ON THE BOUNDARY OF THE ATTAINABLE SET
OF THE DIRICHLET SPECTRUM

LORENZO BRASCO, CARLO NITSCH, AND ALDO PRATELLI

ABSTRACT. Denoting by & C R? the set of the pairs (/\1 (), )\Q(Q)) for all the open sets Q C RV
with unit measure, and by © C RY the union of two disjoint balls of half measure, we give an
elementary proof of the fact that € has horizontal tangent at its lowest point ()\1(6))7 A2 (9))

1. INTRODUCTION

Given an open set Q C RY with finite measure, its Dirichlet-Laplacian spectrum is given by
the numbers A > 0 such that the boundary value problem

—Au = Au in §, u=0 on 0f,

has non trivial solutions. Such numbers A\ are called eigenvalues of the Dirichlet-Laplacian in
2, and form a discrete increasing sequence 0 < A1(2) < A2(2) < A3(Q). .., diverging to +oo
(see [4], for example). In this paper, we will work with the first two eigenvalues A\; and Ay, for
which we briefly recall the variational characterization: introducing the Rayleigh quotient as

B ||VUH%2(Q)

Q(u ) UGHI(Q)v

B ||UH%2(Q)

the first two eigenvalues of the Dirichlet-Laplacian satisfy

M(Q) = min{RQ(u) C e HEQ)\ {0}} ,

A2(€2) = min {Rg(u) cu € HYH(Q)\ {0}, /Qu(a;) uy(x)de = 0} ,

where u; is a first eigenfunction.
We are concerned about the attainable set of the first two eigenvalues A1 and Ao, that is,

&= {9, 2(2) €R? : |0 =wn},

where wy is the volume of the ball of unit radius in RY. Of course, the set £ depends on the
dimension N of the ambient space. The set £ has been deeply studied (see for instance [1, 3, 6]);
an approximate plot is shown in Figure 1. Let us recall now some of the most important known
facts. In what follows, we will always denote by B a ball of unit radius (then, of volume wy),
and by © a disjoint union of two balls of volume wy /2.

Basic properties of £. The attainable set £ has the following properties:
(1) for every (A1, A2) € € and every t > 1, one has (t A1,t X2) € E;
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FI1GURE 1. The attainable set £

2(B) | .
= A1(B) }’

(iii) &€ s horizontally and vertically convex, i.e., for every 0 <t <1

(i)

EC {az > M(B),y > X(0),1<

SHES
>

(xo,y), (x1,y) € E = ((1 —t)zo +tm1,y) €&,
(,90), (z, 1) € E = (w, (1 — t)yo +ty1) € E.

The first property is a simple consequence of the scaling property A;(tQ) = t=2X;(2), valid
for any open set @ C R and any ¢ > 0. The second property is true because, for every open
set 2 of unit measure, the Faber-Krahn inequality ensures A\ (2) > A\1(B), the Krahn-Szego
inequality (see [5, 7, 8]) ensures A2(€2) > X2(O) = A\1(O), and a celebrated result by Ashbaugh
and Benguria (see [2]) ensures

| < A2(92) < A2(B)
A(Q2) — Mi(B)
Finally, the third property is proven in [3]. It has been conjectured also that the set £ is convex,

as it seems reasonable by a numerical plot, but a proof for this fact is still not known.
Thanks to the above listed properties, the set £ is completely known once one knows its
“lower boundary”

Ci={ (M, de) €82 VE <, (1M, tho) ¢ €},

therefore studying £ is equivalent to study C. Notice in particular that 9 consists of the union
of C with the two half-lines

{(t,t): t > X1(0)} and {<t ijg t) > Al(B)}.

Let us call for brevity P and Q the endpoints of C, that is, P = (A\(0),)2(0)) and Q =
(M(B), X2(B)).

The plot of the set £ seems to suggest that the curve C reaches the point @) with vertical

tangent, and the point P with horizontal tangent. In fact, Wolf and Keller in [6, Section 5]
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proved the first fact, and they also suggested that the second fact should be true, providing a
numerical evidence. The aim of the present paper is to give a short proof of this fact.

Theorem. For every dimension N > 2, the curve C reaches the point P with horizontal tangent.

The rest of the paper is devoted to prove this result: the proof will be achieved by exhibiting
a suitable family {Q}.~0 of deformations of © having measure wy and such that

lim da(@ke) - M(0) g (1.1)
=00 1(0) — A1(€)

2. PROOF OF THE THEOREM

Throughout this section, for any given x = (1,...,zx) € RY, we will write z = (21, 2')
where 21 € R and 2/ € RV,
We will make use of the sets {Q.} C RY, shown in Figure 2, defined by

Q. ::{(xl,a:’) ERTXRN L (2 —1+e)? + )22 < 1}
U {(wl,x’) ER™ xRV (1 +1—e)2 4|22 < 1}
=QFuQC.
for every e > 0 sufficiently small. The sets Q. for which we will eventually prove (1.1) will be
rescaled copies of €., in order to have measure wy.

To get our thesis, we need to provide an upper bound to A;(€2) and an upper bound to
A2(€¢); this will be the content of Lemmas 2.1 and 2.2 respectively.

Q- QF

3 3

2¢e

FIGURE 2. The sets Q. = QF UQ_

Lemma 2.1. There exists a constant y1 > 0 such that for every e < 1 it is
M(Q:) € M(B) = e, (2.1)

Proof. Let Bc be the ball of unit radius centered at (1 —¢,0), so that B, C Q. and in particular
QF = B.n{z; > 0}. Let also u be a first Dirichlet eigenfunction of B. with unit L? norm,
and denote by T the region (shaded in Figure 3) bounded by the right circular conical surface
{V2e — €2 — 21 — [2/| = 0} and by the plane {z; = 0}.

Since the normal derivative of u is constantly x on dBZ, we know that

Du(z1,2") = Du(0,2") + O(ve) = (5,0) + O(v/e) onT. (2.2)
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B

FIGURE 3. The ball B; and the cone T (shaded) in the proof of Lemma 2.1

Let us now define the function @ : QF — R as

u(zy, o’ if (x1,2')¢ T,
a(m’m,)::{ (z1,2") (z1,2") &

u(zy, 2’) + g (\/25 —e? -1 — |x’|) if (z1,2') € T.

It is immediate to observe that @ = u on the surface {\/ 26 —e?—x — |2 = O} N{z1 > 0}, so
that @ € H'(QF). Notice that @ ¢ H} () since @ does not vanish on {z; = 0} N 9N, By
construction and recalling (2.2),

~ A / _ E _ E i — E _E i/
Du(xl,x)—Du(xl,x)+< 517 5 |a:’]> = (2, 5 |x/|>+0(ﬁ) onT. (2.3)
Since % > u on QF, and recalling that u € H}(BZ), one clearly has
/ W2dg > / W2y — / w2dz + O(N2) = 1 4 O(N+9)/2) (2.4)
ok or B:

since the small region B, \ QF has volume O(¢¥V+1)/2) and on this region u = O(e).
On the other hand, comparing (2.2) and (2.3), one has

2
}Dﬂ|2 = |Du‘2 — % + O(ﬁ) on T,

and since the volume of T is “&-1 (25 — 62)N/ % we deduce

N
2
/Q+ ‘D&‘de = /S2+ |Du|2da: — w]]\i;l (26 — EQ)N/Z (F; + O(\/§)>
= /+ |Du|2 dx — %KQ%N/Z*DEN/Q + O(eV+D/2) (2.5)
Q

:/+ ‘Du‘zdm—CNn2€N/2+O(€(N+1)/2),
B

where Cy = %Q(N/Q_l).
Therefore, by (2.4) and (2.5) we obtain

/+ Da|? da
Q

R (i) = o < Ry (u) — Cnr%eN/? 4 0N TD/2)
/ @’ dz
Qf

= M\ (B) — Onr2eN? 4 0(eWNH/2)
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We can finally extend @ to the whole €, simply defining u(x1,2") = a(|z1],2") on Q2. By
construction, @ € Hg(Q.), and

M (Q:) < R, (@) = Ry (i1) < M (B) — Cnr?eN/2 4 0N TD/2) |
so that (2.1) follows and the proof is concluded. O
Lemma 2.2. There exists a constant y2 > 0 such that for every e < 1, it is
A2 () < M(B) + 72 N T2, (2.6)

Proof. First of all, we start underlining that

Ao () < M(92F); (2.7)
in fact if we define
/ if 2 € QF
w(xy,2') = ue(z1, ), , o < <
—ue(—z1,2'), ifx; €Q,

then by construction it readily follows that —Aa = A\ (Q1 ). As a consequance A1 () is an
eigenvalue of Q, say A\ (QF) = \(Q). Since €. is connected and @ changes sign, it is not
possible £ = 1, hence

A2(Q2:) < Ae(Q2) = M (02).
It is then enough for us to estimate A1 (QF). To this aim, define the set
O :={(21,2") € Of : @1 > ¢},
and take a Lipschitz cut-off function £, € W1>°(QF) such that

0<&E<1onQf, &=1on0., &=00nd0 N{x; =0}, |Vél|e <Le!.

As in Lemma 2.1, let again u be a first eigenfunction of the ball B. of radius 1 centered at
(1 —£,0) having unit L? norm, and define on ). the function ¢ = u&.. Since by construction ¢
belongs to HE (), we obtain

| [Vl +196P @ + 20 (Vu V6 do
M) < R(p, ) = == . (2.8)

/ u? €2 dx
of

We can start estimating the denominator very similarly to what already done in (2.4). Indeed,
recalling that ‘Qj \O| = O(eN*+1D/2) and that in that small region u = O(e), we have

/ u2£a2dx:/ qux_/ u2d.1'—/ u2(1—§52)d$:1+O(€(N+5)/2).
oF e B:\QF Q\O-

€

Let us pass to study the numerator: first of all, being 0 < &, < 1 we have
/ |Vu|? €2 dz < / \Vu|?dz = M\ (B).
of Be
Moreover,

LZ
/Q+ V&N u? da = / ; V& u? dz < S5 |08\ Ol [ull} o 1\ 0,y = OED72),

€
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and in the same way

/Q+u§E (Vu, Vée) do < /Q+ .

€ €

jul [Vu| |Vé| dz = OV +D/2)

Summarizing, by (2.8) we deduce
M(QF) < M(B) +O0(ENTI2),
thus by (2.7) we get the thesis. O
We are now ready to conclude the paper by giving the proof of the Theorem.

Proof of the Theorem. For any small € > 0, we define Q. =t. Q., where t. = Y/wn/|Q¢| so that
|Q| = wn. Notice that
Q| = 2wy + O(eNVFV/2)

thus t. = 27N 4 O(e(N+1)/2), Recalling the trivial rescaling formula \;(tQ) = t=2);(2), valid
for any natural ¢, any positive ¢ and any open set {2, we can then estimate by Lemma 2.1 and
Lemma 2.2

~ Q1\2/N
)\I(Qs) = <‘w;|> )\1(96) < 22/N)\1(B) o 22/N715N/2 + O(E(N+1)/2) 7

€|

2/N
> Xa(Q) < 2N (B) 4+ O(eW+D/2y
WN

Aa(Q) = (

Since A\1(©) = \2(0) = 22N )\ (B), the two above estimates give

Ma(Qe) — Xa(0)

~ 9

11m
0 A1(0) — A1(92)

which as already noticed in (1.1) implies the thesis. O
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