), and the
two last computations on the left-hand side. Hence we arrive at

(5.4)
1

|Su(x, 2r − rk(2−θ−4))|

∫

Su(x,2r−2/k−rk(2−θ−4))

|∇2uk|
1+ε dy

≤ C

(
1

|Su(x, 2r − 2/k)|

∫

Su(x,2r)

∆uk dy

)1+ε

.

Taking into account Lemma 2.4 we observe that the right-hand side of (5.4) is ma-

jorized by C
(

µ(Su(x,2r))
|Su(x,2r)|

)1+ε

in the limit k → ∞. Since rk converges to r, (5.4) con-

sequently gives supk∈N
∫
P |∇2uk|1+ε dy <∞ for every P ⊂⊂ Su(x, r/θ

4), and pass-

ing once more to a subsequence ∇2uk converges weakly in L1+ε
loc (Su(x, r/θ

4),Rn×n).

Thus, we have u ∈ W2,1+ε
loc (Su(x, r/θ

4)), the limit in the preceding convergence is
identified as ∇2u, and sending k → ∞ in (5.4) we finally get

(5.5) −

∫

Su(x,r/θ4)

|∇2u|1+ε dy ≤ C

(
µ(Su(x, 2r))

|Su(x, 2r)|

)1+ε

.

Recalling that S0 = Su(x0, r0) ⊂⊂ Ω, γ > 0, and Su(x, 2r) ⊂⊂ E (with r < ̺/θ2

and E defined in (5.1)) are all arbitrary, we find u ∈ W2,1+ε
loc (Ω). Going back in our

above arguments we thus have µ = (∆u)Ln, and (5.5) reduces to the claim (1.4)
with σ := 1/θ4. All in all, we have verified Theorem 1.1 with the constant C from
Theorem 4.2 and ̺0 := ̺/θ2. �

Remark 5.2. If u is not in C1(Ω), one can still define sections allowing for an arbi-
trary p ∈ ∂u(x) in place of ∇u(x); see [24, Definition 3.1.1]. We believe that work-
ing with this more general definition one can avoid the usage of the C1-regularity
result [9, Theorem 2] in the above proof.
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