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Abstract. We consider multi-dimensional variational integrals

F [u] :=

∫
Ω

f(·, u,Du) dx for u : Rn
⊃ Ω → R

N
,

where the integrand f is a strictly convex function of its last argument. We
give an elementary proof for the partial C1,α-regularity of minimizers of F .
Our approach is based on the method of A-harmonic approximation, avoids
the use of Gehring’s lemma, and establishes partial regularity with the optimal
Hölder exponent α in a single step.
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1. Introduction

For a bounded open subset Ω of Rn, 2 ≤ n ∈ N we consider multidimensional
variational integrals

F [u] :=

∫

Ω

f(·, u,Du) dx (1.1)

for vector-valued functions u on Ω taking values in R
N , N ∈ N. Here, the integrand

f : Ω × R
N × R

Nn → R is a given continuous function of the arguments x ∈ Ω,
y ∈ R

N , and z ∈ R
Nn, and we will investigate minimizers of F with respect to a

Dirichlet boundary condition. Writing D for the derivative with respect to the last
argument of f we impose the following set of assumptions for all x ∈ Ω, y ∈ R

N ,
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and z, z1, z2, ξ ∈ R
Nn (see Section 2 for our notational conventions):

D2f exists and is continuous on Ω×R
N ×R

Nn, (1.2)

|D2f(x, y, z)| ≤ Λ(1 + |z|)p−2, (1.3)

D2f(x, y, z)(ξ, ξ) ≥ λ(1 + |z|)p−2|ξ|2, (1.4)

|D2f(x, y, z1)−D2f(x, y, z2)| ≤ (1 + |z1|+ |z2|)p−2ν(|z1 − z2|2). (1.5)

Here, 2 ≤ p < ∞ is a fixed growth exponent, λ and Λ are positive constants, and
ν : [0,∞[→ [0, 2Λ] is a non-decreasing function such that we have

lim
sց0

ν(s) = 0. (1.6)

Actually, these assumptions are standard conditions in the calculus of varia-
tions. Nevertheless, let us briefly comment on them: (1.3) is a polynomial growth
condition for the second derivative D2f and (1.4) is a version of strict convexity of
f in the z-variable, which is adapted to the growth exponent p. Finally, (1.5) and
(1.6) describe a sort of uniform continuity of D2f in z, which is also compatible
with the growth condition (1.3).

In the present paper we will assume that a minimizer1 u of F on Ω is given
and we will investigate the regularity properties of u. In the vectorial setting N > 1
it is well known that one cannot expect regularity everywhere on Ω. However, if f
is Hölder continuous in the variables x and y, then the so-called partial regularity
is available, i.e. every minimizer has Hölder continuous first derivatives outside a
negligible set. More precisely, setting

ωκ(s) := min{sκ, 1},
the following theorem holds.

Theorem 1.1. We consider the integral (1.1), where the integrand f satisfies (1.2),
(1.3), (1.4), (1.5), and (1.6) with p ≥ 2. Furthermore, we impose the Hölder con-

ditions

|Df(x1, y1, z)−Df(x2, y2, z)| ≤ L(1 + |z|)p−1ωβ(|x1 − x2|+ |y1 − y2|), (1.7)

|f(x, y1, z)− f(x, y2, z)| ≤ L(1 + |z|)pωγ(|y1 − y2|) (1.8)

for all x, x1, x2 ∈ Ω, y1, y2 ∈ R
N , z ∈ R

Nn, and some constants 0 < β < 1,
0 < γ < 1, and L > 0. Then, for every minimizer u of F on Ω there is an open

subset Ω0 of Ω such that one has

u ∈ C
1,α
loc (Ω0;R

N ) and |Ω \ Ω0| = 0

with

α := min

{

β,
γ

2− γ

}

. (1.9)

1Here, by a minimizer of F on Ω we mean a function u ∈ W 1,p(Ω;RN ) such that F [u] exists

and is finite with F [u] ≤ F [u+ φ] for all φ ∈ W
1,p
0

(Ω;RN ).
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The reader should note that the assumptions of the theorem imply, in par-
ticular, a|z|p − A ≤ f(x, y, z) − f(x, 0, 0) ≤ A(1 + |z|p) with A ≥ a > 0. Hence,
if
∫

Ω |f(·, 0, 0)| dx < ∞ holds2 the integral (1.1) is well-defined and finite for all

u ∈ W 1,p(Ω;RN ). Moreover, in this case the direct method of the calculus of
variations and Ioffe’s semicontinuity theorem [Io1, Io2] ensure the existence of
minimizers.

Adapting earlier results from geometric measure theory and the theory of
minimal surfaces, the first partial regularity theorems in the non-parametric set-
ting of Theorem 1.1 were proved by Morrey [M2] and Giusti & Miranda [GM4].
Subsequently, Evans [E] proved partial regularity for quasiconvex3 integrands f ,
which do not depend on x and y. His result was generalized to the case with
x- and y-dependence by Fusco & Hutchinson [FH1] and Giaquinta & Modica
[GM3] and eventually further extensions and variants have been given e.g. in
[EG, AF, AG, H2, CP, CFM, DGG, DK, KT, DGK]. Here, the paper [AG] intro-
duces an interesting proof tailored out for the convex situation described above,
while all the other papers, using miscellaneous methods, deal with the more gen-
eral quasiconvex case. Anyway, those results which allow u-dependence (i.e. the
presence of the y-variable) have in common that they state just Hölder continu-
ity with some small exponent α > 0 and not with the exponent α from (1.9). In
fact, this small exponent arises from the application of the Giaquinta & Modica
version [GM1] of Gehring’s higher integrability lemma [G1]. Alternative proofs,
which do not employ Gehring’s lemma, have been given for convex integrands
with p = 2 [H2] and for certain classes of polyconvex integrands [FH2, FH3, H5]
yielding partial C1,α-regularity with every exponent α < 1

2 min{β, γ}.
The exponent in (1.9) occurred for the first time in the work of Phillips

[P], who proved Hölder continuity with this exponent for non-negative minimizers
and a particular class of integrands, namely f(x, y, z) := 1

2 |z|2 + yγ , in the scalar
case N = 1. Furthermore, an example of [P] shows that this exponent is in fact
optimal. Subsequently, it has been pointed out by Giaquinta & Giusti [GG] that
once Hölder continuity with some positive exponent is proved one can reach the
exponent in (1.9) by some additional arguments exploiting the local boundedness
of Du. The paper [GG] states this only in the case N = 1, p = 2, but we believe
that a straightforward generalization provides a proof of Theorem 1.1.

While we were writing the present article a paper of Hamburger [H6] ap-
peared, where he proved Theorem 1.1 even in the more general case of quasiconvex
integrands. His argument is indirect, employs Gehring’s lemma, and reaches the
optimal Hölder exponent in a second step.

The aim of the present paper is now to suggest a new simple proof of Theorem
1.1 in the presence of u-dependence. In fact, we apply the A-harmonic approxima-
tion method of Duzaar & Steffen [DS] and bypass the use of Gehring’s lemma in

2Clearly,
∫
Ω
|f(·, 0, 0)| dx = ∞ implies that (1.1) is either infinite or undefined for all u ∈

W 1,p(Ω;RN ). Thus, in this situation there are no minimizers.
3Quasiconvexity is a generalization of convexity due to Morrey [M1], which can often replace the
convexity condition (1.4).
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the proof of a Caccioppoli type estimate by a subtle, but elementary splitting of the
relevant terms. All in all we will provide an elementary, self-contained, and com-
parably short proof of Theorem 1.1. However, a severe restriction of our method
lies in the fact that an extension to the more general quasiconvex case seems to
be hard.

Moreover, a variant of Theorem 1.1 holds if we drop the condition (1.7)
involving Df and require only Hölder continuity of f :

Corollary 1.2. We consider the integral (1.1), where the integrand f satisfies (1.2),
(1.4), (1.3), (1.5), and (1.6) with p ≥ 2. Furthermore, we impose the Hölder con-

dition

|f(x1, y1, z)− f(x2, y2, z)| ≤ K(1 + |z|)pωτ (|x1 − x2|+ |y1 − y2|) (1.10)

for all x1, x2 ∈ Ω, y1, y2 ∈ R
N , z ∈ R

Nn, and some constants 0 < τ < 1, and
K > 0. Then, for every minimizer u of F on Ω there is an open subset Ω0 of Ω
such that one has

u ∈ C
1,α
loc (Ω0;R

N ) and |Ω \ Ω0| = 0

with

α :=
τ

2
.

Corollary 1.2 follows immediately from Theorem 1.1 and the following lemma,
which essentially appears in [GG].

Lemma 1.3. Assume that f satisfies (1.2), (1.3), and (1.10) with p ≥ 2. Then, for
some L > 0 the integrand f fulfills (1.7) with β = τ

2 .

In Appendix A we will give a proof of Lemma 1.3, which follows the arguments
of [GG].

We mention at this stage that the assumptions of Theorem 1.1 and Corollary
1.2 can be somewhat weakened. Actually, (1.3) can be replaced by the weaker
growth condition f(x, y, z) ≤ A(1 + |z|)p with A > 0 and (1.5) and (1.6) can be
dropped. Then, D2f is still bounded and uniformly continuous on compact subsets
of Ω×R

N ×R
Nn and Acerbi & Fusco [AF] have pointed out that this is sufficient

to prove partial regularity; see in particular [AF, Lemma II.3]. In addition, slightly
weaker versions of (1.7), (1.8), and (1.10) can be treated and an extension to the
subquadratic case 1 < p < 2 is possible; see for instance [GM3, CFM]. However, in
the present paper we will restrict ourselves to the simpler set of conditions stated
in the beginning.

Next, we will discuss the relation of Theorem 1.1 and Corollary 1.2 to the
regularity theory for nonlinear elliptic systems. Actually, we have not assumed
that f is differentiable in y and hence, in general, the Euler equation of F cannot
be written. However, for the moment let us assume this differentiability property.
Then, every minimizer u satisfies the Euler equation

div[Df(·, u,Du)] = ∂yf(·, u,Du) on Ω (1.11)
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in a weak formulation. A natural growth condition for ∂yf reads |∂yf(x, y, z)| ≤
L(1 + |z|p). Thus, (1.11) is a nonlinear elliptic system of the type

div[A(·, u,Du)] = B(·, u,Du) on Ω, (1.12)

where A satisfies a set of standard conditions and B has natural polynomial growth
|B(x, y, z)| ≤ L(1 + |z|p). The regularity of W 1,p-solutions u of such systems
has been proved only under additional assumptions, namely that the solution
is bounded and satisfies a smallness condition; see [GM2, Iv, F, DG] for p = 2
and [H1, H3, H4] for p ≥ 2. Typically, these regularity results yield partial C1,α-
regularity, where α is the Hölder exponent of A in (x, y). In contrast, working
directly with a minimizer (or almost minimizer) of (1.1) instead of a solution of
a system, one typically gets only half the Hölder exponent of f in (x, y) as in
Corollary 1.2 and [H2, H5, DGG, DK]. This clarifies the meaning of the condition
(1.9): It interpolates - in some sense - between these two situations. On the one
hand if γ is close to 1 then the Euler equation (1.11) is almost available and α is
close to min{β, γ}. On the other hand if γ is small then the Euler equation is not
available and α is close to min

{

β, γ2
}

.

Another interesting question is what happens if instead of Hölder continuity
in x and y one merely requires (uniform) continuity. In this situation it has been
shown quite recently by Foss & Mingione [FM] that minimizers still enjoy partial
C0,α-regularity with every exponent 0 < α < 1. This theorem can be interpreted as
a borderline case of the above results when passing to 0 with the Hölder exponents
β, γ, and τ . A similar result for weak solutions of (1.12) with B = 0 is also
contained in [FM].

Finally, we add a few comments on the size of the singular set Ω \ Ω0: As
a side benefit of all partial regularity proofs one obtains a characterization of the
singular set Ω \ Ω0. In fact, in our situation Ω0 can be chosen such that we have

Ω \ Ω0

=

{

x ∈ Ω : lim inf
̺ց0

−
∫

B̺(x)

|Du − (Du)x,̺|p dx > 0 or lim sup
̺ց0

|(Du)x,̺| = ∞
}

.

Here, we have used some terminology that will be explained in Section 2. Starting
from this characterization bounds for the Hausdorff dimension of the singular
set can be given. In the presence of u-dependence, e.g. under the assumptions
of Corollary 1.2, such a bound has been obtained only recently by Kristensen &
Mingione [KM1, KM2]. Precisely, writing dimH(Ω\Ω0) for the Hausdorff dimension
of the singular set, their result states

dimH(Ω \ Ω0) ≤ n−min{ε, τ},
where ε > 0 denotes a positive constant resulting from the application of Gehring’s
lemma. Moreover, in the low-dimensional case n ≤ p+ 2 they even showed

dimH(Ω \ Ω0) ≤ n− τ.
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All in all we believe that the above results form a quite satisfactory regularity
theory in the setting of (1.3) and (1.4). Finally, let us outline the plan of the paper:
In Sections 2 and 3 we will collect some preliminaries and in Sections 4, 5, 6, and 7
we will implement the proof of Theorem 1.1. Here, the core of the proof is contained
in Lemma 4.3 and Lemma 5.1.

2. Notation

In addition to universal notations and some agreements from the introduction we
will use the following conventions:

Constants. We write c for a positive constant possibly varying from line to
line. The dependences of such constants will only occasionally be highlighted. In
addition, there will be some fixed constants; for instance we might write C8(n, p)
for a fixed constant C8 depending only on n and p.

Dimensions and norms. The dimensions n,N ∈ N from the introduction will
be fixed throughout this paper. On the spaces Rn, RN , and R

Nn we will use the
Euclidean norm denoted by | · |, where RNn is identified with the space of (N×n)-
matrices. On the space of bilinear forms on R

Nn we will use the corresponding
operator norm denoted also by | · |.

Matrices and Products. For ξ ∈ R
Nn and x ∈ R

n we write ξx for the matrix-
vector product. Clearly, we have ξx ∈ R

N . In addition, for z, ξ ∈ R
Nn the Eu-

clidean inner product of z and ξ will be denoted by z · ξ. Note that for f from
the introduction we will regard the derivative Df(x, y, z) with respect to z as an
element of RNn and the second derivative D2f(x, y, z) as a bilinear form on R

Nn.

Balls. We will write B̺(x0) for balls in R
n; more precisely we set B̺(x0) :=

{x ∈ R
n : |x− x0| < ̺} and we abbreviate B̺ := B̺(0).

Measure and integration. We write |S| for the Lebesgue measure of a subset S
of Rn. Moreover, dx denotes the integration with respect to the Lebesgue measure
on R

n and we use the abbreviations −
∫

S
u dx := 1

|S|

∫

S
u dx, ux0,̺ := −

∫

B̺(x0)
u dx,

and u̺ := u0,̺.

Function spaces.We writeW 1,p for Sobolev spaces and C1,α for Hölder spaces
with the usual norm, indicating the domain and the codomain of the functions by
two parameters. Furthermore, we write W 1,p

0 for the subspace of functions with

zero boundary values and C
1,α
loc (Ω0;R

N) for the space of all u : Ω0 → R
N such

that for every x ∈ Ω0 there is a R > 0 with BR(x) ⊂ Ω and u ∈ C1,α(BR(x);R
N ).

The function V . For a parameter p ≥ 2, which will be indicated by the
context, we will use the abbreviation

V (z) := (1 + |z|) p−2

2 z. (2.1)

Remark 2.1. The quantity |V (z)|2 coincides with |z|2 + |z|p up to a constant de-

pending only on p ≥ 2.
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3. A-harmonic approximation

Throughout this section we fix a ball B̺(x0) in R
n and a bilinear form A on R

Nn.
We assume the ellipticity condition

A(ξ, ξ) ≥ λ|ξ|2 (3.1)

for all ξ ∈ R
Nn and some λ > 0 and the bound

|A| ≤ Λ (3.2)

for some Λ > 0. We say that a map u ∈ W 1,2(B̺(x0);R
N ) is A-harmonic on

B̺(x0) iff
∫

B̺(x0)

A(Du,Dϕ) dx = 0

holds for all ϕ ∈ W
1,2
0 (B̺(x0);R

N ). Clearly this means that the A-harmonic func-
tions are the weak solutions of the homogenous system of second-order partial
differential equations associated with A. Since we will use A-harmonic functions
as comparison maps later, we will now state an approximation result, which in-
cludes some a priori estimates for A-harmonic functions. It has been stated in
[S, Lemma 6.8] (compare [DGK]) in the present form and is a variant of the A-
harmonic approximation lemma of Duzaar & Steffen [DS]. The reader should note
that the definition of V in [S] is different, but the lemma is easily seen to hold also
with the present definition (2.1).

Lemma 3.1 (A-harmonic approximation). For all p ≥ 2 and ε > 0 there is a

constant δ > 0, depending only on n, N , p, λ, Λ, and ε, such that the following

holds: For every 0 < s ≤ 1 and for every u ∈ W 1,2(B̺(x0);R
N ) with

−
∫

B̺(x0)

|V (Du)|2 dx ≤ s2

and
∣

∣

∣

∣

∣

−
∫

B̺(x0)

A(Du,Dϕ) dx

∣

∣

∣

∣

∣

≤ sδ sup
B̺(x0)

|Dϕ| for all ϕ ∈ W
1,∞
0 (B̺(x0);R

N ),

there is an A-harmonic function h on B̺(x0) with

sup
B̺/2(x0)

|Dh|+ ̺ sup
B̺/2(x0)

|D2h| ≤ c

and

−
∫

B̺/2(x0)

∣

∣

∣

∣

V

(

u− sh

̺

)∣

∣

∣

∣

2

dx ≤ s2ε.

Here, c denotes a constant depending only on n, N , p, λ, and Λ.
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4. Caccioppoli’s inequality

Lemma 4.1. For all ξ1, ξ2 ∈ R
Nn and κ ≥ 0 we have

∫ 1

0

(

1 + |(1− s)ξ1 + sξ2|
)κ
ds ≥ 4−κ−2(1 + |ξ1|+ |ξ2|)κ.

Proof. We may assume |ξ2| ≤ |ξ1|. Then we estimate

∫ 1
4

0

(

1 + |(1 − s)ξ1 + sξ2|
)κ
ds ≥ 1

4

(

1 +
3

4
|ξ1| −

1

4
|ξ2|
)κ

≥ 1

4

(

1 +
1

2
|ξ1|
)κ

and the claim follows easily. �

Lemma 4.2. For all ξ, z ∈ R
Nn and p ≥ 2 we have

∫ 1

0

∫ 1

0

(1 + |ξ + stz|)p−2 ds t dt ≥ 8−p(1 + |z|)p−2.

Proof. The claim follows from the elementary estimate
∫ 1

0

(1 + |ξ|+ |ξ + tz|)p−2t dt ≥
∫ 1

1
2

(1 + t|z|)p−2t dt ≥ 2−p(1 + |z|)p−2.

and Lemma 4.1 with κ = p− 2. �

Lemma 4.3 (Caccioppoli’s inequality). We assume (1.2), (1.3), (1.4), (1.7), and
(1.8) with p ≥ 2. Furthermore, we consider a ball B̺(x0) ⊂ Ω with 0 < ̺ ≤ 1, a
minimizer u ∈ W 1,p(B̺(x0);R

N ) of F on B̺(x0), and a bound M > 0. Then, for
every ζ ∈ R

N and every ξ ∈ R
Nn with |ξ| ≤M + 1 we have

−
∫

B̺/2(x0)

|V (Dv)|2 dx ≤ c

[

−
∫

B̺(x0)

∣

∣

∣

∣

V

(

v

̺

)∣

∣

∣

∣

2

dx+ ̺2α

]

, (4.1)

where we have set v(x) := u(x) − ζ − ξx and α is given by (1.9). Here c depends

only on n, p, λ, Λ, L, and M .

Proof. We assume x0 = 0 and choose ̺
2 ≤ r < s ≤ ̺. Let η denote a smooth

cut-off function with 1Br ≤ η ≤ 1Bs , |∇η| ≤ 2
s−r

on B̺. We set

φ := ηv, and ψ := (1 − η)v.

Then, we have φ ∈W
1,p
0 (Bs;R

N ), φ = v on Br, and

Du− ξ = Dv = Dφ+Dψ on B̺.

Moreover, by the product rule we find

|Dψ| ≤ |Dv|+ 2

∣

∣

∣

∣

v

s− r

∣

∣

∣

∣

(4.2)
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on B̺. Introducing the abbreviation R := Bs \Br we obtain by (2.1), Lemma 4.2,
(1.4), and elementary integration

8−pλ

∫

Bs

|V (Dφ)|2 dx ≤
∫

Bs

∫ 1

0

∫ 1

0

D2f(·, u, ξ + stDφ) ds t dt(Dφ,Dφ) dx

=

∫

Bs

[f(·, u, ξ +Dφ)− f(·, u, ξ)−Df(·, u, ξ) ·Dφ] dx

=

∫

R

[f(·, u,Du−Dψ)− f(·, u,Du)] dx

+

∫

Bs

[f(·, u,Du)− f(·, u− φ,Du −Dφ)] dx

+

∫

R

[f(·, u− φ, ξ +Dψ)− f(·, u− φ, ξ)] dx

+

∫

Bs

[f(·, u− φ, ξ)− f(·, u, ξ)] dx

+

∫

Bs

[Df(x0, ζ, ξ)−Df(·, u, ξ)] ·Dφdx

=: (I) + (II) + (III) + (IV ) + (V ).

Furthermore, integrating again we have

(I) + (III) =

∫

R

∫ 1

0

[Df(·, u, ξ)−Df(·, u,Du− tDψ)] dt ·Dψ dx

+

∫

R

∫ 1

0

[Df(·, u− φ, ξ + tDψ)−Df(·, u− φ, ξ)] dt ·Dψ dx

+

∫

R

[Df(·, u− φ, ξ)−Df(·, u, ξ)] ·Dψ dx

=: (I ′) + (III ′) + (V I).

In the following we will provide estimates for (I ′), (II), (III ′), (IV ), (V ), and
(V I). Note that the apportionment into these terms is crucial for our method.
We start observing that we have (II) ≤ 0 by the minimality of u. Next we will
estimate (I ′). Applying (1.3), |ξ| ≤M + 1, and (4.2) we get

(I ′) = −
∫

R

∫ 1

0

∫ 1

0

D2f(·, u, ξ + s(Dv − tDψ)) ds dt(Dv − tDψ,Dψ) dx

≤ Λ

∫

R

∫ 1

0

(1 + |ξ|+ |Dv − tDψ|)p−2|Dv − tDψ| dt |Dψ| dx

≤ c

∫

R

(1 + |Dv|+ |Dψ|)p−2(|Dv|+ |Dψ|)2 dx

≤ c

∫

R

(

1 + |Dv|+
∣

∣

∣

∣

v

s− r

∣

∣

∣

∣

)p−2(

|Dv|+
∣

∣

∣

∣

v

s− r

∣

∣

∣

∣

)2

dx.
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Recalling (2.1) we easily deduce

(I ′) ≤ c

∫

R

[

|V (Dv)|2 +
∣

∣

∣

∣

V

(

v

s− r

)∣

∣

∣

∣

2
]

dx.

The term (III ′) can be treated similarly and we arrive at

(I ′) + (III ′) ≤ c

∫

R

[

|V (Dv)|2 +
∣

∣

∣

∣

V

(

v

s− r

)∣

∣

∣

∣

2
]

dx.

Next, we deal with (IV ). By (1.8) and |ξ| ≤M + 1 we find

(IV ) ≤ L

∫

B̺

(1 + |ξ|)pωγ(|φ|) dx ≤ c

∫

B̺

|v|γ dx.

Moreover, by Young’s inequality we have |v|γ ≤ ̺−2|v|2 + ̺
2γ

2−γ . Hence, we arrive
at

(IV ) ≤ c

∫

B̺

[

̺−2|v|2 + ̺
2γ

2−γ

]

dx.

We proceed treating (V ). Here, in addition to (1.7), |ξ| ≤ M + 1, and |u − ζ| ≤
c(̺+ |v|), we use Young’s inequality twice.

(V ) ≤ L

∫

Bs

(1 + |ξ|)p−1ωβ(̺+ |u− ζ|)|Dφ| dx

≤ 1

2
8−pλ

∫

Bs

|Dφ|2 dx+ c

∫

B̺

[

̺2β + |v|2β
]

dx

≤ 1

2
8−pλ

∫

Bs

|Dφ|2 dx+ c

∫

B̺

[

̺2β + ̺−2|v|2 + ̺
2β

1−β

]

dx.

Finally, estimate (V I) similarly. Recalling (4.2) we deduce

(V I) ≤ L

∫

R

(1 + |ξ|)p−1ωβ(|φ|)|Dψ| dx

≤ c

[

∫

R

|Dψ|2 dx+

∫

B̺

|v|2β dx
]

≤ c

(

∫

R

[

|Dv|2 +
∣

∣

∣

∣

v

s− r

∣

∣

∣

∣

2
]

dx+

∫

B̺

[

̺−2|v|2 + ̺
2β

1−β

]

dx

)

.

Keeping in mind s− r ≤ ̺ ≤ 1 and α ≤ min{β, β
1−β

, γ
2−γ

} we collect our estimates

for (I ′), (II), (III ′), (IV ), (V ), and (V I), and absorb 1
28

−pλ
∫

Bs
|Dφ|2 dx on the

left-hand side. Thus, we arrive at

∫

Bs

|V (Dφ)|2 dx ≤ C1

[

∫

R

|V (Dv)|2 dx +

∫

B̺

∣

∣

∣

∣

V

(

v

s− r

)∣

∣

∣

∣

2

dx + ̺n+2α

]

,



A simple partial regularity proof for minimizers of variational integrals 11

where C1(n, p, λ,Λ, L,M) > 0 denotes a fixed constant. Next, we replace the
integral on the left-hand side by

∫

Br
|V (Dv)|2 dx and use Widman’s hole filling

trick: Adding C1

∫

Br
|V (Dv)|2 dx on both sides and dividing by 1+C1 we see:

∫

Br

|V (Dv)|2 dx ≤ C1

1 + C1

∫

Bs

|V (Dv)|2 dx+

∫

B̺

∣

∣

∣

∣

V

(

v

s− r

)
∣

∣

∣

∣

2

dx+ ̺n+2α.

Now, recalling Remark 2.1 and exploiting ϑ = C1

1+C1
< 1 by the iteration lemma

[G2, Lemma 6.1] we find

∫

B̺/2

|V (Dv)|2 dx ≤ c

[

∫

B̺

∣

∣

∣

∣

V

(

v

̺

)
∣

∣

∣

∣

2

dx+ ̺n+2α

]

,

which proves the claim. �

5. Approximate A-Harmonicity

We will assume from now on that

ν2 is concave. (5.1)

Lemma 5.1 (Approximate A-harmonicity). We assume (1.2), (1.3), (1.5), (1.7),
(1.8), and (5.1) with p ≥ 2. Furthermore, we consider a ball B̺(x0) ⊂ Ω with

0 < ̺ ≤ 1, a minimizer u ∈ W 1,p(B̺(x0);R
N ) of F on B̺(x0) and a bound

M > 0. Then, for all ζ ∈ R
N and all ξ ∈ R

Nn with |ξ| ≤M we have

∣

∣

∣

∣

∣

−
∫

B̺(x0)

D2f(x0, ζ, ξ)(Dv,Dϕ) dx

∣

∣

∣

∣

∣

≤ c

[

√
Φ ν(Φ) + Φ +−

∫

B̺

∣

∣

∣

∣

v

̺

∣

∣

∣

∣

2

dx + ̺α

]

sup
B̺(x0)

|Dϕ|

for all ϕ ∈ W
1,∞
0 (B̺(x0);R

N), where we have abbreviated v(x) := u(x)− ζ − ξx,

Φ := −
∫

B̺(x0)
|V (Dv)|2 dx, and α is given by (1.9). Here, c depends only on p, Λ,

L, and M .
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Proof. We assume x0 = 0 and supB̺
|Dϕ| = 1. Then, we have supB̺

|ϕ| ≤ ̺ and

for all 0 < σ ≤ 1 we get from the minimizing property of u, (1.7), and (1.8)

0 ≤ 1

σ
−
∫

B̺

[f(·, u,Du− σDϕ)− f(·, u,Du)] dx

+
1

σ
−
∫

B̺

[f(·, u− σϕ,Du − σDϕ)− f(·, u,Du− σDϕ)] dx

≤ −−
∫

B̺

−
∫ σ

0

Df(·, u,Du− tDϕ) dt ·Dϕdx+ c
(σ̺)γ

σ
−
∫

B̺

(1 + |Du|)p dx

= −−
∫

B̺

−
∫ σ

0

Df(x0, ζ,Du− tDϕ) dt ·Dϕdx+ c
(σ̺)γ

σ
−
∫

B̺

(1 + |Du|)p dx

+−
∫

B̺

−
∫ σ

0

[

Df(x0, ζ,Du− tDϕ)−Df(·, u,Du− tDϕ)
]

dt ·Dϕdx

≤ −−
∫

B̺

−
∫ σ

0

Df(x0, ζ,Du− tDϕ) dt ·Dϕdx+ c
(σ̺)γ

σ
−
∫

B̺

(1 + |Du|)p dx

+ c−
∫

B̺

(1 + |Du|)p−1ωβ(̺+ |u − ζ|) dx.

Adding −
∫

B̺
D2f(x0, ζ, ξ)(Dv,Dϕ) dx on both sides of the previous inequality we

arrive at

−
∫

B̺

D2f(x0, ζ, ξ)(Dv,Dϕ) dx

≤ −
∫

B̺

−
∫ σ

0

[

D2f(x0, ζ, ξ)(Dv,Dϕ) −Df(x0, ζ,Du− tDϕ) ·Dϕ
]

dt dx

+ c
(σ̺)γ

σ
−
∫

B̺

(1 + |Du|)p dx+ c−
∫

B̺

(1 + |Du|)p−1ωβ(̺+ |u− ζ|) dx

=: (I) + (II) + (III).

Since

−
∫

B̺

∫ 1

0

D2f(x0, ζ, ξ + sDv) ds (Dv,Dϕ) dx = −
∫

B̺

Df(x0, ζ,Du) ·Dϕdx

holds by integration we can rewrite (I) as follows:

(I) = −
∫

B̺

∫ 1

0

[

D2f(x0, ζ, ξ)−D2f(x0, ζ, ξ + sDv)
]

ds (Dv,Dϕ) dx

+−
∫

B̺

−
∫ σ

0

[

Df(x0, ζ,Du)−Df(x0, ζ,Du − tDϕ)
]

dt ·Dϕdx.

=: (I ′) + (I ′′).
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Recalling that ν is non-decreasing and bounded by 2Λ we obtain by (1.5) and
|ξ| ≤M

(I ′) ≤ c−
∫

B̺

(1 + |Dv|)p−2ν(|Dv|2)|Dv| dx

≤ c

[

−
∫

B̺

|Dv|ν(|Dv|2) dx+−
∫

B̺

|Dv|p dx
]

.

Here, the last inequality has been obtained estimating the integrand separately
in the cases |Dv| ≤ 1 and |Dv| ≥ 1. Now using (5.1) and the inequalities of
Cauchy-Schwarz and Jensen we find

(I ′) ≤ c
[√

Φ ν(Φ) + Φ
]

.

Keeping in mind σ ≤ 1, |Dϕ| ≤ 1, and |Du| ≤ |Dv| +M we get by integration
and (1.3)

(I ′′) = −
∫

B̺

−
∫ σ

0

∫ 1

0

D2f(x0, ζ,Du− stDϕ) ds t dt(Dϕ,Dϕ) dx

≤ Λσ−
∫

B̺

(1 + |Du|+ σ|Dϕ|)p−2 dx ≤ cσ−
∫

B̺

(1 + |Dv|p) dx.

Using σ ≤ 1 again we have proved

(I ′′) ≤ c[σ +Φ].

At this stage we fix σ := ̺
γ

2−γ . Note that this choice means that the expressions
σ and 1

σ
(σ̺)γ , occurring in (I ′′) and (II) respectively, coincide. Recalling |Du| ≤

|Dv|+M and ̺ ≤ 1 we find

(II) ≤ c̺
γ

2−γ −
∫

B̺

(1 + |Dv|p) dx ≤ c
[

̺
γ

2−γ +Φ
]

.

Moreover, noting |u− ζ| ≤ |v|+M̺ and ωβ ≤ 1 we can control (III) similarly.

(III) ≤ c−
∫

B̺

(1 + |Dv|)pωβ(̺+ |v|+M̺) dx

≤ c−
∫

B̺

[

ωβ(̺+ |v|+M̺) + |Dv|p
]

dx.

Invoking Young’s inequality we have

ωβ(̺+ |v|+M̺) ≤ c
[

̺β + |v|β
]

≤ c
[

̺β + ̺
2β

2−β + ̺−2|v|2
]

and we end with

(III) ≤ c

[

̺β +−
∫

B̺

̺−2|v|2 dx+Φ

]

.

Collecting the estimates for (I ′), (I ′′), (II), and (III) we find an upper bound for
−
∫

B̺
D2f(x0, ζ, ξ)(Dv,Dϕ) dx. A lower bound can be established analogously and

we arrive at the claim. �
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6. Excess estimates

In this section we will always assume that the hypotheses (1.2), (1.3), (1.4), (1.5),
(1.6), (1.7), (1.8), and (5.1) are valid with p ≥ 2 and that α is given by (1.9).
Moreover, we will assume that u ∈ W 1,p(B̺(x0);R

N ) is a minimizer of F on
B̺(x0), where B̺(x0) is a ball in Ω with 0 < ̺ ≤ 1.

We introduce the excess

Φ(x0, ̺) := −
∫

B̺(x0)

|V (Du − (Du)x0,̺)|2 dx

To simplify our notation we will write Φ(̺) for Φ(0, ̺). In the next lemma we state
two elementary properties of Φ.

Lemma 6.1. For all ξ ∈ R
Nn and all 0 < r ≤ ̺ we have

Φ(x0, ̺) ≤ c−
∫

B̺(x0)

|V (Du− ξ)|2 dx, (6.1)

Φ(x0, r) ≤ c
(̺

r

)n

Φ(x0, ̺), (6.2)

where c depends only on p.

Proof. We assume x0 = 0. It is not difficult to prove −
∫

B̺
|Du − (Du)̺|2 dx ≤

−
∫

B̺
|Du− ξ|2 dx and −

∫

B̺
|Du− (Du)̺|p dx ≤ c−

∫

B̺
|Du− ξ|p dx. In view of Remark

2.1 this implies (6.1). (6.2) follows easily from (6.1). �

In the remainder of this section we adapt essentially the arguments of [DS,
DGG, DG, DK]. We will use Lemma 4.3 and Lemma 5.1 to derive decay estimates
for the excess of the minimizer.

Lemma 6.2. For every M > 0 and α < κ < 1 there are constants 0 < θ < 1 and

0 < ε0 ≤ 1 such that the smallness conditions

̺+Φ(x0, ̺) ≤ ε0 and |(Du)x0,̺| ≤M (6.3)

imply

Φ(x0, θ̺) ≤ θ2κΦ(x0, ̺) + C2̺
2α.

Here, C2(n,N, p, λ,Λ, L,M, κ) > 0 is a fixed constant and the dependences of θ

and ε0 are given by θ(n,N, p, λ,Λ, L,M, κ) and ε0(n,N, p, λ,Λ, L,M, α, κ, ν).

Proof. We assume x0 = 0 and Φ(̺) 6= 0. Setting ζ := u̺, ξ := (Du)̺, v(x) :=
u(x) − ζ − ξx, our goal is to apply the A-harmonic approximation lemma with
A := D2f(0, ζ, ξ). We note that |ξ| ≤ M holds by (6.3) and that A satisfies (3.1)
and (3.2) with (1 +M)p−2Λ instead of Λ. From Lemma 5.1 we have
∣

∣

∣

∣

∣

−
∫

B̺

A(Dv,Dϕ) dx

∣

∣

∣

∣

∣

≤ c

[

√

Φ(̺) ν(Φ(̺)) + Φ(̺) +−
∫

B̺

∣

∣

∣

∣

v

̺

∣

∣

∣

∣

2

dx+ ̺α

]

sup
B̺

|Dϕ|
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for all ϕ ∈W
1,∞
0 (B̺;R

N ). By Poincaré’s inequality we infer
∣

∣

∣

∣

∣

−
∫

B̺

A(Dv,Dϕ) dx

∣

∣

∣

∣

∣

≤ C3

[

√

Φ(̺) ν(Φ(̺)) + Φ(̺) + ̺α
]

sup
B̺

|Dϕ|,

where C3(n, p,Λ, L,M) > 0 is a fixed constant. For an ε > 0 to be fixed later
we denote by δ > 0 the corresponding constant from Lemma 3.1. Setting s :=
√

Φ(̺) + 2C3

δ
̺α this estimate can be rewritten as

∣

∣

∣

∣

∣

−
∫

B̺

A(Dv,Dϕ) dx

∣

∣

∣

∣

∣

≤ s

[

C3

(

ν(Φ(̺)) +
√

Φ(̺)
)

+
1

2
δ

]

sup
B̺

|Dϕ|.

Imposing the smallness assumption

C3

(

ν(Φ(̺)) +
√

Φ(̺)
)

≤ 1

2
δ (6.4)

we end with
∣

∣

∣

∣

∣

−
∫

B̺

A(Dv,Dϕ) dx

∣

∣

∣

∣

∣

≤ sδ sup
B̺

|Dϕ|

for all ϕ ∈W
1,∞
0 (B̺;R

N ). In addition, our choice of s implies −
∫

B̺
|V (Dv)|2 dx ≤

s2. Thus, imposing the smallness assumption

s ≤ 1 (6.5)

we can apply Lemma 3.1 to deduce the existence of an A-harmonic function h on
B̺ with

sup
B̺/2

|Dh|+ ̺ sup
B̺/2

|D2h| ≤ C4,

where C4(n,N, p, λ,Λ,M) > 0 is a fixed constant, and

−
∫

B̺/2

∣

∣

∣

∣

V

(

v − sh

̺

)∣

∣

∣

∣

2

dx ≤ s2ε.

Now we consider 0 < θ ≤ 1
4 to be fixed later. Taylor expansion leads to the estimate

sup
x∈B2θ̺

|h(x)− h(0)−Dh(0)x| ≤ cθ2̺

and we find

−
∫

B2θ̺

∣

∣

∣

∣

v(x)− sh(0)− sDh(0)x

2θ̺

∣

∣

∣

∣

p

dx

≤ c

[

θ−n−p−
∫

B̺/2

∣

∣

∣

∣

v − sh

̺

∣

∣

∣

∣

p

dx+ sp sup
x∈B2θ̺

∣

∣

∣

∣

h(x)− h(0)−Dh(0)x

2θ̺

∣

∣

∣

∣

p
]

≤ c[θ−n−ps2ε+ θpsp]
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Setting ε := θn+2+p and recalling θ ≤ 1,s ≤ 1 we arrive at

−
∫

B2θ̺

∣

∣

∣

∣

v(x)− sh(0)− sDh(0)x

2θ̺

∣

∣

∣

∣

p

dx ≤ cθ2s2.

Recalling v(x) = u(x)− ζ − ξx and setting ζ̃ := ζ + sh(0) and ξ̃ := ξ+ sDh(0) the
preceeding inequality reads

−
∫

B2θ̺

∣

∣

∣

∣

∣

u(x)− ζ̃ − ξ̃x

2θ̺

∣

∣

∣

∣

∣

p

dx ≤ cθ2s2.

Arguing in completely the same way with the exponent 2 instead of p we find

−
∫

B2θ̺

∣

∣

∣

∣

∣

u(x)− ζ̃ − ξ̃x

2θ̺

∣

∣

∣

∣

∣

2

dx ≤ cθ2s2.

Taking into account Remark 2.1 the last two estimates give

−
∫

B2θ̺

∣

∣

∣

∣

∣

V

(

u(x)− ζ̃ − ξ̃x

2θ̺

)
∣

∣

∣

∣

∣

2

dx ≤ cθ2s2. (6.6)

Our next aim is to apply Lemma 4.3. To this aim we first note

|ξ̃ − ξ| ≤ s|Dh(0)| ≤ sC4.

Thus, imposing the smallness assumption

sC4 ≤ 1 (6.7)

we have |ξ̃| ≤ M + 1. Now we are ready for the application of Lemma 4.3: Com-
bining (4.1) and (6.6) we get

−
∫

Bθ̺

|V (Du− ξ̃)|2 dx ≤ c
[

θ2s2 + (2θ̺)2α
]

.

By (6.1) this implies

Φ(θ̺) ≤ c[θ2s2 + (2θ̺)2α]

and recalling the definition of s and 2θ ≤ 1 we infer

Φ(θ̺) ≤ C5[θ
2Φ(̺) + (δ−2 + 1)̺2α],

where C5(n,N, p, λ,Λ, L,M) > 0 is a fixed constant. Now we fix the quantities
involved in the statement of the lemma: First we choose 0 < θ ≤ 1

4 such that

C5θ
2 ≤ θ2κ holds. This fixes ε and δ. Next we choose ε0 such that the smallness

assumptions (6.4), (6.5), and (6.7) follow from the first part of (6.3). Thus, the
lemma is proved with C2 = C5(δ

−2 + 1). �

Lemma 6.3. For every M > 0 and α < κ < 1 there is a constant 0 < ε1 ≤ 1 with

the following property: Whenever the smallness conditions

̺+Φ(x0, ̺) ≤ ε1 and |(Du)x0,̺| ≤
M

2
(6.8)
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hold, then we have

Φ(x0, r) ≤ c

[

(

r

̺

)2κ

Φ(x0, ̺) + r2α

]

for all 0 < r ≤ ̺.

Here, c depends only on n, N , p, λ, Λ, L,M , α, and κ, and ε1 depends additionally

on ν.

Proof. We assume x0 = 0. Denoting by θ and ε0 the constants from Lemma 6.2
we impose the smallness condition

̺+ C6̺
2α +Φ(̺) ≤ ε0, (6.9)

where we have set C6 := C2

θ2α−θ2κ > 0. Now we will prove the following statements

by induction over j ∈ N ∪ {0}:
Φ(θj̺) ≤ θ2κjΦ(̺) + C6(θ

j̺)2α, (6.10)

θj̺+Φ(θj̺) ≤ ε0, (6.11)

|(Du)θj̺| ≤M. (6.12)

For j = 0 these assertions follow immediately from our assumptions and (6.9).
Next we will show for all l ∈ N ∪ {0} that if (6.10), (6.11), (6.12) hold for all
j ∈ {0, 1, 2, . . . , l}, then they hold also for j = l + 1. To prove this we may apply
Lemma 6.2 on the balls Bθj̺ for all j ∈ {0, 1, 2, . . . , l} getting

Φ(θl+1̺) ≤ θ2κ(l+1)Φ(̺) + C2

l
∑

j=0

θ2κj(θl−j̺)2α

= θ2κ(l+1)Φ(̺) + C2θ
−2α

l
∑

j=0

θ2(κ−α)j(θl+1̺)2α,

≤ θ2κ(l+1)Φ(̺) +
C2

θ2α − θ2κ
(θl+1̺)2α.

Hence, we have proved (6.10) for j = l + 1. Taking into account (6.9) we imme-
diately deduce (6.11) for j = l + 1 from (6.10) for j = l + 1. It remains to treat
(6.12). Using (6.10) for all j ∈ {0, 1, 2, . . . , l} we calculate

|(Du)θl+1̺ − (Du)̺| ≤
l
∑

j=0

−
∫

Bθj+1̺

|Du− (Du)θj̺| dx

≤ θ−
n
2

l
∑

j=0

√

Φ(θj̺)

≤ θ−
n
2

l
∑

j=0

√

θ2κjΦ(̺) + C6(θj̺)2α

≤ θ−
n
2

1− θκ

√

Φ(̺) +
√

C6
θ−

n
2

1− θα
̺α
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Thus, recalling (6.8) and imposing the smallness condition

θ−
n
2

1− θκ

√

Φ(̺) +
√

C6
θ−

n
2

1− θα
̺α ≤ M

2
(6.13)

we have shown (6.12) with j = l + 1. The induction is complete.
Next, we consider an arbitrary radius 0 < r ≤ ̺. Then we have θj+1̺ < r ≤ θj̺

for some j ∈ N ∪ {0} and we get from (6.2) and (6.10)

Φ(r) ≤ c

θn
Φ(θj̺)

≤ c

θn

[

θ2κjΦ(̺) + (θj̺)2α
]

≤ c

θn+2κ

[

(θj+1)2κΦ(̺) + (θj+1̺)2α
]

≤ c

θn+2κ

[

(

r

̺

)2κ

Φ(̺) + r2α

]

.

Finally, choosing ε1 small enough that (6.9) and (6.13) follow from the first part
of (6.8), the proof of the lemma is complete. �

7. Proof of Theorem 1.1

We start noting that (5.1) is not restrictive; see for instance [G2, p. 278]. Next, we
define Ω0 to be the set of all points x ∈ Ω with

lim inf
̺ց0

−
∫

B̺(x)

|Du− (Du)x,̺|p dx = 0 and lim sup
̺ց0

|(Du)x,̺| <∞.

Then, since almost all points in Ω are Lebesgue points of Du we have |Ω\Ω0| = 0.
Now fix an x0 ∈ Ω0 and set

M := 1 + 2 lim sup
̺ց0

|(Du)x0,̺|.

It follows from the definition of Ω0, Remark 2.1, and Hölder’s inequality that we
have

lim inf
̺ց0

Φ(x0, ̺) = 0.

Hence, there is a ̺0 > 0 such that we have B2̺0
(x0) ⊂ Ω, ̺0+Φ(x0, ̺0) ≤ ε1, and

|(Du)x0,̺0
| ≤ M

2 ; that is (6.8) holds on B̺0
(x0). By a continuity argument there is

even a 0 < R ≤ 1
2̺0 such that (6.8) holds on B̺0

(x) for every x ∈ BR(x0). Thus,

we may apply Lemma 6.3 with κ := 1+α
2 on all these balls getting

Φ(x, r) ≤ c

[

(

r

̺0

)1+α

Φ(x, ̺0) + r2α

]

for all x ∈ BR(x0) and all 0 < r ≤ ̺0.
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Clearly, this implies

r−2α−
∫

Br(x)

|Du− (Du)x,r|2 dx ≤ c

[

R1−α

̺1+α
0

ε1 + 1

]

for all x ∈ BR(x0) and all 0 < r < 2R,

where ε1 denotes the constant from Lemma 6.3. By Campanato’s integral char-
acterization of Hölder continuity we deduce u ∈ C1,α(BR(x0);R

N ). In particular,

this gives BR(x0) ⊂ Ω0. Thus, Ω0 is open and we have u ∈ C
1,α
loc (Ω0;R

N ). �

Remark 7.1. Decreasing R if necessary we may assume that R1−α ≤ ̺1+α
0 holds.

Then, the Hölder constant of Du on BR(x0) can be bounded by the expression

c[ε1 + 1], which depends only on n, N , p, λ, Λ, L, M , α, and ν. Note that this

expression depends on x0 through M .

Appendix A. Proof of Lemma 1.3

We fix arbitrary x1, x2 ∈ Ω, y1, y2 ∈ R
N , and z ∈ R

Nn. Moreover, we consider a
ξ in R

Nn with

|ξ| ≤ 1 + |z|. (A.1)

Then by elementary integration we have

f(x1, y1, z + ξ)− f(x1, y1, z)−Df(x1, y1, z) · ξ

=

∫ 1

0

∫ 1

0

D2f(x1, y1, z + stξ) ds t dt(ξ, ξ) =: R(x1, y1, z, ξ).

Clearly, the same equality holds with x1 and y1 replaced by x2 and y2. Using both
these equations we find
[

Df(x1, y1, z)−Df(x2, y2, z)
]

· ξ =
[

f(x1, y1, z + ξ)− f(x2, y2, z + ξ)
]

+
[

f(x2, y2, z)− f(x1, y1, z)
]

+
[

R(x2, y2, z, ξ)−R(x1, y1, z, ξ)
]

=: (I) + (II) + (III).

Now, from (1.10) and (A.1) we have

(I) + (II) ≤ c(1 + |z|)pωτ (|x1 − x2|+ |y1 − y2|)
and from (1.3) and (A.1) we deduce the estimate

(III) ≤ c(1 + |z|+ |ξ|)p−2|ξ|2.
Collecting the estimates we get

[

Df(x1, y1, z)−Df(x2, y2, z)
]

· ξ
≤ c(1 + |z|)pωτ (|x1 − x2|+ |y1 − y2|) + (1 + |z|)p−2|ξ|2 (A.2)
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Finally, we fix ξ ∈ R
Nn such that we have

|ξ| = (1 + |z|)
√

ωτ (|x1 − x2|+ |y1 − y2|),
[

Df(x1, y1, z)−Df(x2, y2, z)
]

· ξ =
∣

∣Df(x1, y1, z)−Df(x2, y2, z)
∣

∣ |ξ|.
In particular, recalling ωτ ≤ 1 we note that this choice of ξ is compatible with
(A.1). Now (A.2) reads

∣

∣Df(x1, y1, z)−Df(x2, y2, z)
∣

∣ ≤ c(1 + |z|)p−1
√

ωτ (|x1 − x2|+ |y1 − y2|).
Clearly, we have

√
ωτ = ω τ

2
. Thus, we have proved (1.7) with β = τ

2 . �
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