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1 Introduction

The goal of this paper is to study the Willmore functional.
One of the most important classes of submanifolds is the set of immersions whose mean curvature is

null: the minimal submanifolds. We will deal with a generalization of the minimal submanifolds, known
in literature as “Willmore surfaces”. The topic is classical and goes back to Blaschke (1929) and Thomsen
(1923): recall that given M̊ ↪→ R3 an immersed compact oriented surface, the Willmore functional is
defined as

I(M̊) :=
∫

M̊

H2dΣ,

where H and dΣ are the mean curvature and the area form of M̊ .
From now on we adopt the convention that H is the sum of the principal curvatures.

As Blaschke and Thomsen proved, this functional is invariant under conformal transformations of R3.
The second fundamental property (due to Willmore) asserts that the standard spheres Sρ

p are the points
of strict global minimum (hence they form a critical manifold - i.e. a manifold made of critical points)
for I:

(1) I(M̊) :=
∫

M̊

H2dΣ ≥ 16π; I(M̊) = 16π ⇔ M̊ = Sρ
p .

The proofs of the last facts can be found in [Will] (pag. 271 and pag. 276-279).
A surface which makes the Willmore functional stationary with respect to normal variations is called

a Willmore surface.
1E-mail address: mondino@sissa.it
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The functional relative to immersions in R3 and S3 has been deeply studied with remarkable results
(look at [Will] Chap. 7) and recently a lot of generalizations for immersions of larger dimension and
codimension have been considered (see the papers [SiL], [BK], [ZG] and [Riv]). Finally, in the last years,
the flow generated by the L2-differential of the functional has been analyzed ([Sim], [KS1], [KS2]).

The Willmore functional has lots of applications in biology, general relativity, string theory and
elasticity theory: in the study of lipid bilayer membranes it is called “Hellfrich energy”, in general
relativity it is linked with the “Hawking mass”, in string theory it appears in the “Polyakov extrinsic
action” and in nonlinear elasticity theory it arises as Γ-limit of some energy functionals (see [FJM]). We
also mention the classical fact that in the mean curvature flow analysis one has

d

dt
V ol(M̊) = −

∫
M̊

H2dΣ

where M̊ is the evolving submanifold with respect to the parameter t and V ol(M̊) :=
∫

M̊
dΣ is its the area.

While, as we remarked, there is an extensive study for immersions into Rn or Sn, very little is known
for general ambient manifolds (apart from the case of minimal surfaces). The aim of this paper is to give
some existence (resp. non existence) results for curved metrics in R3, close and asymptotic to the flat
one (resp. in general Riemannian manifolds).

We consider the following direct generalization of the Willmore functional: let (M, g) be a Riemannian
manifold of dimension three and (M̊, g̊) ↪→ (M, g) a compact oriented isometrically immersed surface.
We will study the functional

I(M̊) :=
∫

M̊

H2dΣ

and we will call it Willmore functional.
Denote with N̊ the inward normal unit vector to M̊ and fix a function f ∈ C∞(M̊). Consider the

normal perturbation
M̊f [t] := {Expp(tfN̊)|p ∈ M̊},

where Expp is the exponential map in (M, g) of center p.
We say that M̊ is a critical point of I (or a Willmore surface) if

d

dt
I(M̊f [t])|t=0 = 0 ∀f ∈ C∞(M̊).

The Willmore functional is L2-differentiable and it turns out that (from formula (29) pag. 9 in [PV],
with an easy computation-notice the difference in the convetions: opposite sign convention about the
normal vector N̊ and different convention on the mean curvature H )

I ′(M̊) = 24M̊H +H
(
H2 − 4D + 2RµνN̊

µN̊ν
)
,

where 4M̊ is the Laplacian on M̊ , Rµν is the Ricci curvature of M and D is the product of the principal
curvatures of the surface (for more details look at the section “Notations and conventions”).
As a result, M̊ is a critical point of I if and only if the following fourth order nonlinear PDE is satisfied

24M̊H +H(H2 − 4D + 2RµνN̊
µN̊ν) = 0.

We will prove some existence and multiplicity results for the Willmore functional in the ambient
manifold

(2) (R3, gε) with gε = δ + εh, lim
|p|→∞

|hµν(p)| = 0

where δ is the euclidean scalar product and h is a symmetric smooth bilinear form. Moreover we will
show a non-existence result in a general ambient manifold (M, g) of dimension three.

2



Let us discuss now some more details.
The Willmore functional with ambient manifold (R3, gε) will be called Iε, and we will look for critical
points of Iε which are perturbed standard spheres of R3. Denote with S2 the standard unit sphere and
let Sρ

p be the standard sphere of R3 with center p and radius ρ

Sρ
p := {x ∈ R3 : ‖x− p‖euclidean = ρ}

parametrized by Θ ∈ S2 7→ p+ ρΘ.
Let us define the perturbation (for more details see Section “Notations and Conventions”, here we are
quite sketchy). Given a small w ∈ C4,α(S2), the perturbed standard sphere Sρ

p(w) is defined as the image
of

Θ 7→ p+ ρ(1− w(Θ))Θ.

The main results of this paper are Theorem 1.1 and Theorem 1.2 below, which will be proved in
Subsection 5.1.
Before stating them observe (see Remark 3.7) that the scalar curvature of (R3, gε) can be written as

(3) Rgε
= εR1 + o(ε), where R1 :=

∑
µν

Dµνhµν −4Trh.

Theorem 1.1. Let gε be as in (2) and let R1 be defined in (3). Suppose that
(i) There exists p̄ ∈ R3 such that R1(p̄) 6= 0;
(ii) There exist C > 0 and α > 2 such that

|Dλhµν(p)| < C

|p|α
∀λ, µ, ν = 1 . . . 3.

Then, for ε small enough, there exist (pε, ρε) ∈ R3 ⊕R+ and wε ∈ C4,α(S2) with ‖wε‖C4,α → 0 as ε→ 0,
such that the perturbed sphere Sρε

pε
(wε) is a critical point of the Willmore functional Iε.

With more (but mild) assumptions, we are able to show the existence of two critical points:

Theorem 1.2. Under the assumptions of Theorem 1.1, suppose that there exist two points p1, p2 ∈ R3

such that R1(p1) > 0 and R1(p2) < 0.
Then, for ε small enough, there exist (p1

ε , ρ
1
ε), (p2

ε , ρ
2
ε) ∈ R3 ⊕ R+ and w1

ε , w
2
ε ∈ C4,α(S2) with

‖wi
ε‖C4,α → 0 as ε → 0, such that the perturbed spheres Sρ1

ε

p1
ε
(w1

ε ), S
ρ2

ε

p2
ε
(w2

ε ) are distinct critical points of
the Willmore functional Iε.

Remark 1.1. The condition (i) of Theorem 1.1 is not redundant. In fact it is easy to give examples of
non null bilinear forms hµν vanishing a infinity and which satisfy (ii), such that R1 ≡ 0.
Chosen h such that hµν = 0 for µ 6= ν and h33 = 0, the linear PDE R1 ≡ 0 takes the form:

D22h11 +D33h11 = −D11h22 −D33h22.

Suppose that h22 is a non identically zero fast decreasing function. It is immediate to see that chosen
h11(x, y, z) = −h22(y, x, z), the non null metric h vanishes at infinity and satisfies both (ii) and the PDE.

In Subsection 5.2, we will observe that the Willmore functional is invariant under isometries of the
ambient manifold (Theorem 5.1). Hence, assuming that the perturbation h of the euclidean metric pos-
sesses some symmetries and that the critical points found with the previous Theorems are not invariant
under those isometries, we will show the existence of infinitely many stationary points (see Theorem 5.2
and the subsequent examples of Section 5).

The non-existence result concerns perturbed geodesic spheres of small radius defined as follows: fixed
p ∈ M and denoted with Expp the exponential map with center p, for small ρ the geodesic sphere Sp,ρ

is well defined and can be parametrized by

Θ ∈ S2 ⊂ TpM 7→ Expp[ρΘ].

3



Analogously to the previous case, fixed p ∈ M , ρ > 0 and a small C4,α(S2) function w, the perturbed
geodesic sphere Sp,ρ(w) is the surface parametrized by

Θ ∈ S2 7→ Expp[ρ
(
1− w(Θ)

)
Θ].

Now we can state the non existence result:

Theorem 1.3. Let (M, g) be the ambient Riemannian manifold. Assume that the scalar curvature of M
at the point p̄ is not null:

R(p̄) 6= 0.

Then there exist ρ0 > 0 and r > 0 such that for radius ρ < ρ0 and perturbation w ∈ C4,α(S2) with
‖w‖C4,α(S2) < r, the surfaces Sp̄,ρ(w) are not critical points of the Willmore functional I.

The interest of the previous Theorem resides in the difference with the flat case M = R3, where all
the spheres are point of global minimum (see (1)).

The methods used to prove the above results rely on the same technique: the Lyapunov-Schmidt
reduction (for more details see Subsection 2.1). Since the ideas are similar, here we only discuss the
existence part. We are quite informal since we just want to motivate (for the details see Section 4).
As we remarked, (1) implies that the Willmore functional in the euclidean space R3 possesses a critical
manifold Z made of standard spheres Sρ

p . The tangent space to Z at Sρ
p is composed of constant and

affine functions on Sρ
p so, with a pull back via the parametrization, on S2.

As we will point out in Remark 3.3, the second derivative of I0 at Sρ
p is

I ′′0 (Sρ
p)[w] =

2
ρ3
4S2(4S2 + 2)[w],

which is a Fredholm operator of index zero and whose Kernel is made of the constant and affine
functions; exactly the tangent space to Z.
So, considered C4,α(S2) as a subspace of L2(S2) and called

C4,α(S2)⊥ := C4,α(S2) ∩Ker[4S2(4S2 + 2)]⊥,

it follows that I ′′0 |C4,α(S2)⊥ is invertible on its image and one can apply the Lyapunov-Schmidt reduc-
tion. Thanks to this reduction, the critical points of Iε in a neighbourhood of Z are exactly the stationary
points of a function Φε : Z → R of finitely many variables (we remark that in a neighbourhood of Z the
condition is necessary and sufficient for the existence of critical points of Iε).

In order to study the function Φε, in Section 3 we will compute explicit formulas of the Willmore
functional.
More precisely, in the perturbative setting (R3, gε), we will calculate an expansion of Iε on the standard
spheres Sρ

p (Lemma 3.5):

Iε(Sρ
p) = 16π + 2ε

∫
S2

[
Trh− 3hµνΘµΘν + ρAµµλΘλ − ρAµνλΘµΘνΘλ

]
dΣ0 + o(ε).

Here
Aµνλ := [Dµhλν +Dλhνµ −Dνhµλ],

Θµ are the Cartesian coordinates of Θ ∈ S2 and the remainder o(ε) is uniform on compact subsets of
R3 ⊕ R+ 3 (p, ρ). Of course, in the integral, h is evaluated at the points of Sρ

p .
With a Taylor expansion, we will get a formula for spheres of small radius (Lemma 3.6):

Iε(Sρ
p) = 16π − 8π

3
R1(p)ρ2ε+ o(ρ2)ε+ o(ε),

where the remainder o(ε) is uniform on compact subsets of R3 ⊕ R+ 3 (p, ρ).
In Lemma 4.3, we will prove that Φε(Sρ

p) = Iε(Sρ
p) + o(ε); then, using the above expansions and the

assumptions on h, we will show that Φε → 16π + o(ε) if ρ→ 0 or if (p, ρ) →∞. From the conditions on
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R1, it follows that Φε has a point of global minimum or/and a point of global maximum (resp. Theorem
1.1/Theorem 1.2); hence we obtain the existence of critical points for Iε.

Since the abstract perturbation method gives also a necessary condition for the (local) existence of
critical points, for the non existence result we will proceed in an analogous way.
First of all, even in a general manifold, when ρ is small it is possible to show that we are in the above
perturbative regime. Then we will show that, near the points where the scalar curvature is non zero, Φε

is strictly monotone in ρ; by the necessary condition we obtain the non existence as well.

Notations and conventions

1) R+ denotes the set of strictly positive real numbers.

2) Let (M, g) be a 3-dimensional Riemannian manifold.
· First we make the following convention: the Greek index letters, such as µ, ν, ι, . . . , range from 1 to

3 while the Latin index letters, such as i, j, k, . . . , will run from 1 to 2.
· About the Riemann curvature tensor we adopt the convention of [Will]: denoting X(M) the set of

the vector fields on M , ∀X,Y, Z ∈ X(M)

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

R(X,Y, Z,W ) := g(R(Z,W )Y,X);

chosen in p an orthonormal frame Eµ, the Ricci curvature tensor is

Ricp(v1, v2) :=
3∑
1

R(Eµ, v1, Eµ, v2) =
3∑
1

g(Rp(Eµ, v2)v1, Eµ)

= −
3∑
1

g(Rp(v2, Eµ)v1, Eµ) ∀v1, v2 ∈ TpM.(4)

Recall the definitions of the Hessian and the Laplace-Beltrami operator on a function w:

Hess(w)µν := ∇µ∇νw

4 := gµν∇µ∇νw.

3) Let (M̊, g̊) ↪→ (M, g) be an isometrically immersed surface. Recall the notion of second funda-
mental form h̊: fix a point p and an orthonormal base Z1, Z2 of TpM̊ ; the inward normal unit vector is
denoted as N̊ . By the Weingarten equation h̊ij = −g(∇Zi

N̊ , Zj).
Call k1 and k2 the principal curvatures (the eigenvalues of the second fundamental form with respect to
the first fundamental form of M̊ , i.e. the roots of det(̊hij − kg̊ij) = 0). We adopt the convention that the
mean curvature is defined as H := k1 + k2. Sometimes we will call D := k1k2.

4) As mentioned in the introduction, throughout this paper we will focus our attention on perturbed
spheres.

· First, let us define the perturbed standard sphere Sρ
p(w) ⊂ R3 we will use to prove the existence

result. We denote with S2 the standard unit sphere in the euclidean 3-dimensional space , Θ ∈ S2

is the radial unit vector with components Θµ parametrized by the polar coordinates 0 < θ1 < π and
0 < θ2 < 2π chosen in order to satisfy  Θ1 = sin θ1 cos θ2

Θ2 = sin θ1 sin θ2

Θ3 = cos θ1.

We call Θi the coordinate vector fields on S2

Θ1 :=
∂Θ
∂θ1

, Θ2 :=
∂Θ
∂θ2
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and θ̄i the corresponding normalized ones

θ̄1 :=
Θ1

‖Θ1‖
, θ̄2 :=

Θ2

‖Θ2‖
.

The standard sphere in R3 with center p and radius ρ > 0 is denoted by Sρ
p ; we parametrize it as

(θ1, θ2) 7→ p+ ρΘ(θ1, θ2) and call θi the coordinate vector fields

θ1 := ρ
∂Θ
∂θ1

, θ2 := ρ
∂Θ
∂θ2

.

The perturbed spheres will be normal graphs on standard spheres by a function w which belongs to a
suitable function space. Let us introduce the function space which has been chosen by technical reasons
(to apply Schauder estimates in Lemma 4.1).
Denote C4,α(S2) (or simply C4,α) the set of the C4 functions on S2 whose fourth derivatives, with respect
to the tangent vector fields, are α-Hölder (0 < α < 1). The Laplace-Beltrami operator on S2 is denoted
by 4S2 or, if there is no confusion, as 4. The fourth order elliptic operator 4(4+2) induces a splitting
of L2(S2):

L2(S2) = Ker[4(4+ 2)]⊕Ker[4(4+ 2)]⊥

(the splitting makes sense because the kernel is finite dimensional, so it is closed).
If we consider C4,α(S2) as a subspace of L2(S2), we can define

C4,α(S2)⊥ := C4,α(S2) ∩Ker[4(4+ 2)]⊥.

We explicitly observe that C4,α(S2)⊥ is a Banach space with respect to the C4,α norm; it is the space
from which we will draw the perturbations w. If there is no confusion C4,α(S2)⊥ will be called simply
C4,α⊥.
Now we can define the perturbed spheres we will use to prove existence of critical points: fix ρ > 0 and
a small C4,α⊥ function w; the perturbed sphere Sρ

p(w) is the surface parametrized by

Θ ∈ S2 7→ p+ ρ
(
1− w(Θ)

)
Θ.

· Now let us define the perturbed geodesic spheres Sp,ρ(w) in the Riemannian manifold (M, g); we
will use them to prove the non-existence result.
Once a point p ∈ M is fixed we can consider the exponential map Expp with center p. For ρ > 0 small
enough, the sphere ρS2 ⊂ TpM is contained in the radius of injectivity of the exponential. We call Sp,ρ

the geodesic sphere of center p and radius ρ. This hypersurface can be parametrized by

Θ ∈ S2 ⊂ TpM 7→ Expp[ρΘ].

Analogously to the previous case, fix p ∈ M , ρ > 0 and a small C4,α(S2) function w; the perturbed
geodesic sphere Sp,ρ(w) is the surface parametrized by

Θ ∈ S2 7→ Expp[ρ
(
1− w(Θ)

)
Θ].

The tangent vector fields on Sp,ρ(w) induced by the canonical polar coordinates on S2 are denoted by
Zi.

5) · Following the notation of [PX], given a ∈ N, any expression of the form L
(a)
p (w) denotes a linear

combination of the function w together with its derivatives with respect to the tangent vector fields Θi

up to order a. The coefficients of L(a)
p might depend on ρ and p but, for all k ∈ N, there exists a constant

C > 0 independent on ρ ∈ (0, 1) and p ∈M such that

‖L(a)
p (w)‖Ck,α(S2) ≤ C‖w‖Ck+a,α(S2).
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· Similarly, given b ∈ N, any expression of the form Q
(b)(a)
p (w) denotes a nonlinear operator in the

function w together with its derivatives with respect to the tangent vector fields Θi up to order a such
that, for all p ∈ M , Q(b)(a)

p (0) = 0. The coefficients of the Taylor expansion of Q(b)(a)
p (w) in powers of

w and its partial derivatives might depend on ρ and p but, for all k ∈ N, there exists a constant C > 0
independent on ρ ∈ (0, 1) and p ∈M such that

(5) ‖Q(b)(a)
p (w2)−Q(b)(a)

p (w1)‖Ck,α(S2) ≤ c
(
‖w2‖Ck+a,α(S2) + ‖w1‖Ck+a,α(S2)

)b−1×‖w2−w1‖Ck+a,α(S2),

provided ‖wl‖Ca(S2) ≤ 1, l = 1, 2.
· We also agree that any term denoted by Op(ρd) is a smooth function on S2 that might depend on

p but which is bounded by a constant (independent on p) times ρd in Ck topology, for all k ∈ N .

6) Large positive constants are always denoted by C, and the value of C is allowed to vary from formula
to formula and also within the same line. When we want to stress the dependence of the constants on
some parameter (or parameters), we add subscripts to C, as Cδ, etc.. Also constants with subscripts are
allowed to vary.
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2 Preliminary results

2.1 A perturbative method: the Lyapunov-Schmidt reduction

In this subsection we briefly summarize the perturbative method which is extensively treated with proofs
and examples in [AM].

Given an Hilbert space H, let Iε : H → R be a C2 functional of the form

Iε(u) = I0(u) + εG(u),

where I0 ∈ C2(H,R) plays the role of the unperturbed functional and G ∈ C2(H,R) is the perturbation.
We first suppose that there exists a finite dimensional smooth manifold Z made of critical points of

I0: I ′0(z) = 0 for all z ∈ Z. The set Z will be called critical manifold (of I0).
Under suitable non degeneracy assumptions on I0 it is known that near Z there exists a perturbed

manifold Zε such that the critical points of Iε constrained on Zε give rise to stationary points of Iε.
More precisely, the non degeneracy conditions are

(ND) for all z ∈ Z, TzZ = Ker[I ′′0 (z)],
(Fr) for all z ∈ Z, I ′′0 (z) is a Fredholm operator of index zero;

and the fundamental tool is the following Theorem:

Theorem 2.1. Suppose I0 possesses a non degenerate (satisfying (ND) and (Fr)) critical manifold Z of
dimension d.
Given a compact subset Zc of Z, there exists ε0 > 0 such that for all |ε| < ε0 there is a smooth function

wε(z) : Zc → H

such that
(i) for ε = 0 it results wε(z) = 0, ∀z ∈ Zc;
(ii) wε(z) is orthogonal to TzZ, ∀z ∈ Zc;
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(iii) the manifold
Zε = {z + wε(z) : z ∈ Zc}

is a natural constraint for I ′ε. Namely, denoting

Φε(z) = Iε(z + wε(z)) : Zc → R

the constriction of Iε to Zε, if zε is a critical point of Φε then uε = zε + wε(zε) is a critical point of Iε.

Thanks to this fundamental Theorem, in order to find critical points of Iε, we can reduce ourselves
to study Φε which is a function in finitely many variables.

If we are slightly more accurate, it can be shown that the function wε(z) is of order O(ε) as ε → 0
uniformly in z varying in the compact Zc. Thanks to this fact, by a Taylor expansion it is easy to see
that

Φε(z) = Iε(z) + o(ε).

The last formula suggests that, in order to prove the existence of critical points, it will be enough to
know the perturbed functional Iε on the critical manifold Z.

2.2 Geometric expansions

In this subsection we recall the well-known expansions of the first and second fundamental form and the
mean curvature for the geodesic perturbed spheres Sp,ρ(w) introduced in the previous “notations and
conventions”. For the proofs we refer to [PX]. Recall that Θi are the coordinate vector fields on S2

(induced by polar coordinates) and Zi are the corresponding coordinate vector fields on Sp,ρ(w). The
derivatives of w with respect to Θi are denoted by wi.

Let g̊ denote the first fundamental form on Sp,ρ(w) induced by the immersion in (M, g). In the next
Lemma we find an expansion of the components g̊ij := gp(Zi, Zj):

Lemma 2.2. The first fundamental form on Sp,ρ(w) has the following expansion:

(1− w)−2ρ−2g̊ij = g(Θi,Θj) + (1− w)−2wiwj +
1
3
g(Rp(Θ,Θi)Θ,Θj)ρ2(1− w)2

+Op(ρ3) + ρ3L(2)
p (w) + ρ3Q(2)(2)

p (w),

where all curvature terms and scalar products are evaluated at p (since we are in normal coordinates, at
p the metric is euclidean).

Let h̊ denote the second fundamental form on Sp,ρ(w) induced by the immersion in (M, g) and N̊ the
inward normal unit vector to Sp,ρ(w); by the Weingarten equation h̊ij = −g(∇Zi

N̊ , Zj).

Lemma 2.3. The second fundamental form on Sp,ρ(w) has the following expansion:

h̊ij = ρ(1− w)g(Θi,Θj) + ρ(HessgS2w)ij +
2
3
g(Rp(Θ,Θi)Θ,Θj)ρ3(1− w)3

+Op(ρ4) + ρ3L(2)
p (w) + ρQ(2)(2)

p (w)

where, as usual, all curvature terms and scalar products are evaluated at p.

Recall that the mean curvature H is the trace of h̊ with respect to the metric g̊: H = h̊ij g̊
ij . Collecting

the two previous Lemmas we obtain the following

Lemma 2.4. The mean curvature of the hyper-surface Sp,ρ(w) can be expanded as

H(Sp,ρ(w)) =
2
ρ

+
1
ρ
(2 +4S2)w − 1

3
Ricp(Θ,Θ)ρ(1− w)

+Op(ρ2) + ρ2L(2)
p (w) +

1
ρ
Q(2)(2)

p (w),(6)

where Ricp is the Ricci tensor computed at p.
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3 The expansions of the Willmore functional

In this section we present the geometric computations needed to show the non-existence and the existence
results. In the first subsection we derive the expansions of the Willmore functional and its differential
on the perturbed geodesic spheres Sp,ρ(w) immersed in the Riemannian manifold (M, g). In the second
subsection we will compute the Willmore functional on the standard spheres Sρ

p immersed in R3 endowed
with the metric gε = δ + εh.

3.1 The Willmore functional on perturbed geodesic spheres Sp,ρ(w)

Let us start with the expansion of the Willmore functional I.

Proposition 3.1. The Willmore functional on the surfaces Sp,ρ(w) can be expanded in ρ and w as
follows:

(7) I(Sp,ρ(w)) = 16π − 8π
3
R(p)ρ2 +

∫
S2

(Q(2)(2)
p (w) + ρ2L(2)

p (w))dΘ +Op(ρ3),

where R(p) is the scalar curvature of (M, g) evaluated at p.

Proof. Recall the definition of the Willmore functional:

I(Sp,ρ(w)) :=
∫

Sp,ρ(w)

H2dΣ

where dΣ is the area form of Sp,ρ(w).
Using the expansion of the metric g̊ of Lemma 2.2, it is easy to see that

det[̊g] = ‖Θ2‖2ρ4
[
(1− 4w)− 1

3
Ricp(Θ,Θ)ρ2 +Op(ρ3) + ρ2L(2)

p (w) +Q(2)(2)
p (w)

]
.

Taking the square root we obtain the area form in the polar coordinates θ1, θ2:

dΣ =
√

det[̊g]dθ1 ∧ dθ2

= ‖Θ2‖ρ2
{

1− 2w − 1
6
Ricp(Θ,Θ)ρ2 +Op(ρ3) + ρ2L(2)

p (w) +Q(2)(2)
p (w)

}
dθ1 ∧ dθ2

= ρ2
{

1− 2w − 1
6
Ricp(Θ,Θ)ρ2 +Op(ρ3) + ρ2L(2)

p (w) +Q(2)(2)
p (w)

)
dΘ,(8)

where dΘ := ‖Θ2‖dθ1 ∧ dθ2 is the area form on S2.
From (6) we get the expansion of H2:

(9) H2 =
4
ρ2

+
4
ρ2

(2 +4S2)w − 4
3
Ricp(Θ,Θ) +Op(ρ) + L(2)

p (w) +
1
ρ2
Q(2)(2)

p (w).

Collecting the above identities (8) and (9) we get

(10)

I(Sp,ρ(w)) = 16π + 4
∫

S2
(4S2w)dΘ− 2ρ2

∫
S2
Ricp(Θ,Θ)dΘ +

∫
S2

(
ρ2L(2)

p (w) +Q(2)(2)
p (w)

)
dΘ +Op(ρ3).

Recall that the Laplacian of a function integrated on a compact surface without boundary is null, so the
second term

∫
S2(4S2w)dΘ is zero.

Let us compute the term
∫

S2 Ricp(Θ,Θ)dΘ. Choose Cartesian coordinates xµ, µ = 1 . . . 3 on TpM ,
and recall that (see [Bren] pag. 28) ∫

S2
xµxνdΘ =

4π
3
δµν .

9



By a straightforward computation∫
S2
Ricp(Θ,Θ)dΘ =

∫
S2
Rµνx

µxνdΘ = Rµµ

∫
S2
xµxµdΘ =

4π
3
R(p).

At last, we can expand the Willmore functional I as

I(Sp,ρ(w)) = 16π − 8π
3
R(p)ρ2 +

∫
S2

(
Q(2)(2)

p (w) + ρ2L(2)
p (w)

)
dΘ +Op(ρ3).

Now we obtain an expansion for the L2-differential of the Willmore functional, with respect to normal
variations, on the perturbed geodesic spheres:

Proposition 3.2. The L2-differential of the Willmore functional on the surfaces Sp,ρ(w) can be expanded
as

(11) ρ2I ′(Sp,ρ(w)) =
2
ρ
4S2(4S2 + 2)w +Op(ρ) + ρL(4)

p (w) +
1
ρ
Q(2)(4)

p (w).

Proof. In [PV], Parthasarathy and Viswanathan computed the L2-differential of the Willmore func-
tional for a general immersed submanifold; in the case of a surface M̊ immersed in the 3-dimensional
Riemannian manifold M , formula (29) pag. 9 and a simple computation give the expression of the
differential (notice the difference in the convention about H and about the sign of N̊ ):

(12) I ′(M̊) = 24M̊H +H
(
H2 − 4D + 2RµνN̊

µN̊ν
)

where 4M̊ is the Laplacian on M̊ , Rµν is the Ricci curvature of M and N̊ is the normal unit vector
to the surface M̊ . Recall that k1 and k2 are the principal curvatures, D := k1k2 and in our convention
H = k1 + k2. Observe that

D := k1k2 =
det h̊ij

det g̊ij
.

Let us compute I ′ on the surfaces Sρ
p(w). From the expansion of h̊ij and g̊ij of Lemmas 2.2 and 2.3, with

simple computations we get

(13) D =
1
ρ2

(
(1 + 2w +4S2w) +Op(ρ2) + ρ2Lp(w) +Q(2)

p (w)
)
.

Collecting this formula and the expansion of H of Lemma 2.4, we obtain

H2 − 4D = Op(ρ0) + L(2)
p (w) +

1
ρ2
Q(2)(2)

p (w).

From [PX] pag.10, we have
N̊ = Op(ρ0) + L(2)

p (w) +Q(2)(2)
p (w),

so it follows
H2 − 4D + 2RµνN̊

µN̊ν = Op(ρ0) + L(2)
p (w) +

1
ρ2
Q(2)(2)

p (w),

and

H
(
H2 − 4D + 2RµνN̊

µN̊ν
)

= Op

(
1
ρ

)
+

1
ρ
L(2)

p (w) +
1
ρ3
Q(2)(2)

p (w).

Using this formula and the expansion of H of Lemma 2.4, the expression of the differential given in (12)
for the surface Sp,ρ(w) becomes
(14)

I ′(Sp,ρ(w)) =
2
ρ
4g̊(2+4S2)w+4g̊

(
Op(ρ)+ρL(2)

p (w)+
1
ρ
Q(2)(2)

p (w)
)
+Op

(
1
ρ

)
+

1
ρ
L(2)

p (w)+
1
ρ3
Q(2)(2)

p (w).
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Now we want to write the Laplacian 4g̊ on Sp,ρ(w) in a convenient way, in terms of 4S2 .
Recall that given u ∈ C∞(Sp,ρ(w))

4g̊u = g̊ij∇i∇ju = g̊ij(uij − Γ̊k
ijuk)

where uij , uk are the derivatives of u with respect to the coordinates vector fields and Γ̊k
ij are the Christoffel

symbols of Sp,ρ(w). From the expression of the first fundamental form of Sp,ρ(w) we see that

Γ̊k
ij = Γk

ij +O(ρ2) + L(2)
p (w) +Q(2)(2)

p (w),

where Γk
ij are the Christoffel symbols of S2 in the usual polar coordinate system. From

g̊ij =
1 + 2w
ρ2

[gij
S2 +Op(ρ2) + ρ2L(2)

p (w) +Q(2)(2)(w)],

we get

4g̊u = g̊ij(uij − Γ̊k
ijuk)

=
1
ρ2
4S2u+Op(ρ0) + ρ−2L(2)

p (w) + ρ−2Q(2)(2)(w).

We can at last conclude that

I ′(Sp,ρ(w)) =
2
ρ3
4S2(4S2 + 2)w +Op

(
1
ρ

)
+

1
ρ
L(4)

p (w) +
1
ρ3
Q(2)(4)

p (w).

Remark 3.3. In formula (11), Op(ρ) and L(4)
p (w) are polynomial expressions (in ρ and w respectively)

whose coefficients are curvature terms of the ambient metric g evaluated at p. Therefore if the ambient
manifold is R3 endowed with euclidean metric, those terms are null. Obviously, in euclidean metric the
perturbed geodesic spheres Sp,ρ(w) coincide with the perturbed standard spheres Sρ

p(w); denoting with I0
the Willmore functional in euclidean metric we get

I ′0(S
ρ
p(w)) =

2
ρ3
4S2(4S2 + 2)w +

1
ρ3
Q(2)(4)

p (w).

Just taking the linearization, the second differential is

I ′′0 (Sρ
p)[w] =

2
ρ3
4S2(4S2 + 2)[w].

Notice that the expansion is consistent with the formula (7.40) page 289 in [Will] (the notation about the
mean curvature is different).

3.2 The Willmore functional on standard spheres Sρ
p

In this subsection we consider R3 endowed with the perturbed metric gε = δ + εh and compute the
corresponding Willmore functional Iε on the standard spheres Sρ

p .
Recall that

Iε(Sρ
p) :=

∫
Sρ

p

H2
ε dΣε,

where Hε and dΣε are respectively the mean curvature and the area form of Sρ
p with respect to the metric

gε. In the following, ν0 = −Θ will denote the inward normal unit vector to Sρ
p in euclidean metric and

νε = ν0 + εN + o(ε)

the normal unit vector in metric gε.

11



Lemma 3.4. The Willmore functional Iε computed on the standard spheres Sρ
p has the following expan-

sion

(15) Iε(Sρ
p) = 16π + 2ε

∫
S2

[
h
(
θ̄1, θ̄1

)
+ h(θ̄2, θ̄2)− 2h(ν0, ν0)− ρ(θ̄µ

1 θ̄
ν
1 + θ̄µ

2 θ̄
ν
2 )νλ

0Aµνλ

]
dΣ0 + o(ε)

where
Aµνλ := [Dµhνλ +Dλhµν −Dνhλµ]

and the remainder o(ε) is uniform on compact sets of R3 ⊕R+ 3 (p, ρ). In the integral, h is evaluated at
the points of Sρ

p .

Proof. Let us start with expanding in terms of ε the geometric quantities of interest. We will use the
classical notation to denote the coefficients of the first fundamental form g̊εij of Sρ

p . Denoting with (., .)
the euclidean scalar product, we have

Eε = gε(θ1, θ1) = (θ1, θ1) + εh(θ1, θ1) = E0 + εh(θ1, θ1)
Fε = gε(θ1, θ2) = F0 + εh(θ1, θ2) = εh(θ1, θ2)
Gε = gε(θ2, θ2) = G0 + εh(θ2, θ2),

where E0, F0, G0 are the corresponding quantities in euclidean metric.
Recall that the area form is dΣε =

√
EεGε − F 2

ε dθ
1 ∧ dθ2; by a Taylor expansion in ε we get

(16) dΣε = dΣ0 +
ε

2
E0h(θ2, θ2) +G0h(θ1, θ1)√

E0G0

dθ1 ∧ dθ2 + o(ε),

where dΣ0 is the area form in euclidean metric and the remainder o(ε) is uniform on compact sets of
R3 ⊕ R+ 3 (p, ρ).

Now expand the second fundamental form.
Recall that νε = ν0 + εN + o(ε) is the normal unit vector to Sρ

p in metric gε; from the orthogonality
conditions gε(θ1, νε) = 0 and gε(θ2, νe) we get

(N, θ1) = −h(ν0, θ1)
(N, θ2) = −h(ν0, θ2).

Imposing the normalization condition gε(νε, νε) = 1 we obtain

(N, ν0) = −1
2
h(ν0, ν0).

Collecting the formulas above, being (θ̄1, θ̄2, ν0) an orthonormal frame in euclidean metric, we can repre-
sent N as

(17) N = −h(ν0, θ̄1)θ̄1 − h(ν0, θ̄2)θ̄2 −
1
2
h(ν0, ν0)ν0.

Knowing the normal unit vector νε we can evaluate the coefficients of the second fundamental form

(18) h̊εij := −gε(∇θiνε, θj),

where ∇ is the connection on R3 endowed with the metric gε.
By linearity, denoting with ∂

∂xλ the standard euclidean frame in R3,

∇θi
νε = θµ

i ∇µ(νλ
ε

∂

∂xλ
) = θµ

i

∂νλ
ε

∂xµ

∂

∂xλ
+ θµ

i ν
λ
ε Γν

µλ

∂

∂xν

=
∂νε

∂θi
+ θµ

i ν
λ
ε Γν

µλ

∂

∂xν
,(19)
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where Γν
µλ are the Christoffel symbols of R3 with metric gε.

Let us find an expansion in ε of Γν
µλ. By definition

Γν
µλ =

1
2
gνσ[Dµgλσ +Dλgσµ −Dσgµλ].

Observe that gµσ = δµσ − εhµσ + o(ε) and Dµgλσ = εDµhλσ, so

Γν
µλ =

1
2
εδνσ[Dµhλσ +Dλhσµ −Dσhµλ] + o(ε).

Putting this expansion in (19) and using (18), the second fundamental form becomes

(20) h̊εij =
(
∂ν0
∂θi

, θj

)
− ε

[
h

(
∂ν0
∂θi

, θj

)
+
(
∂N

∂θi
, θj

)]
− 1

2
εθµ

i θ
ν
j ν

λ
0Aµνλ.

From the expressions of the first and second fundamental forms, with simple computations, we obtain
the mean curvature Hε = h̊εij g̊

ij
ε :

Hε = H0 − ε

(
E0h(θ2, θ2) +G0h(θ1, θ1)

(E0G0)2
(E0n0 +G0l0)

)
− ε

(E0

[
h

(
∂ν0
∂θ2 , θ2

)
+
(

∂N
∂θ2 , θ2

)
+ 1

2θ
µ
2 θ

ν
2ν

λ
0Aµνλ

]
E0G0

+
G0

[
h

(
∂ν0
∂θ1 , θ1

)
+
(

∂N
∂θ1 , θ1

)
+ 1

2θ
µ
1 θ

ν
1ν

λ
0Aµνλ

]
− n0h(θ1, θ1)− l0h(θ2, θ2)

E0G0

)
+ o(ε)

and its square

H2
ε = H2

0 − 2εH0

(
E0h(θ2, θ2) +G0h(θ1, θ1)

(E0G0)2
(E0n0 +G0l0)

)

−2εH0

(E0

[
h

(
∂ν0
∂θ2 , θ2

)
+
(

∂N
∂θ2 , θ2

)]
+G0

[
h

(
∂ν0
∂θ1 , θ1

)
+
(

∂N
∂θ1 , θ1

)]
− n0h(θ1, θ1)− l0h(θ2, θ2)

E0G0

)

−εH0

(
(E0θ

µ
2 θ

ν
2 +G0θ

µ
1 θ

ν
1 )νλ

0Aµνλ

E0G0

)
+ o(ε),(21)

where l0,m0(= 0), n0 and H0 are the coefficients of the second fundamental form and the mean curvature
of Sρ

p in euclidean metric (l0 = h̊011,m0 = h̊012, n0 = h̊022).
Collecting the formulas of H2

ε and dΣε, observing that I0(Sρ
p) = 16π and recalling that

H0 = l0G0−2m0F0+n0E0
E0G0−F 2

0
, we obtain the expansion of the Willmore functional

Iε(Sρ
p) = 16π − 3

2
ε

∫
H2

0

E0h(θ2, θ2) +G0h(θ1, θ1)√
E0G0

dθ1dθ2

−2ε
∫
H0

(E0

[
h

(
∂ν0
∂θ2 , θ2

)
+
(

∂N
∂θ2 , θ2

)]
+G0

[
h

(
∂ν0
∂θ1 , θ1

)
+
(

∂N
∂θ1 , θ1

)]
− n0h(θ1, θ1)− l0h(θ2, θ2)

√
E0G0

)
dθ1dθ2

−ε
∫
H0

(
(E0θ

µ
2 θ

ν
2 +G0θ

µ
1 θ

ν
1 )νλ

0Aµνλ√
E0G0

)
dθ1dθ2 + o(ε),

(22)
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where all the integrals are computed on (0, π)× (0, 2π) 3 (θ1, θ2).
The coefficients of the unperturbed first fundamental form are

E0 = ρ2

F0 = 0
G0 = ρ2 sin2 θ1,

those of the unperturbed second fundamental form are

l0 = ρ

m0 = 0
n0 = ρ sin2 θ1

and the unperturbed mean curvature is

H0 =
2
ρ
.

Now we use these expressions to simplify (22). Let us start from the first integral:

(23) −3
2
ε

∫
H2

0

E0h(θ2, θ2) +G0h(θ1, θ1)√
E0G0

dθ1dθ2 = −6ε
∫

S2

[
h(θ̄1, θ̄1) + h(θ̄2, θ̄2)

]
dΣ0,

where dΣ0 is the standard area form on S2. The second integral becomes

−4ε
∫

(0,π)×(0,2π)

[
h

(
∂ν0
∂θ2

, θ̄2

)
+
(
∂N

∂θ2
, θ̄2

)]
dθ1dθ2−4ε

∫
S2

[
h

(
∂ν0
∂θ1

, θ̄1

)
+
(
∂N

∂θ1
, θ̄1

)
−h(θ̄1, θ̄1)−h(θ̄2, θ̄2)

]
dΣ0.

Observe that ∂ν0
∂θ1 = −θ̄1 and ∂ν0

∂θ2 = − sin θ1θ̄2, so we can go on

(24) = −4ε
∫

S2

[
1

sin θ1

(
∂N

∂θ2
, θ̄2

)
+
(
∂N

∂θ1
, θ̄1

)]
dΣ0 + 8ε

∫
S2

[
h
(
θ̄1, θ̄1

)
+ h(θ̄2, θ̄2)

]
dΣ0.

Let us try to make explicit
(

∂N
∂θ2 , θ̄2

)
and

(
∂N
∂θ1 , θ̄1

)
in terms of known quantities. Of course we have(

∂N

∂θ2
, θ̄2

)
=

∂

∂θ2
(N, θ̄2)−

(
N,

∂θ̄2
∂θ2

)
.

Observe that ∂θ̄2
∂θ2 = − cos θ1θ̄1 + sin θ1ν0. From the representation (17) of N , we get(

N,
∂θ̄2
∂θ2

)
= h(θ̄1, ν0) cos θ1 − 1

2
h(ν0, ν0) sin θ1,

so (
∂N

∂θ2
, θ̄2

)
= − ∂

∂θ2
h(ν0, θ̄2)− h(θ̄1, ν0) cos θ1 +

1
2
h(ν0, ν0) sin θ1.

In an analogous way, observing that ∂θ̄1
∂θ1 = ν0 and (N, θ̄1) = −h(ν0, θ̄1) we get(

∂N

∂θ1
, θ̄1

)
=

∂

∂θ1
(N, θ̄1)−

(
N,

∂θ̄1
∂θ1

)
= − ∂

∂θ1
h(ν0, θ̄1) +

1
2
h(ν0, ν0).

Summing up the last two quantities we obtain

(25)
1

sin θ1

(
∂N

∂θ2
, θ̄2

)
+
(
∂N

∂θ1
, θ̄1

)
= − 1

sin θ1
∂

∂θ2
h(ν0, θ̄2)−

cos θ1

sin θ1
h(θ̄1, ν0)−

∂

∂θ1
h(ν0, θ̄1) + h(ν0, ν0).
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We want to integrate this expression on S2. Observe that∫
S2

[
1

sin θ1
∂

∂θ2
h(ν0, θ̄2)

]
dΣ0 =

∫
(0,π)×(0,2π)

∂

∂θ2
h(ν0, θ̄2)dθ1dθ2 = 0

because h(ν0, θ̄2) is a 2π-periodic function in θ2. The integral of the third term is∫
S2

[
− ∂

∂θ1
h(ν0, θ̄1)

]
dΣ0 =

∫ 2π

0

(∫ π

0

− ∂

∂θ1
h(ν0, θ̄1) sin θ1dθ1

)
dθ2;

integrating by parts and using that 0 = sinπ = sin 0 we get

=
∫

(0,π)×(0,2π)

h(ν0, θ̄1) cos θ1dθ1dθ2.

So the integrals of the second and third terms of (25) delete each other and we obtain

(26)
∫

S2

[
1

sin θ1

(
∂N

∂θ2
, θ̄2

)
+
(
∂N

∂θ1
, θ̄1

)]
dΣ0 =

∫
S2
h(ν0, ν0)dΣ0.

In this way we simplified the first two integrals of (22). The last integral can be rewritten as:

(27) −ε
∫

(0,π)×(0,2π)

H0

(
(E0θ

µ
2 θ

ν
2 +G0θ

µ
1 θ

ν
1 )νλ

0Aµνλ√
E0G0

)
dθ1dθ2 = −2ερ

∫
S2

[
(θ̄µ

2 θ̄
ν
2 + θ̄µ

1 θ̄
ν
1 )νλ

0Aµνλ

]
dΣ0.

So, collecting the above formulas (23), (24) together with (26), and (27) we obtain that the Willmore
functional presented as in (22) becomes

Iε(Sρ
p) = 16π + 2ε

∫
S2

[
h
(
θ̄1, θ̄1

)
+ h(θ̄2, θ̄2)− 2h(ν0, ν0)− ρ(θ̄µ

1 θ̄
ν
1 + θ̄µ

2 θ̄
ν
2 )νλ

0Aµνλ

]
dΣ0 + o(ε).

Since h and its derivatives are bounded on compact sets, fixed the compact Zc ⊆ R3⊕R+, the remainder
o(ε) is uniform for (p, ρ) ∈ Zc.

Writing the vectors θ̄1, θ̄2, ν0 in terms of the affine functions on S2 we obtain a more synthetic expan-
sion for Iε:

Lemma 3.5. The Willmore functional Iε relative to the metric gε = δ+εh and evaluated on the standard
spheres Sρ

p has the following expansion

(28) Iε(Sρ
p) = 16π + 2ε

∫
S2

[
Trh− 3hµνΘµΘν + ρAµµλΘλ − ρAµνλΘµΘνΘλ

]
dΣ0 + o(ε),

where Θµ are the Cartesian coordinates of Θ ∈ S2 and the remainder o(ε) is uniform on compact subsets
of R3 ⊕ R+ 3 (p, ρ). Of course, in the integral, h is evaluated at the points of Sρ

p .

Proof. Let us rewrite the integrands in terms of the Cartesian coordinates Θλ. Observe that

θ̄1 =
(

Θ1Θ3√
(Θ1)2 + (Θ2)2

,
Θ2Θ3√

(Θ1)2 + (Θ2)2
,−
√

(Θ1)2 + (Θ2)2
)

θ̄2 =
(
− Θ2√

(Θ1)2 + (Θ2)2
,

Θ1√
(Θ1)2 + (Θ2)2

, 0
)

ν0 = −Θ

where Θλ, λ = 1 . . . 3 are the Cartesian coordinates of Θ ∈ S2.
Using the above formulas and observing that (Θ3)2 = 1− (Θ1)2 − (Θ2)2, the first two integrands of (15)
can be rewritten as

h
(
θ̄1, θ̄1

)
+ h(θ̄2, θ̄2) = Trh− hµνΘµΘν ,
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where Trh =
∑

µ hµµ, as always the indexes run in 1, . . . , 3 and repeated indexes are added.
Noticing that h(ν0, ν0) = hµνΘµΘν , the first part of the integrand becomes

(29) h
(
θ̄1, θ̄1

)
+ h(θ̄2, θ̄2)− 2h(ν0, ν0) = Trh− 3hµνΘµΘν .

The second part, analogously becomes

−ρ(θ̄µ
1 θ̄

ν
1 + θ̄µ

2 θ̄
ν
2 )νλ

0Aµνλ =
(
ρΘλ

∑
µ

Aµµλ

)
−
(
ρAµνλΘµΘνΘλ

)
.(30)

Collecting the above formulas (29) and (30), we get the desired expression of Iε:

(31) Iε(Sρ
p) = 16π + 2ε

∫
S2

[
Trh− 3hµνΘµΘν + ρAµµλΘλ − ρAµνλΘµΘνΘλ

]
dΣ0 + o(ε).

Now we want to obtain an expansion of Iε(Sρ
p) for spheres of small radius. Observe that Trh, hµν and

Aµνλ are real functions on R3 and, in the integral (28), they are evaluated at the points p + ρΘ of Sρ
p .

By a Taylor expansion we get

hµν(p+ ρΘ) = hµν [p] + ρ(Dλhµν)[p]Θλ +
1
2
ρ2(D2

ληhµν)[p]ΘλΘη + o(ρ2)

Trh(p+ ρΘ) = Trh[p] + ρ(DλTrh)[p]Θλ +
1
2
ρ2(D2

ληTrh)[p]ΘλΘη + o(ρ2)

ρAµνλ = ρAµνλ[p] + ρ2(DηAµνλ)[p]Θη + o(ρ2),

where, as always, Dλ denotes the partial derivative in R3 with respect to xλ. Thanks to this expansions
we show the following

Lemma 3.6. For spheres of small radius, the Willmore functional Iε has the following expansion in ε
and ρ:

Iε(Sρ
p) = 16π − 8π

3
R1(p)ρ2ε+ o(ρ2)ε+ o(ε),

where

(32) R1 :=
∑
µν

Dµνhµν −4Trh

and where the remainder o(ε) is uniform on compact subsets of R3 ⊕ R+ 3 (p, ρ).

Proof. Using the previous Taylor expansions we get

Iε(Sρ
p) = 16π + 2ε

∫
S2

[
Trh[p]− 3hµν [p]ΘµΘν

]
dΣ0

+2ρε
∫

S2

[
(DλTrh)[p]Θλ − 3(Dλhµν)[p]ΘλΘµΘν +Aµµλ[p]Θλ −Aµνλ[p]ΘµΘνΘλ

]
dΣ0

+ρ2ε

∫
S2

[
(DληTrh)[p]ΘλΘη − 3(Dληhµν)[p]ΘλΘηΘµΘν

]
dΣ0

+2ρ2ε

∫
S2

[
(DηAµµλ)[p]ΘηΘλ − (DηAµνλ)[p]ΘηΘµΘνΘλ

]
dΣ0

+o(ρ2)ε+ o(ε).
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From the formulas of Brendle (see [Bren] pag. 28):∫
S2

ΘµdΣ0 = 0∫
S2

ΘµΘνdΣ0 =
4π
3
δµν∫

S2
ΘµΘνΘλdΣ0 = 0∫

S2
ΘµΘνΘλΘηdΣ0 =

4π
15

(δµνδλη + δµλδνη + δµηδνλ),

we obtain ∫
S2

[
(Trh[p]− 3hµν [p]ΘµΘν

]
dΣ0 = 4π(Trh)[p]− 3hµν [p]

∫
S2

ΘµΘνdΣ0 = 0∫
S2

[
(DλTrh)[p]Θλ − 3Dλ(hµν)[p]ΘλΘµΘν

]
dΣ0 = 0∫

S2

[
Aµµλ[p]Θλ −Aµνλ[p]ΘµΘνΘλ

]
dΣ0 = 0

and∫
S2

[
(DληTrh)[p]ΘλΘη−3(Dληhµν)[p]ΘλΘηΘµΘν

]
dΣ0 =

4π
3

(4Trh)[p]−4π
5

(Dληhµν)[p](δµνδλη+δµλδνη+δµηδνλ).

Observing that

(Dληhµν)[p](δµνδλη) = (4Trh)[p]

(Dληhµν)[p](δµλδνη + δµηδνλ) = 2
∑
µν

(Dµνhµν)[p],

we can write∫
S2
Dλη(Trh)[p]ΘλΘη − 3(Dληhµν)[p]ΘλΘηΘµΘνdΣ0 =

8π
15

(4Trh)[p]− 8π
5

∑
µν

(Dµνhµν)[p].

We still have to study the last integral:

2
∫

S2

[
(DηAµµλ)[p]ΘηΘλ−(DηAµνλ)[p]ΘηΘµΘνΘλ

]
dΣ0 =

8π
3

(DλAµµλ)[p]−8π
15

(DηAµνλ)[p](δηµδνλ+δηνδµλ+δηλδµν).

Recalling that Aµνλ := [Dµhνλ +Dλhµν −Dνhλµ], we have

8π
3
Dλ(Aµµλ)[p] =

8π
3

[D2
λµhνλ +D2

λλhµµ −D2
λµhλµ] =

8π
3
D2

λλhµµ

=
8π
3
4 Trh(p)

and, with the same trick,

−8π
15
Dη(Aµνλ)[p](δηµδνλ + δηνδµλ + δηλδµν) = −8π

15
4 Trh− 16π

15

∑
µν

D2
µνhµν .

Collecting the previous formulas, we finally obtain

Iε(Sρ
p) = 16π − 8π

3
ρ2ε
[∑

µν

(D2
µνhµν)[p]−4Trh)[p]

]
+ o(ρ2)ε+ o(ε).
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Remark 3.7. If Rgε
(p) is the scalar curvature of gε = δ + εh at p, then one has

Rgε(p) = εR1(p) + o(ε).

For the proof see [AM] pag. 80.
It follows that the first non constant term in the expansion of the Willmore functional on standard spheres
of small radius is the scalar curvature of gε. This fact is consistent with the expansion (7) of the functional
on geodesic spheres of small radius.

4 The finite dimensional reduction

In this section we want to prove that the perturbative method described in Section 2.1 can be applied
to our problems of existence and non-existence of critical points: we will take Theorem 2.1 as model and
we will prove it for our special cases. In the first subsection it is studied the case of perturbed standard
spheres Sρ

p(w) immersed in (R3, gε) and in the second subsection the case of perturbed geodesic spheres
Sp,ρ(w) of small radius immersed in the Riemannian manifold (M, g).

4.1 The finite dimensional reduction for Iε(S
ρ
p(w))

Recall that Iε is the Willmore functional with ambient manifold R3 endowed with the metric gε = δ+ εh,
so we explicitly observe that I0 is the Willmore functional in the euclidean space R3. Thanks to (1),
the standard spheres Sρ

p are critical points of I0 (more, they are the points of global minimum); hence
I0 possesses a finite dimensional critical manifold Z ∼= R3 ⊕ R+, in the sense that we identify Sρ

p with
(p, ρ) ∈ R3 ⊕ R+.

NOTATION: In this Subsection we denote
· P the orthogonal projection

P : L2(S2) → Ker[4S2(4S2 + 2)].

Of course it is defined because Ker[4S2(4S2 + 2)] is finite dimensional, hence closed.
· B(0, r) the ball of center 0 and radius r in C4,α(S2)⊥.

Our goal is to find p, ρ and w such that I ′ε(S
ρ
p(w)) = 0. Of course such a sphere satisfies the equation

(called auxiliary equation)
PI ′ε(S

ρ
p(w)) = 0.

The next Lemma ensures the existence of solutions for the auxiliary equation.

Lemma 4.1. For each compact subset Zc ⊆ R3 ⊕ R+, there exist ε0 > 0 and r > 0 with the following
property: for all |ε| ≤ ε0 and (p, ρ) ∈ Zc, the auxiliary equation PI ′ε(S

ρ
p(w)) = 0 has unique solution

w = wε(p, ρ) ∈ B(0, r) ⊆ C4,α(S2)⊥ such that:
1) the map wε(., .) : Zc → C4,α(S2)⊥ is of class C1

2) ‖wε(p, ρ)‖C4,α(S2) → 0 for ε→ 0 uniformly with respect to (p, ρ) ∈ Zc;
3) more precisely ‖wε(p, ρ)‖C4,α(S2) = O(ε) for ε→ 0 uniformly in (p, ρ) ∈ Zc.

Proof. Using the results in [PV], we wrote the differential of the Willmore functional as in equation
(12). If the ambient manifold is (R3, gε), with an expansion on ε one has

I ′ε(S
ρ
p(w)) = I ′0(S

ρ
p(w)) + εG(ε, Sρ

p(w))

where G is a function on Sρ
p(w) (so via the immersion it is a function on S2) bounded as ε→ 0; observe

that G depends on (ε, p, ρ, w,Dw,D2w,D3w,D4w,Θ) where Diw denotes the collection of the derivatives
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of order i of w with respect to the coordinate vector fields on S2.
Letting Rp,ρ(w) := I ′0(S

ρ
p(w))− I ′′0 (Sρ

p)[w], the auxiliary equation PI ′ε(S
ρ
p(w)) = 0 becomes

(33) PI ′′0 (Sρ
p)[w] + PRp,ρ(w) + εPG(ε, Sρ

p(w)) = 0.

From Remark 3.3 we have
I ′′0 (Sρ

p)[w] =
2
ρ3
4S2 (4S2 + 2)[w].

Observe that P (I ′′0 |C4,α(S2)⊥) = I ′′0 |C4,α(S2)⊥ and

I ′′0 |C4,α(S2)⊥ : C4,α(S2)⊥ → C0,α(S2)⊥

is invertible with continuous inverse.
In fact by Schauder estimates (see [Jost] pag. 264 e pag. 274), if L is an elliptic operator of second order
on S2, f ∈ Ck,α(S2) and u ∈ Ck+2,α are such that

Lu = f,

hence there exists a constant C such that

‖u‖Ck+2,α(S2) ≤ C(‖f‖Ck,α(S2) + ‖u‖L2(S2)).

In our case u, f ∈ Ker[L]⊥, so the solution u is unique with ‖u‖L2(S2) ≤ C‖f‖L2(S2); hence we es-
timate ‖u‖Ck+2,α(S2) with ‖f‖Ck,α(S2). Applying the reasoning twice to 4S2(4S2 + 2)u = f with
u, f ∈ Ker[4S2(4S2 + 2)]⊥ we arrive to the desired estimate:

‖u‖C4,α(S2) ≤ C‖f‖C0,α(S2),

which means that I ′′0 (Sρ
p)−1 exists and is bounded.

Thanks to this observation, the auxiliary equation (33) is equivalent to the fixed point problem

(34) w = Fε,p,ρ(w) := −I ′′0 (Sρ
p)−1[εPG(ε, Sρ

p(w)) + PRp,ρ(w)].

Once the compact Zc ⊆ R3 ⊕ R+ is fixed, we want to show the existence of ε0 > 0, r > 0 such that, for
all |ε| ≤ ε0 and (p, ρ) ∈ Zc, Fε,p,ρ is a contraction of B(0, r) ⊂ C4,α(S2)⊥ in itself.

• Let us show the existence of ε and r small enough such that

Fε,p,ρ : B(0, r) → B(0, r).

◦ First let us study the second summand of (34): Rp,ρ(w) := I ′0(S
ρ
p(w)) − I ′′0 (Sρ

p)[w]. From Remark
3.3 we have

(35) Rp,ρ(w) = I ′0(S
ρ
p(w))− I ′′0 (Sρ

p)[w] =
1
ρ3
Q(2)(4)

p (w).

The estimate (5), tell us that for all w1, w2 ∈ B(0, 1) ⊂ C4,α(S2)⊥

(36) ‖Rp,ρ(w1)−Rp,ρ(w2)‖C0,α(S2) ≤ C(‖w1‖C4,α(S2) + ‖w2‖C4,α(S2))‖w1 − w2‖C4,α(S2).

Where the constant C depends on the compact Zc ⊆ R3 ⊕ R+.
◦ The first summand is a little more delicate.

We want to show the existence of a constant C such that

(37) ‖w‖C4,α(S2) ≤ 1 ⇒ ‖G(ε, Sρ
p(w))‖C0,α(S2) ≤ C.

As noticed above, G(ε, Sρ
p(w)) is a function on S2 which depends on (ε, p, ρ, w,Dw,D2w,D3w,D4w,Θ).

For ‖w‖C4,α(S2) small enough, the dependence on the first eight terms is smooth while the dependence
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on Θ is not only direct (w is function of Θ) and needs a little care; however the direct (or partial if we
think in terms of partial derivative) dependence is smooth and the total dependence (in the sense of total
derivative) is a least continuous. Once the compact Zc 3 (p, ρ) is fixed we can bound the derivatives of w
if ‖w‖C4,α(S2) ≤ 1. In this way G(ε, Sρ

p(w)) is a continuous function on a compact set, so it is bounded:

‖G(ε, Sρ
p(w))‖C0(S2) ≤ C.

About the Hölder regularity, by the Lagrange mean value Theorem, we have for all Θ, Θ̄ ∈ S2

|G(Θ)−G(Θ̄)|
|Θ− Θ̄|α

=
|G
(
ε, p, ρ, w(Θ), Dw(Θ), D2w(Θ), D3w(Θ), D4w(Θ),Θ

)
|Θ− Θ̄|α

−G
(
ε, p, ρ, w(Θ̄), Dw(Θ̄), D2w(Θ̄), D3w(Θ̄), D4w(Θ̄), Θ̄

)
|

|Θ− Θ̄|α

=
|(∇G) ·

(
0, 0, 0, w(Θ)− w(Θ̄), Dw(Θ)−Dw(Θ̄), D2w(Θ)

|Θ− Θ̄|α

−D2w(Θ̄), D3w(Θ)−D3w(Θ̄), D4w(Θ)−D4w(Θ̄),Θ− Θ̄
)
|

|Θ− Θ̄|α

≤ C‖w‖C4,α(S2) + C‖Θ− Θ̄‖1−α

≤ C.

This completes the proof of the estimate (37).
Collecting the estimates (36) and (37), we have

‖Fε,p,ρ(w)‖C4,α(S2) = ‖PI ′′0 (Sρ
p)−1[εPG(ε, Sρ

p(w)) + PRp,ρ(w)]‖C4,α(S2)

≤ ‖PI ′′0 (Sρ
p)−1‖

(
‖εPG(ε, Sρ

p(w))‖C0,α(S2) + ‖PRp,ρ(w)‖C0,α(S2)

)
≤ ‖PI ′′0 (Sρ

p)−1‖
(
Cε+ C‖w‖2C4,α(S2)

)
.

Chosen r and ε small enough it is clear that Fε,p,ρ : B(0, r) → B(0, r).

• Let us show that fixed Zc, for ε > 0 and r > 0 small enough,

Fε,p,ρ : B(0, r) → B(0, r) is a contraction.

Rp,ρ(w) has already been estimated in the right way, let us estimate G(ε, Sρ
p(w)).

Again by the mean value Theorem

‖G(ε, Sρ
p(w1))−G(ε, Sρ

p(w2))‖C0(S2) ≤ ‖G
(
ε, p, ρ, w1(Θ), Dw1(Θ), D2w1(Θ), D3w1(Θ), D4w1(Θ),Θ

)
−G
(
ε, p, ρ, w2(Θ), Dw2(Θ), D2w2(Θ), D3w2(Θ), D4w2(Θ),Θ

)
‖C0(S2)

≤ ‖(∇G) ·
(
0, 0, 0, w1(Θ)− w2(Θ), Dw1(Θ)−Dw2(Θ), D2w1(Θ)

−D2w2(Θ), D3w1(Θ)−D3w2(Θ), D4w1(Θ)−D4w2(Θ), 0
)
‖C0(S2)

≤ C‖w1 − w2‖C4(S2).

In order to estimate the Hölder regularity we proceed in the same way; to simplify the notation let
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us call G(ε, w1) := G(ε, Sρ
p(w1)) and Dα the collection of the derivatives up to order 4.

‖G(ε, w1)(Θ)−G(ε, w2)(Θ)− (G(ε, w1)(Θ̄)−G(ε, w2)(Θ̄))‖
‖Θ− Θ̄‖α

=
‖∇G(ξ(Θ)) · (Dα(w1 − w2)(Θ))−∇G(ξ(Θ̄)) · (Dα(w1 − w2)(Θ̄))‖

‖Θ− Θ̄‖α

add ±∇G(ξ(Θ)) · (Dα(w1 − w2)(Θ̄))

≤ ‖∇G(ξ(Θ)) · (Dα(w1 − w2)(Θ)−Dα(w1 − w2)(Θ̄))‖
‖Θ− Θ̄‖α

+
‖Dα(w1 − w2)(Θ̄) · (∇G(ξ(Θ̄))−∇G(ξ(Θ)))‖

‖Θ− Θ̄‖α

≤ C‖w1 − w2‖C4,α(S2) + ‖∇G(ξ(Θ))‖C0,α(S2)‖w1 − w2‖C4(S2)

≤ C‖w1 − w2‖C4,α(S2).

Hence
‖G(ε, Sρ

p(w1))−G(ε, Sρ
p(w2))‖C0,α(S2) ≤ C‖w1 − w2‖C4,α(S2), (38)

where C is a constant depending on Zc ⊂ R3 ⊕ R+ but not on ε.
Collecting (36) and (38) we obtain

‖Fε,p,ρ[w1]− Fε,p,ρ[w2]‖C4,α ≤ ‖PI ′′0 (Sρ
p)−1‖

(
ε‖PG(ε, Sρ

p(w1))− PG(ε, Sρ
p(w2))‖C0,α(S2)

+‖PRp,ρ(w1)− PRp,ρ(w2)‖C0,α(S2)

)
≤ ‖PI ′′0 (Sρ

p)−1‖
(
Cε‖w1 − w2‖C4,α(S2) +

C(‖w1‖C4,α(S2) + ‖w2‖C4,α(S2))‖w1 − w2‖C4,α(S2)

)
≤ ‖PI ′′0 (Sρ

p)−1‖
(
Cε‖w1 − w2‖C4,α(S2) + 2rC‖w1 − w2‖C4,α(S2)

)
.

We can at least conclude that, fixed Zc ⊂ R3 ⊕ R+ 3 (p, ρ), there exist ε0 and r small enough such that

Fε,p,ρ : B(0, r) → B(0, r)

is a contraction for all |ε| ≤ ε0 e (p, ρ) ∈ Zc.
So for |ε| < ε0, ∀(p, ρ) ∈ Zc there exists wε(p, ρ) ∈ C4,α(S2)⊥ such that wε(p, ρ) = Fε,p,ρ(wε(p, ρ)), or

equivalently which solves the auxiliary equation

PI ′ε(S
ρ
p(wε(p, ρ))) = 0.

• Regularity for wε(p, ρ): fixed w ∈ B(0, r), the map

(ε, p, ρ) 7→ Fε,p,ρ(w)

is continuous in (ε, p, ρ), so the fixed point wε(p, ρ) is a continuous function in these parameters ( for the
Contraction Mapping Theorem depending on parameters look [Br] pag. 22, 23). For the C1 regularity
of w with respect to (p, ρ) see [AMN] pag. 447− 449.

• Behaviour of wε(p, ρ) when ε→ 0:
For ε = 0 the fixed point is wε(p, ρ) = 0. By uniform continuity of ‖wε(p, ρ)‖C4,α(S2) on compact sets in
the variables (ε, p, ρ) we have

lim
ε→0

‖wε(p, ρ)‖C4,α(S2) = 0

uniformly in (p, ρ) ∈ Zc.
Let us show that wε(p, ρ) not only tends to 0 but wε(p, ρ) = O(ε) uniformly in (p, ρ) ∈ Zc. From Remark
3.3, Rp,ρ(w) = I ′0(S

ρ
p(w))− I ′′0 (Sρ

p)[w] = 1
ρ3Q

(2)(4)(w), so dividing by ε the auxiliary equation (33) we get

(39) PI ′′0 (Sρ
p)
[
w

ε

]
+

1
ερ3

Q(2)(4)(w) = −PG(ε, Sρ
p(w)).
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We have already observed that the right hand side is bounded in C0,α norm for |ε| ≤ ε0.
Now the left hand side: from limε→0 ‖wε(p, ρ)‖C4,α = 0 uniformly in (p, ρ) ∈ Zc and from the estimate
(see (5))

‖Q(2)(4)(w)‖C0,α(S2) ≤ C‖w‖2C4,α ,

it follows that the second summand is of higher order than the first one; so for ε → 0, we have that
PI ′′0 (Sρ

p)[w
ε ] is bounded in C0,α norm and, by Schauder estimates, w

ε is bounded in C4,α.
We can conclude that

‖wε(p, ρ)‖C4,α = O(ε)

uniformly in Zc.

Thanks to this Lemma, fixed the compact subset Zc ⊂ R3 × R+, we can define the C1 function
Φε : Zc → R

(40) Φε(p, ρ) := Iε(Sρ
p(wε(p, ρ))).

Using Theorem 2.1 as model, let us prove the following

Lemma 4.2. Fixed a compact set Zc ⊆ R3 ⊕ R+, for |ε| ≤ ε0 consider the functional Φε : Zc → R.
Assume that, for ε small enough, Φε has a critical point (pε, ρε) ∈ Zc. Then Sρε

pε
(wε(pε, ρε)) is a critical

point of Iε.

Proof. Recall that the L2-differential of the Willmore functional on the hypersurface Sρ
p(w) can be

represented by the function I ′ε(S
ρ
p(w)) ∈ L2(S2) (just using the formula of [PV] and the parametrization

of Sρ
p(w)). Our goal is to show that I ′ε(S

ρε
pε

(wε(pε, ρε))) = 0. From Lemma 4.1 we already know that
PI ′ε(S

ρε
pε

(wε(pε, ρε))) = 0. Let qε
i , i = 1, . . . , 4 denote an orthonormal frame for Ker[4S2(4S2 + 2)] ⊂

L2(S2) (which is the subspace of constant and affine functions on S2). We can write

(41) I ′ε(S
ρε
pε

(wε(pε, ρε))) =
4∑

i=1

Ai,εq
ε
i ,

where

(42) Ai,ε =
(
I ′ε(S

ρε
pε

(wε(pε, ρε))), qε
i

)
L2(S2)

.

We have to show that Ai,ε = 0 for 1 ≤ i ≤ 4.
By assumption, (pε, ρε) is a critical point of the map (p, ρ) 7→ Φε(p, ρ) := Iε(Sρ

p(wε(p, ρ))). Varying the ith

coordinate, Sρ
p(wε(p, ρ)) describes a curve of immersed spheres in R3. The derivative ∂iS

ρ
p(wε(p, ρ))|(pε,ρε,wε(pε,ρε))

is a vector field in R3 along the surface Sρε
pε

(wε(pε, ρε)). To compute the derivative of the Willmore func-
tional Iε we are only interested in the orthogonal (to Sρε

pε
(wε(pε, ρε))) component of ∂iS

ρ
p(wε(p, ρ))|(pε,ρε,wε(pε,ρε))

(the tangential part gives only a reparametrization of the surface) which can be identified with a function
Di[Sρ

p(wε(p, ρ))]|(pε,ρε,wε(pε,ρε)) times the unit normal vector.
The parametrization of Sρ

p(wε(p, ρ)) is given by

p+ ρ
(
1− w(p, ρ)[Θ]

)
Θ = p+ ρΘ− ρw(p, ρ)[Θ]Θ = Sρ

p(Θ)− ρw(p, ρ)[Θ]Θ.

From Lemma 4.1, ‖wε(p, ρ)‖C4,α(S2) = O(ε) for ε→ 0, so the normal vector to Sρ
p(wε(p, ρ)) is Θ +O(ε).

It follows that

(43) Di[Sρ
p(wε(p, ρ))] = qε

i −Di(ρw(p, ρ)) +O(ε),

where Di(ρw(p, ρ)) denotes the derivative with respect to the ith coordinate. Now from the fact that
(pε, ρε) is a critical point of Φε, we have

0 =
∫

Sρε
pε (wε(pε,ρε))

(
I ′ε(S

ρε
pε

(wε(pε, ρε))) Di[Sρ
p(wε(p, ρ))]|(pε,ρε,wε(pε,ρε))

)
dΣε.
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From the fact that ‖wε(p, ρ)‖C4,α(S2) = O(ε),

= ρ2
ε

(
I ′ε(S

ρε
pε

(wε(pε, ρε))), Di[Sρ
p(wε(p, ρ))]|(pε,ρε,wε(pε,ρε))

)
L2(S2)

+O(ε).

From (43), (42) and using (41)

(44) = ρ2
εAi,ε − ρ2

ε

∑
j

Aj,ε

(
qε
j , Di(ρεw(pε, ρε))

)
L2(S2)

+O(ε) 1 ≤ i ≤ 4.

This is a 4×4 homogeneous linear system in Ai,ε with matrix ρ2
εδij−ρ2

ε

(
qε
j , Di(ρεw(pε, ρε))

)
L2(S2)

+O(ε);
in order to conclude Ai,ε = 0 for 1 ≤ i ≤ 4 it is sufficient to show that the matrix is nonsingular. From
the orthogonality condition

(
wε(pε, ρε), qε

j

)
L2(S2)

= 0, j = 1 . . . 4, differentiating we get(
Diwε(pε, ρε), qε

j

)
L2(S2)

+
(
wε(pε, ρε), Diq

ε
j

)
L2(S2)

= 0, i, j = 1, . . . , 4.

From limε→0 ‖wε(pε, ρε)‖C4,α(S2) = 0; we can conclude

lim
ε→0

(
qε
j , Di(ρεw(pε, ρε))

)
L2(S2)

= 0.

By the continuity of the determinant and observing that ρε is bounded away from 0 (by assumption
(pε, ρε) ∈ Zc compact set of R3 × R+) we get Det[ρ2

εδij + ρ2
ε

(
qε
j , Di(ρεw(pε, ρε))

)
L2(S2)

+ O(ε)] 6= 0 for ε
small enough; hence the thesis.

In order to find critical points of Iε we are reduced to study stationary points of the reduced functional
Φε(p, ρ).
Using the decay behaviour of wε as ε→ 0, we can further simplify the problem:

Lemma 4.3. Fixed the compact Zc ⊆ R3 ⊕ R+, the reduced functional Φε can be expanded as

(45) Φε(p, ρ) = Iε(Sρ
p) + o(ε)

where the remainder is o(ε) uniformly on the compact Zc.

Proof. Let us write the functional as Iε(Sρ
p(w)) = I0(Sρ

p(w)) +G(ε, Sρ
p(w)). From the formula (7) we

observe that
I0(Sρ

p(w))− I0(Sρ
p) = Q(2)(2)

p (w),

hence for the estimate (5)
‖I0(Sρ

p(w))− I0(Sρ
p)‖C0,α ≤ C‖w‖2C4,α

and from 3) of Lemma 4.1
‖I0(Sρ

p(w))− I0(Sρ
p)‖C0,α = o(ε)

uniformly on Zc.
With similar computations to those of the proof of Lemma 4.1, it is possible to show that

‖G(ε, Sρ
p(wε(p, ρ)))−G(ε, Sρ

p)‖C0,α = o(ε)

uniformly in Zc.
Now we can expand Φε(p, ρ):

Φε(p, ρ) = Iε(Sρ
p(wε(p, ρ)))

= I0(Sρ
p(wε(p, ρ))) +G(ε, Sρ

p(wε(p, ρ)))
= I0(Sρ

p) +G(ε, Sρ
p) + o(ε)

= Iε(Sρ
p) + o(ε).

The last Lemma suggests to study Iε(Sρ
p), that is the Willmore functional on standard spheres Sρ

p

relative to the perturbed metric gε = δ + εh. Exactly what we did in the previous Section (Lemma 3.5).
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4.2 The finite dimensional reduction for I(Sp,ρ(w))

NOTATION. In this subsection, the functional space will be C4,α(S2)⊥: the perturbation w will be an
element of C4,α(S2)⊥ and B(0, r) will denote the ball of center 0 and radius r in C4,α(S2)⊥.

Lemma 4.4. Fixed a compact subset Zc ⊆ M, there exist ρ0 > 0, r > 0 and a map w(.,.) : Zc ×
[0, ρ0] → C4,α(S2)⊥, (p, ρ) 7→ wp,ρ such that if Sp,ρ(w) is a critical point of the Willmore functional I
with (p, ρ, w) ∈ Zc × [0, ρ0]×B(0, r) then w = wp,ρ.
Moreover the map w(.,.) satisfies the following properties:
· the map (p, ρ) 7→ wp,ρ is C1,
· ‖wp,ρ‖C4,α(S2) = O(ρ2) as ρ→ 0 uniformly for p ∈ Zc,
· ‖ ∂

∂ρwp,ρ‖L2(S2) = O(ρ) as ρ→ 0 uniformly for p ∈ Zc.

Proof. First fix a compact subset Zc ⊆M ; the point p will be an element of Zc. If

I ′(Sp,ρ(w)) = 0 (equality in L2(S2)),

setting P : L2(S2) → Ker[4S2(4S2 + 2)]⊥ the orthogonal projection, a fortiori we have

PI ′(Sp,ρ(w)) = 0;

that is, from (11),

(46) P

(
4S2(4S2 + 2)w +Op(ρ2) + ρ2L(4)

p (w) +Q(2)(4)
p (w)

)
= 0.

Since4S2(4S2+2) is invertible on the space orthogonal to the Kernel and w ∈ C4,α(S2)⊥ := Ker[4S2(4S2+
2)]⊥ ∩ C4,α(S2), setting

K := [4S2(4S2 + 2)]−1 : Ker[4S2(4S2 + 2)]⊥ ⊆ L2(S2) → Ker[4S2(4S2 + 2)]⊥,

the equation (46) is equivalent to the fixed point problem

(47) w = K[Op(ρ2) + ρ2L(4)
p (w) +Q(2)(4)

p (w)] = Fp,ρ(w).

The projection in the right hand side is included.
We want to solve this fixed point problem using the Contraction Mapping Theorem.

By Schauder estimates,

K = [4S2(4S2 + 2)]−1 : C0,α(S2)⊥ → C4,α(S2)⊥

is a bounded linear operator (see the proof of Lemma 4.1).
Let us study the three summands of the right hand side separately.

• Op(ρ2): its C0,α(S2) norm is easily controlled by a constant times ρ2:

(48) ‖Op(ρ2)‖C0,α ≤ C1ρ
2.

• ρ2L
(4)
p (w) is a linear function of w and its derivatives up to 4◦ order with C∞(S2) coefficients.

Taken w1, w2 ∈ C4,α(S2)⊥, by definition it satisfies the estimate

(49) ‖L(4)
p (w1)− L(4)

p (w2)‖C0,α ≤ C2‖w1 − w2‖C4,α .

• Q
(2)(4)
p (w) is a function at least quadratic in w and its derivatives up to 4◦ order with coefficients

in C∞(S2). Taken w1, w2 ∈ C4,α(S2)⊥, by definition

(50) ‖Q(2)(4)
p (w1)−Q(2)(4)

p (w2)‖C0,α ≤ C3(‖w1‖C4,α + ‖w2‖C4,α)‖w1 − w2‖C4,α
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when ||wi||C4(S2) ≤ 1, i = 1, 2.
Now we can show that Fp,ρ of the equation (47) is a contraction on a ball B(0, r) ⊂ C4,α(S2)⊥ small

enough.
Thanks to the continuity of K : C0,α(S2)⊥ → C4,α(S2)⊥ and the estimates (48),(49),(50), taken ρ and r
small enough, for ‖w‖C4,α ≤ r we have ‖Fp,ρ(w)‖C4,α ≤ r, that is

Fp,ρ : B(r) ⊂ C4,α⊥ → B(r).

Moreover

‖Fp,ρ(w1)− Fp,ρ(w2)‖C4,α = ‖K‖[ρ2(L(4)
p (w1)− L(4)

p (w2)) + (Q(2)(4)
p (w1)−Q(2)(4)

p (w2))]‖C0,α

≤ ‖K‖
(
ρ2‖L(4)

p (w1)− L(4)
p (w2)‖C0,α + ‖Q(2)(4)

p (w1)−Q(2)(4)
p (w2)‖C0,α

)
≤ ‖K‖

(
ρ2C2‖w1 − w2‖C4,α + C3(‖w1‖C4,α + ‖w2‖C4,α)‖w1 − w2‖C4,α

)
.

Hence for p ∈ Zc, ρ and r small enough Fp,ρ is a contraction and there exists a unique fixed point
wp,ρ ∈ B(0, r). It is equivalent to say that there exist ρ0 > 0 and r > 0 such that

PI ′(Sp,ρ(w)) = 0

has w = wp,ρ as unique solution in B(0, r). This proves the first part of the thesis.
· The argument about the regularity is exactly the same as in Lemma 4.1 so we are left to study the

behaviour of wp,ρ for ρ→ 0.
For ρ = 0 the fixed point equation is w = K[Q(2)(4)

p (w)] which has unique (in B(0, r)) solution wp,0 = 0.
Since w is continuous in (p, ρ),

(51) lim
ρ→0

wp,ρ = 0

uniformly for p ∈ Zc.
· Let us show that wp,ρ = O(ρ2) for ρ→ 0.

From the equation (46), omitting the projection P , we have

4S2(4S2 + 2)w +Q(2)(4)
p (w) = Op(ρ2) + ρ2L(4)

p (w).

From (51) and thanks to the estimate (50), the quadratic term is of higher order as ρ → 0 so it can be
neglected.
Applying K =

(
4S2 (4S2 + 2)

)−1 to both sides and passing to the lim sup of the norms we get

lim sup
ρ→0

‖w‖C4,α ≤ ‖K‖ lim sup
ρ→0

‖Op(ρ2) + ρ2L(4)
p (w)‖C0,α .

So dividing both sides by ρ2

lim sup
ρ→0

‖w‖C4,α

ρ2
≤ ‖K‖ lim sup

ρ→0
‖Op(ρ0) + L(4)

p (w)‖C0,α

≤ C.

Since the estimate is uniform in Zc, we can conclude that there exists a constant C such that for all
p ∈ Zc and for ρ small enough

(52) ‖wp,ρ‖C4,α ≤ Cρ2.

· Let us show that ‖ ∂
∂ρwp,ρ‖L2(S2) = O(ρ) as ρ→ 0 uniformly in Zc.

By construction, wp,ρ solves the auxiliary equation PI ′(Sp,ρ(wp,ρ)) = 0 which can be written, using (11),
as

P
[ 2
ρ3
4S2(4S2 + 2)wp,ρ +Op

(1
ρ

)
+

1
ρ
L(4)

p (wp,ρ) +
1
ρ3
Q(2)(4)

p (wp,ρ)
]

= 0.
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In the following we leave unsaid the projection P . Each summand of the left hand side is differentiable
in L2(S2) with respect to ρ; differentiating we get

2
ρ3
4S2(4S2 + 2)

[ ∂
∂ρ
wp,ρ

]
+

1
ρ
L(4)

p

( ∂
∂ρ
wp,ρ

)
+

1
ρ3
L(4)

p (wp,ρ)L(4)
p

( ∂
∂ρ
wp,ρ

)
=

=
6
ρ4
4S2(4S2+2)w+

1
ρ2
L(4)

p (wp,ρ)+
1
ρ

( ∂
∂ρ
L(4)

p

)
(wp,ρ)+

3
ρ4
Q(2)(4)

p (wp,ρ)+
1
ρ3

( ∂
∂ρ
Q(2)(4)

p

)
(wp,ρ)+Op

( 1
ρ2

)
.

Observe that ∂
∂ρL

(4)
p and ∂

∂ρQ
(2)(4)
p are still functions of the same kind. So, remembering that ‖wp,ρ‖C4,α(S2) =

Op(ρ2) and multiplying both sides by ρ3, we get

24S2(4S2 + 2)
[ ∂
∂ρ
wp,ρ

]
+ ρ2L(4)

p

( ∂
∂ρ
wp,ρ

)
+ L(4)

p (wp,ρ)L(4)
p

( ∂
∂ρ
wp,ρ

)
= Op(ρ).

Observe that the second and third summand are of higher order as ρ → 0. From the fact that Op(ρ) is
an O(ρ) uniformly on the compact subset Zc and using the continuity of [4S2(4S2 + 2)]−1, we obtain
the claim.

This Lemma is the key tool to show the non existence result: it implies that fixed a compact Zc ⊂M ,
for small ρ we can consider the function Φ(p, ρ) := I(Sp,ρ(wp,ρ)). Moreover if -for p̄ ∈ Zc and ρ̄, w small
enough- Sp̄,ρ̄(w) is a critical point of I, then w = wp̄,ρ̄ and a fortiori (p̄, ρ̄) is a critical point of the
constrained functional Φ. Hence it will be enough to prove that Φ has no critical points.

5 Existence, multiplicity and nonexistence of critical points

5.1 Existence of critical points in (R3, gε)

In this Subsection, using the expansions computed in Subsection 3.2, we want to apply Lemma 4.2 in
order to find critical points of the Willmore functional with ambient manifold (R3, gε).

Proof of Theorem 1.1.
For simplicity let assume R1(p̄) > 0 and ε > 0, the other cases are analogous. From Lemma 3.6 we have
the following expansion for small radius spheres:

|Iε(Sρ
p)− 16π +

8π
3
R1(p)ρ2ε| = |o(ρ2)ε+ o(ε)|.

Choose ρ̄ > 0 and ε > 0 small enough such that

a) |Iε(Sρ̄
p̄)− 16π +

8π
3
R1(p̄)ρ̄2ε| < 1

3
πR1(p̄)ρ̄2ε.

In the sequel ρ̄ is fixed, while ε may be chosen smaller. We want to find a compact K ⊂ R3 ⊕ R+ such
that the point (p̄, ρ̄) is in the interior of K, and on the boundary ∂K we have

b) sup
(p,ρ)∈∂K

|Iε(Sρ
p)− 16π| < 2

3
πR1(p̄)ρ̄2ε

for ε small enough. From the expansion (15), we get

|Iε(Sρ
p)− 16π| ≤ 2ε

∣∣∣ ∫
S2

[
h
(
θ̄1, θ̄1

)
+ h(θ̄2, θ̄2)− 2h(ν0, ν0)− ρ(θ̄µ

1 θ̄
ν
1 + θ̄µ

2 θ̄
ν
2 )νλ

0Aµνλ

]
dΣ0

∣∣∣+ o(ε).

Setting
‖A(p)‖ = sup

X,Y,Z∈R3,1=|X|=|Y |=|Z|
|Aµνλ(p)XµY νZλ|,
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the inequality can be rewritten as

|Iε(Sρ
p)− 16π| ≤ 8ε

∫
S2
‖h(p+ ρΘ)‖dΣ0 + 4ε

∫
S2
ρ‖A(p+ ρΘ)‖ dΣ0 + o(ε).

We want to find ρ large enough such that for all p ∈ R3,

b1) 8ε
∫

S2
‖h(p+ ρΘ)‖dΣ0 <

1
3
πR1(p̄)ρ̄2ε and

b2) 4ε
∫

S2
ρ‖A(p+ ρΘ)‖ dΣ0 <

1
3
πR1(p̄)ρ̄2ε.

Thanks to the decay assumption on h, for all δ, ρ > 0 there exists rδ(ρ) such that

suppδ‖h‖ := {p ∈ R3 : ‖h(p)‖ ≥ δ} ⊆ B0,rδ(ρ) and

supp δ
ρ
‖A‖ :=

{
p ∈ R3 : ‖A(p)‖ ≥ δ

ρ

}
⊆ B0,rδ(ρ).

Moreover it is easy to show that there exist c1(δ), c2(δ) > 0 such that

(53) rδ(ρ) ≤ c1(δ) + c2(δ)ρ1/α, α > 2.

Now we show that b1) and b2) are satisfied for ρ large enough. Taken a sphere Sρ
p consider the solid angle

subtended by the intersection with B0,rδ(ρ):

Ωρ
p := {Θ ∈ S2 : p+ ρΘ ∈ Sρ

p ∩B0,rδ(ρ)}.

Setting |Ωρ
p| the measure on S2 of Ωρ

p, it is easy to see that

|Ωρ
p| ≤ 4π

(rδ(ρ)
ρ

)2

.

From (53) we get

|Ωρ
p| ≤ 4π

(c1(δ)2
ρ2

+ 2
c1(δ)c2(δ)ρ1/α

ρ2
+
c2(δ)2ρ2/α

ρ2

)
.

Observe that once δ is fixed, limρ→∞ ρ|Ωρ
p| = 0.

We can now get the estimates b1) and b2). Let us start from b1):

8ε
∫

S2
‖h(p+ ρΘ)‖dΣ0 = 8ε

∫
Ωρ

p

‖h(p+ ρΘ)‖dΣ0 + 8ε
∫

S2\Ωρ
p

‖h(p+ ρΘ)‖dΣ0

< 8ε|Ωρ
p| sup

R3
‖h‖+ 32πεδ.(54)

Analogously the estimate b2) is

4ε
∫

S2
ρ‖A(p+ ρΘ)‖dΣ0 = 4ε

∫
Ωρ

p

ρ‖A(p+ ρΘ)‖dΣ0 + 4ε
∫

S2\Ωρ
p

ρ‖A(p+ ρΘ)‖dΣ0

< 4ερ|Ωρ
p| sup

R3
‖A‖+ 16πεδ.(55)

Choose and fix δ such that

(56) 32πεδ <
1
6
πR1(p̄)ρ̄2ε.

Since at δ fixed limρ→∞ ρ|Ωρ
p| = 0, for ρ large enough{

8ε|Ωρ
p| supR3 ‖h‖ < 1

6πR1(p̄)ρ̄2ε and
4ερ|Ωρ

p| supR3 ‖A‖ < 1
6πR1(p̄)ρ̄2ε.
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Collecting the estimates, we can conclude that for ρ large enough b1) and b2) are satisfied.
Now we want to fix the compact K. We search it of the form

KRr := {(p, ρ) ∈ R3 ⊕ R+ :
1
R
≤ ρ ≤ R, |p| ≤ r}

that is a ”cylinder” in R3 ⊕ R+. For R large enough, thanks to b1) and b2), on the upper face of the
cylinder (ρ = R) the condition b) is verified:

(57) |Iε(SR
p )− 16π| < 2

3
πR1(p̄)ρ̄2ε.

On the lower face (ρ = 1/R) we can use the expansion of Lemma 3.6 :

|Iε(S1/R
p )− 16π| =

∣∣∣8π
3
R1(p)

1
R2

ε+ o(1/R2)ε+ o(ε)
∣∣∣.

Taken R large enough and ε small enough, for all p ∈ R3:

(58) |Iε(S1/R
p )− 16π| < 2

3
πR1(p̄)ρ̄2ε,

and b) is satisfied also on the lower face of the cylinder.
Now the lateral face: fix r so large that the spheres of center p with |p| = r and radius ρ = R are
disjoint from B0,rδ(R). Of course also the spheres with the same center and radius ρ < R are disjoint
from B0,rδ(R). Hence on the lateral face we have

|Iε(Sρ
p)− 16π| ≤ 8ε

∫
S2
‖h(p+ ρΘ)‖dΣ0 + 4ε

∫
S2
ρ‖A(p+ ρΘ)‖ dΣ0 + o(ε)

≤ 32πεδ + 16πεδ + o(ε)(59)

which, using (56) and taken ε small enough, can be bounded by 2
3πR1(p̄)ρ̄2ε.

Collecting the estimates (57), (58), (59) we finally can say that b) is verified taking K = KRr with
R, r large enough and ε small enough. Taking R, r even larger we can assume (p̄, ρ̄) ∈ K.

Fixed the compact K, we can apply the Reduction Method described in the subsection 4.1 and find
critical points of Φε(p, ρ) := Iε(Sρ

p) + o(ε). Since the remainder is of order o(ε) uniformly in (p, ρ) ∈ K,
thanks to b), taken ε small enough we have

(60) sup
(p,ρ)∈∂K

|Φε(p, ρ)− 16π| < 4
3
πR1(p̄)ρ̄2ε,

and from a)

(61) |Φε(p̄, ρ̄)− 16π +
8π
3
R1(p̄)ρ̄2ε| < 2

3
πR1(p̄)ρ̄2ε.

Now we have all the information to show that Φε : K → R has got a global minimum point in the interior
of K. First of all Φε(p̄, ρ̄) < inf(p,ρ)∈∂K Φε(p, ρ):

Φε(p̄, ρ̄) = 16π +
(
Φε(p̄, ρ̄)− 16π +

8
3
πR1(p̄)ρ̄2ε

)
− 8

3
πR1(p̄)ρ̄2

≤ 16π − 8
3
πR1(p̄)ερ̄2 +

2
3
πR1(p̄)ερ̄2

≤ 16π − 6
3
πR1(p̄)ερ̄2.

From (60) it follows

inf
(p,ρ)∈∂K

Φε(p, ρ) > 16π − 4
3
R1(p̄)ερ̄2.
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Hence, as we wanted,
Φε(p̄, ρ̄) < inf

(p,ρ)∈∂KR,δ

Φε(p, ρ)

and the global minimum of Φε is in the interior of K, so it is a critical point of Φε. In other words for ε
small enough the reduced functional Φε has a critical point (pε, ρε); from Lemma 4.2 it follows that the
perturbed sphere Sρε

pε
(wε(pε, ρε)) is a critical point for the Willmore functional Iε.

The case R1(p̄) < 0 is similar, one must take the modulus in the inequalities and observe that Φε has an
interior global maximum instead of a minimum.

Proof of Theorem 1.2.
Let η > 0 be such that R1(p1) > η and R1(p2) < −η. For simplicity assume ε > 0.

Let us repeat the proof of Theorem 1.1 replacing R1(p̄) with η.
Let ρ̄ > 0 and ε > 0 be small enough such that

a1) |Iε(Sρ̄
p1

)− 16π +
8
3
πR1(p1)ερ̄2| = |o(ρ̄2)ε+ o(ε)| < 1

3
πηερ̄2 and

a2) |Iε(Sρ̄
p2

)− 16π +
8
3
πR1(p2)ερ̄2| = |o(ρ̄2)ε+ o(ε)| < 1

3
πηερ̄2.

In the sequel ρ̄ has to be considered as a fixed constant, while ε may be chosen smaller.
Exactly as in Theorem 1.1, one constructs the compact K ⊆ R3 ⊕ R+ such that on the boundary

b) sup
(p,ρ)∈∂K

|Iε(Sρ
p)− 16π| ≤ 2

3
πηρ̄2ε.

Taken the compact large enough, the points (p1, ρ̄), (p2, ρ̄) are in the interior of K. Fixed the compact
K we can apply the Reduction Method and study the reduced functional Φε : K → R. Since Φε(p, ρ) =
Iε(Sρ

p) + o(ε), taken ε small enough

|Φε(p1, ρ̄)− 16π +
8
3
πR1(p1)ερ̄2| <

2
3
πηερ̄2,(62)

|Φε(p2, ρ̄)− 16π +
8
3
πR1(p2)ερ̄2| <

2
3
πηερ̄2,(63)

sup
(p,ρ)∈∂K

|Φε(p, ρ)− 16π| <
4
3
πηρ̄2ε.(64)

Now we can show that the points of global maximum and minimum of Φε : K → R are in the interior of
K. From (62)

Φε(p1, ρ̄) ≤ 16π +
(
Φε(p1, ρ̄)− 16π +

8
3
πR1(p1)ερ̄2

)
− 8

3
πR1(p1)ερ̄2

< 16π +
2
3
πηερ̄2 − 8

3
πR1(p1)ερ̄2

≤ 16π − 6
3
πηερ̄2.

Similarly, using (63)

Φε(p2, ρ̄) > 16π +
6
3
πηερ̄2.

Hence the global minimum (resp. maximum) of Φε on K is less than 16π − 6
3πηερ̄

2 (resp. bigger than
16π + 6

3πηερ̄
2); from the estimate (64) it follows that the points of global maximum and minimum

are in the interior of K so they are critical points of Φε. Call these two distinct points (p1
ε , ρ

1
ε) and

(p2
ε , ρ

2
ε) ∈ R3 ⊕ R+. From Lemma 4.2, the perturbed spheres Sρ1

ε

p1
ε
(wε(p1

ε , ρ
1
ε)) and S

ρ2
ε

p2
ε
(wε(p2

ε , ρ
2
ε)) are

distinct critical points of Iε for ε small enough.
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5.2 Symmetries of the metric and multiplicity results

Since the results of this subsection are rather easy and standard, the proofs will be quite sketchy.
We start this subsection with a general property of the Willmore functional: the invariance under isome-
tries of the ambient manifold.

Theorem 5.1. Let (M, g) be a Riemannian manifold of dimension 3 and (M̊, g̊) a compact, orientable,
isometrically immersed submanifold of dimension 2.
Then the Willmore functional

(65) I(M̊) :=
∫

M̊

H2dΣ

is invariant under isometries of M .

Proof. Fix an isometry φ : M →M ; we have to prove that I(φ(M̊)) = I(M̊).
Fix a point p ∈ M̊ and coordinates xi, i = 1, 2 on a neighbourhood (in M̊) of p; obviously (φ−1)i are
coordinates on a neighbourhood (in φ(M̊)) of φ(p). Of course in these coordinates the first fundamental
form is invariant:

g̊M̊ij
(p) = g̊φ(M̊)ij

(φ(p))

because φ is an isometry. With a simple computation it is possible to show that also the second funda-
mental form is invariant:

h̊M̊ij
(p) = h̊φ(M̊)ij

(φ(p)).

Hence also H := h̊ij g̊
ij is invariant and we get the thesis with an integration.

Remark 5.1. Since the Willmore functional I is intrinsic (i.e. invariant under reparametrizations), the
reparametrizations of the same surface have no geometrical relevance, hence in the sequel we identify two
immersions with the same image.

Theorem 5.2. Let G < Iso(M) be a subgroup of the isometries of M .
Let (M̊, g̊) ↪→ (M, g) be an isometrically immersed compact orientable surface which represents a critical
point for the Willmore functional I. Then the surfaces of the set

G(M̊) := {φ(M̊) : φ ∈ G}

are critical points of I. Moreover, setting

Crit(I) = {M̊ ↪→M : M̊ is a critical point of I}

and StabG(M̊) := {φ ∈ G : φ(M̊) = M̊}, the action of G on M induces an injection from the cosets

G/StabG(M̊) ↪→ Crit(I).

Proof. Fix φ ∈ G. First we want to show that if M̊ is a critical point of I also φ(M̊) ∈ Crit(I). Denote
the normal unit vector to M̊ with ν; the normal unit vector to φ(M̊) is φ∗(ν) and a normal perturbation
to φ(M̊) can be written as

φ(M̊)[t] = φ(M̊) + tfφ∗(ν)

with f ∈ C∞(M̊). For |t| small enough, the sum has to be intended in coordinates (for |t| small enough,
by compactness of M̊ , the points of φ(M̊) and of φ(M̊) + tfφ∗(ν) are in the same chart). With a Taylor
expansion in t, we get

φ(M̊)[t] = φ(M̊ + tfν) + o(t).

By definition, φ(M̊) is a critical point of I if for all f ∈ C∞(M̊) one has d
dtI(φ(M̊)[t]) = 0.

With a Taylor expansion of I,

I(φ(M̊)[t]) = I(φ(M̊ + tfν)) + o(t).
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Hence the derivative in t of the functional is

d

dt
I(φ(M̊)[t])|t=0 = lim

t→0

I(φ(M̊)[t])− I(φ(M̊))
t

= lim
t→0

I(φ(M̊ + tfν))− I(φ(M̊))
t

+ lim
t→0

o(t)
t
.

Of course the second summand is null. Let us consider now the first summand: since φ is an isometry,
from Theorem 5.1 it follows

lim
t→0

I(φ(M̊ + tfν))− I(φ(M̊))
t

= lim
t→0

I(M̊ + tfν)− I(M̊)
t

.

But by assumption M̊ is a critical point, so also the first summand is null for all f ∈ C∞(M̊) and φ(M̊)
is a critical point of I.

For the second part of the corollary, denote φStabG(M̊) the left coset of φ in G. It is sufficient to
observe that the map

ψ : G/StabG(M̊) → Crit(I) ψ(φStabG(M̊)) := φ(M̊)

is well defined and injective.

Now let us apply these results to the studied case of perturbed metric δ + εh in R3.
We know from Theorem 1.1 that, if R1 is not identically null and h is asymptotically null in an appropriate
way, then the Willmore functional Iε, for small ε, has as critical point a certain perturbed sphere Sρ

p(w).
If h has symmetries which do not fix Sρ

p(w), thanks to Corollary 5.2, we can find other critical points.
Let us examine some simple examples:

Example 5.1. h invariant under rotations: Assume that

∀A ∈ SO(3) hA(p)(Av,Aw) = hp(v, w) ∀p, v, w ∈ R3.

It follows that ∀A ∈ SO(3) is an isometry of gε = δ + εh.
From Corollary 5.2, if Sρ

p(w) is a critical point of Iε there is an injection

SO(3)/Stab(Sρ
p(w)) ↪→ Crit(Iε).

In particular, if the center of the sphere p 6= 0, it is easy to see that there is the injection S2 ↪→
SO(3)/Stab(Sρ

p(w)); in this case we have a non countable set of critical points.

Example 5.2. h invariant under rotations around an axis:
Assume there exists an axis r such that the rotations SO(2) around r are isometries of h:

∀A ∈ SO(2) hA(p)(Av,Aw) = hp(v, w) ∀p, v, w ∈ R3.

It follows that ∀A ∈ SO(2) is an isometry of gε = δ + εh.
From Corollary 5.2, if Sρ

p(w) is a critical point of Iε, then there is an injection

SO(2)/Stab(Sρ
p(w)) ↪→ Crit(Iε).

In particular, if the center of the sphere p /∈ r, it is easy to see that Stab(Sρ
p(w)) = {Id}; also in this case

the set of critical points is not countable.

Example 5.3. h even: Assume

hµν(x) = hµν(−x) ∀x ∈ R3.

It is immediate to show that the reflection with respect to the origin is an isometry of gε. If Sρ
p(w) is a

critical point of Iε not invariant under the reflection, then there are at least two critical points.
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Example 5.4. h invariant under reflections with respect to a plane or an axis:
Assume there exists an axis r (or a plane π) such that the reflection A with respect to r (resp. π) is an
isometry of h:

hA(p)(Av,Aw) = hp(v, w) ∀p, v, w ∈ R3.

If Sρ
p(w) is a critical point of Iε not invariant under the reflection, then there are at least two critical

points.

Remark 5.2. Using the method studied in [AMYam] it should be possible to find metrics h (with far
away concentration bumps) such that the critical points of the functional are not invariant under all the
isometries.

5.3 A non existence result in general manifolds

In this subsection we want to prove Theorem 1.3. We start with a Lemma, which asserts that for small
perturbation u ∈ C4,α(S2) and small radius ρ, the perturbed geodesic sphere Sp,ρ(u) can be obtained as
a normal graph on an other geodesic sphere Sp̃,ρ̃ with perturbation w̃ ∈ C4,α⊥: Sp,ρ(u) = Sp̃,ρ̃(w̃).

Lemma 5.3. Let (M, g) be a Riemannian manifold of dimension three and fix p̄ ∈M . Then there exist
B(0, r1) ⊂ C4,α(S2), ρ1 > 0, a compact neighbourhood U of p̄ and three continuous functions
· p(.) : B(0, r1) → U ⊂M ,
· ρ(., .) : (0, ρ1)×B(0, r1) → R+,
· w(., .) : U ×B(0, r1) → C4,α(S2)⊥,
such that for all ρ < ρ1 and u ∈ B(0, r1), all the perturbed geodesic spheres Sp̄,ρ̄(u) can be realized as

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)].

Proof. Recall that fixed p̄ ∈M and a compact neighbourhood U of p̄ there exist ρ′ > 0 such that the
exponential map Expp is defined on the ball Bρ′ ⊂ TpM for all p ∈ U .
Observe that there exist an even smaller neighbourhood U ′ ⊆ U and B(0, r′) ⊂ C4,α(S2) such that for
all p ∈ U ′, u ∈ B(0, r′) and ρ̄ < ρ′ there exists a unique w = w(p, u) ∈ C4,α(S2) such that

Sp̄,ρ̄(u) = Sp,ρ̄(w(p, u)).

Our aim is to show that for u ∈ C4,α(S2) small enough, we can choose p and vary ρ̄ in the right hand
side so that w ∈ C4,α(S2)⊥.

Call P : C4,α(S2) → Ker[4S2 +2] the orthogonal projection; we want to choose p so that P [w(p, u)] =
0. Observe that the map w : U ′ ×B(0, r′) → C4,α(S2), (p, u) 7→ w(p, u) is C1. Of course also the map

F : U ′ ×B(0, r′) → Ker[4S2 + 2], (p, u) 7→ P [w(p, u)]

is C1. We have the following facts:
(i) F (p̄, 0) = 0
(ii) ∂F

∂p (p̄, 0) : Tp̄M → Ker[4S2 + 2] is invertible.
(i) follows from the definitions, let us prove (ii).

Recall that Ker[4S2 +2] is the three dimensional space of affine functions on S2, whose base is made
of the coordinate functions xµ, µ = 1, 2, 3 of R3. Without loss of generality we can assume that U ′ is
contained in a normal coordinate neighbourhood pµ of center p̄. In order to obtain ∂F

∂pµ (p̄, 0), observe
that the infinitesimal generator of the translation of Sp̄,ρ̄ in the direction of ∂

∂pµ is a vector field along
Sp̄,ρ̄ whose component along the normal unit vector Θ is the affine function pµ, so as we claimed

∂F

∂pµ
(p̄, 0) = pµ

and ∂F
∂p (p̄, 0) is invertible.
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By the Implicit Function Theorem there exist a neighbourhood U ′′ ⊂ M of p̄, B(0, r1) ⊂ C4,α(S2)
and a C1 function p(.) : B(0, r1) → U ′′ such that F (p(u), u) = 0, that is P [w(p(u), u)] = 0.

Now it is sufficient to observe that, if w(p(u), u) has a non null component along Ker[4S2 ] =
{constant functions on S2 }, we can make it vanish with a small variation of the radius ρ̄: just
subtract to w its projection on Ker[4S2 ] and choose the appropriate new radius. We denote with
ρ(ρ̄, u) = ρ(ρ̄, w(p(u), u)) ∈ R+ the modified radius and with abuse of notation we still denote with
w(p(u), u) the modified perturbation. A direct check shows that the map ρ(., .) : (0, ρ′)×B(0, r′) → R+

is continuous. At last we can conclude that

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)] with w(p(u), u) ∈ C4,α(S2)⊥.

Now we are in position to prove the non existence result.

Proof of Theorem 1.3.
Since R(p̄) 6= 0, there exists η > 0 and a compact neighbourhood Zc of p̄ such that |R(p)| > η for all
p ∈ Zc.

From Lemma 4.4 there exist ρ0 > 0 and a ball B(0, r) ⊂ C4,α(S2) such that- for w ∈ C4,α⊥ ∩B(0, r),
p ∈ Zc and ρ < ρ0- if the perturbed geodesic sphere Sp,ρ(w) is a critical point of I then w = wp,ρ with
good decay properties as ρ→ 0. Moreover, for p ∈ Zc and ρ < ρ0 we can consider the C1 function

Φ(p, ρ) = I(Sp,ρ(wp,ρ)).

Observe that if Sp̃,ρ̃(wp̃,ρ̃) is a critical point for I then a fortiori (p̃, ρ̃) is a critical point of the constricted
functional Φ(., .).
We have an explicit formula for Φ(p, ρ): from the expansion (7) we get

Φ(p, ρ) = 16π − 8π
3
R(p)ρ2 +

∫
S2

(Q(2)(2)
p (wp,ρ) + ρ2L(2)

p (wp,ρ))dΘ +Op(ρ3).

Differentiating it with respect to ρ and remembering (from Lemma 4.4) that as ρ→ 0 one has ‖wp,ρ‖C4,α =
O(ρ2) and ‖ ∂

∂ρwp,ρ‖L2 = O(ρ) uniformly for p ∈ Zc, we get

∂

∂ρ
Φ(p, ρ) = −16π

3
R(p)ρ+O(ρ2)

and

(66)
∣∣∣ ∂
∂ρ

Φ(p, ρ)
∣∣∣ > 16π

3
ηρ+O(ρ2) for all p ∈ Zc.

Where the remainder O(ρ2) is uniform on Zc.
From this equation we can say that there exist ρ2 ∈]0, ρ0[< such that for all p ∈ Zc and ρ < ρ2, (p, ρ) is
not a critical point of Φ.
Hence

∀w ∈ C4,α(S2)⊥ ∩B(0, r), ρ < ρ2 and p ∈ Zc(67)
⇒ Sp,ρ(w) is NOT a critical point of I.

Now from Lemma 5.3, if u ∈ B(0, r1) ⊂ C4,α(S2) and ρ̄ < ρ1, any perturbed sphere Sp̄,ρ̄(u) can be
realized as

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)], w(p(u), u) ∈ C4,α(S2)⊥.

From the continuity of the functions p(.), ρ(., .) and w(., .), there exist ρ3 ∈]0,min(ρ1, ρ2)[ and r2 ∈
]0,min(r, r1)[ such that for all u ∈ B(0, r2) ⊂ C4,α(S2) and ρ̄ < ρ3 we have:

· p(u) ∈ Zc,
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· ρ(ρ̄, u) < ρ2 and
· w(p(u), u) ∈ C4,α(S2)⊥ ∩B(0, r).
It follows that if u ∈ B(0, r2) and ρ̄ < ρ3, the sphere Sp̄,ρ̄(u) can be realized as Sp(u),ρ(ρ̄,u)[w(p(u), u)]

which satisfies the assumptions (67); so it is not a critical point of I.

Remark 5.3. Observe the difference with the flat case: thanks to (1), in R3 the spheres of any radius
are critical points of the Willmore functional I; on the contrary, in the case of ambient metric with non
null scalar curvature we have just shown that the geodesic spheres of small radius are not critical points.

References

[AB1] A. Ambrosetti, M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational ap-
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