Conformal metrics on $\mathbb{R}^{2 m}$ with constant Q-curvature and large volume

Luca Martinazzi
Rutgers University
luca.martinazzi@math.rutgers.edu

January 20, 2012

Abstract

We study conformal metrics $g_{u}=e^{2 u}|d x|^{2}$ on $\mathbb{R}^{2 m}$ with constant Q-curvature $Q_{g_{u}} \equiv$ $(2 m-1)$! (notice that $(2 m-1)$! is the Q-curvature of $S^{2 m}$) and finite volume. When $m=3$ we show that there exists V^{*} such that for any $V \in\left[V^{*}, \infty\right)$ there is a conformal metric $g_{u}=e^{2 u}|d x|^{2}$ on \mathbb{R}^{6} with $Q_{g_{u}} \equiv 5!$ and $\operatorname{vol}\left(g_{u}\right)=V$. This is in sharp contrast with the fourdimensional case, treated by C-S. Lin. We also prove that when m is odd and greater than 1, there is a constant $V_{m}>\operatorname{vol}\left(S^{2 m}\right)$ such that for every $V \in\left(0, V_{m}\right]$ there is a conformal metric $g_{u}=e^{2 u}|d x|^{2}$ on $\mathbb{R}^{2 m}$ with $Q_{g_{u}} \equiv(2 m-1)!, \operatorname{vol}(g)=V$. This extends a result of A. Chang and W-X. Chen. When m is even we prove a similar result for conformal metrics of negative Q-curvature.

Keywords: Q-curvature, Paneitz operators, GMJS operators, conformal geometry.

1 Introduction and statement of the main theorems

We consider solutions to the equation

$$
\begin{equation*}
(-\Delta)^{m} u=(2 m-1)!e^{2 m u} \quad \text { in } \mathbb{R}^{2 m}, \tag{1}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
V:=\int_{\mathbb{R}^{2 m}} e^{2 m u(x)} d x<+\infty, \tag{2}
\end{equation*}
$$

with particular emphasis on the role played by V.
Geometrically, if u solves (1) and (2), then the conformal metric $g_{u}:=e^{2 u}|d x|^{2}$ has Q curvature $Q_{g_{u}} \equiv(2 m-1)$! and volume V (by $|d x|^{2}$ we denote the Euclidean metric). For the definition of Q-curvature and related remarks, we refer to Chapter 4 in [Cha] or to [FG] and [FH]. Notice that given a solution u to (1) and $\lambda>0$, the function $v:=u-\frac{1}{2 m} \log \lambda$ solves

$$
(-\Delta)^{m} v=\lambda(2 m-1)!e^{2 m v} \quad \text { in } \mathbb{R}^{2 m}, \quad \int_{\mathbb{R}^{2 m}} e^{2 m v(x)} d x=\frac{V}{\lambda},
$$

hence there is no loss of generality in the particular choice of the constant $(2 m-1)$! in (1). On the other hand this constant has the advantage of being the Q-curvature of the round sphere
$S^{2 m}$. This implies that the function $u_{1}(x)=\log \frac{2}{1+|x|^{2}}$, which satisfies $e^{2 u_{1}}|d x|^{2}=\left(\pi^{-1}\right)^{*} g_{S^{2 m}}$ (here $\pi: S^{2 m} \rightarrow \mathbb{R}^{2 m}$ is the stereographic projection) is a solution to (1)-(2) with $V=\operatorname{vol}\left(S^{2 m}\right)$. Translations and dilations (i.e. Möbius transformations) actually give us a large family of solutions to (1)-(2) with $V=\operatorname{vol}\left(S^{2 m}\right)$, namely

$$
\begin{equation*}
u_{x_{0}, \lambda}(x):=u_{1}\left(\lambda\left(x-x_{0}\right)\right)+\log \lambda=\log \frac{2 \lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}, \quad x_{0} \in \mathbb{R}^{2 m}, \lambda>0 . \tag{3}
\end{equation*}
$$

We shall call the functions $u_{x_{0}, \lambda}$ standard or spherical solutions to (1)-(2).
The question whether the family of spherical solutions in (3) exhausts the set of solutions to (1)-(2) has raised a lot of interest and is by now well understood. W. Chen and C. Li [CL] proved that on $\mathbb{R}^{2}(m=1)$ every solution to (1)-(2) is spherical, while for every $m>1$, i.e. in dimension 4 and higher, it was proven by A. Chang and W-X. Chen [CC] that Problem (1)-(2) admits solutions which are non spherical. In fact they proved

Theorem A (A. Chang-W-X. Chen [CC] 2001). For every $m>1$ and $V \in\left(0, \operatorname{vol}\left(S^{2 m}\right)\right)$ there exists a solution to (1)-(2).

Several authors have tried to classify spherical solutions or, in other words, to give analytical and geometric conditions under which a solution to (1)-(2) is spherical (see [CY], [WX], [Xu]), and to understand some properties of non-spherical solutions, such as their asymptotic behavior, their volume and their symmetry (see [Lin], [Mar1], [WY]). In particular C-S. Lin proved:

Theorem B (C-S. Lin [Lin] 1998). Let u solve (1)-(2) with $m=2$. Then either u is spherical (i.e. as in (3)) or $V<\operatorname{vol}\left(S^{4}\right)$.

Both spherical solutions and the solutions given by Theorem A are radially symmetric (i.e. of the form $u\left(\left|x-x_{0}\right|\right)$ for some $\left.x_{0} \in \mathbb{R}^{2 m}\right)$. On the other hand there also exist plenty of non-radial solutions to (1)-(2) when $m=2$.

Theorem C (J. Wei and D. Ye [WY] 2006). For every $V \in\left(0, \operatorname{vol}\left(S^{4}\right)\right)$ there exist (several) non-radial solutions to (1)-(2) for $m=2$.

Remark D Probably the proof of Theorem C can be extended to higher dimension $2 m \geq 2$, yielding several non-symmetric solutions to (1)-(2) for every $V \in\left(0, \operatorname{vol}\left(S^{2 m}\right)\right)$, but failing to produce non-symmetric solutions for $V \geq \operatorname{vol}\left(S^{2 m}\right)$. As in the proof of Theorem A, the condition $V<\operatorname{vol}\left(S^{2 m}\right)$ plays a crucial role.

Theorems A, B, C and Remark D strongly suggest that also in dimension 6 and higher all nonspherical solutions to (1)-(2) satisfy $V<\operatorname{vol}\left(S^{2 m}\right)$, i.e. (1)-(2) has no solution for $V>\operatorname{vol}\left(S^{2 m}\right)$ and the only solutions with $V=\operatorname{vol}\left(S^{2 m}\right)$ are the spherical ones. Quite surprisingly we found out that this is not at all the case. In fact in dimension 6 we found solutions to (1)-(2) with arbitrarily large V :

Theorem 1 For $m=3$ there exists $V^{*}>0$ such that for every $V \geq V^{*}$ there is a solution u to (1)-(2), i.e. there exists a metric on \mathbb{R}^{6} of the form $g_{u}=e^{2 u}|d x|^{2}$ satisfying $Q_{g_{u}} \equiv 5$! and $\operatorname{vol}\left(g_{u}\right)=V$.

In order to prove Theorem 1 we will consider only rotationally symmetric solutions to (1)-(2), so that (1) reduces to and ODE. Precisely, given $a, b \in \mathbb{R}$ let $u=u_{a, b}(r)$ be the solution of

$$
\left\{\begin{array}{l}
\Delta^{3} u=-e^{6 u} \quad \text { in } \mathbb{R}^{6} \tag{4}\\
u(0)=u^{\prime}(0)=u^{\prime \prime \prime}(0)=u^{\prime \prime \prime \prime \prime}(0)=0 \\
u^{\prime \prime}(0)=\frac{\Delta u(0)}{6}=a \\
u^{\prime \prime \prime \prime}(0)=\frac{\Delta^{2} u(0)}{16}=b
\end{array}\right.
$$

Here and in the following we will always (by a little abuse of notation) see a rotationally symmetric function f both as a function of one variable $r \in[0, \infty)$ (when writing $f^{\prime}, f^{\prime \prime}$, etc...) and as a function of $x \in \mathbb{R}^{6}$ (when writing $\Delta f, \Delta^{2} f$, etc...). We also used that

$$
\Delta f(0)=6 f^{\prime \prime}(0), \quad \Delta^{2} f(0)=16 f^{\prime \prime \prime \prime}(0)
$$

see e.g. [Mar1, Lemma 17]. Also notice that in (4) we replaced 5 ! by 1 to make the computations lighter. As we already noticed, this is not a problem.

Theorem 2 Let $u=u_{a, 3}$ solve (4) for a given $a<0$ and $b=3 .{ }^{1}$ Then

$$
\begin{equation*}
\int_{\mathbb{R}^{6}} e^{6 u_{a, 3}} d x<\infty \text { for }- \text { a large } ; \quad \lim _{a \rightarrow-\infty} \int_{\mathbb{R}^{6}} e^{6 u_{a, 3}} d x=\infty \tag{5}
\end{equation*}
$$

In particular the conformal metric $g_{u_{a, 3}}=e^{2 u_{a, 3}}|d x|^{2}$ of constant Q-curvature $Q_{g_{u_{a, 3}}} \equiv 1$ satisfies

$$
\lim _{a \rightarrow-\infty} \operatorname{vol}\left(g_{u_{a, 3}}\right)=\infty
$$

Theorem 1 will follow from Theorem 2 and a continuity argument (Lemma 8 below).
Going through the proof of Theorem A it is clear that it does not extend to the case $V>$ $\operatorname{vol}\left(S^{2 m}\right)$. With a different approach, we are able to prove that, at least when $m \geq 3$ is odd, one can extend Theorem A as follows.

Theorem 3 For every $m \geq 3$ odd there exists $V_{m}>\operatorname{vol}\left(S^{2 m}\right)$ such that for every $V \in\left(0, V_{m}\right]$ there is a non-spherical solution u to (1)-(2), i.e. there exists a metric on $\mathbb{R}^{2 m}$ of the form $g_{u}=e^{2 u}|d x|^{2}$ satisfying $Q_{g_{u}} \equiv(2 m-1)!$ and $\operatorname{vol}\left(g_{u}\right)=V$.

The condition $m \geq 3$ odd is (at least in part) necessary in view of Theorem B and [CL], but the case $m \geq 4$ even is open. Notice also that when $m=3$, Theorems 1 and 3 guarantee the existence of solutions to (1)-(2) for

$$
V \in\left(0, V_{m}\right] \cup\left[V^{*}, \infty\right)
$$

[^0]but we cannot rule out that $V_{m}<V^{*}$ (the explicit value of V_{m} is given in (38) below) and the existence of solutions to (1)-(2) is unknown for $V \in\left(V_{m}, V^{*}\right)$. Could there be a gap phenomenon?

We now briefly investigate how large the volume of a metric $g_{u}=e^{2 u}|d x|^{2}$ on $\mathbb{R}^{2 m}$ can be when $Q_{g_{u}} \equiv$ const <0. Again with no loss of generality we assume $Q_{g_{u}} \equiv-(2 m-1)$!. In other words consider the problem

$$
\begin{equation*}
(-\Delta)^{m} u=-(2 m-1)!e^{2 m u} \quad \text { on } \mathbb{R}^{2 m} \tag{6}
\end{equation*}
$$

Although for $m=1$ it is easy to see that Problem (6)-(2) admits no solutions for any $V>0$, when $m \geq 2$ Problem (6)-(2) has solutions for some $V>0$, as shown in [Mar2]. Then with the same proof of Theorem 3 we get:

Theorem 4 For every $m \geq 2$ even there exists $V_{m}>\operatorname{vol}\left(S^{2 m}\right)$ such that for $V \in\left(0, V_{m}\right]$ there is a solution u to (6)-(2), i.e. there exists a metric on $\mathbb{R}^{2 m}$ of the form $g_{u}=e^{2 u}|d x|^{2}$ satisfying

$$
Q_{g_{u}} \equiv-(2 m-1)!, \quad \operatorname{vol}\left(g_{u}\right)=V
$$

The cases of solutions to (1)-(2) with m even, or (6)-(2) and m odd seem more difficult to treat since the ODE corresponding to (1) or (6), in analogy with (4) becomes

$$
\Delta^{m} u(r)=(2 m-1)!e^{2 m u(r)}
$$

whose solutions can blow up in finite time (i.e. for finite r) if the initial data are not chosen carefully (contrary to Lemma 5 below).

2 Proof of Theorem 2

Set $\omega_{2 m-1}:=\operatorname{vol}\left(S^{2 m-1}\right)$ and let B_{r} denote the unit ball in $\mathbb{R}^{2 m}$ centered at the origin. Given a smooth radial function $f=f(r)$ in $\mathbb{R}^{2 m}$ we will often use the divergence theorem in the form

$$
\begin{equation*}
\int_{B_{r}} \Delta f d x=\int_{\partial B_{r}} \frac{\partial f}{\partial \nu} d \sigma=\omega_{2 m-1} r^{2 m-1} f^{\prime}(r) . \tag{7}
\end{equation*}
$$

Dividing by $\omega_{2 m-1} r^{2 m-1}$ into (7) and integrating we also obtain

$$
\begin{equation*}
f(t)-f(s)=\int_{s}^{t} \frac{1}{\omega_{2 m-1} \rho^{2 m-1}} \int_{B_{\rho}} \Delta f d x d \rho, \quad 0 \leq s \leq t \tag{8}
\end{equation*}
$$

When no confusion can arise we will simply write u instead of $u_{a, 3}$ or $u_{a, b}$ to denote the solution to (4). In what follows, also other quantities (e.g. $R, r_{0}, r_{1}, r_{2}, r_{3}, \phi, \xi_{1}, \xi_{2}$) will depend on a and b, but this dependence will be omitted from the notation.

Lemma 5 Given any $a, b \in \mathbb{R}$, the solution u to the $O D E$ (4) exists for all times.

Figure 1: The functions $\phi(r)=\frac{a}{2} r^{2}+\frac{1}{8} r^{4}$ (above) and $u_{a, 3}(r) \leq \phi(r)$.

Proof. Applying (8) to $f=\Delta^{2} u$, and observing that $\Delta\left(\Delta^{2} u\right)=-e^{6 u} \leq 0$ we get

$$
\begin{equation*}
\Delta^{2} u(t) \leq \Delta^{2} u(s) \leq \Delta^{2} u(0)=16 b \quad 0 \leq s \leq t \tag{9}
\end{equation*}
$$

i.e. $\Delta^{2} u(r)$ is monotone decreasing. This and (8) applied to Δu yield

$$
\Delta u(r) \leq \Delta u(0)+\int_{0}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho}} 16 b d x d \rho=6 a+\int_{0}^{r} \frac{8}{3} b \rho d \rho=6 a+\frac{4}{3} b r^{2}
$$

A further application of (8) to u finally gives

$$
\begin{equation*}
u(r) \leq \int_{0}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho}}\left(6 a+\frac{4}{3} b|x|^{2}\right) d x d \rho=\int_{0}^{r}\left(a \rho+\frac{\rho^{3} b}{6}\right) d \rho=\frac{a}{2} r^{2}+\frac{b}{24} r^{4}=: \phi(r) . \tag{10}
\end{equation*}
$$

Similar lower bounds can be obtained by observing that $-e^{6 u} \geq-1$ for $u \leq 0$. This proves that $u(r)$ cannot blow-up in finite time and, by standard ODE theory, $u(r)$ exists for every $r \geq 0$.
Proof of (5) (completed). Fix $b=3$ and take $a<0$. The function $\phi(r)=\frac{a}{2} r^{2}+\frac{1}{8} r^{4}$ vanishes for $r=R=R(a):=2 \sqrt{-a}$. In order to prove (5) we shall investigate the behavior of u in a neighborhood of R. The heuristic idea is that

$$
u^{(j)}(0)=\phi^{(j)}(0), \quad \text { for } 0 \leq j \leq 5, \quad \Delta^{3} \phi \equiv 0,
$$

and for every $\varepsilon>0$ on $[\varepsilon, R-\varepsilon]$ we have $\phi \leq C_{\varepsilon} a \rightarrow-\infty$ and $\left|\Delta^{3} u\right| \leq e^{C_{\varepsilon} a} \rightarrow 0$ as $a \rightarrow-\infty$, hence for $r \in[0, R-\varepsilon]$ we expect $u(r)$ to be very close to $\phi(r)$. On the other hand, u cannot stay close to ϕ for r much larger than R because eventually $-\Delta^{3} u(r)$ will be large enough to make $\Delta^{2} u, \Delta u$ and u negative according to (8) (see Fig. 1). Then it is crucial to show that u stays close to ϕ for some $r>R$ (hence in a region where ϕ is positive and $\Delta^{3} u$ is not necessarily small) and long enough to make the second integral in (5) blow up as $a \rightarrow-\infty$.
Step 1: Estimates of $u(R), \Delta u(R)$ and $\Delta^{2} u(R)$. From (10) we infer

$$
\Delta^{3} u=-e^{6 u} \geq-e^{6 \phi},
$$

which, together with (8), gives

$$
\begin{equation*}
\Delta^{2} u(r)=\Delta^{2} u(0)+\int_{0}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho}} \Delta^{3} u d x d \rho \geq 48-\int_{0}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho}} e^{6 \phi(|x|)} d x d \rho \tag{11}
\end{equation*}
$$

We can explicitly compute (see Lemma 6 below and simplify (29) using that $\phi(R)=0$ and $\left.\int_{\sqrt{3} a}^{-\sqrt{3} a} e^{t^{2}} d t=2 \int_{0}^{-\sqrt{3} a} e^{t^{2}} d t\right)$

$$
\int_{0}^{R} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho}} e^{6 \phi(|x|)} d x d \rho=\frac{1}{48 a}+\frac{\left(18 a^{2}+1\right) \sqrt{3}}{144 a^{2}} e^{-3 a^{2}} \int_{0}^{-\sqrt{3} a} e^{t^{2}} d t
$$

Then by (9) and Lemma 7 below we conclude that

$$
\begin{equation*}
\Delta^{2} u(r) \geq \Delta^{2} u(R) \geq 48\left(1+O\left(a^{-1}\right)\right) \quad \text { for } 0 \leq r \leq R=2 \sqrt{-a} . \tag{12}
\end{equation*}
$$

where here and in the following $\left|a^{k} O\left(a^{-k}\right)\right| \leq C=C(k)$ as $a \rightarrow-\infty$ for every $k \in \mathbb{R}$. Then applying (8) as before we also obtain

$$
\Delta u(r) \geq 6 a+4\left(1+O\left(a^{-1}\right)\right) r^{2} \quad \text { for } 0 \leq r \leq R
$$

and

$$
u(r) \geq \frac{a}{2} r^{2}+\frac{1+O\left(a^{-1}\right)}{8} r^{4}=\phi(r)+O\left(a^{-1}\right) r^{4} \quad \text { for } 0 \leq r \leq R
$$

At $r=R$ this reduces to

$$
u(R) \geq O(a)
$$

Step 2: Behavior of $u(r), \Delta u(r), \Delta^{2} u(r)$ for $r \geq R$. Define r_{0} (depending on $a<0$) as

$$
r_{0}:=\inf \{r>0: u(r)=0\} \in[R, \infty] .
$$

We first claim that $r_{0}<\infty$. We have by Lemma 6 and Lemma 7

$$
\begin{equation*}
\int_{B_{R}} e^{6 \phi} d x=\omega_{5}\left(-\frac{4 a}{3}+\frac{4\left(6 a^{2}-1\right) \sqrt{3}}{9} e^{-3 a^{2}} \int_{0}^{-\sqrt{3} a} e^{t^{2}} d t\right)=O(a) . \tag{13}
\end{equation*}
$$

Since on $B_{r_{0}}$ we have $u \leq 0$, hence $\Delta^{3} u \geq-1$, using (7)-(8) and (13) we get for $r \in\left[R, r_{0}\right]$

$$
\begin{align*}
\Delta^{2} u(r) & \geq \Delta^{2} u(R)-\int_{R}^{r} \frac{1}{\omega_{5} \rho^{5}}\left(\int_{B_{R}} e^{6 \phi} d x+\int_{B_{\rho} \backslash B_{R}} 1 d x\right) d \rho \tag{14}\\
& \geq 48+O(a)\left[\frac{1}{R^{4}}-\frac{1}{r^{4}}\right]-\int_{R}^{r} \frac{\rho^{6}-R^{6}}{6 \rho^{5}} d \rho
\end{align*}
$$

Assuming $r \in[R, 2 R]$ we can now bound with a Taylor expansion

$$
\begin{equation*}
\frac{1}{R^{4}}-\frac{1}{r^{4}}=R^{-4} \tilde{O}\left(\frac{r-R}{R}\right) \tag{15}
\end{equation*}
$$

and

$$
\rho^{6}-R^{6} \leq r^{6}-R^{6}=R^{6} \tilde{O}\left(\frac{r-R}{R}\right), \quad \text { for } \rho \in[R, r]
$$

which together with (15) yields

$$
\begin{equation*}
\int_{R}^{r} \frac{\rho^{6}-R^{6}}{6 \rho^{5}} d \rho \leq \int_{R}^{r} \frac{r^{6}-R^{6}}{6 \rho^{5}} d \rho \leq R^{2} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{2}\right), \tag{16}
\end{equation*}
$$

where for any $k \in \mathbb{R}$ we have $\left|t^{-k} \tilde{O}\left(t^{k}\right)\right| \leq C=C(k)$ uniformly for $0 \leq t \leq 1$. Using (15) and (16) we bound in (14)

$$
\Delta^{2} u(r) \geq 48+O\left(a^{-1}\right) \tilde{O}\left(\frac{r-R}{R}\right)+R^{2} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{2}\right), \quad r \in\left[R, \min \left\{r_{0}, 2 R\right\}\right],
$$

whence

$$
\Delta^{2} u(r) \geq 48+O\left(a^{-1}\right)+R^{2} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{2}\right) \chi_{(R, \infty)}(r), \quad r \in\left[0, \min \left\{r_{0}, 2 R\right\}\right]
$$

where $\chi_{(R, \infty)}(r)=0$ for $r \in[0, R]$ and $\chi_{(R, \infty)}(r)=1$ for $r>R$. Then with (8) we estimate for $r \in\left[0, \min \left\{r_{0}, 2 R\right\}\right]$

$$
\begin{align*}
\Delta u(r) & \geq 6 a+4\left(1+O\left(a^{-1}\right)\right) r^{2}+\chi_{(R, \infty)}(r) \int_{R}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho} \backslash B_{R}} R^{2} \tilde{O}\left(\left(\frac{|x|-R}{R}\right)^{2}\right) d x d \rho \tag{17}\\
& =6 a+4\left(1+O\left(a^{-1}\right)\right) r^{2}+R^{4} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{4}\right) \chi_{(R, \infty)}(r)
\end{align*}
$$

and

$$
\begin{align*}
u(r) & \geq \frac{a}{2} r^{2}+\frac{1+O\left(a^{-1}\right)}{8} r^{4}+\chi_{(R, \infty)}(r) \int_{R}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho} \backslash B_{R}} R^{4} \tilde{O}\left(\left(\frac{|x|-R}{R}\right)^{4}\right) d x d \rho \tag{18}\\
& =\phi(r)+O\left(a^{-1}\right) r^{4}+R^{6} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{6}\right) \chi_{(R, \infty)}(r),
\end{align*}
$$

where the integrals in (17) and (18) are easily estimated bounding $|x|$ with r and applying (16).
Making a Taylor expansion of $\phi(r)$ at $r=R$ and using that $\phi(R)=0$, we can further estimate the right-hand side of (18) for $r \in\left[R, \min \left\{r_{0}, 2 R\right\}\right]$ as

$$
\begin{aligned}
u(r) & \geq \phi^{\prime}(R)(r-R)+R^{2} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{2}\right)+O\left(a^{-1}\right) r^{4}+R^{6} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{6}\right) \\
& =-a R(r-R)+O\left(a^{-1}\right) R^{4}+R^{2} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{2}\right)+R^{6} \tilde{O}\left(\left(\frac{r-R}{R}\right)^{6}\right)=: \psi_{a}(r)
\end{aligned}
$$

Now choosing $r=R(1+1 / \sqrt{-a})$, so that $(r-R) / R \rightarrow 0$ as $a \rightarrow-\infty$, we get

$$
\lim _{a \rightarrow-\infty} \psi_{a}(R(1+1 / \sqrt{-a})) \geq \lim _{a \rightarrow-\infty}\left(4(-a)^{\frac{3}{2}}+O(a)-C\right)=\infty .
$$

In particular

$$
r_{0} \in[R, R(1+1 / \sqrt{-a})] .
$$

We now claim that

$$
\begin{equation*}
\lim _{a \rightarrow-\infty} \Delta u\left(r_{0}\right)=\infty . \tag{19}
\end{equation*}
$$

Indeed we infer from (17)

$$
\begin{aligned}
\Delta u\left(r_{0}\right) & \geq 6 a+4\left(1+O\left(a^{-1}\right)\right) r_{0}^{2}-C \\
& \geq 6 a+4\left(1+O\left(a^{-1}\right)\right) R^{2}-C \\
& \geq-10 a-C,
\end{aligned}
$$

for $-a$ large enough, whence (19). Set

$$
r_{1}=r_{1}(a):=\inf \left\{r>r_{0}: u(r)=0\right\} .
$$

Applying (7) to (17), and recalling that $\frac{r_{0}-R}{R} \leq \frac{1}{\sqrt{a}}$, similar to (18) we obtain

$$
\begin{aligned}
u^{\prime}\left(r_{0}\right) & \geq a r_{0}+\frac{1+O\left(a^{-1}\right)}{2} r_{0}^{3}-C \\
& \geq a r_{0}+\frac{1+O\left(a^{-1}\right)}{2} r_{0} R^{2}-C \\
& \geq-a r_{0}-C .
\end{aligned}
$$

In particular for $-a$ large enough we have $u^{\prime}\left(r_{0}\right)>0$, which implies $r_{1}>r_{0}$. Using (7)-(8) and that $\Delta^{3} u(r) \leq-1$ for $r \in\left[r_{0}, r_{1}\right]$, it is not difficult to see that $r_{1}<\infty$. Moreover there exists at least a point $r_{2}=r_{2}(a) \in\left(r_{0}, r_{1}\right]$ such that $u^{\prime}\left(r_{2}\right) \leq 0$, which in turn implies that

$$
\begin{equation*}
\Delta u\left(r_{3}\right)<0 \quad \text { for some } r_{3}=r_{3}(a) \in\left(r_{0}, r_{2}\right], \tag{20}
\end{equation*}
$$

since otherwise we would have by (7)

$$
u^{\prime}\left(r_{2}\right)=\frac{1}{\omega_{5} r_{2}^{5}} \int_{B_{r_{0}}} \Delta u d x+\frac{1}{\omega_{5} r_{2}^{5}} \int_{B_{r_{2}} \backslash B_{r_{0}}} \Delta u d x \geq \frac{r_{0}^{5}}{r_{2}^{5}} u^{\prime}\left(r_{0}\right)>0
$$

contradiction.
Step 3: Conclusion. We now use the estimates obtained in Step 1 and Step 2 to prove (5).
From (8), (19) and (20) we infer

$$
\begin{equation*}
\lim _{a \rightarrow-\infty} \int_{r_{0}}^{r_{3}} \frac{1}{\omega_{5} r^{5}} \int_{B_{r}} \Delta^{2} u d x d r=\lim _{a \rightarrow-\infty}\left(\Delta u\left(r_{3}\right)-\Delta u\left(r_{0}\right)\right)=-\infty \tag{21}
\end{equation*}
$$

hence by the monotonicity of $\Delta^{2} u(r)$ (see (9))

$$
\begin{equation*}
\lim _{a \rightarrow-\infty} \Delta^{2} u\left(r_{3}\right)\left(r_{3}^{2}-r_{0}^{2}\right)=-\infty \tag{22}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\lim _{a \rightarrow-\infty} \int_{B_{r_{3}}} e^{6 u} d x=\infty \tag{23}
\end{equation*}
$$

Indeed consider on the contrary an arbitrary sequence a_{k} with $\lim _{k \rightarrow \infty} a_{k}=-\infty$ and

$$
\begin{equation*}
\lim _{k \rightarrow \rightarrow \infty} \int_{B_{r_{3}}} e^{6 u} d x<\infty \tag{24}
\end{equation*}
$$

where here r_{3} and u depend on a_{k} instead of a of course. Since $u \geq 0$ in $B_{r_{3}} \backslash B_{r_{0}}$ we have

$$
\int_{B_{r_{3}}} e^{6 u} d x \geq \int_{B_{r_{3}} \backslash B_{r_{0}}} 1 d x=\frac{\omega_{5}}{6}\left(r_{3}^{6}-r_{0}^{6}\right) .
$$

Now observe that $\left(r_{3}^{6}-r_{0}^{6}\right) \geq\left(r_{3}^{2}-r_{0}^{2}\right) r_{0}^{4}$ to conclude that (24) implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(r_{3}^{2}-r_{0}^{2}\right) \leq \lim _{k \rightarrow \infty} \frac{r_{3}^{6}-r_{0}^{6}}{r_{0}^{4}}=0 \tag{25}
\end{equation*}
$$

Then (8), (12) and (22) yield

$$
\begin{aligned}
\left(r_{3}^{2}-r_{0}^{2}\right) \int_{R}^{r_{3}} \frac{1}{\omega_{5} r^{5}} \int_{B_{r}} e^{6 u} d x d r & =\left(r_{3}^{2}-r_{0}^{2}\right)\left(\Delta^{2} u(R)-\Delta^{2} u\left(r_{3}\right)\right) \\
& \geq-\Delta^{2} u\left(r_{3}\right)\left(r_{3}^{2}-r_{0}^{2}\right) \rightarrow \infty \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

By (25) we also have

$$
\lim _{k \rightarrow \infty} \int_{R}^{r_{3}} \frac{1}{\omega_{5} r^{5}} \int_{B_{r}} e^{6 u} d x d r=\infty
$$

which implies at once

$$
\lim _{k \rightarrow \infty} \int_{B_{r_{3}}} e^{6 u} d x \geq \lim _{k \rightarrow \infty} 4 R^{4} \omega_{5} \int_{R}^{r_{3}} \frac{1}{\omega_{5} r^{5}} \int_{B_{r_{3}}} e^{6 u} d x d r=\infty
$$

contradicting (24). Then (23) is proven.
It remains to show that

$$
\int_{\mathbb{R}^{6}} e^{6 u} d x<\infty
$$

at least for $-a$ large enough. It follows from (22) and the monotonicity of $\Delta^{2} u$ that for $-a$ large enough we have

$$
\begin{equation*}
\Delta^{2} u(r)<B<0, \quad \text { for } r \geq r_{3}, \tag{26}
\end{equation*}
$$

and, using (7)-(8) as already done several times, we can find $r_{a} \geq r_{3}$ such that

$$
\begin{equation*}
(\Delta u)^{\prime}(r)<\frac{B}{6} r, \quad \Delta u(r)<\frac{B}{12} r^{2}, \quad u^{\prime}(r)<\frac{B}{96} r^{3}, \quad u(r)<\frac{B}{384} r^{4}, \quad \text { for } r \geq r_{a} \tag{27}
\end{equation*}
$$

Then

$$
\int_{\mathbb{R}^{6}} e^{6 u} d x \leq \int_{B_{r_{a}}} e^{6 u} d x+\int_{\mathbb{R}^{6} \backslash B_{r_{a}}} e^{\frac{B}{64}|x|^{2}} d x<\infty
$$

as wished.

2.1 Two useful lemmas

We now state and prove two lemmas used in the proof of Theorem 2.
Lemma 6 For $\phi(r)=\frac{a}{2} r^{2}+\frac{1}{8} r^{4}, a \leq 0$, we have

$$
\begin{equation*}
\int_{B_{r}} e^{6 \phi(|x|)} d x=\omega_{5}\left[\frac{2}{3} a+\frac{1}{3} e^{6 \phi(r)}\left(-2 a+r^{2}\right)+\frac{\left(12 a^{2}-2\right) \sqrt{3}}{9} e^{-3 a^{2}} \int_{-\sqrt{3}\left(a+r^{2} / 2\right)}^{-\sqrt{3} a} e^{t^{2}} d t\right]=: \xi_{1}(r) \tag{28}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{0}^{r} \frac{1}{\omega_{5} \rho^{5}} \int_{B_{\rho}} e^{6 \phi(|x|)} d x d \rho= & \frac{-2 a-e^{6 \phi(r)}\left(-2 a+r^{2}\right)}{12 r^{4}} \\
& +\frac{\left(2-12 a^{2}+3 r^{4}\right) \sqrt{3}}{36 r^{4}} e^{-3 a^{2}} \int_{-\sqrt{3}\left(a+r^{2} / 2\right)}^{-\sqrt{3} a} e^{t^{2}} d t:=\xi_{2}(r) \tag{29}
\end{align*}
$$

Proof. Patiently differentiating, using that $e^{-3 a^{2}} \frac{d}{d r} \int_{\left.-\sqrt{3}\left(a+r^{2} / 2\right)\right)}^{-\sqrt{3}} e^{t^{2}} d t=\sqrt{3} r e^{6 \phi(r)}$, one sees that

$$
\xi_{1}^{\prime}(r)=\omega_{5} r^{5} e^{6 \phi(r)}, \quad \xi_{2}^{\prime}(r)=\frac{\xi_{1}(r)}{\omega_{5} r^{5}}
$$

Using that $\phi(0)=0$ it is also easy to see that $\xi_{1}(0)=0$.
Since $\xi_{2}(0)$ is not defined, we will compute the limit of $\xi_{2}(r)$ as $r \rightarrow 0$. We first compute the Taylor expansions

$$
e^{6 \phi(r)}=1+3 a r^{2}+\frac{3}{4}\left(1+6 a^{2}\right) r^{4}+r^{4} o(1)
$$

and

$$
\sqrt{3} e^{-3 a^{2}} \int_{-\sqrt{3}\left(a+r^{2} / 2\right)}^{-\sqrt{3} a} e^{t^{2}} d t=\frac{3}{2} r^{2}+\frac{9}{4} a r^{4}+r^{4} o(1)
$$

with errors $o(1) \rightarrow 0$ as $r \rightarrow 0$. Then

$$
\begin{aligned}
\frac{-2 a-e^{6 \phi(r)}\left(-2 a+r^{2}\right)}{12 r^{4}} & =\frac{\left(1-6 a^{2}\right) r^{2}+\left(\frac{3}{2} a-9 a^{3}\right) r^{4}}{12 r^{4}}+o(1) \\
& =-\frac{\left(2-12 a^{2}+3 r^{4}\right) \sqrt{3}}{36 r^{4}} e^{-3 a^{2}} \int_{-\sqrt{3}\left(a+r^{2} / 2\right)}^{-\sqrt{3} a} e^{t^{2}} d t
\end{aligned}
$$

with $o(1) \rightarrow 0$ as $r \rightarrow 0$. Hence $\lim _{r \rightarrow 0} \xi_{2}(r)=0$.

Lemma 7 We have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r e^{-r^{2}} \int_{0}^{r} e^{t^{2}} d t=\frac{1}{2} \tag{30}
\end{equation*}
$$

Proof. Clearly (30) is equivalent to

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r e^{-r^{2}} \int_{2}^{r} e^{t^{2}} d t=\frac{1}{2} \tag{31}
\end{equation*}
$$

Integrating by parts we get for $r \geq 2$

$$
\begin{equation*}
r e^{-r^{2}} \int_{2}^{r} e^{t^{2}} d t=\frac{1}{2}-\frac{r e^{-r^{2}+4}}{4}+r e^{-r^{2}} \int_{2}^{r} \frac{e^{t^{2}}}{2 t^{2}} d t \tag{32}
\end{equation*}
$$

Another integration by parts yields

$$
r e^{-r^{2}} \int_{2}^{r} \frac{e^{t^{2}}}{2 t^{2}} d t=\frac{1}{4 r^{2}}-\frac{r e^{-r^{2}+4}}{32}+r e^{-r^{2}} \int_{2}^{r} \frac{e^{t^{2}}}{12 t^{4}} d t \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

where we used that the function $t^{-4} e^{t^{2}}$ is increasing on $[2, r]$, hence

$$
0 \leq \int_{2}^{r} \frac{e^{t^{2}}}{12 t^{4}} d t \leq \int_{2}^{r} \frac{e^{r^{2}}}{12 r^{4}} d t=(r-2) \frac{e^{r^{2}}}{12 r^{4}}
$$

We conclude by taking the limit as $r \rightarrow \infty$ in (32).

3 Proof of Theorem 1

We start with the following lemma.
Lemma 8 Set

$$
V(a)=\frac{1}{5!} \int_{\mathbb{R}^{6}} e^{6 u_{a, 3}} d x
$$

where $u=u_{a, 3}$ is the solution to (4) for given $a<0$ and $b=3$. Then there exists $a^{*}<0$ such that V is continuous on $\left(-\infty, a^{*}\right]$.
Proof. It follows from (21) and the monotonicity of $\Delta^{2} u$ that we can fix $-a^{*}$ so large that

$$
\lim _{r \rightarrow \infty} \Delta^{2} u_{a, 3}(r)<0, \quad \text { for every } a \leq a^{*}
$$

Fix now $\varepsilon>0$. Given $a \leq a^{*}$ it is not difficult to find $r_{a}>0$ and $B=B(a)<0$ such that

$$
\begin{equation*}
\Delta^{2} u_{a, 3}(r)<B<0, \quad \text { for } r \geq r_{a} \tag{33}
\end{equation*}
$$

and, possibly choosing r_{a} larger, using (7)-(8) as already done in the proof of Theorem 2, we get

$$
\begin{equation*}
\left(\Delta u_{a, 3}\right)^{\prime}(r)<\frac{B}{6} r, \quad \Delta u_{a, 3}(r)<\frac{B}{12} r^{2}, \quad u_{a, 3}^{\prime}(r)<\frac{B}{96} r^{3}, \quad u_{a, 3}(r)<\frac{B}{384} r^{4}, \quad \text { for } r \geq r_{a} . \tag{34}
\end{equation*}
$$

By possibly choosing r_{a} even larger we can also assume that

$$
\begin{equation*}
\int_{\mathbb{R}^{6} \backslash B_{r_{a}}} e^{\frac{B}{64}|x|^{4}} d x<\frac{\varepsilon}{2} . \tag{35}
\end{equation*}
$$

By ODE theory the solution $u_{a, 3}$ to (4) is continuous with respect to a in $C_{\text {loc }}^{k}\left(\mathbb{R}^{6}\right)$ for every $k \geq 0$, in the sense that for any $r^{\prime}>0, u_{a^{\prime}, 3} \rightarrow u_{a, 3}$ in $C^{k}\left(B_{r^{\prime}}\right)$ as $a^{\prime} \rightarrow a$. In particular we can find $\delta>0$ (depending on ε) such that if $\left|a-a^{\prime}\right|<\delta$ then (33)-(34) with a replaced by a^{\prime} are still satisfied for $r=r_{a}$ (not $r_{a^{\prime}}$) and (33) holds also for every $r>r_{a}$ since $\Delta^{2} u_{a^{\prime}, 3}(r)$ is decreasing in r (see (9)). Then, with (7)-(8) we can also get the bounds in (34) for every $r \geq r_{a}$ (and $u_{a^{\prime}, 3}$ instead of $u_{a, 3}$). For instance

$$
\begin{aligned}
\left(\Delta u_{a^{\prime}, 3}\right)^{\prime}(r) & =\frac{1}{\omega_{5} r^{5}} \int_{B_{r}} \Delta^{3} u_{a^{\prime}, 3} d x=\left(\frac{r_{a}}{r}\right)^{5}\left(\Delta u_{a^{\prime}, 3}\right)^{\prime}\left(r_{a}\right)+\frac{1}{\omega_{5} r^{5}} \int_{B_{r} \backslash B_{r_{a}}} \Delta^{2} u_{a^{\prime}, 3} d x \\
& <\left(\frac{r_{a}}{r}\right)^{5} \frac{B r_{a}}{6}+\frac{B\left(r^{6}-r_{a}^{6}\right)}{6 r^{5}}=\frac{B}{6} r .
\end{aligned}
$$

Furthermore, up to taking $\delta>0$ even smaller, we can assume that

$$
\begin{equation*}
\left|\int_{B_{r_{a}}} e^{6 u_{a^{\prime}, 3}} d x-\int_{B_{r_{a}}} e^{6 u_{a, 3}} d x\right|<\frac{\varepsilon}{2} \tag{36}
\end{equation*}
$$

Finally, the last bound in (34) and (35) imply at once

$$
\left|\int_{\mathbb{R}^{6} \backslash B_{r_{a}}} e^{6 u_{a^{\prime}, 3}} d x-\int_{\mathbb{R}^{6} \backslash B_{r_{a}}} e^{6 u_{a, 3}} d x\right|<\frac{\varepsilon}{2},
$$

which together with (36) completes the proof.
Proof of Theorem 1 (completed). Set $V^{*}=V\left(a^{*}\right)$, where a^{*} is given by Lemma 8. By Lemma 8, Theorem 2 and the intermediate value theorem, for every $V \geq V^{*}$ there exists $a \leq a^{*}$ such that

$$
\frac{1}{5!} \int_{\mathbb{R}^{6}} e^{6 u_{a, 3}} d x=V
$$

hence the metric $g_{u_{a, 3}}=e^{2 u_{a, 3}}|d x|^{2}$ has constant Q-curvature equal to 1 and $\operatorname{vol}\left(g_{u_{a, 3}}\right)=5!V$. Applying the transformation

$$
u=u_{a, 3}-\frac{1}{6} \log 5!
$$

it follows at once that the metric $g_{u}=e^{2 u}|d x|^{2}$ satisfies $\operatorname{vol}\left(g_{u}\right)=V$ and $Q_{g_{u}} \equiv 5$!, hence u solves (1)-(2).

4 Proof of Theorems 3 and 4

When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is radially symmetric we have $\Delta f(x)=f^{\prime \prime}(|x|)+\frac{n-1}{|x|} f^{\prime}(|x|)$. In particular we have

$$
\begin{equation*}
\Delta^{m} r^{2 m}=2^{2 m} m(2 m-1)!\quad \text { in } \mathbb{R}^{2 m} . \tag{37}
\end{equation*}
$$

For $m \geq 2$ and $b \leq 0$ let u_{b} solve

$$
\begin{cases}\Delta^{m} u_{b}=-(2 m-1)!e^{2 m u_{b}} & \text { in } \mathbb{R}^{2 m} \\ u_{b}^{(j)}(0)=0 & \text { for } 0 \leq j \leq 2 m-1, j \neq 2 m-2 \\ u_{b}^{(2 m-2)}=b . & \end{cases}
$$

From (7)-(8) it follows that $u_{0} \leq 0$, hence $\Delta^{m} u_{0} \geq-(2 m-1)!$. We claim that

$$
u_{0}(r) \geq \psi(r):=-\frac{r^{2 m}}{2^{2 m} m} .
$$

Indeed according to (37) ψ solves

$$
\Delta^{m} \psi=-(2 m-1)!\leq \Delta^{m} u_{0} \quad \text { in } \mathbb{R}^{2 m}
$$

and

$$
\psi^{(j)}(0)=0=u_{0}^{(j)}(0) \quad \text { for } 0 \leq j \leq 2 m-1,
$$

which implies

$$
\Delta^{j} \psi(0)=0=\Delta^{j} u_{0}(0) \quad \text { for } 0 \leq j \leq m-1,
$$

see [Mar1, Lemma 17]. Then the claim follows from (7)-(8) and a simple induction.
Now integrating we get

$$
\int_{\mathbb{R}^{2 m}} e^{2 m u_{0}} d x \geq \int_{\mathbb{R}^{2 m}} e^{2 m \psi} d x=\omega_{2 m-1} \int_{0}^{\infty} r^{2 m-1} \exp \left(-\frac{r^{2 m}}{2^{2 m-1}}\right) d r=\frac{2^{2 m-2} \omega_{2 m-1}}{m}=: V_{m}
$$

Using the formulas

$$
\omega_{2 m-1}=\operatorname{vol}\left(S^{2 m-1}\right)=\frac{2 \pi^{m}}{(m-1)!}, \quad \omega_{2 m}=\operatorname{vol}\left(S^{2 m}\right)=\frac{2^{2 m}(m-1)!\pi^{m}}{(2 m-1)!}, \quad m \geq 1
$$

we verify

$$
\begin{equation*}
V_{m}=\frac{(2 m)!}{4(m!)^{2}} \omega_{2 m}, \quad \frac{V_{2}}{\omega_{4}}=\frac{3}{2}>1, \quad \frac{V_{m+1}}{\omega_{2 m+2}}\left(\frac{V_{m}}{\omega_{2 m}}\right)^{-1}=\frac{(2 m+2)(2 m+1)}{(m+1)^{2}}>1 \tag{38}
\end{equation*}
$$

hence by induction

$$
\begin{equation*}
V_{m}>\operatorname{vol}\left(S^{2 m}\right) \quad \text { for } m \geq 2 . \tag{39}
\end{equation*}
$$

With the same argument used to prove Lemma 8 we can show that the function

$$
V(b):=\int_{\mathbb{R}^{2 m}} e^{6 u_{b}} d x, \quad b \in(-\infty, 0]
$$

is finite and continuous. Indeed it is enough to replace (33) with

$$
\Delta^{m-1} u_{b}(r) \leq B<0 \quad \text { for } r \geq r_{b}
$$

and (34) with

$$
\left(\Delta^{m-1-j} u_{b}\right)^{\prime}(r)<C_{m, j} B r^{2 j-1}, \quad \Delta^{m-1-j} u_{b}(r)<D_{m, j} B r^{2 j}, \quad \text { for } r \geq r_{b}, 1 \leq j \leq m-1
$$

where r_{b} is chosen large enough and

$$
C_{m, 1}=\frac{1}{2 m}, \quad D_{m, j}=\frac{C_{m, j}}{2 j}, \quad C_{m, j+1}=\frac{D_{m, j}}{2 m+2 j},
$$

whence

$$
C_{m, j}=\frac{(m-1)!}{2^{2 j-1}(j-1)!(m+j-1)!}, \quad D_{m, j}=\frac{(m-1)!}{2^{2 j} j!(m+j-1)!} .
$$

Moreover, using that $\Delta^{m-1} u_{b}(0)=C_{m} b$ for some constant $C_{m}>0, \Delta^{m} u_{b}(r) \leq 0$ for $r \geq 0$ and (7)-(8) as before, we easily obtain

$$
\begin{equation*}
u_{b}(r) \leq E_{m} b r^{2 m-2}, \tag{40}
\end{equation*}
$$

where $E_{m}:=C_{m} C_{m, m-1}>0$, hence

$$
\lim _{b \rightarrow-\infty} V(b) \leq \lim _{b \rightarrow-\infty} \int_{\mathbb{R}^{6}} e^{6 E_{m} b|x|^{2 m-2}} d x=0
$$

By continuity we conclude that for every $V \in\left(0, V_{m}\right]$ there exists $b \leq 0$ such that $u=u_{b}$ solves (1)-(2) if m is odd or (6)-(2) if m is even. Taking (39) into account it only remains to prove that the solutions u_{b} corresponding to $V=\operatorname{vol}\left(S^{2 m}\right)$ is not a spherical one. This follows immediately from (40), which is not compatible with (3).

5 Applications and open questions

Possible gap phenomenon Theorems 1 and 3 guarantee that for $m=3$ there exists a solution to (1)-(2) for every $V \in\left(0, V_{3}\right] \cup\left[V^{*}, \infty\right)$, with possibly $V_{3}<V^{*}$. Could it be that for some $V \in\left(V_{3}, V^{*}\right)$ Problem (1)-(2) admits no solution?

If we restrict to rotationally symmetric solutions, some heuristic arguments show that the volume of a solution to (4), i.e. the function

$$
V(a, b):=\int_{\mathbb{R}^{6}} e^{6 u_{a, b}(|x|)} d x
$$

need not be continuous for all $(a, b) \in \mathbb{R}^{2}$, hence the image of the function V might not be connected.

Higher dimensions and negative curvature It is natural to ask whether Theorems 1 and 2 generalize to the case $m>3$ or whether an analogous statement holds when $m \geq 2$ and (6) is considered instead of (1). Since the sign on the right-hand side of the ODE (4) plays a crucial role, we would expect that part of the proof of Theorem 2 can be recycled for (1) when $m \geq 5$ is odd, or for (6) when m is even.

For instance let $u_{a}=u_{a}(r)$ be the solution in \mathbb{R}^{4} of

$$
\left\{\begin{array}{l}
\Delta^{2} u_{a}=-6 e^{4 u_{a}} \\
u_{a}(0)=u_{a}^{\prime}(0)=u_{a}^{\prime \prime \prime}(0)=0 \\
u_{a}^{\prime \prime}(0)=a
\end{array}\right.
$$

It should not be difficult to see that $u_{a}(r)$ exists for all $r \geq 0$ and that $\int_{\mathbb{R}^{4}} e^{4 u_{a}(|x|)} d x<\infty$. Do we also have

$$
\lim _{a \rightarrow+\infty} \int_{\mathbb{R}^{4}} e^{4 u_{a}(|x|)} d x=\infty ?
$$

Non-radial solutions The proof of Theorem C cannot be extended to provide non-radial solutions to (1)-(2) for $m \geq 3$ and $V \geq \operatorname{vol}\left(S^{2 m}\right)$, but it is natural to conjecture that they do exist.

Concentration phenomena The classification results of the solutions to (1)-(2), [CL], [Lin], $[\mathrm{Xu}]$ and [Mar1], have been used to understand the asymptotic behavior of unbounded sequences of solutions to the prescribed Gaussian curvature problem on 2-dimensional domains (see e.g. [BM] and $[\mathrm{LS}])$, on $S^{2}(\operatorname{see}[\operatorname{Str} 4])$ and to the prescribed Q-curvature equation in dimension $2 m$ (see e.g. [DR], [Mal], [MS], [Ndi], [Rob1], [Rob2], [Mar3], [Mar4]).

For instance consider the following model problem. Let $\Omega \subset \mathbb{R}^{2 m}$ be a connected open set and consider a sequence $\left(u_{k}\right)$ of solutions to the equation

$$
\begin{equation*}
(-\Delta)^{m} u_{k}=Q_{k} e^{2 m u_{k}} \quad \text { in } \Omega \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{k} \rightarrow Q_{0} \quad \text { in } C_{\mathrm{loc}}^{1}(\Omega), \quad \limsup _{k \rightarrow \infty} \int_{\Omega} e^{2 m u_{k}} d x<\infty \tag{42}
\end{equation*}
$$

with the following interpretation: $g_{k}:=e^{2 u_{k}}|d x|^{2}$ is a sequence of conformal metrics on Ω with Q-curvatures $Q_{g_{k}}=Q_{k}$ and equibounded volumes.

As shown in [ARS] unbounded sequences of solutions to (41)-(42) can exhibit pathological behaviors in dimension 4 (and higher), contrary to the elegant results of [BM] and [LS] in dimension 2. This is partly due to Theorem A. In fact for $m \geq 2$ and $\alpha \in\left(0,(2 m-1)!\operatorname{vol}\left(S^{2 m}\right)\right]$ one can found a sequence (u_{k}) of solutions to (41)-(42) with $Q_{0}>0$ and

$$
\begin{equation*}
\lim _{R \rightarrow 0} \lim _{k \rightarrow \infty} \int_{B_{R}\left(x_{0}\right)}\left|Q_{k}\right| e^{2 m u_{k}} d x=\alpha \quad \text { for some } x_{0} \in \Omega \tag{43}
\end{equation*}
$$

For $m=2$ this was made very precise by F. Robert [Rob1] in the radially symmetric case. In higher dimension or when Q_{0} is not necessarily positive, thanks to Theorems 1-4 we see that α can take values larger than $(2 m-1)!\operatorname{vol}\left(S^{2 m}\right)$. Indeed if u is a solution to (1)-(2) or (6)-(2), then $u_{k}:=u(k x)+\log k$ satisfies (41)-(42) with $\Omega=\mathbb{R}^{2 m}, Q_{k} \equiv \pm(2 m-1)!$ and

$$
\left|Q_{k}\right| e^{2 m u_{k}} d x \rightharpoondown(2 m-1)!V \delta_{0}, \quad \text { weakly as measures. }
$$

When $m=2, Q_{0}>0\left(\right.$ say $\left.Q_{0} \equiv 6\right)$ it is unclear whether one could have concentration points carrying more Q-curvature than $6 \operatorname{vol}\left(S^{4}\right)$, i.e. whether one can take $\alpha>6 \operatorname{vol}\left(S^{4}\right)$ in (43). Theorem B suggests that if the answer is affirmative, this should be due to the convergence to the same blow-up point of two or more blow-ups. Such a phenomenon is unknown in dimension 4 and higher, but was shown in dimension 2 by Wang [Wan] with a technique which, based on the abundance of conformal transformations of \mathbb{C} into itself, does not extend to higher dimensions.

References

[ARS] Adimurthi, F. Robert, M. Struwe Concentration phenomena for Liouville's equation in dimension 4, Journal EMS 8 (2006), 171-180.
[BM] H. Brézis, F. Merle Uniform estimates and blow-up behaviour for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253.
[Cha] S-Y. A. Chang Non-linear Elliptic Equations in Conformal Geometry, Zurich lecture notes in advanced mathematics, EMS (2004).
[CC] S-Y. A. Chang, W. Chen A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems 63 (2001), 275-281.
[CY] S-Y. A. Chang, P. Yang On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett. 4 (1997), 91-102.
[CL] W. Chen, C. Li Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (3) (1991), 615-622.
[DR] O. Druet, F. Robert Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc 3 (2006), 897-908.
[FG] C. Fefferman, C. R. Graham Q-curvature and Poincaré metrics, Math. Res. Lett. 9 (2002), 139-151.
[FH] C. Fefferman, K. Hirachi Ambient metric construction of Q-curvature in conformal and $C R$ geometry, Math. Res. Lett. 10 (2003), 819-831.
[LS] Y. Li, I. Shafrir Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270.
[Lin] C. S. Lin A classification of solutions of conformally invariant fourth order equations in \mathbb{R}^{n}, Comm. Math. Helv 73 (1998), 206-231.
[Mal] A. Malchiodi Compactness of solutions to some geometric fourth-order equations, J. reine angew. Math. 594 (2006), 137-174.
[MS] A. Malchiodi, M. Struwe Q-curvature flow on S^{4}, J. Diff. Geom. 73 (2006), 1-44.
[Mar1] L. Martinazzi Classification of solutions to the higher order Liouville's equation on $\mathbb{R}^{2 m}$, Math. Z. 263 (2009), 307-329.
[Mar2] L. Martinazzi Conformal metrics on $\mathbb{R}^{2 m}$ with constant Q-curvature, Rend. Lincei. Mat. Appl. 19 (2008), 279-292.
[Mar3] L. Martinazzi Concentration-compactness phenomena in higher order Liouville's equation, J. Functional Anal. 256 (2009), 3743-3771
[Mar4] L. Martinazzi Quantization for the prescribed Q-curvature equation on open domains, Commun. Contemp. Math. 13 (2011), 533-551.
[Ndi] C. B. Ndiaye Constant Q-curvature metrics in arbitrary dimension, J. Func. Analysis 251 no. 1 (2007), 1-58.
[Rob1] F. Robert Concentration phenomena for a fourth order equation with exponential growth: the radial case, J. Differential Equations 231 (2006), 135-164.
[Rob2] F. Robert Quantization effects for a fourth order equation of exponential growth in dimension four, Proc. Roy. Soc. Edinburgh Sec. A 137 (2007), 531-553.
[Str4] M. Struwe A flow approach to Nirenberg's problem, Duke Math. J. 128(1) (2005), 19-64.
[Wan] S. WANg, An example of a blow-up sequence for $-\Delta u=V(x) e^{u}$, Differential Integral Equations 5 (1992), 1111-1114.
[WX] J. Wei, X-W. Xu Classification of solutions of higher order conformally invariant equations, Math. Ann 313 (1999), 207-228.
[WY] J. Wei, D. Ye Nonradial solutions for a conformally invariant fourth order equation in \mathbb{R}^{4}, preprint (2006).
[Xu] X-W. Xu Uniqueness theorems for integral equations and its application, J. Funct. Anal. 247 (2007), no. 1, 95-109.

[^0]: ${ }^{1}$ The choice $b=3$ is convenient in the computations, but any other $b>0$ would work.

