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Abstract We consider autonomous integrals

F [u] :=
∫

Ω
f (Du)dx for u : Rn ⊃ Ω →R

N

in the multidimensional calculus of variations, where the integrand f is a strictlyW1,p-
quasiconvexC2-function satisfying the(p,q)-growth conditions

γ |A|p ≤ f (A)≤ Γ (1+ |A|q) for everyA∈R
nN

with exponents 1< p≤ q< ∞.
Under these assumptions we establish an existence result for minimizers of F in

W1,p(Ω ;RN) providedq< np
n−1 . We prove a corresponding partialC1,α -regularity theorem

for q< p+ min{2,p}
2n . This is the first regularity result for autonomous quasiconvex integrals

with (p,q)-growth.
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1 Introduction

Throughout this paper letn,N ∈N with n≥ 2, letΩ denote a bounded open set inRn and
OΩ the system of all open subsets ofΩ . We consider variational integrals

F [u;O] :=
∫

O
f (Du)dx∈ [0,∞] for O∈OΩ andu∈W1,1

loc (O;RN),

where the integrandf : RnN → [0,∞[ is a continuous function.
We are interested in the minimization ofF with respect to some fixed boundary values.

More precisely we adopt the following notion of a minimizer:
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Definition 1.1 (Minimizer). Let p≥ 1. u∈ W1,p(Ω ;RN) is called a W1,p-minimizer of F
on Ω iff one has F[u;Ω ]< ∞ and

F [u;Ω ]≤ F [u+ϕ ;Ω ] for everyϕ ∈W1,p
0 (Ω ;RN).

The direct method in the calculus of variations allows to prove the existence of mini-
mizers ofF provided f is convex and satisfies the standard growth assumptions

γ |A|p ≤ f (A)≤ Γ (1+ |A|p) for everyA∈R
nN (1.1)

with p > 1. Furthermore iff ∈ C2
loc(R

nN) satisfies an additional strict convexity assump-
tion it is well known that these minimizers are locallyC1,α -regular outside a closed set of
Hausdorff dimension< n−2.

In his famous paper [Mo] C. B. MORREY introduced the following notion:

Definition 1.2 (Quasiconvexity). f is called quasiconvex iff

−
∫

B1

f (A+Dϕ)≥ f (A)

holds for every A∈R
nN and every smoothϕ : B1 →R

N with compact support in the open
unit ball B1 in Rn.

Additionally, MORREY proved that quasiconvexity off still allows to obtain the ex-
istence of minimizers by means of the direct method. L. C. EVANS showed in [E] that
C1,α -regularity of minimizers ofF still remains true outside a closed set of measure zero if
f is strictly quasiconvex with (1.1) (cf. also [AF2], [CFM]).

Various generalizations of the growth conditions (1.1) have been attracting more and
more attention during the last decades. We shall focus on theso-called(p,q)-growth condi-
tions

γ |A|p ≤ f (A)≤ Γ (1+ |A|q) for everyA∈R
nN (1.2)

with two growth exponents 1< p ≤ q < ∞. These growth conditions are quite flexible,
but technically difficult to handle since, estimatingf from above and below, one obtains
completely different terms.

Existence ofW1,p-minimizers can still be proven as before, iff is strictly convex with
(1.2). However, a regularity theory working under these assumptions is not immediate. Var-
ious papers have been treating this subject. Introducing some additional notation let us men-
tion two results:

Definition 1.3 (Regular and Singular Set). For u∈ L1
loc(Ω ;RN) we call

Reg(u) :=
{

x∈ Ω : u
Bρ (x)

∈C1(Bρ(x);RN) for someρ > 0
}

the regular set of u and

Sing(u) := Ω \Reg(u)

the singular set of u.
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Theorem 1.4(Partial Regularity, [PS]). Assume that f∈C2
loc(R

nN) satisfies(1.2) together
with

λ (1+ |A|2)
p−2

2 |B|2 ≤ D2 f (A)(B,B) for all A,B∈R
nN,

whereλ > 0 and

2≤ p≤ q< min

{

p+1,
np

n−1

}

.

Then, for each W1,p-minimizer u of F onΩ one hasReg(u)∈OΩ and u∈C1,α
loc (Reg(u);RN)

for everyα ∈]0,1[. In addition, the Lebesgue measure|Sing(u)| of the singular set vanishes.

Theorem 1.5(Partial Regularity, [BF]). Assume that f∈C2
loc(R

nN) satisfies(1.2) together
with

λ (1+ |A|2)
p−2

2 |B|2 ≤ D2 f (A)(B,B)≤ Λ(1+ |A|2)
q−2

2 |B|2 for all A,B∈R
nN,

whereλ ,Λ > 0 and

1< p≤ q<
n+2

n
p.

Then, for each W1,p-minimizer u of F onΩ one hasReg(u) ∈OΩ , u∈ C1,α
loc (Reg(u);RN)

for everyα ∈]0,1[, and|Sing(u)|= 0.

Once these results are established standard methods of regularity theory can be applied
to show:

– In addition to the hypotheses of Theorem 1.4 or 1.5 letf ∈ C∞
loc(R

nN). Then, one has
u∈C∞

loc(Reg(u);RN).
– In the situation of Theorem 1.5 the Hausdorff dimension of the singular set does not

exceedn−2.

We shall now consider a more general situation: We assume that f is quasiconvex
with (p,q)-growth in the sense of (1.2). In contrast to the convex situation the well-known
semicontinuity theorems (cf. [Mo], [AF1], [Ma1]) guarantee weak lower semicontinuity of
F [−;Ω ] onW1,q(Ω ;RN) but, in general, not onW1,p(Ω ;RN). Unfortunately, this semicon-
tinuity property is not adequate to prove the existence ofW1,p-minimizers ofF .

However, some progress has been made concerning this problem: I. FONSECA and J.
MAL Ý in [FM, Theorem 4.1] and J. KRISTENSENin [K, Corollary 3.3] showed thatF [−;Ω ]
is lower semicontinuous with respect to weakW1,p-convergence ofW1,q-functions under
the conditionq < np

n−1. This leads to an existence result, which we will state later, but no
corresponding regularity result is known.

The aim of this paper is to show that strengthening the quasiconvexity assumption in the
following manner, due to J. M. BALL and F. MURAT, one can obtain an improved existence
and regularity theory for minimizers of quasiconvex variational integrals with(p,q)-growth:

Definition 1.6 (W1,p-Quasiconvexity, [BM]). Let p≥ 1. f is called W1,p-quasiconvex iff

−
∫

B1

f (A+Dϕ)≥ f (A)

holds for every A∈R
nN and everyϕ ∈W1,p

0 (B1;RN).
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Our first observation is that assumingW1,p-quasiconvexity andq< np
n−1 methods from

[FM] show weak lower semicontinuity ofF [−;Ω ] onW1,p(Ω ;RN). As an immediate con-
sequence we obtain an existence theorem forW1,p-minimizers ofF .

Furthermore, we will show that strictW1,p-quasiconvexity permits the proof ofC1,α -
regularity of these minimizers outside a closed set of measure zero, provided

q< p+
min{2, p}

2n
. (1.3)

This partial regularity theorem has been obtained in the author’s thesis [S1] and relies on
methods from [BM] and [FM]. It is the main result of this paper.

Note that another regularity result for quasiconvex integrals under nonstandard growth
conditions, namelyp(x)-growth conditions, has been established in [AM1]. However, this
result concerns integrands with an additionalx-dependence, whilep(x)-growth reduces to
(1.1) in our autonomous setting. Therefore, a direct comparison to our result is not possible.

Now, let us explain the ideas of the regularity proof:
Following classical methods of regularity theory our proofrelies heavily on a so-called

Caccioppoli inequality, an integral inequality estimating the first derivatives of a minimizer
u in terms ofu itself. In the casep= q of standard growth conditions such an inequality has
been proven by L. C. EVANS in [E]. His proof uses certain test functions constructed fromu
and a cut-off function. Forp< q these test functions are inW1,p but, in general, not inW1,q

and we are not allowed to use them in the definition of the standard quasiconvexity. This is
why we need the strongerW1,p-quasiconvexity assumption. Moreover, EVANS’ proof relies
heavily on the fact that certain terms in the estimates from below and above coincide. This
poses some serious difficulties. To overcome them we involvecertain smoothing operators
from [FM] in the construction of the test functions which allow to obtain anLq-Lp-estimate.
Finally, using these modified test functions some terms can be treated in a similar way as
before, while some others remain as a perturbation of the right-hand side of the Caccioppoli
inequality. However, we will show that these additional terms do not seriously affect the
further regularity proof.

We stress that the proof of the Caccioppoli inequality is theonly point where we need
the condition (1.3). Actually, all other parts of the proof work assuming justq≤ p+1.

Proceeding with the proof we will use theA -harmonic approximation method devel-
oped in [DS]. Nevertheless we believe that just as well a blow-up argument could be used
instead, once the Caccioppoli inequality is established. In any case, it is essential to acquire
growth estimates for the so-called excess, a certain integral quantity. An excessΦq linked to
the exponentq has been used in the proof of Theorem 1.5 and seems to yield thebest results.
However, this relies on higher integrability of the minimizer which is available in the convex
but not in the quasiconvex case. Therefore, since we do not know if the minimizer is inW1,q,
we have to use the excessΦp from the proof of Theorem 1.4 linked to the exponentp. Now
the rest of the proof follows essentially well-known standard arguments. The perturbation
terms from the Caccioppoli inequality can be treated using common smallness assumptions
for the excessΦp. Using CAMPANATO ’s integral characterization of Hölder continuity we
finally complete the proof.

Let us mention that our proof possesses some analogies with the proof of Theorem 1.4,
namely the use of the excessΦp and the smoothing operators mentioned above. Therefore it
is not surprising that our methods allow to retrieve a somewhat simplified proof of Theorem
1.4 while we cannot reach the conditionq< n+2

n p from Theorem 1.5. Anyway, the use of our
Caccioppoli type inequality together with a(p,q)-growth condition seems to be new, even
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in the convex case. The same remark applies concerning the use of theW1,p-quasiconvexity
condition in regularity theory.

Finally, let us mention that there is another way of treatingthe existence and regularity
of minimizers in the situation above: Retaining the original quasiconvexity condition one
can introduce certain relaxed functionals, as already donein [FM], and relaxed minimiz-
ers. Some results in this direction concerning semicontinuity and existence are contained in
[FM]. We plan to present an extension of these results and a corresponding regularity theory
in the forthcoming paper [S2].

The plan of this paper is now as follows:
In section 2 we give a more precise statement of our assumptions while section 3 pro-

vides simple examples of integrandsf satisfying these conditions. The semicontinuity and
existence results are contained in section 4. Our main theorem concerning partial regularity
is stated in section 5 while its proof is carried out in sections 6 and 7.

2 Assumptions

We recall thatf : RnN → [0,∞[ is always assumed to be continuous and the corresponding
functionalF is given by

F [u;O] :=
∫

O
f (Du)dx∈ [0,∞] for O∈OΩ andu∈W1,1

loc (O;RN).

Concerning the existence of minimizers we will work with thefollowing set of assump-
tions:

(f1) q-Growth:
There is a boundΓ > 0 such that we have

f (A)≤ Γ (1+ |A|q) for everyA∈R
nN.

(f2) p-Coercivity:
There is a coercivity constantγ > 0 such that we have

f (A)≥ γ |A|p for everyA∈R
nN.

(f3) W1,p-Quasiconvexity:
f is W1,p-quasiconvex in the sense of Definition 1.6.

It is well known that the treatment of the regularity question requires a strict version
of the (quasi)convexity assumption. Therefore in this regard we shall replace(f3) by the
following variant:

(f3s) Strict W1,p-Quasiconvexity:
f is strictly nondegenerateW1,p-quasiconvex, i. e. for eachM > 0 there is a convexity
constantλM > 0 such that we have

−
∫

B1

f (A+Dϕ)dx≥ f (A)+λM−
∫

B1

(1+ |Dϕ |2)
p−2

2 |Dϕ |2dx

for all A∈RnN with |A| ≤ M+1 and for allϕ ∈W1,p
0 (B1;RN).

Finally, we mention that all our results still hold iff is allowed to take negative values
but remains bounded below. In this context(f2) has to be replaced byf (A)≥ γ |A|p−c with
a fixedc∈R. This generalization is obvious since adding a constant tof does not change
the minimizers ofF .
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3 Examples of Integrands

An important class of examples is given by integrands of the form

f 0(A) := |A|p+h(detA)

f 1(A) := (1+ |A|2)
p
2 +h(detA)

for A∈R
nN, (3.1)

whereN = n≥ 2, 1< p< ∞ andh is a convex function satisfying

0≤ h(d) ≤ Γκ(1+ |d|κ ) for d ∈R

with 1≤ κ < ∞. Interest in such integrands arises from problems in nonlinear elasticity (cf.
[B], [BM] and [Ma2]).

For p > κn these integrands have standard growth and can be treated using standard
existence and regularity theorems. Therefore we shall be interested in the casep< κn where
we setq := κn.

In the latter case(f1) and(f2) are obviously satisfied. In addition, it is well known that
f 0 and f 1 are polyconvex and hence quasiconvex in the sense of Definition 1.2.

Concerning the question iff 0 and f 1 satisfy(f3) and(f3s)we recall from [BM]:

Theorem 3.1. Fix N = n≥ 2, 1< p< ∞ and1≤ κ < ∞. Then, for the integrands given by
(3.1)with h convex, non-constant and nonnegative we have:

f 0 satisfies(f3) ⇐⇒ p≥ n,

f 1 satisfies(f3s) ⇐⇒ f 1 satisfies(f3) ⇐⇒ p≥ n.

Therefore the results of this paper will cover the integrands in the casen ≤ p ≤ q :=
κn where we will need the additional boundsq < np

n−1 in the existence theory andq <

p+ min{2,p}
2n in the regularity theory. Let us remark that our regularity theory in the form

stated here coversf 1 for smoothh, but not the degenerate integrandsf 0. Nevertheless we
believe that our methods can be combined with the regularitymethods developed to handle
degeneracy to cover also integrands likef 0.

In the casep< n, f is quasiconvex, but does not satisfy(f3). We will use a refinement
of our methods to include this case in the paper [S2].

4 Existence of Minimizers

As aforementionedF[−;Ω ] is lower semicontinuous with respect to weakW1,p-convergence
of W1,q-functions. More precisely we have:

Theorem 4.1(Semicontinuity, [FM], [K]). Assume that f is quasiconvex and satisfies(f1)
with 1< p≤ q< np

n−1. Then, for uk ∈W1,q(Ω ;RN) and u∈W1,p(Ω ;RN) we have:

uk −−−⇀
k→∞

u weakly in W1,p(Ω ;RN) =⇒ F [u;Ω ]≤ liminf
k→∞

F [uk;Ω ].

Consequently we get:

Corollary 4.2. Assume that f is quasiconvex and satisfies(f1) and (f2) with 1< p≤ q<
np

n−1 . Then, for each u0 ∈W1,p(Ω ;RN) we can find an u∈ u0+W1,p
0 (Ω ;RN) such that

F [u;Ω ]≤ F [v;Ω ] for every v∈W1,q
loc (Ω ;RN)∩

[

u0+W1,p
0 (Ω ;RN)

]

.
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Proof. ApproximatingΩ by subdomains we see that the conclusion of Theorem 4.1 still
holds if the assumptionuk ∈W1,q(Ω ;RN) is replaced byuk ∈W1,q

loc (Ω ;RN)∩W1,p(Ω ;RN).

Now we choose a minimizing sequence forF [−;Ω ] inW1,q
loc (Ω ;RN)∩W1,p(Ω ;RN). Apply-

ing the direct method of the calculus of variations to this sequence we obtain the result.

However, the existence theorem just presented is not completely satisfactory. There-
fore we will now investigate the consequences ofW1,p-quasiconvexity for the existence of
W1,p−minimizers. First we analyze the relation ofW1,p-quasiconvexity off and sequential
weak lower semicontinuity ofF [−;Ω ] onW1,p(Ω ;RN). The first result in this direction is:

Theorem 4.3([BM]) . Assume that F[−;Ω ] is sequentially weakly lower semicontinuous
on W1,p(Ω ;RN) where p≥ 1. Then f satisfies(f3).

Furthermore, it was conjectured in [BM] thatW1,p-quasiconvexity off is also sufficient
for weak lower semicontinuity ofF [−;Ω ] onW1,p(Ω ;RN). We do not know if this is true in
general but we will show that the methods of [FM] allow to prove this at least under growth
restrictions:

Theorem 4.4(Semicontinuity). Assume that f satisfies(f1) and(f3) with 1< p≤ q< np
n−1 .

Then, F[−;Ω ] is sequentially weakly lower semicontinuous on W1,p(Ω ;RN).

Sketch of Proof.We follow closely the lines of the proof of Theorem 4.1 given in [FM,
Theorem 4.1] except for the following slight difference: Incontrast to Theorem 4.1 we
consider generaluk ∈ W1,p(Ω ;RN) and do not assumeuk ∈ W1,q(Ω ;RN). Therefore the
functions used to test the quasiconvexity off in [FM] are in general not inW1,q

0 but only

in W1,p
0 . However, since we are assuming(f3) we are allowed to use these test functions

anyway.

Corollary 4.5 (Existence). Assume that f satisfies(f1), (f2) and(f3) with 1< p≤ q< np
n−1 .

Then, for each u0 ∈ W1,p(Ω ;RN) with F[u0;Ω ] < ∞ we can find a W1,p-minimizer u∈
u0+W1,p

0 (Ω ;RN) of F onΩ .

Proof. Applying Theorem 4.4 together with the direct method of the calculus of variations
we immediately obtain the statement.

5 Main Results: Partial Regularity

We will state our regularity result for local minimizers in the sense of the next definition.

Definition 5.1 (Local Minimizer). u∈W1,p
loc (Ω ;RN) is called a local W1,p-minimizer of F

on Ω iff every x∈ Ω possesses a neighborhood U inΩ such that u is a W1,p-minimizer of
F on U.

Our main result is the following partial regularity theoremwhich can be applied to the
minimizers of Corollary 4.5:

Main Theorem 5.2 (Partial Regularity). Let1< p≤ q< p+ min{2,p}
2n and assume that f∈

C2
loc(R

nN) satisfies(f1) and(f3s). Then, for each local W1,p-minimizer u∈W1,p
loc (Ω ;RN) of

F onΩ we haveReg(u)∈OΩ , u∈C1,α
loc (Reg(u);RN) for everyα ∈]0,1[, and|Sing(u)|= 0.
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We will prove the main theorem in section 7.
OnceC1,α -regularity is proven the growth off loses its relevance. This allows, locally on

Reg(u), the application of the Riesz-Schauder theory of linear partial differential equations
to the Euler equation ofF , obtaining the existence of higher derivatives. In particular the
following holds:

Corollary 5.3. In addition to the assumptions of Main Theorem 5.2 let us assume f ∈
C∞

loc(R
nN). Then we have u∈C∞

loc(Reg(u);RN).

6 Auxiliary Results

6.1 The auxiliary functionsV andW

Definition 6.1. Letβ > 0, we define

Vβ (A) := (1+ |A|2)
β−1

2 A and Wβ (A) := (1+ |A|)β−1A.

Note thatV andW are comparable in the sense of

c−1|Wβ (A)| ≤ |Vβ (A)| ≤ c|Wβ (A)| (6.1)

for all A∈RnN and a constantc depending only onβ > 0.
We shall now collect several properties of these functions.Forβ > 0, 1≤ p< ∞, A,B∈

RnN andt ≥ 0 we have:

|Vβ (A)| and|Wβ (A)| depend nondecreasing on|A|, (6.2)
∣
∣
∣W

p
2

∣
∣
∣

2
is convex, (6.3)

∣
∣
∣W

p
2

∣
∣
∣

2
p

is convex if and only ifp≤ 2, (6.4)

c−1 ≤

∫ 1
0 (1+ |A+ tB)|2)

p−2
2 dt

(1+ |A|2+ |B|2)
p−2

2

≤ c if p> 1, (6.5)

|Vβ (A+B)| ≤ c
(

|Vβ (A)|+ |Vβ (B)|
)

, (6.6)

min{t2, tp}|V
p
2 (A)|2 ≤ |V

p
2 (tA)|2 ≤ max{t2, tp}|V

p
2 (A)|2, (6.7)

(1+ |A|2+ |B|2)
p
2 ≤ 1+(1+ |A|2+ |B|2)

p−2
2 (|A|2+ |B|2) if p≤ 2, (6.8)

wherec depends only onβ andp respectively.
(6.2), (6.3) and (6.4) can be verified using one-dimensionalcalculus. For proofs of (6.5)

and (6.6) and further properties we refer to [AF3, Lemma 2.1], [AM2, Lemma 2.3] and
[CFM, Lemma 2.1]. (6.7) and (6.8) are obvious.

In the following we will work primarily with the auxiliary functionsV. However, some-
times the properties (6.3) and (6.4) ofW will be convenient and we will use (6.1) to pass
over toW.

Lemma 6.2. Let 1≤ p< ∞ and u∈W1,p(Ω ;RN). Then we have
∫

Ω
|V

p
2 (Du− (Du)Ω )|2 dx≤ c

∫

Ω
|V

p
2 (Du−A)|2 dx for every A∈R

nN

with a constant c depending only on p.
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Proof. By (6.1) it suffices to verify the claim withV replaced byW. From (6.3) we know that
|W

p
2 |2 is convex. Using (6.6) and the previous observation together with Jensen’s inequality

we infer:

−
∫

Ω
|W

p
2 (Du− (Du)Ω )|2dx

≤ c

[

−

∫

Ω
|W

p
2 (Du−A)|2 dx+ |W

p
2 ((Du)Ω −A)|2

]

≤ c−
∫

Ω
|W

p
2 (Du−A)|2 dx.

This proves the claim. Let us remark that in the casep ≥ 18
17 the above argument works

straightforward withV instead ofW since in this case|V
p
2 |2 is convex.

6.2 Smoothing with Variable Radius

Lemma 6.3 ([FM]) . Let 0 < r < s and Bs ⊂ Ω . We define a bounded linear smoothing
operator

Tr,s : W1,1(Ω ;RN)→W1,1(Ω ;RN)

for u∈W1,1(Ω ;RN) and x∈ Ω by

Tr,su(x) :=−

∫

B1

u(x+ϑ (x)y)dy, whereϑ (x) :=
1
2

max
{

min{|x|− r,s−|x|},0
}

. (6.9)

With this definition, for all1≤ p≤ q< n
n−1 p and all u∈W1,p(Ω ;RN) the following asser-

tions are true:

Tr,su∈W1,p(Ω ;RN),

u= Tr,su almost everywhere on(Ω \Bs)∪Br , (6.10)

Tr,su∈ u+W1,p
0 (Bs\Br ;RN), (6.11)

|DTr,su| ≤ c(n)Tr,s|Du| almost everywhere onΩ , (6.12)

‖Tr,su‖p;Bs\Br ≤ c(n, p)‖u‖p;Bs\Br , (6.13)

‖DTr,su‖p;Bs\Br ≤ c(n, p)‖Du‖p;Bs\Br , (6.14)

‖Tr,su‖q;Bs\Br ≤ c(n, p,q)(s− r)
n
q−

n−1
p

[

sup
t∈]r,s[

Ξ̃(t)− Ξ̃(r)
t − r

+ sup
t∈]r,s[

Ξ̃(s)− Ξ̃(t)
s− t

] 1
p

, (6.15)

‖DTr,su‖q;Bs\Br ≤ c(n, p,q)(s− r)
n
q−

n−1
p

[

sup
t∈]r,s[

Ξ(t)−Ξ(r)
t − r

+ sup
t∈]r,s[

Ξ(s)−Ξ(t)
s− t

] 1
p

. (6.16)

Here we have used the abbreviations

Ξ̃(t) := ‖u‖p
p;Bt

and Ξ(t) := ‖Du‖p
p;Bt

.

The lemma is a variant of [FM, Lemma 2.2]. All estimates can beproved using the
methods developed there, although not all of them have been stated in the same form before;
compare also [PS].

Further estimates of the terms on the right-hand side of (6.15) and (6.16) are obtained
using the following lemma:
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Lemma 6.4. Let−∞ < r < s< ∞ and a continuous nondecreasing functionΞ : [r,s]→R

be given. Then there arẽr ∈ [r, 2r+s
3 ] ands̃∈ [ r+2s

3 ,s] for which hold:

Ξ(t)−Ξ(r̃)
t − r̃

≤ 3
Ξ(s)−Ξ(r)

s− r
Ξ(s̃)−Ξ(t)

s̃− t
≤ 3

Ξ(s)−Ξ(r)
s− r

for every t∈]r̃, s̃[. (6.17)

In particular we have
s− r

3
≤ s̃− r̃ ≤ s− r. (6.18)

An elementary proof is contained in [FM].
Concerning the interaction of the smoothing operator and the functionsV the next

lemma will be useful:

Lemma 6.5. Consider1≤ p≤ 2, 0< r < s, Bs ⊂ Ω and u∈W1,p(Ω ;RN). Then we have

∣
∣
∣V

p
2 (DTr,su)

∣
∣
∣

2
p
≤ cTr,s

[∣
∣
∣V

p
2 (Du)

∣
∣
∣

2
p
]

almost everywhere onΩ , (6.19)

where c depends only on n and p.

Proof. By (6.1) it suffices to verify the claim withV replaced byW. From (6.2) and (6.4) we

infer that |W
p
2 |

2
p is nondecreasing and convex. Therefore, using (6.12), (6.9) and Jensen’s

inequality, we see:
∣
∣
∣W

p
2 (DTr,su)

∣
∣
∣

2
p
≤ c
∣
∣
∣W

p
2 (Tr,s|Du|)

∣
∣
∣

2
p
≤ cTr,s

[∣
∣
∣W

p
2 (Du)

∣
∣
∣

2
p
]

almost everywhere onΩ .

This proves the lemma.

6.3 An iteration lemma

We will use a variant of the well-known iteration lemma [Gia,Chapter V, Lemma 3.1]:

Lemma 6.6 (Iteration Lemma). We consider p∈ [1,∞[, κ1,κ2,κ3 ∈ R, 0 ≤ R< S< ∞,
v∈ Lp(BS(x0);RN), and a bounded function g: [R,S]→ [0,∞[. Let us assume that for certain
G,H,K ≥ 0, ϑ ∈ [0,1[ and all R≤ r < s≤ S we have

g(r)≤ ϑg(s)+G(s− r)κ1 +H
∫

BS(x0)

∣
∣
∣
∣
V

p
2

(
v

s− r

)∣
∣
∣
∣

2

dx

+K(s− r)κ2

(
∫

BS(x0)

∣
∣
∣
∣
V

p
2

(
v

s− r

)∣
∣
∣
∣

2

dx

)κ3

.

Then the following estimate holds true:

g(R)≤ c

[

G(S−R)κ1 +H
∫

BS(x0)

∣
∣
∣
∣
V

p
2

(
v

S−R

)∣
∣
∣
∣

2

dx

+K(S−R)κ2

(
∫

BS(x0)

∣
∣
∣
∣
V

p
2

(
v

S−R

)∣
∣
∣
∣

2

dx

)κ3
]

.

Here c denotes a constant depending only on p,κ1, κ2, κ3, andϑ .
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A slightly less general variant can be found in [CFM, Lemma 2.7]. We shall omit the
proof which is completely analogous.

6.4 A -Harmonic Approximation

Throughout this subsection we consider a bilinear formA on R
nN. We assume that the

upper bound
|A | ≤ Λ (6.20)

with Λ > 0 holds and that the Legendre-Hadamard condition

A (ζxT ,ζxT)≥ λ |x|2|ζ |2 for all x∈R
n andζ ∈R

N (6.21)

with ellipticity constantλ > 0 is satisfied. We say thath∈W1,1
loc (Ω ;RN) is A -harmonic on

Ω iff ∫

Ω
A (Dh,Dϕ)dx= 0

holds for all smoothϕ : Ω →R
N with compact support inΩ .

Lemma 6.7. Assume(6.20)and (6.21). Consider anA -harmonic h∈ W1,1(Bρ(x0);RN),
then we have h∈C∞

loc(Bρ(x0);RN) together with the standard estimate

sup
Bρ/2(x0)

|Dh|+ρ sup
Bρ/2(x0)

|D2h| ≤ c−
∫

Bρ (x0)
|Dh|dx,

where c depends only on n, N,λ , andΛ .

Similar results forW1,2-solutions are contained in the standard literature. However, con-
cerningW1,1-solutions we have to refer to recent work: [CFM, Proposition 2.10] and [DGK,
Lemma 5].

The method ofA -harmonic approximation is based on the so-calledA -harmonic ap-
proximation lemma. The basic variant of this lemma has been proven in [DS] by means of
a simple, but indirect proof. For further results and references concerningA -harmonic ap-
proximation and its applications we refer to [DGS]. However, we shall use a variant of the
lemma which has not been stated in this form before:

Lemma 6.8 (A -Harmonic Approximation, [DGK]). Fix 1< p < ∞, 0< λ ≤ Λ < ∞ and
ε > 0. Then there is aδ (n,N, p,λ ,Λ ,ε)> 0 such that the following assertion holds:
For all s∈]0,1], for all A satisfying(6.20)and (6.21)and for each u∈ W1,p(Bρ(x0);RN)
with

−
∫

Bρ (x0)
|V

p
2 (Du)|2 dx≤ s2

and
∣
∣
∣
∣
−

∫

Bρ (x0)
A (Du,Dϕ)dx

∣
∣
∣
∣
≤ sδ sup

Bρ (x0)

|Dϕ |

for all smoothϕ : Bρ(x0)→R
N with compact support in Bρ(x0)

there is anA -harmonic h∈C∞
loc(Bρ(x0);RN) with

sup
Bρ/2(x0)

|Dh|+ρ sup
Bρ/2(x0)

|D2h| ≤ c
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and

−
∫

Bρ/2(x0)

∣
∣
∣
∣
V

p
2

(
u−sh

ρ

)∣
∣
∣
∣

2

dx≤ s2ε .

Here c denotes a constant depending only on n, N, p,λ , andΛ .

Proof. In the case 1< p ≤ 2 a stronger version of the lemma has been proven in [DGK,
Lemma 6] and our version follows combining it with Lemma 6.7.
In the casep ≥ 2, using a simple scaling argument, we assumex0 = 0 andρ = 1. Let δ
denote the constant of [DS, Lemma 3.3] and considers, A andu as in the statement of
Lemma 6.8. Then, forw := u

s we have−
∫

B1
|Dw|2 ≤ 1 and

∣
∣
∣
∣
−

∫

B1

A (Dw,Dϕ)dx

∣
∣
∣
∣
≤ δ sup

B1

|Dϕ |

for all smoothϕ : B1 →R
N with compact support inB1.

Therefore we can apply [DS, Lemma 3.3] to get anA -harmonich∈W1,2(B1;RN) with

−
∫

B1

|Dh|2 dx≤ 1 and −
∫

B1

|w−h|2 dx≤ ε .

Without loss of generality we assume(w − h)1/2 = 0. Using Lemma 6.7 we see
h∈C∞

loc(B1;RN) and
sup
B1/2

|Dh|+sup
B1/2

|D2h| ≤ c.

Now choose an exponentp∗ > p depending only onn andp such that the Sobolev embed-
ding W1,p →֒ Lp∗ holds and definet ∈ [0,1[ by 1

p = 1−t
2 + t

p∗ . Applying Lp-interpolation
combined with a Sobolev-Poincaré inequality we conclude:

−

∫

B1/2

|u−sh|p dx≤

(

−

∫

B1/2

|u−sh|2 dx

)(1−t) p
2
(

−

∫

B1/2

|u−sh|p
∗
dx

) t p
p∗

≤ c(s2ε)(1−t) p
2

(

−

∫

B1/2

|Du|p dx+sp−

∫

B1/2

|Dh|p dx

)t

≤ c(s2ε)(1−t) p
2 (s2+sp)t ≤ cs2ε (1−t) p

2

Replacingε by a smaller quantity conveniently we obtain the claim.

7 Proof of the Main Theorem

Throughout this section we will fix exponents 1< p≤ q< ∞.
We shall work with an excess coupled to the exponentp, precisely we define:

Definition 7.1 (Excess). For u∈W1,p(Bρ(x0);RN) and A∈R
nN we set:

Φp(u,x0,ρ ,A) :=−
∫

Bρ (x0)

∣
∣
∣V

p
2 (Du−A)

∣
∣
∣

2
dx,

Φp(u,x0,ρ) := Φp(u,x0,ρ ,(Du)x0,ρ ).
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Introducing the local bounds

ΛM := sup
|A|≤M+2

|D2 f (A)| (7.1)

we have:

Lemma 7.2([AF2]). Consider f∈C2
loc(R

nN) satisfying(f1) and(f3) and A,B∈R
nN with

|A| ≤ M+1. Then the following estimates hold:

| f (A+B)− f (A)−D f (A)B| ≤ c|V
q
2 (B)|2,

|D f (A+B)−D f (A)| ≤ c|Vq−1(B)|,

where c depends only on n, N, q,Γ , M, andΛM.

7.1 The Caccioppoli Inequality

Lemma 7.3(Caccioppoli Inequality). For q< p+ min{2,p}
2n consider M> 0, f ∈C2

loc(R
nN)

fulfilling (f1) and(f3s), and a W1,p-minimizer u∈W1,p(Bρ(x0);RN) of F on Bρ(x0). Then,
for all ζ ∈RN and A∈RnN with |A| ≤ M+1 we have

Φp

(

u,x0,
ρ
2
,A
)

≤ c

[

h

(

−
∫

Bρ (x0)

∣
∣
∣
∣
V

p
2

(
v
ρ

)∣
∣
∣
∣

2

dx

)

+(Φp(u,x0,ρ ,A))
q
p

]

, (7.2)

where we have set h(t) := t + t
q
p and v(x) := u(x)− ζ −A(x− x0) and where c denotes a

positive constant depending only on n, N, p, q,Γ , M, λM, andΛM.

Proof of Lemma 7.3 for p≥ 2. We assumex0 = 0 and chooseρ2 ≤ r < s≤ ρ . Setting

Ξ(t) :=
∫

Bt

[

|Dv|p+

∣
∣
∣
∣

v
s− r

∣
∣
∣
∣

p]

dx

we choose in additionr ≤ r̃ < s̃≤ sas in Lemma 6.4. Letη denote a smooth cut-off function
with support inBs̃, satisfyingη ≡ 1 in a neighborhood ofBr̃ , and 0≤ η ≤ 1, |∇η | ≤ 2

s̃−r̃ on
Bρ . Using the operator from Lemma 6.3 we set

ψ := Tr̃,s̃ [(1−η)v] and ϕ := v−ψ .

Due to (6.10) and (6.11) we haveϕ ∈W1,p
0 (Bs̃;RN) andϕ = v on Br̃ . Furthermore, we see

Du−A= Dv= Dϕ +Dψ onBρ .

Using(f3s) we obtain

λM

∫

Br̃

|V
p
2 (Dv)|2dx≤

∫

Bs̃

[ f (A+Dϕ)− f (A)]dx

=
∫

Bs̃

[ f (Du−Dψ)− f (Du)]dx+
∫

Bs̃

[ f (Du)− f (Du−Dϕ)]dx+
∫

Bs̃

[ f (A+Dψ)− f (A)]dx.
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Applying the minimality ofu together with Lemma 7.2 we conclude

λM

∫

Br

|V
p
2 (Dv)|2dx

≤

∫

Bs̃

[∫ 1

0

(

D f (A)−D f (Du− τDψ)
)

dτ Dψ + f (A+Dψ)− f (A)−D f (A)Dψ
]

dx

≤ c
∫

Bs̃

[∫ 1

0
|Vq−1(Dv− τDψ)|dτ |Dψ |+ |V

q
2 (Dψ)|2

]

dx.

SettingR := Bs̃\Br̃ , recallingψ ≡ 0 onBr̃ , and (6.6), (6.7) we infer
∫

Br

|V
p
2 (Dv)|2dx≤ c

[∫

R
|V

q
2 (Dψ)|2dx+

∫

R
|Vq−1(Dv)||Dψ |dx

]

=: c[(I)+(II )]. (7.3)

Let us introduce the abbreviation

∆ :=
∫

Bs\Br

[
∣
∣
∣V

p
2 (Dv)

∣
∣
∣

2
+

∣
∣
∣
∣
V

p
2

(
v

s− r

)∣
∣
∣
∣

2
]

dx.

Employing (6.14), (6.16) (usingq< np
n−1), (6.18), and (6.17) we get:

(I)≤ c

[∫

R
|Dψ |2 dx+

∫

R
|Dψ |q dx

]

≤ c

[
∫

R
|D[(1−η)v|2dx+(s̃− r̃)n

(

sup
t∈]r̃,s̃[

(s̃− r̃)1−n

t − r̃

∫

Bt\Br̃

|D[(1−η)v]|pdx

) q
p

+(s̃− r̃)n

(

sup
t∈]r̃,s̃[

(s̃− r̃)1−n

s̃− t

∫

Bs̃\Bt

|D[(1−η)v]|pdx

) q
p
]

≤ c



∆ +(s− r)n

(

(s− r)1−n sup
t∈]r̃,s̃[

Ξ(t)−Ξ(r̃)
t − r̃

) q
p

+ (s− r)n

(

(s− r)1−n sup
t∈]r̃,s̃[

Ξ(s̃)−Ξ(t)
s̃− t

) q
p




≤ c

[

∆ +(s− r)n
(

∆
(s− r)n

) q
p
]

.

(7.4)

Usingq< p+ 1
n < p+1 and Hölder’s inequality we can treat(II ) in a similar fashion:

(II )≤ c
∫

R

(
|Dv||Dψ |+ |Dv|q−1|Dψ |

)
dx

≤ c





(∫

R
|Dv|2 dx

) 1
2
(∫

R
|Dψ |2 dx

) 1
2

+

(∫

R
|Dv|p dx

) q−1
p
(∫

R
|Dψ |

p
p+1−q dx

) p+1−q
p





≤ c

[

∆ +(s− r)n
(

∆
(s− r)n

) q
p
]

.

(7.5)
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Combining (7.3), (7.4), and (7.5) we arrive at

∫

Br

|V
p
2 (Dv)|2dx≤C1

[

∆ +(s− r)n
(

∆
(s− r)n

) q
p
]

,

whereC1(n,N, p,q,Γ ,M,λM,ΛM)> 0 denotes a fixed constant. AddingC1
∫

Br
|V

p
2 (Dv)|2dx

on both sides and dividing by 1+C1 we see:

∫

Br

|V
p
2 (Dv)|2dx ≤

C1

1+C1

∫

Bs

|V
p
2 (Dv)|2dx+

∫

Bρ

∣
∣
∣
∣
V

p
2

(
v

s− r

)∣
∣
∣
∣

2

dx

+(s− r)n

(

1
(s− r)n

∫

Bρ

[
∣
∣
∣V

p
2 (Dv)

∣
∣
∣

2
+

∣
∣
∣
∣
V

p
2

(
v

s− r

)∣
∣
∣
∣

2
]

dx

) q
p

.

Now Lemma 6.6 (withϑ = C1
1+C1

) implies

−
∫

Bρ/2

|V
p
2 (Dv)|2dx

≤ c



−
∫

Bρ

∣
∣
∣
∣
V

p
2

(
v
ρ

)∣
∣
∣
∣

2

dx+

(

−
∫

Bρ

[
∣
∣
∣V

p
2 (Dv)

∣
∣
∣

2
+

∣
∣
∣
∣
V

p
2

(
v
ρ

)∣
∣
∣
∣

2
]

dx

) q
p


 ,

which proves the claim.

Proof of Lemma 7.3 for p≤ 2. We use the notations of the previous case except for the fol-
lowing modification:

Ξ(t) :=
∫

Bt

[

|V
p
2 (Dv)|2+

∣
∣
∣
∣
V

p
2

(
v

s− r

)∣
∣
∣
∣

2
]

dx.

As before we get
∫

Br

|V
p
2 (Dv)|2dx≤ c

∫

R

[∫ 1

0
|Vq−1(Dv− τDψ)|dτ |Dψ |+ |V

q
2 (Dψ)|2

]

dx.

Combining the previous estimate with (6.5) we have

∫

Br

|V
p
2 (Dv)|2dx

≤ c

[∫

R
|V

q
2 (Dψ)|2dx+

∫

R
(1+ |Dv|2+ |Dψ |2)

q−2
2 (|Dv|+ |Dψ |)|Dψ |dx

]

=: c[(I)+(II )].

(7.6)

Now (6.8) leads to

(I)≤
∫

R

(

1+ |V
p
2 (Dψ)|2

) q−p
p
|V

p
2 (Dψ)|2dx

≤ c

[∫

R
|V

p
2 (Dψ)|2dx+

∫

R
|V

p
2 (Dψ)|

2q
p dx

︸ ︷︷ ︸

=: (III )

]

. (7.7)
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Using (6.19), (6.15) (based onq< np
n−1), (6.18), and (6.17),(III ) can be estimated as follows:

(III ) ≤ c
∫

R

(

Tr̃,s̃

[

|V
p
2 (D[(1−η)v])|

2
p

])q
dx

≤ c(s̃− r̃)n

(

sup
t∈]r̃,s̃[

(s̃− r̃)1−n

t − r̃

∫

Bt\Br̃

|V
p
2 (D[(1−η)v])|2dx

+ sup
t∈]r̃,s̃[

(s̃− r̃)1−n

s̃− t

∫

Bs̃\Bt

|V
p
2 (D[(1−η)v])|2dx

) q
p

≤ c(s− r)n

[

(s− r)1−n

(

sup
t∈]r̃,s̃[

Ξ(t)−Ξ(r̃)
t − r̃

+ sup
t∈]r̃,s̃[

Ξ(s̃)−Ξ(t)
s̃− t

)] q
p

≤ c(s− r)n
(

∆
(s− r)n

) q
p

.

On account of (6.19) and (6.13), the first term on the right-hand side of (7.7) can be estimated
by c∆ similarly. This yields

(I)≤ c

[

∆ +(s− r)n
(

∆
(s− r)n

) q
p
]

. (7.8)

It remains to estimate(II ). Recalling (6.8) once again, repeated use of Young’s inequality
gives:

(II )≤ c

[
∫

R
(1+ |Dv|2+ |Dψ |2)

p−2
2 (|Dv|+ |Dψ |)|Dψ |dx

+
∫

R
(1+ |Dv|2+ |Dψ |2)(p−2) q

2p (|Dv|2+ |Dψ |2)
q−p

p (|Dv|+ |Dψ |)|Dψ |dx

]

≤ c

[∫

R
|V

p
2 (Dv)|2dx+

∫

R
|V

p
2 (Dψ)|2dx

+

∫

R
|V

p
2 (Dψ)|

2q
p dx

︸ ︷︷ ︸

= (III )

+

∫

R
|V

p
2 (Dv)|

2q
p −1 |V

p
2 (Dψ)|dx

︸ ︷︷ ︸

=: (IV )

]

.

The first two terms on the right-hand side of the last inequality can be controlled byc∆ as
before.(III ) has already been estimated. Therefore it remains to treat(IV ). Usingq< 3

2 p,
Hölder’s inequality yields:

(IV )≤

(∫

R
|V

p
2 (Dv)|2dx

) 2q−p
2p
(∫

R
|V

p
2 (Dψ)|

2p
3p−2q dx

) 3p−2q
2p

The first factor on the right-hand side of the previous inequality can be estimated by∆
2q−p

2p

while, usingq< 3
2 pandq< p+ p

2n, the second one can be treated exactly as(III ). Collecting
the estimates we have

(IV )≤ c(s− r)n
(

∆
(s− r)n

) q
p
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and

(II )≤ c

[

∆ +(s− r)n
(

∆
(s− r)n

) q
p
]

. (7.9)

Combining (7.6), (7.8), and (7.9) we get
∫

Br

|V
p
2 (Dv)|2 dx≤ c

[

∆ +(s− r)n
(

∆
(s− r)n

) q
p
]

.

Now we proceed exactly as in the casep≥ 2.

Remark 7.4. Let us mention that in the case q= p (7.2)holds without the second term on
its right-hand side. This can be inferred directly from the proofs. However, in the case q> p
we will see that this second term is arbitrarily small. This is the reason why we call(7.2)a
‘Caccioppoli inequality’.

Remark 7.5. If in addition to(f3s) f is convex, in particular if

D2 f (A)(B,B)≥ λ (1+ |A|2)
p−2

2 |B|2 for all A,B∈R
nN,

then(7.2)holds under the weaker assumption q< np
n−1 for the exponents. This variant of the

Caccioppoli inequality provides an alternative proof of Theorem 1.4.

Proof of Remark 7.5.We use the notations from the proofs of Lemma 7.3, introducing the
additional abbreviations

ϕ̃ := Tr̃,s̃[ηv] ∈W1,p
0 (Bs̃;RN),

w := Tr̃,s̃v.

Then
Dw= Dϕ̃ +Dψ on Bρ ,

and arguing essentially as before we get:

λM

∫

Br̃

|V
p
2 (Dv)|2dx≤

∫

Bs̃

[ f (A+Dϕ̃)− f (A)]dx

=

∫

R
[ f (A+Dϕ̃)− f (Du)]dx+

∫

Bs̃

[ f (Du)− f (Du−Dϕ)]dx+
∫

R
[ f (A+Dψ)− f (A)]dx.

Exploiting the convexity off we have

f (Du)≥ f (A)+D f (A)Dv onBρ .

We combine the last two inequalities with the minimizing property of u and usev−w ∈
W1,p

0 (R;RN) to obtain:

λM

∫

Br̃

|V
p
2 (Dv)|2dx≤

∫

R
[ f (A+Dϕ̃)− f (A)−D f (A)Dw]dx+

∫

R
[ f (A+Dψ)− f (A)]dx

=

∫

R
[ f (A+Dϕ̃)− f (A)−D f (A)Dϕ̃]dx+

∫

R
[ f (A+Dψ)− f (A)−D f (A)Dψ ]dx.

Recalling|A| ≤ M+1, Lemma 7.2 yields
∫

Br

|V
p
2 (Dv)|2dx≤ c

[∫

R
|V

q
2 (Dψ)|2dx+

∫

R
|V

q
2 (Dϕ̃)|dx

]

=: c[(I)+(II )].

The term(I) is the same as in the proofs of Lemma 7.3 and can be treated as before.
However,(II ) can now be estimated completely analogous to(I) using only the condition
q< np

n−1.
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7.2 ApproximateA -Harmonicity

From the uniform continuity ofD2 f on bounded subsets ofRnN we deduce:

Remark 7.6. Assume f∈C2
loc(R

nN). Then for each M> 0 there is a modulus of continuity
νM : [0,∞[→ [0,∞[ satisfyinglimωց0 νM(ω) = 0 such that for all A,B∈R

nN we have:

|A| ≤ M, |B| ≤ M+1 =⇒ |D2 f (A)−D2 f (B)| ≤ νM(|A−B|2). (7.10)

Furthermore,νM can be chosen such that the following properties hold:

(I) νM is nondecreasing,
(II) ν2

M is concave,
(III) ν2

M(ω)≥ ω for all ω ≥ 0.

Lemma 7.7. Assume f∈C2
loc(R

nN) satisfies(f1) and (f3), and u∈W1,p(Bρ(x0);RN) is a
W1,p-minimizer of F on Bρ (x0), where q≤ p+ 1. Then, for all M> 0, all A ∈ R

nN with
|A| ≤ M, and all smoothϕ : Bρ(x0)→RN with compact support in Bρ(x0) we have

∣
∣
∣
∣
−

∫

Bρ (x0)
D2 f (A)(Du−A,Dϕ)dx

∣
∣
∣
∣
≤ c
√

Φp νM(Φp) sup
Bρ (x0)

|Dϕ |.

Here we have abbreviatedΦp(u,x0,ρ ,A) byΦp and c depends only on n, N, p, q,Γ , M, and
ΛM.

Proof. We may assumex0 = 0 and supBρ |Dϕ | = 1. Settingv(x) := u(x)−Ax the Euler
equation ofF gives
∣
∣
∣
∣
−
∫

Bρ
D2 f (A)(Dv,Dϕ)dx

∣
∣
∣
∣
≤−
∫

Bρ

∣
∣
∣D2 f (A)(Dv,Dϕ)+D f (A)Dϕ−D f (Du)Dϕ

∣
∣
∣dx. (7.11)

Now we estimate the integrand on the right-hand side: On{x∈Bρ : |Dv| ≤1}, using Remark
7.6, we have:
∣
∣
∣D2 f (A)(Dv,Dϕ)+D f (A)Dϕ−D f (Du)Dϕ

∣
∣
∣

≤

∫ 1

0

∣
∣
∣D2 f (A)−D2 f (A+ tDv)

∣
∣
∣dt |Dv|

≤ νM(|Dv|2)|Dv| ≤ cνM

(∣
∣
∣V

p
2 (Dv)

∣
∣
∣

2
)∣
∣
∣V

p
2 (Dv)

∣
∣
∣ .

(7.12)

On{x∈ Bρ : |Dv| ≥ 1}, Lemma 7.2 implies
∣
∣
∣D2 f (A)(Dv,Dϕ)+D f (A)Dϕ−D f (Du)Dϕ

∣
∣
∣

≤ ΛM|Dv|+c|Vq−1(Dv)| ≤ c|Dv|max{q−1,1} ≤ c
∣
∣
∣V

p
2 (Dv)

∣
∣
∣

2
. (7.13)

Combining (7.11), (7.12), and (7.13) with the property (III) from Remark 7.6 we get
∣
∣
∣
∣
−

∫

Bρ
D2 f (A)(Dv,Dϕ)dx

∣
∣
∣
∣
≤ c−

∫

Bρ
νM

(∣
∣
∣V

p
2 (Dv)

∣
∣
∣

2
)∣
∣
∣V

p
2 (Dv)

∣
∣
∣ dx.

Now we apply the inequalities of Cauchy-Schwarz and Jensen,using the concavity ofν2
M,

to obtain ∣
∣
∣
∣
−

∫

Bρ
D2 f (A)(Dv,Dϕ)dx

∣
∣
∣
∣
≤ c
√

Φp νM(Φp).

This completes the proof.
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7.3 Excess Estimates

It is well known that quasiconvexity off implies the Legendre-Hadamard condition forD2 f .
More precisely we have:

Lemma 7.8. Assume that f∈C2
loc(R

nN) satisfies(f3s). Let us consider M> 0 and A∈RnN

with |A| ≤ M, then D2 f (A) fulfills the Legendre-Hadamard condition(6.21)with ellipticity
constant2λM .

The proof of the lemma is completely analogous to that of [Giu, Proposition 5.2].

Proposition 7.9. We assume q< p+ min{2,p}
2n and we consider M> 0, α ∈]0,1[, and f ∈

C2
loc(R

nN) with (f1) and (f3s). Then there are constantsε0 > 0 and θ ∈]0,1[ such that the
conditions

Φp(u,x0,ρ)≤ ε0 and |(Du)x0,ρ | ≤ M (7.14)

for a W1,p-minimizer u∈W1,p(Bρ(x0);RN) of F on Bρ(x0) imply

Φp(u,x0,θρ)≤ θ2α Φp(u,x0,ρ).

Hereθ depends only on n, N, p, q,Γ , M, λM, ΛM, andα , andε0 depends additionally on
νM.

Proof. We assumex0 = 0 and we abbreviateA := (Du)ρ , Φp(−) := Φp(u,0,−). Then|A| ≤
M. Since the claim is obvious in the caseΦp(ρ) = 0 we can assumeΦp(ρ) 6= 0. Setting

w(x) := u(x)−Ax and s :=
√

Φp(ρ)

we have

−

∫

Bρ
|V

p
2 (Dw)|2dx= s2.

Next we will approximatew by A -harmonic functions, where

A := D2 f (A).

From (7.1) and Lemma 7.8 we deduce thatA satisfies (6.20) with boundΛM and (6.21)
with ellipticity constant 2λM. Lemma 7.7 yields the estimate

∣
∣
∣
∣
−

∫

Bρ
A (Dw,Dϕ)dx

∣
∣
∣
∣
≤ sC2νM(Φp(ρ))sup

Bρ
|Dϕ |

for all smoothϕ : Bρ →R
N with compact support inBρ ,

whereC2(n,N, p,q,Γ ,M,ΛM) > 0 is a constant. Forε > 0 to be specified later we fix the
corresponding constantδ > 0 from Lemma 6.8. Imposing the smallness assumptions

C2νM(Φp(ρ))≤ δ , (7.15)

s=
√

Φp(ρ)≤ 1, (7.16)
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we apply Lemma 6.8. The lemma ensures the existence of anA -harmonic functionh ∈
C∞

loc(Bρ ;RN) such that
sup
Bρ/2

|Dh|+ρ sup
Bρ/2

|D2h| ≤ c,

−
∫

Bρ/2

∣
∣
∣
∣
V

p
2

(
w−sh

ρ

)∣
∣
∣
∣

2

dx≤ s2ε .
(7.17)

Now fix θ ∈]0, 1
4]. Taylor expansion implies the estimate

sup
x∈B2θρ

|h(x)−h(0)−Dh(0)x| ≤
1
2
(2θρ)2 sup

Bρ/2

|D2h| ≤ cθ2ρ .

Using (6.6) and (6.7) together with (7.17) and the last inequality we get:

−

∫

B2θρ

∣
∣
∣
∣
V

p
2

(
w(x)−sh(0)−sDh(0)x

2θρ

)∣
∣
∣
∣

2

dx

≤ c

[

θ−n−max{2,p}−
∫

Bρ/2

∣
∣
∣
∣
V

p
2

(
w−sh

ρ

)∣
∣
∣
∣

2

dx+−
∫

B2θρ

∣
∣
∣
∣
V

p
2

(

s
h(x)−h(0)−Dh(0)x

2θρ

)∣
∣
∣
∣

2

dx

]

≤ c
[

θ−n−max{2,p}s2ε + |V
p
2 (θs)|2

]

≤ c
[

θ−n−max{2,p}s2ε +θ2s2
]

.

Settingε := θn+2+max{2,p} and recalling the definitions ofw andswe have

−
∫

B2θρ

∣
∣
∣
∣
V

p
2

(
u(x)−Ax−s(h(0)+Dh(0)x)

2θρ

)∣
∣
∣
∣

2

dx≤ cθ2Φp(ρ). (7.18)

From (7.17) we conclude
|sDh(0)|2 ≤C3Φp(ρ) (7.19)

with a constantC3(n,N, p,M,λM,ΛM)> 0. Using (6.6), (7.19), and (7.16) we get:

Φp(2θρ ,A+sDh(0))

≤ c

[

(2θ)−n−

∫

Bρ
|V

p
2 (Du−A)|2 dx+ |V

p
2 (sDh(0))|2

]

≤ cθ−nΦp(ρ). (7.20)

Next we combine (7.18), (7.20), and the Caccioppoli inequality (7.2) (with ζ = sh(0) and
A+sDh(0) instead ofA) to derive

Φp(θρ ,A+sDh(0))≤ c
[

θ2Φp(ρ)+θ
2q
p Φp(ρ)

q
p +θ−n q

p Φp(ρ)
q
p

]

. (7.21)

Thereby the condition|A+ sDh(0)| ≤ M + 1 of Lemma 7.3 can be deduced from (7.19)
together with the additional smallness assumption

C3Φp(ρ)≤ 1. (7.22)

For q> p the smallness assumptions (7.16) and

θ−n q
p Φp(ρ)

q−p
p ≤ θ2, (7.23)
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andθ ≤ 1 imply
Φp(θρ ,A+sDh(0))≤ cθ2Φp(ρ).

Forq= p, however, the last inequality holds without further assumptions since the last term
on the right-hand side of (7.21) does not occur (cf. Remark 7.4).
Using Lemma 6.2 we deduce from the previous inequality:

Φp(θρ)≤C4θ2Φp(ρ), (7.24)

whereC4(n,N, p,q,Γ ,M,λM,ΛM)> 0. Finally, we chooseθ ∈]0, 1
4 ] small enough such that

C4θ2 ≤ θ2α (7.25)

holds, andε0 small enough such that (7.15), (7.16), (7.22), and (7.23) follow from the first
part of (7.14). Taking into account (7.24) and (7.25) the proof of the proposition is complete.

Iterating Proposition 7.9 we find:

Lemma 7.10. We assume q< p+ min{2,p}
2n and consider M> 0, α ∈]0,1[, and f∈C2

loc(R
nN)

with (f1) and(f3s). Then there is a constantε̃0 > 0 such that the assumptions

Φp(u,x0,ρ)≤ ε̃0 and |(Du)x0,ρ | ≤
M
2

for a W1,p-minimizer u∈W1,p(Bρ(x0);RN) of F on Bρ(x0) imply the growth condition

Φp(u,x0, r)≤ c

(
r
ρ

)2α
Φp(u,x0,ρ) for all r ∈]0,ρ ].

Here c depends only on n, N, p, q,Γ , M, λM, ΛM, andα , and ε̃0 depends additionally on
νM.

This lemma can be deduced from Proposition 7.9 by standard arguments (see [E] and
[CFM]); details can be found in [S1].

7.4 Concluding Remarks

Once Lemma 7.10 is established CAMPANATO ’s integral characterization of Hölder conti-
nuity leads to the claims of Main Theorem 5.2. We omit furtherdetails.

Analyzing the preceding proof we deduce the following detailed assertions:

Remark 7.11. Assume the hypotheses of Main Theorem 5.2. Then,

– we haveSing(u) = Σ1∪Σ2 where we have set

Σ1 :=

{

x∈ Ω : liminf
ρց0

Φp(u,x,ρ)> 0

}

,

Σ2 :=

{

x∈ Ω : limsup
ρց0

|(Du)x,ρ |= ∞

}

;

– for everyα ∈]0,1[ and x0 ∈ Reg(u) there is aσ > 0 such that Du is Ḧolder continuous
on Bσ (x0) with exponentα where the Ḧolder constant depends only on n, N, p, q,Γ ,
M := 1+2limsupρց0 |(Du)x0,ρ |, λM, ΛM, νM , andα .
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[FM] Fonseca, I., Malý, J.:Relaxation of Multiple Integrals below the Growth Exponent. Ann. Inst. Henri
Poincaré, Analyse Non Linéaire14, 309-338 (1997)

[Gia] Giaquinta, M.:Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.
Princeton University Press, Princeton (1983)

[Giu] Giusti, E.:Direct Methods in the Calculus of Variations. World Scientific Publishing Co., New York
(2003)

[K] Kristensen, J.:Lower Semicontinuity in Sobolev Spaces below the Growth Exponent of the Integrand.
Proc. R. Soc. Edinb., Sect. A, Math.127, 797-817 (1997)

[Ma1] Marcellini, P.:Approximation of Quasiconvex Functions and Lower Semicontinuity of Multiple Inte-
grals. Manuscr. Math.51, 1-28 (1985)

[Ma2] Marcellini, P.:On the Definition and the Lower Semicontinuity of Certain Quasiconvex Integrals.
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