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Abstract. We consider the Plateau problem and the corresponding free bound-
ary problem for finite-dimensional surfaces in possibly infinite-dimensional Ba-
nach spaces. For a large class of duals and in particular for reflexive spaces
we establish the general solvability of these problems in terms of currents. As
an auxiliary result we prove a new compactness theorem for currents in dual
spaces, which in turn relies on a fine analysis of the w∗-topology.
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1. Introduction

Currents are generalized surfaces. More precisely, n-currents in the classical sense
of Federer & Fleming [7] are a measure-theoretic generalization of oriented n-
dimensional submanifolds inside an Euclidean space R

N (N ≥ n); compare the
renowned monographs [6, 12]. Even though there is nowadays a much broader
interest in currents, they have been designed — from the very beginning — for
the treatment of area minimization problems and in particular for the (oriented)
Plateau problem, that is the minimization problem for the n-dimensional area sub-
ject to a prescribed boundary in R

N . In fact, given a boundary (n−1)-current S
in R

N the oriented Plateau problem can always be solved, if it is (re)formulated as
the minimization problem for the mass M(T ) among all n-currents T in R

N with
boundary ∂T = S.

Ambrosio & Kirchheim [4, 3] extended the theory of currents to complete metric
spaces in place of RN , thus allowing for a much richer geometric structure of the
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ambient space. While this refined theory has also found other remarkable applica-
tions (see for instance [14]), in the first instance it has been developed once more
for area minimization: indeed, for a large class of dual Banach spaces Y it has been
proved in [3, Theorem 10.6] that Plateau’s problem is solvable in terms of metric
n-currents in Y , provided that the prescribed boundary remains in a compact sub-
set of Y . Eventually, still assuming compact support of the boundary Wenger [13,
Theorem 1.5] established the same statement for every dual Banach space Y . Let
us emphasize that these results naturally cover infinite-dimensional spaces Y , and
thus on the technical side they overcome the difficulty that Y need not be locally
compact and the Riesz-Markov representation theorem is not available.

In this paper, though we follow the basic approach of [3], we propose a novel
simplified proof for the solvability of the Plateau problem in Y . It still applies to
a large (but slightly different) class of possibly infinite-dimensional dual Banach
spaces Y , but it works without a compactness assumption on the boundary values.
We believe that the latter feature is new and interesting even in the simplest infinite-
dimensional spaces, that is in separable Hilbert spaces.

A precise statement of our result can be formulated conveniently in the following
terminology (see Section 2 for further notation and in particular Section 2.3 for
background definitions concerning metric currents): For a complete metric space
Y , n ∈ N := {1, 2, 3, . . .}, and a metric (n−1)-current S ∈ Mn−1(Y ) of finite mass
we write

Fillmass(S) := inf{M(C) : C ∈ Nn(Y ), ∂C = S} ,(1.1)

Fillvol(S) := inf{M(C) : C ∈ In(Y ), ∂C = S}(1.2)

for the infimum values of the Plateau problem in Y , formulated within the classes
Nn(Y ) and In(Y ) of normal metric n-currents and integral metric n-currents, re-
spectively. Here, as usual we consider the infima as infinite, if the set of admissible
C is empty. For separable dual Banach spaces Y this is actually the only case in
which the infima are not attained:

Theorem 1.1 (existence). Consider a normed space X such that X∗ is separable1,

n ∈ N, and S ∈ Mn−1(X
∗).

• If we have Fillmass(S) < ∞, then there exists T ∈ Nn(X
∗) with ∂T = S

and M(T ) = Fillmass(S).
• Moreover, if we have Fillvol(S) < ∞, then there exists T ∈ In(X

∗) with

∂T = S and M(T ) = Fillvol(S).

Theorem 1.1 is proved in Section 5.1.
Clearly, Fillmass(S) < ∞ implies S ∈ Nn−1(X

∗) with ∂S ≡ 0. Moreover, if S
is concentrated in a bounded set, then by the cone construction of [3, Section 10]
this necessary criterion for the finiteness of the infimum (1.1) is also sufficient. For
the finiteness of the infimum in (1.2) one even has a single necessary and sufficient
criterion (in which boundedness plays no role): by Wenger’s isoperimetric inequal-
ities [13, Corollary 1.3] and the boundary-rectifiability theorem [3, Theorem 8.6]
Fillvol(S) < ∞ holds true if and only if one has S ∈ In−1(X

∗) and ∂S ≡ 0. As
a corollary we thus obtain the following formulation of the existence result with
more tangible assumptions on S. The main difference to [3, Theorem 10.6] and [13,
Theorem 1.5] lies in the fact that the support of S need not be compact.

1Notice that separability of X∗ implies separability of X, and that X∗ is a Banach space. We
may assume that also X is a Banach space, since completion of X does not affect X∗.
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Corollary 1.2 (existence for bounded or integral boundaries). Consider a normed

space X such that X∗ is separable and n ∈ N.

• Then for every S ∈ Nn−1(X
∗) with bounded support and zero boundary

there exists T ∈ Nn(X
∗) with ∂T = S such that

M(T ) ≤ M(C) for all C ∈ Nn(X
∗) with ∂C = S .

• Moreover, for every S ∈ In−1(X
∗) with zero boundary there exists T ∈

In(X
∗) with ∂T = S and

M(T ) ≤ M(C) for all C ∈ In(X
∗) with ∂C = S .

Precise references for the deduction of Corollary 1.2 are given at the end of
Section 5.1.

By quite similar methods we also obtain the following statement about mass-
minimization with only partially prescribed boundary.

Theorem 1.3 (existence with a free boundary). Consider a normed space X such

that X∗ is separable, n ∈ N, and S ∈ Mn−1(X
∗).

• Then there exists T ∈ Nn(X
∗) with

M(T ) +M(∂T − S) ≤ M(C) +M(∂C − S) for all C ∈ Nn(X
∗) .

• Moreover, there exists T ∈ In(X
∗) with

M(T ) +M(∂T − S) ≤ M(C) +M(∂C − S) for all C ∈ In(X
∗) .

Theorem 1.3 is proved in Section 5.2.
Next, we briefly discuss our assumptions on the ambient spaceX∗. First of all, all

reflexive spaces Y are duals (up to isometric isomorphism) and the existence results
apply2 in them. Moreover, they also apply in some non-reflexive duals, for instance
in the space ℓ1=̃(c0)

∗ of absolutely summable series. Nevertheless, comparing with
[3, Theorem 10.6] and [13, Theorem 1.5] our separability assumption on X∗ is
somewhat restrictive. Indeed this hypothesis rules out some basic dual spaces such
as L∞ and spaces of measures, but — somewhat surprisingly — it is in some sense
essential for our approach; see Example B.1 in the appendix.

The decisive ingredient in the proofs of the existence theorems is a refined com-
pactness result for the w∗-convergence of currents in the sense of Definition 2.15.
We believe that the latter result, which extends [3, Theorem 6.6], is of some interest
in itself, and thus we formulate the statement at this stage.

Theorem 1.4 (compactness). Consider a normed space X such that X∗ is sepa-

rable, n ∈ N ∪ {0}, and a sequence (Th)h∈N in Nn(X
∗) such that we have

(1.3) M := sup
h∈N

M(Th) <∞ , M∂ := sup
h∈N

M(∂Th) <∞ ,

and the w∗-tightness condition

(1.4) lim
R→∞

sup
h∈N

[
‖Th‖(X

∗ \BR(0)) + ‖∂Th‖(X
∗ \BR(0))

]
= 0 .

Then there exists a subsequence (Th(k))k∈N w∗-converging to some T ∈ Nn(X
∗)

with M(T ) ≤M and M(∂T ) ≤M∂.

2For non-separable Y see Appendix B.2.
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For the particular case of equi-bounded supports Theorem 1.4 is proved in Sec-
tion 4.1. The general statement is deduced in Section 4.2.

Notice that in the case n = 0 we understand N0(X
∗) = M0(X

∗) and consider
the assumptions on ∂Th as void (compare Section 2.3 once more). In this particular
case and for separable Hilbert spaces Theorem 1.4 recovers a statement from [2,
Lemma 5.1.12], a weak-topology version of Prokhorov’s theorem, which has also
inspired our strategy of proof.

As a general rule compactness for currents arises from compactness properties of
the ambient space. Accordingly, compactness results in the spirit of the Riesz-
Markov theorem are available in locally compact spaces (see [9, Theorem 5.4]
and compare Section 2.2). Moreover, there is an extension [3, Theorem 5.2] of
Prokhorov’s theorem to metric currents, while for the Plateau problem in infinite-
dimensional dual spaces X∗ a more sophisticated strategy has been proposed in
[3, Sections 6 and 10]: it relies on Gromov’s isometric embeddings [8, Section 6]
into a compact space and also exploits local w∗-compactness in X∗. In our proof
of Theorem 1.4 we will follow a modified strategy, which works more directly with
local w∗-compactness, but without Gromov’s embeddings and without leaving the
ambient space X∗ at all.

Indeed, let us summarize the core of the compactness proof in Section 4.1. We
consider the case that the Th are supported in a fixed ball in X∗, we regard this
ball with the metrizable w∗-topology as a compact metric space K, and we first
exhibit a limit object T in K. Initially the action of T is then limited to w∗-
continuous (generalized) forms ϕdπ. However, our reasoning shows that the action
of T extends in a unique way to non-w∗-continuous ϕdπ, and we prove that the
extended T has the properties of a normal current. A crucial technical ingredient
is Lemma 3.1, which provides a w∗-separability property of the space of Lipschitz
functions.

With view towards the existence results it is also relevant that our extension
procedure carries w∗-rectifiable currents (with finite mass and boundary mass) into
norm-rectifiable ones. This is indeed true and it readily follows from the rectifia-
bility criterion [3, Remark 8.2] once we have proven that the extension is a normal
current. Accordingly, rectifiability enters our arguments only through the known
results of [3], while the technically delicate parts of this paper are concerned with
normal currents.

We stress that Theorem 1.4 should also be compared to Wenger’s compactness
result [15, Theorem 1.2] for integral currents with equi-bounded diameter and its
local variant [10, Theorem 1.1]. These results yield compactness for isometric em-
beddings in Gromov’s style, in other words they identify a limit current in an
abstract metric space. After the submission of the present paper Wenger [16] has
pointed out that the latter results can indeed be applied in order to retrieve com-
pactness in the ambient space itself. By such a reasoning he has extended our
results for the integral currents case to non-separable dual spaces.

Finally, we believe that with the preceding results at hand one may also ask for
additional (regularity) properties of mass-minimizing currents in infinite-dimensional
spaces. We plan to address such issues in a continuative project.

2. Preliminaries

2.1. General notation. Suppose that (E, dE) and (Ẽ, dẼ) are metric spaces. For
x ∈ E and R > 0 we write BR(x) for the open ball {y ∈ E : dE(y, x) < R} and
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BR(x) for the closed ball {y ∈ E : dE(y, x) ≤ R}. Furthermore, for subsets P and
Q of E we set dist(Q,P ) := inf{dE(q, p) : p ∈ P, q ∈ Q}.

For π : E → Ẽ we define the Lipschitz constant Lip(π) as the smallest (but
possibly infinite) constant such that dẼ(π(y), π(x)) ≤ Lip(π) dE(y, x) holds for all

x, y ∈ E. We write Lip(E; Ẽ) for the space of all π : E → Ẽ with Lip(π) < ∞,

Lipb(E; Ẽ) for the subspace of functions in Lip(E; Ẽ) with bounded image, and

Lip1(E; Ẽ) for the collection of all π : E → Ẽ with Lip(π) ≤ 1. Finally, we set
Lip(E) := Lip(E;R), Lipb(E) := Lipb(E;R), and Lip1(E) := Lip1(E;R).

If X is a normed space, we write ‖ · ‖X for its norm and X∗ for its topological
dual endowed with the operator norm. For y ∈ X∗ and x ∈ X we use the notation3

〈y, x〉 for the evaluation of y at x. We briefly recall that the w∗-topology on X∗

is the coarsest topology such that the evaluation maps X∗ → R, y 7→ 〈y, x〉 are
continuous on X∗ for all x ∈ X .

By a finite Borel measure µ on E we mean a σ-additive function µ : B(E) →
[0,∞) on the Borel-σ-algebraB(E) ofE. Analogously, a finite signed Borel measure
is a σ-additive function µ : B(E) → R, and we write |µ| for the variation measure
of µ. The support sptµ of µ is defined as the closed set of all x ∈ E satisfying
|µ|(BR(x)) > 0 for all R > 0. Moreover, if |µ|(E \ Σ) = 0 holds for Σ ∈ B(E),

we say that µ is concentrated on Σ, and if ψ : E → Ẽ is a continuous function, we

introduce a Borel measure ψ♯µ on Ẽ by ψ♯µ(B) := µ(ψ−1B) for B ∈ B(Ẽ).
Finally, by Cb(E) we denote the Banach space of bounded continuous functions

E → R with the norm of uniform convergence.

2.2. Weak-∗-topologies. We start with the remark that for separable normed
spacesX the w∗-topology can be metricized on bounded sets in X∗. More precisely,
if {x1, x2, x3, . . .} is dense in X \ {0}, we define a new norm ‖ · ‖w∗ on X∗ by

(2.1) ‖y‖w∗ :=

∞∑

i=1

2−i |〈y, xi〉| /‖xi‖X for y ∈ X∗ ,

and ‖ · ‖w∗ induces the w∗-topology on all bounded sets in X∗, but not globally.
In particular, we will use the following consequence of this remark: for bounded
sets in the dual of a separable space w∗-topological concepts are characterized by
sequences, as usual in a metric space.

Our compactness result relies heavily on the following two well-known results
(see for instance [11, 3.15] and [1, Theorem 1.54]): the Banach-Alaoglu-Bourbaki
compactness theorem and the Riesz-Markov representation theorem in compact
metric spaces.

Theorem 2.1. Suppose that X is a normed space. Then the closed balls BR(y0) =
{y ∈ X∗ : ‖y−y0‖X∗ ≤ R} in X∗ are compact in the w∗-topology.

Theorem 2.2. Suppose that K is a compact metric space. Then every F ∈ Cb(K)∗

can be represented by a finite signed Borel measure µ on K in the sense of

〈F, ϕ〉 =

∫

K

ϕdµ for all ϕ ∈ Cb(K)

and

‖F‖Cb(K)∗ = |µ|(K) .

3Later on we also use angle brackets with three arguments in a completely different meaning.
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We briefly record some well-known consequences of these results: Theorem 2.2
implies that the space of finite signed Borel measures M(K) on K (with the total
variation norm) coincides up to isometric isomorphism with the dual of Cb(K). It
follows by Theorem 2.1 that closed balls in M(K) are compact in the w∗-topology
arising from this duality. Moreover, the operator norm on a dual, and thus in partic-
ular the total variation of measures, is (almost by definition) lower semicontinuous
with respect to w∗-convergence.

In addition, we provide two simple lemmas, which will eventually be useful. In
the former lemma we crucially use separability ofX∗ (compare Example B.1 below),
while separability of X suffices for all other arguments in this paper.

Lemma 2.3. Suppose that X is a normed space and write B(X∗) and Bw∗(X∗)
for the Borel-σ-algebras generated by the norm-topology and the w∗-topology on X∗,

respectively. Then there holds Bw∗(X∗) ⊂ B(X∗), and if X∗ is separable, we even

have equality Bw∗(X∗) = B(X∗).

Proof. Since every w∗-closed set in X∗ is also closed, we generally have Bw∗(X∗) ⊂
B(X∗). If X∗ is separable, then the closed balls generate B(X∗), also X is sep-
arable, and by Theorem 2.1 the closed balls are also w∗-closed. In conclusion, for
separable X∗ we infer B(X∗) ⊂ Bw∗(X∗). �

Lemma 2.4. Let p ≤ q in R, and suppose that P and Q are two compact subsets

in the dual X∗ of a normed space X with dist(Q,P ) > 0. Then there exists a

w∗-continuous Lipschitz function η : X∗ → [p, q] with η ≡ p on P , η ≡ q on Q, and

Lip(η) ≤ 8(q−p)/dist(Q,P ).

Proof. We assume p = 0, q = 1.
In a first step, instead of compact sets we consider balls P and Q in X∗ with cen-

ters yP , yQ, and radii rP , rQ. The condition ‖yQ−yP ‖X∗−rP −rQ = dist(Q,P ) > 0
implies ‖yQ−yP ‖X∗ > 1

2 (‖yQ−yP ‖X∗ + rP + rQ) and thus yields some x ∈ X with

‖x‖X = 1 and 〈yQ−yP , x〉 ≥ 1
2 (‖yQ−yP ‖X∗ + rP + rQ). Since 〈y−yP , x〉 − rP ≥

〈yQ−yP , x〉 − rP − rQ ≥ 1
2 (‖yQ−yP ‖X∗ − rP − rQ) holds for y ∈ Q, one finds that

η(y) := min

{
1, 2

(
〈y − yP , x〉 − rP

)
+

‖yQ − yP ‖X∗ − rP − rQ

}
for y ∈ X∗

defines a function η with all the required properties (and even Lip(η) ≤ 2/dist(Q,P )).
In a second step, if P is any compact set and Q is a ball, we cover P by finitely

many balls P1, P2, . . . , Pn with dist(Q,Pi) ≥ 1
2dist(Q,P ). Then we write ηi for

the functions from the first step corresponding to Pi and Q, and we define η as the
pointwise minimum of the ηi. It is straightforward to check the required properties
of η (and even Lip(η) ≤ 4/dist(Q,P )).

In an analogous third step we consider compact sets P and Q, we cover Q
by finitely many balls, and we choose η as the pointwise maximum of functions
obtained from the second step. Again it is straightforward to check that η has the
claimed properties. �

2.3. Metric currents with finite mass. Here, we partially recall the Ambrosio-
Kirchheim-theory [3] of currents with finite mass in metric spaces, fixing by the
way notation and terminology. While we refer the reader to the original paper for
more comments and motivation, now we briefly restate some basic definitions and
results. In this way we keep the present paper essentially self-contained up to the
end of Section 4.1, where the proof of Theorem 1.4 is completed at least in the
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basic case of equi-bounded supports. Anyway, in the subsequent sections we will
directly quote some more results from [3].

We suppose for the remainder of this section that n ∈ N ∪ {0} and E is a
complete metric space. For a bounded Borel function ϕ : E → R and π ∈ Lip(E)n

we permanently use the notation

ϕdπ := (ϕ, π) ,

which emphasizes the far-reaching analogy to Euclidean differential forms. For
n = 0 we always identify Lip(E)0 := {0}, Lipb(E) × Lip(E)0 := Lipb(E), and
ϕdπ := ϕ in the following.

Definition 2.5 (metric functionals, [3, Definition 2.2]). An n-dimensional metric

functional on E is a map T : Lipb(E)× Lip(E)n → R such that

• T is linear in its first argument from Lipb(E) and

• |T | is 1-homogeneous and convex4 in each of the n arguments from Lip(E).

Definition 2.6 (boundary, [3, Definition 2.3]). Let n ≥ 1. For an n-dimensional5

metric functional T on E the boundary ∂T : Lipb(E) × Lip(E)n−1 → R is defined

by

∂T (ϕdπ) := T (1 d(ϕ, π)) for ϕ ∈ Lipb(E) and π ∈ Lip(E)n−1 .

If an n-dimensional metric functional T on E is linear in all arguments, then ∂T
is an (n−1)-dimensional metric functional on E.

Definition 2.7 (pushforward, [3, Definition 2.4]). The pushforward ψ♯T of an

n-dimensional metric functional T on E along a Lipschitz map ψ : E → Ẽ into an-

other complete metric space Ẽ is the n-dimensional metric functional on Ẽ defined

by

ψ♯T (ϕdπ) := T ((ϕ ◦ ψ) d(π ◦ ψ)) for ϕ ∈ Lipb(Ẽ) and π ∈ Lip(Ẽ)n .

For n = 0 Definition 2.7 is compatible with the notation for measures from
Section 2.1, but allows less general functions ψ.

Definition 2.8 (mass and support, [3, Definitions 2.6 and 2.8]). An n-dimensional

metric functional T on E has finite mass if there exists a finite Borel measure µ
on E such that

|T (ϕdπ)| ≤

∫

E

|ϕ| dµ
n∏

i=1

Lip(πi) holds for all ϕ ∈ Lipb(E) and π ∈ Lip(E)n .

The least such measure µ is called the mass ‖T ‖ of T , and the total mass is M(T ) :=
‖T ‖(E). If T has finite mass, then the support sptT of T is defined as the support

of the measure ‖T ‖.

Occasionally, we will use the assertion that every finite Borel measure and in
particular the mass of a metric functional on a complete metric space E is tight,
that means concentrated on a σ-compact set. In order to prove the results of the
introduction it suffices to utilize this assertion for separable E, in which case it is
known as Ulam’s theorem and is not too hard to prove; see [5, 7.1.7]. However, in
Section 3 and Appendix B we state some results in a more general framework, and

4In other words, |T | is a pseudonorm in each argument from Lip(E).
5A boundary ∂T of a 0-dimensional metric functional T , which formally occurs in some of our

statements, is identified with the constant T (1). Definitions 2.8 and 2.11 are partially extended
by letting M(∂T ) := |T (1)| ≤ M(T ) in this case and N0(E) := M0(E), while ‖∂T‖ and spt ∂T
are left undefined.
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we will then exploit the same assertion even for non-separable E. This is indeed
possible imposing at those points the extra assumption that the cardinality of a
dense subset of E is an Ulam number in the sense of Federer [6, 2.1.6]; compare
also [6, 2.2.16] and the comments around [3, Lemma 2.9] for a discussion of this
assumption.

For every metric functional T on E with finite mass there is a canonical extension
— which we still denote by T — to those ϕdπ for which ϕ : E → R is just a bounded
Borel function; in fact, it suffices to extend T as a continuous linear functional in ϕ
with respect to the norm of L1(E; ‖T ‖). We use this extension in the next definition.

Definition 2.9 (restriction). The restriction T A : Lipb(E)×Lip(E)n → R of an

n-dimensional metric functional T on E with finite mass to a Borel subset A of E
is the n-dimensional metric functional on E defined by

(T A)(ϕdπ) := T (χAϕdπ) for ϕ ∈ Lipb(E) and π ∈ Lip(E)n ,

where χA : E → {0, 1} denotes the characteristic function of A.

Definition 2.10 (currents, [3, Definition 3.1]). An n-current in E with finite mass

is an n-dimensional metric functional T on E with finite mass satisfying moreover

the following three axioms:

• multilinearity: T is (1+n)-linear;
• continuity: T (ϕdπl) converges to T (ϕdπ) for ϕ ∈ Lipb(E) and πl, π ∈
Lip(E)n, whenever πl converges to π pointwise on E and Lip(πl) stays

bounded;

• locality: for ϕ ∈ Lipb(E) and π ∈ Lip(E)n there holds T (ϕdπ) = 0 when-

ever a component function πi0 is constant on an ε-neighborhood of sptϕ.

The space of all n-currents in E with finite mass is denoted by Mn(E).

We observe that in view of multilinearity it is equivalent to require the continuity
and locality axioms only for ϕ ∈ Lip1(E; [−1, 1]) and πl, π ∈ Lip1(E)n. When veri-
fying the axioms later on, we will make use of this fact without further comments.
A similar remark applies to the above definition of mass.

Moreover, starting from the fact that the space of finite Borel measures on E is
a Banach space with the total variation norm, it can be verified that the mass M
is a norm on Mn(E), and that Mn(E) is a Banach space, when endowed with this
norm.

Definition 2.11 (normal currents, [3, Definition 3.4]). A current T ∈ Mn(E) with
∂T ∈ Mn−1(E) is called a normal current, and the space of normal n-currents is

denoted by Nn(E).

As pointed out after Definition 3.4 in [3], the boundary of T ∈ Mn(E) is al-
ways an (n−1)-dimensional metric functional and satisfies the axioms of an (n−1)-
current. Thus, in order to show that T ∈ Mn(E) is normal, it suffices to check that
∂T has finite mass.

The space In(E) of integral n-currents is defined as in [3, Definition 4.2]. We
will use the closure theorem [3, Theorem 8.5] for In(E), but we will never work
explicitly with the definition, and thus we do not repeat it here.

Lemma 2.12 (equi-continuity, [3, Lemma 5.1]). For T ∈ Nn(E), ϕ ∈ Lipb(E) and
π, π̃ ∈ Lip(E)n there holds

∣∣T (ϕdπ̃)− T (ϕdπ)
∣∣ ≤

(
sup
E

|ϕ|+ Lip(ϕ)
) n∑

i=1

∫

sptϕ

|π̃i − πi| d
(
‖T ‖+‖∂T ‖

)
.
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In particular, choosing π̃i0 ≡ s constant and π̃i = πi for i 6= i0 we infer:

Lemma 2.13. For T ∈ Nn(E), ϕ ∈ Lipb(E) and π ∈ Lip(E)n there holds

∣∣T (ϕdπ)
∣∣ ≤

(
sup
E

|ϕ|+ Lip(ϕ)
) ∫

sptϕ

|πi0 − s| d
(
‖T ‖+‖∂T ‖

)

for all i0 ∈ {1, 2, . . . , n} and s ∈ R.

Definition 2.14 (weak convergence, [3, Definition 3.6]). A sequence (Th)h∈N in

Mn(E) is said to converge weakly to T ∈ Mn(E) if Th(ϕdπ) converges to T (ϕdπ)
for all (ϕ, π) ∈ Lipb(E) × Lip(E)n.

Notice that the uniqueness of weak limits is immediate by definition, while lower
semicontinuity of the mass along weakly convergent sequences follows readily from
[3, Proposition 2.7]; see the remark after [3, Definition 3.6]. For the following notion
of w∗-convergence the same assertions are still true, but less immediate; compare
Corollary 3.4 below.

Definition 2.15 (w∗-convergence, [3, Definition 6.1]). Consider a normed space X.

A sequence (Th)h∈N in Mn(X
∗) is said to w∗-converge to T ∈ Mn(X

∗), if Th(ϕdπ)
converges to T (ϕdπ) for all w∗-continuous (ϕ, π) ∈ Lipb(X

∗)× Lip(X∗)n.

We remark that the w∗-convergence of currents is actually a weak convergence
in two regards: on the one hand, it is a distributional convergence of functionals,
and on the other hand, even on the base space X∗ the w∗-topology is used. In
contrast, weak convergence is also a distributional convergence, but uses the strong
topology of the base space. In particular, these convergences correspond to w∗ and
strong convergence of the basepoints when n equals 0 and the currents are Dirac
measures.

Finally, we point out that w∗-convergence cannot be defined in a localized way,
since a w∗-continuous functions ϕ with bounded support in X∗ necessarily vanishes
everywhere.

3. A separability lemma and w∗-convergence

In this section we establish an auxiliary lemma and we collect a couple of related
observations on the notion of w∗-convergence, which appears in our compactness
results.

As in the proof of [3, Theorem 5.2] we will exploit the fact that the set of Lip1-
functions on a separable domain is itself separable and thus contains a countable
dense subset A. The following lemma shows that, when the base space is a dual
space, A can be chosen to consist only of w∗-continuous functions. This fact will
turn out to be crucial for our purposes.

Lemma 3.1 (separability lemma). Suppose that X is a separable normed space

and that there are subsets Σ ⊂ E ⊂ X∗ of its dual, where Σ is separable. Then

there exist a countable collection A of w∗-continuous functions in Lip1(E) and

a pseudodistance6 dp on Lip1(E) such that A is dense with respect to dp and dp
induces pointwise convergence on Σ.

6A pseudometric space differs from a metric space only in the possibility that two different

points may have zero pseudodistance, and the quotient of a pseudometric space by the zero pseu-
dodistance relation is always a metric space. Here, the usage of a pseudodistance is of secondary
importance, but we think that it keeps our terminology clean and convenient, since we look at func-
tions on E with a concept of convergence on the possibly smaller set Σ; in fact, if π, π̃ ∈ Lip1(E)
coincide on Σ, but differ elsewhere, then dp(π̃, π) vanishes.
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In our applications we use Lemma 3.1 for R
1+n-valued maps, in the form that

A[−1,1] ×An is dense in Lip1(E; [−1, 1])× Lip1(E)n with respect to pointwise con-
vergence on Σ. Here, the set A[−1,1] := {min{1,max{−1, ϕ}} : ϕ ∈ A} of cut-offs
still contains only w∗-continuous functions, and the latter convergence is induced
by the pseudodistance d1+n

p ((ϕ̃, π̃), (ϕ, π)) := dp(ϕ̃, ϕ) +
∑n

i=1 dp(π̃i, πi).

Proof of Lemma 3.1. Suppose that {r1, r2, r3, . . .} is dense in R, {s1, s2, s3, . . .} is
dense in Σ, and {x1, x2, x3, . . .} is dense in X \ {0}. We define ai,j,k ∈ Lip1(E) by

ai,j,k(y) := max{ri + |〈y − sj , xh〉|/‖xh‖X : h ∈ {1, 2, . . . , k}}

for y ∈ E and choose A as the set of all pointwise minima of finitely many ai,j,k.
Then A is a countable collection of w∗-continuous functions in Lip1(E). We now
prove that A is dense in a suitable sense. For π ∈ Lip1(E) we define π̃l ∈ Lip1(E)
and πk,l ∈ A by

π̃l(y) := min{ri + ‖y − sj‖X∗ : i, j ∈ {1, 2, . . . , l}, ri ≥ π(sj)} ,

πk,l(y) := min{ai,j,k(y) : i, j ∈ {1, 2, . . . , l}, ri ≥ π(sj)}

for y ∈ E. It is easy to check that ai,j,k(y) monotonically converges from below
to ri + ‖y − sj‖X∗ as k → ∞ and thus πk,l converges pointwise to π̃l as k →
∞. For every l ∈ N we may therefore choose k(l) ∈ N such that there holds
|πk(l),l(sj) − π̃l(sj)| <

1
l for j ∈ {1, 2, . . . , l}. Moreover, recalling π ∈ Lip1(E) we

observe that π̃l converges to π from above, pointwise on {s1, s2, s3, . . .}. All in all
we may conclude that πl := πk(l),l belong to A and converge pointwise to π on
{s1, s2, s3, . . .}. Thus, introducing the pseudodistance

(3.1) dp(π̃, π) :=

∞∑

j=1

2−j |π̃(sj)− π(sj)|

1 + |π̃(sj)− π(sj)|

we have liml dp(πl, π) = 0 and A is dense with respect to dp. Since {s1, s2, s3, . . .} is
dense in Σ and Lip1(E) is a class of equi-continuous functions, dp induces pointwise
convergence on Σ. �

In fact, the stated version of Lemma 3.1 is sufficient for our needs. Nevertheless,
let us add a brief comment on variants for general metric spaces E.

Remark 3.2. In particular, all weakly separable metric spaces E in the sense of

[3, Definition 1.1] can be isometrically embedded into duals of separable spaces,

and Lemma 3.1 applies to them. However, a more plain and well-known version

of Lemma 3.1 without w∗-continuity holds for arbitrary metric spaces (E, dE) not

necessarily embedded into any normed space. In fact, replacing ‖y − sj‖X∗ with

dE(y, sj) and changing the definition of ai,j,k to ai,j,k(y) := ri + dE(y, sj) this

can be proved along the lines of the preceding reasoning, which in fact considerably

simplifies in this case, since ai,j,k and πk,l = π̃l do not depend on k.

Next we record a continuity property of currents.

Proposition 3.3. Consider a complete metric space E, n ∈ N ∪ {0}, T ∈ Mn(E),
and denote by Σ a σ-compact set on which ‖T ‖ is concentrated. Then T is con-

tinuous on Lip1(E; [−1, 1]) × Lip1(E)n with respect to pointwise convergence on

Σ.

Proof. For ϕl, ϕ ∈ Lip1(E; [−1, 1]) and ϕl, ϕ ∈ Lip1(E) we suppose that (ϕl, πl)
converges pointwise to (ϕ, π) on Σ. Fixing ε > 0 we find a compact subset C
of Σ with ‖T ‖(E \ C) ≤ ε, and we observe that by the Arzelà-Ascoli theorem
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(ϕl, πl) converges uniformly to (ϕ, π) on C. Next we consider a Lipschitz extension
operator7 E : Lip1(C)

n → Lip1(E)n which carries uniform convergence on C into
pointwise convergence on E. We notice that E(π|C) = π holds on C and thus by
the locality property8 [3, Theorem 3.5] we have (T C)(ϕdπ) = (T C)(ϕdE(π|C )).
By the preceding choices and the Definition 2.8 of mass we have

|T (ϕl dπl)− T (ϕdπ)|

≤ |(T C)((ϕl − ϕ) dπl)|+ |(T C)(ϕdπl)− (T C)(ϕdπ)| + 2‖T ‖(E \ C)

≤

∫

C

|ϕl − ϕ| d‖T ‖+ |(T C)(ϕdE(πl|C))− (T C)(ϕdE(π|C ))|+ 2ε .

Since ϕl converges uniformly to ϕ on C the first term on the right-hand side vanishes
in the limit l → ∞. For the second term we get the same conclusion from the
continuity axiom since E(πl|C) converges pointwise to E(π|C) by the choice of E .
Sending ε to 0, we arrive at the claimed continuity property of T . �

We remark that for normal currents Proposition 3.3 can alternatively be inferred
from the equi-continuity property of Lemma 2.12 without using a Lipschitz exten-
sion operator. A refinement of this approach will be used in the following proof of
the compactness result.

Combining Lemma 3.1 and Proposition 3.3 we get some useful conclusions about
w∗-convergence. Here, the second and the third assertion have already been proved
in [3, Proposition 6.3], but we believe that the present approach naturally yields
these claims by a slightly different line of argument, which does not employ the
extension theorem [3, Theorem 6.2].

Corollary 3.4. Consider a separable normed space X and n ∈ N ∪ {0}. Then

• every T ∈ Mn(X
∗) is already determined by its action on the w∗-continuous

(ϕ, π) ∈ Lipb(X
∗)× Lip(X∗)n,

• w∗-limits in the sense of Definition 2.15 are unique,

• whenever Th ∈ Mn(X
∗) w∗-converges to T ∈ Mn(X

∗) we have lower semi-

continuity of the mass

M(T ) ≤ lim inf
h

M(Th) .

Proof. We choose some σ-compact (and hence separable) set Σ ⊂ X∗ on which ‖T ‖
is concentrated. Applying Lemma 3.1 with E := X∗ we use A[−1,1] ×An and d1+n

p

as defined after the statement of the lemma. By Proposition 3.3 the restriction
of T to Lip1(X

∗; [−1, 1]) × Lip1(X
∗)n is continuous and uniquely determined by

its values on the dense subset A[−1,1] × An. Since A[−1,1] × An contains only w∗-
continuous functions, the first claim follows by multilinearity, and the second one
is a direct consequence. To derive the third claim we fix m ∈ N and L ∈ [0, 1] for
the moment. From Definitions 2.15 and 2.8 we get

(3.2)
m∑

i=1

|ϕi| ≤ L on X∗ =⇒
m∑

i=1

T (ϕi dπi) ≤ L lim inf
h

M(Th) ,

first for all w∗-continuous (ϕi, πi) ∈ Lip1(X
∗)1+n. Next, following an argument of

[3] we take a Lipschitz projection pL on the convex set {z ∈ R
m :

∑m
i=1 |zi| ≤ L} in

7A well-known version of such an operator is defined by (Eπ)i(y) := minx∈C

[
πi(x)+dE(y, x)]

for y ∈ E and i ∈ {1, 2, . . . , n}.
8Alternatively one may directly use the axioms in a brief approximation argument.
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R
m and consider the collection Am

L := {pL◦(ψ
1, ψ2, . . . , ψm) : ψi ∈ A} of joint cut-

offs. For all (ϕi, πi) ∈ Lip1(X
∗)1+n which satisfy the hypothesis of (3.2) we can now

approximate πi from An as before and (ϕ1, ϕ2, . . . , ϕm) from Am
L pointwise on Σ.

Then (3.2) carries over9 to such (ϕi, πi) by the continuity of T from Proposition 3.3,
and by multilinearity (3.2) finally extends to all (ϕi, πi) ∈ Lipb(X

∗) × Lip1(X
∗)n.

As m ∈ N is arbitrary, the claim now follows by the characterization of mass from
[3, Proposition 2.7]. �

4. Proof of the compactness result

Relying on Lemma 3.1 we now implement the proof of our compactness result.

4.1. The case of equi-bounded supports. We start with the following partic-
ular case of Theorem 1.4.

Theorem 4.1. Theorem 1.4 holds true if we strengthen (1.4) to the requirement

that ⋃

h∈N

sptTh is bounded.

Proof of Theorem 4.1. We assume that a neighborhood of
⋃

h∈N sptTh is contained

in some fixed closed ball BR(0) in X∗. Relying on the locality axiom, we may
and will regard10 the Th as normal currents in BR(0) without changing M(Th) or
M(∂Th).

Step 1. There is a limit functional T on A[−1,1] ×An.

We endow the ball BR(0) with a ‖ · ‖w∗-distance inducing the w∗-topology; see
(2.1). By Theorem 2.1 BR(0) is a compact metric space with this distance, which
is denoted by K in the following. In contrast, if we make use of the norm distance,
then we will write E for the ball BR(0). By the separability of X∗ and Lemma 2.3
we do not need to distinguish between finite (signed) Borel measures on E and K.
Consequently, we may regard ‖Th‖ and ‖∂Th‖ as measures on K. Taking into ac-
count (1.3) and the above remarks after Theorems 2.1 and 2.2, some subsequences
‖Th(k)‖ and ‖∂Th(k)‖ w∗-converge to finite Borel measures µ and ν on K, respec-
tively, in the duality with Cb(K) according to Theorem 2.2. By w∗-semicontinuity
of the norm we furthermore infer

(4.1) µ(K) ≤ lim inf
k

‖Th(k)‖(K) ≤M , ν(K) ≤ lim inf
k

‖∂Th(k)‖(K) ≤M∂ .

Next we view µ and ν as finite Borel measures on E, and by Ulam’s theorem [5,
7.1.7] we choose some σ-compact (and in particular separable) set Σ ⊂ E on which
µ+ν is concentrated. We denote by A[−1,1] × An the corresponding dense subset
of Lip1(E; [−1, 1]) × Lip1(E)n, as explained after Lemma 3.1, and for π ∈ An we
consider the functionals Fπ

h ∈ Cb(K)∗ defined by

〈Fπ
h , ϕ〉 := Th(ϕdπ) for ϕ ∈ Cb(K) .

9Actually, the Lipschitz constants of the approximations of ϕi are uniformly bounded by the
Euclidean Lipschitz constant of pL, but in general not by 1. However, in view of multilinearity,
Proposition 3.3 still guarantees continuity along such approximations.

10We record one out of several ways to formalize this change of view: One may replace Th with
p♯Th, where p : X∗ → BR(0) is any Lipschitz map with p(y) = y for y ∈ BR(0). Indeed, from

spt ∂Th ⊂ spt Th ⊂ BR(0) and the locality axiom one concludes ‖p♯Th‖ = p♯‖Th‖, ‖∂p♯Th‖ =

p♯‖∂Th‖, and i♯p♯Th = Th for the inclusion i : BR(0) → X∗, which is sufficient in order to justify

this replacement.
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From Definition 2.8 we see ‖Fπ
h ‖Cb(K)∗ ≤ M(Th), and by (1.3) the Fπ

h are uniformly
bounded in Cb(K)∗. Exploiting by a diagonal argument that An is countable we
may pass to some further subsequence, still indexed with h(k), such that Fπ

h(k) w
∗-

converge to some Fπ in C(K)∗ for all π ∈ An. At this stage we start constructing
the limit current T , which is first defined on A[−1,1] ×An by

T (ϕdπ) := 〈Fπ, ϕ〉 for ϕ ∈ A[−1,1] and π ∈ An .

Here, Fπ is well-defined on ϕ since A[−1,1] ⊂ Cb(K) holds by Lemma 3.1.

Step 2. The functional T is continuous and extends to Lip1(E; [−1, 1])×Lip1(E)n.
We will prove that T is uniformly continuous on A[−1,1] × An with respect to

the pseudodistance d1+n
p introduced after Lemma 3.1, see also (3.1). Actually,

for ϕ, ϕ̃ ∈ A[−1,1] and π, π̃ ∈ An we have by the definition of T , Definition 2.8,
Lemma 2.12, and the construction of µ and ν

(4.2)
∣∣T (ϕ̃dπ̃)− T (ϕdπ)

∣∣

= lim
k

∣∣Th(k)(ϕ̃dπ̃)− Th(k)(ϕdπ)
∣∣

= lim
k

∣∣Th(k)((ϕ̃− ϕ) dπ̃) + Th(k)(ϕdπ̃)− Th(k)(ϕdπ)
∣∣

≤ lim
k

[ ∫

K

|ϕ̃− ϕ| d‖Th(k)‖+ 2

n∑

i=1

∫

K

|π̃i − πi| d
(
‖Th(k)‖+‖∂Th(k)‖

)]

=

∫

Σ

|ϕ̃− ϕ| dµ+ 2

n∑

i=1

∫

Σ

|π̃i − πi| d(µ+ν) ,

where we made decisive use of the fact that ϕ, ϕ̃, πi, π̃i are in Cb(K) by the choice
of A. Now we fix (ϕ, π) ∈ A[−1,1] ×An and let (ϕ̃, π̃) tend to (ϕ, π) with respect to

d1+n
p . Then, by the dominated convergence theorem with bound supΣ |ϕ̃ − ϕ| ≤ 2

the first term on the right-hand side of (4.2) converges to 0. Moreover, by the
1-Lipschitz continuity of πi, π̃i on Σ ⊂ BR(0) we have

sup
Σ

|π̃i − πi| ≤ 2R+ |π̃i(0)− πi(0)| ,

and thus also the second term on the right-hand side of (4.2) vanishes in the limit by
dominated convergence. As (ϕ, π) ∈ A[−1,1]×A

n is arbitrary, this proves continuity

of T on A[−1,1] ×An with respect to d1+n
p . Since both the right-hand side of (4.2)

and d1+n
p ((ϕ̃, π̃), (ϕ, π)) depend on (ϕ, π) only through the differences (ϕ̃−ϕ, π̃−π),

we even infer the claimed uniform continuity. Recalling that A is dense in Lip1(E)
(and A[−1,1] in Lip1(E; [−1, 1])) we may extend T in a unique way to a continuous

function, with respect to d1+n
p , on Lip1(E; [−1, 1])× Lip1(E)n.

Step 3. T extends to Lip(E)×Lip(E)n and satisfies the axioms of an n-current.
We claim that

T ((rϕ+ ϕ̃) dπ) = rT (ϕdπ) + T (ϕ̃dπ)

holds for r ∈ R, whenever ϕ, ϕ̃, rϕ+ ϕ̃ ∈ Lip1(E; [−1, 1]) and πi ∈ Lip1(E). In fact,
this the claim is immediate by the construction of T from the linear functionals
Fπ: it first follows if the previous functions are all in A[−1,1] and A, respectively,
and then it easily extends by continuity. Similarly, one verifies linearity properties
of T in the component functions πi, which carry over from the Th(k) to the Fπ. In

conclusion, we may extend T to a (1+n)-linear map11 Lip(E)×Lip(E)n → R, and

11Note that on the ball E we have Lipb(E) = Lip(E).
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this extension is unique. We now check T satisfies the axioms of a current from
Definition 2.10. The multilinearity axiom is obviously valid by the last extension
step, and the continuity axiom follows from the continuity of T with respect to d1+n

p

on Lip1(E; [−1, 1])×Lip1(E)n. Finally, with some more effort we verify the locality
axiom. We consider (ϕ, π) ∈ Lip1(E; [−1, 1])×Lip1(E)n such that some πi0 equals
a constant s ∈ R on a neighborhood of sptϕ. Using the σ-compactness of Σ for a
given ε > 0 we find a compact set C with (µ+ν)(Σ \C) ≤ ε. Then, by Lemma 2.4
there is some w∗-continuous Lipschitz function η : E → [−1, 1] with η ≡ −1 on
C ∩ spt (πi0−s) and η ≡ 1 on C ∩ sptϕ. For later use we record that the lemma
also yields an ε-independent bound12 for Lip(η). Next, for (ϕ̃, π̃) ∈ A[−1,1]×An we
estimate via Definition 2.8 and Lemma 2.13

(4.3)

|T (ϕ̃dπ̃)| = lim
k

|Th(k)(ϕ̃dπ̃)|

= lim
k

|Th(k)((1−η+)ϕ̃dπ̃) + Th(k)(η+ϕ̃dπ̃)|

≤ lim sup
k

[∫

K

(1−η+)|ϕ̃| d‖Th(k)‖

+ (sup
E

|η+ϕ̃|+ Lip(η+ϕ̃))

∫

spt η+

|π̃i0−s| d
(
‖Th(k)‖+‖∂Th(k)‖

)]

≤

∫

K

(1−η+)|ϕ̃| dµ+ (2 + Lip(η))

∫

{η≥0}

|π̃i0−s| d(µ+ν)

≤

∫

Σ∩{η 6=1}

|ϕ̃| dµ+ (2 + Lip(η))

∫

Σ∩{η 6=−1}

|π̃i0−s| d(µ+ν) .

Here, we also used that ϕ̃, π̃i0 , and η+ are w∗-continuous and that the intermediate
one of the three sets spt η+ ⊂ {η ≥ 0} ⊂ {η 6= −1} is w∗-closed in K. Now we
send (ϕ̃, π̃) to (ϕ, π) with respect to d1+n

p in the resulting estimate. Then the left-
hand side of (4.3) converges to |T (ϕdπ)| by the continuity of T . By dominated
convergence with the bounds

(4.4) sup
Σ

|ϕ̃| ≤ 1 and sup
Σ

|π̃i0−s| ≤ R+ |π̃i0 (0)− s|

also the right-hand side of (4.3) converges to its analogue with ϕ̃ and π̃ replaced
by ϕ and π, respectively. Since ϕ vanishes on C ∩ {η 6= 1} and πi0−s vanishes on
C ∩ {η 6= −1}, all in all we come out with

|T (ϕdπ)| ≤

∫

Σ\C

|ϕ| dµ+ (2 + Lip(η))

∫

Σ\C

|πi0−s| d(µ+ν) .

Now we exploit (µ+ν)(Σ \ C) ≤ ε and use the analogue of (4.4) for ϕ and π to
arrive at

|T (ϕdπ)| ≤ ε+ (2 + Lip(η))(R + |πi0(0)− s|)ε .

Recalling that Lip(η) is bounded ε-independently we finally conclude T (ϕdπ) = 0,
and the locality axiom is verified.

Step 4. There hold T ∈ Nn(E), M(T ) ≤M , and M(∂T ) ≤M∂.

We observe

|T (ϕdπ)| = lim
k

|Th(k)(ϕdπ)| ≤ lim
k

∫

E

|ϕ| d‖Th(k)‖ =

∫

E

|ϕ| dµ

first for (ϕ, π) ∈ A[−1,1] × An. By continuity with respect to d1+n
p — which we

proved for the left-hand side and which is much simpler to check for the right-hand

12In fact, the lemma gives Lip(η) ≤ 16/dist(sptϕ, spt (πi0−s)).
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side — the resulting inequality extends to all (ϕ, π) ∈ Lip1(E; [−1, 1])× Lip1(E)n,
and this proves that T has finite mass in the sense of Definition 2.8 and ‖T ‖ ≤ µ.
Having checked the the axioms of a current in the previous step we infer T ∈ Mn(E),
and in view of (4.1) we have M(T ) ≤ M . As mentioned after Definition 2.11, to
check that T is normal it only remains to verify that the ∂T has finite mass. To
this end we first compute

|T (d(ϕ, π))| = lim
k

|Th(k)(d(ϕ, π))|

= lim
k

|∂Th(k)(ϕdπ)| ≤ lim
k

∫

E

|ϕ| d‖∂Th(k)‖ =

∫

E

|ϕ| dν ,

for (ϕ, π) ∈ A × An−1. The resulting inequality carries over to all (ϕ, π) ∈
Lip1(E)× Lip1(E)n−1, and from the definitions of boundary and mass we see that
∂T has finite mass and ‖∂T ‖ ≤ ν. In view of (4.1) we also get M(∂T ) ≤M∂.

Step 5. Th(k) w
∗-converges to T in X∗ in the sense of Definition 2.15.

We fix ϕ ∈ Cb(K) ∩ Lip1(E; [−1, 1]), πi ∈ Cb(K) ∩ Lip1(E) and we notice that —
repeating in parts a previous reasoning — one may obtain the estimate

(4.5) lim
A[−1,1]×An∋(ϕ̃,π̃)→(ϕ,π)

[
lim
k

∣∣Th(k)(ϕ̃dπ̃)− Th(k)(ϕdπ)
∣∣
]
= 0 .

In fact, the relevant arguments in order to establish (4.5) are precisely those starting
from the second line of (4.2). Keeping in mind that ϕ and πi are in Cb(K), these
arguments apply unchanged, and we do not repeat them. Proceeding with the proof
we notice

(4.6)
lim

A[−1,1]×An∋(ϕ̃,π̃)→(ϕ,π)

[
lim
k
Th(k)(ϕ̃ dπ̃)

]
= lim

A[−1,1]×An∋(ϕ̃,π̃)→(ϕ,π)
T (ϕ̃dπ̃)

= T (ϕdπ) ,

where we used the construction and the continuity of T with respect to d1+n
p once

more. Combining (4.5) and (4.6) we arrive at

(4.7) lim
k
Th(k)(ϕdπ) = T (ϕdπ) ,

which by multilinearity stays true for all ϕ, πi ∈ Cb(K) ∩ Lip(E). At this point
we return to our original point of view and we reconsider13 the Th(k) and T as

n-currents in X∗ (with supports in BR(0)). Then the convergence in (4.7) remains
true for all w∗-continuous (ϕ, π) ∈ Lipb(X

∗)×Lip(X∗)n, and thus we have proved
that Th(k) w

∗-converges to T ∈ Nn(X
∗) with M(T ) ≤M and M(∂T ) ≤M∂ . �

4.2. The general case. Following the proof of [3, Theorem 6.6] we now use slicing
by large balls in order to establish the full statement of Theorem 1.4. For our
purposes it will be sufficient to define slices of normal currents T ∈ Nn(E) for a
complete metric space E and n ∈ N by

(4.8) 〈T, y0, R〉 := ∂(T BR(y0))− (∂T ) BR(y0)

for y0 ∈ E and 0 < R <∞. The slicing theorem [3, Theorem 5.6] then implies that
spt〈T, y0, R〉 is contained in the sphere {y ∈ E : dE(y, y0) = R}, that

〈T, y0, R〉 ∈ Nn−1(E)

13Formally, one may use the push-forward along the inclusion i : BR(0) → X∗ here; compare
the footnote at the beginning of the proof.
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is a normal current for L1-almost every R > 0, and that we have

(4.9)

∫ ∞

0

M(〈T, y0, R〉) dR ≤ M(T )

(with L1-measurable integrand on the left-hand side). The next simple lemma will
be useful in order to choose good radii.

Lemma 4.2. Consider a complete metric space E, y0 ∈ E, n ∈ N, T ∈ Nn(E),
Γ > 0, and a Borel function f : (0,∞) → [0,∞). Then for every Borel subset G of

(0,∞) with
∫
G
f dR ≥ Γ there is some R ∈ G such that 〈T, y0, R〉 is normal with

M(〈T, y0, R〉) ≤ Γ−1M(T )f(R) .

Proof. We fixG with
∫
G
f dR ≥ Γ and assume the claim to be wrong. Then the inte-

gral on the left-hand side of (4.9) would be strictly larger than Γ−1M(T )
∫
G f(R) dR

and would thus exceed M(T ). Hence, we arrive at a contradiction to (4.9). �

At this point we are in the position to conclude the compactness proof.

Proof of Theorem 1.4. We only deal with the case n ≥ 1, since the case n = 0 can
be treated by a much simpler variant of the following reasoning. By Lemma 4.2 with
f ≡ 1 and Γ = m ∈ N we can choose some Rm

h ∈ [m, 2m) with M(〈Th, 0, R
m
h 〉) ≤

m−1M(Th). Setting

Tm
h := Th BRm

h
(0)

and keeping (4.8) in mind we thus have sptTm
h ⊂ B2m(0), M(Tm

h ) ≤ M(Th) ≤M ,
and M(∂Tm

h ) ≤ M(∂Th) + m−1M(Th) ≤ M∂ + m−1M . All in all, we conclude
that (Tm

h )h∈N satisfies the assumptions of Theorem 4.1, and thus for a subsequence
Tm
h(k) w

∗-converges to some Tm ∈ Nn(X
∗) with

(4.10) M(Tm) ≤M and M(∂Tm) ≤M∂ +m−1M .

Here, by a diagonal argument we may assume that this convergence is valid on
the same subsequence h(k) independent of m ∈ N. Using the semicontinuity of
Corollary 3.4 we find

(4.11)

M(Tm − T m̃) ≤ lim inf
k

M(Tm
h(k) − T m̃

h(k))

≤ sup
h∈N

[
M(Th − Tm

h ) +M(Th − T m̃
h )

]

≤ sup
h∈N

[
‖Th‖(X

∗ \Bm(0)) + ‖Th‖(X
∗ \Bm̃(0))

]
.

In view of (1.4) this implies

lim sup
min{m,m̃}→∞

M(Tm − T m̃) = 0 ,

and (Tm)m∈N is a Cauchy sequence in the Banach space Mn(X
∗) with the mass

norm. Consequently, Tm converges to some T ∈ Mn(X
∗) in mass and in particular

weakly. We observe

lim sup
k

|Th(k)(ϕdπ)− T (ϕdπ)|

≤ lim sup
k

|Th(k)(ϕdπ) − Tm
h(k)(ϕdπ)| + |Tm(ϕdπ)− T (ϕdπ)|

≤ sup
h∈N

‖Th‖(X
∗ \Bm(0)) sup

X∗

|ϕ|

n∏

i=1

Lip(πi) + |Tm(ϕdπ) − T (ϕdπ)|
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for all w∗-continuous (ϕ, π) ∈ Lipb(X
∗)× Lip(X∗)n. Sending m → ∞, using (1.4)

once more, and exploiting the construction of T we conclude that Th(k) w
∗-converges

to T . In order to control ∂T we repeat the estimate (4.11) for the boundaries, and
involving (1.4) once more we conclude that (∂Tm)m∈N is a Cauchy sequence, which
converges to some S ∈ Mn−1(X

∗) in mass and weakly. From Definition 2.6 and
the weak convergences of Tm and ∂Tm we get ∂T = S, and in particular T is
normal. Finally we have M(T ) = limm M(Tm) ≤ M and M(∂T ) = M(S) =
limm M(∂Tm) ≤ limm(M∂ +m

−1M) =M∂ by convergence in mass and (4.10). �

5. Proofs of the existence results

In this section we implement the proofs of Theorem 1.1, Corollary 1.2, and
Theorem 1.3.

5.1. Plateau’s problem. At this stage a simple existence proof for the Plateau
problem can be given for the bounded boundaries S of Corollary 1.2 in separable
Hilbert spaces H. Actually, projections onto balls in H are Lip1-functions, and the
pushforward under such projections decreases mass. Starting from this observation
the boundedness of sptS implies that one may always pass to a minimizing sequence
with equi-bounded supports. For such a sequence Theorem 4.1 yields compactness,
and existence is readily proved by the direct method of the calculus of variations.
Thus, in this situation we do not need the full strength of Theorem 1.4, but just
the weaker statement of Theorem 4.1 for the equi-bounded case; in particular, we
can avoid all slicing arguments.

We have not been able to mimic the same approach to Corollary 1.2 for bounded
boundaries in Banach spaces without Hilbertian structure, and actually we do
not know whether minimizing sequences or the minimizers of Corollary 1.2 have
bounded support in this generality. Consequently, we are forced to work with pos-
sibly unbounded supports in the following. We will see that in this setup the full
statements of Theorems 1.1 and 1.4 and the w∗-tightness condition (1.4) appear
quite naturally.

Proof of Theorem 1.1. We first prove the claim for normal currents. Since by as-
sumption Fillmass(S) is finite, the admissible set

A := {C ∈ Nn(X
∗) : ∂C = S}

is non-empty, and for the remainder of the proof we can fix a V ∈ Nn(X
∗) with

∂V = S. Moreover, we may choose a minimizing sequence (Th)h∈N in A with

lim
h

M(Th) = inf
C∈A

M(C) .

In order to apply Theorem 1.4 we will now prove that this sequence satisfies (1.4).
For arbitrary ε > 0 we choose a radius R0 with

‖V ‖(X∗ \BR0(0)) ≤ ε ,

and setting Γ := ε−1 suph∈NM(Th−V ) < ∞ we fix m ∈ N with
∫ R0+m

R0
R−1 dR ≥

Γ. Then Lemma 4.2 with f(R) = R−1 provides further radii Rh ∈ [R0, R0 +m)
such that we have 〈Th−V, 0, Rh〉 ∈ Nn−1(X

∗) and

M(〈Th−V, 0, Rh〉) ≤ Γ−1M(Th−V )R−1
h ≤ εR−1

h .

In view of ∂Th = ∂V = S, (4.8) gives

(5.1) ∂((Th−V ) BRh
(0) + V ) = 〈Th−V, 0, Rh〉+ S ,
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and in particular we have ∂〈Th−V, 0, Rh〉 = −∂S = −∂∂V ≡ 0. Consequently,
relying on the cone construction [3, Definition 10.1 and Proposition 10.2] there are
Ch ∈ Nn(X

∗) with

(5.2) ∂Ch = 〈Th−V, 0, Rh〉

and

M(Ch) ≤ RhM(〈Th−V, 0, Rh〉) .

It follows from (5.1) and (5.2) that ∂((Th−V ) BRh
(0) + V − Ch) = S holds and

the currents (Th−V ) BRh
(0)+V −Ch are in the admissible class A. Testing with

these currents and putting things together we infer

inf
C∈A

M(C) ≤ ‖Th‖(BRh
(0)) + ‖V ‖(X∗ \BRh

(0)) +M(Ch)

≤ ‖Th‖(BR0+m(0)) + ‖V ‖(X∗ \BR0(0)) +RhM(〈Th − V, 0, Rh〉)

≤ M(Th)− ‖Th‖(X
∗ \BR0+m(0)) + 2ε .

We rewrite the resulting inequality as

‖Th‖(X
∗ \BR0+m(0)) ≤ 2ε+M(Th)− inf

C∈A
M(C)

and exploit it in the next estimate. Moreover, we use that ‖Th‖(X
∗ \BR(0)) tends

to 0 for R → ∞, and that this convergence stays true for finite suprema. Thus, for
arbitrarily fixed k ∈ N we get

lim
R→∞

sup
h∈N

‖Th‖(X
∗ \BR(0))

≤ lim
R→∞

sup
h>k

‖Th‖(X
∗ \BR(0)) + lim

R→∞
sup
h≤k

‖Th‖(X
∗ \BR(0))

≤ sup
h>k

‖Th‖(X
∗ \BR0+m(0))

≤ 2ε+ sup
h>k

M(Th)− inf
C∈A

M(C) .

Recalling that (Th)h∈N is a minimizing sequence, we send k → ∞ and ε ց 0 to
conclude

lim
R→∞

sup
h∈N

‖Th‖(X
∗ \BR(0)) = 0 .

Since the boundary ∂Th = S is fixed, we trivially have

lim
R→∞

sup
h∈N

‖∂Th‖(X
∗ \BR(0)) = lim

R→∞
‖S‖(X∗ \BR(0)) = 0 .

Therefore we have established the validity of the tightness assumption (1.4) in
Theorem 1.4. Exploiting once more that (Th)h∈N is a minimizing sequence with
fixed boundary, also the boundedness assumptions in Theorem 1.4 are available,
and the theorem yields a subsequence Th(k) w∗-converging to some T ∈ Nn(X

∗).
From Corollary 3.4 we get ∂T = S and

M(T ) ≤ lim inf
k

M(Th(k)) = inf
C∈A

M(C) .

Hence, the proof for the case of normal currents is complete.
For integral currents we use an analogous reasoning. Indeed, the only change is

that we make use of a couple of additional results from [3], namely the closure theo-
rem for integer-rectifiable currents and the facts that slicing and cone construction
preserve integer-rectifiability; see Theorems 5.7, 8.5, and 10.4 in [3]. �



PLATEAU PROBLEM IN DUAL BANACH SPACES 19

Proof of Corollary 1.2. It suffices to show for given S that the assumptions of Corol-
lary 1.2 imply those of Theorem 1.1. Indeed, by [3, Definition 10.1 and Proposi-
tion 10.2] every S ∈ Nn−1(X

∗) with sptS ⊂ BR(0) and ∂S ≡ 0 can be written as
the boundary ∂C of a cone C ∈ Nn(X

∗) (with M(C) ≤ RM(S)) and thus satisfies
Fillmass(S) < ∞. Furthermore, every S ∈ I0(X

∗) with ∂S ≡ 0 has automatically
bounded support, by [3, Theorem 10.4] the corresponding cone is in I1(X

∗), and
we get Fillvol(S) < ∞ in this case. Finally, in the case n ≥ 2 [13, Corollary 1.3]
implies that for every S ∈ In−1(X

∗) with ∂S ≡ 0 there exists some C ∈ In(X
∗)

with ∂C = S (and M(C) ≤ DnM(S)
n

n−1 for a dimensional constant Dn). Thus,
also in this case there holds Fillvol(S) <∞. �

5.2. The free boundary problem. By quite similar means we next establish our
existence statement including free boundaries.

Proof of Theorem 1.3. We start proving the claim for normal currents. We choose
a minimizing sequence (Th)h∈N in Nn(X

∗) with

(5.3) lim
h

[
M(Th)+M(∂Th−S)

]
= inf

C∈Nn(X∗)

[
M(C)+M(∂C−S)

]
≤ M(S) <∞ .

In order to apply Theorem 1.4 we will now prove that this sequence satisfies (1.4).
For arbitrary ε > 0 we choose a radius R0 with

‖S‖(X∗ \BR0(0)) ≤ ε ,

and we set Γ := ε−1 suph∈NM(Th) < ∞. Then Lemma 4.2 with f ≡ 1 provides
further radii Rh ∈ [R0, R0+Γ) such that we have 〈Th, 0, Rh〉 ∈ Nn−1(X

∗) and

M(〈Th, 0, Rh〉) ≤ Γ−1M(Th) ≤ ε .

Moreover, from (4.8) we get

∂(Th BRh
(0))− S = (∂Th−S) BRh

(0)− S (X∗ \BRh
(0)) + 〈Th, 0, Rh〉 .

Since the masses of the last two terms on the right-hand side of the preceding
formula are controlled by ε, testing with Th BRh

(0) we infer

inf
C∈Nn(X∗)

[
M(C) +M(∂C − S)

]

≤ M(Th BRh
(0)) +M(∂(Th BRh

(0))− S)

≤ (‖Th‖+‖∂Th − S‖)(BRh
(0)) + 2ε

≤ M(Th) +M(∂Th − S)− (‖Th‖+‖∂Th‖)(X
∗ \BR0+Γ(0)) + 3ε .

We rewrite the resulting inequality as

(‖Th‖+‖∂Th‖)(X
∗ \BR0+Γ(0))

≤ 3ε+M(Th) +M(∂Th − S)− inf
C∈Nn(X∗)

[
M(C) +M(∂C − S)

]

and exploit it in the next estimate. We also use that (‖Th‖+‖∂Th‖)(X
∗ \ BR(0))

tends to 0 for R → ∞, and that this convergence stays true for finite suprema.
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Thus, for arbitrarily fixed k ∈ N we get

lim
R→∞

sup
h∈N

(‖Th‖+‖∂Th‖)(X
∗ \BR(0))

≤ lim
R→∞

sup
h>k

(‖Th‖+‖∂Th‖)(X
∗ \BR(0)) + lim

R→∞
sup
h≤k

(‖Th‖+‖∂Th‖)(X
∗ \BR(0))

≤ sup
h>k

(‖Th‖+‖∂Th‖)(X
∗ \BR0+Γ(0))

≤ 3ε+ sup
h>k

[
M(Th) +M(∂Th − S)

]
− inf

C∈Nn(X∗)

[
M(C) +M(∂C − S)

]
.

Recalling (5.3) we send k → ∞ and εց 0 to conclude

lim
R→∞

sup
h∈N

(‖Th‖+‖∂Th‖)(X
∗ \BR(0)) = 0 ,

and hence we have indeed established the validity of the tightness assumption (1.4)
in Theorem 1.4. Exploiting (5.3) once more also the boundedness assumptions
in Theorem 1.4 are available, and the theorem yields a subsequence Th(k) w∗-
converging to some T ∈ Nn(X

∗). As a consequence also ∂Th(k)−S w∗-converges to
∂T−S and from Corollary 3.4 we get

M(T ) +M(∂T − S) ≤ lim inf
k

[
M(Th(k)) +M(∂Th(k) − S)

]

= inf
C∈Nn(X∗)

[
M(C) +M(∂C − S)

]
.

Hence, the proof for the case of normal currents is complete.
In the case of integral currents we choose the minimizing sequence (Th)h∈N in

In(X
∗) and argue in a completely analogous way. As the only change we addition-

ally apply the closure theorem for integer-rectifiable currents [3, Theorem 8.5] at
the very end of our reasoning to conclude T ∈ In(X

∗). �

Appendix A. An abstract extension

In this appendix we consider a separable Banach space Y with an additional
topology W which is weaker than the norm topology. If W satisfies suitable (com-
pactness) assumptions, then it can indeed take the role of the w∗-topology in our
arguments, and we have the following abstract extension of our main results.

Theorem A.1. For a separable Banach space Y suppose that (Y,W) is a topological

vector space with a topology W, weaker than the norm topology. Moreover, assume

that

(A.1) W is boundedly metrizable and boundedly compact,

that is closed norm balls in Y are compact with respect to W, and the trace of W
on such balls is induced by a distance. Then our existence results hold verbatim with

Y in place of X∗. Likewise, Theorem 1.4 extends when w∗-convergence is replaced

by the appropriate concept of W-convergence.

We stress that Theorem A.1 potentially applies to non-dual spaces Y . To men-
tion one concrete example we briefly comment on the choice Y := L log L([0, 1]) of
the Zygmund space (with the Luxemburg norm). We embed14 L logL([0, 1]) in the
space M([0, 1])=̃Cb([0, 1])

∗ of finite signed Borel measures measures on [0, 1], and
we take W as the trace of the w∗-topology. Then the assumptions of Theorem A.1
are valid and we come out with existence results in L logL([0, 1]).

14We here refer to the continuous linear embedding which assigns to f ∈ L log L([0, 1]) the
weighted Lebesgue measure on [0, 1] with weight function f .
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After all, the preceding example still relies on a w∗-topology on a w∗-closed sub-
space of a dual, and it could in fact be treated in a less abstract way. Nevertheless
— even though we are not aware of a definite application to a true non-w∗-topology
— we believe that Theorem A.1 may still be of interest in order to single out those
properties of duals and the w∗-topology which are essential for the existence pro-
gram.

From the assumptions of Theorem A.1 one can draw a couple of conclusions
about the topology W . We mention the following two: On the one hand we observe
thatW coincides with the norm topology on all norm-(locally-)compact subsets and
in particular on all finite-dimensional subspaces of Y . On the other hand W sees
the norm of Y in the sense of

(A.2) ‖y‖Y = sup{ϕ(y) : ϕ ∈ Lip1(Y ) is W-continuous with ϕ(0) = 0}

for all y ∈ Y . In fact, to establish (A.2) it suffices to extend the function ϕ on {0, y}
with ϕ(0) := 0 and ϕ(y) := ‖y‖Y to a W-continuous Lip1-function on Y . Such an
extension can in turn be found by a straightforward adaption of the arguments in
the proof of [3, Theorem 6.2].

On the proof of Theorem A.1. We check that under the present assumptions our
preliminary lemmas hold for W in place of the w∗-topology.

First of all, in case of Lemma 2.3 this is obvious from its proof.
Regarding Lemma 2.4 only the first step of the proof needs a slight modification:

indeed, we replace X∗ with Y and the mapping y 7→ 〈y − yP , x〉 with ϕ, where
ϕ ∈ Lip1(Y ) isW-continuous with ϕ(yP ) = 0 and ϕ(yQ) ≥

1
2 (‖yQ−yP‖Y +rP+rQ).

Here, the choice of a suitable ϕ is possible due to (A.2).
In case of Lemma 3.1 we perform a similar modification: by (A.2) we choose W-

continuous functions ϕj,h ∈ Lip1(E) with ϕj,h(sj) = 0 and ϕj,h(sh) ≥ ‖sh − sj‖Y ,
and we change the definition of ai,j,k ∈ Lip1(E) to

ai,j,k(y) := max{ri + ϕj,h(y) : h ∈ {1, 2, . . . , k}}

for y ∈ E. For y ∈ {s1, s2, s3, . . .} it follows that ai,j,k(y) converges monotonically
from below to ri + ‖y − sj‖Y as k → ∞, and this convergence suffices to conclude
the proof of the lemma in precisely the same way as before.

With all relevant preliminary lemmas at hand, the conclusions follow along the
lines of the previous sections: one can first deduce the analogue of Corollary 3.4 for
the W-convergence of currents (defined with W-continuous test functions (ϕ, π) ∈
Lipb(Y ) × Lip(Y )n), and then one proves the claimed compactness and existence
results for normal currents along the lines of Sections 4 and 5. Here, we exploit
(A.1) as a replacement for (2.1) and Theorem 2.1, but apart from that the required
changes are mostly notational ones. Regarding the existence results for integral
currents we finally rely on W-versions of the results in [3, Section 8]; once more
such versions can be established by the same arguments as in the case of the w∗-
topology. �

Appendix B. Non-separable spaces

In this appendix we show that — in remarkable contrast — our results generally
fail in non-separable duals, while they carry over to non-separable reflexive spaces.

B.1. A counterexample in non-separable duals. The following example is
inspired by an idea of Bogachev [5, 7.14.149] and illustrates the necessity of the
separability assumption on X∗.
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Example B.1. We show that the statements of Theorems 1.4 and 4.1 fail in non-

separable duals X∗, even for n = 0 and even if X is separable. Specifically, we pro-

vide counterexamples in the cases X∗=̃L∞([0, 1]) and X∗=̃M([0, 1]). As a byprod-

uct it follows that the inclusion Bw∗(X∗) ⊂ B(X∗) of Lemma 2.3 is strict in these

cases.

Construction of Example B.1. Denote by X one of the separable spaces L1([0, 1])
and Cb([0, 1]). Then it is well known that we haveX∗=̃L∞([0, 1]) andX∗=̃M([0, 1]),
respectively (compare Theorem 2.2 in the latter case). We start with a sequence
(µh)h∈N of Borel probability measures on [0, 1] such that each µh is concentrated
on a finite set and such that µh converges weakly to the Lebesgue measure L1 on

[0, 1] (for instance one can take µh =
∑h

i=1
1
hδi/h). Similar to the above proof of

Theorem 4.1 we write K for the closed ball B2(0) in X∗ endowed with the w∗-
topology. Moreover, we consider the map i : [0, 1] → K, where i(x) is defined as
the characteristic function χ[0,x) and the Dirac measure δx, respectively. In both
cases i is continuous and it follows that the i♯µh weakly converge to the finite
Borel measure i♯L

1 on K. Now the i♯µh can be regarded as Borel measures or
0-currents on X∗ (since they are concentrated on finite sets), while we claim that
i♯L

1 cannot be extended as a σ-additive set function from B(K) = Bw∗(B2(0))

to B(B2(0)). In fact, if this claim were wrong and such an extension existed,
then i♯L

1 would be concentrated on a σ-compact and thus separable subset Σ of

B2(0). Since we have ‖i(x)− i(y)‖X∗ ≥ 1 for x 6= y, the preimage i−1Σ could con-
tain at most countably many points. Thus, we would arrive at the contradiction
1 = L1([0, 1]) = L1(i−1Σ) = 0. Consequently, the above claim on the non-existence
of an extension holds. In conclusion, we have i♯µh ∈ M0(X

∗) with M(i♯µh) = 1,
but the i♯µh cannot w∗-converge to some T in M0(X

∗), since T would coincide
with i♯L

1 as a functional on Cb(K) and would yield the non-existing extension. �

Notice that Example B.1 also prevents us from covering certain separable spaces
— like L1([0, 1]) — which are naturally embedded into non-separable duals, but
are not w∗-closed there; compare [3, Example 10.7]. It remains open whether an
analysis of w∗-Borel measures (like i♯L

1 in the previous construction) could yield
any reasonable existence theorem for these cases.

B.2. Non-separable, reflexive spaces. As reflexive spaces are isometrically iso-
morphic to duals, our results evidently apply in separable, reflexive spaces. How-
ever, we will now explain that all results of the introduction remain true for every
reflexive space Y in place of X∗.

Indeed, for each sequence (Th)h∈N in Mn(Y ) there are σ-compact and hence
separable sets Σh such that Th is concentrated on Σh, and also the closure Z of
the span of

⋃∞
h=1 Σh is separable. Moreover, Z inherits reflexivity from Y , and the

corresponding w∗-topology on Z is the trace of the w∗-topology on Y . Consequently,
Theorem 1.4 easily extends to non-separable, reflexive spaces Y by applying it in
such separable subspaces Z. Once Theorem 1.4 is extended, our proofs of the
existence results carry over verbatim to non-separable, reflexive spaces Y .
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2. L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of

probability measures, Birkhäuser, Basel, 2005.
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