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Abstract. We characterize intrinsic Lipschitz functions as maps
which can be approximated by a sequence of smooth maps, with
pointwise convergent intrinsic gradient. We also provide an esti-
mate of the Lipschitz constant of an intrinsic Lipschitz function in
terms of the L∞−norm of its intrinsic gradient.

1. Introduction

In the last few years, it has been carried out an intensive study of
submanifolds inside the Heisenberg groups Hn or more general Carnot
groups, endowed with a sub-Riemannian structure. A notable class of
intrinsic C1 and Lipschitz surfaces has been identified by means of their
invariance with respect to the sub-Riemannian structure. They have
been defined in the framework of rectifiable sets (see, for instance, [2,
3, 15, 23, 24, 26, 29, 32, 35, 40]), with several applications to geometry
of Banach spaces, theoretical computer science, mathematical models
in neurosciences (see, for instance, [12, 17, 19, 30, 42]). We refer the
reader to the monograph [11] and the references therein for a more
detailed introduction to the Heisenberg group and the afore-mentioned
arguments.

Heisenberg groups Hn provide the simplest non-trivial examples of
stratified, connected and simply connected Lie groups. Their Lie alge-
bra hn can be identified with R2n+1 with the stratification

(1) hn = h1 ⊕ h2, [h1, h1] = h2 and [h1, h2] = {0},
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where h1 has dimension 2n and h2 has dimension 1. We will denote by

∇H
1 , . . . ,∇H

2n a basis of h1, ∇H
2n+1 a non zero element of h2

satisfying only the following non trivial commutations

(2) [∇H
i ,∇H

i+n] = 2∇H
2n+1 i = 1, . . . , n .

The subspace h1 canonically generates the so-called horizontal sub-
bundle HHn. The Heisenberg group (Hn, ·) can be conveniently rep-
resented by its Lie algebra equipped with the group operation arising
from the Baker-Campbell-Hausdorff formula, hence making the expo-
nential mapping equal to the identity. We will endow Hn with a homo-
geneous norm ‖·‖∗, which canonically induces a left-invariant homoge-
neous distance d on Hn, see (19). It is well known (see for example [38])
that d is equivalent to the standard Carnot-Carathéodory metric asso-
ciated to the horizontal subbundle HHn defined in a classical way by
means of h1. Moreover the metric d and the Euclidean norm | · |R2n+1 on
R2n+1 are not equivalent, even though (R2n+1, d) and (R2n+1, | · |R2n+1)
are homeomorphic. Intrinsic s-dimensional spherical Hausdorff mea-
sure Ss on Hn, s ≥ 0, is obtained from d, following Carathéodory con-
struction (see, for instance, [34]). The intrinsic metric (or Hausdorff)
dimension dimH(S) of a set S is the number

dimH(S)
def
= inf{s ≥ 0 : Ss(S) = 0}.

Here we focus only on intrinsic C1 surfaces in Hn with codimension
one, defined in [23] and extended in general dimensions and codimen-
sions, in [25]. This notion was also extended, for codimension one,
to general Carnot-Carathéodory spaces in [16] and in [33] for general
codimensions. If we choose a basis ∇H of the horizontal tangent space
at every point, and an open set U in Hn, we will say that a function
f : U → R is of class C1 if its horizontal gradient ∇Hf : U −→ R2n

is continuous. An H-regular surface is the level set of a C1 function if
its gradient never vanishes. Note that H-regular surfaces can be very
irregular from an Euclidean point of view and in general these surfaces
are not Euclidean C1 submanifolds, not even locally (see [31]). Nev-
ertheless, it can be proved that they have metric dimension 2n + 1,
topological dimension 2n, as well as they locally have finite S2n+1 mea-
sure. Moreover, at each point there is a continuously varying, intrinsic
tangent 2n-plane that is a coset of a maximal subgroup of Hn.

Implicit function theorems have been proved in this context in [23]
and yield that any H-regular surface S can be considered locally a graph
in a suitable intrinsic sense. Precisely, identifying Hn with R2n+1 by
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a suitable choice of exponential coordinates (we address the reader for
more details to Section 2), then there are two homogeneous subgroups

W := {p ∈ Hn | p = (0, x), x ∈ R2n}(3)

V := {p ∈ Hn | p = (s, 0), s ∈ R},

such that

Hn = W · V .

Moreover, for every U ⊂ Hn open there exists a relative open set ω in
W and a continuous function φ : ω −→ V such that

S ∩ U = Φ(ω)

where Φ is the graph map of φ defined by (see Remark 2.1):

Φ : ω −→ Hn, Φ(x) := (φ(x), x).(4)

Further regularity properties for the function φ have been studied in
[4, 6, 7] and [16] In particular it has been proved that if a surface
is of class C1, it locally defines an implicit function φ, which is of
class C1 with respect to suitable nonlinear vector fields ∇φ expressed
in terms of the function φ itself. This is not surprising, since non
linear vector fields often arise when studying geometric surfaces and
equations in the subriemannian context (we refer to the papers of [44]
and [13, 14], for nonlinear vector fields introduced in connection with
a Monge Ampère subelliptic equation or a Levi equation). We also
refer to the paper [18], where the nonlinear vector fields ∇φ have been
proposed for studying a problem of mathematical finance. In these
papers, it has been observed that, since the Heisenberg space has a
natural stratification, a stratification is also induced on the domain
W of φ, and, if φ was regular in the Euclidean sense, we could use the
standard notion of exponential distance, proposed and exploited in [38].
On the other side, if φ is not regular, their definition does not apply.
The notion of distance in this nonlinear context has been introduced
for the first time in [13], and exploited with minimal regularity [14]
and [18] using a freezing method, based on the exponential mapping.
The definition of distance first introduced in these papers, has been
extended in large generality in [16] and turned out to be equivalent to
the notion of distance introduced in the Heisenberg case by [4].

The notion of Lipschitz continuous function introduced in [14] is
equivalent to the one recently studied in [5], [26] [37] and [46]. However
the point of view in these papers is different from the previous ones,
since inspired by the metric structure of the ambient space (Hn, d).
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Precisely while dealing with intrinsic graphs, the distance and Lips-
chitz continuity are defined as follows:

1.1. Definition. Let ω ⊂ W ≡ R2n be an open and bounded set and
let φ : ω −→ R be a continuous function. The graph distance between
x, y ∈ ω is defined by

dφ(x, y) :=
1

2

(
‖πW(Φ(x)−1 · Φ(y))‖+ ‖πW(Φ(y)−1 · Φ(x))‖

)
(5)

where Φ is defined in (4), ‖·‖ in (18) and

(6) πW : Hn −→W πW((s, x)) := x

1.2. Definition. We say that φ : ω ⊂ W −→ R is an (intrinsic)
Lipschitz continuous function in ω and we write φ ∈ LipW(ω), if there
is a constant L > 0 such that

|φ(x)− φ(y)| ≤ Ldφ(x, y) ∀x, y ∈ ω.(7)

The Lipschitz constant of φ in ω is the infimum of the numbers L such
that (7) holds and we write Lip(φ) to denote it. Moreover, we say that
φ : ω ⊂W −→ R is a locally (intrinsic) Lipschitz function in ω and we
write φ ∈ Liploc,W(ω), if φ ∈ LipW(ω′) for every ω′ b ω. We denote by
Lip(φ, ω′) the Lipschitz constant of φ|ω′ .

Note that LipW(ω) does not turn to be a vector space (see [43, Re-
mark 4.2]). Nevertheless, the intrinsic Lipschitz functions amount to
a thick class of functions. Indeed, we have that ([26, Propositions 4.8
and 4.11])

Lip(ω) ( LipW,loc(ω) ( C
1/2
loc (ω) ,(8)

where, respectively, Lip(ω) and C
1/2
loc (ω) denote the classes of real val-

ued Euclidean Lipschitz and locally 1/2-Hölder functions on ω. The
main properties of Lipschitz functions have been proved in [26]:

1.3. Theorem. If φ ∈ LipW(ω) then it can be extended to a function
φ : W −→ R with φ ∈ LipW(W). Moreover, if ω = W and ψ, φ
are intrinsic Lipschitz functions with Lipschitz constant L, then there
exists L̄ = L̄(L) ≥ L such that max{φ, ψ} and min{φ, ψ} are intrinsic
Lipschitz with Lipschitz constant L̄.
Furthermore, the subgraph

Eφ := {(s, x) ∈ R× ω : s < φ(x) }
is a set of locally finite perimeter in Hn. Besides φ is ∇φ-differentiable

for L2n-a.e x ∈ ω, in the sense defined by [4].

Precisely
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1.4. Definition. We say that φ is ∇φ−differentiable at w0 ∈ ω if there
exists a homogeneous homomorphism L : W −→ V such that

lim
w→w0

|φ(w)− φ(w0)− L(πW(Φ(w0)−1 · Φ(w)))|
dφ(w0, w)

= 0.

The map L is called the ∇φ-differential of φ at w0.

The main properties of differentiable functions are collected in Propo-
sition 4.1.

We are now in position to state our results and describe the organi-
zation of the paper. In Section 2, we recall some standard definitions
and results of geometric measure theory in Hn. In Section 3, we study
the distance dφ. This section is organized in two parts. First, we ex-
ploit the notion of distance induced on the graph by the metric and
the group law of the Heisenberg group. Then we compare this distance
with the more classical Carnot-Carathéodory distance defined on the
domain of φ, in terms of the family of nonlinear vector fields ∇φ. We
obtain for non regular vector fields the same result true for regular ones
(see [38]), using a technique similar to the one used in [16]. Precisely
we prove that

1.5. Proposition (Equivalence). If φ ∈ LipW(ω) and n ≥ 2 then the
distance dφ is locally equivalent to the Carnot Carathéodory distance
induced by the family ∇φ, with equivalence constants only dependent
on Lip(φ, ω) (see Proposition 3.8 below).

Section 4 is devoted to the notion of intrinsic differentiability. In
particular we prove that the pointwise intrinsic gradient ∇φφ : ω −→
R2n−1 of a given φ ∈ LipW(ω), is the distributional one. The main dif-
ficulty in this assertion is that the notion of formal adjoint of the ∇φ is
not well defined in LipW(ω). We also extend the area formula for intrin-
sic C1 graphs obtained in [4] to intrinsic Lipschitz functions. Precisely,
we prove the following representation formula for the H−perimeter and
for the spherical Hausdorff (2n+ 1)−measure of the intrinsic graph of
a Lipschitz function φ in terms of its ∇φ−gradient.

1.6. Theorem. If φ ∈ LipW(ω) with ω ⊂ W open and bounded, then
there exists a dimensional constant cn > 0 such that the following area
formula hold

|∂Eφ|H(R× ω) = cn S2n+1(Φ(ω)) =

∫
ω

√
1 + |∇φφ|2 dL2n.

In Section 5, we prove the main result of this paper. It deals with
the approximation of a given intrinsic Lipschtiz function φ ∈ LipW(ω)
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as well its gradient ∇φφ, by means of regular functions. The classical
approximation by convolution does not apply because of the nonlinear-
ity of ∇φφ. Here we refine the technique used in [37], which relies on an
extension to Hn of the classical Euclidean technique which goes back to
De Giorgi ([20]). The strategy is somehow indirect, indeed we approx-
imate in Hn the intrinsic subgraph Eφ := {(s, x) ∈ Hn | s ≤ φ(x)} of a
given φ ∈ LipW(ω) (see (32)), rather than the function itself. The key
point is that Eφ is a set of locally finite H- perimeter (see Definition
2.6 and Theorem 1.3 ) and hence the recent results of geometric mea-
sure theory obtained in this setting permit an extension of De Giorgi’s
results for sets of finite Euclidean perimeter. Precisely, we prove the
following Theorem

1.7. Theorem (Approximation of intrinsic Lipschitz functions). Let
ω ⊂W ≡ R2n be a bounded open set and let φ ∈ LipW(ω). Then there
exists a sequence {φk} ⊂ C∞(ω),

(i) φk → φ uniformly in ω;
(ii) |∇φkφk(x)| ≤ ||∇φφ||L∞(ω) ∀x ∈ ω;
(iii) ∇φkφk(x)→ ∇φφ(x) L2n−a.e x ∈ ω.

Section 6 is devoted to an application of the approximation Theo-
rem. In particular, as in the Euclidean framework, we prove that the
above approximation result is sharp for intrinsic Lipschitz functions,
see Theorem 6.1. Moreover, as a corollary of Theorem 1.7, we get a
local comparison, for a given φ ∈ LipW(ω), between the Lipschitz con-
stant of φ and the L∞−norm of its intrinsic gradient. Precisely, we
prove the following

1.8. Proposition. Let ω ⊂ W be open and bounded, φ ∈ LipW(ω).
Then there exists a postive constant c1 = c1(Lip(φ, ω)) depending only
on Lip(φ, ω) such that

(9) ‖∇φφ‖L∞(ω) ≤ c1 .

If n ≥ 2, there exists a positive constant c2 = c2(‖∇φφ‖L∞(ω)) depend-
ing only on ‖∇φφ‖L∞(ω) such that for each x̄ ∈ ω and each r > 0
sufficiently small

(10) Lip(φ, Uφ(x̄, r)) ≤ c2 ‖∇φφ‖L∞(ω)

whereas if n = 1

(11) Lip(φ, Uφ(x̄, r)) ≤ c3

√
1 + ‖∇φφ‖2

L∞(ω)

for a suitable geometric positive constant c3.
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2. Preliminaries

In this section we briefly recall some useful facts about the sub-
Riemannian Heisenberg group, for a more detailed treatment see [8],
[11], [29] and [36]. The definition of the Heisenberg group and Heisen-
berg algebra has been given in the introduction see (1). For our pur-
poses, it is convenient to use the following exponential coordinates.
Precisely, if a point, called 0, is fixed in Hn, the exponential map (see
[21])

Exp0 : hn ≡ R2n+1 −→ Hn

Exp0(ξ) := exp
(
s∇H

1

)(
exp
( 2n∑
i=1

xi∇H
i+1

)
(0)
)

(12)

is a global diffeomorphism, where (s, x1, . . . , x2n) ∈ R2n+1 ≡ R × R2n

are such that ξ = s∇H
1 +

∑2n
i=1 xi∇H

i+1. Because of (2) and the Baker-
Campbell- Hausdorff formula (see, for instance, [8, Theorem 15.1.1]),
the map Exp0 can be represented as

Exp0(ξ) = exp
(
s∇H

1 +
2n−1∑
i=1

xi∇H
i+1 + (x2n − s xn)∇H

2n

)
(0) .

Using this map, Hn ≡ R×Rn by identifying each point p ∈ H with p ≡
(s, x) := Exp−1

0 (p). The group law can be obtained simply projecting
the Baker-Campbell-Hausdorff operation defined on hn. In coordinates,
if p = (s, x), q = (t, y) ∈ R× R2n we obtain

q · p = (t+ s, y1 + x1, . . . , y2n + x2n + 2 t xn + σ(x, y))(13)

where

(14) σ(x, y) :=
n−1∑
i=1

(yixn+i− yn+ixi) if n ≥ 2 and σ(x, y) = 0 if n = 1.

2.1. Remark. Notice that formula (13) immediately gives

(0, x) · (s, 0) = (s, x) ∀x ∈ R2n, s ∈ R .

Thus the graph map assumes the simple form (4).

2.2. Remark. From (13), taking into account that the origin 0 = (0, . . . , 0) ∈
R2n+1 is the unit element of Hn, we easily get that p−1 6= −p. Namely,
with the identification p = (s, x), then

(s, x)−1 = (−s,−x1, . . . ,−x2n−1,−x2n + 2 s xn) 6= (−s,−x).
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In particular

q−1 · p = (s− t, x1 − y1, . . . , x2n−1 − y2n−1, x2n − y2n − 2 t (xn − yn)− σ(x, y)).

(15)

In these coordinates the canonical basis of hn, is expressed as

(16)



∇H
1 = ∂s

∇H
i+1 = ∂xi − xi+n∂x2n if n > 1 and i = 1, . . . , n− 1

∇H
n+1 = ∂xn + 2s∂x2n

∇H
i+1 = ∂xi + xi−n∂x2n if n > 1 and i = n+ 1, . . . , 2n− 1

∇H
2n+1 = ∂x2n

.

2.3. Definition. For each p ∈ Hn with canonical coordinates (s, x) ∈
R× R2n and for any λ > 0 we define the dilations

δλ(p) := (λs, λx1, . . . , λx2n−1, λ
2x2n),

and translations:
p 7→ τq(p) := q · p

for any fixed q ∈ Hn.

Every fiber HpHn is the linear span of ∇H
1 (p), . . . ,∇H

2n(p). We define
the following homogeneous norm ‖p‖∗

(17) ‖p‖∗ :=
1

2

[
‖p‖+ ‖p−1‖

]
,

where

(18) ‖p‖ := max
{
|(s, x1, . . . , x2n−1)|R2n , |x2n|

1
2

}
,

and | · |R2n denotes the Euclidean norm on R2n.
Note that the functions defined in (17) and in (18) are equivalent

homogeneous norm on Hn. In addition, the norm ‖·‖∗ is also symmet-
ric.

Let d : Hn ×Hn → [0,+∞)

(19) d(p, q) = ‖q−1 · q‖∗ if p, q ∈ Hn .

By definition, it immediately follows that d is a left-invariant ho-
mogenous distance on Hn and d is equivalent to the quasi-distance
induced from the norm ‖·‖, that is

(20)
1

c
‖q−1 · p‖ ≤ d(p, q) ≤ c ‖q−1 · p‖ ∀p, q ∈ Hn .

Finally, it is easy to see that d is locally equivalent to the Carnot-
Carathéodory (or sub-Riemannian) distance associated to the horizon-
tal subbundle HHn in a standard way, see [29]. We denote by U(p, r)
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and by B(p, r) the open and the closed ball associated with d. Moreover
the bounded sets in (Hn, d) coincide with the ones of R2n+1 endowed
with Euclidean metric | · |R2n+1 and for each bounded set A ⊆ Hn there
exists a positive constant c = c(A) > 0 such that

1

c
|p− q|R2n+1 ≤ d(p, q) ≤ c|p− q|

1
2

R2n+1 ∀p, q ∈ A.(21)

Denoting by L2n+1 the Lebesgue measure on R2n+1 we have that for all
(2n+ 1)− dimensional measurable E ⊂ Hn it holds

L2n+1(τq(E)) = L2n+1(E) ∀q ∈ Hn,

L2n+1(δλ(E)) = λ2n+2L2n+1(E) ∀λ > 0,

hence L2n+1 is the Haar measure of Hn and Hn turns out to be a
homogeneous group with homogeneous dimension Q := 2n + 2 (see
[22]). We also recall that the homogeneous dimension Q coincides with
the Hausdorff dimension of (Hn, d). Finally, we denote by Sm the
m−dimensional spherical measure obtained from the distance d in Hn.

From now on we will identify a section F : Hn −→ HHn with its
canonical coordinates with respect to the moving frame ∇H

1 , . . . ,∇H
2n,

in other words each section F will be identified with a function

F = (F1, . . . , F2n) : Hn −→ R2n.

With this convention we can give the following definition

2.4. Definition. Let Ω ⊆ Hn be open. If f ∈ L1
loc(Ω; R) and if F =

(F1, . . . , F2n) ∈ (L1
loc(Ω,R))2n is a section, we define the H−divergence

of F and the H−gradient of f as the following distributions

divHF :=
2n∑
j=1

∇H
j Fj, ∇Hf := (∇H

1 f, . . . ,∇H
2nf).

2.1. Sets of intrinsic finite perimeter in Hn. In this subsection we
will recall some useful concepts of geometric measure theory in Hn, see
[23], [24], [27], [11] and reference therein.

From now on we will denote by C∞c (Ω, HHn) the set of C∞ section
of HHn with compact support in Ω where, of course, the C∞ regularity
is understood as regularity between manifolds and Ω ⊂ Hn is an open
set.

2.5. Definition. ([10]) We say that f : Ω −→ R is of bounded H-
variation in an open set Ω ⊂ Hn and we write f ∈ BVH(Ω), if f ∈ L1(Ω)
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and the total variation

|Df |H(Ω) := sup
{∫

Ω

fdivHϕdL2n+1 | ϕ ∈ C∞c (Ω, HHn), |ϕ|R2n ≤ 1
}

is finite. Moreover we say that f is of locally finite H−variation in Ω
(f ∈ BVH,loc(Ω)) if f ∈ L1

loc(Ω) and f ∈ BVH(Ω′) for every Ω′ b Ω.

2.6. Definition. A set E ⊂ Hn is said to be of finite H−perimeter
in Ω if χE ∈ BVH(Ω). Analogously, a set E ⊂ Hn is of locally finite
H−perimeter in Ω if χE ∈ BVloc,H(Ω).

2.7. Remark. It is well-known that if E ⊆ Hn is a set of locally finite H−
perimeter in Ω, then |∂E|H is a Radon measure on Ω and its support
is such that spt(|∂E|H) ⊆ (∂E ∩Ω), where ∂E denotes the topological
boundary of E.

2.8. Proposition. Let f, fn ∈ L1(Ω), n ∈ N, be such that fn → f in
L1(Ω). Then

|Df |H(Ω) ≤ lim inf
n→∞

|Dfn|H(Ω).

In analogy with the Euclidean case, by Riesz’s representation Theo-
rem, the following formula holds, see [23].

2.9. Theorem. Let E ⊂ Ω be a set with locally finite H−perimeter.
Then there exists a |∂E|H− measurable section νE of HHn, called gen-
eralized inward normal, such that

|νE(p)|R2n = 1 for |∂E|H − a.e p ∈ Ω;∫
E

divHϕ dL2n+1 = −
∫

Hn
〈νE, ϕ〉 d|∂E|H ∀ ϕ ∈ C∞c (Hn, HHn),

where 〈·, ·〉 denotes the Euclidean scalar product in R2n.

2.10. Definition ([23]).
(i) Let E ⊂ Hn be a set of locally finite H−perimeter; we say that
p ∈ ∂∗HE (the H−reduced boundary of E) if
|∂E|H(U(p, r)) > 0 ∀ r > 0;
∃ limr→0

∫
U(p,r)

νE d|∂E|H = νE(p);

|νE(p)|p = 1.
(ii) Let E ⊂ Hn be a measurable set, we say that p ∈ ∂∗,HE (the measure
theoretic boundary of E) if

lim sup
r→0+

L2n+1(E ∩ U(p, r))

L2n+1(U(p, r))
> 0

and

lim sup
r→0+

L2n+1(Ec ∩ U(p, r))

L2n+1(U(p, r))
> 0.
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2.11. Lemma ([23]). The H−reduced boundary of a set of finite H-
perimeter is invariant under left translations, that is if q ∈ ∂∗HE if and
only if τp(q) ∈ ∂∗H(τp(E)), moreover, νE(q) = ντp(E)(τp(q)).

2.12. Lemma ([1]). Assume E is a set of locally finite H−perimeter in
Hn, then

lim
r→0

∫
U(p,r)

νE d|∂E|H = νE(p) for |∂E|H − a.e p ∈ Hn.

2.13. Remark. From Definition 2.10 and Lemma 2.12 we immediately
deduce that |∂E|H−a.e p ∈ Hn belongs to the reduced boundary ∂∗HE.

We end this section with a collection of results that are the Heisen-
berg counterpart of the BV function theory in the Euclidean space, see
[11], [23] and [24].

2.14. Theorem ([27]). There is a constant c > 0 independent of r > 0
such that for any set E ⊂ Hn of locally finite H−perimeter, ∀p ∈ Hn,
∀r > 0

min{L2n+1(E ∩ U(p, r)),L2n+1(Ec ∩ U(p, r))}
Q−1
Q ≤ c|∂E|H(U(p, r))

(22)

and

min{L2n+1(E),L2n+1(Ec)}
Q−1
Q ≤ c|∂E|H(Hn).(23)

2.15. Definition. For each q ∈ Hn, we define the map πq : Hn −→
HqHn

πq(p) = πq((s, x)) := s∇H
1 (q) +

2n∑
j=2

xj∇H
j (q).

2.16. Theorem ([23]). If E ⊆ Hn is a set with locally finite H-perimeter
then there exist c = c(n) > 0 such that

|∂E|H = c S2n+1 ∂∗HE.(24)

2.17. Theorem ([23]). If E is a locally finite H−perimeter set, p ∈ ∂∗HE
and νE(p) ∈ HHn

p is the generalized inward normal to E in p, then

lim
r→0

1Er,p = 1S+
H (νE(p)) in L1

loc(Hn),(25)

where Er,p := δ1/r(τp−1E) and

S+
H (νE(p)) := {q ∈ Hn | 〈πp(q), νE(p)〉p ≥ 0}.

Moreover, for all R > 0 it holds

lim
r→0
|∂Er,p|H(U(0, R)) = |S+

H (νE(p))|H(U(p,R)) = 2ω2n−1R
2n+1,
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where, as usual, ω2n−1 denotes the (2n−1)−dimensional Lebesgue mea-
sure of the unit Euclidean ball in R2n−1.

3. Intrinsic Lipschitz functions

In this section we analyze the notion of Lipschitz functions intro-
duced in Definition 1.2. As usual, we have two approaches to study
the geometric properties of an embedded graph. One is to use directly
the geometry of the ambient space. A second way is to induce vector
fields on the domain and using them to define a geometric structure
on the surface. We will see that the two approaches are equivalent for
intrinsic Lipschitz function.

3.1. Lipschitz functions: properties inherited by the ambient
space. If we denote W,V the homogeneous subgroups introduced in
(3), then Hn = W·V and W∩V = {0}. From now on, when no confusion
can arise, we denote a point (0, x) ∈ W by x ∈ R2n and (s, 0) ∈ V by
s ∈ R. We also assume to have a fixed continuous function

φ : ω ⊂W −→ V,

and we explicitly write in coordinates the distance dφ defined in Defi-
nition 1.1.

If x = (x1, . . . , x2n) ∈W ≡ R2n, we denote by x̂ := (x1, . . . , x2n−1) ∈
R2n−1 and, if x, y ∈ ω

(26) σφ(x, y) := |y2n − x2n − 2φ(x)(yn − xn) + σ(x, y)|1/2

where σ is defined in(14). Let x, y ∈ ω, we get:
(27)

dφ(x, y) =
1

2
max

{
|x̂− ŷ|R2n−1 , σφ(x, y)

}
+

1

2
max

{
|x̂− ŷ|R2n−1 , σφ(y, x)

}
.

3.1. Remark. It immediately follows from the explicit expression of the
distance (see also [14]) that, if φ ∈ LipW(ω) (see Definition 1.2) then
dφ is a quasi-distance on ω. Indeed for each x, y, z ∈ ω:

(28) dφ(x, y) ≤

≤ dφ(x, z)+dφ(y, z)+|φ(x)−φ(z)|1/2|xn−zn|1/2+|φ(y)−φ(z)|1/2|yn−zn|1/2

so that

dφ(x, y) ≤ (1 + Lip(φ))1/2
(

dφ(x, z) + dφ(y, z)
)
.

3.2. Remark. It is easy to see that, if φ ∈ LipW(ω), then

σφ(y, x) ≤ σφ(x, y) + |φ(x)− φ(y)|1/2|xn − yn|1/2 ∀x, y ∈ ω
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whence, by (27), ∀x, y ∈ ω

(29) dφ(x, y) ≤ |x̂− ŷ|R2n−1 + σφ(x, y) + |φ(x)− φ(y)|1/2|xn − yn|1/2

3.3. Remark. Let ω ⊂ W ≡ R2n be an open set and let φ ∈ LipW(ω).
Then, arguing like as before, it is easy to see that, for each ω′ b ω
there exists a constant α = α(ω′, ‖φ‖L∞(ω′), Lip(φ)) > 0 such that

1

α
|x− y|R2n ≤ dφ(x, y) ≤ α

√
|x− y|R2n ∀x, y ∈ ω′ .

As a consequence, the identity map Id : (ω, dφ) → (ω, | · |R2n) is an
homemorphism.

If φ ∈ LipW(ω), we will denote

(30) Uφ(x, r) := {y ∈ ω | dφ(x, y) < r} .
Let us now recall that the map πW defined in (6) and the map πV
defined as

πV : p = (s, x) ∈ Hn → (s, 0) ∈ V
are continuous and

1√
2

(‖πW(p)‖+ ‖πV(p)‖) ≤ ‖p‖ ≤ ‖πW(p)‖+ ‖πV(p)‖,(31)

(see also [5] for a generalization of this statement in Carnot groups of
any step).
We will call intrinsic (left) graph of a function φ : ω ⊂ W −→ V the
set

graph(φ) := {(φ(x), x) | x ∈ ω}(32)

and intrinsic subgraph of φ the set

Eφ := {(s, x) ∈ R× ω | s ≤ φ(x)}.(33)

With these notations the notion of intrinsic Lipschitz function, can be
rephrased in terms of a notion of closed cones, as introduced in the
interesting paper [26].

3.4. Definition. Let q ∈ Hn and α > 0. The intrinsic (closed) cone
CW,V(q, α) with base W, axis V, vertex q and opening α is

CW,V(q, α) := {p = (s, x) ∈ Hn | ‖πW(q−1 · p)‖ ≤ α‖πV(q−1 · p)‖}.

In our simplified context if φ : ω ⊂ W −→ R is a continuous map
and p, q ∈ CW,V(q, α) ∩ graph(φ), then there exist x, y ∈ ω such that
p = (φ(x), x), q = (φ(y), y),

‖πV(q−1 · p)‖ = |φ(x)− φ(y)|,
13



so that it is clear that φ is an intrinsic Lipschitz function if and only if
there is L > 0 such that, for all q ∈ graph(φ),

CW,V(q, 1/L) ∩ graph(φ) = {q}.(34)

Using this notation, in [37] a general theorem was proved, which in our
context reduces to the following result.

3.5. Theorem. Let E ⊂ Hn be a set with finite H−perimeter in U(0, r),
r > 0, νE be the measure theoretic inward normal of E, and ν ∈ S2n−1.
Assume there exists k ∈ (0, 1] such that πV(νE(p)) ≤ −k for |∂E|H−a.e
p ∈ Ur. Then there exists α > 0 such that possibly modifying E in a
negligible set, for all p ∈ ∂E ∩ Ur

{q ∈ Ur | ‖πW(p−1 · q)‖ < −απV(p−1 · q)} ⊂ E;

{q ∈ Ur | ‖πW(p−1 · q)‖ < απV(p−1 · q)} ⊂ Hn \ E.
If in particular n = 1, then

α2 + 2α ≤ h

2
, with h :=

√
k2

2− k2
.(35)

We conclude this section comparing the distance dφ with the distance
of points of the graph:

3.6. Proposition. If φ ∈ LipW(ω) then there is C1 = C1(Lip(φ)) > 0
such that

Uφ(x,C1r) ⊆ πW(U(Φ(x), r) ∩ graph(φ)) ⊆ Uφ(x, r)(36)

for all x ∈ ω and r > 0,where Uφ(x, r) is defined in (30).

Proof. Let z ∈ πW(U(Φ(x), r) ∩ graph(φ)) then d(Φ(x),Φ(z)) < r.
Since the intrinsic projection πW : Hn −→W is such that ∀p ∈ Hn

‖πW(p)‖ = max{|(0, x1, . . . , x2n−1)|, |x2n|
1
2} ≤

≤ max{|(s, x1, . . . , x2n−1)|, |x2n|
1
2} = ‖p‖.

We have

dφ(x, z) =
1

2

(
‖πW(Φ(x)−1 · Φ(z))‖+ ‖πW(Φ(z)−1 · Φ(x))‖

)
≤ 1

2

(
‖(Φ(x)−1 · Φ(z))‖+ ‖(Φ(z)−1 · Φ(x))‖

)
= ‖Φ(x)−1 · Φ(z)‖∗

= d(Φ(x),Φ(z)) < r.

Hence the second inclusion follows.
For the first inclusion, let us note that for all x, z ∈ ω

d(Φ(x),Φ(z)) ≤ |φ(z)− φ(x)|+ dφ(x, z)
14



therefore, since φ ∈ LipW(ω), for every z ∈ Uφ(x,Cr) with C > 0 to
be determinated we obtain

d(Φ(x),Φ(z)) ≤ Lip(φ)dφ(x, z) + dφ(x, z)

≤ C(Lip(φ) + 1)r

and the first inclusion follows choosing 0 < C < 1/(Lip(φ) + 1). �

3.2. Equivalence between dφ and the cc-distance. In this section
we give an equivalent approach to the distance dφ, more similar to
the one initially proposed in [16]. Indeed, the presence of the function
φ : ω ⊂ W −→ V induces a family of nonlinear vector fields on the
domain ω, and a distance is directly defined in terms of these new
vector fields.

3.7. Definition. Let φ : ω −→ R be a continuous function defined
on an open and bounded set ω ⊂ W. We introduce the family ∇φ =
(∇φ

1 , . . . ,∇
φ
2n−1) of nonlinear vector fields, namely of first order differ-

ential operators, on ω by

∇φ
i (x) = ∂xi − xi+n∂x2n , i = 1, . . . , n− 1,

∇φ
n(x) = ∂xn + 2φ(x)∂x2n ,

∇φ
i (x) = ∂xi + xi−n∂x2n , i = n+ 1 . . . , 2n− 1,

(37)

if n ≥ 2, and by

(38) ∇φ
1(x) = ∂x1 + 2φ(x)∂x2 if n = 1.

We will call horizontal tangent bundle HW of W the linear span of
the family (∇φ

1 , . . . ,∇
φ
2n−1). Note that, if φ is continuous, and n ≥

2, ∇φ
1 , . . . ,∇

φ
2n−1 together with [∇φ

1 ,∇
φ
n+1] = 2 ∂x2n span the whole

tangent space to W. If the vector fields were smooth this condition
would be enough to ensure that it is possible to connect each couple
of points x̄ and y in Ω with a piecewise continuous integral curve of
the horizontal vector fields. This means that there exists an absolutely
continuous (a.c.) curve γh : [0, 1]→ ω with extrema x̄ an y such that

γ̇h(t) =
2n−1∑
j=1

hj(t)∇φ
j (γh(t)) a.e t ∈ (0, 1)(39)

with hj a piecewise continuous function h : [0, 1]→ R2n−1. In this case,
the vector fields are only continuous, but is it immediate to recognize
that the local connectivity property is still satisfied. In order to prove
this, we remark that the Euclidean topology on R2n coincides with the
one induced by dφ (see Remark 3.3) then we need only to prove the

15



local connectivity in ω. We choose a point x̄ in an open set ω and
consider a rectangle

QEb = {y : |(y − x̄)i| ≤ b} b ω.

From standard ODE theory it follows that, if we choose any point
y ∈ QEδ, with δ < 1/(1 + maxQEb |φ|) the curve γh : [0, 1] → ω, with
hj = (y − x̄)j lies in ω and connects x̄ with a point ỹ with the same
first 2n − 1 components as y. Due to the Chow theorem, we can now
connect ỹ and y with a piecewise integral curve of the vector fields ∇φ

1

and ∇φ
n+1, again lying in ω. Consequently, x̄ can be connected with

any point of Qδ. Since the set of points which can be connected with x̄
is also closed in ω, we can deduce that any open connect set ω satisfies
the connectivity property. Hence the Carnot-Carathéodory distance
dcc,φ in the set ω will be defined as in [38]:

dcc,φ(x, y) = inf{‖h‖L∞((0,1),R2n−1) | ∃ an curve γh : [0, 1]→ ω

satisfying (39) , γh(0) = x, γh(1) = y}.

From now on we will denote by

Ucc,φ(x, r) := {y ∈ ω | dcc,φ(x, y) < r} .

We will denote respectively Lipcc,φ the set of Lipschitz continuous func-
tions with respect to the dcc,φ distance and Lipcc(φ, ω) the correspond-
ing Lipschitz constant on a set ω. We will also denote it Lipcc(φ), if it
is clear which is ω.

3.8. Proposition. Let ω ⊂ W be an open set. Let n ≥ 2 and φ ∈
LipW(ω). For each x̄ ∈ ω let

r̄ := min
{

dφ(x̄, ∂ω), dcc,φ(x̄, ∂ω)
}
> 0 .

If L := min{Lip(φ), Lipcc(φ)}, there exist Ci = Ci(L), (continuous
function of L) i ∈ {1, 2} such that:

Ucc,φ(x̄, r) ⊂ Uφ(x̄, C2r) b ω ∀ 0 < r <
r̄

2C2

;(40)

Uφ(x̄, r) ⊂ Ucc,φ(x̄, C1r) b ω ∀ 0 < r <
r̄

2C1

.(41)

In particular, dcc,φ and dφ are locally equivalent.

Proof. The proof is similar to the one contained in [16, Proposition 4.2]
for general vector fields. In order to establish inclusion (40) we fix x̄ =
(x̄1, . . . , x̄2n) ∈ ω and 0 < r < r̄/2C2, and C2 is a constant only depen-
dent on L to be chosen later. For each y ∈ Ucc,φ(x̄, r) let γ : [0, 1]→ ω
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be an absolutely continuous curve satisfying (39) with a piecewise con-
tinuous function h = (h1, . . . , h2n−1) ∈ L∞((0, 1),R2n−1) ≡ L∞(0, 1)
and γ(0) = x̄, γ(1) = y. We first note that

γi(t)− x̄i =

∫ t

0

hi(s)ds ∀t ∈ [0, 1], i ∈ {1, . . . , 2n− 1}(42)

and

γ2n(t)− x̄2n =

∫ t

0

(2hn(s)φ(γ(s))ds+ σ(h(s), γ(s))ds ∀t ∈ [0, 1] .

(43)

Since φ ∈ LipW(ω), then L := min{Lip(φ), Lipcc(φ)} < +∞. There-
fore, if L = Lip(φ) then

|φ(x)− φ(y)| ≤ L dφ(x, y) ∀x, y ∈ ω ,(44)

whereas, if L = Lipcc(φ), then

|φ(x)− φ(y)| ≤ L dcc,φ(x, y) ∀x, y ∈ ω ,(45)

hence, by (44) and (45) we get,

|φ(x)− φ(y)| ≤ L (dcc,φ(x, y) + dφ(x, y)) ∀x, y ∈ ω .(46)

By (29) and (46), ∀t ∈ [0, 1],

(47) dφ(γ(t), x̄) ≤ | ̂γ(t)− x̄|R2n−1 + σφ(x̄, γ(t))+

+(L/2)1/2|γn(t)− x̄n|1/2(dφ(γ(t), x̄)1/2 + dcc,φ(γ(t), x̄)1/2)

Setting M1 := 1 + 2L and recalling that |γn(t)− x̄n| ≤ | ̂γ(t)− x̄|R2n−1 ,
from (47) we obtain

(48) dφ(γ(t), x̄) ≤M1| ̂γ(t)− x̄|R2n−1 + 2σφ(x̄, γ(t)) + dcc,φ(γ(t), x̄) .

Let us now observe that, from the definition of dcc,φ,

(49) dcc,φ(γ(t), x̄) ≤ ‖h‖L∞(0,1) ∀t ∈ [0, 1] .

Meanwhile

σφ(x̄, γ(t))2 =
∣∣∣ ∫ t

0

(
2hn(s)φ(γ(s))ds+ σ(h(s), γ(s)

)
ds−

−2φ(x̄)

∫ t

0

hn(s)ds+ σ(x̄,

∫ t

0

2h(s)ds)
∣∣∣

17



then, by (42) and (43), for each t ∈ [0, 1], we get

σφ(x̄, γ(t))2 ≤ 2

∫ t

0

hn(s)
∣∣∣φ(γ(s))− φ(x̄)

∣∣∣ds+ 2

∫ t

0

∣∣∣σ(h(s), γ(s)− x̄)
∣∣∣ds

(50)

≤M2 ‖h‖L∞(0,1)

(
max
s∈[0,1]

dφ(γ(s), x̄) + ‖h‖L∞(0,1)

)
,

where M2 = 2(L + 1) > M1 ≥ 1. In the last inequality we used the
fact that σ(v, w) ≤ |v̂|R2n−1|ŵ|R2n−1 ∀v, w ∈ R2n together with (42) and
(43). From (48), (49) and (50), it now follows that

max
s∈[0,1]

dφ(γ(s), x̄) ≤ (M1(2n− 1) + 1) ‖h‖L∞(0,1)+

(51)

+ 2M
1/2
2 ‖h‖

1/2
L∞(0,1)

(
max
s∈[0,1]

dφ(γ(s), x̄) + ‖h‖L∞(0,1)

)1/2

≤ 2nM2‖h‖L∞(0,1) +
1

2
max
s∈[0,1]

dφ(γ(s), x̄)

and hence, for t = 1

dφ(y, x̄) = dφ(γ(1), x̄) ≤ 4nM2 ‖h‖L∞(0,1) .(52)

Taking the infimum in (52) on the piecewise continuous function h =
(h1, . . . , h2n−1) ∈ L∞((0, 1),R2n−1) satisfying (39) for a suitable abso-
lutely continuous curve γ : [0, 1]→ ω with γ(0) = x̄ and γ(1) = y, we
get

dφ(y, x̄) ≤ M3dcc,φ(y, x̄),(53)

where C2 = M3 := 8n(L+ 1).
In order to prove inclusion (41), we fix 0 < r < min{r̄/2C1, r̄/2C2}

where C1 is a constant only dependent on L to be chosen later and
y ∈ Uφ(x̄, r). Thanks to the choice of r and inequality (53) the curve

(54) γ(s) := exp(s(yn − x̄n)∇φ
n)(x̄) .

exists for s small and it is defined for t ∈ [0, s], with s < 1. Moreover,
by (51), it satisfies

(55) max
t≤s

dφ(γ(t), x̄) ≤M3 |x̄n − yn| ≤M3 dφ(y, x̄)

and hence it is further prolungable on the set t ∈ [0, 1]. In coordinates
it can be expressed as
(56)

γ(s) =
(
x̄1, . . . , x̄n+s(yn−x̄n), . . . , x̄2n−1, x̄2n+2(yn−x̄n)

∫ s

0

φ(γ(τ))dτ
)
.
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By definition of dcc,φ and dφ

(57) dcc,φ(γ(1), x̄) ≤ |yn − x̄n| ≤ dφ(y, x̄) .

Hence in order to get the thesis we only need to estimate dcc,φ(γ(1), y).
Note that the points γ(1) and y have the same n-th component, and
the metric dφ on

{(z1, . . . , zn−1, yn, zn, . . . , z2n−1) ∈W : (z1, . . . , z2n−1) ∈ R2n−1} ≡ Hn−1

reduces to the distance d in (19) on Hn−1. On the other hand, when we
discard the vector field ∇φ

n, the family {∇φ} reduces to the standard

Heisenberg vector fields in Hn−1. Hence , if we denote by d̂cc the CC
metric induced on Hn−1, it is well-known that d and d̂cc are equivalent
on Hn−1. Then there exists a geometric constant M4 > 0 such that

1

M4

d̂cc(γ(1), y) ≤ dφ(γ(1), y) ≤ M4 d̂cc(γ(1), y) .(58)

Because, by definition, dcc,φ(γ(1), y) ≤ d̂cc(γ(1), y), by (58), we have

(59) dcc,φ(γ(1), y) ≤ M4 dφ(γ(1), y) .

By the triangle inequality, (57) and (59) we have ∀y ∈ Uφ(x̄, r) .

dcc,φ(x̄, y) ≤ dcc,φ(γ(1), x̄) + dcc,φ(γ(1), y)(60)

≤ dφ(x̄, y) +M4 dφ(γ(1), y).

Then, by (28) and (46), we get

dφ(γ(1), y) ≤ dφ(γ(1), x̄) + dφ(y, x̄)(61)

+ L1/2d
1/2
φ (γ(1), x̄)

[
d

1/2
φ (γ(1), x̄) + d

1/2
cc,φ(γ(1), x̄)

]
+

+ L1/2d
1/2
φ (y, x̄)

[
d

1/2
φ (y, x̄) + d

1/2
cc,φ(y, x̄)

]
=
(
L1/2 + 1

)
(dφ(γ(1), x̄) + dφ(y, x̄))

+ L1/2d
1/2
φ (γ(1), x̄)d

1/2
cc,φ(γ(1), x̄)

+ L1/2d
1/2
φ (y, x̄)d

1/2
cc,φ(y, x̄)

so that, by (57) and (60)

dφ(γ(1), y) ≤ (2L1/2+2+LM4/2)dφ(y, x̄)+(L1/2+1+L)dφ(γ(1), x̄)+
1

2
dφ(γ(1), y)

which implies

dφ(γ(1), y) ≤ 2(2L1/2 +2+LM4/2)dφ(y, x̄)+2(L1/2 +1+L)dφ(γ(1), x̄).
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Inserting this in (60) and using (55) we have

dcc,φ(x̄, y) ≤ dφ(x̄, y) + 2M4(2L1/2 + 2 + LM4/2)dφ(y, x̄)+

+ 2M4(L1/2 + 1 + L)dφ(γ(1), x̄)

= M5dφ(x̄, y)

for a suitable positive constant M5 = M5(L). �

4. Intrinsic differentiability of intrinsic Lipschitz
functions

In this section we study the notion of intrinsic differentiability in-
troduced for the first time in [4, 16] and stated in Definition 1.4. This
concept is particularly interesting since as recalled in the Introduction
(see Theorem 1.3), an intrinsic Lipschitz function is differentiable in
the intrinsic pointwise sense almost everywhere with respect to L2n.
This result, as in the Euclidean case, open the possibility of proving
much finer results on intrinsic Lipschitz functions. Indeed, we are able
to prove an area formula beside the spherical Hausdorff measure for the
graph of an intrinsic Lipschitz function (see Theorem 1.6) and that the
pointwise gradient coincides with the weak one (see Proposition 4.7).
We point out that this fact is not elementary at all in our situation,
since the formal adjoint of the vector fields ∇φ is not well defined when
φ ∈ LipW(ω).

Throughout this section we refer to Definition 1.4 for the concept of
intrinsic differentiability.

We start our analysis pointing out an important property of the
∇φ−differential, see [4] and [16].

4.1. Proposition. Let φ : ω −→ R be such that φ is ∇φ differentiable
at x ∈ ω then the ∇φ−differential of φ at x is unique. Moreover, there
is a unique vector ∇φφ(x) ∈ R2n−1 such that

L(y) =
〈
∇φφ(x), π̃(y)

〉
∀y ∈W(62)

where 〈·, ·〉 denotes the Euclidean scalar product in R2n−1 and

π̃(x1, . . . , x2n−1, x2n) := (x1, . . . , x2n−1) ∀x ∈W.

We call the vector ∇φφ(x) the ∇φ−gradient of φ at x ∈ ω.

The following Corollaries are easy consequences of Theorem 1.3.
20



4.2. Corollary. Let φ ∈ LipW(ω). Then the intrinsic generalized in-
ward normal νEφ to the subgraph Eφ in Hn has the following represen-
tation

νEφ(Φ(x)) =
( −1√

1 + |∇φφ(x)|2
,

∇φφ(x)√
1 + |∇φφ(x)|2

)
(63)

for L2n−a.e x ∈ ω.

Proof. By Theorem 4.15, Lemma 4.28 and Theorem 4.29 in [26], for
each x0 ∈ ω point of intrinsic differentiability of φ, we get

graph(L) = {p ∈ Hn |
〈
νEφ(Φ(x0)), π̄(p)

〉
= 0}

where π̄ : Hn −→ R2n is given by

π̄(p) = π̄(s, x1, . . . , x2n−1, x2n) := (s, x1, . . . , x2n−1)

and L is the intrinsic differential of φ at x0. Therefore, by Proposition
4.1, we obtain{( 〈
∇φφ(x0), π̃(y)

〉
, y
)
, y ∈ R2n

}
= {p ∈ Hn |

〈
νEφ(Φ(x0)), π̄(p)

〉
= 0}.

Hence, denoting by ν
(1)
Eφ
, . . . , ν

(2n)
Eφ

the components of νEφ we conclude

that

ν
(1)
Eφ

(Φ(x0))
〈
∇φφ(x0), π̃(y)

〉
+

2n∑
i=2

ν
(i)
Eφ

(Φ(x0))yi ∀y ∈ R2n.(64)

The thesis follows using (64) with y = ei, i = 1, . . . , 2n, where (e1, . . . , e2n)
is the canonical basis of R2n and recalling that |νEφ(Φ(x))| = 1 L2n−a.e.
in ω. �

4.3. Corollary. Let φ : W −→ R be an intrinsic Lipschitz function
with parametric map Φ : W −→ Hn. Then

(Φ)#(L2n W) = −ν1|∂Eφ|H
where (Φ)#(L2n W) and ν1 denote respectively the image measure
L2n W through the map Φ and the first component of the intrinsic
generalized inward normal to Eφ.

Proof. In order to get the thesis it suffices to prove that, in our setting,
the constant c(W,V) > 0 provided by Lemma 4.30 in [26] is equal to
1. This follow easily observing that when W and V are as in (3), then
the map Ψ : R2n+1 −→ R2n+1 defined in Lemma 4.30 of [26] becames
the identity map. �

Using the fact that every intrinsic Lipschitz function is differentiable
almost everywhere, we have the following proposition.
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4.4. Proposition. Let ω ⊂ W ≡ R2n be a bounded open set, and let
φ ∈ LipW(ω). Then the intrinsic gradient ∇φφ, which is defined L2n-
a.e. in ω, satisfies

‖∇φφ(x)‖L∞(ω) ≤ C Lip(φ) (Lip(φ) + 1) L2n − a.e. x ∈ ω ,(65)

where C = C(n) > 0 depends only on n. As a consequence ∇φφ ∈
(L∞(ω))2n−1.

Proof. Firstly, notice that, for each i = 1, . . . , 2n − 1 and x ∈ ω, the
exponential map of the vector field ∇φ

i , [−δ, δ] 3 s→ exp(s∇φ
i )(x) ∈ ω

is well-defined for δ > 0 small enough and

(66) dφ(exp(s∇φ
i )(x), x) ≤ 8n (Lip(φ) + 1) |s| ∀s ∈ [−δ, δ] ,

for each i = 1, . . . , 2n − 1. Indeed, the existence of the exponential
map is well-knwon for i 6= n because the vector field ∇φ

i has regular
coefficients, and for i = n it is consequence of (55). Let us now fix

s ∈ [−δ, δ] and i = 1, . . . , 2n− 1, denote x̄ := x, γ(t) := exp(st∇φ
i )(x)

and h(t) := s ei if 0 ≤ t ≤ 1, . Then from (51), (66) follows . Now, by
(66) and repeating verbatim the argument contained in the proof of [4,
Proposition 3.7] , it can be proved that, at each point x ∈ ω where φ
is ∇φ-differentiable (see Definition 1.4)

(67) ∇φ
i φ(x) = lim

s→0

φ
(

exp(s∇φ
i )(x)

)
− φ(x)

s
∀i = 1, . . . , 2n− 1 .

Eventually, from Theorem 1.3, (66) and (67),(65) follows. �

4.5. Lemma ([26]). Let φ ∈ LipW(ω). Then

∂∗,HEφ ∩ (R× ω) = ∂Eφ ∩ (R× ω) = graph(φ)(68)

and

S2n+1(∂∗,HEφ \ ∂∗HEφ) = 0.(69)

4.6. Proposition. Let ω ⊂ W be open and bounded and let φ ∈
LipW(ω). Then for each ϕ = (ϕ1, . . . , ϕ2n) ∈ C1

c (R× ω,R2n)∫
Eφ

divHϕ dL2n+1 =

∫
ω

ϕ1 ◦ Φ−
〈
∇φφ, ϕ̂ ◦ Φ

〉
dL2n(70)

where ϕ̂ := (ϕ2, . . . , ϕ2n) and Φ : ω −→ Hn is as in (4).

Proof. We define E := Eφ the subgraph of φ and Ω := ω ·Re1 = R×ω.
By Theorem 1.3 E is a set of locally finite perimeter in Hn, then there
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exists a unique |∂E|H-measurable function νE : Ω −→ R2n such that
|νE|R2n = 1 |∂E|H-a.e in Ω and∫
E

divHϕ dL2n+1 = −
∫

Ω

〈ϕ, νE〉 d|∂E|H ∀ϕ ∈ C1
c (Ω,R2n), |ϕ|R2n ≤ 1.

By using Corollaries 4.2 and 4.3, we have that the first component ν
(1)
E

of νE is such that ν
(1)
E < 0 |∂E|H−a.e in Ω.

Hence ∫
Ω

〈ϕ, νE〉 d|∂E|H =

∫
Ω

〈ϕ, νE〉
ν

(1)
E

ν
(1)
E d|∂E|H

and by Corollary 4.3 we obtain∫
Ω

〈ϕ, νE〉 d|∂E|H = −
∫

Ω

〈ϕ, νE〉
ν

(1)
E

dΦ#(L2n W)

finally by a change of variables∫
Ω

〈ϕ, νE〉
ν

(1)
E

dΦ#(L2n W) =

∫
ω

〈νE ◦ Φ, ϕ ◦ Φ〉
ν

(1)
E ◦ Φ

dL2n.

Now, by the characterization of the inward normal provided in Theorem
1.3 we have for every ϕ ∈ C1

c (Ω,R2n) with |ϕ|R2n ≤ 1,∫
Ω

〈ϕ, νE〉 d|∂E|H =−
∫
ω

〈νE ◦ Φ, ϕ ◦ Φ〉
ν

(1)
E ◦ Φ

dL2n

= −
∫
ω

ϕ1 ◦ Φ +
2n∑
i=2

(νE ◦ Φ)i(ϕ ◦ Φ)i

ν
(1)
E ◦ Φ

dL2n

= −
∫
ω

ϕ1 ◦ Φ−
〈
∇φφ, ϕ̂ ◦ Φ

〉
dL2n,

where ϕ̂ = (ϕ2, . . . , ϕ2n). Hence

−
∫

Ω

〈ϕ, νE〉 d|∂E|H =

∫
ω

ϕ1 ◦ Φ−
〈
∇φφ, ϕ̂ ◦ Φ

〉
dL2n(71)

as desired. �

Now we are going to prove that the gradient ∇φφ of a Lipschitz
continuous function φ ∈ LipW(ω) also agrees with the distributional
gradient. We emphasize the fact that the gradient ∇φφ exists almost
everywhere thanks to Proposition 4.1.

4.7. Proposition. Let ω ⊂ R2n be open and bounded and let φ ∈
LipW(ω). Then the pointwise intrinsic gradient ∇φφ is also distribu-
tional, that is, for each ψ ∈ C1

c (ω)

(i)
∫
ω
φ ∇φ

i ψ dL2n = −
∫
ω
∇φ
i φ ψ , dL2n ∀i 6= n;
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(ii)
∫
ω
(φ ∂n+1ψ + φ2 ∂2n+1ψ) dL2n = −

∫
ω
∇φ
nφ ψ dL2n.

Proof. Let us denote by M := ‖φ‖L∞(ω) < +∞. By standard consid-
erations, there is a sequence {φj}j∈N ⊂ C∞c (ω) converging uniformly
to φ on every ω′ b ω. Let us now prove that the sequence (∇φjφj)j
converges to ∇φφ, in sense of distributions, that is

∫
ω

〈
∇φφ(x), ψ(x)

〉
dL2n = lim

j→∞

∫
ω

〈
∇φjφj(x), ψ(x)

〉
dL2n ∀ψ ∈ C1

c (ω,R2n−1).

(72)

We denote by Φj : ω −→ Hn the graph map of φj and by Ej the
subgraph of φj. Therefore, by Proposition 4.6, we obtain that for every
ϕ = (ϕ1, . . . , ϕ2n) ∈ C1

c (R× ω,R2n)∫
ω

ϕ1 ◦ Φ−
〈
∇φφ, ϕ̂ ◦ Φ

〉
dL2n =

∫
E

divHϕ dL2n.

By the uniform convergence of φj to φ we get∫
E

divHϕ dL2n = lim
j→∞

∫
Ej

divHϕ dL2n

and applying again Proposition 4.6 to each φj, we obtain∫
Ej

divHϕ dL2n =

∫
ω

ϕ1 ◦ Φj −
〈
∇φjφj, ϕ̂ ◦ Φj

〉
dL2n,

where ϕ̂ := (ϕ2, . . . , ϕ2n). Putting together the last three equalities we
deduce∫
ω

ϕ1◦Φ−
〈
∇φφ, ϕ̂ ◦ Φ

〉
dL2n = lim

j→+∞

∫
ω

ϕ1◦Φj−
〈
∇φjφj, ϕ̂ ◦ Φj

〉
dL2n.

Clearly, if ϕ1 = 0, this implies∫
ω

〈
∇φφ, ϕ̂ ◦ Φ

〉
dL2n = lim

j→+∞

∫
ω

〈
∇φjφj, ϕ̂ ◦ Φj

〉
dL2n.

We explicitly point out that we will deduce the weak converge of ∇φjφj
to ∇φφ from the uniform convergence of φj to φ and from Proposition
4.6, which is an integration by part type formula. This will be done
with a suitable choice of ϕ. Indeed, if ϕ((s, x)) := ψ(x)ξ(s) with ψ =
(ψ2, . . . , ψ2n−1) ∈ C1

c (ω,R2n−1) and ξ ∈ C1
c (R) such that ξ(s) = 1 for

all s ∈ R with −M − 1 ≤ s ≤M + 1, then ϕ ∈ C1
c (R× ω,R2n). Hence

∫
ω

〈
∇φφ(x), ψ(x)ξ(φ(x))

〉
dL2n = lim

j→∞

∫
ω

〈
∇φjφj(x), ψ(x)ξ(φj(x))

〉
dL2n

(73)
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and since φj converges uniformly to φ, there exist j̄ ∈ N such that for
all j ≥ j̄ and for all x in the support of ψ,

−M − 1 ≤ φj(x) ≤M + 1

and hence ξ(φj(x)) = 1 for all j ≥ j̄ and for all x in the support of ψ.
This implies (72).

If ψ(x) := (0, . . . , ψi(x), . . . , 0) ∈ C1
c (ω,R2n−1) and i 6= n then by

(72) we obtain∫
ω

∇φ
i φ ψi dL2n = lim

j→∞

∫
ω

∇φj
i φj ψi dL2n =

= − lim
j→∞

∫
ω

φj∇
φj
i ψidL2n =

∫
ω

φ∇φ
i ψidL2n

where we used the fact that, if i 6= n, then ∇φj
i φj = ∇φ

i φj. On the
other hand if i = n we obtain∫

ω

∇φ
nφ ψn dL2n = lim

j→∞

∫
ω

∇φj
n φj ψn dL2n =

= − lim
j→∞

∫
ω

(φj∂nψn + φ2
j∂2nψ) dL2n = −

∫
ω

(φ∂nψ + φ2∂2nψn) dL2n.

�

We end this Section proving the area formula stated in Theorem 1.6:

Proof of Theorem 1.6. Denoting by E the subgraph of φ and by Ω
the cylinder R× ω, being |∂E|H a Radon measure, a classical approxi-
mation result ensure the existence of a sequence

(ϕj)j∈N = ((ϕj,1, . . . , ϕj,2n))j∈N ⊂ C1
c (Ω,R2n)

with |ϕj|R2n ≤ 1 such that

ϕj → νE |∂E|H − a.e in Ω

moreover by Corollaries 4.2 and 4.3 it is easy to see that

ϕj ◦ Φ→ νE ◦ Φ L2n − a.e in ω.

Inserting this sequence in (71) of Prosposition 4.6 we obtain that for
all j ∈ N,

−
∫

Ω

〈ϕj, νE〉 d|∂E|H =

∫
ω

ϕj,1 ◦ Φ−
〈
∇φφ, ϕ̂j ◦ Φ

〉
dL2n(74)

and the first part of the thesis follows taking the limit as j →∞ in (74).
The fact that |∂Eφ|H(ω ·R) = cnS2n+1(graph(φ)) for some dimensional
constant cn > 0 is a direct consequence of Theorem 2.16 and Lemma
4.5. �
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5. Approximation result

In this section we are going to prove Theorem 1.7. We will strictly
follow here the approximation techniques contained in [37] and [43],
which are extensions to Heisenberg setting of the classical De Giorgi’s
techniques for the Euclidean one [20].

Before stating the approximation Theorem we need to recall two
results that will be fundamental in the proof.

5.1. Theorem ([45]). Let f : Rn −→ R be a strictly convex function
and let (gj)j and g be in (L1(Ω))n. If

(1) gj → g weakly in (L1(Ω))n;
(2)

∫
Ω
f ◦ gj dLn →

∫
Ω
f ◦ g dLn

then gj → g strongly in (L1(Ω))n.

5.2. Lemma. ([43]) Suppose that M > 0 c > 0 and u ∈ C1((−M,M)×
ω,R) ∩ C0([−M,M ]× ω) are such that ∇H

1 u ≤ 0 and

u(x,M) > c, u(x,−M) ≤ 0 ∀x ∈ ω.

Assume also that ∇H
1 u(p) < 0 on the set A = {p ∈ (−M,M) × ω :

u(p) = c. Then there exists φ : ω −→ (−M,M) such that φ is
∇φ−differentiable in ω and

{u > c} ∩ (−M,M)× ω = Eφ ∩ (−M,M)× ω.

We are now in position to prove Theorem 1.7.

Proof of Theorem 1.7. Let us assume firstly that φ : W −→ R. Let
M := ‖φ‖L∞(W) < +∞. For each α > 0 we define uα : Hn −→ R by

uα(p) := (ρα ∗ χEφ)(p) =

∫
Hn
ρα(p · q−1)χEφ(q) dL2n+1(q)(75)

=

∫
Hn
ρα(q)χEφ(q−1 · p) dL2n+1(q)

where ρα(x) := α2n+2ρ(δ1/α(x)) and ρ ∈ C∞c (U(0, 1)) is a smooth mol-
lifier with ρ(p−1) = ρ(−p) = ρ(p) ∀p ∈ Hn. Namely let us exploit
the classical technique of approximation by convolution in Hn intro-
duced in [22] of which the main properties are collected in [22] and [43,
Lemma 2.4].

Claim 0. Let us first show that uα is constant far from the graph of
φ, so that the integral (75) is indeed extended only in a neighborhood
of the graphs itself.
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To this end, for each α > 0 it follows that uα ∈ C∞c (Hn) and

spt(uα) ⊂ U(0, α) · spt(χEφ).

Moreover, let us observe that for each α > 0

0 ≤ uα(p) ≤ 1 ∀p ∈ Hn;

and for all sufficiently small α > 0

uα(p) = 1 ∀p ∈ (−∞,−2M ]×W.(76)

Notice also that Eφ is open in Hn and

spt(χEφ) = Eφ ⊆ {(s, x) | x ∈ R2n, s ≤ φ(x)}(77)

⊆ (−∞,M ]×W.

Hence

spt(uα) ⊆ Ūα · spt(χEφ) ⊆ (−∞, 2M)×W(78)

for α < M . In particular, (78) implies

uα(p) = 0 ∀ p ∈ [2M,+∞)×W.(79)

Claim 1. Let us compute explicitly ∇H
1 uα.

Let ϕ ∈ C∞c ((−3M, 3M)× ω), then

〈
∇H

1 uα, ϕ
〉

= −
∫

(−3M,3M)×ω
uα(p

′
)∇H

1 ϕ(p
′
)dL2n+1(p

′
)

(80)

= −
∫
Ūα

ρα(p)dL2n+1(p)

∫
(−3M,3M)×ω

χEφ(p−1 · p′)∇H
1 ϕ(p

′
)dL2n+1(p

′
)

= −
∫
Ūα

ρα(p)dL2n+1(p)

∫
p−1·((−3M,3M)×ω)

χEφ(q)∇H
1 ϕ(p · q)dL2n+1(q).

With the notation ϕp(q) = ϕ(p · q) we have ∇H
1 (ϕ(p · q)) = ∇H

1 ϕp(q),
because∇H

1 is left-invariant; moreover ϕp ∈ C∞c (p−1·((−3M, 3M)×ω)),
then

〈
∇H

1 uα, ϕ
〉

=

(81)

= −
∫
Ūα

ρα(p)dL2n+1(p)

∫
p−1·((−3M,3M)×ω)

χEφ(q)∇H
1 ϕp(q)dL2n+1(q).
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Put C(p, 3M) := p−1 ·((−3M, 3M)×ω) then by an integration by parts,
we have∫
C(p,3M)

χEφ(q)∇H
1 ϕp(q)dL2n+1(q) = −

∫
C(p,3M)

ν1
Eφ

(q)ϕp(q)d|∂Eφ|(q)

(82)

where ν1
Eφ

is the first component of the horizontal inward normal νEφ =

(ν1
Eφ
, . . . , ν2n

Eφ
) to Eφ.

Because spt(ϕp) b C(p, 3M) and p ∈ Uα if α is small enough, we can
replace C(p, 3M) by C(0, 3M). Thus, by Fubini-Tonelli Theorem and a
change of variable, we obtain〈
∇H

1 uα, ϕ
〉

=

∫
C(0,3M)

ν1
Eφ

(q)d|∂Eφ|(q)
(∫

Hn
ρα(p)ϕ(p · q)dL2n+1(p)

)
.

Then for each p ∈ C(0, 3M) = (−3M, 3M)× ω and for all α > 0 small
enough

∇H
1 uα(p) =

∫
C(0,3M)

ρα(p · q−1)ν1(q)d|∂Eφ|(q) =(83)

=

∫
UR(p,α)

ρα(p · q−1)ν1(q)d|∂Eφ|(q)

where UR(p, α) := U(0, α) · p.
In particular we immediately deduce from (83) the following asser-

tion. For each couple (ω, ω0) of open and bounded subset of W with
ω0 c ω there exists ᾱ = ᾱ(ω0) > 0 such that for all 0 < α < ᾱ∫

(−2M,2M)×ω
|∇Huα|dL2n+1 ≤ |∂Eφ|((−2M, 2M)× ω0).(84)

Claim 2. For every fixed α and c ∈ (0, 1) the set

A = {p ∈ (−2M, 2M)× ω : uα(p) = c}

implicitly defines a function φα. This family has a subsequence {φk}k
such that |∇φkφk| ≤ ||∇φφ||L∞(ω) ∀k ∈ N on ω ⊂W.

From Claim 1 we will first deduce that

∇H
1 uα(p) < 0 ∀p ∈ A.(85)

Indeed, recalling that (see Corollary 4.2)

ν1 ◦ Φ = − 1√
1 + |∇φφ|2

in ω
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and denoting by

Iα(p) :=

∫
UR(p,α)

ρα(p · q−1)d|∂Eφ|(q)(86)

we obtain

∇H
1 uα(p) ≤ − 1√

1 + ‖∇φφ‖2
L∞(ω)

Iα(p) ∀p ∈ (−3M, 3M)× ω.(87)

In order to prove (85) for every c ∈ (0, 1) let us define

Eα = Eα,c := {p ∈ R× ω | uα(p) > c}
and notice that for each p ∈ (−2M, 2M)× ω with uα(p) = c

L2n+1(UR(p, α) ∩ Eφ) > 0 L2n+1(UR(p, α) ∩ Ec
φ) > 0.(88)

Otherwise, by contradiction, assume, for instance, that L2n+1(UR(p, α)∩
Eφ) = 0. Then, since Eφ is open, we can assume UR(p, α)∩Eφ = ∅. By
definition of convolution, it follows that uα(p) = 0 and then a contradic-
tion. Analogously, it follows that uα(p) = 1 if L2n+1(UR(p, α)∩Ec

φ) = 0.

By (88) and Theorem 2.14, we have |∂Eφ|(UR(p, α)) > 0 ∀p ∈
(−2M, 2M)× ω with uα(p) = c, then

Iα(p) > 0 p ∈ (−2M, 2M)× ω with uα(p) = c.(89)

From (87) and (89), (85) follows. Applying Lemma 5.2 we deduce that
there is a function φα : ω −→ [−2M, 2M ] such that

Eα ∩ ([−2M, 2M ]× ω) = Eφα ∩ ([−2M, 2M ]× ω),(90)

From (79), (76), it follows that

∂Eα ∩ (R× ω) = {p ∈ [−2M, 2M ]× ω | uα(p) = c} = Φα(ω)(91)

where Φα : ω −→ Hn is the graph map defined as in (4).

We can now estimate from above the gradient of φα. Letting ∇̂Huα :=
(∇H

2 uα, . . . ,∇H
2nuα), ν̂Eφ = (ν2

Eφ
, . . . , ν2n

Eφ
) and arguing as in Claim 1 we

get,

|∇φαφα| =
|∇̂Huα(p)|
|∇H

1 uα(p)|
≤(92)

1

|∇H
1 uα(p)|

∫
UR(p,α)

|ν̂Eφ(q)||ρα(p · q−1)| d|∂Eφ|(q)

≤ Iα(p)
‖∇φφ‖L∞(UR(p,α))

|∇H
1 uα(p)|

√
1 + ||∇φφ||2

L∞(UR(p,α))

≤ ‖∇φφ‖L∞(UR(p,α)),

29



the last inequality being a consequence of (87). It follows that for all
α > 0

|∇φαφα| ≤ ‖∇φφ‖L∞(ω) in ω.(93)

Claim 3. There is a constant L only dependent on ‖∇φφ‖L∞(ω) such
that for each α > 0 sufficiently small and each x ∈ ω it holds |φα(x)−
φ(x)| ≤ Lα. Hence {φα} coverges uniformly on ω.

This is a direct consequence of Theorem 3.5. Indeed for β fixed as
in Theorem 3.5, there exists L > 0 only dependent on β such that

U((−L, 0), 1) ⊂ {q : ‖πW(q)‖ < −βπV(q)}

U((L, 0), 1) ⊂ {q : ‖πW(q)‖ < βπV(q)}.
Let p(x) := (φ(x), x), p′(x) = (φ(x)−αL, x) and p′′(x) = (φ(x)+αL, x)
with x ∈ ω and and α ∈ (0, 1]. Observe that it holds:

‖p′(x)‖ ≤M + L+ (2n− 1)C +
√
C ∀x ∈ ω(94)

where C := max1≤i≤n(maxx∈ω |xi|) < +∞. Moreover, by standard con-
siderations (see [29, 38]), we know that for each p ∈ U(0, r0) there
exists c = c(r0) > 0 such that

UR(p, r) ⊂ U(p, c(r0)
√
r) ∀r ∈ (0, 1).(95)

Hence, if x ∈ ω and α ∈ (0, 1], by (94) and (95), we conclude:

UR(p′(x), α) ⊂ U(p′(x), c(r0)
√
α) ⊂ {q : ‖πW(p(x)−1 · q)‖ < −βπV(p−1 · q)} ⊂ E

(96)

UR(p′′(x), α) ⊂ U(p′′(x), c(r0)
√
α) ⊂ {q : ‖πW(p(x)−1 · q)‖ < βπV(p−1·q)} ⊂ Hn−E,

where r0 := M +L+ (2n− 1)C +
√
C > 0. In particular, by definition

of uα

uα(φ(x)− αL, x) = 1, uα(φ(x) + αL, x) = 0,

and by definition of φα and (85) we conclude that:

φ(x)− αL ≤ φα(x) ≤ φ(x) + αL ∀α ∈ (0, 1],∀x ∈ ω.

Claim 4. There exists a positive sequence (αh)h such that, if φh ≡ φαh
then

∇φhφh(x)→ ∇φφ(x) L2n − a.e x ∈ ω.(97)
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In order to get (97), we need only to prove that there exists a positive
sequence (αh)h converging to 0 such that there exists

lim
h→∞

∫
ω

√
1 + |∇φhφh|2dL2n =

∫
ω

√
1 + |∇φφ|2dL2n(98)

where φh ≡ φαh . Indeed, up to subsequence, by (93) and Proposition
4.7 we can assume , that the sequence in (98) also satisfies

∇φhφh → ∇φφ weakly in (L1(ω))2n−1.(99)

Then, by Theorem 5.1, it follows that

∇φhφh → ∇φφ strongly in (L1(ω))2n−1.(100)

Therefore, up to a subsequence, (97) follows. Let us now prove (98).
It is sufficient to show that there exists c̄ ∈ (0, 1) and (αh)h ⊂ (0,+∞)
converging to 0 such that

∃ lim
h→∞
|∂Eαh,c̄|H((−2M, 2M)× ω) = |∂Eφ|H((−2M, 2M)× ω).(101)

In fact, by Proposition 1.6 and well-known H−perimeter properties

∫
ω

√
1 + |∇φφ|2dL2n = |∂Eφ|H(R× ω) =

(102)

= |∂Eφ|H((−∞, 2M ]× ω) + |∂Eφ|H((−2M, 2M)× ω)+

+ |∂Eφ|H([2M,+∞)× ω) =

= |∂Eφ|H((−∞,−2M ]× ω ∩ ∂Eφ) + |∂Eφ|H((−2M, 2M)× ω)+

+ |∂Eφ|H([2M,+∞)× ω ∩ ∂Eφ) =

= |∂Eφ|H((−2M, 2M)× ω),

where in the last equality we have used the inequality |φ| ≤ M which
implies (−∞,−2M ]×ω∩∂Eφ = [2M,+∞)×ω∩∂Eφ = ∅. Analogously,
by (90),(76) and (79)

|∂Eαh,c|H((−2M, 2M)× ω) = |∂Eφh |H((−2M, 2M)× ω)(103)

and ∫
ω

√
1 + |∇φhφh|2dL2n = |∂Eφh|(R× ω)(104)

= |∂Eφh|H((−2M, 2M)× ω),(105)

where φh = φαh . Therefore (102),(103) and (104) imply (98). Finally
let us prove (101). We will follow the technique exploited in [43]. Notice
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that, by the semicontinuity of H−perimeter measure and Claim 3, we
have

|∂Eφ|H((−2M, 2M)× ω) ≤ lim inf
α→0+

|∂Eα,c|H((−2M, 2M)× ω)(106)

for each c ∈ (0, 1). On the other hand, by (106) and the coarea formula
it follows that

|∂Eφ|H((−2M, 2M)× ω) ≤
∫ 1

0

lim inf
α→0+

|∂Eα,c|H((−2M, 2M)× ω)dc ≤

≤ lim inf
α→0+

∫ 1

0

|∂Eα,c|H((−2M, 2M)× ω)dc =

= lim inf
α→0+

∫
(−2M,2M)×ω

|∇Huα|dL2n+1 =: I(ω, c).

Now, for each ω0 c ω open and bounded, by Claim 2, it holds

I(ω, c) ≤ |∂Eφ|H((−2M, 2M)× ω0).(107)

Indeed, by Claim 2, for each ω0 c ω open and bounded there exists a
sequence {αh}h ⊂ (0,+∞) which converges to 0 and h̄ = h̄(ω0) > 0
such that for each h ≤ h̄∫

(−2M,2M)×ω
|∇uαh|dL2n+1 ≤ |∂Eφ|H((−2M, 2M)× ω0).(108)

Hence

I(ω, c) ≤ |∂Eφ|H((−2M, 2M)× ω0)(109)

for each c ∈ (0, 1) and each ω0 c ω open and bounded. Moreover, since
|∂Eφ|H is a Radon measure then by a standard approximation argument
we can rewrite (107) with ω instead of ω0. Using again (106), we obtain
that L1−a.e c ∈ (0, 1)

lim inf
α→0

|∂Eα,c|H((−2M, 2M)× ω) = |∂Eφ|H((−2M, 2M)× ω).

In particular there exists c̄ ∈ (0, 1) and a positive sequence (αh)h con-
verging to 0 such that (101) holds.

We conclude the proof proving that the assumption φ : W −→ R can
be relaxed to φ : ω −→ R where ω ⊂W is open and bounded. Indeed,
by (8) φ is locally uniformly continuous on ω. Thus φ can be extended
to a continuous function φ : ω → V ≡ R and let M := supω |φ| < +∞.
By Theorem 1.3, there exists a Lipschitz extension φ : W ≡ R2n →
V ≡ R of φ. Define φ∗ : W→ V ≡ R by

φ∗(x) = max{min{φ(x), M}, −M} x ∈W .
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Theorem 1.3 yields that φ∗ is a bounded Lipschitz function, which still
extends φ. Applying the previous part of the proof to φ∗ we get the
thesis. �

6. Application

In this section we provide a characterization of LipW(ω) in terms of
approximating sequences. We first give the proof of Proposition 1.8.

Proof of Proposition 1.8. Estimate (9) follows from (66). Let us
fix φ ∈ LipW(ω) , x̄ ∈ ω and 0 < r < r̄/(2C2), here r̄ and C2 are as
in Proposition 3.8. Let {φi}i∈N be a sequnce of smooth functions as in
Theorem 1.7. For every i sufficiently big Ucc,φi(x̄, r/2) ⊂ ω. Moreover,
by [28, Theorem 2.7], ∀x, y ∈ Ucc,φi(x̄, r/2)

|φi(x)− φi(y)| ≤ ‖∇φiφi‖L∞(Ucc,φi (x̄,r/2)))dcc,φi(x, y)(110)

so that

Lipcc(φi, Ucc,φi(x̄, r/2)) ≤ ‖∇φiφi‖L∞(Ucc,φi (x̄,r/2)) ∀i ∈ N.(111)

Viceversa, by definition of differential it follows that

‖∇φiφi‖L∞(Ucc,φi (x̄,r/2))) ≤ Lipcc(φi, Ucc,φi(x̄, r/2)) ∀i ∈ N.

For each i ∈ N let r̄i, C
i
1 and Ci

2 be as in Proposition 3.8. Since every
φi is Lipschitz continuous on Ucc,φi(x̄, r/2) with respect to the distance
dcc,φi then it is clear, from the proof of Proposition 3.8 and (111), that
each r̄i, C

i
1, C

i
2 depend only on ‖∇φiφi‖L∞(ω). By Theorem 1.7, the

sequence {‖∇φiφi‖L∞(ω)}i∈N is bounded, hence we can as well choose
r̄, C1 and C2 independent of i and dependent only on ‖∇φφ‖L∞(ω) such
that

|φi(x)− φi(y)| ≤ ‖∇φφ‖L∞(ω)dcc,φi(x, y) ∀x, y ∈ Uφi(x̄, r/2C1)

≤ C2‖∇φφ‖L∞(ω)dφi(x, y)

letting i → +∞ and using Theorem 1.7 and the explicit expression of
dφi (see (27)) we conclude that ∀x, y ∈ Uφ(x̄, r/2C1)

|φ(x)− φ(y)| ≤ C2‖∇φφ‖L∞(ω)dφ(x, y)(112)

which implies (10).
To prove (11), we use the fact, recalled in in Definition 3.4, that the cone
opening is the inverse of the Lipschitz constant, and the estimate of the
cone opening provided in Theorem 3.5, with k = − 1q

1+‖∇φφ‖2
L∞(ω)

�

Using this fact, from proposition 3.8 we immediately get:
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6.1. Theorem (Characterization of locally intrinsic Lipschitz func-
tions). Let ω bW be open and bounded, and let φ : ω → R. Then the
following are equivalent:

(i) φ ∈ LipW,loc(ω);
(ii) there exist {φk}k∈N ⊂ C∞(ω) and w ∈ (L∞loc(ω))2n−1 such that

(ii1) {φk}k∈N uniformly converges to φ on the compact sets of
ω;

(ii2) for each ω′ b ω there exists C = C(ω′) such that |∇φkφk(x)| ≤
C L2n-a.e. x ∈ ω′, k ∈ N;

(ii3) ∇φkφk(x) −→ w(x) L2n−a.e x ∈ ω.

Moreover if (ii) holds, then w ≡ ∇φφ L2n−a.e in ω.
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Via Trieste 63, 35121, Padova - Italy,

E-mail address: pinamonti@science.unitn.it

Francesco Serra Cassano: Dipartimento di Matematica, Università
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