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Abstract

We consider multidimensional variational integrals for vector-valued
functions u : R

n ⊃ Ω → R
N . Assuming that the integrand satisfies

the standard smoothness, convexity and growth assumptions only near

∞ we investigate the partial regularity of minimizers (and generalized
minimizers) u: Introducing the open set

R(u) := {x ∈ Ω : u is Lipschitz near x},

we prove that R(u) is dense in Ω, but demonstrate for n ≥ 3 by an example
that Ω \ R(u) may have positive measure. In contrast, for n = 2 one has
R(u) = Ω.

Additionally, we establish analogous results for weak solutions of quasi-
linear elliptic systems.
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1 Introduction

Throughout this paper we fix n ≥ 2, N ≥ 1, p ≥ 2 and a nonempty bounded
open subset Ω of Rn. We study the minimization problem for variational inte-
grals

F [u] :=

∫

Ω
f(Du) dx for u : Ω → R

N , (1.1)

where f : RNn → R is a given integrand of the argument z ∈ R
Nn.

We say that f is regular iff it satisfies a set of standard smoothness, con-
vexity and growth assumptions (see Definition 2.1 below). If f is a regular
C∞-integrand, then there is a well-developed existence and regularity theory
for the minimization problem: Precisely, minimizers u of F exist in the Soboev
space W 1,p(Ω,RN ) and are C∞ outside a negligible set S; see [Mo, GMi, GG,
E, FH, GMo1, AF, AG, H, DG, DGG, DK, KM1, FM]. The smallest such S
is called the singular set and need — by famous examples [N, HLN, SY1, SY2]
— not be empty, except for n = 2 [Mo, KM1] or N = 1 [GG, GMo2, Ma].

Here, we restrict our considerations to proving local Lipschitz continuity
of minimizers u of F . In this regard it is heuristically plausible that only the
behavior of f for large values of the gradient variable z should be relevant.
Indeed, it was pointed out by Chipot & Evans [CE] that this heuristic idea
can be made precise in some particular situations. Moreover, various related
results (see for instance [GMo2, MMS, Ra, Fu, FL, Fo, FPV2]) have by now
been established and we refer the reader to the first part [SS] of this work for an
extensive discussion of such issues and further references. However, we stress
that all these papers are concerned with particular situations where — for some
reason — everywhere regularity is available.

In the present paper we focus on the general case, where only partial reg-
ularity can be expected. In fact, without imposing any additional structure
condition we will merely require that f is locally bounded and asymptotically
regular, i.e. regular for large values of z (see Definition 2.2 for a precise state-
ment). Introducing the open set

R(u) := {x ∈ Ω : u is Lipschitz near x}, (1.2)

it would then be natural to expect that S(u) := Ω\R(u) is negligible. However,
we demonstrate that the situation is not that simple: We prove that the regular
set R(u) is always dense in Ω, but give for n ≥ 3 and N = 1

2n(n+1)−1 an
example of a minimizer u such that the singular set S(u) has positive measure.
Additionally, we obtain R(u) = Ω in the cases n = 2 and N = 1.

2 Statements

In order to state our results, we will now specify our assumptions on the in-
tegrand in (1.1), introducing the classes of regular and asymptotically regular
integrands. We stress that our notion of an asymptotically regular integrand
in the present paper differs from the one in [SS], and is in fact considerably
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stronger; see [FPV1, SS] and Section 4 for further information about notions of
asymptotic regularity and their relation.

Definition 2.1 (Regularity). Let m ∈ N. We say that f : Rm → R is regular
iff it is C2 and satisfies the following convexity and growth conditions:

D2f(z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2,
|D2f(z)| ≤ Γ(1 + |z|)p−2

for all z, ξ ∈ R
m, and for some positive constants γ and Γ.

Definition 2.2 (Asymptotic regularity). We say that f : Rm → R is asymp-

totically regular iff for some positive constants M , γ and Γ the function f is
C2 outside BM and satisfies, for all z, ξ ∈ R

m with |z| > M , the conditions

D2f(z)(ξ, ξ) ≥ γ|z|p−2|ξ|2,
|D2f(z)| ≤ Γ|z|p−2.

In the following, we will additionally assume that f is locally bounded, i.e.
there is some nondecreasing function Υ : [0,∞) → [0,∞) with

|f(z)| ≤ Υ(|z|) for all z ∈ R
Nn.

With this terminology we may now state our first main result:

Theorem 2.3 (Partial Lipschitz regularity for minimizers). We consider a lo-
cally bounded Borel integrand f : RNn → R and assume that f is asymptotically
regular. Then there exists a constant L, depending only on the data n, N , p, γ,
Γ, Υ and M , such that for every minimizer u ∈W 1,p(Ω,RN ) of F from (1.1),
the domain Ω can be decomposed into three disjoint sets H, BL and Σ such that

• H is an open set with u ∈ C1,α
loc (H,R

N ) for every α ∈ (0, 1);

• every x ∈ BL is a Lebesgue point of Du with |Du(x)| ≤ L;

• Σ is a negligible set.

In particular, H and the interior of BL are contained in the regular set R(u),
defined in (1.2), and thus R(u) is dense in Ω.

Remark 2.4. The above result does not imply that the singular set S(u) is
negligible. In fact, it may happen that S(u) ∩ ∂BL has positive measure. We
will give an example of a minimizer with this behavior below; see Theorem 2.6.

The reader should note that asymptotic regularity in combination with the
requirement that f is locally bounded implies

c|z|p − C ≤ f(z) ≤ C(1 + |z|p) for all z ∈ R
Nn, (2.1)

which, in turn, ensures that the integral (1.1) is well-defined and finite on
W 1,p(Ω,RN ).
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We stress that, in contrast to regularity, asymptotic regularity does not
allow to prove the existence of minimizers. Thus, it is desirable to find an
appropriate class of generalized minimizers and to extend the above regularity
result to this class. Here, we deal with relaxed minimizers in the sense of [SS,
Section 2.1.5] and establish the following generalization of Theorem 2.3:

Theorem 2.5 (Partial Lipschitz regularity for relaxed minimizers). The con-
clusion of Theorem 2.3 still holds if u is only a relaxed minimizer of F (instead
of being a minimizer).

The question arises if the above assertion that R(u) is dense — or equiva-
lently that S(u) is nowhere dense — can be improved. As mentioned above, in
the case of regular integrands the singular set is negligible, and in fact even its
Hausdorff dimension can be bounded away from n [G1, Mi, KM1]. However,
our next result shows that such assertions do not carry over to asymptotically
regular problems:

Theorem 2.6 (A singular set of positive measure). For every n ≥ 3 and
N = 1

2n(n+1)−1, there exist a smooth integrand f : RNn → R and a function
u ∈W 1,2(Ω,RN ) such that the following holds:

• f is asymptotically regular in the sense of Definition 2.2 with p = 2;

• u is a minimizer of F from (1.1);

• S(u) has positive measure.

Next, we consider quasilinear elliptic systems

div a(Du) = 0 on Ω. (2.2)

In the following, we will employ notions of regularity and asymptotic regularity
for the structure function a : RNn → R

Nn analogous to the Definitions 2.1
and 2.2. In particular, we say that a is asymptotically regular iff there are
positive constants M , γ and Γ such that a is C1 outside BM and satisfies

Da(z)ξ · ξ ≥ γ|z|p−2|ξ|2,
|Da(z)| ≤ Γ|z|p−2

for |z| > M and ξ ∈ R
Nn. With these notations we state our main result for

systems:

Theorem 2.7 (Partial Lipschitz regularity for weak solutions). We consider
a locally bounded Borel function a : R

Nn → R
Nn and we assume that a is

asymptotically regular. Then the conclusion of Theorem 2.3 holds for every
weak solution u ∈W 1,p(Ω,RN ) of (2.2).

In the situation of Theorem 2.7, the singular set S(u) will, in general, not
be negligible either. Indeed, this assertion is an immediate consequence of
Theorem 2.6 since u solves divDf(Du) = 0.

Additionally, in the cases n = 2 and N = 1 we can improve the above results
obtaining everywhere regularity (compare [FL]):
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Theorem 2.8 (Two-dimensional problems). Let n = 2. We suppose that u is
either a relaxed minimizer of F from (1.1) under the assumptions of Theorem
2.3 or a weak solution of (2.2) under the assumptions of Theorem 2.7. Then
we have R(u) = Ω.

We stress that Theorem 2.8, apart from its intrinsic interest, has some
applications in the theory of quasiconvex integrals; see the discussion in [KM2,
Section 6.1]

Before stating the result for N = 1, let us specify an additional technical
assumption, which we will need for p > 2, but not for p = 2. For the function
A := D2f or A := Da, respectively, we require the following uniform continuity
condition:

|A(z2)−A(z1)| ≤ (|z1|+ |z2|)p−2ν
(
|z2 − z1|2

)
(2.3)

for all z1, z2 ∈ R
n with |z1| > M and |z2| > M and for some modulus of

continuity ν (i.e. a continuous function ν : [0,∞) → [0,∞) with ν(0) = 0).

Theorem 2.9 (Scalar problems). Let N = 1. We suppose that u is either a
relaxed minimizer of F from (1.1) under the assumptions of Theorem 2.3 or a
weak solution of (2.2) under the assumptions of Theorem 2.7. Additionally, in
the case p > 2 we assume that (2.3) holds. Then we have R(u) = Ω.

Finally, let us briefly outline the plan of the paper and the proofs. Having
collected some preliminaries in Section 3, we devote the next sections to the
proofs of the regularity theorems Theorem 2.3 and Theorem 2.7. We start
taking a closer look at the notion of asymptotic regularity in Section 4. In fact,
we prove that f is asymptotically regular if and only if it coincides with a regular
integrand for large values of z. This gives us a regular comparison problem. In
Section 5 we consider a solution v of this regular problem and establish certain
comparison estimates showing that u−v is, in some sense, small. The derivation
of these estimates is inspired by ideas in [CE, GMo2, Fu]. In Section 6 we then
carry over some partial regularity from v to u, thus completing the proofs of
Theorem 2.3 and Theorem 2.7. Additionally, we derive Theorem 2.5, as a
consequence of Theorem 2.3 and Section 4. In Section 7, following essentially
the same strategy we establish Theorem 2.8 and Theorem 2.9.

Section 8 is devoted to irregularity, specifically to the counterexample in
Theorem 2.6. Our starting point here is a recent interesting example of Sverak
& Yan [SY2]. They constructed a minimizer of a regular integral which is not
Lipschitz at an isolated singularity. The basic idea of our example is now to
construct u by placing rescaled copies of their minimizer on certain balls, with
the singularities in the centers. In fact, using a Cantor type construction we
may arrange the balls in such a way that the closure of the set of their centers
has positive measure. Then we complete the proof of Theorem 2.6 by observing
that S(u) coincides with this set and defining an integral which is minimized
by u. Here, in order to see that u is actually a minimizer — and not merely a
solution of some system — we need to revisit some of the more technical details
of [SY2].
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3 Preliminaries

Notation.

Constants. We use the notations c and C for positive constants, possibly vary-
ing from line to line. The dependences of such constants will only occasionally
be highlighted. Anyway, we widely follow the convention that large constants
will be denoted by capital letters, and small constants by lowercase letters.

Closure and boundary. We write A for the closure and ∂A for the bound-
ary of a set A.

Balls. By Br(x) we denote the open ball in R
n with center x ∈ R

n and radius
r > 0. Here, the center will be omitted if it is 0. Similarly, we write Br(x) and
Br for closed balls.

Mean values. We use the common notations fA and −
∫
A f dx for the mean value

1
|A|

∫
A f dx of f on A, where |A| is the Lebesgue measure of A. In particular, in

the case of balls we abbreviate fx,r := fBr(x) and fr := f0,r.

Function spaces. As usual we write Lp, W k,p and Ck,α for Lebesgue, Sobolev
and Hölder spaces, respectively. In addition we write Lp

loc, W
k,p
loc and Ck,α

loc for
the localized variants of these spaces.

The (nondegenerate) p-energy. We set

ep(z) :=
1

p
(1 + |z|2) p

2 . (3.1)

The functions ψ and V . For z ∈ R
Nn we let

ψ(z) := |z|2 + |z|p and V (z) := (1 + |z|2) p−2
4 z. (3.2)

Some inequalities.

In the following we state some inequalities for z0, z, ξ ∈ R
Nn, where all the

constants depend only on p. First, computing

D2ep(z)(ξ, ξ) = (1 + |z|2) p−2
2 |ξ|2 + (p− 2)(1 + |z|2) p−4

2 (z · ξ)2

we find the following estimates for the p-energy

2
2−p
2 (1 + |z|)p−2|ξ|2 ≤ D2ep(z)(ξ, ξ) ≤ (p − 1)(1 + |z|)p−2|ξ|2. (3.3)

In addition, we recall the standard inequality (see for instance [GMo1, Lemma
2.1]) ∫ 1

0
(1 + |z0 + s(z − z0)|)p−2 ds ≥ c(1 + |z0|+ |z|)p−2. (3.4)
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By change of variables we deduce the following variant:

∫ 1

1
2

(1 + |z0 + s(z − z0)|)p−2 ds ≥ c(1 + |z|)p−2.

Furthermore, employing the last two inequalities we derive

∫ 1

0

∫ 1

0
(1 + |z0 + t(z − z0) + st(ξ − z)|)p−2 ds t dt

≥ c

∫ 1

0
(1 + |z0 + t(z − z0)|+ |z0 + t(ξ − z0)|)p−2t dt

≥ c

[ ∫ 1

1
2

(1 + |z0 + t(z − z0)|)p−2 dt+

∫ 1

1
2

(1 + |z0 + t(ξ − z0)|)p−2 dt

]

≥ c
[
(1 + |z|)p−2 + (1 + |ξ|)p−2

]
≥ c(1 + |z|+ |ξ|)p−2.

(3.5)

Finally, we record the following inequalities for the function V from (3.2) (see
[GMo1, Lemma 2.2]):

c(1+|z0|+|z|)p−2|z−z0|2 ≤ |V (z)−V (z0)|2 ≤ C(1+|z0|+|z|)p−2|z−z0|2. (3.6)

In particular, we have

|z − z0|2 + |z − z0|p = ψ(z − z0) ≤ C|V (z)− V (z0)|2. (3.7)

4 Asymptotic regularity

In this section we prove that asymptotic regularity of an integrand f is in fact
equivalent with the existence of a regular g such that f(z) equals g(z) for large
values of z; see Corollary 4.3. This characterization of asymptotic regularity
will be crucial in the following sections since it enables us to work with a suitable
regular comparison problem. We also establish analogous results for structure
functions a in the case of systems; see Corollary 4.6.

Starting with a technical lemma we initially treat the case of integrands.

Lemma 4.1. We consider a function f : Rm → R that is bounded from below.
Moreover, we assume that there are positive constants γ and M such that f is
C2 outside BM with

D2f(z)(ξ, ξ) ≥ γ|z|p−2|ξ|2 for |z| > M and ξ ∈ R
m.

Then, there is a positive constant M̃ such that

f(z) = Cf(z) holds for |z| > M̃,

where Cf denotes the convex hull of f .
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Proof. We assume f ≥ 0 on R
m and recall the definition of the convex hull

Cf(z) := sup{h(z) : h is convex with h ≤ f on R
m}. (4.1)

Clearly, we have Cf(z) ≤ f(z). To prove the opposite inequality, we fix a large

constant M̃ with 1
2γ(M + 1)p−2(M̃ −M − 1)2 ≥ sup|ζ|=M+1 f(ζ). We claim

that for |z| > M̃ the affine function h(ξ) = f(z) +Df(z)(ξ − z) is admissible
in the definition of Cf(z). To see this we fix a point ξ ∈ R

m. If the line from ξ
to z does not intersect BM we clearly have f(z) +Df(z)(ξ − z) ≤ f(ξ) since f
is convex along this line. If the line intersects BM , we denote by ξ∗ the closest
point to z in the intersection of the line with BM+1. Recalling |z| > M̃ ≥M+1
and |ξ∗| =M + 1 we have

f(z) +Df(z)(ξ∗ − z)

= f(ξ∗)−
∫ 1

0

[
Df(z + t(ξ∗ − z))−Df(z)

]
dt (ξ∗ − z)

= f(ξ∗)−
∫ 1

0

∫ 1

0
D2f(z + st(ξ∗ − z)) ds t dt (ξ∗ − z, ξ∗ − z)

≤ f(ξ∗)− γ

∫ 1

0

∫ 1

0
|stξ∗ + (1− st)z|p−2 ds t dt |ξ∗ − z|2

≤ f(ξ∗)−
1

2
γ(M + 1)p−2|ξ∗ − z|2.

Keeping in mind |z| > M̃ , |ξ∗| =M + 1 and the choice of M̃ , we deduce

f(z) +Df(z)(ξ∗ − z) ≤ 0. (4.2)

In particular, (4.2) implies Df(z)(ξ∗ − z) ≤ 0 and noting ξ − ξ∗ = r(ξ∗ − z)
for some r > 0 we get Df(z)(ξ − ξ∗) ≤ 0. Combining this with (4.2) we finally
arrive at h(ξ) = f(z) +Df(z)(ξ − z) ≤ f(ξ) in any case. Thus, h is admissible

as claimed and Cf(z) ≥ f(z) for |z| > M̃ .

Theorem 4.2. For a function f : Rm → R the following statements are equiv-
alent:

(i) There are positive constants γ and M and a map g ∈ C2(Rm) such that

f(z) = g(z) for |z| > M

and

D2g(z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2 for all z, ξ ∈ R
m.

(ii) f is C2 outside a large ball and there are a positive constant γ and a map
g ∈ C2(Rm) such that

lim
|z|→∞

|D2f(z)−D2g(z)|
|z|p−2

= 0

and

D2g(z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2 for all z, ξ ∈ R
m.
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(iii) There are positive constants γ and M such that f is C2 outside BM and

D2f(z)(ξ, ξ) ≥ γ|z|p−2|ξ|2 holds for |z| > M and all ξ ∈ R
m.

Proof. Clearly, (i) implies (ii) and (ii) implies (iii).
Now we assume that f satisfies (iii) with constants γ and M . Clearly, we

may take M ≥ 1. It is not difficult to show that f is bounded from below on
R

m \BM+1. Since the above properties depend only on the values of f outside
large balls, we may assume that f is bounded from below on R

m. Letting

f̃(z) := f(z)− 21−p

p−1
γep(z)

and recalling (3.1) and (3.3) we have for |z| > M ≥ 1

D2f̃(z)(ξ, ξ) ≥ γ|z|p−2|ξ|2 − 21−pγ(1 + |z|)p−2|ξ|2 ≥ 1

2
γ|z|p−2|ξ|2.

Thus, for
f∗ := Cf̃,

Lemma 4.1 implies the existence of a constant M̃ > M with f∗(z) = f̃(z) for

|z| > M̃ . In particular, f∗ is C2 outside B
M̃

and we have

D2f∗(z)(ξ, ξ) = D2f̃(z)(ξ, ξ) ≥ 1

2
γ|z|p−2|ξ|2 for |z| > M̃. (4.3)

Mollifying f∗ with smoothing radius 0 < ε < 1 we obtain a C2-function f∗ε on
R

m. One checks that f∗ε is again convex and satisfies

D2f∗ε (z)(ξ, ξ) ≥
1

2
γ|z|p−2|ξ|2 for |z| ≥ M̃ + 1 > 2. (4.4)

We choose a cut-off function ϕ ∈ C∞(R, [0, 1]) with ϕ ≡ 1 on [0, M̃ + 1], ϕ ≡ 0

on [M̃ + 2,∞) and ‖ϕ‖C2 ≤ 8. Furthermore, we define a C2-function

g̃(z) := ϕ(|z|) f∗ε (z) + (1− ϕ(|z|)) f∗(z).
Then, we clearly have D2g̃(z)(ξ, ξ) ≥ 0 for |z| < M̃ + 1 and for |z| > M̃ + 2.

Moreover, we compute for M̃ + 1 ≤ |z| ≤ M̃ + 2

D2g̃(z)(ξ, ξ) ≥ ϕ(|z|)D2f∗ε (z)(ξ, ξ) + (1− ϕ(|z|))D2f∗(z)(ξ, ξ)

− C‖f∗ε − f∗‖C1(B
M̃+2

\B
M̃+1

)|ξ|2

≥
(
c− C‖f∗ε − f∗‖C1(B

M̃+2
\B

M̃+1
)

)
|ξ|2

by (4.3) and (4.4), where c and C are positive constants depending only on n,

N , p, γ and M̃ . Choosing ε > 0 small enough, the last expression is positive
and we conclude that g̃ is convex on R

m with g̃(z) = f̃(z) for |z| > M̃ + 2.
Finally, we define

g(z) := g̃(z) +
21−p

p−1
γep(z),

and deduce from (3.3) that g has the properties from (i) with constants 2
4−3p

2

p−1 γ

and M̃+2.
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As a special case of the preceding theorem we obtain the following charac-
terization of asymptotic regularity:

Corollary 4.3. A function f : Rm → R is asymptotically regular if and only if
there exist a constant M > 0 and a regular g : Rm → R such that f(z) = g(z)
holds for |z| > M .

We also record a slight refinement of Corollary 4.3, which will be convenient
later:

Lemma 4.4. Let f : Rm → R be locally bounded and asymptotically regular.
Then there exist a constant M > 0 and a regular g : Rm → R such that we
have f(z) = g(z) for |z| > M and additionally f(z) ≤ g(z) for all z ∈ R

m.

Proof. By Corollary 4.3 there are a constant M∗ and a regular g∗ (say with
constants γ and Γ) such that f(z) = g∗(z) for |z| > M∗. Next, let L :=
supBM∗

(f − g∗). If L ≤ 0 holds we are done. If L is positive we consider a
smooth and compactly supported cut-off function h : Rm → R with h ≡ L on
BM∗ and |D2h| ≤ γ

2 on R
m. Then g := g∗ + h has the claimed properties.

Next, using a quite different construction, we deal with the case of systems.

Theorem 4.5. For a : Rm → R
m with

lim sup
|z|→∞

|a(z)|
|z|p−1

<∞ (4.5)

the following statements are equivalent:

(i) There are positive constants γ and M and a map b ∈ C1(Rm,Rm) such
that

a(z) = b(z) for |z| > M

and

Db(z)ξ · ξ ≥ γ(1 + |z|)p−2|ξ|2 for all z, ξ ∈ R
m.

(ii) The function a is C1 outside a large ball and there are a positive constant
γ and a map b ∈ C1(Rm,Rm) such that

lim
|z|→∞

|Da(z)−Db(z)|
|z|p−2

= 0

and

Db(z)ξ · ξ ≥ γ(1 + |z|)p−2|ξ|2 for all z, ξ ∈ R
m.

(iii) There are positive constants γ and M such that a is C1 outside BM and

Da(z)ξ · ξ ≥ γ|z|p−2|ξ|2 holds for |z| > M and all ξ ∈ R
m.
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Proof. Clearly, (i) implies (ii) and (ii) implies (iii). Now we assume that a
satisfies (iii) with constants γ and M . In view of (4.5) — enlarging M if
necessary — we may assume

sup
|ζ|≥M

|a(ζ)|
|ζ|p−1

<∞.

For ε > 0 to be chosen later we consider a cut-off function ϕ̃ ∈ C∞(R, [0, 1])
with ϕ̃ ≡ 1 on (−∞, log(M)], ϕ̃ ≡ 0 on [log(M) + 1/ε,∞) and |ϕ̃′| ≤ 2ε on R.
Setting ϕ(t) := ϕ̃(log(t)) for t > 0 and ϕ(0) := 1 we have constructed a smooth
function ϕ : [0,∞) → [0, 1] with the following properties:

ϕ ≡ 1 on [0,M ],

ϕ ≡ 0 on [M exp(1/ε),∞),

ϕ′(t) ≤ 2ε

t
for all t > 0.

We define
b(z) := ϕ(|z|)Dep(z) + (1− ϕ(|z|))a(z),

where ep is defined in (3.1). The function b is in C1(Rm,Rm) and (3.3) gives

Db(z)ξ · ξ ≥ 2
2−p
2 (1 + |z|)p−2|ξ|2

for |z| < M . In addition, for |z| ≥M we have

Db(z)ξ · ξ = ϕ(|z|)D2ep(z)(ξ, ξ) + (1− ϕ(|z|))Da(z)ξ · ξ

+ ϕ′(|z|)(1 + |z|2) p−2
2

(z · ξ)2
|z| − ϕ′(|z|)(z · ξ)(a(z) · ξ)|z|

≥ c(1 + |z|)p−2|ξ|2 −Cε(1 + |z|)p−2

[
1 + sup

|ζ|≥M

|a(ζ)|
|ζ|p−1

]
|ξ|2

with positive constants c, C depending only on p, γ and M . Choosing ε small
enough we end up with

Db(z)ξ · ξ ≥ c(1 + |z|)p−2|ξ|2

for all z, ξ ∈ R
m. Thus, (i) holds.

Noting that asymptotic regularity of a implies (4.5) we deduce the following
characterization:

Corollary 4.6. A function a : RNn → R
Nn is asymptotically regular if and

only if there exist a constant M > 0 and a regular b : RNn → R
Nn such that

a(z) = b(z) holds for |z| > M .
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5 Comparison estimates

In this section we prove that solutions of the asymptotically regular problems
(1.1) and (2.2) can be approximated, close to infinity, by solutions of the regular
comparison problems (5.4) and (5.8). For the proofs we modify techniques of
[GMo2, Fu].

We start with an auxiliary result.

Lemma 5.1. Let u ∈ W 1,p(Ω,RN ) and let M > 0. Then there is a constant
KM > M , depending only on M and p, such that for K ≥ KM , the estimate

−
∫

Ω
|Du|p dx > Kp

implies

|{y ∈ Ω : |Du(y)| ≤M}| ≤ 2p

K

∫

Ω
|Du− (Du)Ω|p dx.

Proof. At first, observe that the assumption and Minkowski’s inequality yield

K <

(
−
∫

Ω
|Du|p dx

)1/p

≤
(
−
∫

Ω
|Du− (Du)Ω|p dx

)1/p

+ |(Du)Ω|. (5.1)

Now we chooseKM > M large enough so thatK ≥ KM impliesK−1(K−M)p ≥
1. From this and (5.1) we conclude for every y ∈ Ω with |Du(y)| ≤M

1 ≤ 1

K

[
K − |Du(y)|

]p

≤ 1

K

[(
−
∫

Ω
|Du− (Du)Ω|p dx

)1/p

+ |(Du)Ω| − |Du(y)|
]p

≤ 2p−1

K

[
−
∫

Ω
|Du− (Du)Ω|p dx+ |Du(y)− (Du)Ω|p

]
.

Integrating this inequality over the set {y ∈ Ω : |Du(y)| ≤ M}, we infer the
desired result

|{y ∈ Ω : |Du(y)| ≤M}| ≤ 2p

K

∫

Ω
|Du− (Du)Ω|p dx.

In view of Lemma 4.4 we impose the following hypotheses:

Assumption 5.2. f : R
Nn → R is a locally bounded Borel integrand and

g : RNn → R is regular. Moreover, we have f(z) = g(z) whenever |z| is larger
than some constant M , and there holds f ≤ g on R

Nn.
To fix notations let us record that these assumptions imply, in particular,

D2g(z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2, (5.2)

|D2g(z)| ≤ Γ(1 + |z|)p−2,

0 ≤ g(z)− f(z) ≤ Γ1 (5.3)

for all z, ξ ∈ R
Nn with positive constants γ, Γ and Γ1.

12



In this setting we may now introduce, for some ball BR(x0) ⊂ Ω, the regular
comparison problem

G[v] :=

∫

BR(x0)
g(Dv) dx. (5.4)

After these preparations we will now derive the comparison estimates for
the case of integrals.

Lemma 5.3. Let f and g be as in Assumption 5.2. Then for any ε > 0
there is a K(ε) > M with the following property: For every minimizer u ∈
W 1,p(Ω,RN ) of F from (1.1), every ball BR(x0) ⊂ Ω and every minimizer
v ∈ u+W 1,p

0 (BR(x0),R
N ) of G from (5.4), there holds either

−
∫

BR(x0)
|Du|p dx ≤ Kp(ε)

or

−
∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx ≤ ε−

∫

BR(x0)
|Du− (Du)x0,R|p dx.

Here, the constant K(ε) depends only on the data p, γ, Γ1, M and on ε.

Proof. In this proof, we use the notation {|Du| ≤M} for the set {y ∈ BR(x0) :
|Du(y)| ≤ M}. Setting w := 1

2 (u + v) we use the minimizing properties of u
and v together with the hypotheses from Assumption 5.2 to derive

∫

BR(x0)
g(Dv) + g(Du) − 2g(Dw) dx ≤

∫

BR(x0)
g(Du)− g(Dw) dx

≤
∫

BR(x0)
g(Du)− f(Dw) dx

≤
∫

{|Du|≤M}
g(Du) − f(Du) dx.

The left-hand side can be estimated by the inequalities (5.2) and (3.5):

g(Dv) + g(Du)− 2g(Dw)

=
1

2

∫ 1

0

[
Dg(Dw + t(Dv−Dw)) −Dg(Dw + t(Du−Dw))

]
dt (Dv−Du)

=
1

2

∫ 1

0

∫ 1

0
D2g(Dw+t(Du−Dw)+st(Dv−Du)) ds t dt (Dv−Du,Dv−Du)

≥ γ

2

∫ 1

0

∫ 1

0
(1 + |Dw + t(Du−Dw) + st(Dv−Du)|)p−2 ds t dt |Du−Dv|2

≥ cγ(1 + |Du|+ |Dv|)p−2|Du−Dv|2

for some positive constant c, depending only on p. Combining the last two
estimates and recalling (5.3), we arrive at

cγ

∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx ≤ Γ1|{|Du| ≤M}|.
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Now by Lemma 5.1, for any K ≥ KM the condition

−
∫

BR(x0)
|Du|p dx > Kp

implies
∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx ≤ 2pΓ1

cγK

∫

BR(x0)
|Du− (Du)x0,R|p dx.

We have thus proven the lemma if we let K(ε) := max
{
2pΓ1
cγε ,KM

}
.

Next, keeping Corollary 4.6 in mind, we proceed similarly in the case of
systems.

Assumption 5.4. a : RNn → R
Nn is a locally bounded Borel function and

b : RNn → R
Nn is regular. Moreover, we have a(z) = b(z) whenever |z| is

larger than some constant M . In particular, these assumptions imply

Db(z)ξ · ξ ≥ γ(1 + |z|)p−2|ξ|2, (5.5)

|Db(z)| ≤ Γ(1 + |z|)p−2, (5.6)

|b(z)− a(z)| ≤ Γ1 (5.7)

for all z, ξ ∈ R
Nn with positive constants γ, Γ and Γ1.

Here, introducing the regular system

div b(Dv) = 0 on BR(x0), (5.8)

the comparison estimate reads:

Lemma 5.5. Let a and b be as in Assumption 5.4. Then for any ε > 0
there exists a constant K(ε) > M with the following property: For every weak
solution u ∈ W 1,p(Ω,RN ) of (2.2), every ball BR(x0) ⊂ Ω and every weak
solution v ∈ u+W 1,p

0 (BR(x0),R
N ) of (5.8), there holds either

−
∫

BR(x0)
|Du|p dx ≤ Kp(ε)

or

−
∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx ≤ ε−

∫

BR(x0)
|Du− (Du)x0,R|p dx.

Here, the constant K(ε) depends only on the data p, γ,Γ1,M and on ε.

Proof. At first, using (5.5) and (3.4) we derive the pointwise estimate

b(Du) · (Du−Dv)− b(Dv) · (Du−Dv)

=

∫ 1

0
Db(Dv + t(Du−Dv)) dt (Du−Dv,Du−Dv)

≥ γ

∫ 1

0
(1 + |Dv + t(Du−Dv)|)p−2 dt |Du−Dv|2

≥ cγ(1 + |Du|+ |Dv|)p−2|Du−Dv|2.
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Since we have u − v ∈ W 1,p
0 (BR(x0),R

N ), this function is an admissible test
function in the weak formulation of (5.8) and (2.2). Therefore, integrating the
above inequality yields

cγ

∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx

≤
∫

BR(x0)
b(Du) · (Du−Dv) dx

=

∫

BR(x0)
(b(Du)− a(Du)) · (Du−Dv) dx

≤ Γ1

∫

{|Du|≤M}
|Du−Dv| dx.

Here, we used the bound (5.7) in the last step. Applying the Hölder inequality
we arrive at
∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx

≤ Γ1

cγ
|{|Du| ≤M}|1−

1
p

(∫

BR(x0)
|Du−Dv|p dx

) 1
p

≤ Γ1

cγ
|{|Du| ≤M}|1−

1
p

(∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx

) 1
p

.

The last estimate implies

∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx ≤

(
Γ1

cγ

) p
p−1

|{|Du| ≤M}|. (5.9)

Now if we assume that for some K ≥ KM there holds

−
∫

BR(x0)
|Du|p dx > Kp

then the estimate (5.9) implies by Lemma 5.1

∫

BR(x0)
(1 + |Du|+ |Dv|)p−2|Du−Dv|2 dx

≤
(
Γ1

cγ

) p
p−1 2p

K

∫

BR(x0)
|Du− (Du)x0,R|p dx.

Thus, choosing K(ε) := max
{(

Γ1
cγ

) p
p−1 2p

ε ,KM

}
we have established the claim

of the lemma.
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6 Partial regularity

6.1 Regular problems

We start with introducing the excess

Ψv(y, r) := −
∫

Br(y)
ψ
(
Dv − (Dv)y,r

)
dx (6.1)

where ψ is defined in (3.2), and recall the following ε-regularity result for regular
problems.

Theorem 6.1. Let a regular structure function b ∈ C1(RNn,RNn) be given,
that is the properties (5.5) and (5.6) are satisfied. Then there is a constant C0,
depending only on n,N and Γ

γ , such that the following holds. For all T > 0
and τ ∈ (0, 1) there exists a positive constant κ0, depending on n,N, p, T, τ
and b, such that for any ball BR(x0) ⊂ R

n and every weak solution v ∈
W 1,p(BR(x0),R

N ) of the regular system (5.8), the conditions

Ψv(x0, R) ≤ κ20 and |(Dv)x0,R| ≤ T

imply
Ψv(x0, τR) ≤ C0τ

2Ψv(x0, R).

The theorem follows from techniques in [H], where a more general case was
considered; compare with [E, DG, DGG] and [G2, Chapter 9] for the case of
integrals. Since the dependences of the constants as stated in the theorem
are crucial for our proofs, we repeat the relevant arguments from [H] for the
convenience of the reader.

Sketch of proof. We claim that the theorem holds with the constant C0 := C1+
1, where C1 = C1(n,N,

Γ
γ ) > 0 is the corresponding constant for linear systems

with constant coefficients, determined by (6.9). Assume that the theorem does
not hold with C0, some parameters τ ∈ (0, 1), T > 0 and a structure function
b. Then there exist sequences of radii rm > 0, of centers xm ∈ R

n and of weak
solutions vm ∈W 1,p(Brm(xm),RN ) of

div b(Dvm) = 0

with

λ2m := Ψvm(xm, rm) −→
m→∞

0 and |(Dvm)xm,rm | ≤ T for all m ∈ N, (6.2)

but
Ψvm(xm, τrm) > C0τ

2λ2m for all m ∈ N. (6.3)

We rescale the solutions vm as follows. With

v̄m := (vm)xm,rm and Pm := (Dvm)xm,rm ,

we let

wm(x) :=
vm(xm + rmx)− v̄m − rmPmx

rmλm
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for all m ∈ N and x ∈ B1. The definition implies in particular

Dwm(x) =
Dvm(xm + rmx)− Pm

λm
,

(wm)0,1 = 0 and (Dwm)0,1 = 0.

Thus, the conditions (6.2) and (6.3) become

−
∫

B1

(
|Dwm|2 + λp−2

m |Dwm|p
)
dx = 1, but (6.4)

−
∫

Bτ

(
|Dwm − (Dwm)0,τ |2 + λp−2

m |Dwm − (Dwm)0,τ |p
)
dx > C0τ

2. (6.5)

From (6.4) we infer, possibly after extracting a subsequence, that there is a limit
map w ∈ W 1,2(B1, R

N ) with wm ⇀ w weakly in W 1,2(B1,R
N ) and wm → w

strongly in L2(B1,R
N ) as m→ ∞. Furthermore, since supm |Pm| ≤ T , we may

assume Pm → P0 as m → ∞ for some P0 ∈ R
Nn. As in [H, Sect. 4], one can

show furthermore

Dwm → Dw strongly in L2
loc(B1,R

N ) and (6.6)

λ(p−2)/p
m Dwm → 0 strongly in Lp

loc(B1,R
N ) in the case p > 2. (6.7)

Moreover, the reasoning of [H, Sect. 3] implies

div (Db(P0)Dw) ≡ 0 on B1. (6.8)

Here, the hypotheses on b imply the following properties of the constant struc-
ture function Db(P0).

|Db(P0)| ≤ Γ(1 + |P0|)p−2 and

Db(P0)ξ · ξ ≥ γ(1 + |P0|)p−2 for all ξ ∈ R
Nn.

This implies that the dispersion ratio of the linear system (6.8) is bounded by
Γ
γ . We can thus apply linear theory (compare [G], Theorem III.2.1 and Remarks
III.2.2, III.2.3) with the result

−
∫

Bτ

|Dw − (Dw)0,τ |2 dx ≤ C1τ
2−
∫

B1

|Dw − (Dw)0,1|2 dx < C0τ
2 (6.9)

for a constant C1 depending only on n, N and the dispersion ratio of Db(P0),
that is on Γ

γ . The fact that C1 does not depend on |P0| can alternatively be
checked by a scaling argument. By the strong convergence (6.6) and (6.7), the
decay estimate (6.9) clearly contradicts the assumption (6.5). This completes
the proof.

Remark 6.2. In particular, taking into account the Euler equation, the con-
clusion of Theorem 6.1 holds for minimizers v of regular integrals.
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6.2 Asymptotically regular problems

This subsection is devoted to the proofs of Theorem 2.3 and Theorem 2.7.
Throughout this section, we suppose that the Assumptions 5.2 and 5.4 are
satisfied.

Theorem 6.3. There is a constant L = L(n,N, p, γ,Γ,Γ1,M) such that the
following holds. Let u ∈W 1,p(Ω,RN ) be either a minimizer of the functional F
from (1.1) or a weak solution of (2.2). Then, in every Lebesgue point x0 ∈ Ω
of Du with

lim inf
rց0

−
∫

Br(x0)
|Du− (Du)x0,r|p dx = 0, (6.10)

there holds either |Du(x0)| ≤ L, or there is a neighborhood U of x0 with u ∈
C1,α(U,RN ) for every α ∈ (0, 1).

Remark 6.4. We point out that the size of the neighborhood U and the C1,α-
norm of u may not be controlled by the data.

The proof is based on the following decay estimate near infinity for the
excess Ψu defined in (6.1).

Lemma 6.5. For every α ∈ (0, 1) there are constants τ ∈ (0, 1), and K0, and
for every T > 0 there is a constant κT ∈ (0, 1), such that the following holds.
Every minimizer u ∈W 1,p(Ω,RN ) of F and every solution u ∈W 1,p(Ω,RN ) of
(2.2) with

Ψu(x0, R) ≤ κ2T and K0 < −
∫

BR(x0)
|Du| dx ≤ T

for some ball BR(x0) ⊂ Ω satisfies

Ψu(x0, τR) ≤ τ2αΨu(x0, R).

Here, the dependences are given by τ(n,N, p, Γγ , α), K0(n,N, p, γ,Γ,Γ1,M,α)

and κT (T, n,N, p,
Γ
γ , α, b rsp. g).

Proof. For a given α ∈ (0, 1), we fix constants τ ∈ (0, 1) and ε ∈ (0, 12) small
enough to ensure

16pC0τ
2 ≤ τ2α and 4pε ≤ 1

2
τn+2α, (6.11)

with the constant C0 = C0

(
n,N, Γγ

)
from Theorem 6.1. Accordingly, the above

choices depend only on n,N, p, Γγ and α. With these choices of ε and τ and
a given constant T > 0, we claim that Lemma 6.5 holds with K0 := K(ε)
and κT := 4−p/2κ0, where the constants K(ε) and κ0 are given by Lemma 5.3,
Lemma 5.5 and Theorem 6.1, repectively.
In the case of minimizers, we employ the direct method to choose the compar-
ison map v ∈ W 1,p(BR(x0),R

N ) as the minimizer of the regular functional G
from (5.4) in the Dirichlet class u +W 1,p

0 (BR(x0),R
N ). Similarly, in the case
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of systems, we choose a solution v ∈ u+W 1,p
0 (BR(x0),R

N ) of the regular sys-
tem (5.8). Since b is regular, such a solution can be constructed by Galerkin’s
method; see e.g. [Z, Chapter 26]. Note that by assumption,

(
−
∫

BR(x0)

∣∣Du|p dx
)1/p

≥ −
∫

BR(x0)
|Du| dx > K0.

By the choice ofK0, we may thus apply Lemma 5.3 and Lemma 5.5, respectively,
deducing

−
∫

BR(x0)
ψ(Du−Dv) dx ≤ 2ε−

∫

BR(x0)
ψ
(
Du− (Du)x0,R

)
dx. (6.12)

Combining this with the assumptions on u, we infer

Ψv(x0, R) = −
∫

BR(x0)
ψ
(
Dv − (Dv)x0,R

)
dx

≤ 2p−
∫

BR(x0)
ψ(Dv − (Du)x0,R) dx

≤ 22p−1−
∫

BR(x0)
ψ
(
Du− (Du)x0,R

)
dx+ 22p−1−

∫

BR(x0)
ψ(Du−Dv) dx

≤ 22p−1(1 + 2ε) −
∫

BR(x0)
ψ
(
Du− (Du)x0,R

)
dx

≤ 4p Ψu(x0, R) ≤ 4pκ2T ≤ κ20 (6.13)

by the choice of κT . Keeping in mind that

−
∫

BR(x0)
|Du| dx ≤ T,

Theorem 6.1 and Remark 6.2 yield the following excess estimate for the com-
parison map v.

−
∫

BτR(x0)
ψ
(
Dv − (Dv)x0,τR

)
dx ≤ C0τ

2−
∫

BR(x0)
ψ
(
Dv − (Dv)x0,R

)
dx

for the value of τ chosen above and a constant C0 = C0

(
n,N, Γγ

)
. This implies

Ψu(x0, τR)

≤ 2p−
∫

BτR(x0)
ψ
(
Du− (Dv)x0,τR

)
dx

≤ 22p−1−
∫

BτR(x0)
ψ
(
Dv − (Dv)x0,τR

)
dx+ 22p−1−

∫

BτR(x0)
ψ(Du−Dv) dx

≤ 22p−1C0τ
2−
∫

BR(x0)
ψ
(
Dv − (Dv)x0,R

)
dx+ 22p−1τ−n−

∫

BR(x0)
ψ(Du−Dv) dx

≤
(
24p−1C0τ

2 + 22pετ−n
)
Ψu(x0, R)

≤ τ2αΨu(x0, R),

where we first employed (6.13) and (6.12), and then the choice of τ and ε
according to (6.11).
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Proof of Theorem 6.3. We may fix an arbitrary α ∈ (0, 1), for simplicity we
let α := 1

2 . This choice determines the constants K0 and τ from the preceding
lemma. Next we let L := K0+2, which depends only on n,N, p, γ,Γ,Γ1 andM ,
and fix a Lebesgue point x0 ∈ Ω with (6.10). For the value T := |Du(x0)|+ 3,
we choose the constant κT according to the preceding lemma and let ε0 :=
1
2τ

n(1 − √
τ)κT < 1

2κT . We start by choosing a good radius. In the first step,
we let

R1 := inf

{
r ∈ (0,dist(x0, ∂Ω)) :

∣∣∣∣∣−
∫

Br(x0)
Dudx

∣∣∣∣∣ ≤ K0 + 2

}
,

which is to be interpreted as R1 := dist(x0, ∂Ω) if the above set is empty. If
R1 = 0, we deduce |Du(x0)| ≤ K0 +2 = L, since x0 is a Lebesgue point. Thus,
in this case the first alternative of the theorem holds. Now we consider the
remaining case R1 > 0. We choose R0 ∈ (0, R1] small enough that

−
∫

BR0
(x0)

ψ
(
Du− (Du)x0,R0

)
dx < ε20 and −

∫

BR0
(x0)

|Du| dx ≤ T − 2.

Note that by the choice of R1 and 0 < R0 ≤ R1, we have furthermore

−
∫

BR0
(x0)

|Du| dx ≥ |(Du)x0,R0 | ≥ K0 + 2.

By the absolute continuity of the integral, we can choose a neighborhood U of
x0 in such a way that for all y ∈ U ,

Ψu(y,R0) = −
∫

BR0
(y)
ψ
(
Du− (Du)y,R0

)
dx ≤ 4ε20 < κ2T and

K0 + 1 ≤ |(Du)y,R0 | ≤ −
∫

BR0
(y)

|Du| dx ≤ T − 1.

Thus, we are in the situation of Lemma 6.5, which yields with the value of
τ ∈ (0, 1) fixed above and α = 1

2

Ψu(y, τR0) ≤ τ Ψu(y,R0) ≤ 4ε20 < κ2T .

Furthermore we estimate∣∣∣∣∣−
∫

BτR0
(y)
Dudx

∣∣∣∣∣ ≥ |(Du)y,R0 | − −
∫

BτR0
(y)

|Du− (Du)y,R0 | dx

≥ K0 + 1− τ−n

(
−
∫

BR0
(y)
ψ
(
Du− (Du)y,R0

)
dx

)1/2

≥ K0 + 1− 2ε0
τn

≥ K0 + 1− κT > K0,

where we used the Cauchy-Schwarz inequality in the second estimate. Similarly,
we estimate the mean value from above.

−
∫

BτR0
(y)

|Du| dx ≤ |(Du)y,R0 |+−
∫

BτR0
(y)

|Du− (Du)y,R0 | dx

≤ T − 1 +
2ε0
τn

≤ T − 1 + κT ≤ T.
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Consequently, we can apply Lemma 6.5 again on the ball BτR0(y). In this
manner, we establish successively the following estimates on the balls with
radii rk := τkR0.

−
∫

Brk
(y)
ψ
(
Du− (Du)y,rk

)
dx ≤ 4τkε20 for k ∈ N (6.14)

and
∣∣∣∣∣−
∫

Brk
(y)
Dudx

∣∣∣∣∣ ≥ K0 + 1− 2ε0
τn

k−1∑

ℓ=0

τ ℓ/2 (6.15)

> K0 + 1− 2ε0
τn(1−√

τ)
= K0 + 1− κT > K0,

as well as

−
∫

Brk
(y)

|Du| dx ≤ T − 1 +
2ε0
τn

k−1∑

ℓ=0

τ ℓ/2

≤ T − 1 +
2ε0

τn(1−√
τ)

= T − 1 + κT ≤ T

for all k ∈ N. From the estimate (6.14) we infer that for every y ∈ U and
ρ ≤ R0,

−
∫

Bρ(y)
|Du− (Du)y,ρ|2 dx ≤ −

∫

Bρ(y)
ψ
(
Du− (Du)y,ρ

)
dx ≤ Cε20

ρ

R0

for some constant C > 0. This implies u ∈ C1,1/2(U,RN ) by Morrey’s lemma.
From (6.15) we infer furthermore |Du| > K0 > M on U , so that u is actually a
solution of the regular system

div Dg(Du) ≡ 0 rsp. div b(Du) ≡ 0 on U.

Classical regularity theory1 thus implies u ∈ C1,α(U,RN ) for every α ∈ (0, 1).
The proof is complete.

Proof of Theorems 2.3 and 2.7. By Lemma 4.4 and Corollary 4.6 we can as-
sume that the Assumptions 5.2 and 5.4 are satisfied, so that Theorem 6.3 is
applicable. For a map u ∈ W 1,p(Ω,RN ) as in the theorems to be proved, we
define Σ := Σ1 ∪ Σp, where Σ1 denotes the set of non-Lebesgue points of Du
and

Σp :=

{
x0 ∈ Ω : lim inf

rց0
−
∫

Br(x0)
|Du− (Du)x0,r|p dx > 0

}
.

This set satisfies |Σ| = 0, see e.g. [GMa, Theorem 6.13]. With the above choice
of Σ, Theorem 6.3 yields the claimed decomposition

Ω = Σ ∪BL ∪H,

where |Du| ≤ L on BL for the constant L determined in Theorem 6.3, and H
is open with u ∈ C1,α

loc (H,R
N ) for every α ∈ (0, 1).

1For instance one might use Theorem 6.1 combined with a standard iteration argument.
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Proof of Theorem 2.5. Let u ∈W 1,p(Ω,RN ) be a relaxed minimizer of F , that
is a minimizer of the functional

QF [u] :=

∫

Ω
Qf(Du) dx,

where f is a locally bounded Borel integrand that is asymptotically regular in
the sense of Definition 2.2 and Qf denotes its quasiconvex hull. From Lemma
4.1 we infer that Qf(z) = f(z) for |z| ≫ 1, so that Qf is itself asymptotically
regular. Theorem 2.5 is thus a special case of Theorem 2.3.

7 Everywhere regularity

In this section we turn our attention to the special cases n = 2 and N = 1, for
which we will prove everywhere regularity as stated in Theorem 2.8 and The-
orem 2.9. For this purpose, it is more convenient to choose a slightly different
excess than in the preceding section, namely

Φv(y, r) := −
∫

Br(y)
|V (Dv)− V (Dv)y,r|2 dx, (7.1)

where V is defined in (3.2). Here, we abbreviated V (Dv)y,r := [V (Dv)]y,r.
We start with excess estimates for the regular case.

Theorem 7.1 (Excess estimate for n = 2). Let n = 2. There is a number β > 0
such that every weak solution v ∈W 1,p(BR(x0),R

N ) of the regular system (5.8)
on a ball BR(x0) ⊂ R

2 satisfies

Φv(x0, ρ) ≤ C
( ρ
R

)2β
Φv(x0, R) (7.2)

for all ρ ∈ (0, R]. Here, the constants β and C depend only on p, γ and Γ.

This estimate is a consequence of V (Dv) ∈ W 1,2+κ
loc (BR(x0),R

N ) for some
κ > 0, which follows from Gehring’s higher integrability lemma; see [C, Theo-
rem 1.V]. For an elementary proof of Theorem 7.1 that avoids Gehring’s lemma,
we refer to [SS, Lemma 8.2].

Theorem 7.2 (Excess estimate for N = 1). Let N = 1. Theorem 7.1 holds
analogously — with constants depending additionally on n and for p > 2 also
on ν — for solutions v ∈ W 1,p(BR(x0)) of regular equations of the form (5.8),
if one assumes in the case p > 2 additionally the existence of a continuous
function ν : [0,∞) → [0,∞) with ν(0) = 0 and

|Db(z2)−Db(z1)| ≤ (1+ |z1|+ |z2|)p−2ν
(
|z2 − z1|2

)
for all z1, z2 ∈ R

n. (7.3)

Proof. We begin with the case p = 2. The estimate (7.2) holds trivially for ρ ∈
[R2 , R], so we need to consider only the case ρ < R

2 . By the difference quotient
method, one checks that the partial derivatives satisfy ∂kv ∈ W 1,2(BR/2(x0))
and solve the linear equation

∫

BR/2(x0)
Db(Dv)D∂kv ·Dϕdx = 0 for all ϕ ∈W 1,2

0 (BR/2(x0)),
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for any 1 ≤ k ≤ n. Since p = 2, the assumptions (5.5) and (5.6) imply that the
coefficients Db(Dv) are in L∞(BR/2(x0)) and are uniformly elliptic. Therefore,
the claim (7.2) is a consequence of the De Giorgi-Nash-Moser theorem, see e.g.
[GMa, Sect. 8.3] or [G2, Chapter 7.3].

In the case p > 2, under the additional assumption (7.3), the claim can be
established following the proof of [GMo2, Theorem 6.2].

Remark 7.3. As in Remark 6.2 we note that Theorem 7.1 and Theorem 7.2
hold analogously for minimizers v of regular integrals.

For asymptotically regular problems, we have the following excess estimate
close to infinity.

Lemma 7.4. Let n = 2 or N = 1. There is an exponent α > 0, depending only
on n, p, γ and Γ, and there are numbers τ ∈ (0, 1) and K0 > 0, depending addi-
tionally on Γ1 and M , with the following property. Let u ∈ W 1,p(BR(x0),R

N )
be a minimizer of F from (1.1) or a solution of (2.2) under the Assumptions
5.2 and 5.4, respectively. Additionally, in the case N = 1, p > 2 suppose that
(2.3) holds. Then we have either

Φu(x0, τR) ≤ τ2αΦu(x0, R) or −
∫

BR(x0)
|Du|p dx ≤ Kp

0 .

Once more, for N = 1, p > 2 all the constants depend additionally on ν.

Proof. As in the proof of Lemma 6.5, we choose the comparison map v ∈
u+W 1,p

0 (BR(x0),R
N ) as a minimizer of the regular functional G from (5.4) or

as a solution of the regular system (5.8), respectively. Since we have assumed
n = 2 or N = 1, Theorem 7.1, Theorem 7.22 and Remark 7.3 yield the following
decay estimate for the comparison map.

−
∫

BτR(x0)
|V (Dv)− V (Dv)x0,τR|2 dx ≤ Cτ2β−

∫

BR(x0)
|V (Dv)− V (Dv)x0,R|2 dx

(7.4)
for all τ ∈ (0, 1) and some constants β ∈ (0, 1) and C > 0, both depending only
on n, p, γ and Γ (and for N = 1, p > 2 on ν). For an ε ∈ (0, 1) to be fixed later,
we let K0 := K(ε) with the constant K(ε) from Lemma 5.3 or 5.5, respectively.
If the second alternative of the lemma does not hold with the constant K0, that
is if

−
∫

BR(x0)
|Du|p dx > Kp

0 ,

then we infer from Lemma 5.3 or 5.5, respectively, combined with the inequal-
ities (3.6) and (3.7), that

−
∫

BR(x0)
|V (Du)− V (Dv)|2 dx ≤ Cε−

∫

BR(x0)
|V (Du)− V (Du)x0,R|2 dx (7.5)

2In the case N = 1, p > 2 we additionally need to check that (7.3) holds. However,
enlarging ν if necessary this follows from (2.3) and the fact that Db and D2g, respectively,
are uniformly continuous on bounded sets.
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with a constant C depending only on p. Combining the excess estimate (7.4)
and (7.5), we arrive at

Φu(x0, τR)

≤ 2

[
−
∫

BτR(x0)
|V (Dv)− V (Dv)x0,τR|2 dx+−

∫

BτR(x0)
|V (Du)− V (Dv)|2 dx

]

≤ C

[
τ2β−
∫

BR(x0)
|V (Dv)− V (Dv)x0,R|2 dx+−

∫

BτR(x0)
|V (Du)− V (Dv)|2 dx

]

≤ C

[
τ2β−
∫

BR(x0)
|V (Du)− V (Du)x0,R|2 dx+ τ−n−

∫

BR(x0)
|V (Du)− V (Dv)|2 dx

]

≤ C
(
τ2β + ετ−n

)
Φu(x0, R).

This implies the first alternative of the lemma if we fix any α ∈ (0, β) and
choose first τ ∈ (0, 1) and then ε ∈ (0, 1) sufficiently small.

Proof of Theorem 2.8 and Theorem 2.9. As in the proof of Theorem 2.5, we
observe that the case of relaxed minimizers is a special case of minimizers of an
asymptotically regular functional. Therefore, we consider from now on a map
u ∈ W 1,p(Ω,RN ) that is either a minimizer of F or a solution of (2.2), under
the assumptions of Theorem 2.8 or Theorem 2.9. As above, in view of Section
4 we may suppose that Assumptions 5.2 and 5.4 hold.
We fix a Lebesgue point x0 ∈ B of Du and define, with the constant K0 from
the preceding lemma,

R := inf

{
r ∈ (0,dist(x0, ∂Ω)) : −

∫

Br(x0)
|Du|p dx ≤ Kp

0 + 1

}
.

If the above set is empty, we simply let R := dist(x0, ∂Ω). In the case R = 0,
we readily deduce the desired bound |Du(x0)|p ≤ Kp

0 + 1. Thus, we consider
from now on the case R > 0. First of all we deduce the estimate

−
∫

BR(x0)
|Du|p dx ≤ max

(
Kp

0 + 1,
‖Du‖pLp(Ω)

dist(x0, ∂Ω)n

)
(7.6)

by distinguishing the cases R < dist(x0, ∂Ω) and R = dist(x0, ∂Ω) and using
the absolute continuity of the integral in the first case. We choose the constants
α, τ ∈ (0, 1) according to the preceding lemma and let rk := τkR for k ∈ N0.
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Keeping in mind that x0 is a Lebesgue point, we estimate

|Du(x0)|

≤ |(Du)x0,R|+
∞∑

k=0

|(Du)x0,rk+1
− (Du)x0,rk |

≤ −
∫

BR(x0)
|Du| dx+

∞∑

k=0

−
∫

Brk+1(x0)

|Du− (Du)x0,rk | dx

≤
(
−
∫

BR(x0)
|Du|2 dx

)1/2

+
C

τn

∞∑

k=0

(
−
∫

Brk
(x0)

|V (Du)− V (Du)x0,rk |2 dx
)1/2

=

(
−
∫

BR(x0)
|Du|2 dx

)1/2

+
C

τn

∞∑

k=0

Φ1/2
u (x0, rk).

Here, we used the Cauchy-Schwarz inequality and (3.7) in the third step. By
the choice of R and since rk ≤ R, the first alternative of Lemma 7.4 holds on
all balls Brk(x0), which implies

Φu(x0, rk) ≤ τ2αkΦu(x0, R) ≤ τ2αk−
∫

BR(x0)

(
1 + |Du|

)p
dx.

Plugging this into the above estimate, we arrive at

|Du(x0)| ≤
[
1 +

C

τn

∞∑

k=0

ταk
](

−
∫

BR(x0)

(
1 + |Du|p

)
dx

)1/2

,

which implies by (7.6)

|Du(x0)|2 ≤ C(n, p, γ,Γ) max

(
Kp

0 + 2,
‖Du‖pLp(Ω)

dist(x0, ∂Ω)n
+ 1

)
.

The proof is complete.

8 Irregularity

Our construction of the counterexample in Theorem 2.6 is based on a recent
interesting result of Sverak & Yan [SY2], which we restate next.

8.1 A counterexample of Sverak & Yan, revisited

For ε > 0 consider the map wε on the unit ball B1 in R
n with values in the

space of n×n matrices, defined by

wε(x) :=
x⊗ x

|x|1+ε
− 1

n
|x|1−εEn, (8.1)

where En denotes the n×n unit matrix. Clearly, wε is homogeneous of degree
1−ε and has its values in the symmetric and trace-free matrices. Thus, wε can
be regarded as an element of W 1,q(B1,R

N ) for N = 1
2n(n + 1) − 1 and every

q < n
ε .
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Theorem 8.1 (Sverak & Yan [SY2]). Let N = 1
2n(n + 1) − 1. There is a

quadratic null Lagrangian ℓ : RNn → R and for every

0 < ε <
1

2

[√
3(n + 1)(n − 1)− (n + 1)

]
(8.2)

a smooth integrand gε : R
Nn → R with

γ|ξ|2 ≤ D2gε(z)(ξ, ξ) ≤ Γ|ξ|2

for all z, ξ ∈ R
Nn such that

Dgε(Dwε(x)) = Dℓ(Dwε(x)) (8.3)

holds for every 0 6= x ∈ B1.

In the situation of the theorem we deduce the Euler equation
∫

B1

Dgε(Dwε)Dϕdx =

∫

B1

Dℓ(Dwε)Dϕdx = 0

for every ϕ ∈W 1,2
0 (B1,R

N ). From the strict convexity of gε we then infer that
wε is a minimizer leading to the following remark which in fact highlights the
main feature of Theorem 8.1.

Remark 8.2. Since the right-hand side of (8.2) is positive for every n ≥ 3,
Theorem 8.1 implies the existence of a non-Lipschitz minimizer of the regular
variational integral ∫

B1

gε(Du) dx.

Furthermore, for every n ≥ 5 it is possible to choose ε > 1, which yields un-
bounded minimizers.

Remark 8.3. By an elementary computation, the condition (8.2) turns out to
be equivalent with the condition

0 < ε <
n+ 1−

√
3(n+1)
n−1√

3(n+1)
n−1 + 1

appearing originally in [SY2]. Moreover, the reader should note that (8.2) im-
plies ε < n

2 and thus wε ∈W 1,2(B1,R
N ).

For our purposes, we will need the following refinement of Theorem 8.1.

Theorem 8.4. The smooth integrand gε and the null Lagrangian ℓ from The-
orem 8.1 can be chosen in such a way that there holds

ℓ(z) ≤ gε(z) for all z ∈ R
Nn (8.4)

and
ℓ(Dwε(x)) = gε(Dwε(x)) for all 0 6= x ∈ B1, (8.5)

where wε is defined by (8.1).
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The proof of Theorem 8.4 is based on the same constructions used by Sverak
& Yan [SY2, Section 3] for the proof of Theorem 8.1; compare also [SY1]. Before
implementing the details let us fix some notation:

As already said above, the map wε defined in (8.1) takes its values in the
space of symmetric and trace-free matrices, which we interpreted as elements
of RN . Similarly, we can identify R

Nn with the space

T := {A ∈ (Rn)∗ ⊗ (Rn)∗ ⊗ (Rn)∗ : Aijk = Ajik,
∑n

i=1Aiik = 0},

where we used the abbreviation Aijk := A(ei, ej , ek). Furthermore, we employ
the notation

Kε
1 := {Dwε(x) : x ∈ Sn−1}.

As in [SY2] we decompose T = T ′⊕T3, where T ′ denotes the subspace of trace-
free tensors and T3 its orthogonal complement. Here, the trace is to be taken
with respect to the last two components. The space T ′ is decomposed further
into the space T1 of the symmetric tensors and its orthogonal complement T2,
so that T = T1 ⊕ T2 ⊕ T3. It is shown in [SY2] that the quadratic function

ℓ(z1 + z2 + z3) := −2|z1|2 + |z2|2 + n|z3|2 for zi ∈ Ti, i = 1, 2, 3

is a null Lagrangian. One checks that the derivative of wε in a point x ∈ Sn−1

can be written as Dwε(x) = W (1)(x) +W (2)(x) +W (3)(x) with W (i)(x) ∈ Ti
for i = 1, 2, 3, where W (2) ≡ 0 and

W
(1)
ijk (x) = (1 + ε)

(
− xixjxk +

1

n+ 2
(xiδjk + xjδik + xkδij)

)
,

W
(3)
ijk (x) =

n+ 1− ε

n+ 2

(
xiδjk + xjδik −

2

n
δijxk

)

for 1 ≤ i, j, k ≤ n. Consequently,

∣∣W (1)
∣∣2 ≡ (1 + ε)2(n− 1)

n+ 2
and

∣∣W (3)
∣∣2 ≡ 2(n+ 1− ε)2(n− 1)

n(n+ 2)

on Sn−1. It follows easily that there are positive constants ℓε, mε and Nε with

ℓ(z) = ℓε, |Dℓ(z)| = mε and |z| = Nε (8.6)

for all z ∈ Kε
1 . Here, the constant ℓε is positive because (8.2) implies ε < n

2 .
Furthermore, there holds

∑n
i=1 ∂i(wε)ij(x) = 1

n(n + 1 − ε)(n − 1)xj for all
1 ≤ j ≤ n and x ∈ Sn−1, from which we infer that Kε

1 is diffeomorphic to Sn−1.
In particular, Kε

1 is a smooth submanifold of T1 ⊕ T3.
¿From now on, we restrict ourselves to the subspace T1 ⊕ T3 ⊂ T ∼= R

Nn and
we introduce an enlarged version Sε of Kε

1 in the following way: For a given
µ > 0 and every z ∈ Kε

1 , let z
′ := z − µDℓ(z) and rµ = µ|Dℓ(z)| = µmε. Then

we write
Sε :=

⋃

z∈Kε
1

Brµ(z
′) ⊂ T1 ⊕ T3,

where Brµ(z
′) denotes the ball in T1 ⊕ T3 with center z′ and radius rµ. We

point out that the set Sε is defined in such a way that Kε
1 ⊂ ∂Sε. Moreover, by
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the symmetry of wε, the set Sε is point-symmetric with respect to the origin.
Since Kε

1 is a smooth submanifold, we know furthermore that ∂Sε is smooth if
we choose µ > 0 small enough.
With the notations introduced above we restate [SY2, Lemma 3.2]:

Lemma 8.5. For every ε > 0 with (8.2) there is a constant δ(ε) > 0 such that
for sufficiently small values of µ > 0 there holds

Dℓ(z) · (ξ̃ − z) ≤ −2δ(ε)|ξ̃ − z|2 for all z ∈ Kε
1 , ξ̃ ∈ Sε. (8.7)

Now we are in the position to prove Theorem 8.4.

Proof of Theorem 8.4. In the following we will write L : T × T → R for the
symmetric bilinear form defined by

L(z, z) = ℓ(z) for z ∈ T.

Since ℓ is a quadratic function, the inequality (8.7) can be written in the form

L(z, ξ̃ − z) ≤ −δ(ε)|ξ̃ − z|2 for all z ∈ Kε
1 , ξ̃ ∈ Sε, (8.8)

which implies in particular L(z, ξ̃) ≤ ℓε for all z ∈ Kε
1 and ξ̃ ∈ Sε. We claim

that, furthermore, there holds

L(z̃, ξ̃) ≤ ℓε for all z̃, ξ̃ ∈ Sε, (8.9)

provided µ > 0 is small enough. For the proof of this claim, we fix z̃, ξ̃ ∈ Sε

and choose a point z ∈ Kε
1 with z̃ ∈ Brµ(z

′), where z′ = z − µDℓ(z) and
rµ = µ|Dℓ(z)|. We begin with the observation

µ2|Dℓ(z)|2 ≥ |z̃ − z′|2 = |z̃ − z + µDℓ(z)|2
= |z̃ − z|2 + 2µDℓ(z) · (z̃ − z) + µ2|Dℓ(z)|2,

which implies

L(z, z̃ − z) =
1

2
Dℓ(z) · (z̃ − z) ≤ − 1

4µ
|z̃ − z|2. (8.10)

Applying (8.8) and (8.10), we can estimate

L(z̃, ξ̃) = L(z, ξ̃) + L(z̃ − z, ξ̃ − z) + L(z̃ − z, z)

≤ ℓε − δ(ε)|ξ̃ − z|2 + (2 + n)|z̃ − z| |ξ̃ − z| − 1

4µ
|z̃ − z|2

≤ ℓε +
(
C(n, ε)− 1

4µ

)
|z̃ − z|2,

where we applied Young’s inequality in the last step. This implies the claim
(8.9) if we choose µ > 0 small enough. Next we consider the convex hull Hε of
Sε ⊂ T1 ⊕ T3 and we will show ℓ(z) ≤ ℓε for all z ∈ Hε. Every z ∈ Hε can be
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written in the form z =
∑n

i=0 λiz̃i with z̃i ∈ Sε and λi ≥ 0 with
∑n

i=0 λi = 1.
Since L is bilinear, we can estimate, using (8.9),

ℓ(z) = L(z, z) =

n∑

i,j=0

λiλjL(z̃i, z̃j) ≤ ℓε

n∑

i,j=0

λiλj = ℓε (8.11)

for all z ∈ Hε.
Next we will construct the convex integrand gε. Following [SY2] once more we
employ the Minkowski function, also called the gauge, of the convex set Gε.
For more details about this function we refer to [Ro]. Precisely, we define

Gε(z) := ℓεχ
2(z), where χ(z) = inf{t ≥ 0 : z ∈ tHε}

for z ∈ T1 ⊕ T3. Since Hε is a convex neighborhood of the origin in T1 ⊕ T3,
it follows from the definition that Gε ≡ ℓε on the boundary ∂Hε. Keeping in
mind (8.11), we infer

ℓ(z) ≤ Gε(z) (8.12)

first for all z ∈ ∂Hε and finally for all z ∈ T1 ⊕ T3, since ℓ and Gε are both
homogeneous of degree two and Hε is a neighborhood of the origin.
Letting ν(z) := Dℓ(z)

|Dℓ(z)| for z ∈ Kε
1 , we point out that by (8.7), the vector

field ν, defined on Kε
1 , is a field of unit normal vectors of ∂Sε. For a suitable

neighborhood U ε of Kε
1 , we extend ν to a smooth vector field of unit normal

vectors on U ε ∩ ∂Sε. Diminishing the neighborhood U ε if necessary, we deduce
from (8.7) that for all z, ξ ∈ U ε ∩ ∂Sε there holds

ν(z)− ν(ξ)

|ξ − z| · ξ − z

|ξ − z| ≤ −3
δ(ε)

mε
.

Letting ξ → z, we infer

−DV ν(z) · V ≤ −3
δ(ε)

mε
< 0

for all z ∈ U ε ∩ ∂Sε and V ∈ Tanz(∂S
ε). We recall that the principal

curvatures of ∂Sε ∩ U ε are defined as the eigenvalues of the shape operator
Aν(V ) = −(DV ν)

⊤. Thus, we conclude from the above estimate that all the
principal curvatures are negative and bounded away from zero, which implies
that ∂Sε ∩ U ε is strictly elliptic. Combining this with (8.7), we infer

∂Hε ∩ U ε = ∂Sε ∩ U ε

if Uε is chosen sufficiently small. In particular, Kε
1 ⊂ ∂Hε, so that

Gε(z) = ℓε = ℓ(z) for all z ∈ Kε
1 . (8.13)

Moreover, the strict ellipticity of ∂Hε implies that Gε is strictly convex close
to Kε

1 in the sense

D2Gε(z)(ξ, ξ) ≥ cε|ξ|2 for all z ∈ Uε and ξ ∈ T1 ⊕ T3, (8.14)
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with a suitable constant cε > 0. Following [SY2] we obtain the convex in-
tegrand gε from Gε by a smoothing technique which preserves the identity
(8.13) and does not diminish the function Gε away from the origin. We pro-
vide a rereading of this smoothing process for the convenience of the reader.
First, we choose a kernel ϕ ∈ C∞

cpt([
1
2 , 1]) with

∫
T1⊕T3

ϕ(|ξ|) dξ = 1 and let

ϕδ(ξ) := δ− dim(T1⊕T3)ϕ(δ−1ξ). Since χ is convex and homogeneous of degree
one, the function

χ̃(z) :=

∫

T1⊕T3

χ(z + |z|ξ)ϕδ(|ξ|) dξ for z ∈ T1 ⊕ T3

is also convex and homogeneous of degree one, and additionally smooth; see [S,
Thm. 3.3.1]. Consequently, the function

G̃ε(z) := ℓεχ̃
2(z) + τ |z|2 for z ∈ T1 ⊕ T3

is strictly convex and homogeneous of degree two for any τ > 0. Note that
G̃ε depends on δ and τ , but we suppress these dependences to facilitate the
reading. Since G̃ε → Gε in C2-norm as δ, τ ց 0, we conclude

D2G̃ε(z)(ξ, ξ) ≥
cε
2
|ξ|2 for all z ∈ U ε and ξ ∈ T1 ⊕ T3, (8.15)

if δ and τ are chosen sufficiently small. We stress that the constant cε can be
chosen independent of τ if we restrict ourselves to z ∈ U ε. We record that as a
consequence of Jensen’s inequality and (8.12), there holds

G̃ε(z) ≥ ℓεχ
2
(∫

T1⊕T3

(z + |z|ξ)ϕδ(|ξ|) dξ
)
= ℓεχ

2(z) = Gε(z) ≥ ℓ(z) (8.16)

for all z ∈ T1 ⊕ T3. Since the above smoothing process might have changed
Gε in Kε

1 , we choose a cut-off function η̃ ∈ C∞
0 (U ε) with η̃ ≡ 1 in a smaller

neighborhood V ε ⊂ U ε of Kε
1 , and let η(z) := η̃(Nε

z
|z|), where Nε is defined by

(8.6). We write

G∗
ε(z) := (1− η(z)) G̃ε(z) + η(z)Gε(z) for 0 6= z ∈ T1 ⊕ T3

and G∗
ε(0) := 0. Obviously, G∗

ε is homogeneous of degree two. In order to
show that G∗

ε is strictly convex on U ε, we calculate for z ∈ U ε and an arbitrary
ξ ∈ T1 ⊕ T3

D2G∗
ε(z)(ξ, ξ) ≥ (1− η(z))D2G̃ε(z)(ξ, ξ) + η(z)D2Gε(z)(ξ, ξ)

− C‖G̃ε −Gε‖C1(Uε) |ξ|2

≥
(cε
2

− C‖G̃ε −Gε‖C1(Uε)

)
|ξ|2 (8.17)

by (8.14) and (8.15). Since ‖G̃ε − Gε‖C1(Uε) can be made arbitrarily small by
choosing the parameters δ, τ > 0 small enough, we infer for suitable choices of
δ and τ that G∗

ε is strictly convex on U ε. Keeping in mind the strict convexity
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of G̃ε and the homogeneity of G∗
ε, we deduce that G∗

ε is strictly convex and
smooth away from the origin. Recalling (8.16), we know furthermore

ℓ(z) ≤ G∗
ε(z) for all z ∈ T1 ⊕ T3, (8.18)

and from (8.13), combined with the homogeneity of G∗
ε, ℓ and wε, we infer

ℓ(Dwε(x)) = G∗
ε(Dwε(x)) for all 0 6= x ∈ B1. (8.19)

In order to make G∗
ε smooth and strictly convex on all of T1 ⊕ T3, we choose

a cut-off function ζ ∈ C∞
0 (BNε/2) with ζ ≡ 1 on BNε/4 and a radial mollifying

kernel ψρ with smoothing radius ρ > 0. For a parameter β > 0, let

g̃ε(z) := ζ(z)
[
ψρ ∗G∗

ε(z) + β|z|2
]
+ (1− ζ(z))G∗

ε(z).

This function is smooth on T1⊕T3 and a similar computation as in (8.17) shows
that for sufficiently small values of the parameters ρ, β > 0, g̃ε is strictly convex
on T1 ⊕ T3. Finally, letting

gε(z) := g̃ε(z1 + z3) + |z2|2 for z = z1 + z2 + z3 ∈ T ∼= R
Nn,

where zi ∈ Ti for i = 1, 2, 3, we arrive at a function gε : RNn → R which is
smooth and strictly convex on R

Nn. The inequality (8.18) implies, by another
application of Jensen’s inequality as in (8.16), that ℓ ≤ gε on R

Nn, so that the
first claim (8.4) is satisfied. Since |Dwε(x)| = |x|−εNε ≥ Nε for x ∈ B1, we infer
from (8.19) that the second claim (8.5) of the theorem is valid. This completes
the proof.

8.2 A singular set of positive measure

The remainder of this section will be devoted to the proof of Theorem 2.6. In
fact, introducing first some additional notation we will even establish a some-
what stronger result.

In the following, cubes will be considered as open subsets of Rn. We write
Q0 for the cube ]−1

2 ,
1
2 [

n.

Definition 8.6. For a function u on Q0 and a regularity class C we define the
regular set

RC (u) := {x ∈ Q0 : u is of class C in a neighborhood of x.}

and the singular set
SC (u) := Q0 \RC (u).

Moreover, as in (1.2) we abbreviate R(u) := RC0,1(u) and S(u) := SC0,1(u).

With these notations we formulate the main result of this section providing
wild solutions of asymptotically regular problems:
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Theorem 8.7. Let N = 1
2n(n+ 1)− 1. For every

0 < ε <
1

2

[√
3(n + 1)(n − 1)− (n + 1)

]

there are positive constants M , γ and Γ, a function uε ∈ W 1,2
0 (Q0,R

N ) and a
smooth function fε : RNn → R depending only on n and ε with the following
three properties:

γ|ξ|2 ≤ D2fε(z)(ξ, ξ) ≤ Γ|ξ|2 for |z| > M and ξ ∈ R
Nn;∫

Q0

fε(Duε) dx ≤
∫

Q0

fε(Dϕ) dx for every ϕ ∈W 1,2
0 (Q0,R

N );

|S
W 1, nε

(uε)| > 0 and |SC0,α(uε)| > 0 for every max{1− ε, 0} < α ≤ 1.

Moreover, if ε > 1 holds we even have

|S
L

n
ε−1

(uε)| > 0.

Remark 8.8. In particular, |S(uε)| > 0 may occur for every n ≥ 3, and
|SL∞(uε)| > 0 for every n ≥ 5. These restrictions on the dimension are optimal
in the case p = 2 considered here. To be more precise, if u ∈ W 1,2(Ω,RN ) is
a solution of an asymptotically regular problem, Theorem 2.8 implies S(u) = ∅

for n = 2, while for n ∈ {3, 4} we have SC0,α(u) = ∅ for some α > 0 by [SS,
Theorem 8.1].

The proof of Theorem 8.7 is based on the results of Section 8.1 and a Cantor
type construction3. It will be carried out in a series of lemmas.

We define vε : B1 → R
N by

vε(x) :=

{
wε(x) for x ∈ B1/2

2(1− |x|)wε

(
x

2|x|

)
for x ∈ B1 \B1/2

,

where wε is defined in (8.1). Clearly, we have

vε ∈W 1,q
0 (B1,R

N ) (8.20)

for every q < n
ε and involving the homogeneity of wε it is not difficult to see

|Dvε| ≤ L on B1 \B1/8 (8.21)

for some constant L depending only on n and ε.
Next, we choose a smooth cut-off function η : RNn → [0, 1] with η(z) = 0

for |z| ≤ L and η(z) = 1 for |z| ≥ L+ 1 and define fε : R
Nn → R by

fε(z) := η(z)gε(z) + (1− η(z))ℓ(z),

where gε and ℓ are the integrands from Section 8.1. Clearly, we have

ℓ(z) = fε(z) for |z| ≤ L (8.22)

3We refer the reader to [FMM] for another Cantor type construction of a minimizer with
a large singular set.

32



and
γ|ξ|2 ≤ D2fε(z)(ξ, ξ) ≤ Γ|ξ|2 for |z| > L+ 1.

In particular, fε is asymptotically regular. Moreover, (8.4) and (8.5) give

ℓ(z) ≤ fε(z), (8.23)

ℓ(Dwε(x)) = fε(Dwε(x)) (8.24)

for all z ∈ R
Nn and 0 6= x ∈ B1.

Next we will arrange the minimizers of Section 8.1 on a wild set: For every
k ∈ N ∪ {0} we subdivide Q0 into

∏k
i=0 3

in disjoint cubes with edges of length∏k
i=0 3

−i and defineWk as the collection of these cubes and Yk as the set of their
centers. We point out that for every cube Q ∈Wk, its predecessors are unique;
that is for every i ≤ k there is a unique cube in Wi containing Q. Moreover,
we note {0} = Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 ⊂ . . ..

We define another collection of cubes inductively. We set V0 := ∅ and for
k ∈ N we denote by Vk the collection of all cubes Q in Wk with centers in Yk−1

such that Q is not contained in some cube of
⋃k−1

i=0 Vi. Finally we write Xk for
the set of centers of cubes in Vk.

Our first goal is now to show that the closure of
⋃∞

i=0Xi has positive mea-
sure. Actually, this will follow from the next two lemmas.

Lemma 8.9. Denote by A the union of the closures of all cubes in
⋃∞

i=0 Vi.
Then, the set Q0 \ A is contained in the closure of

⋃∞
i=0Xi.

Proof. Consider an arbitrary point x ∈ Q0 \ A and fix k ∈ N. Then, x is
contained in the closure of a cube Qk ∈ Wk−1 with center xk ∈ Yk−1. By the
definition of A, the cube Qk is not contained in some cube of

⋃k−1
i=0 Vi. Now

consider the cube Q̃k ∈Wk with center at xk. Since the predecessors are unique,
Q̃k is not contained in a cube of

⋃k−1
i=0 Vi. Thus we have Q̃k ∈ Vk and xk ∈ Xk.

Finally, for the sequence xk ∈ ⋃∞
i=0Xi just defined we have

|xk − x| ≤ 1

2
diam Qk ≤

√
n

2
31−k.

Thus, x is in the closure of
⋃∞

i=0Xi and the lemma is proved.

Lemma 8.10. Denote by A the union of the closures of all cubes in
⋃∞

k=0 Vk.
Then, we have |Q0 \ A| > 0.

Proof. Clearly, Yk−1 has
∏k−1

i=0 3in elements and thus Vk contains at most
∏k−1

i=0 3in

cubes. Furthermore, the closure of every cube in Wk — and in particular of
every cube in Vk — has measure

∏k
i=0 3

−in. Thus, we get

|A| ≤
∞∑

k=1

3−kn =
3−n

1− 3−n
< 1

and the claim is established.
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We will now construct a minimizer uε on Q0 that is singular near all points
of
⋃∞

k=0Xk. Setting

rk :=
k∏

i=0

6−i

we note that all the balls Brk(x) with x ∈ Xk and k ∈ N are mutually disjoint.
Finally, we introduce uε setting

uε(y) :=

{
rkvε

(
y−x
rk

)
if y ∈ Brk(x) for some x ∈ Xk and some k ∈ N

0 otherwise
.

Lemma 8.11. For every q < n
ε we have uε ∈W 1,q

0 (Q0,R
N ).

Proof. The claim follows easily from (8.20) and the calculation

∫

Q0

[
|uε|q + |Duε|q

]
dx =

∞∑

k=1

∑

y∈Xk

rnk

∫

B1

[
rqk|vε|q + |Dvε|q

]
dx

≤
∞∑

k=1

(
3

6

)kn ∫

B1

[
|vε|q + |Dvε|q

]
dx <∞.

Here, in the last estimate we used the definition of rk and the fact that |Xk|
contains at most

∏k
i=0 3

in elements.

Proposition 8.12. Let

0 < ε <
1

2

[√
3(n+ 1)(n − 1)− (n+ 1)

]
.

Then, we have uε ∈W 1,2
0 (Q0,R

N ) and
∫

Q0

fε(Duε) dx ≤
∫

Q0

fε(Dϕ) dx for every ϕ ∈W 1,2
0 (Q0,R

N ).

Proof. Recalling ε < n
2 , Lemma 8.11 gives uε ∈ W 1,2

0 (Q0,R
N ). For the proof

of the minimizing property we first claim

ℓ(Duε) = fε(Duε) on Q0. (8.25)

To verify (8.25) we fix a Lebesgue point y ∈ Q0 of Duε and distinguish two
cases: If y is in Brk/2(x) for some x ∈ Xk and some k ∈ N, then we have

Duε(y) = Dwε(
y−x
rk

) and (8.24) gives fε(Duε(y)) = ℓ(Duε(y)). Otherwise,
we see from the construction of uε that |Duε(y)| ≤ L, so that fε(Duε(y)) =
ℓ(Duε(y)) follows from the definition of fε. Thus, (8.25) is proved in any case.

Consequently, exploiting in turn (8.25), the fact that ℓ is a null Lagrangian
and (8.23) we find

∫

Q0

fε(Duε) dx =

∫

Q0

ℓ(Duε) dx =

∫

Q0

ℓ(Dϕ) dx ≤
∫

Q0

fε(Dϕ) (8.26)

for any ϕ ∈W 1,2
0 (Q0,R

N ), thus completing the proof.
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Proof of Theorem 8.7. In the situation of the theorem let C denote one of the
regularity classes W 1,n

ε , C0,α, L
n

ε−1 , where max{1 − ε, 0} < α ≤ 1. In view of
the preceding considerations, in particular of Proposition 8.12, it just remains
to prove |SC (uε)| > 0. To this aim we first note that, by the definition of wε

in Section 8.1, the function wε is not of class C near 0. From the construction
of uε we deduce

⋃∞
i=0Xi ⊂ SC (uε). Since SC (uε) is — by definition — closed

in Q0 we infer that the closure of
⋃∞

i=0Xi is still contained in SC (uε). Thus,
Lemma 8.9 and Lemma 8.10 give |SC (uε)| > 0.

Remark 8.13. In Theorem 8.7 one may additionally choose fε such that fε
is quasiconvex. To see this it suffices to replace fε with its quasiconvex hull
observing that (8.22), (8.23) and (8.24) are preserved.

Proof of Theorem 2.6. Theorem 2.6 is essentially a particular case of Theorem
8.7 and Remark 8.8 with f := fε. It just remains to reason that the cube
Q0 may be replaced by any non-empty bounded open set Ω. To see this we
fix such a set Ω and assume — by scaling and translation — that Q0 ⊂ Ω
holds. Then we define u ∈ W 1,2(Ω,RN ) as the extension by 0 of the map
uε ∈ W 1,2

0 (Q0,R
N ) from Theorem 8.7. Recalling the above construction, in

particular f(0) = fε(0) = ℓ(0), one easily sees that (8.25) and (8.26) still hold
if we replace uε by u and Q0 by Ω. Hence, u is a minimizer of F on Ω. The
remaining claims of Theorem 2.6 are now obvious.
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[FMM] I. Fonseca, J. Malý, G. Mingione: Scalar minimizers with fractal singular sets.
Arch. Ration. Mech. Anal. 172, 295–307 (2004).

[Fo] M. Foss: Global regularity for almost minimizers of nonconvex variational
problems. Ann. Mat. Pura Appl., IV. Ser. 187, 263–321 (2008).

[FM] M. Foss, G. Mingione: Partial continuity for elliptic problems. Ann. Inst. Henri
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