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1. Introduction

Let u be a convolution product on Rd of the form

u := K ∗ µ (1.1)

where µ is a bounded measure 1 and K is a kernel of class C2 away from 0 and
homogeneous of degree 1 − d. The main result of this paper (Theorem 3.4)
states that u is differentiable in the Lp sense2 at almost every point for every
p with 1 ≤ p < γ(1), where γ(q) := qd/(d − q) is the exponent of the Sobolev
embedding for W 1,q in dimension d.

Using this result, we show that a vector field v on Rd is Lp-differentiable
almost everywhere for the same range of p if either of the following conditions
holds (see Propositions 4.2 and 4.3):

(a) the (distributional) curl and divergence of v are measures;

(b) v belongs to the class BD of maps with bounded deformation, that is,
the (distributional) symmetric derivative 1

2(∇v +∇tv) is a measure.

Relation with Sobolev and BV functions. If the measures in the statements
above are replaced by functions in Lq for some q > 1, then u and v would be
(locally) in the Sobolev class W 1,q (see Lemma 3.9), and it is well-known that

a function in this class is Lγ(q)-differentiable almost everywhere when q < d,

1 That is, a measure with finite total mass.
2 The definition of Lp-differentiability is recalled in §2.2.
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and differentiable almost everywhere in the classical sense when q > d, see for
instance [6, Sections 6.1.2 and 6.2].3

Functions in the BV class—namely those functions whose distributional de-
rivative is a measure—share the same differentiability property of functions in
the class W 1,1 (see [6, Section 6.1.1]). Note, however, that the functions u and
v that we considered above in general fail to be of class BV , even locally.4

A Lusin-type theorem. Consider a Lipschitz function w on Rd whose (distri-
butional) Laplacian is a measure. Thus ∇w satisfies assumption (a) above, and
therefore is L1-differentiable almost everywhere. Using this fact we can show
that w admits an L1-Taylor expansion of order two at almost every point and
consequently has the Lusin property with functions of class C2 (see §2.4 and
Proposition 4.4). This Lusin property is used in [1] to prove that w has the
so-called weak Sard property, and was the original motivation for this paper.

Comparison with existing results. The proof of Theorem 3.4 is based on
classical arguments from the theory of singular integrals, but, somewhat sur-
prisingly, we could not find this statement in the literature.

There are, however, a few results which are closely related: the approximate
differentiability 5 at almost every point of the convolution product in (1.1) was
already proved in [9, Theorem 6].6 It should be noted that the notion of ap-
proximate differentiability is substantially weaker than L1-differentiability; in
particular, in Remark 4.7 we show that the result in [9] cannot be used to prove
the Lusin property mentioned in the previous paragraph.

The L1-differentiability of BD functions was first proved in [2, Theorem 7.4].
This proof is quite different from ours and, as far as we can see, cannot be
adapted to the more general setting considered in Theorem 3.4.

Optimality of the exponent p. The range of p for which we can prove Lp-
differentiability is optimal in all cases considered above, with the exception of
BD functions (see Remarks 3.5 and 4.5).

The rest of this paper is organized as follows: in Section 2 we introduce
the notation and recall a few basic facts on differentiability in the Lp sense, in
Section 3 we state and prove the main result (Theorem 3.4), and in Section 4
we derive a few applications.

3 For q > d the result refers to the continuous representative of the function.
4 An example of u := K ∗µ which is not (locally) BV is obtained by taking K(x) := |x|1−d

and µ equal to the Dirac mass at 0. An example of vector field with vanishing curl and
measure divergence which is not (locally) BV is the derivative of the fundamental solutions
of the Laplacian, see §4.1. The existence of vector fields which are in BD but not in BV is
less immediate, and is derived by the failure of Korn inequality for the exponent p = 1 proved
in [10] (see also [5, Section 2]).

5 The definition of approximate differentiability is recalled in Remark 2.3(v).
6 For the special case K(x) := |x|1−d and µ replaced by a function in L1 a sketch of proof

was already given in [3, remark at page 129].
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2. Notation and preliminary result

2.1. Notation. For the rest of this paper d ≥ 2 is a fixed integer. Sets and
functions are tacitly assumed to be Borel measurable, and measures are always
defined on the Borel σ-algebra.

We use the following notation:

diam(E) diameter of the set E;

conv(E) convex hull of the set E;

dist(E1, E2) distance between the sets E1 and E2, that is, the infimum of
|x1 − x2| among all x1 ∈ E1, x2 ∈ E2;

1E characteristic function of the set E (valued in {0, 1});
B(x, ρ) open ball in Rd with radius ρ and center x ∈ Rd;
B(ρ) open ball in Rd with radius ρ and center 0;

Sd−1 := {x ∈ Rd : |x| = 1}, unit sphere in Rd;∫
E f dµ := 1

µ(E)

∫
E f dµ, average of the function f over the set E with

respect to the positive measure µ;

ρ · µ measure associated to the measure µ and the density function
ρ, that is, [ρ · µ](E) :=

∫
E ρ dµ for every Borel set E;

1E · µ restriction of the measure µ to the set E;

|µ| positive measure associated to a real- or vector-valued mea-
sure µ (total variation);

‖µ‖ := |µ|(Rd), total mass of the measure µ;

L d Lebesgue measure on Rd;
H k k-dimensional Hausdorff measure (on any metric space);

ωd := L d(B(1)), Lebesgue measure of the unit ball in Rd;
γ(q) := qd/(d − q) for 1 ≤ q < d and γ(q) := +∞ for q ≥ d;

exponent of the Sobolev embedding for W 1,q in dimension d.

When the measure is not specified, it is assumed to be the Lebesgue measure,
and in particular we often write

∫
f(x) dx for the integral of f with respect to

L d.
As usual, we denote by o(ρk) any real- or vector-valued function g on (0,+∞)

such that ρ−kg(ρ) tends to 0 as ρ → 0, while O(ρk) denotes any g such that
ρ−kg(ρ) is bounded in a neighbourhood of 0.
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2.2. Taylor expansions in the Lp sense. Let be u a real function on Rd.
Given a point x ∈ Rd, a real number p ∈ [1,∞), and an integer k ≥ 0, we say
that u has a Taylor expansion of order k in the Lp sense at x, and we write
u ∈ tk,p(x), if it can be decomposed as

u(x+ h) = P kx (h) +Rkx(h) for every h ∈ Rd, (2.1)

where P kx is a polynomial on Rd with degree at most k and the remainder Rkx
satisfies [∫

B(ρ)
|Rkx(h)|p dh

]1/p

= o(ρk) . (2.2)

As usual, the polynomial P kx is uniquely determined by (2.1) and the decay
estimate (2.2).

When u belongs to t0,p(x) we say that it has Lp-limit at x equal to P 0
x (0).

When u belongs to t1,p(x) we say that u is Lp-differentiable at x with derivative
equal to the derivative of the polynomial P 1

x at 0.
We write u ∈ T k+1,p(x) if the term o(ρk) in (2.2) can be replaced by O(ρk+1).

Accordingly, we write u ∈ T 0,p(x) if[∫
B(ρ)
|u(x+ h)|p dh

]1/p

= O(1) .

The definitions above are given for real-valued functions defined on Rd, but
are extended with the necessary modifications to vector-valued functions defined
on some open neighbourhood of the point x.

Finally, it is convenient to define tk,∞(x) and T k,∞(x) by replacing the left-
hand side of (2.2) with the L∞ norm of Rkx(h) on B(ρ). Note that u belongs to
tk,∞(x) if and only if it agrees almost everywhere with a function which admits
a Taylor expansion of order k at x in the classical sense.

2.3. Remark. (i) The space tk,p(x) and T k,p(x) were introduced in a slightly
different form in [4] (see also [13, Section 3.5]). The original definition differs
from ours in that it also requires that the left-hand side of (2.2) is smaller that
cρk for some finite constant c and for every ρ > 0 (and not just for small ρ).7

(ii) The function spaces tk,p(x) and T k,p(x) satisfy the obvious inclusions
T k,p(x) ⊂ T k,q(x) and tk,p(x) ⊂ tk,q(x) whenever p ≥ q, and T k+1,p(x) ⊂
tk,p(x) ⊂ T k,p(x).

(iii) Concerning the last inclusion (tk,p(x) ⊂ T k,p(x)), the following non-
trivial converse holds: if u belongs to T k,p(x) for every x in a set E, then u
belongs to tk,p(x) for almost every x ∈ E [13, Theorem 3.8.1].8

7 This additional requirement is met if (and only if) the function u satisfies the growth
condition

∫
B(ρ)
|u|p ≤ cρd+kp for some finite c and for sufficiently large ρ.

8 For k = 1 this statement can be viewed as an Lp version of the classical Rademacher
theorem on the differentiability of Lipschitz functions. The fact that our definition of tk,p(x)
and T k,p(x) differs from that considered in [13] has no consequences for the validity of this
statement, which is purely local.
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(iv) We recall that function u on Rd has approximate limit a ∈ R at x if the
set {h : |u(x + h) − a| ≤ ε} has density 1 at the point 0 for every ε > 0. It is
immediate to check that if u has Lp-limit equal to a at x for some p ≥ 1, then
it has also approximate limit a at x.

(v) A function u on Rd has approximate derivative b ∈ Rd at x (and approx-
imate limit a ∈ R) if the ratio (u(x+h)− a− b ·h)/|h| has approximate limit 0
as h→ 0. It is easy to check that if u has Lp-derivative b at x then it also has
approximate derivative b at x.

2.4. Lusin property. Let E be a set in Rd and u a function defined at every
point of E. We say that u has the Lusin property with functions of class Ck (on
E) if for every ε > 0 there exists a function v of class Ck on Rd which agrees
with u in every point of E except a subset with measure at most ε.

Note that u has the Lusin property with functions of class Ck provided that
u ∈ tk,1(x) for a.e. x ∈ E, or, equivalently, u ∈ T k,1(x) for a.e. x ∈ E (recall
Remark 2.3(iii)). Assume indeed that E has finite measure: then for every ε > 0
we can find a compact subset D such that L d(E\D) ≤ ε, u is continuous on D,
and estimate (2.2) holds uniformly for all x ∈ D,9 and therefore the Lp-version
of the Whitney extension theorem [13, Theorem 3.6.3] yields that u agrees on
D with a function class Ck on Rd.

3. Differentiability of convolution products

3.1. Assumptions on the kernel K. Through the rest of this paper K is
a real function of class C2 on Rd \ {0}, homogeneous of degree 1 − d, that is,
K(λx) = λ1−dK(x) for every x 6= 0 and λ > 0.

It follows immediately that the derivative ∇K : Rd \ {0} → Rd is of class C1

and homogeneous of degree −d. Moreover it satisfies the cancellation property∫
Sd−1

∇K dH d−1 = 0 . (3.1)

Indeed, let a be the integral of ∇K over Sd−1, Ω the set of all x ∈ Rd such that
1 < |x| < 2, ν the outer normal of ∂Ω, and e an arbitrary vector in Rd. By
applying the divergence theorem to the vector field Ke and the domain Ω, we
obtain ∫

∂Ω
K e · ν dH d−1 =

∫
Ω

∂K

∂e
dL d .

Now, using the fact that K is homogeneous of degree 1− d we obtain that the
integral at the left-hand side is 0, while a simple computation shows that the
integral at the right-hand side is equal to a · e times log 2. Hence a · e = 0, and
since e is arbitrary, a = 0.

9 That is, the functions gρ(x) := ρ−k
∫
B(ρ)
|Rkx(h)| dh converge uniformly to 0 as ρ → 0.

The existence of such D is an easy consequence of Lusin theorem (for the continuity of u on
D) and Egorov theorem (for the uniform convergence of gρ on D).
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3.2. A first convolution operator. Take K as in the previous paragraph,
and let µ be a bounded real-valued measure on Rd. We define the convolution
product K ∗ µ by the usual formula

K ∗ µ(x) :=

∫
Rd
K(x− y) dµ(y) . (3.2)

Since |K(x)| ≤ c|x|1−d for some finite c (because of the homogeneity of K), a
simple computation shows that this definition is well-posed for a.e. x and K ∗µ
belongs to Lploc(R

d) for every p with 1 ≤ p < γ(1).

3.3. A second convolution operator. Since ∇K is not summable on any
neighbourhood of 0 (because it is homogeneous of degree −d), we cannot define
∇K ∗µ by the usual formula as in the previous paragraph. However, a classical
result by A.P. Calderón and A. Zygmund shows that the convolution ∇K ∗µ is
well-defined at almost every point as a singular integral. More precisely, given
the truncated kernels

(∇K)ε(x) :=

{
∇K(x) if |x| ≥ ε
0 if |x| < ε,

(3.3)

then the functions (∇K)ε ∗ µ converge almost everywhere as ε → 0 to a limit
function which we denote by ∇K ∗µ. Moreover the following weak L1-estimate
holds:

L d
(
{x : |∇K ∗ µ(x)| ≥ t}

)
≤ c‖µ‖

t
for every t > 0, (3.4)

where c is a finite constant that depends only on d and K.
If µ is replaced by a function in L1, this statement follows, for instance, from

Theorem 4 in [11, Chapter II];10 extending that theorem to bounded measures
requires only minor modifications in the proof.

We can now state the main result of this section.

3.4. Theorem. Take u := K ∗ µ as in §3.2. Then

(i) u is Lp-differentiable for every p with 1 ≤ p < γ(1) and almost every
x ∈ Rd;

(ii) the derivative of u is given by

∇u = ∇K ∗ µ+ βKf a.e., (3.5)

where ∇K ∗ µ is given in §3.3, f is the Radon-Nikodym density of µ
with respect to the Lebesgue measure,11 and βK is the vector defined by

βK :=

∫
Sd−1

xK(x) dH d−1(x) . (3.6)

10 In order to apply such theorem, the key point is that ∇K is of class C1, homogeneous
of degree −d, and satisfies the cancellation property (3.1).

11 That is, the function f such that the absolutely continuous part of µ with respect to L d

can be written as f ·L d.
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3.5. Remark. The range of p for which Lp-differentiability holds is optimal.
Take indeed K(x) := |x|1−d and

µ :=
∑
i

2−iδi ,

where δi is the Dirac mass at xi, and the set {xi} is dense in Rd.
Since K(x) does not belong to Lγ(1)(U) for any neighbourhood U of 0, the

function u := K ∗ µ does not belong to Lγ(1)(U) for any open set U in Rd.
Hence u does not belong to T 0,γ(1)(x) and consequently not even to t1,γ(1)(x)
for every x ∈ Rd.

Note that the previous construction works as is for any nontrivial positive
kernel K; a suitable refinement allows to remove the positivity constraint.

The rest of this section is devoted to the proof of Theorem 3.4.
The key point is to show that u is in T 1,p(x) for all x in some “large” set

(Lemma 3.11). To achieve this, the basic strategy is quite standard, and consists
in writing u as sum of two functions ug and ub given by a suitable Calderón-
Zygmund decomposition of the measure µ. Then we use Lemma 3.9 to show that
ug is a function of class W 1,q for every q ≥ 1, and therefore its differentiability
is a well-established fact, and use Lemma 3.10 to estimate the derivative of ub
on a large set. The latter lemma is the heart of the proof.

In the next three paragraphs we recall some classical tools of the theory of
singular integrals.

3.6. Singular integrals: the Lq case. We have seen in §3.3 that the con-
volution product ∇K ∗ µ is well-defined at almost every point as a singular
integral.

When µ is replaced by a function f in Lq(Rd) with 1 < q < ∞ there holds
more: taking (∇K)ε as in (3.3), then ‖(∇K)ε ∗f‖q ≤ c‖f‖q for every ε > 0 and

every f ∈ Lq(Rd), where c is a finite constant that depends only on K and q.
Moreover, as ε tends to 0, the functions (∇K)ε ∗ f converges in the Lq-norm to
some limit that we denote by ∇K ∗ f ; in particular f 7→ ∇K ∗ f is a bounded
linear operator from Lq(Rd) into Lq(Rd).

These statements follow from [11, Chapter II, Theorem 3].

3.7. Marcinkiewicz integral. Let µ be a bounded (possibly vector-valued)
measure on Rd, and F a closed set in Rd. Then the Marcinkiewicz integral

I(µ, F, x) :=

∫
Rd\F

dist(y, F )

|x− y|d+1
d|µ|(y) (3.7)

is finite for almost every x ∈ F , and more precisely∫
F
I(µ, F, x) dx ≤ c‖µ‖ , (3.8)

where c is a finite constant that depends only on d. This is a standard estimate,
see [11, Chapter I, §2.3].
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3.8. Maximal function. Let µ be a bounded (possibly vector-valued) measure
on Rd. The maximal function associated to µ is

M(µ, x) := sup
ρ>0

|µ|(B(x, ρ))

ωdρd
. (3.9)

Then M(µ, x) is finite for almost every x, and more precisely the following weak
L1-estimate holds:

L d({x : M(µ, x) ≥ t}) ≤ c‖µ‖
t

for every t > 0, (3.10)

where c is a finite constant that depends only on d.
In case µ is absolutely continuous with respect to the Lebesgue measure this

statement can be found in [11, Chapter I, §1.3]; the proof for a general measure
is essentially the same, cf. [11, Chapter III, §4.1].

3.9. Lemma. Let f be a function in L1∩Lq(Rd) for some q with 1 < q < +∞,
and let u := K ∗ f .

Then u belongs to L1
loc(Rd) and the distributional derivative of u is given by

∇u = ∇K ∗ f + βKf (3.11)

where ∇K ∗ f is defined in §3.6, and βK is given in (3.6).
Since ∇K ∗ f belongs to Lq(Rd), then ∇u belongs to Lq(Rd), and therefore

u is Lγ(q)-differentiable almost everywhere when q < d, and is continuous and
differentiable almost everywhere in the classical sense when q > d (in both cases
the pointwise derivative agrees with the distributional one almost everywhere).

Proof. Note that the second part of the statement is easily derived from §3.6
and formula (3.11) using the standard differentiability result for Sobolev func-
tions (see for instance [6, Sections 6.1.2 and 6.2]) and the fact that K ∗ f is
continuous when q > d (a matter of elementary estimates).

It remains to prove formula (3.11). For every ε > 0 consider the truncated
kernel Kε defined as in (3.3), that is, Kε := 1Rd\B(ε)K. Then the distributional
derivative of Kε is given by

∇Kε = (∇K)ε + σε

where σε is the (vector-valued) measure given by the restriction of the Hausdorff
measure H d−1 to the sphere ∂B(ε) multiplied by the vector field K(x)x/|x|.
Hence

∇(Kε ∗ f) = (∇K)ε ∗ f + σε ∗ f ,
and we obtain (3.11) by passing to the limit as ε→ 0 in this equation.

In doing so we use the following facts:

(i) Kε → K in the L1-norm, and therefore ∇(Kε ∗ f)→ ∇(K ∗ f) = ∇u in
the sense of distributions;

(ii) (∇K)ε ∗ f → ∇K ∗ f in the Lq-norm (see §3.6);

(iii) the measures σε converge in the sense of measures to βK times the Dirac
mass at 0, and then σε ∗ f → βKf in the Lq-norm. �
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3.10. Lemma. Let F be a closed set in Rd, {Ei} a countable family of pair-
wise disjoint sets in Rd which do not intersect F , and µ a bounded real-valued
measure on Rd such that

(i) |µ|(Rd \ ∪iEi) = 0, and in particular |µ|(F ) = 0;

(ii) µ(Ei) = 0 for every i;

(iii) there exist finite and strictly positive constants c1 and c2 such that
c1 dist(F, conv(Ei)) ≤ diam(Ei) ≤ c2 dist(F, conv(Ei)) for every i.

Then for every x ∈ F and every p with 1 ≤ p < γ(1) the function u = K ∗ µ
satisfies[∫

B(ρ)
|u(x+ h)− u(x)|p dh

]1/p

≤
[
M(µ, x) + I(µ, F, x)

]
cρ , (3.12)

where I(µ, F, x) and M(µ, x) are given in (3.7) and (3.9), respectively, and c
is a finite constant that depends only on c1, c2, p, d and K.12

Thus u belongs to T 1,p(x) for every x ∈ F such that M(µ, x) and I(µ, F, x)
are finite, that is, for almost every x ∈ F .

Proof. We fix a point x ∈ F and ρ > 0, and denote by J the set of all indexes
i such that dist(x, conv(Ei)) < 2ρ.

Using assumption (i) we decompose u as

u =
∑
i

ui , (3.13)

where ui := K ∗ µi and µi is the restriction of the measure µ to the set Ei.

Step 1: estimate of |ui(x)| for i ∈ J . Choose an arbitrary point yi ∈ Ei, and
for every s ∈ [0, 1] set

g(s) :=

∫
Ei

K(x− (sy + (1− s)yi)) dµ(y) .

Then 13

ui(x) =

∫
Ei

K(x− y) dµ(y)

=

∫
Ei

K(x− y)−K(x− yi) dµ(y) = g(1)− g(0) ,

and by applying the mean-value theorem to the function g we obtain that there
exists s ∈ [0, 1] such that ui(x) = g(1)− g(0) = ġ(s), that is,

ui(x) =

∫
Ei

∇K
(
x− (sy + (1− s)yi)︸ ︷︷ ︸

z

)
(yi − y) dµ(y) . (3.14)

12 When we apply this lemma later on, the constants c1 and c2 will depend only on d, and
therefore the constant c in (3.12) will depend only on p, d and K.

13 The second identity follows from the fact that µ(Ei) = 0 by assumption (ii), and the
third one follows from the definition of g.
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Since ∇K is homogeneous of degree −d, there holds |∇K(z)| ≤ c|z|−d,14 and
taking into account that |z| ≥ dist(x, conv(Ei)) and dist(x, conv(Ei)) < 2ρ we
get

|∇K(z) · (yi − y)| ≤ |∇K(z)| |yi − y|

≤ c diam(Ei)

dist(x, conv(Ei))d
≤ cρ diam(Ei)

dist(x, conv(Ei))d+1
.

Moreover, for every y ∈ Ei assumption (iii) implies diam(Ei) ≤ cdist(y, F ) and
|x− y| ≤ cdist(x, conv(Ei)), and therefore

|∇K(z) · (yi − y)| ≤ cρdist(y, F )

|x− y|d+1
.

Plugging the last estimate in (3.14) we obtain

|ui(x)| ≤ cρ
∫
Ei

dist(y, F )

|x− y|d+1
d|µ|(y) . (3.15)

Step 2: estimate of |ui(x + h)| for i ∈ J . We take p with 1 ≤ p < γ(1) and
denote by p′ the conjugate exponent of p, that is, 1/p′ + 1/p = 1. We also

choose a positive test function ϕ on B(ρ), and denote by ‖ϕ‖p′ the Lp
′
-norm

of ϕ with respect to the Lebesgue measure on B(ρ) normalized to a probability
measure. Then 15∫

B(ρ)
|ui(x+ h)|ϕ(h) dh

≤
∫
Ei

[∫
B(ρ)
|K(x+ h− y)|ϕ(h) dh

]
d|µ|(y)

≤
∫
Ei

[∫
B(ρ)
|ϕ(h)|p′ dh

]1/p′[∫
B(ρ)
|K(x+ h− y)|pdh

]1/p

d|µ|(y)

≤
∫
Ei

‖ϕ‖p′
[
c

ρd

∫
B(ρ)

dh

|x+ h− y|p(d−1)

]1/p

d|µ|(y)

≤ c

ρd/p
‖ϕ‖p′

[ ∫
B(cρ)

dz

|z|p(d−1)

]1/p

|µ|(Ei) ≤
c

ρd−1
‖ϕ‖p′ |µ|(Ei) ,

14 Here and in the rest of this proof we use the letter c to denote any finite and strictly
positive constant that depends only on c1, c2, p, d, and K. Accordingly, the value of c may
change at every occurrence.

15 For the first inequality we use the definition of ui and Fubini’s theorem; for the second
one we use Hölder inequality, for the third one we use that K is homogeneous of degree 1− d
and therefore |K(x)| ≤ c|x|1−d; for the fourth one we use the change of variable z = x+h− y
and the fact that for every y ∈ Ei assumption (iii) yields

|x+ h− y| ≤ |x− y|+ |h| ≤ dist(x, conv(Ei)) + diam(conv(Ei)) + ρ ≤ cρ .

Note that the integral in the last line is finite if and only if p < γ(1). Here is the only place
in the entire proof where this upper bound on p is needed.
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and taking the supremum over all test function ϕ with ‖ϕ‖p′ ≤ 1 we finally get[∫
B(ρ)
|ui(x+ h)|p dh

]1/p

≤ c

ρd−1
|µ|(Ei) . (3.16)

Step 3. Using the estimates (3.15) and (3.16), and taking into account that Ei
is contained in B(x, cρ) for every i ∈ J (use assumption (iii) as in Footnote 15)
and that |µ|(F ) = 0 (recall assumption (i)), we get∑

i∈J

[∫
B(ρ)
|ui(x+ h)− ui(x)|p dh

]1/p

≤
∑
i∈J

[∫
B(ρ)
|ui(x+ h)|p dh

]1/p

+
∑
i∈J
|ui(x)|

≤ c |µ|(B(x, cρ))

ρd−1
+ cρ

∫
B(x,cρ)

dist(y, F )

|x− y|d+1
d|µ|(y)

≤
[
M(µ, x) + I(µ, F, x)

]
cρ . (3.17)

Step 4: estimate of |ui(x + h) − ui(x)| for i /∈ J . Let yi be a point in Ei.
Then for every h ∈ B(ρ) there exist t, s ∈ [0, 1] such that 16

ui(x+ h)− ui(x)

=

∫
Ei

K(x+ h− y)−K(x− y) dµ(y)

=

∫
Ei

∇K(x+ th− y) · h dµ(y)

=

∫
Ei

[
∇K(x+ th− y)−∇K(x+ th− yi)

]
· h dµ(y)

=

∫
Ei

[
∇2K

(
x+ th− (sy + (1− s)yi)︸ ︷︷ ︸

z

)
(yi − y)

]
· h dµ(y) . (3.18)

Now, the fact that dist(x, conv(Ei)) ≥ 2ρ yield

|z| ≥ |x− (sy + (1− s)yi)| − t|h|

≥ dist(x, conv(Ei))− ρ ≥
1

2
dist(x, conv(Ei)) ,

and then, taking into account that ∇2K is homogeneous of degree −d− 1,∣∣[∇2K(z)(yi − y)] · h
∣∣ ≤ |∇2K(z)| |yi − y| |h| ≤

cdiam(Ei) ρ

dist(x, conv(Ei))d+1
.

16 The second and fourth identities are obtained by applying the mean-value theorem as
in Step 1, the third one follows from assumption (ii).
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Moreover assumption (iii) implies that diam(Ei) ≤ cdist(y, F ) and |x − y| ≤
cdist(x, conv(Ei)) for every y ∈ Ei, and then∣∣[∇2K(z)(yi − y)] · h

∣∣ ≤ c dist(y, F ) ρ

|x− y|d+1
.

Hence (3.18) yields

|ui(x+ h)− ui(x)| ≤ cρ
∫
Ei

dist(y, F )

|x− y|d+1
d|µ|(y) . (3.19)

Step 5. Inequality (3.19) yields∑
i/∈J

[∫
B(ρ)
|ui(x+ h)− ui(x)|p dh

]1/p

≤ I(µ, F, x) cρ ,

and recalling estimate (3.17) and formula (3.13) we finally obtain (3.12). �

3.11. Lemma. Take u as in Theorem 3.4. Take t > 0 and let

Ft := {x ∈ Rd : M(µ, x) ≤ t
}
,

where M(µ, x) is the maximal function defined in (3.9).
Then u belongs to T 1,p(x) for every p with 1 ≤ p < γ(1) and almost every

x ∈ Ft.

Proof. Step 1: Calderón-Zygmund decomposition of µ and u. Since M(µ, x)
is lower semicontinuous in x (being the supremum of a family of lower semicon-
tinuous functions), the set Ft is closed.

We take a Whitney decomposition of the open set Rd \Ft, that is, a sequence
of closed cubes Qi with pairwise disjoint interiors such that the union of all
Qi is Rd \ Ft, and the distance between Ft and each Qi is comparable to the
diameter of Qi, namely

c1 dist(Ft, Qi) ≤ diam(Qi) ≤ c2 dist(Ft, Qi) , (3.20)

where c1 and c2 depend only on d (see [11, Chapter I, §3.1]).
We consider now the sets Ei obtained by removing from each Qi part of its

boundary so that the sets Ei are pairwise disjoint and still cover Rd \ Ft.
The Calderón-Zygmund decomposition of µ is µ = µg+µb, where the “good”

part µg is defined by

µg := 1Ft · µ+
∑
i

ai1Ei ·L d with ai :=
µ(Ei)

L d(Ei)
, (3.21)

and the “bad” part µb is

µb :=
∑
i

1Ei · µ− ai1Ei ·L d . (3.22)

From this definition and that of ai we obtain

‖µb‖ ≤
∑
i

2|µ|(Ei) = 2|µ|(Rd \ Ft) . (3.23)
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Next we decompose u as

u = ug + ub ,

where ug := K ∗ µg and ub := K ∗ µb. To conclude the proof we need to show
that ug and ub belong to T 1,p(x) for every 1 ≤ p < γ(1) and almost every
x ∈ Ft. This will be done in the next steps.

Step 2: the measure µg can be written as g ·L d with g ∈ L∞(Rd). It suffices
to show that

(i) the measure 1Ft · µ can be written as g̃ ·L d with g̃ ∈ L∞(Rd);
(ii) the number ai in (3.21) satisfy |ai| ≤ ct for some finite constant c

depending only on d.

Claim (i) follows by the fact that the Radon-Nikodym density of |µ| with
respect to L d is bounded by t at every point x of Ft, because M(µ, x) ≤ t.

To prove claim (ii), note that each Ei is contained in Qi, which in turn is
contained in a ball B(xi, ri) for a suitable xi ∈ Ft and ri comparable to the
diameter of Qi (use (3.20)). Hence, taking into account that M(µ, xi) ≤ t,

|µ|(Ei) ≤ |µ|(B(xi, ri)) ≤ tL d(B(xi, ri)) ≤ ctL d(Qi) = ctL d(Ei) ,

and this implies |ai| ≤ ct.

Step 3: ug is differentiable at x (and in particular belongs to T 1,p(x) for

every 1 ≤ p < +∞) for almost every x ∈ Rd. Since the measure µg is bounded,

the function g in Step 2 belongs to L1 ∩ L∞(Rd). Then, by interpolation, g
belongs to L1 ∩ Lq(Rd) for any q > d, and Lemma 3.9 implies that ug = K ∗ g
is differentiable almost everywhere.

Step 4: ub belongs to T 1,p(x) for almost every x ∈ Ft and every 1 ≤ p < γ(1).
It suffices to apply Lemma 3.10 to the set Ft, the measure µb, and the sets Ei
(use equations (3.20), (3.21) and (3.22) to check that the assumptions of that
lemma are verified). �

Proof of Theorem 3.4, statement (i). It suffices to apply Lemma 3.11
and Remark 2.3(iii), and take into account that the sets Ft form an increas-
ing family whose union cover almost all of Rd (because the maximal function
M(µ, x) is finite almost everywhere). �

Proof of Theorem 3.4, statement (ii). Since we already know that u is
Lp-differentiable almost everywhere, we have only to prove identity (3.5).

Moreover, by the argument used in the proof of statement (i) above, it suffices
to show that (3.5) holds almost everywhere in the set Ft defined in Lemma 3.11
for every given t > 0.

Step 1: decomposition of µ and u. We fix for the time being ε > 0, and
choose a closed set C contained in Rd \ Ft such that |µ|(Rd \ (Ft ∪ C)) ≤ ε.

We decompose µ as µ′ + µ′′ where µ′ and µ′′ are the restrictions of µ to the
sets Rd \ C and C, respectively, and then we further decompose µ′ as µ′g + µ′b
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as in the proof of Lemma 3.11. Thus µ = µ′g + µ′b + µ′′, and accordingly we
decompose u as

u = u′g + u′b + u′′

where u′g := K ∗ µ′g, u′b := K ∗ µ′b, and u′′ := K ∗ µ′′.
Using estimate (3.23) and taking into account the definition of µ′ and the

choice of C we get

‖µ′b‖ ≤ 2|µ′|(Rd \ Ft) = 2|µ|(Rd \ (Ft ∪ C)) ≤ 2ε . (3.24)

Step 2: derivative of u′g. Going back to the proof of Lemma 3.11, we see that

µ′g can be written as g ·L d with g ∈ L1 ∩ L∞(Rd), and therefore u′g := K ∗ g
is differentiable almost everywhere. Moreover formula (3.11) yields

∇u′g = ∇K ∗ g + βKg = ∇K ∗ µ′g + βKg a.e.

Next we note that the restrictions of the measures µ′g, µ
′ and µ to the set

Ft agree, and therefore g = f almost everywhere on Ft, where f is the Radon-
Nikodym density of µ with respect to L d. Thus the previous identity becomes

∇u′g = ∇K ∗ µ′g + βKf a.e. in Ft. (3.25)

Step 3: derivative of u′b. Going back to the proof of Lemma 3.11 we see
that we can use Lemma 3.10 to show that u′b belongs to T 1,1(x) for almost
every x ∈ Ft. By Remark 2.3(iii) we have that u′b is L1-differentiable almost
everywhere in Ft, and therefore estimate (3.12) in Lemma 3.10 yields

|∇u′b(x)| ≤ cM(µ′b, x) + c I(µ′b, Ft, x) for a.e. x ∈ Ft.17 (3.26)

Step 4: derivative of u′′. By construction, the support of the measure µ′′ is
contained in the closed set C and therefore the convolution u′′ := K ∗ µ′′ can
be defined in the classical sense, and is smooth, at every point of the open set
Rd \ C, which contains Ft. Hence

∇u′′ = ∇K ∗ µ′′ everywhere in Ft.
18 (3.27)

Step 5. Putting together equations (3.25) and (3.27), and the fact that
µ = µ′g + µ′b + µ′′, we obtain

∇u− (∇K ∗ µ+ βKf) = ∇u′b −∇K ∗ µ′b a.e. in Ft,

and using estimate (3.26),

|∇u−(∇K ∗ µ+ βKf)|
≤ cM(µ′b, ·) + c I(µ′b, Ft, ·) + |∇K ∗ µ′b| a.e. in Ft.

(3.28)

17 Here and in the rest of this proof we use the letter c to denote any finite and strictly
positive constant that depends only on d and K.

18 We tacitly use that this “classical” convolution agrees (a.e.) with the singular integral.
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Finally, using the fact that ‖µ′b‖ ≤ 2ε (see (3.24)) and estimates (3.10), (3.8),
and (3.4), we obtain that each term at the right-hand side of (3.28) is smaller
than

√
ε outside an exceptional set with measure at most c

√
ε.

Since ε is arbitrary, we deduce that ∇u = ∇K ∗ µ+ βKf almost everywhere
in Ft, and the proof is complete. �

4. Further differentiability results

4.1. The kernels Kh. Let G : Rd \ {0} → R be the fundamental solution of
the Laplacian (−∆) on Rd, that is,

G(x) :=


1

d(d− 2)ωd
|x|2−d if d > 2

− 1

2π
log |x| if d = 2,

and for every h = 1, . . . , d let

Kh(x) := −∂hG(x) =
1

dωd
|x|−dxh .

We can now state the main results of this section; proofs will be given after
Remark 4.5.

4.2. Proposition. Let v = (v1, . . . , vd) be a vector field in L1(Rd) whose distri-
butional curl and divergence are bounded measures, and denote by µ0 and µhk
the measures

µ0 := div v and µhk := (curl v)hk = ∂hvk − ∂kvh (4.1)

for every 1 ≤ h, k ≤ d. Then, for every k = 1, . . . , d, there holds

vk = Kk ∗ µ0 +
d∑

h=1

Kh ∗ µhk a.e. (4.2)

Therefore each vk, and consequently also v, is Lp-differentiable at almost every
x ∈ Rd for every p with 1 ≤ p < γ(1).

4.3. Proposition. Let v be a vector field in L1(Rd) with bounded deforma-
tion, that is, the distributional symmetric derivative 1

2(∇v +∇tv) is a bounded
measure, and denote by λhk the measures

λhk :=
1

2
(∂hvk + ∂kvh) (4.3)

for every 1 ≤ h, k ≤ d. Then for every k = 1, . . . , d there holds

vk =

d∑
h=1

(
2Kh ∗ λhk −Kk ∗ λhh

)
a.e. (4.4)

Therefore each vk, and consequently also v, is Lp-differentiable at almost every
x ∈ Rd for every p with 1 ≤ p < γ(1).
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4.4. Proposition. Let Ω be an open set in Rd, and w a real function in L1
loc(Ω)

whose distributional Laplacian is a locally bounded measure. Then w admits an
Lp-Taylor expansion of order two for a.e. x ∈ Rd and every 1 ≤ p < γ(γ(1)).

In particular w has the Lusin property with functions of class C2.

4.5. Remark. (i) Using statement (ii) in Theorem 3.4 one can write an ex-
plicit formula for the (pointwise) derivatives of the vector fields v considered in
Propositions 4.2 and 4.3.

(ii) Let Ω be any open set in Rd. The differentiability property stated in
Proposition 4.2 holds also for vector fields v in L1

loc(Ω) whose curl and divergence
are locally bounded measures. The key observation is that given a smooth
cutoff function ϕ on Rd with support contained in Ω, then ϕv is a vector field
in L1(Rd) and its curl and divergence are bounded measures.

The same argument applies to Proposition 4.3.

(iii) The range of p in Proposition 4.4 is optimal, and this can be shown
by taking Ω = Rd and w = G ∗ µ where G is given in §4.1 and µ is given in
Remark 3.5. Indeed −∆w = µ and one easily checks that w does not belong to
Lγ(γ(1))(U) for any open set U in Rd. Hence w does not belong to T 0,γ(γ(1))(x)

for any x ∈ Rd, and consequently not even to t2,γ(γ(1))(x).

(iv) The range of p in Proposition 4.2 is also optimal. Let indeed v := ∇w
where w is the function constructed above: then the curl of w vanishes and the
divergence agrees with the measure −µ, and v does not belong to Lγ(1)(U) for
any open set U in Rd (otherwise the Sobolev embedding would imply that w

belongs to Lγ(γ(1))(U)).

(v) We do not know if the range of p in Proposition 4.3 is optimal, and

more precisely whether or not a map in BD belongs to t1,γ(1)(x) for almost
every x. Note that the argument used in points (iii) and (iv) above does not

apply here because the space BD does embed in Lγ(1) for regular domains [12,
Proposition 1.2].

Proof of Proposition 4.2. By applying the Fourier transform to the iden-
tities in (4.1) we obtain∑

h

iξhv̂h = µ̂0 and iξhv̂k = iξkv̂h + µ̂hk , (4.5)

where i =
√
−1 and ξ denotes the Fourier variable.

We multiply the second identity in (4.5) by −iξh and sum over all h; taking
into account the first identity in (4.5) we get

|ξ|2v̂k = ξk
∑
h

ξhv̂h −
∑
h

iξhµ̂hk = −iξkµ̂0 −
∑
h

iξhµ̂hk .
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Now −∆G = δ0 implies Ĝ = |ξ|−2 and then K̂h = −iξhĜ = −iξh|ξ|−2 (see
§4.1). Thus the previous identity yields

v̂k =
−iξk
|ξ|2

µ̂0 +
∑
h

−iξh
|ξ|2

µ̂hk = K̂kµ̂0 +
∑
h

K̂hµ̂hk ,

and (4.2) follows by taking the inverse Fourier transform. The rest of Proposi-
tion 4.2 follows from Theorem 3.4. �

Proposition 4.3 can be proved in the same way as Proposition 4.2; we omit
the details.

4.6. Lemma. Let k ≥ 0 be an integer, and p ≥ 1 a real number. Let u be a
function in W 1,1(Ω) where Ω is a bounded open set in Rd, and assume that the
distributional derivative ∇u belongs to tk,p(x) (respectively, T k,p(x)) for some

point x ∈ Ω. Then u belongs to tk+1,γ(p)(x) (respectively, T k+1,γ(p)(x)).

This lemma is contained in [4, Theorem 11], at least in the case Ω = Rd
and u with compact support (recall Remark 2.3(i)). Note that we can always
reduces to this case by multiplying u by suitable cutoff functions.

Proof of Proposition 4.4. Apply Proposition 4.2 to the vector field ∇w
and then use Lemma 4.6 (and recall §2.4). �

We conclude this section with a comment on the last proof.

4.7. Remark. The key ingredient in the proof of the Lusin property for the
functions w considered in Proposition 4.4 is the Lp-differentiability of ∇w. Here
we want to argue that the approximate differentiability of ∇w in the sense of
Remark 2.3(v) would have not been sufficient. In other words, Proposition 4.4
cannot be derived from the differentiability result in [9].

We claim indeed that even in dimension d = 1, the approximate differentia-
bility of the derivative of a function w at almost every point of a set E is not
enough to prove that w has the Lusin property with functions of class C2 on
E. More precisely, there exists a function w : R → R of class C1 such that
ẇ = 0 on some set E with positive measure—and therefore ẇ is approximately
differentiable with derivative equal to 0 at almost every point of E—but w does
not have the Lusin property with functions of class C2 on E.

The construction of such a function is briefly sketched in the next paragraph.

4.8. Example. Fix λ such that 1/4 < λ < 1/2. For every n = 0, 1, 2 . . .
let En be the union of the closed intervals In,k, k = 1, . . . , 2n, obtained as
follows: I0,1 = E0 is a closed interval with length 2, and the intervals In+1,k

are obtained by removing from each In,k a concentric open interval Jn,k with
length (1− 2λ)λn.

Now let E be the intersection of the sets En. This construction of Cantor
type produces a compact set E with empty interior such that L 1(E) = 1.
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Next we construct a non-negative continuous function v : R → R such that
v = 0 outside the union of the intervals Jn,k over all n and k, and the integral
of v over each Jn,k is equal to (1− 2λ)λn.

Finally we take w so that ẇ = v.

It is easy to verify that for every n the set E′n := w(En) is the union of the
disjoint intervals I ′n,k := w(In,k), k = 1, . . . , 2n, and that these intervals have

length λn. Moreover E′n+1 can be written as the union of two disjoint copies of
E′n scaled by a factor λ. Therefore the set E′ := w(E) can be written as the
union of two disjoint copies of itself scaled by a factor λ. In other words, E′ is
a self-similar fractal determined by two homoteties with scaling factor λ; it is
then well-known that E′ has Hausdorff dimension s := log 2/ log(1/λ) (see [7,
Section 8.3]).

Moreover, denoting by µ the push-forward according to w of the restriction
of the Lebesgue measure to E, one easily checks that µ is supported on E′ and
satisfies µ(I ′n,k) = 2−n for every n and k. Therefore µ agrees with the canonical

probability measure associated to the fractal E′, which in turn agrees, up to
a constant factor, with the restriction of H s to E′ (see [7, Section 8.3]). In
particular, since s > 1/2 (recall that λ > 1/4), we have that µ(A) = 0 for every

set A which is σ-finite with respect to H 1/2.
To show that w does not have the Lusin property with functions of class C2

on E it is now sufficient to recall the following lemma.

4.9. Lemma. Let E be a set in R and u : R → R be a function of class C1

such that u has the Lusin property with functions of class C2 on E and u̇ = 0
on E. Then the push-forward of 1E ·L 1 according to w is supported on a set
which is H 1/2-negligible.

Proof. It suffices to apply the definition of Lusin property and the fact that
a function u : R → R of class C2 maps any bounded set where u̇ = 0 into an
H 1/2-negligible set (this is a particular case of Sard theorem, see for instance
[8, Theorem 3.4.3]). �
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