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Abstract. A slice distance for the class of weak abelian L
p -bundles in 3

dimensions was introduced in [PR11], where it was used to prove the closure
of such class of bundles for the weak L

p -convergence. We further investigate
this distance here, and we prove more properties of it, for example we show
that it is Hölder-continuous on the slices. Using the same distance, we give
here a notion of a boundary trace, giving a suitable setting for minimization
problems on weak bundles. We then state some conjectures and some open
questions.
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1. Introduction

In the last decades, an increasing interest has arisen towards analytic tools
able to create singular bundles for interesting energies, starting with Donald-
son’s breakthrough linking 4-dimensional topology to the study of SU(2)-
bundles which are critical points of the L2 -norm of the curvature studied by
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Uhlenbeck [U82]. This study is especially interesting in the case of supercrit-
ical dimensions, where it gave rise to new questions, among which is the one
regarding the possibility of constructing new nontrivial bundles satisfying the
Yang-Mills equations by minimizing the natural energy under some topolog-
ical constraint; see [T00], [DT98] and the references therein. For nonabelian
bundles in supercritical dimensions, a setting in which the direct method of
the Calculus of variations can be applied to obtain critical bundles with singu-
larities is not yet well established (see however the definitions in [I10], [KR08]).

1.1. Defining a Plateau problem for U(1)-bundles. Together with Tris-
tan Rivière, we started [PR11] an approach which should give the suitable
setting for posing a minimization problem for weak bundles in supercritical
dimensions, in the abelian case of complex U(1)-line bundles. Since the Yang-
Mills energy in the nonabelian case is the L2 -norm of the curvature, we con-
sidered the energies defined by Lp -norms also in the abelian case. Under such
constraint a suitable setting should consist of the following ingredients:

• A class of weak bundles which is closed by sequential weak-Lp conver-
gence of the curvatures: since as we said the natural energy is the
Lp -norm of the curvature, the topology giving precompactness of sub-
levelsets is the weak Lp -topology. In particular any minimizing se-
quence will have a weakly convergent subsequence, and a suitable class
of bundles should be closed under this topology.

• A suitable notion of boundary value: if F is the curvature of our bundle,
we want to be able to state the minimization problem which could be
formally written as follows

inf

{
∫

Ω

|F |pdx : F |∂Ω = φ

}

(1.1)

in a meaningful way. In particular, we would like the weak convergence
in the previous point not to disrupt our boundary condition, and to
reduce to the usual boundary restriction for locally smooth bundles.

As we briefly describe in Sections 1.2 and 1.3, the first point above was solved
by the main theorem of [PR11]. The solution of the second point is one of the
main results of the present work (See Section 5)

Remark 1.1. Another possible approach for the creation of nontrivial bundles
which are critical for our energy is by minimizing a relaxed energy instead, as
suggested in [KR08] and [I98], and in analogy with the case of harmonic maps
[BBC90]. In our case a good candinate for such energy would for example be
given by

E(F ) =

∫

Ω

|F |pdx3 + sup
||dξ||L∞≤1

∫

Ω

F ∧ dξ.

1.2. Weak U(1)-bundles and vectorfields with integer fluxes. Consider
the aim of making a minimization problem as in (1.1) rigorous for supercritical
U(1)-bundles. The natural topological invariant of U(1)-bundles is the first
Chern class, c1 , which, for an U(1)-bundle P over a compact surface Σ is
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expressible via Chern-Weil theory as

c1(P ) =

∫

Σ

F ∈ 2πZ ≡ H2(Σ,Z),

where F is a curvature on P (see[Z01]). By identifying the Lie algebra u(1)
with R, we can identify F with a R-valued 2-form on Σ. Then, in the
“supercritical” dimension 3, a 2-form can be interpreted as a curvature if it
gives integer volume to almost every closed surface (that integer corresponds
to the c1 of a line bundle restricted to the surface). In [KR08] the following
class was first defined:

Definition 1.2. We call an Lp -integrable 2-form F defined on a 3-dimensional
domain Ω a curvature of a weak line bundle with group U(1), if for
all x ∈ Ω and for almost all r > 0 such that B(x, r) ⊂ Ω, there holds

∫

∂B(x,r)

i∗F ∈ Z,

where i : ∂B(x, r) → R
3 is the inclusion map. We call Fp

Z
(Ω) the class of

such F .

Remark 1.3 (vectorfields with integer fluxes). We could associate to a 2-form
F the vectorfield X satisfying

Fp(U, V ) = Xp · (U × V ) for all U, V ∈ R
3,

so that i∗∂ΩF = X · νΩVol∂Ω , νΩ being the outer normal to Ω and Vol∂Ω
being the oriented unit volume 2-form on ∂Ω. Via this correspondence, we
can identify curvatures of Lp weak U(1)-bundles as in Definition 1.2 with
Lp -vectorfields having integer fluxes through almost all spheres.

Note that in Definition 1.2 no assumption is made a priori, regarding the ex-
istence of an underlying topological bundle structure, and we only concentrate
on the datum present in our target minimization problem (1.1), namely the
curvature form F , while the presence of an underlying bundle is witnessed just
by the Chern class requirement. This is the natural setting where to construct
new bundles by minimizing the energy, because the supercritical case is pre-
cisely characterized by the possibility of creation of topological singularities,
and imposing an initial smooth structure precludes this possibility.

Remark 1.4. The sets along which we slice, in Definition 1.2, are just spheres.
By the density result of [KR08] however, it follows from such definition that
automatically such integrality condition is valid on all codimension 1 closed
generic surfaces. In a similar way, the same result for generic surfaces can
be achieved starting from a definition which ivolves slicing sets different from
spheres, e.g. cubes, or some other family of sets becoming arbitrarily fine at
each point, and allowing a similar density result.

1.3. The closure theorem and the distance on slices: a parallel to the
case of currents. The above Definition 1.2 gives a description of bundles in
terms of their slices on spheres, and therefore a suggestive parallel can be made
with the theory of scans present in [HR03],[HR08], [HP04]. A first fruit of this
parallel is the idea leading to the proof of the closure theorem in [PR11]:
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Theorem 1.5 ([PR11], Main Theorem). Suppose Fn ∈ Fp
Z
(Ω) as in Definition

1.2 are weakly convergent to some 2-form F . Then F ∈ Fp
Z
(Ω).

The main achievement of the present paper is the definition of the boundary
trace in Section 5. On one hand such definition gives a nontrivial trace, while
on the other hand it is preserved under weak convergence. This is due to the
intervention of the slice distance directly in its definition, together with the
properties described in Section 3. The following consequence of that definition
is the existence of minimizers for the problem (1.1):

Theorem 1.6. Fix an Lp -integrable 2-form φ on ∂B3 having integer degree.
Then the infimum in problem (1.1) is achieved, if we interpret the boundary
condition F |∂B3 = φ as F ∈ Fp

Z,φ(B
3), with notations as in Section 5.

Proof. Fix a minimizing sequence Fi in the class Fp
Z,φ(B

3). Up to extracting

a subsequence we may suppose that Fi
Lp

⇀ F , hwich by weak semicontinuity
of the Lp -norm has energy at most equal to the infimum in problem (1.1).
Theorem 1.5 gives then the fact that F ∈ FZ(Ω), while Lemma 5.1 of Section
5 gives F ∈ Fp

Z,φ(B
3) as wanted. �

Remark 1.7. The same result holds in the case of domains Ω 6= B3 such that
Ω is just bilipschitz equivalent to a smooth domain Ω̃. In that case we will
have to first define the distance analogous to our d on slices along the sets
∂Ω̃r which foliate in the usual way a tubular neighborhood of ∂Ω̃ , then using
that distance define the boundary trace exactly as in Section 5. The proof of
Hölder dependence on the parameter ρ proceeds as in Section 3, and this is
enough to prove the results in Section 5. Proceeding as in Section 4 we can
then obtain the same result for Ω, simply by using the bilipschits equivalence.

The fact that minimizers in (1.1) have finitely many singularities in any
compact K ⋐ B3 is proved in [P12a]. The boundary regularity (and thus the
fact that singularities of minimizers are isolated) will be addressed in [P12b].

We now build an analogy between [AK00] (see also the more recent de-
velopment [AG11]), [HR03] and the case treated here. Consult [F69] for the
notations of the next paragraph.

Recall that in [AK00] normal currents T on a metric space E were identified
by the property that their slices by Lipschitz functions f ∈ Lip(E,Rn), having
values in the space D0 of 0-dimensional currents

Sf : R
n → D0(E), x 7→ 〈T, f, x〉,

were metric bounded variation (MBV) functions, where D0 is endowed with
the flat metric

d(µ1, µ2) = inf{M(S) +M(T ) : µ1 − µ2 = S + ∂T, S ∈ D0(E), T ∈ D1(E)}.

For MBV slice functions it was then proved that the union of the atoms of
the slices constituted a rectifiable set. Such construction of a rectifiable set
tailored on a normal current was the main step for the later closure theorems.
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The proof of the rectifiability was based on the following estimate valid for
MBV(Rn, S) functions u , where (S, d) is a weakly separable metric space:

d(u(x), u(y)) ≤ C(MDu(x) +MDu(y))|x− y|, (1.2)

where MDu is a L1,∞ -function related to Du (see [AK00], p.42 for a precise
definition).

In our case, we slice along spheres, as in Definition 1.2. Consider a form
F ∈ Fp

Z
(Ω), and a ball B(x, r) ⋐ Ω. Then if ix,ρ : S

2 ⊂ R
3 → ∂B(x, ρ) is the

identification by dilation and translation, we can define the slice function as

Sx :]0, r[→ Y , ρ 7→ i∗x,ρF,

and the natural choice for the space Y is indicated again by Definition 1.2:

Y :=

{

h Lp-form on S2 :

∫

S2

h ∈ Z

}

.

Remark 1.8. We could also define the slice function on the space of all balls
B ⋐ Ω by defining S(B(x, ρ)) = i∗x,ρF . This function takes almost everywhere
values on Y .

The choice of the suitable distance on Y is actually justified by the need
of a property like (1.2). The picture justifying the definition of the distance
depends on the density result of [KR08] (see [K08], Section 6), and is based
on the following result:

Proposition 1.9. Suppose that F ∈ Fp
Z
(Ω). Then there exists a 1-dimensional

rectifiable current I such that M(I) ≤ C||F ||L1 for a constant C independent
of F and 〈φ, ∂I〉 =

∫

dφ ∧ F for all φ ∈ C∞
c (Ω).

The situation between two slices centered at x is shown in Figure 1. Therefore
we would expect that the property that ∂I coincides with d∗F in the weak
sense be preserved by some projection along the radial segments connecting
the slices. Given this picture and this idea, the definition of the following
analogous of the flat distance is justified:

Definition 1.10 ([PR11]). Let h1, h2 ∈ Y . We define then the following
function

d(h1, h2) := inf

{

‖α‖Lp : h1 − h2 = d∗α + ∂I +

N
∑

i=1

ni δai

}

,

where the infimum is taken over all triples given by a Lp -integrable 1-form α ,
an integer 1-current I of finite mass, and an N -ple of couples (ai, ni), where
ai ∈ S2 and ni ∈ Z.

In [PR11] it was proved that d as above defines a distance, and satisfies an
inequality like (1.2), where MDu is replaced by a Lp,∞ -function depending on
F and on the ratio of the two radii defining the slices. The Closure Theorem
1.5 was proved using the interplay between this metric and the function

N : Y → R
+, h 7→ ||h||Lp(S2).
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Figure 1. We represent schematically (i.e. we forget for a mo-
ment that we are in a 3-dimensional setting) the use of Propo-
sition 1.9. On the left the portion between two spherical shells
is shown, and the current I is represented by a collection of seg-
ments, where the boundary components with opposite signs are
represented by small balls. An integration in the radial direc-
tion reduces us to the picture on the right, where part of the
boundary of I projects to a boundary of a current, while for
boundaries of components of I which are only partly inside the
spherical shell, we obtain a number of Dirac masses. Such num-
ber is finite for almost every couple of slices. Applying Stokes’
theorem we can compare the slices with the derivative of our
2-form inside the spherical shell.

1.4. Outline of the paper. In the next section we discuss some definitions
of metrics on slices, relying mainly on the density result [KR08]. In Section
3 we prove that the slice function S is actually Hölder with respect to the
above distance, and that it metrizes the weak sequential convergence on slices
of bounded norm. A parallel is drawn with the classical case of slices of W 1,p -
vectorfields. In Section 4 we show how to extend the distance to different kinds
of slices, where the space S2 in the definition of Y is replaced by a Lipschitz
domain. This result is used to give a gsuitable definition of the boundary trace
for curvatures belonging to Fp

Z
(Ω) in Section 5. Then, in the final section, we

state several open questions and indicate some further directions of research.

1.5. Acknowledgements. I wish to thank my advisor Prof. Tristan Rivière
for introducing me to the topics of this paper and for the many enlightening
discussions we had on the topics of this paper. I would also like to thank Prof.
Bernd Kirchheim for pointing out the proof of Lemma 6.14.

2. Some other definitions of slice distances

We will compare here the distance on Y :=
{

h ∈ Lp(S2) :
∫

S2 hdH
2 ∈ Z

}

defined by

d(h1, h2) := inf

{

||α||Lp : h2 − h1 = d∗α+ ∂I +

N
∑

i=1

niδai

}
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as in the Introduction, to the following function:

d1(h1, h2) := inf

{

||α||Lp : h2 − h1 = d∗α +
N
∑

i=1

niδai

}

We define also the following function, in the struggle to free our distance d
from the presence of an unknown sum of Dirac masses:

d2(h1, h2) = lim
ǫ→0

inf
α,A

{||α||Lp : spt [(h2 − h1)− d∗α] ⊂ A, A open , |A| ≤ ǫ} .

The motivations for introducing these objects are as follows:

(1) Sometimes in applications, as for example in Section 4, it is easier
to deal with definitions in terms of finite, rather than infinite, sets of
“topological” singularities. This justifies the introduction of d1 .

(2) It is natural to ask whether or not our distance d is induced by a norm
on Lp(S2). Candidates for such norms would then be norms which
“don’t see small sets”, in particular they should not be sensible to the
presence of the singular measures defining d . More importantly, having
an underlying norm could perhaps help to define new and more natural
notions of critical points for our energy. Investigating the relationship
between d and d2 seems a reasonable first step in that direction of
research.

We will use the following density result:

Proposition 2.1 (see Prop. 1.3 of [P10]). Fix an exponent p > 1 and consider
the space VZ consisting of all Lp -integrable 1-forms α on S2 such that

∫

S2

α ∧ dφ = 〈∂I, φ〉, ∀φ ∈ C∞(S2),

where I is an integer rectifiable 1-current of finite mass on S2 . Then its
subspace VR given by the 1-forms which are smooth outside a discrete (thus
finite) set, is dense in the Lp -norm.

2.1. The distance d1 .

Proposition 2.2. On Y we have d = d1 .

Proof. We clearly have d1 ≥ d since the infimum defining d1 is taken on a
smaller class. To prove the opposite inequality, fix h = h2 − h1 and consider
a minimizing sequence αǫ as in the minimization defining d . We then have

(d∗αǫ) +

(

h− δ0

∫

S2

h

)

= ∂Iǫ, ||αǫ||Lp → d(h1, h2).

We consider the function g satisfying the following equation:

d∗dg = h− δ0

∫

S2

h,

∫

S2

g = 0.

By standard elliptic theory we have that ||dg||Lp ≤ C||h||Lp . It follows that

d∗(αǫ + dg) = ∂Iǫ,



8 MIRCEA PETRACHE

and Proposition 2.1 applies then to αǫ + dg , giving us a decomposition

αǫ + dg = fkǫ + ekǫ ,

where fkǫ ∈ VR is smooth outside of a finite set and ekǫ
(k→∞)
−→ 0 in Lp -norm. In

particular there exists a measure Σkǫ of the form
∑N

i=1 niδai as in the definition
of d1 , for which

d∗fkǫ = −Σkǫ = d∗(αǫ + ekǫ ) + h− δ0

∫

S2

h.

Therefore

h = d∗(αǫ + ekǫ ) + Σkǫ − δ0

∫

S2

h.

Thus αǫ + ekǫ are competitors in the infimum defining d1(h1, h2), and as k →
∞, ǫ → 0, their Lp -norms converge to d(h1, h2). This concludes the proof of
d = d1 .

�

2.2. The distances d2 and d3 . A possible choice for the set A in the def-
inition of d2 (if we interpret A as the set on which d∗α “avoids” as much
Lp -norm of h2−h1 as possible) could be some neighborhood of a superlevelset
of |h2 − h1| , which gives us a third distance d3 :

d2(h1, h2) ≤ lim
k→∞

inf {||α||Lp : h2 − h1 = d∗α whenever |h2 − h1| ≤ k} := d3(h1, h2).

Lemma 2.3. d2 is a distance and for h1, h2 ∈ Y there holds d(h1, h2) ≥
d2(h1, h2).

Proof. The inequality d(h1, h2) ≥ d2(h1, h2) follows easily once we know from
Proposition 2.2 that d1 = d , since we can take as the set A a small neighbor-
hood of the singularities in the definition of d1 . In particular, it follows that
d2(h1, h2) = 0 ⇐ h1 = h2 . Being the triangular inequality and the symme-
try evident for d2 , and since d2(h1, h2) = 0 ⇒ h1 = h2 follows directly from
the Lebesgue continuity property of Lp -forms, we deduce that d2 is indeed a
distance. �

The other inequalities are still to be investigated:

Open Problem 2.4. Is it true that d = d2 = d3?

Remark 2.5. We mention here an interesting analogy. A simpler distance
similar to d2 was studied in [BCS10], where for probability measures µ1, µ2

on Ω ⊂ R
n bounded open with smooth boundary the following distance was

defined:

DH(µ1, µ2) = inf
σ∈Lp(Ω,Rn)

{
∫

Ω

H(σ(x))dx : d∗σ = µ1 − µ2, σ · ν = 0 on ∂Ω

}

,

for a class of functions H including the case H(x) = |x|p, p > 1. The con-
nection between our distances and the class of distances DH would give an
interesting connection to the theory of Optimal Transportation, which would
strongly echo with the use of basic Optimal Transportation for “minimal con-
nections” connecting singularities of harmonic maps in [BCL86].
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3. Regularity and relation to the sequential weak

convergence of slices

3.1. The distance metrizes weak convergence on bounded sequences.

Lemma 3.1. If for functions hn, h∗, h∞ ∈ Y we have that ||hn||Lp is bounded,
d(h∗, hn) → 0 and hn ⇀ h∞ weakly in Lp , then h∗ = h∞ .

Proof. We observe that from the weak convergence it follows hn
Lq

→ h∞ for all
q < p. We define then the potentials ψ̃n, ψ∞ by

{

hn = ∆ψ̃n,
∫

ψn = 0
h∞ = ∆ψ∞,

∫

ψ∞ = 0

and we observe that ψ̄n = ψ̃n − ψ∞ satisfies ∆ψ̄n
Lq

→ 0 and ||dψ̄n||W 1,q → 0.

Now take 1-forms αn such that

hn − h∗ = d∗αn + Σn, ||αn||p → 0

where Σn is a sum of Dirac masses with integer coefficients, and let ∆φn =
d∗αn . Call also

∆ψn = h∗ − hn = h∗ − h∞ +∆ψ̄n := ∆ψ +∆ψ̄n,

and observe that ||dψ||W 1,q is bounded and ||dφn||p ≤ C||αn||p → 0. Then

∆(ψn − φn) = hn − h∗ − d∗αn = Σn,

and denoting vn = d(ψn − φn) we obtain
{

d∗vn = Σn
||vn||q ≤ C(||αn||q + ||dψ||q + ||dψ̄n||q) ≤ C

therefore (see the main theorem of [P10]) we can find un ∈ W 1,q(S2, S1) such
that u∗nθ = vn , where θ is the normalized volume 1-form of S1 . The end of
the proof goes as in [PR11], Proposition 3.4, where at the level of the un it is
possible to find a converging subsequence, and by Sard theorem it is concluded
that for a rectifiable 1-current of finite mass I0 there holds ∂I0 = hn − h∗ ,
thus hn = h∗ . See [PR11] for the details. �

Proposition 3.2. If hn ∈ Y are equibounded in Lp , then

hn
d
→ h∗ ⇔ hn

w−Lp

⇀ h∗.

Proof. Using the fact that a sequence has a limit h∗ if and only if each subse-
quence has a subsequence converging to h∗ and the previous lemma, we obtain
immediately the “⇒” implication.

Suppose now hn
w−Lp

⇀ h∗ . Then take the potential such that ∆ψn = hn − h∞ .
By the elliptic estimates and the Rellich-Kondrachov theorem, after extract-
ing a subsequence, dψn̄ → 0 in Lp

∗

. The limit is zero independent of the
subsequence, so αn = dψn satisfies

{

hn − h∞ = d∗αn,
||αn||p → 0

which implies hn
d
→ h∗ . �
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3.2. Regularity on slices. Here we consider a form F ∈ Fp
Z
(Ω) and we want

to compare its slices along ∂B(x, r), ∂B(x′, r′) ⊂ Ω. This will be possible only
under some condition on |x−x′|, r−r′m but we formulate the condition later.

The slices will be given by a function (defined a.e.) h : Ω × R
+ → Y ⊂

Lp(S2), where h(x, r) is the function on S2 corresponding to the restriction
of F to ∂B(x, r), after a homothety and an identification ∧2S2 ≃ ∧0S2 .

We consider the following function A : S2 × [0, 1] → Ω:

A(σ, t) = t(x− x′) + x′ + [t(r − r′) + r′] σ := xt + rtσ.

Suppose that A is a diffeomorphism onto its image. Then A∗F ∈ FZ(S
2 ×

[0, 1]), and we will build out of it a competitor for the infimum in the definition
of d(h(x, r), h(x′, r′)). Consider

F̄ (σ) =
1

|r − r′|

∫ 1

0

F ‖
xt,rt(σ)dt, where Fxt,rt(σ) := r2tF (xt + σrt).

Here F
‖
xt,rt indicates the component of Fxt,rt parallel to the volume form of

the sphere ∂Brt(xt). Along the lines of Proposition 4.1 of [PR11] (See also
Proposition 1.9 and Figure 1 in the Introduction), we can show that this gives a
competitor. We then introduce the reparameterization ρ = rt and we compute:

∫

S2

|F̄ |p(σ)dσ =

∫

S2

(
∫ r

r′
F ‖
xρ,ρ(σ)dρ

)p

dσ

≤ |r − r′|1−
1

p

∫ r

r′

∫

S2

|Fxρ,ρ|
pdσdρ.

In order to compare this with the norm of F , we first find

DA(σ, t) = ([t(r − r′) + r′]IdTS2|x− x′ + (r − r′)σ) = (rtIdTS2|x− x′ + (r − r′)σ) .

Then (assuming B′ ⊂ B for the moment) we pull back the function |F |p :
∫

B\B′

|F |pdH3 =

∫

A−1(B\B′)

|F |p ◦ A|DA|

=

∫ 1

0

∫

S2

|F (xt + rtσ)|
pr2t |r − r′ + 〈σ, x− x′〉|dσdt.

We can now formulate our hypothesis on the slices:

(H) |x− x′| ≤
1

2
(r − r′), 1 ≥ r > r′.

Under this hypothesis, (since |σ| = 1) we can estimate
∫

B\B′

|F |pdH3 ≥
1

2
(r − r′)

∫ 1

0

1

r2p−2
t

(
∫

S2

|Fxt,rt |
pdσ

)

dt

=
1

2

∫ r

r′

1

ρ2p−2

(
∫

S2

|Fxρ,ρ|
pdσ

)

dρ

≥
1

2

∫ r

r′

(
∫

S2

|Fxρ,ρ|
pdσ

)

dρ if ρ ≤ 1.
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Observe that Fxρ,ρ is the Poincarè dual of h(xρ, ρ). We introduce the function

F : Ω× R
+ h
→ Y

||·||p
Lp

→ R
+,

and we can finally write

d(h(x, r), h(x′, r′)) ≤ |r − r′|1−
1

p

(
∫ r

r′
F (xρ, ρ)

)1/p

(Under hypotheses (H)..) ≤ 2|r − r′|1−
1

p

(
∫

B\B′

|F |p
)1/p

.

Combining the basic estimate above for a couple of segments, we obtain
Hölderianity.

Proposition 3.3. The slice-function h : A := B 1

2

× R
+ ∩ {(x, r) : B(x, r) ⊂

B1} → Lp(S2) defined above is Hölder-(1−1/p)-continuous on with respect to
the distance d, and its Hölder constant is bounded by the Lp -norm of F .

Proof. We want to see how our estimates worsen if instead of connecting B =
(x, r), B′ = (x′, r′) along a segment, we use a polygonal curve. Consider then
γ , consisting in a union of segments {S} , each ow which satisfies (H). For a
given segment S = [S, S] (where S = (x′, r′) is the end with the largest radius)
we call AS := BS \ BS . For a given S , call |Sr| the difference of the radii of

S, S . We then have the following estimate, following the same reasoning as
above:

2||F ||pLp(AS)
≥

∫ S

S

1

ρ2p−2
F (sρ)dρ

≥ S
2−2p

|Sr|
p−1d(h(S), h(S))p,

and summing up and using the triangle inequality,

2#{S}||F ||Lp

∑

S∈γ

|Sr|
1− 1

p ≥ d(h(B), h(B′)).

Because of this estimate, the question is how we can join B,B′ by some
polygonal γ which stays in the allowed set A and is made of segments verify-

ing (H), such that #{S} is as small as possible and
∑

S∈γ |Sr|
1− 1

p is bounded
above.

We will see that N can be bounded by 4 because we don’t need more than
4 segments, and that maxS∈γ |Sr| is bounded by 2|B′ − B| (also in this case
it’s optimal to have a few long segments rather than many short ones). We
just briefly describe the kind of γ we use for the estimates.

The worst case that we can face is the one where B,B′ are on ∂A , have the
same r -coordinate, and are as far from each other as possible. If they are on
the part where x, x′ ∈ ∂B 1

2

with r < 1
4
then we can take γ to start from B

and go up in the r -direction with slope 2 until it touches ∂A , then down until
close to 0 radius and center x = 0, then do the same symmetrically, building
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up an M -shaped graph. If r ≥ 1
4
, then it’s better to first go down then up,

making a symmetric W -shaped graph. If instead x, x′ ∈ ∂A\ ∂B 1

2

then again

a W -shaped graph is the best option, and if r is large enough a V -shaped
graph will be even better.
It is easy (but tedious) to verify that the above constructions verify the esti-
mate on |Sr| . We thus end up with the following bound:

16||F ||Lp|B − B′|1−
1

p ≥ d(h(B), h(B′))

�

Remark 3.4. We observe that in general, even though d is Hölder on the
slices, Proposition 3.2 does not apply, to give weak continuity on the slices,
because the norm boundedness is not verified. This is already clear in the case
where the form F is the radial form Fx(V,W ) = x

|x|
· V ×W . Then consider

the slices S1+ρ along ∂B(1 + ρ, (0, 0, 1)), ρ ∈ [−ǫ,+ǫ] (see Figure 2). Since
these spheres look almost flat near (0, 0, 0) for small ǫ and the integral of F
on the portion of a given slice just depends on the solid angle covered by that
region, we easily see that the Lp -norm of the slice S1+ρ on a small ball near
the singularity grows like ρ2−2p , i.e. blows up.

Figure 2. We represent schematically the slices passing near
the origin. The areas of the thick regions behave like ρ2 and the
integral of F on them is constant and positive, so |i∗F | ∼ 1

ρ2

and the Lp -norms of the slices is thus & ρ2−2p .
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3.3. A simplified proof of the closure theorem. Propositions 3.3 and 3.2
allow a simplification of the proof of the Closure Theorem 1.5, which avoids
using the stronger Theorem 5.1 of [PR11]. We state here the crucial result
from which Theorem 1.5 follows at once, and we give a new proof of it.

Lemma 3.5 (Main step of the Closure Theorem). Let p ∈]1, 3/2[ as above.
Suppose that the 2-forms Fn ∈ Fp

Z
(Ω) are weakly convergent to a 2-form F ∈

Lp(Ω). Given Br(x) ⊂ Ω, consider the slice functions go F , S : [r/2, r] →
Lp(S2), given by S(ρ) := i∗x,ρF . Then for almost all ρ ∈ [r/2, r], S(ρ) ∈ Y ,
i.e. the integer flux condition is preserved.

Proof. We suppose w.l.o.g. that x = 0. By lower semicontinuity of the norm,
we may suppose that ||Fn||Lp(Br\Br/2) ≤ C . By Proposition 3.3, the slice func-
tions Sn defined as S in the statement of the Lemma, but with Fn instead
of F , are equi-Hölder with respect to our metric d . This means that we can
extract a pointwise convergent subsequence.
It is evident that the deformation factor of the Lp -norm, coming from the fact
that i0,ρ are dilations, is bounded. Fubini’s and Chebychev’s theorems imply
then, that we may restrict to a subset of ρ ∈ [r, r/2] on which the Lp -norms
of the Sn(ρ) stay bounded. This is just the situation where Proposition 3.2
applies. Therefore the slices converge weakly almost everywhere, and test-
ing them on the constant function 1, we see that their integer degrees also
converge. Therefore S(ρ) has integer degree on S2 , as wanted. �

4. The case of Lipschitz slices

We consider here the problem of extending the definition of the distance
d to the case of slices different from spheres. The main motivations for this
extension are the following:

• A natural question regarding the class Fp
Z
is whether or not the con-

dition that the integrality is required on spheres can be replaced by a
condition on different kinds of surfaces. A particularly interesting case
would be one in which the slicing sets tile space, as is the case for the
surfaces of cubes.

• The definition of the boundary condition in Section 5 will be based on
slicing. Therefore having more general slice models will allow defining
the trace on more general domains.

Given a bilipschitz map Ψ : S2 → Σ, we thus define the following distance
between Lp -integrable 2-forms on Σ:

dΨ(h1, h2) = dS2(Ψ∗h1,Ψ
∗h2).

We observe that the pullback by bilipschitz functions preserves the integrability
class, since

|(Ψ∗h)x| = sup
|v|≤1,|w|≤1

hΨ(x)(dΨxv, dΨxw) ≤ ||dΨ||2∞|hΨ(x)|,

and the same holds with Ψ−1 instead of Ψ. Analogous estimates imply that
different bilipschitz maps induce equivalent distances:
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Proposition 4.1. Suppose Ψ1,Ψ2 : S2 → Σ are bilipschitz maps. Then dΨi

are distances and they are equivalent:

C−1dΨ1
≤ dΨ2

≤ CdΨ1
.

Moreover the constant C depends only on the Lipschitz constants of Ψ,Ψ−1 .

Proof. The fact that dΨi
satisfy the triangular inequality and the reflexiv-

ity follow at once from the analogous properties of d . The nondegeneracy
dΨi

(h2, h2) = 0 ⇔ h1 = 2h is a consequence of the equivalence stated in the
Proposition, for the case Ψ1 = idS2 , and Σ = S2 . We also observe that if
we prove the Proposition for this special case, the general case will follow by
transitivity of the equivalence between distances. Thus we will consider just
this case.

We will work with the equivalent definition of d1 as in Section 2.

Fix h1, h2 ∈ Y , and consider a competitor α in the definition of d1(h1, h2).
In other words we have, in the 2-form setting, that if h = h2 − h1 and Σ
represents a finite sum of Dirac masses, then

d(∗α) = h+ ∗Σ, i.e. ∀φ ∈ C∞(S2),

∫

φd(∗α) =

∫

φh+ 〈Σ, h〉,

where ∗ represents the Hodge star operator with respect with the standard
metric. The crucial observation is that all the objects above extend naturally
to the space of Lipschitz functions, and it is equivalent to use just φ ∈ Lip(S2)
instead of φ ∈ C∞(S2) above. By replacing φ by φ ◦ Ψ ◦ Ψ−1 and changing
variable, we obtain (recall that Ψ#Σ is the image measure):

∫

d (∗(Ψ∗α))φ ◦Ψ =

∫

Ψ∗hφ ◦Ψ+ 〈Ψ#Σ, φ ◦Ψ〉.

Since Ψ is bilipschitz, it is a bijection of Lip(S2) into itself, and thus we see
that Ψ∗α is a competitor for the distance dΨ(h1, h2).

Now observe as above that |Ψ∗α|x ≤ ||dΨ||∞|α|Ψ(x) , which leads to the
conclusion that

∫

S2

|Ψ∗α|pxdx ≤ ||dΨ||p∞

∫

|α|pΨ(x)dx ≤ ||dΨ||p∞||dΨ−1||2∞

∫

|α|pydy.

The same holds also with Ψ−1 instead of Ψ, so the infimum in the definition
of d is comparable with the one in the definition of dΨ . �

5. Definition of the boundary value

Let Ω ⊂ R
3 be an open bounded smooth domain. We consider here the

class Fp
Z
(Ω) as described in Section 4. Such class consists of all Lp -integrable

2-forms F such that for generic 2-cycles S bilipschitz-equivalent to S2 , there
holds

∫

S

F ∈ Z.
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In this Section we would like, given a smooth 2-form ϕ on ∂Ω, to find a
suitable class Fp

Z,ϕ(Ω), which satisfies the following three conditions:

• (closure) for any Lp -regular 2-form ϕ on ∂Ω, the class Fp
Z,ϕ(Ω) is

closed by sequential weak Lp -convergence.
• (nontriviality) if ϕ 6= ψ are two Lp -regular 2-forms on ∂Ω, then
Fp

Z,ϕ(Ω) ∩ Fp
Z,ψ(Ω) = Ø.

• (compatibility) for any smooth 2-form ϕ , Fp
Z,ϕ(Ω)∩R∞ are exactly

the 2-forms F ∈ R∞ such that i∗∂ΩF = ϕ , where i∂Ω is the inclusion
map.

For general Lp -forms (i.e. without the restriction of belonging to Fp
Z
) no

such class can exist, even if in the closure requirement above we had required
strong convergence. Indeed, let F,G be different smooth forms, and consider
fn : [0,∞[→ [0, 1], fn = χ[1/n,∞[ . Then Fn(x) := F (x)+fn(dist(x, ∂Ω))(G(x)−

F (x)) satisfy Fn
Lp

→ G. Then by compatibility Fn and F should have the same
trace, and so by closure G and F should have the same trace, contradicting
nontriviality.
At the other extreme, for locally exact Lp -forms, using the Poincaré Lemma,
we have

dF =loc 0 =⇒ F =loc dA, A ∈ W 1,p
loc .

Thus we can impose the boundary condition directly on the restrictions to ∂Ω
of W 1,p -regular “local primitives” A, using classical trace theorems, and we
easily obtain all the above properties.
Our new space Fp

Z
(Ω) is an intermediate space between the two extrema above,

escaping both the above reasonings. We therefore use the approach which is
a natural consequence of [PR11], namely we use the distance dS between 2-
forms on cycles S , as in Section 4.1. Up to applying a bilipschitz deformation,
we may assume that we have Ω = B3 , and we will define the boundary condi-
tion in this case first.

We use the distance d to compare the boundary datum with the slices of
our forms belonging to Fp

Z
. We call F (x+ ρ) with variable x ∈ S2 the form

on S2 corresponding to the restriction to ∂B1−ρ of the form F . We define the
right class FZ,ϕ(B

3) via the continuity requirement

d(F (x+ ρ′), ϕ(x)) → 0, as ρ′ → 0+. (5.1)

It is clear that the definition (5.1) satisfies the nontriviality and compatibility
conditions above, since d(·, ·) is a distance and since for R∞ having smooth
boundary datum implies that in a neighborhood of ∂B3 the slices are smooth
and converge in the smooth topology to ϕ . The validity of the well-posedness
is a bit less trivial, therefore we prove it separately.

Lemma 5.1. If Fn ∈ FZ,ϕ(B
3) are converging weakly in Lp to a form F ∈

FZ(B
3) then also F belongs to FZ,ϕ(B

3).
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Proof. By weak semicontinuity of the Lp norm we have that Fn are bounded
in this norm. We then have (since Fn ∈ FZ ) for all n: what we need is pre-
cisely ||Fn||Lp(B1\B1−h) ≤ C .

Therefore by Proposition 3.3 the Fn are d-equicontinuous, so a subsequence
(which we will not relabel) of the Fn converges to F∞ ∈ FZ , i.e. for all
ρ′ ∈ [0, ρ] the forms Fn(x+ρ

′) are a Cauchy sequence for the distance d . This
is enough to imply that F = F∞ . We observe that F is just defined up to
zero measure sets, but it has a d-continuous representative. By continuity it
is clear that F still satisfies (5.1). �

The same proof also gives an apparently stronger result:

Proposition 5.2. If Fn ∈ FZ,ϕn(B
3) are converging weakly in Lp to a form

F ∈ FZ(B
3) then the forms ϕn converge with respect to the distance d to a

form ϕ and also F belongs to FZ,ϕ(B
3).

Remark 5.3. At a previous stage in the preparation of this paper, before re-
marking the d-hölderianity of the slices, we had prepared a different definition
of the boundary value, based on the Lp,∞ -bound of the modulus of lipschitzianity
of d given in Theorem 5.1 in [PR11]. Assuming just such bounds, with p > 1,
Proposition 5.2 remains true, if we replace condition (5.1) by the following
approximate continuity requirement

for all ǫ > 0, lim
ρ→0+

|[0, ρ] ∩Aǫ|

ρ
= 0, where Aǫ := {ρ′ : d(F (·+ ρ), ϕ)) > ǫ}.

We give the result also in the formalism of vectorfields with iteger fluxes
mentioned in Remark 1.3:

Proposition 5.4. Let Lp
Z
(B3) be the class of vectorfields with integer fluxes

described in Remark 1.3. Let ρ̂ be the radial vectorfield defined outside the
origin of R

3 . For (x, ρ′) ∈ S2×]0, 1[, define ξ(x + ρ′) := ρ̂ · X(x(1 − ρ′)).
For a given Lp -regular function φ defined on ∂B3 we define then the class
Lp
Z,φ(B

3) via the continuity requirement

d(ξ(x+ ρ′), φ(x)) → 0 as ρ′ → 0+,

where we identify 2-forms on S2 to functions via the Hodge-star duality with
respect to the standard metric.

With this definition we have the following two properties:

(1) If Xn ∈ Lp
Z,ϕ(B

3) are converging weakly in Lp to a form X ∈ Lp
Z
(B3)

then also X belongs to Lp
Z,ϕ(B

3).

(2) If Xn ∈ Lp
Z,ϕn

(B3) are converging weakly in Lp to a form X ∈ Lp
Z
(B3)

then the forms ∗ϕn (where ∗ is the Hodge star with respect to the
stnadard metric) converge with respect to the distance d to a function
∗ϕ and X belongs to Lp

Z,ϕ(B
3).

Proof. The correspondence described in Remark 1.3 translates the language
of forms into that of vectorfields. Under this translation the restriction op-
eration F 7→ i∗S2F corresponds to the operation X 7→ νS2 · X . The closure
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of Lp
Z
(B3) under weak convergence being proved in [PR11], we are just left

to prove the preservation and convergence of the boundary condition. The
needed results are proved in the language of differential forms in Lemma 5.1
and in Proposition 5.2 respectively. �

Remark 5.5. As already pointed out, the definition of the distance as in Sec-
tion 4 allows to extend the definition of the boundary value to arbitrary domains

6. Some questions and conjectures

6.1. First steps towards a compatibility condition for slices. Since we
used slices to define our class of weak curvatures FZ(Ω), it is natural to try
to go one step further and try to represent a form F ∈ FZ(Ω) by its slices.
This kind of problem seems to represent an unexplored area of research, re-
lated perhaps to integral geometry. We were not able to find any example of
similar problems in the literature. Therefore in the following subsections we
will attempt to formalize the main questions which have arisen.

6.1.1. Slices on rectifiable cycles and genericity. Consider a 2-form F ∈ Fp
Z
(Ω)

which is bounded in Lp -norm. Given a Lipschitz 2-cycle C = ∂K on Ω,
chosen in a “generic” way such that i∗CF is in Lp(C,H2) and that (in the
duality between 2-cycles and 2-forms)

〈C, F 〉 ∈ Z

we can associate
C 7→ h(C) := i∗CF ∈ YC ,

where YC is the set of 2-forms h such that

• h is Lp -integrable w.r.t. the surface measure on C ,
• h is H2 -a.e. the dual of the unit tangent 2-vector ~C to C ,
• 〈C, h〉 is an integer.

We have still to explain what the requirement that h be defined only for
“generic” cycles should mean. For that purpose, denote by C the fixed set
of Lipschitz cycles on which our compatibility theory will be defined (useful
choices may vary from the set of all spheres to the set of all Lipschitz cycles).
The domain of definition of h above should then given by C \RF for some set
RF , possibly depending on F , which belongs to an admissible class of residual
sets defined as follows.

Definition 6.1. We will call an admissible class of residual sets a class
R ⊂ C satisfying the following:

• Suppose that (Cx)x∈[−ǫ,ǫ] is a Lipschitz foliation by Lipschitz cycles
Cx ⊂ Ω i.e. there is a Lipschitz cycle C ∈ C and a bilipschitz pa-
rameterization Ψ : C × [−ǫ, ǫ] → ∪x∈[−ǫ,ǫ]Cx sending C × {x} to Cx .
Then there exists δ ≤ ǫ such that the intersection with C of set of cycles
Cx corresponding to choices of x inside a subset of of zero Lebesgue
measure of ]− δ, δ[, should form a set belonging to R.

Once we fixed an admissible class of residual sets, we will call the complement
of a residual set generic.
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6.1.2. The compatibility question. Consider the question of slice compatibility
for a class of slicing cycles C . The starting observation is that even in simple
cases, not all applications

k : C → YC := ∪C∈CYC (6.1)

can be represented as slices h of an underlying form F ∈ Fp
Z
:

Lemma 6.2. Assign to each cycle C = [∂B(x, r)] the form h(C) ∈ YC equal
to ψ∗

Ch(S
2) of a fixed nonzero 2-form h(S2) ∈ YS2 , where ψC : C → S

2 is the
similitude bijection. The so-obtained function

h : C = {[∂B(x, r)] : x ∈ Ω, r ∈]0, dist(x, ∂Ω)} → YC

cannot satisfy h(C) = i∗CF for generic C ∈ C .

Proof. Assume for a moment that there exists such 2-form F ∈ Fp
Z
(Ω). Then

for any fixed M > 0 we would have |F | ≥M almost everywhere on Ω. Indeed
fix ǫ > 0 such that |Eǫ| > ǫ, where Eǫ := {|h| > ǫ} . Then consider the sets

S(x, r) := ∪ρ≤rψ
−1
B(x,r)(Eǫ), with the constraint r <

√

ǫ/M . These sets form a

fine covering of Ω, and if h(S2) = (ψ−1
C )∗i∗CF for almost all C in the definition

of S(r, x), then |F | must be larger than M almost everywhere on S(x, r). By
extracting a (not necessarily disjoint) countable cover of Ω by sets S(x, r) up
to zero Lebesgue measure, we obtain that |F | ≥ M almost everywhere. By
the arbitrariness of M we obtain that F cannot be in Lp , thus contraddicting
our assumption. �

Remark 6.3. Suppose that C is a family of cycles such that for amost all
x ∈ Ω the tangent spaces (TxC)x∈C∈C span the Grassmannian G(2, 1) of 2-
planes. Then for any k as in (6.1) there is at most one 2-form F such that
k = kF . Indeed, fixing the restrictions i

∗
CF at some point x along three linearly

independent tangent planes relative to three choices of C , automatically fixes
the value of F at x.

The compatibility requirement between k and F following from Remark 6.3
depends on the pointwise behavior of the single slices. We would like to find
a more geometric condition (C) which can be tested by looking only at the
function k as in (6.1). See Question 6.6 for such an example. The wanted
condition (C) should also satisfy the following properties.

Definition 6.4. Suppose that (C) is a property of a function k as in (6.1)
for a given set of cycles C . We say that (C) is a compatibility condition

if the following are true:

(1) If F ∈ Fp
Z
(Ω) for some p ∈]1, 3/2[ then the function kF which to a

generic C ∈ C associates the slice of F along C , satisfies (C).
(2) If Fi ∈ Fp

Z
(Ω) are a sequence converging Lp -weakly to a form F , then

also kF satisfies (C).
(3) Whenever k satisfies (C), there exists a F ∈ Fp

Z
(Ω) such that k = kF .

Since we “know much more” about Fp
Z

than about weak convergence or
about slice functions, in general the first point above should prove relatively
easier to check.
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Example 6.5. In [PR11], a (C) satisfying the first condition was given, and
consisted in asking that for C = {∂B(x, r) : x ∈ R

3, r > 0} (where the generic
sets are the algebra generated by the ones of the form {∂B(x, r) : r ∈ N} s.t.
L1(N) = 0), the integral of k(C) be an integer. This is just the definition of
Fp

Z
. As shown by Lemma 6.2, this candidate for condition (C) is too weak to

satisfy the second property above.

6.1.3. A simple geometric candidate for compatibility. We consider still the
case where C consists of all spheres contained in Ω. If we immagine that our
form F has only finitely many singularities, then the integral

∫

C
F along each

cycle corresponds to an algebraic sum of the degrees associated to the singu-
larities situated in the interior of C . Now consider two intersecting spheres,
C ′, C ′′ and suppose that their intersection is a circle D . If we assume that
none of the singularities of F is on C ′ ∪ C ′′ , we will have then that near D
the forms i∗C′F, i∗C′′F can be represented respectively as dA′, dA′′ , for suitable
1-forms A′, A′′ . It is easy to see by using Stokes’ theorem that the difference
∫

D
A′′ −

∫

D
A′ must then be an integer, and must equal the algebraic sum of

the degrees of all the singularities contained inside C ′ ∩C ′′ . It is thus natural
to formulate the following compatibility condition more in general:

(C∗) : ∀x for a.e. circle D with center x,

∫

D

A′ −

∫

D

A′′ ∈ Z,

where i∗C′k(C ′) = dA′, i∗C′′k(C ′′) = dA′′ locally near D.

It is easy to see that condition (1) of Definition 6.4 is satisfied, while condition
(2) will probably be achievable using the techniques leading to the closure
theorem 1.5. The third condition is however still to be investigated. We thus
formulate the following

Question 6.6. Is codition (C∗) a compatibility condition in the sense of Def-
inition 6.4?

6.1.4. A more complex candidate for compatibility. Example 6.5 suggests con-
sidering a stronger form of condition (C) than just the requirement that spher-
ical slices have integer degree. Inorder to give a second candidate for a com-
patibility condition, we will now suggest how to extend the class C here, to
include all boundaries of bounded sets writable as finite intersections of balls
and of complements of balls (since we are interested in the boundaries, and
just finite intersections are involved, it is not relevant whether we use closed
or open balls). We will call such boundaries convex spherical polyhedra,
in analogy with the case when balls are replaced by half-spaces.

6.1.5. Cell complex structure and genericity. Consider a convex spherical poly-
hedron (where i ≥ 1, j ≥ 0 and Bi, Bj are balls included in Ω):

C = ∂
[

(∩Bi) ∩
(

∩B̄c
j

)]

.

A nartural notion of genericity, which is also easily seen to be admissible
according to Definition 6.1, can defined as follows: if Bi = B(xi, ri) then
generic sets of perturbations of C will be the ones formed by

C ′ = ∂
[

(∩B(x′i, r
′
i)) ∩

(

∩B̄(x′j , r
′
j)
c
)]

,
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with r′i ∈]ri(1 − ǫ), ri(1 + ǫ)[\Ni , L1(Ni) = 0, and with x′i ∈ B(xi, ǫ) \ Ai ,
L3(Ai) = 0 for all i (and similarly for j ).

It will also be useful to consider the natural induced cell complex structure
on each cycle C ; the dimensions of the different faces will agree with the Haus-
dorff dimension of the underlying sets. We will use as 2-skeleton the sets Di

such that D̊i are the connected components of the interior of C ∩∂B for some
B among the ones in the definition of C . The lower-dimensional skeletons can
be then defined by intersection.
Given this cell complex structure, we define a spherical cell complex as in sin-
gular homology theory, the only differing feature being that all our 3-cells are
required to be obtained via intersections of (generic) balls. We thus also have
a way of making sums and differences of our cycles. Given these data, it will
be enough to define the compatibility condition on couples of convex spheri-
cal polyhedra having exactly one common face, then extend the definition by
taking sums to more general cases.

6.1.6. Strategy for another possible definition of compatibility. We first define
a compatibility property for two spherical polyhedra having just one common
face of highest dimension, then we extend this to all polyhedra. The whole
construction is done in the case of forms F ∈ Fp

Z
(Ω) having finitely many

singularities, which is a very special and easy case.

Compatibility for neighboring cells. Given hC
′

∈ YC′, hC
′′

∈ YC′′ where
the 2-skeletons (KC′)2, (KC′′)2 have exactly one common face, we describe a
candidate compatibility condition for hC

′

and hC
′′

as follows.

• On the face D ∈ (KC′)2 ∩ (KC′′)2 we ask that hC
′

= hC
′′

a.e.
• On the faces neighboring D in (KC′

)2 the form hC
′

can be expressed
locally as dAhC′ , and similarly hC

′′

=loc dAhC′′ . We then ask also that
∈ Z, where the orientations on ∂D in the two integrals are coming
from the orientations of C ′, C ′′ respectively.

Definition of our candidate condition (C ′). We define the candidate
property (C ′) for a function k as in (6.1) in the case of a form F ∈ Fp

Z
(Ω)

which is smooth outside a finite number of singularities a1, . . . , ak ∈ Ω and :

(C ′) : The above conditions hold with the choice hC = k(C), for all C ∈ C.

For F ∈ Fp
Z
(Ω) which has just isolated singularities, one can find local repre-

sentations outside the singularities via potentials AhC as above, and the integer
∫

∂D
AhC′ −

∫

∂D
AhC′′ is equal to the number of charges inside the sum cycle

C ′ + C ′′ . We formulate the future steps to be taken from here on, as an open
question:

Open Problem 6.7. Is it possible to extend the definition of condition (C ′) to
the whole class Fp

Z
(Ω), and if so, is the result of this extension a compatibility

condition in the sense of Definition 6.4?
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6.2. Regularity of critical points and of minimizers of the Lp -energy.
We have already recalled in Proposition 1.9 of the introduction that to any
F ∈ Fp

Z
we can associate an integral rectifiable current of finite mass such that

∂I = dF as distributions, and the map dF 7→ I is bounded with respect to
the mass norms.
It is an intriguing direction of investigation to study how much of the infor-
mation about F is encoded in such an I , and to try and use instruments of
the theory of currents to study the forms in Fp

Z
. We will now consider the

regularity question for minimizers of the Lp -energy in the class Fp
Z
as in (1.1),

or more generally for critical points

F ∈ Fp
Z,φ(Ω) :

∫

Ω

〈|F |p−2F,X〉dx3 = 0,

for all X ∈ Fp
Z,0(Ω) such that dX = 0 in D′(Ω).

(6.2)

This equation is usually complemented by the stationarity requirement

For all continuously parameterized families Φt ∈ Lip(Ω,Ω), t ∈ [−δ, δ]
such that ∀t Φt|∂Ω = id∂Ω and Φ0 = idΩ,
there holds d

dt

∫

Ω
|Φ∗

tF
∣

∣

p
dx3|t=0 = 0.

(6.3)
It is tempting to imitate the blow-up-and-monotonicity (or stationarity) ap-
proach in order to study the singularity points, and to prove regularity results,
in the spirit of [S96], [L99]. Besides the harmonic maps, another model problem
for us is the regularity of minimal surfaces [D60]. The use of the fact that the
current is boundaryless in the problem of mass-minimizing integral currents
(in the case of harmonic maps, the studied quantity is a gradient, thus the
property of being boundaryless is implicit there too), would correspond here
to the use of the fact that 〈∂I, χBr(x)〉 ∈ Z is constant for a.e. r > 0, which in
our case is not necessarily true; so we must content ourselves of a weaker result,
relying on the above Euler-Lagrange equations and their analogues, and trying
to use the integrality of the boundary to reduce to the boundaryless case. One
of the main steps in the study of our problem would be the description, and
perhaps even the classification, of tangent maps, as is done in the case of min-
imizing hypersurfaces (where the tangent spaces are seen to be hyperplanes
without much effort), and as was achieved (with more effort) in the case of
harmonic maps for example in [BCL86]. The best-behaving local models of
singularities in our case are up to rotation 2-homogeneous and symmetric, but
proving that they are the only possible tangent maps of critical forms F is so
far just a conjecture.

Open Problem 6.8. Suppose F is a minimizer of the energy, inparticular
it satisfies (6.2), (6.3), and a suitable comparison principle. Assume that the

Lp -weak limit of a blow-up sequence Fi(x) = r2iF
(

x−x0
ri

)

, (ri → 0) exists.

Then prove that such limit equals, up to a rotation, one of the forms Φk(x) =
k x
|x|3
, k ∈ Z. In particular the limit is unique.
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For minimizers the conjecture is true, as will be proved in some future work.
Our proof however uses the results of [P12a], i.e. the special properties avail-
able for minimizers. Note that the same kind of properties are used also in
the result [BCL86] about harmonic maps, therefore the following question is
meaningful also in that case.

Question 6.9. Suppose that a form F ∈ Fp
Z
(Ω) satisfies (6.2) and (6.3). Is it

possible to use just these two facts and obtain the uniqueness of tangent forms?

Supposing that the tangent maps are classified, we have still one more step to
achieve until the local regularity becomes provable, at least if the classification
is done in the sense of the above conjecture: we must use the information
given by the tangent maps on degrees, in order to eliminate the possibility
that singularities (i.e. points of the support of the above boundary ∂I of the
current of Proposition 1.9) are present in the regions of small rescaled energy:
this would indeed be the analogue of an ǫ-regularity theorem, in the setting of
a classical approach to regularity (as opposed to the alternative combinatoric
approach of [P12a]). We state the following open problem in this spirit:

Question 6.10 (classical proof of ǫ-regularity). Find a proof of the ǫ-regularity
for minimizing forms F as in the problem (1.1), using just the weak equation
(6.2) and not the approximation result as in [P12a].

We spend the rest of this subsection to give some hints encouraging the idea
that the answer to the above question is positive.

The above problem can transformed into an abstract question involving
only the more handy current I , rather than the mysterious form F . We will
concentrate on the following property involving the boundary of a finite mass
integral 1-current I (the idea will be to use this property in relation to the
current I of Proposition 1.9).

Definition 6.11. Suppose that I is an integer multiplicity rectifiable 1-current
of finite mass on Ω, whose boundary is defined in the sense that the flux (or
average of the slice done via the distance function, in the terminology of [F69])

φ(Br(x)) := 〈I, dχBr(x)〉 = 〈I, dist(x, ·), r〉(1)
is well-defined and belongs to Z

for all x, a.e. r > 0 such that Br(x) ⊂ Ω.
(6.4)

We denote by (P) the property that for all x ∈ Ω there exist a strictly decreas-
ing sequence rxi → 0 such that for all i φ(B(rxi , x)) is well-defined and equal
to zero.

The result which connects this definition to the above program of solving
the regularity question in the harder way, can be formulated as follows:

Proposition 6.12. Let F ∈ Fp
Z
(Ω), Ω ⋑ B1(0), and let I be the integral

current as in the above Proposition 1.9. Suppose that F minimizes the Lp -
norm with constrained boundary trace, as in (1.1). There exists then a constant
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ǫ0 > 0 which is independent of F, I,Ω such that if
∫

B1(0)

|F |pdx3 ≤ ǫ0, (6.5)

then on the smaller ball B3/4(0) the current I has property (P).

Remark 6.13. Since the radius is 1 and since we do not impose constraints on
the size of Ω, the above energy (6.5) on B1(0) can be considered to correspond
to the correct scale-invariant version of energy, which in general has the form
r−α

∫

Br(x)
|F |pdx. In our case (see [P12a]) the correct choice is α = 3− 2p.

Proof of Proposition 6.12: We will use the following result:

• Monotonicity formula ([P12a], Proposition 5.2): if F ∈ Fp
Z
(Ω) is

stationary (i.e. it satisfies (6.3)) then for Br(x) ⊂ Ω we have

d

dr

(

r2p−3

∫

Br

|F |pdy

)

= 2p r2p−3

∫

∂Br

|F |p−2|∂ρyF |
2dσ (6.6)

where ∂ρ =
∂
∂ρ

is the radial derivative in Br(x).

By integrating the above formula (6.6) we obtain that the rescaled energy
Er(F,Br(x)) is increasing in r , where we use the notation Ea(F,B) = a2p−3

∫

B
|F |pdx.

We now use the small energy assumption on B1(0) in order to obtain a rescaled
energy bound on balls Br(x) ⊂ B1(0), with x ∈ B3/4(0):

ǫ0 ≥ E1(F,B1(0)) ≥ CEr̄(F,Br̄(x))

≥ CEr(F,Br(x)) ∀r s.t. Br(x) ⊂ B1(0),

where r̄ = dist(x,Ω \B1(0)). Now suppose that (P) were false; we then have
that for some x there exists r(x) > 0 such that for almost all r ∈]0, r(x)[

there holds
∣

∣

∣

∫

∂Br(x)
i∗F

∣

∣

∣
≥ 1, which implies

Er(F,Br(x)) ≥ r2p−3

∫ r

0

∫

x+rω∈∂Br(x)

|i∗F (x+ rω)|pr2dωdr

≥ Cr2p−3

∫ r

0

r2−2pdr = C.

We have used just the inequality |F | ≥ |i∗F | and the Jensen inequality on
each ∂Br(x). The constants so far depend just on p and on the dimension, so
we can find ǫ0 > 0 independent of F, I,Ω such that the two above inequalities
are incompatible. Thus the proof is finished. �

We now describe a positive result suggesting that from Proposition 6.12
it could be possible to obtain a positive answer to the Question 6.10 above.
More precisely, we show that a stronger version of property (P) of Definition
6.11 is enough to obtain regularity. This result was suggested to us by Bernd
Kirchheim, but it will be evident that the proof does not extend to include
assumptions that are as weak as in property (P).

Lemma 6.14. Let I be an integral flat 1-current of finite mass such that
property (P) holds, and the function r(x) of Definition 6.11 satisfies a uniform
lower bound r(x) > c. Then ∂I = 0.
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Proof. The fact that 〈I, dφ〉 = 0 for all test functions φ supported on some
ball of radius c, follows easily for φ of the form φ(x) = f(|x − p|), because
their superlevelsets are small enough balls.

We want now to prove that when φ ∈ C1
c is a general test function, 〈∂I, φ〉 =

0. To this end we start with a function φN =
∑N

i=1 aiχBi
where the radii of the

Bi are at most c/2, and take a family of radial mollifiers ρǫ, ǫ > 0, supported
in balls of radius c/2 (this can be achieved for ǫ > 0 small enough). Then
since ηǫ,i := χBi

∗ ρǫ is radial and compactly supported in a ball of radius at
most c, we obtain

0 =
N
∑

i=1

ai〈∂I, ηǫ,i〉 = 〈∂I, φN ∗ ρǫ〉.

Now we claim that φN → φ in L1 implies φN ∗ ρǫ → φ ∗ ρǫ in C1 -norm.
Indeed,

∂i

∫

ψ(x− y)ρǫ(y)dy = ±

∫

ψ(z)∂iρǫ(x− z)dz,

and for ψ = φN − φ we can estimate the absolute value of the above integral
by

||∂iρǫ||L∞||φN − φ||L1,

which converges to zero as N → ∞ .

Similarly we can prove d(φ ∗ ρǫ)
C0

→ dφ : we can estimate
∣

∣

∣

∣

∫

∂i [φ(x− y)− φ(x)] ρǫ(y)dy

∣

∣

∣

∣

≤ ω(ǫ)||ρǫ||L1 → 0,

where ω(t) is the modulus of continuity of dφ . Now testing all the above
convergences with I , we obtain the wanted

〈I, dφ〉 = 0.

�

Observe that for a doubling locally finite measure, to be zero on a fine
covering (as are the balls in the definition of property (P)) is equivalent to
being zero, by the Vitali covering theorem (see Chapter 2 of [F69]). Thus if we
knew for example that ∂I were a measure, we would easily conclude. On the
other hand, in our case ∂I being a locally finite measure is equivalent to F
having just a locally finite number of singular points, which is the statement
of the partial regularity [P12a]; we thus prefer not to use it as an assumption.
We formulate instead the following intriguing abstract question:

Open Problem 6.15. Suppose I is an integer rectifiable current of finite
mass. Does property (P) imply the fact that ∂I = 0?

In order not to mislead the reader, we observe that currents I as in Proposi-
tion 1.9 are more than just integer rectifiable of finite mass in (our) case p > 1,
since they automatically conserve also some of the information on the higher



NOTES ON A SLICE DISTANCE FOR SINGULAR L
p
-BUNDLES 25

integrability of F . This is the spirit of the following easy counterexample (the
idea is the same as for Example 7.1 of [P10]).

Lemma 6.16. It is possible to find a rectifiable integer 1-current J of finite
mass satisfying the following properties:

• The slice 〈J, d(·, x), r〉 exists and gives an integer when tested with the
constant 1 for all x and all but at most countably many r .

• For no F ∈ Fp
Z
(Ω) with p > 1 is the current I given by Proposition

1.9 equal to J .

Proof. We may suppose up to rescaling that Ω ⋐ Q where Q is a square of
sidelenght 2 (this is more than needed for the rest of the proof, but makes
the notations easier). Consider a sequence of positive numbers ai such that
∑

i ai = 1,
∑

i a
3−2p
i = ∞ , then align a sequence of disjoint balls Bi such

that diamBi = 2ai , along one of the axes of Q. Inside each Bi two disjoint
spheres S±

i of diameter ai can be packed; then identify the oriented segment
joining their centers with an integer 1-current, and define I as the sum of all
these currents. The I has mass 1, but (by applying Jensen’s inequality on
smaller spheres concentric to the S±

i ) it is evident that F as in the statement
of the Lemma must have

∫

Q
|F |pdx ≥ C

∑

i a
3−2p
i = ∞ . This concludes the

proof. �

References

[AK00] Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta Math. 185
(2000), no. 1, 1–80.

[AG11] Luigi Ambrosio and Francesco Ghiraldin, Flat chains with finite size in metric

spaces, Preprint (see http://cvgmt.sns.it/paper/1723/), (2011).
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[HR01] Robert Hardt and Tristan Rivière,Ensembles singuliers topologiques dans les espaces
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