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Abstract

In the two well problem we look for a map u which satis�es Dirichlet
boundary conditions and whose gradient Du assumes values in SO (2)A[
SO (2)B = SA [ SB ; for two given invertible matrices A;B (an element
of SO (2)A is of the form RA where R is a rotation). In the original
approach by Ball and James [1], [2] A, B are two matrices such that
detB > detA > 0 and rank fA�Bg = 1: It was proved in the �90 (see
[4], [5], [6], [7], [17]) that a map u satisfying given boundary conditions
and such that Du 2 SA [ SB exist in the Sobolev class W 1;1(
;R2) of
Lipschitz continuous maps. However, for orthogonal matrices it was also
proved (see [3], [8], [9], [10], [11], [12], [16]) that solutions exist in the class
of piecewise C1 maps, in particular in the class of piecewise a¢ ne maps.
We prove here that this possibility does not exist for other nonsingular
matrices A, B: precisely, the two well problem can be solved by means of
piecewise a¢ ne maps only for orthogonal matrices.

1 Introduction

The two well problem is relevant in nonlinear elasticity and is a model for vector-
valued di¤erential inclusions. A two dimensional Dirichlet problem for a two well
problem can be formulated as follows: given two matrices A;B; �nd a map u
which satis�es some boundary conditions and whose gradientDu assumes values
in SO (2)A [ SO (2)B: Here an element of SO (2)A (similarly for SO (2)B) is
of the form RA where R 2 SO (2) ; i.e. R is a rotation. From now on we will
write

SA = SO (2)A and SB = SO (2)B:

The problem is also important in geometry: rigid maps, Nash-Kuiper theo-
rem, origami (see [9], [12] for details). However the general problem of potential
wells has been introduced by Ball and James [1], [2] in the study of crystal-
lographic models involving �ne microstructures. The study of the Dirichlet
problem is in general very di¢ cult. Also di¢ cult is the mathematical character-
ization of approximating solutions, which involves minimizing sequences in some
problems of the calculus of variations (as in Ball and James [1], [2]) and charac-
terization of the rank-one convex, or the quasiconvex hull of the vector-valued
set of the wells (see Sverak [18]).
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Existence of solutions to the Dirichlet problem for the two well problem has
been obtained in dimension 2 by Dacorogna and Marcellini [4], [5], [6] (see also
the book [7]) and � at the same time and with a di¤erent method � by Müller
and Sverak [17]. The solutions considered in the quoted papers belong to the
class of Lipschitz continuous maps, for which the gradient exists on a set whose
complement has null measure. However in some other similar situations, when
A;B are orthogonal matrices, it is possible (see [3], [8], [9], [10], [11], [12], [16])
to solve the Dirichlet problem by means of locally piecewise a¢ ne maps. The
natural question that can be raised is to know if, for more general matrices, the
two well problem can be solved by means of locally piecewise C1 maps, or even
locally piecewise a¢ ne maps.
In this paper we show that this possibility does not exist. Precisely, the

Dirichlet problem for two invertible wells can be solved by means of piecewise
a¢ ne maps only for orthogonal matrices. The particular case of singular matri-
ces is considered in [13].
As we said, orthogonal matrices have been studied in this context in [3],

[8], [9], [11], [12] pointing out the existence of piecewise smooth solutions, in
particular of piecewise a¢ ne solutions, which assume the boundary datum in a
fractal way. In this case the matrices A;B have the form

A = I =

�
1 0
0 1

�
and B = I� =

�
1 0
0 �1

�
:

Thus, surprisingly, the above case is the only possible one of non-trivial non-
degenerate matrices for which the Dirichlet problem for two wells can be solved
by piecewise smooth maps.

2 Singular values and notations

We now give the de�nition of the singular values.

De�nition 1 Let A 2 Rn�n: The singular values of A; denoted by

0 � �1 (A) � � � � � �n (A) ;

are de�ned to be the square root of the eigenvalues of the symmetric and positive
semi de�nite matrix AtA 2 Rn�n:

The following theorem is the standard decomposition theorem (see Theorem
7.3.5 in [14] or Theorem 3.1.1 in [15], for example).

Theorem 2 (Singular values decomposition theorem) Let A 2 Rn�n and
0 � �1 (A) � � � � � �n (A) be its singular values. Then there exist R;Q 2 O (n)
such that

RAQ = diag (�1 (A) ; � � � ; �n (A)) =

0B@ �1 (A) � � � 0
...

. . .
...

0 � � � �n (A)

1CA :
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Moreover if the singular values are all di¤erent, then R and Q are unique if, for
example, R 2 SO (n) :

We gather below some elementary facts about the singular values, that can
be deduced easily from the above theorem.

Proposition 3 (i) The matrix A 2 Rn�n is invertible if and only if �1 (A) > 0:
In this case

�i
�
A�1

�
=

1

�n�i+1 (A)
for every i = 1; � � � ; n:

(ii) Any matrix A 2 Rn�n satis�es

jdetAj =
nY
i=1

�i (A) :

(iii) Let A 2 Rn�n; then

A 2 O (n) , �1 (A) = � � � = �n (A) = 1:

If moreover detA = �1; then A 2 SO (n) I� where

I� =

0BBB@
1 0 � � � 0
0 1 � � � 0
...
...
. . .

...
0 0 � � � �1

1CCCA :

(iv) The eigenvectors of AtA are orthogonal.

(v) Let A;B 2 Rn�n: Then"
BA�1 2 O (n)
A invertible

#
,
"
AB�1 2 O (n)
B invertible

#
,
"

AtA = BtB

A and B invertible

#
:

In particular
BA�1 2 O (n) ) �i (B) = �i (A) :

Proof. We only prove (v). Assume that A is invertible and BA�1 2 O (n) ;
then ��det �BA�1��� = 1
and therefore B is also invertible. According to (i) and since BA�1 2 O (n)

�i
�
AB�1

�
=

1

�n�i+1 (BA�1)
= 1 for every i = 1; � � � ; n;

thus, in view of (iii), AB�1 2 O (n) :
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Assume now that A is invertible and BA�1 = R 2 O (n) : We therefore
deduce that B = RA and hence

BtB = (RA)
t
(RA) = AtA

and thus �i (B) = �i (A) : Conversely if A is invertible and

AtA = BtB;

then

BtBA�1 = At ) A�tBtBA�1 =
�
BA�1

�t �
BA�1

�
= I

) �1
�
BA�1

�
= � � � = �n

�
BA�1

�
= 1

which readily, according to (iii), implies that BA�1 2 O (n) :

3 From C1 to piecewise a¢ ne maps

De�nition 4 If A is an n � n matrix, we denote with SA and OA the sets of
matrices

SA = SO(n) �A = fRA : R 2 SO(n)g
OA = O(n) �A = fRA : R 2 O(n)g:

Lemma 5 Let 
 � Rn be open and connected. Let A;B be two �xed n � n
matrices such that SA 6= SB : Let u 2 C1(
;Rn) such that

Du(x) 2 SA [ SB for every x 2 
:

Then either Du(x) 2 SA for every x 2 
 or Du(x) 2 SB for every x 2 
:

Proof. Notice that SA and SB are closed (and connected) subsets of the space
of n � n matrices. Moreover SA \ SB = ; because otherwise there would exist
two matrices Q;R 2 SO(n) such that QA = RB i.e. B = R�1QA and hence
SB = SR�1QA = SA which is excluded by hypothesis. So SA and SB are two
di¤erent connected components of SA [ SB : Notice now that x ! Du(x) is a
continuous mapping de�ned on the connected set 
:Hence its image is connected
and being contained in SA [ SB ; which is not connected, we conclude that the
image is fully contained either in SA or in SB :

Theorem 6 (Liouville theorem) Let 
 � Rn be open and connected. Let A
be an n� n invertible matrix. Let u 2 C1(
;Rn) such that Du(x) 2 SA for all
x 2 
: Then x! Du(x) is constant on 
 (hence u is an a¢ ne map).

Remark 7 If A is not invertible, then the theorem is false. For example if
n = 2 and

u (x1; x2) =

�
sinx1
� cosx1

�
and A =

�
1 0
0 0

�
then Du is not a constant matrix, while

Du (x1; x2) 2 SA for every (x1; x2) 2 R2:
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Proof. Step 1. Suppose that A is orthogonal with detA = 1: In this case
SA = SO(n) and the theorem is the classical Liouville theorem. Take any
x 2 
: Since Du(x) 2 SO(n) we have that Du(x) is invertible and applying
the local invertibility theorem we know that there exists a neighborhood V of
x such that u : V ! u(V ) is invertible. Let v : u(V ) ! V be its inverse. Then
Dv(y) = (Du(v(y)))�1 2 SO(n): So both u and v have gradient in SO(n) and
this implies that both u and v are 1�Lipschitz continuous, namely

ju(x)� u(x0)j � jx� x0j and jv(y)� v(y0)j � jy � y0j:

Letting y = u(x); y0 = u(x0); we thus obtain

jx� x0j = jv(y)� v(y0)j � jy � y0j = ju(x)� u(x0)j � jx� x0j

which means that ju(x)�u(x0)j = jx�x0j i.e. u is an isometry in V: By Cartan-
Dieudonné theorem (cf. [9]), we conclude that u is a¢ ne, hence Du(x) is con-
stant in V: Since Du is locally constant, it is constant.

Step 2. In the general case where A is any invertible matrix, we let


0 = A(
) = fx 2 Rn : x = Ay with y 2 
g

and consider the map v : 
0 ! Rn de�ned by v(x) = u(A�1x): We then have

Dv(x) = Du(A�1x)A�1 2 SAA�1 = SI = SO(n):

Hence we can apply Step 1 to conclude thatDv(x) is constant. As a consequence
also Du(x) is constant.

De�nition 8 (Piecewise-C1) Let 
 � Rn be an open set and let u : 
! Rn:
(i) We de�ne the singular set of u as the set

�u = fx 2 
: u is not di¤erentiable in xg:

(ii) We say that a map u : 
! Rn is piecewise C1 in 
 if
- u is continuous on 
;
- �u is relatively closed in 
;
- 
 n �u has a �nite number of connected components
- u is C1 in 
 n �u :
(iii) We say that u is locally piecewise C1 if for every open set 
0 such that


0 is a compact subset of 
; we have that u is piecewise C1 in 
0:

De�nition 9 (Relatively convex and polyhedral sets) Let U be an open
subset of a open set 
 � Rn:
(i) We say that U is convex relative to 
 if for every x; y 2 U such that the

segment [x; y] is contained in 
; then it is also contained in U:
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(ii) We say that U is a polyhedral set relative to 
 if U = int
�
U
�
and there

exist a �nite number of hyperplanes �1;�2; : : : ;�N such that

@U \ 
 �
N[
k=1

�k :

(iii) We say that U is locally polyhedral relative to 
; if the previous property
holds on every open set 
0 compactly contained in 
:

Theorem 10 (Rigidity) Let 
 � Rn be an open set and let u : 
 ! Rn be a
locally piecewise C1 map. Let A;B be two n�n invertible matrices and suppose
that

Du(x) 2 SA [ SB for every x 2 
 n �u :

Then the connected components 
k of 
 n�u are locally polyhedral sets relative
to 
 and Du is constant on each connected component. Moreover

�u = 
 \
[
k

@
k :

Remark 11 In fact it is possible to prove that the connected components of

 n �u are locally convex sets relative to 


Proof. Step 1. Suppose that u is piecewise C1 on 
 (not only locally). Then

 n �u has a �nite number of connected components 
1; : : : ;
N and on every
component Du is constant by Lemma 5 and Theorem 6. Let fk : Rn ! Rn be
the a¢ ne map such that u(x) = fk(x) for all x 2 
k : Let us now consider a
point x 2 �u : Since u is continuous in x; we must have

u(x) = fk(x) = fj(x)

for every x 2 
k \ 
j : Since x is a singular point of Du; at least two of these
maps fk should be di¤erent, otherwise u would be di¤erentiable at x: So there
exist j; k such that fj(x) = fk(x) and fj 6= fk : In particular x 2 �jk where
�jk = fy : fj(y) = fk(y)g is contained in a (n� 1)�dimensional a¢ ne subspace
of Rn: By considering all points x 2 �u we conclude that

�u �
[

j;k : fj 6=fk

�jk : (1)

Fix k; notice that @
k\
 � �u hence @
k\
 is contained in the �nite union of
(n�1)�dimensional a¢ ne subspaces of Rn: To prove that 
k is a polyhedral set
relative to 
; it remains to check the condition 
k � int

�

k
�
(the other inclusion

is always true, since 
k is open). Suppose by contradiction that there exists a
neighborhood U of x contained in 
k but x =2 
k ; that is x 2 
k n 
k = @
k :
Since u is continuous, and u = fk on 
k ; we know that u = fk on 
k hence
u = fk on the whole set U: Since x is interior to U we conclude that u is
di¤erentiable in x which is a contradiction since x 2 @
k � �u : To conclude
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the proof we only need to prove that �u � [@
k : If this were not true we
could �nd a point x 2 �u which is not in any 
k hence a whole neighborhood
of x is outside every 
k and hence �u has non empty interior. But this is in
contradiction with (1).

Step 2. In general if u is locally piecewise C1; we apply Step 1 to every 
0

compactly contained in 
 and obtain the result.

4 The singular set

Let � be a locally �nite union of closed segments in an open set 
 � R2: We
say that a point of 
 is a vertex of � if either it is an end point of a segment or
a point where at least two segments meet.

De�nition 12 (Distorted angle condition � analytical form) Let A be an
invertible 2� 2 matrix. We say that a locally polyhedral set � � R2 satis�es the
distorted angle condition (with respect to A) if �0 = A (�) where

�0 = A(�) =
�
x 2 R2 : x = Ay with y 2 �

	
satis�es the angle condition, namely: at every vertex of �0 the segments de�ne
an even number of angles �1; �2; : : : ; �2N which satisfy

NX
i=1

�2i�1 =

NX
i=1

�2i = �: (2)

A geometrical interpretation of the distorted angle condition with respect to
the given 2 � 2 invertible matrix A is as follows. We recall that �1 = �1 (A) ;
�2 = �2 (A) are the square root of the eigenvalues of the symmetric and positive
de�nite matrix AtA 2 R2�2; we now also consider the corresponding normalized
eigenvectors v1 = v1 (A) ; v2 = v2 (A) and we de�ne the associated ellipse EA
whose semi-axes are parallel to the eigenvectors v1 ; v2 ; of respective lengthr

�2
�1

and

r
�1
�2

:

Then EA can be represented in the form (with the symbol h�; �i we denote the
scalar product)

EA =

�
u 2 R2 : �1

�2
hu; v1i2 +

�2
�1
hu; v2i2 � 1

�
: (3)

In the geometrical description we will use the following lemma.

Lemma 13 Let A be an invertible 2� 2 matrix and let EA be the ellipse asso-
ciated to A as in (3). For every cone � in R2 centered at the origin we have
(cf. Figure 1)

j� \ EAj = jA (�) \ Cj ; (4)

where C be the unit disk centered at the origin.
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Figure 1: the two sets � \ EA and A (�) \ C have the same area

Proof. Step 1. Let us �rst prove that the image trough A of the ellipse EA is
the disk of radius

p
jdetAj; i.e.,

A (EA) =
p
jdetAj � C:

In fact we have

A�1 (C) =
�
A�1u : u 2 R2; juj � 1

	
=
�
u 2 R2 : jAuj � 1

	
:

Then we represent any generic u 2 R2 as linear combination of the normalized
orthogonal eigenvectors v1 ; v2

u = hu; v1i v1 + hu; v2i v2 :

Then we have jAuj2 = hAu;Aui = hAtAu;ui and thus

jAuj2 =


AtA (hu; v1i v1 + hu; v2i v2) ;u

�
=


hu; v1iAtAv1 + hu; v2iAtAv2;u

�
=


hu; v1i�21v1 + hu; v2i�22v2;u

�
= hu; v1i2 �21 + hu; v2i

2
�22 :

We obtain

A�1 (C) =
n
u 2 R2 : hu; v1i2 �21 + hu; v2i

2
�22 � 1

o
=

�
u 2 R2 :

D
u
p
�1�2; v1

E2 �1
�2
+
D
u
p
�1�2; v2

E2 �2
�1
� 1
�
:

Finally, with the notation v = u
p
�1�2 we get

A�1 (C) =

�
u 2 R2 : u = vp

�1�2
; hv; v1i2

�1
�2
+ hv; v2i2

�2
�1
� 1
�
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and thus

A�1 (C) =

�
u 2 R2 : u = vp

�1�2
; v 2 EA

�
=

1p
�1�2

EA =
1p
jdetAj

EA :

Step 2. Let � be a cone in R2 centered at the origin and let A (�) be the
set

A (�) = fAu : u 2 �g :
Then by Step 1, since � is positively homogeneous, we get

A (�) \ C = A (�) \A
 

EAp
jdetAj

!

= A

 
� \ EAp

jdetAj

!
= A

 
� \ EAp
jdetAj

!
:

We now compute the area of the set A (�)\C by the change of variables formula
and the fact that we are in the 2�dimensional case. Thus

jA (�) \ Cj =
�����A
 
� \ EAp
jdetAj

!�����
= jdetAj �

����� � \ EAp
jdetAj

����� = j� \ EAj
which concludes the proof.

We are ready to state the geometrical interpretation of the distorted angle
condition with respect to the given 2�2 invertible matrix A. At every vertex of
� the segments de�ne an even number of cones �1;�2; : : : ;�2N and note that
any �j in (2), for j = 1; : : : ; 2N; is the measure of the angle associated to the
cone A (�j); therefore it is equal to 1=2 the area of the intersection of A (�j)
with the unit disk. That is,

�j = 2 jA (�j) \ Cj ; 8 j = 1; : : : ; 2N:

Therefore by Lemma 13, according to (2), we get

NX
i=1

j�2i�1 \ EAj =
NX
i=1

j�2i \ EAj =
�

2
: (5)

Thus we can state De�nition 12 in the equivalent form:

Proposition 14 (Distorted angle condition � geometrical form) A locally
polyhedral set � satis�es the distorted angle condition with respect to an invert-
ible 2 � 2 matrix A if and only if at every vertex of � the segments de�ne an
even number of cones �1;�2; : : : ;�2N satisfying (5).
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Figure 2: ellipse associated to the matrix

Remark 15 Recall that j�j \ EAj is the area of the intersection of the cone
�j with the ellipse EA associated to the matrix A (see Figure 2).

Having discussed conditions for vertices, we now consider conditions on
edges.

De�nition 16 (Lamination condition) Let A and B be 2� 2 matrices with
A invertible and

�1
�
BA�1

�
� 1 � �2

�
BA�1

�
;

with at least one strict inequality. Let Q and R be the orthogonal matrices
which realize the singular value decomposition BA�1 = Q�R; � being a diagonal
matrix (notice that Q is unique up to the sign of its determinant). We say that
� satis�es the lamination condition (with respect to A and B) if �0 = QA (�)
is composed by segments that extend up to the boundary of 
: The two normals
�+ and �� to the lamination are given by

�� =

�
�
q
1� �21 (BA�1);

q
�22 (BA

�1)� 1
�
:

Note that, if either �1
�
BA�1

�
= 1 or �2

�
BA�1

�
= 1; then �+ and ��

are parallel to each other, hence in this case all the segments of � (and �0)
are parallel to each other. In this case we therefore have a single lamination,
otherwise we have a double lamination.
If in a double lamination two segments of � meet at a point x 2 
; we say

that x is a vertex of �:
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Remark 17 The condition

�1
�
BA�1

�
� 1 � �2

�
BA�1

�
is equivalent to the fact that the two wells SA and SB are rank one connected
(see Lemma 19 below).

5 Notations and preliminary results

We now �x the notations that will be used throughout the remaining part of
the article.

Notation 18 (i) We recall that for ' 2 (��; �] ; we write a generic matrix in
SO (2) as

R' =

 
cos' � sin'
sin' cos'

!
:

(ii) If A;B 2 R2�2 are invertible, we let

� = �1
�
BA�1

�
sign

�
det
�
BA�1

��
and � = �2

�
BA�1

�
:

(iii) We de�ne � 2 [0; �] through

cos � =
1 + ��

�+ �
and sin � =

p
�2 � 1

p
1� �2

�+ �
: (6)

If j�j � 1 � � and at least one strict inequality holds, then � is well de�ned,
since ����1 + ���+ �

���� � 1 , (1 + ��)
2 � (�+ �)2 ,

�
1� �2

� �
1� �2

�
� 0:

Thus if � = 0; then either � = 1 or � = 1; while if � = �; then � = �1 (and
thus � > 1).

(iv) We also let

�� =
�
�
p
1� �2;

p
�2 � 1

�
:

Before starting our analysis we need two elementary lemmas.

Lemma 19 (Edge) Let A = I and B = � = diag (�; �) with 0 < j�j � � and
� 6= I: Let � = (�1; �2) 6= 0 and '; 2 (��; �] : The map u : R2 ! R2 de�ned
by

u (x) =

(
R'x if hx; �i = x1�1 + x2�2 > 0

R'+ �x if hx; �i = x1�1 + x2�2 < 0

can be continuously extended across the line hx; �i = 0 if and only if one of the
two following cases happen.
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Case 1. The following conditions hold true: � = �1; � = 1 and � is parallel
to (1 + cos ; sin ) :
Case 2. The three following conditions are valid:

0 < j�j � 1 � � and at least one strict inequality holds

 = �� and � is parallel to �� :

Remark 20 The lemma gives also that

R�� = I + �+ 
 �+ =

0B@ 1� �(1��2)
�+� ��

p
�2�1

p
1��2

�+�

�
p
�2�1

p
1��2

�+� 1 +
�(�2�1)
�+�

1CA

R��� = I + �� 
 �� =

0B@ 1� �(1��2)
�+�

�
p
�2�1

p
1��2

�+�

��
p
�2�1

p
1��2

�+� 1 +
�(�2�1)
�+�

1CA
where

�� =

 
��

p
1� �2
�+ �

;
�
p
�2 � 1
�+ �

!
:

Proof. The map u is continuous only if

det(I �R �) = (1� � cos ) (1� � cos ) + �� sin2  
= 1� (�+ �) cos + �� = 0:

This can happen if and only if

� j�+ �j � 1 + �� � j�+ �j

which is valid if and only if
j�j � 1 � �:

Let us �rst examine Case 1. We see that in this case the above condition is
true for every  :We also infer that u is continuous across the line of discontinuity
of the gradient if and only if

x1(1 + cos ) + x2 sin = 0

which is equivalent to

� is parallel to (1 + cos ; sin ) :

Let us now examine the second case. In view of the above considerations we
see that

0 < j�j � 1 � � and at least one strict inequality holds.
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This in turn implies that �+ � 6= 0 and therefore

cos =
1 + ��

�+ �

which implies that  = ��: It remains to see that � is parallel to �� : In order
to have a continuous map in the case  = � (the case  = �� is handled in
exactly the same manner) we should therefore have x = R��x on the line of
discontinuity of the gradient, i.e. 

1� � cos � � sin �

�� sin � 1� � cos �

! 
x1

x2

!
= 0:

Solving the �rst equation of the previous system (we know that the system is
degenerate, hence we can drop the second equation) we �nd

x1(1� � cos �) + x2� sin � = 0

which is

x1

�
1� �1 + ��

�+ �

�
+ x2

�
p
�2 � 1

p
1� �2

�+ �
= 0:

We therefore �nd that

x1
�
�� �2�

�
+ x2�

p
�2 � 1

p
1� �2 = 0

which leads to
x1
p
1� �2 + x2

p
�2 � 1 = 0

as wished. The last statements R�� = I + �+ 
 �+ and R��� = I + �� 
 ��
are immediate.

According to the above lemma if 0 < j�j < 1 < �; then any line of disconti-
nuity has to be perpendicular to either �+ or �� :We therefore deduce that only
a vertex of order 4 can exist. This possibility is considered in the next lemma.

Lemma 21 (Vertex) Let A = I and B = � = diag (�; �) with

0 < j�j < 1 < �:

Let '; �; �0;  2 (��; �] : Let

�� =
�
�
p
1� �2;

p
�2 � 1

�
:

The map u : R2 ! R2 de�ned by

u(x) =

8>>><>>>:
R'x if hx; �+i > 0 and hx; ��i > 0

R'+��x if hx; �+i < 0 and hx; ��i > 0
R'+ x if hx; �+i < 0 and hx; ��i < 0
R'+�0�x if hx; �+i > 0 and hx; ��i < 0

can be extended by continuity, across the lines of discontinuity of the gradient,
if and only if �� = �1; � = ��0 = �=2; and  = �:
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Remark 22 Therefore the only possibility of having, under the hypotheses of
the lemma, a continuous u is that

R�' u (x1; x2) =

8>>><>>>:
(x1; x2) if x1 + �x2 > 0 and x1 � �x2 < 0

� (�x2; x1=�) if x1 + �x2< 0 and x1 � �x2 < 0
� (x1; x2) if x1 + �x2< 0 and x1 � �x2 > 0
(�x2; x1=�) if x1 + �x2> 0 and x1 � �x2 > 0:

Proof. We can apply Lemma 19 to the four lines of discontinuity to �nd that

� = ��0 = �; R = R2� = R2�0 :

The last condition gives 4� = 2k� for some integer k which means that � = k�=2
for k = �1; 0; 1; 2:We can exclude � = 0 and � = � since in that cases we would
�nd j�j = 1 or � = 1 which are excluded by hypothesis. So, by also matching
the sign of � with the sign of ��, we �nd � = �=2; �0 = ��=2;  = �: The
equation cos� = 0 hence becomes 1 + �� = 0 which gives � = �1=�:

6 The structure of the singular set

As in Notation 18, we will let, for A;B 2 R2�2 invertible,

� = �1
�
BA�1

�
sign

�
det
�
BA�1

��
and � = �2

�
BA�1

�
so that j�j � �: We have to consider three cases.

Case 1. The �rst one is when the wells are not rank one connected and then
no non-trivial solution exists.

The other two cases are concerned with rank one connected wells. This
implies (cf. Remark 17 and Lemma 19) that

j�j � 1 � �:

Case 2. The second case is when at least one of the two above inequalities is
strict. We will prove that a double lamination can occur. However an internal
vertex can exist only if �� = �1:
Case 3. Finally we consider the orthogonal case where

� = �1 and � = 1:

There the situation is much richer.

Remark 23 (i) Let A;B 2 R2�2 be invertible. We recall that, using the singu-
lar value decomposition, we can �nd '; � 2 (��; �] so that

BA�1 = R'�R� with � =

�
� 0
0 �

�
(7)
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and
� = �1

�
BA�1

�
det
�
BA�1

�
and � = �2

�
BA�1

�
:

(ii) In the following proofs, but not in the statements, we will always assume
that A = I and B = � where

� =

�
� 0
0 �

�
with j�j � �: This is not a loss of generality. Indeed when A and B are general
matrices, we have, as said above, that

BA�1 = R'�R�

with � = diag (�; �) and j�j � �; R'; R� 2 SO(2): We then consider the map

v(x) = u(A�1R��x)

which is de�ned on R�(A(
)) and satis�es

Dv(x) = Du
�
A�1R��x

�
A�1R��

We hence have that

Du 2 SA [ SB , Dv 2 SI [ S�

since

(SA [ SB)A�1R�� = SR�� [ SBA�1R�� = SI [ SR� = SI [ S� :

Therefore any statement on Du and SA [ SB becomes a statement on Dv and
SI [ S� : In particular note that if we let

�0 := R�A(�u) = �v ;

then the lamination condition for �v becomes the lamination condition for �u ;
according to De�nition 16.

We also adopt the notations of the preceding section. Our �rst theorem
concerns the case where the wells are not rank one connected

Theorem 24 (The empty singular set case) Let 
 be an open set of R2:
Let A;B 2 R2�2 be invertible and such that one of the following three conditions
hold

�1
�
BA�1

�
� �2

�
BA�1

�
< 1

�2
�
BA�1

�
� �1

�
BA�1

�
> 1

�1
�
BA�1

�
= �2

�
BA�1

�
= 1 and det

�
BA�1

�
= 1:

If u is a piecewise C1 solution of

Du 2 SA [ SB a.e. in 
;

then u is a¢ ne and thus �u = ;:
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Proof. Step 1. As already said we assume that A = I and B = �: We start
our discussion with the cases where

j�j � � < 1 or � � j�j > 1:

According to Lemma 19 the map u has to be such that either Du 2 SI or
Du 2 S� : The claim then follows from Liouville theorem.

Step 2. We next discuss the case

�1
�
BA�1

�
= �2

�
BA�1

�
= 1 and det

�
BA�1

�
= 1:

We thus have that BA�1 2 SO (2) and hence

SA [ SB = SA = SB

and we get the result by Liouville theorem.

Our second result is

Theorem 25 (The double lamination case) Let 
 be an open set of R2:
Let A;B 2 R2�2 be invertible and such that �1

�
BA�1

�
� 1 � �2

�
BA�1

�
and

at least one strict inequality holds.

Necessary conditions. If u is a piecewise C1 solution of

Du 2 SA [ SB a.e. in 
; (8)

then �u satis�es the lamination condition (with respect to A and B). Further-
more an internal vertex can exist only if

det
�
BA�1

�
= �1:

Su¢ cient condition. Conversely if 
 is simply connected and � satis�es the
lamination condition (with respect to A and B) without internal vertices, then
there exists a piecewise a¢ ne map u with � = �u satisfying (8).

Remark 26 In the case where �1 = 1 or �2 = 1; only one lamination can exist
(cf. below).

Proof. Recall that, without loss of generality, we have

A = I and B = � =

�
� 0
0 �

�
with

0 < j�j � 1 � � and at least one strict inequality holds.

In particular we cannot have j�j = � = 1 and thus

�+ � > 0:
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Recall also that � 2 [0; �] is de�ned through

cos � =
1 + ��

�+ �
and sin � =

p
�2 � 1

p
1� �2

�+ �
:

Necessary conditions. We divide the proof into three steps.

Step 1. According to Liouville theorem since � is invertible (i.e. �� 6= 0),
then any piecewise C1 map u such that Du 2 SI [ S� is piecewise a¢ ne. More
precisely, Du is constant on the connected components of 
n�u : In two adjacent
regions Du has two di¤erent values which must be rank-one connected matrices.
Since A and B are invertible, then no rank-one connection can exist in the same
well. So, crossing an edge of �u we pass from a gradient in SI to a gradient in
S� or vice versa.
We start with the case where � 6= 0; �=2; � (these cases will be dealt with in

Steps 2 and 3). This implies that

0 < j�j < 1 < � and �� 6= �1:

We assume thatDu takes values in both wells, otherwise nothing is to be proved.
We can also assume that, up to a rotation, Du is I on a set of positive measure.
We then apply Lemma 19 to get that only two laminations are possible, namely
those lines that are orthogonal to �� : This is exactly saying that �u satis�es
the lamination condition (with respect to A and B). Lemma 21 implies that
there cannot be an internal vertex, since �� 6= �1: In fact we have, according
to Lemma 19, the more precise statements

R�2� �R��� = R�2� (I �R��) = R�2� (��+ 
 �+) = (R�2� (��+))
 �+

and

R2� �R�� = R2� (I �R���) = R2� (��� 
 ��) = (R2� (���))
 �� :

Therefore the only adjacent gradient to R��� are I for the lamination orthogo-
nal to �� andR�2� for the lamination orthogonal to �+ : This can be summarized
in the following diagram

I
��! R���

��! I and R���
�+! R�2�

�+! R���:

Similarly the only adjacent gradient to R�� are R2� for the lamination orthog-
onal to �� and I for the lamination orthogonal to �+ : As before we have the
following diagram

I
�+! R��

�+! I and R��
��! R2�

��! R��:

This concludes the proof of the necessary part when � 6= 0; �=2; �:
Step 2. We now consider the case where � = 0 (the case � = � is handled

similarly). Then either � = 1 or � = 1 (recall that both cannot be equal to 1).
Assume that � = 1 (the case � = 1 is dealt with in the same manner). Therefore
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�+ and �� are parallel to e1 = (1; 0) and hence it follows from Lemma 19 that
only one lamination can occur and therefore no internal vertex can exist.
Step 3. We �nally deal with the case � = �=2: This implies that

0 < j�j < 1 < � and �� = �1:
So again Lemmas 19 and 21 give the claim. In particular an internal vertex can
exist.
Su¢ cient condition. We suppose that � is a given set satisfying the lami-

nation condition with respect to I and � and hence � is composed by segments
perpendicular to �� : Notice that the vertices of �; where several segments meet,
can only be composed by four segments (or two if j�j = 1 or � = 1), since we
only have two possible normal vectors to the segments.
Since 
 is simply connected and every vertex v of � has exactly four neigh-

boring regions (or exactly two if j�j = 1 or � = 1), it is possible (cf, the Recovery
Theorem 4.9 in [9]) to make a two-coloration of 
 n �: This means that it is
possible to assign a label I or � to every region, so that if two regions meet in
a segment, then they have a di¤erent label. The very same theorem gives the
existence of a piecewise a¢ ne map u with the required property, in particular
the gradient Du belongs to SI on every region with label I and to S� on every
region with label �:
We now turn to our third theorem.

Theorem 27 (The orthogonal case) Let 
 be an open set of R2: Let A;B 2
R2�2 with A invertible be such that

�1
�
BA�1

�
= �2

�
BA�1

�
= 1 and det

�
BA�1

�
= �1

or equivalently SA [ SB = OA = OB : Then the two following statements hold.
Necessary conditions. If u is a piecewise C1 solution of

Du 2 SA [ SB a.e. in 
; (9)

then u is piecewise a¢ ne and �u is locally polyhedral relative to 
 and satis�es
the distorted angle condition with respect to A:
Su¢ cient conditions. Conversely if 
 is simply connected and � is locally

polyhedral relative to 
 and satis�es the distorted angle condition with respect
to A; then there exists a piecewise a¢ ne map u with � = �u satisfying (9).

Proof. As usual we assume, without loss of generality, that A = I and B = �
where

� =

�
� 0
0 �

�
=

�
�1 0
0 1

�
:

Therefore � 2 O (2) and
SI [ S� = OI = O� :

The distorted angle condition with respect to I is hence the same as the distorted
angle condition with respect to �; since the associated ellipses are the same.
Since A = I and B = �; the distorted angle condition is just the angle condition.
We have thus reduced the theorem to Theorems 4.8 and 4.9 in [9].

18



7 The Dirichlet problem

The main result of this section is the following.

Theorem 28 Let 
 be a bounded open set of R2 with piecewise C1 boundary
made of at most seven smooth pieces. Let A;B 2 R2�2 be invertible matrices
such that

�1
�
BA�1

�
� 1 � �2

�
BA�1

�
with at least one strict inequality. Let C 2 R2�2 with C =2 SA [ SB : Then there
is no locally piecewise C1 solution of(

Du (x) 2 SA [ SB a.e. x 2 

u (x) = Cx x 2 @
:

(10)

Proof. Let us assume by contradiction that there exists a locally piecewise C1

map u whose gradient almost everywhere in 
 satis�es

Du (x) 2 SA [ SB :

The singular set �u (where the map u is not di¤erentiable) is not empty, since
otherwise the map u would be a¢ ne in 
; but this in impossible since C =2
SA [ SB : Then, by Theorem 25, �u satis�es the lamination condition (with
respect to A and B), see De�nition 16. Thus �u is composed by segments
that extend up to the boundary of 
; since at any interior vertex a cross forms
and the segment cannot end there. These segments are normal to at most two
�xed vectors, giving rise to either a double lamination (if the two vectors de�ne
distinct directions) or to a single lamination (if the two vectors de�ne the same
direction).
Our �rst claim is that �u cannot touch the boundary @
 in a point where

the boundary is smooth. In fact let � be a relatively open subset of the smooth
part of @
 and consider the set X = �u \ � which we want to prove to be
empty. Notice now thatX cannot contain isolated points, because the tangential
derivative of u at the point x0 would be di¤erent from the left and from the
right while it should coincide with the boundary datum C: So every point of
X is an accumulation point. But since to every point x 2 X there corresponds
a segment of �u we would �nd that some segments of �u accumulate in an
internal point of 
 which is excluded by the de�nition of piecewise-C1 maps.
Our next claim is that the smooth parts of the boundary are actually straight

segments. This is due to the fact that in such parts the boundary datum C and
the map u coincide. Since both of these maps are a¢ ne, if the boundary has
at least two di¤erent directions, these two a¢ ne maps would coincide which is
excluded since C is not an admissible value for Du:
Therefore one of these segments of �u (whose endpoint is x0) meets the

boundary @
 at a vertex; i.e., were @
 is not of class C1: If we consider two
consecutive vertices in @
 (i.e., endpoints of a connected part of the boundary
@
 where it is of class C1), then in between these two vertices no lamination
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arrives and u is a¢ ne there. Moreover, u being equal to Cx outside 
, the
interface must be a¢ ne.
This proves that 
 is a polygon and that the endpoints of the lamination

must arrive only at the vertices of 
: Moreover every vertex of @
 should be
an endpoint of a segment in �u : In fact, otherwise, we would have a boundary
portion not a¢ ne where two a¢ ne gradient values meet.
It thus remains to consider this �nal case, where 
 is a polygon with lam-

ination which arrives at all the vertex of 
. This conclusion for the polygon
comes from the next lemma.

Lemma 29 Let 
 be a polygon with at most seven sides. Let A;B 2 R2�2 be
invertible matrices such that

�1
�
BA�1

�
� 1 � �2

�
BA�1

�
with at least one strict inequality. Let C 2 R2�2 with C =2 SA [ SB : Then there
is no locally piecewise C1 solution of the Dirichlet problem (10).

Remark 30 In the proof below we will use the following elementary fact. Let
a; b; c; d 2 R2 then

det (a
 b� c
 d) = 0 , akc or bkd:

Remark 31 In the proof of the lemma, we will use the following notion of
extreme point of a set with respect to a given direction. Let � be a �xed direction,
K be a bounded set of R2 and x 2 K: We say that x is an extreme point of K
with respect to �; if a line having ��direction and containing x leaves K on one
side (i.e. K is on one of the half spaces de�ned by the line).
If K is a closed polygon in R2; then it has at least 2 (and at most 4 if it is

convex) distinct extreme vertices with respect to any given direction.

Proof. Of course if 
 is a triangle then the singular set is empty, the map u is
a¢ ne in 
,Du = C and it does not satisfy the di¤erential inclusionDu 2 SA[SB
since C =2 SA [ SB : We therefore consider a polygon 
 with at least 4 sides.
We already proved above that lamination arrives at all the vertices of 
:

We will use this fact to get a contradiction, to show that in fact a solution to
the Dirichlet problem (10) cannot have this property. To this aim we will take
under special consideration the vertices where a single lamination (not a double
one) arrives.

Step 1. Let us �rst prove that a single lamination arrives in at least 4
vertices of the polygon 
: As before let us denote by �+ and �� the two normals
to the lamination (we assume here that �+ 6= �� ; otherwise nothing is to be
proved). Then, with respect for instance to �+ ; let us consider the corresponding
lamination of direction �?+ (the vector orthogonal to �+). The polygon 
 has at
least two vertices which are extreme with respect to the direction �?+ : At these
two vertices the lamination cannot arrive from the interior of 
; thus only the
other lamination of direction �?� can arrive there. A similar consideration can

20



Figure 3: the Dirichlet problem at two consecutive corners

be done for �� and we therefore have at least 4 distinct vertices where a single
lamination arrives. Note that the extreme points related to �?+ and �?� should
be distinct one from the other, otherwise at a common extreme point we would
have a vertex with no lamination arriving from the inside and this have already
been excluded.

Step 2. Since the polygon 
 has at most 7 vertices, then a double lamination
arrives at most at 3 vertices and thus at least at two consecutive vertices a single
lamination arrives. Thus we consider two consecutive vertices of 
 as in Figure
3.
The map u is solution to the Dirichlet problem (10), with C =2 SA [ SB :

Without loss of generality we can consider that

A = I =

�
1 0
0 1

�
and B =

�
� 0
0 �

�
with 0 < j�j � 1 � � and at least one strict inequality. We know that the
normal vectors to the lines of discontinuities are given by

�� =
�
�
p
1� �2;

p
�2 � 1

�
:

We also recall that the angle � is given by

cos � =
1 + ��

�+ �
and sin � =

p
�2 � 1

p
1� �2

�+ �
:

Up to a rotation or to multiplication by B�1 we can consider that in between
the two lines of discontinuities the value of the gradient of the function is I 2 SA
as in Figure 3. So in the other sides of the discontinuity line we have that the
gradient is either I + �� 
 �� 2 SB if the line of discontinuity is orthogonal to
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�� or I +�+
 �+ 2 SB if the line of discontinuity is orthogonal to �+ : Lemma
19 asserts that if

�� = (�1; �2) =

 
��

p
1� �2
�+ �

;
�
p
�2 � 1
�+ �

!

then

I + �� 
 �� =

0B@ 1� �(1��2)
�+�

�
p
�2�1

p
1��2

�+�

��
p
�2�1

p
1��2

�+� 1 +
�(�2�1)
�+�

1CA = R��� 2 SB

I + �+ 
 �+ =

0B@ 1� �(1��2)
�+� ��

p
�2�1

p
1��2

�+�

�
p
�2�1

p
1��2

�+� 1 +
�(�2�1)
�+�

1CA = R�� 2 SB :

Two cases can happen.
Case 1. The lines of discontinuity which arrive at the two consecutive vertices

are one orthogonal to �� and the other orthogonal to �+ (see Figure 3). This
necessarily implies that

j�j < 1 < �:

So we consider two consecutive vertices of @
 from where one lamination em-
anates with normal �+ and another with normal �� (see Figure 3). The bound-
ary datum has the form u (x) = Cx; where C = I + c
 : Now let us see what
happens for c and : We should have (since the map is continuous across the
boundary of 
)

det (c
  � �� 
 ��) = det (c
  � �+ 
 �+) = 0:

Then, according to Remark 30, we have from the �rst equation

ck�� or k��

and from the second equation

ck�+ or k�+

Since neither �+ is parallel to �� nor �+ is parallel to �� ; we deduce that

k�+ or k��

and thus either the lamination orthogonal to �+ or the one orthogonal to ��
would coincide with the side of the polygon orthogonal to  and it would not
be internal to 
:
Case 2. At the two consecutive vertices the lines of discontinuity are both

orthogonal to �� (the case orthogonal to �+ is completely analogous) and the
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�gure is then similar to Figure 3. The gradient is then equal on both sides,
namely

I + �� 
 �� =

0B@ 1� �(1��2)
�+�

�
p
�2�1

p
1��2

�+�

��
p
�2�1

p
1��2

�+� 1 +
�(�2�1)
�+�

1CA 2 SB :

This is incompatible with the fact that it should match continuously with the
boundary datum u (x) = Cx; where C = I + c 
  and with the fact that the
sides of the polygon cannot be parallel there. The proof is therefore complete.

8 Existence of Lipschitz solutions not piecewise
a¢ ne

The approach for existence that we discuss in this section is a functional analytic
method based on the Baire category theorem and on weak lower semicontinuity
of convex and quasiconvex integrals. We mainly refer to the book [7], but we
also mention that some comparable results for the two well problem can be
found in [17].
The following result about the two well problem can be found in [7], Theorem

7.31.

Theorem 32 Let 
 be an open set of R2. Let A, B be two invertible matrices
such that detB > detA > 0 and rank fA�Bg = 1: Let ' (x) = �x where � is
such that

� = �RaA+ � RbB

where Ra ; Rb 2 SO(2) and �; � > 0 are such that

� <
detB � det �
detB � detA and � <

det � � detA
detB � detA :

Then there exists u 2W 1;1(
;R2) such that(
Du 2 SA [ SB a.e. in 


u = ' on @
:
(11)

Note that, contrary to the previous sections, here the map u, solution to
the Dirichlet problem (11), is a general Lipschitz-continuous solution, and not
necessarily a locally piecewise C1 map; and in fact cannot be!
One of the aims of this paper was to show that solving a Dirichlet problem by

means of piecewise C1 map or even piecewise a¢ ne map on one hand gives more
information on the solution (since the class of functions under consideration is
smaller) but on the other hand it makes the solving of the problem more di¢ cult.
Theorem 32 is a relevant example, if compared with Theorem 28, where we
proved that it was impossible to solve the same di¤erential problem by means
of only piecewise C1 map.
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