
f–HARMONIC MAPS AND APPLICATIONS TO GRADIENT

RICCI SOLITONS

MICHELE RIMOLDI AND GIONA VERONELLI

Abstract. In this paper we study f–harmonic maps from non–compact man-

ifolds into non–positively curved ones. Notably, we prove existence and vanish-
ing results which generalize to the weighted setting part of Schoen and Yau’s

theory of harmonic maps. As an application, we deduce information on the

topology of manifolds with lower bounded ∞–Bakry–Émery Ricci tensor, and

in particular of steady and expanding gradient Ricci solitons.
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1. Introduction and main results

Let (Mm, 〈 , 〉M ) and (Nn, 〈 , 〉N ) be complete Riemannian manifolds, dimM =
m ≥ 2, dimN = n. Let f : M → R be a smooth function. A map u : M → N is
said to be (weakly) f–harmonic if u|Ω is a critical point of the f–energy

Ef (u) =
1

2

∫
Ω

e−f |du|2HSdVM

for every compact domain Ω ∈M . Here | · |HS denotes the Hilbert–Schmidt norm
on the set T ∗M ⊗ u−1TN of the vector–valued 1–forms along the map u and dVM
stands for the canonical Riemannian volume form on M . When u is C2–regular,
the Euler–Lagrange equation for the energy functional Ef is the f–harmonic maps
equation [15, 6]

τfu := ef div(e−fdu) = τu− i∇fdu = 0,

where τu = div du is the standard tension field of u, so that τfu is naturally named
f–tension field of u. Here i denotes the interior product on 1–forms, i.e. i∇fdu =
du(∇f), while −div stands for the formal adjoint of the exterior differential d with
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respect to the standard L2 inner product on vector–valued 1–forms. The study of f–
harmonic maps began with A. Lichnerowicz in 1969 [15] and J. Eells and L. Lemaire
in 1977, [8], but apparently this subject has been very poorly investigated later. Let
us just recall the recent works of N. Course [6, 7], especially about f–harmonic flow
on surfaces, and Y.–L. Ou [21] about f–harmonic morphisms. A possible reason
for such a lack of interest could be that the f–harmonicity of a map u defined on
a Riemannian manifold M is equivalent to the harmonicity of u on some related
manifolds, see Proposition 2.4 and Proposition 2.5 below. For instance, if m ≥ 3

then u : (Mm, 〈 , 〉M )→ N is f–harmonic if and only if u :
(
Mm, e−

2f
m−2 〈 , 〉M

)
→

N is harmonic. Accordingly f–harmonic maps could appear not so interesting as
geometric objects in their own. Nevertheless, the interaction of f–harmonicity with
curvature conditions looks promisingly and justifies their study in order to deduce
information on weighted manifolds and gradient Ricci solitons. For this reason,
notation used in this paper is that of weighted manifolds, e.g. [33, 32] and not
the one introduced so far for f–harmonic maps, where often e−f is replaced by f
[15, 6, 21].

A weighted manifold is a Riemannian manifold (Mm, 〈 , 〉M ) endowed with a
weighted volume form e−fdVM , for some smooth function f : M → R. Associ-
ated to a weighted manifold (Mm, 〈 , 〉M , e−fdVM ) there is also a natural diver-
gence form second order diffusion operator: the f–Laplacian. This is defined on
u ∈ C2(M) by ∆fu = ef div(e−f∇u) = ∆u − 〈∇u,∇f〉M and we can note that,
for real–valued functions, ∆fu = τfu. A natural question that arises in the setting
of weighted manifolds is what is the right concept of curvature on these spaces.
Actually there is not a canonical choice. Good choices are those that reveal in-
terplays with metric and topological properties of the space, see e.g. [17, 33, 32].

We are interested in the ∞–Bakry–Émery Ricci tensor M Ricf = M Ric + Hess f ,
which was first introduced by A. Lichnerowicz in [16] and later by D. Bakry and

M. Émery in [1]. Recently it has been found that this curvature tensor is strictly
related with geometric objects whose importance is outstanding in mathemathics.
Imposing the constancy of M Ricf , one introduces on the manifold an additional
structure which goes under the name of gradient Ricci soliton structure. Namely,
recall that, given a Riemannian manifold (M, 〈 , 〉), a Ricci soliton structure on M
is the choice of a smooth vector field X (if any) satisfying the soliton equation
Ric + 1

2LX 〈 , 〉 = λ 〈 , 〉, for some λ ∈ R. The Ricci soliton (M, 〈 , 〉 , X) is said to
be shrinking, steady or expanding according to whether λ > 0, λ = 0 or λ < 0.
In the special case where X = ∇f for some smooth function f : M → R, we have
that Ricf = λ 〈 , 〉 , and we say that (M, 〈 , 〉 ,∇f) is a gradient Ricci soliton with
potential f . The importance of gradient Ricci solitons is due to Perelman’s solution
of Poincaré conjecture. They correspond to “self–similar” solutions to Hamilton’s
Ricci flow and often arise as limits of dilations of singularities developed along the
flow.

Mimicking the theory developed by J. Eells and J. H. Sampson [10] and P. Hart-
man [14], in the seminal paper [15] Lichnerowicz use f–harmonic maps to deduce
topological information on compact (m ≥ 3)–dimensional weighted manifolds satis-
fying M Ricf ≥ 0. In this paper, following the theory for harmonic maps developed
by R. Schoen and S.–T. Yau [28], we extend the approach of Lichnerowicz in order
to study the topology of complete manifolds of dimension m ≥ 2 with non–negative
Bakry–Emery Ricci tensor M Ricf ≥ 0 and of expanding gradient Ricci solitons with
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a suitable control on the scalar curvature. This problem is particularly interesting
since very poor information on the topology of this class of manifolds is known, see
Section 5.

The main result we obtain is the following.

Theorem A. Let M be a complete non–compact Riemannian manifold and N a
compact Riemannian manifold with N Sect ≤ 0. Let f ∈ C∞(M) and suppose
M Ricf ≥ −k2(x) for some 0 ≤ k ∈ C∞(M). Consider a continuous map u : M →
N with finite f–energy Ef (u) < +∞. Then u is homotopic to a constant provided

(1) λ1(−∆f −Hk2) ≥ 0

for some H > 1 and at least one of the following assumption is satisfied

(a) k does not vanish identically;
(b) there exists a constant C > 0 such that |f | ≤ C;
(c) f is convex and the set of its critical points is unbounded;
(d) Volf (M) :=

∫
M
e−fdVM = +∞;

(e) there is a point q0 ∈M such that M Ricf |q0 > 0;
(f) there is a point q1 ∈M such that M Ric(X,X)|q1 6= 0 for all 0 6= X ∈ Tq1M .

Moreover if

(g) N Sect < 0,

we can conclude that u is homotopic either to a constant or to a totally geodesic
map whose image is contained in a geodesic of N .

Remark 1.1. By Rayleigh characterization, the spectral assumption (1) is equiv-
alent to ask that

(2)

∫
M

|∇ϕ|2e−fdVM −
∫
M

Hk2ϕ2e−fdVM ≥ 0

for all ϕ ∈ C∞c (M). Then, in case M Ricf ≥ 0, the assumption (1) is trivially
satisfied, and the theorem holds true under conditions (b) to (g).
The non–weighted k 6≡ 0 version of Theorem A is due to [23]. See also [27], where
the lower bound on H is improved, and Remark 4.2 below for a comment on the
lower bound for H.

As pointed out by Schoen and Yau in the non–weighted case [28], Theorem A
has the following topological implications.

Corollary B. Let Mm be a complete non–compact m–dimensional Riemannian
manifold satisfying M Ricf ≥ −k2 for some function k satisfying (1). Let D ⊂ M
be a compact domain in M with smooth, simply connected boundary. Then,

(i) if one of the condition (a) to (f) of Theorem A is satisfied, then there is
no non–trivial homomorphism of π1(D) into the fundamental group of a
compact manifold with non–positive sectional curvature;

(ii) each homomorphism of π1(D) into the fundamental group of a compact
manifold N with strictly negative sectional curvature N Sect < 0 is either
trivial or maps all π1(D) into a cyclic subgroup of π1(N).

Remark 1.2. Note that Corollary B (ii) and Corollary B (i) in the assumptions
(a), (e) or (f) hold not asking f to be neither bounded nor convex. This is a reason
of interest in the approach we propose, since it permits to deal with cases for which
the techniques introduced so far seem to be unapplicable. See Theorem 5.1 below.
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The k ≡ 0 case of Corollary B directly applies to study the topology of com-
plete steady gradient Ricci solitons, where few information is known, as discussed
in Section 5 below. On the other hand, the flexibility given by the spectral assump-
tion permits to deduce information also concerning expanding Ricci solitons. In
particular, according to an idea in [18], there exist situations in which the spectral
assumption is implied by more geometrical curvature condition.

Theorem C. Let (Mm, 〈 , 〉M ,∇f) be a complete non–trivial expanding gradient
Ricci soliton with scalar curvature MS > (m − 1)λ. Let D ⊂ M be a compact
domain in M with smooth, simply connected boundary. Then, there is no non–
trivial homomorphism of π1(D) into the fundamental group of a compact manifold
with non–positive sectional curvature.

The paper is organized as follows. In Section 2 we discuss the relations be-
tween the weighted and the non–weighted setting, and in particular under which
conditions f–harmonic maps on a manifold M can be interpreted as harmonic
maps on some related manifold. This permits to deduce the existence of a smooth
f–harmonic representative in the homotopy class of a given finite f–energy map,
provided N is compact and N Sect ≤ 0. Also, some information about the unique-
ness of the representative is given. In Section 3 we prove a vanishing result for finite
f–energy f–harmonic maps, in the special easier case k ≡ 0. Then, in Section 4
we discuss the spectral assumption (1) and provide the changes needed to complete
the proof of Theorem A. Finally, in Section 5 we deduce geometrical applications
to weighted manifolds and gradient Ricci solitons.

2. Existence and relations between the weighted and the
non–weighted setting

This section aims to give the proof of the following existence result. To obtain
this, we will formalize some useful links between harmonic and f–harmonic maps.

Theorem 2.1. Let Mm and Nn be Riemannian manifolds, m ≥ 2. Assume N
is compact and N Sect ≤ 0. Then any homotopy class of maps from M into N
containing a continuous map of finite f–energy contains a smooth f–harmonic map
minimizing the f–energy in the homotopy class.

Remark 2.2. When M is compact and m ≥ 3, Theorem 2.1 is due to [8], p.48.

Remark 2.3. Instead of N Sect ≤ 0 it would be enough for N to be a K(π, 1)–
space and to admit no non–trivial minimizing tangent maps or r–spheres for 2 ≤
r ≤ m − 1. For instance this is the case if the universal cover of N supports a
strictly convex exhaustion function; see also [4, 34].

In dimension m > 2 the proof is pretty easy. First, by straightforward compu-
tations, [15], one can prove that

Proposition 2.4. A map u : (Mm, 〈 , 〉M ) → (Nn, 〈 , 〉N ), m ≥ 3, is f–harmonic

if and only if u : (Mm, e−
2f

m−2 〈 , 〉M )→ (Nn, 〈 , 〉N ) is a harmonic map.

In [4], F. Burstall proved that if N Sect ≤ 0, then in the homotopy class of each
finite energy map there exists a smooth harmonic representative which minimizes
the energy in the homotopy class. As a matter of fact, even if the result is there
stated for complete manifolds, the proof does not require the underlying manifold
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M to be complete. Accordingly, from Proposition 2.4 and Theorem 5.2 in [4] we
get the validity of Theorem 2.1 when m > 2. On 2-dimensional manifolds, it is
easily seen that (f -)energy is conformally invariant so that this approach does not
work. Then, we follow a different strategy which permits to obtain the result in all
dimension m ≥ 2. Namely, it was suggested in Section 1.2 of [6] that f–harmonicity
on M is expected to correspond to harmonicity on some higher dimensional warped
product manifold. We will make this fact explicit.
We consider the warped product M̄n = M ×h T, where h := e−f and T = T1 =
R/Z, so that Vol(T) = 1. Here and on, each point in M̄ is individuated by its
projections x on M and t on T. Moreover we recall that the metric on M̄ is given
by 〈 , 〉M̄ (x, t) = 〈 , 〉M (x) +h2(x)dt2. Throughout the following proofs, {Ei}ni=1 is

a local orthonormal frame at (x, t) ∈ M̄ such that {Ej}n−1
j=1 is a local orthonormal

frame at x ∈M and En = h−1 ∂
∂t ∈ TtT.

Even if this is not necessarily used in the proof of Theorem 2.1 given below, we
start pointing out the explicit relation, of its own interest, between the f–tension
field on M and the tension field on M̄ .

Proposition 2.5. Given a C2 map v : M → N , define the C2 map v̄ : M̄ → N as
v̄(x, t) := v(x) for all (x, t) ∈ M̄ . Then

τ v̄(x, t) = τfv(x).

In particular, v is f–harmonic if and only if v̄ is harmonic.

Proof. Following the rules of covariant derivatives on warped products, see [20] p.
206, we can compute (

M̄∇Ej
Ej

)
(x, t) =

((
M∇Ej

Ej
)

(x), 0
)

for j = 1, . . . , n− 1, and(
M̄∇EnEn

)
(x, t) =

(
−
M∇h(x)

h
,
(T∇En

En
)

(t)

)
=
(
M∇f(x), 0

)
.

Moreover, by definition of v̄ we have(
N∇dv̄(Ej)dv̄(Ej)

)
(x, t) =

(
N∇dv(Ej)dv(Ej)

)
(x)

for j = 1, . . . , n− 1, and (
N∇dv̄(En)dv̄(En)

)
(x, t) = 0.

Then, we get

Hess v̄|(x,t)(Ej , Ej) =
(
N∇dv̄(Ej)dv̄(Ej)− dv̄(M̄∇Ej

Ej)
)

(x, t)

=
(
N∇dv(Ej)dv(Ej)− dv(M∇Ej

Ej)
)

(x)

for j = 1, . . . , n− 1, and

Hess v̄|(x,t)(En, En) =
(
N∇dv̄(En)dv̄(En)− dv̄(M̄∇EnEn)

)
(x, t)

= −dv
(
(M∇f)(x)

)
.
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We thus obtain

τ v̄(x, t) =

n∑
i=1

Hess v̄|(x,t)(Ei, Ei)

=

n−1∑
j=1

Hess v|x(Ej , Ej)− dv
(
(M∇f)(x)

)
= τv(x)− dv

(
(M∇f)(x)

)
= τfv(x).

�

We have shown that any f–harmonic map on M is harmonic when trivially
extended to M̄ = M ×e−f T1. Clearly, the converse does not hold, since in general
a harmonic map from M̄ to N does depend on t. To this end, it suffices to consider
the example given by M = R, f ≡ 0 and N = T2 = T×T, and it is easily seen that
the locally isometric covering maps P : R× T = M̄ → N = T2 is harmonic, but it
has not the form P (x, t) ≡ P (x, T ) for any T ∈ T. Nevertheless, as the following
proof shows, this converse property holds true for some specific harmonic maps on
M̄ which minimize energy in their homotopy class.

Proof (of Theorem 2.1). Step a. Let v : M → N be a continuous map satisfying
Ef (v) < +∞ and define the continuous function v̄ : M̄ → N as v̄(x, t) := v(x). We
note that

|dv̄|2HS(M̄,N) =

n∑
i=1

〈dv̄(Ei), dv̄(Ei)〉N

=

n−1∑
j=1

〈dv(Ej), dv(Ej)〉N = |dv|2HS(M,N),

and the latter relation holds in the weak sense for v, v̄ ∈ C0. Since v has finite
f–energy and Vol(T) = 1, we can apply Fubini’s theorem to get

EM̄ (v̄) =

∫
M̄

|dv̄|2HS(M̄,N)dVM̄ =

∫
M

e−f(x)

∫
T
|dv|2HS(M,N)dtdVM(3)

=

∫
M

e−f(x)|dv|2HS(M,N)dVM = EMf (v)

So v̄ is a continuous finite energy map from M̄ to a compact manifold N with
N Sect ≤ 0, and according to [4] we know that there exists a smooth harmonic map
ū : M̄ → N which minimizes the energy in its homotopy class.
Step b. In this step, we prove that we can choose ū such that it has the form
ū(x, t) = u(x) for some smooth map u : M → N . In fact, since EM̄ (ū) < +∞, we
can apply Fubini’s theorem to get

∞ > EM̄ (ū) =

∫
M

e−f(x)

∫
T
|dū|2HS(M̄,N)(x, t)dtdVM (x)

=

∫
T

(∫
M

e−f(x)|dū|2HS(M̄,N)(x, t)dVM (x)

)
dt,
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and we can choose T ∈ T such that∫
T

(∫
M

e−f(x)|dū|2HS(M̄,N)(x, T )dVM (x)

)
dt(4)

≤
∫
T

(∫
M

e−f(x)|dū|2HS(M̄,N)(x, t)dVM (x)

)
dt.

We can define a further smooth map ũ : M̄ → N as ũ(x, t) := ū(x, T ) for all
(x, t) ∈ M̄ . Since dũ(En) = 0, we have that

|dũ|2HS(M̄,N)(x, t) = |dũ|2HS(M̄,N)(x, T ) =

n−1∑
j=1

〈dũ(Ej), dũ(Ej)〉N (x, T )

=

n−1∑
j=1

〈dū(Ej), dū(Ej)〉N (x, T )

≤
n∑
i=1

〈dū(Ei), dū(Ei)〉N (x, T )

= |dū|2HS(M̄,N)(x, T )

for all (x, t) ∈ M̄ . From (4) we thus obtain

EM̄ (ũ) =

∫
T

(∫
M

e−f(x)|dũ|2HS(M̄,N)(x, t)dVM (x)

)
dt(5)

≤
∫
T

(∫
M

e−f(x)|dū|2HS(M̄,N)(x, T )dVM (x)

)
dt

≤
∫
T

(∫
M

e−f(x)|dū|2HS(M̄,N)(x, t)dVM (x)

)
dt = EM̄ (ū)

Now we prove that ũ is homotopic to ū. To this end, we recall that since N is a
K(π, 1)–space, the homotopy class of a map w : M̄ → N is completely characterized
by the action on π1(M̄) of the homeomorphism induced by w,

w] : π1(M̄, (x, t))→ π1(N,w(x, t)).

We have that π1(M̄, (x, t)) ∼= π1(M,x) × π1(T, t). Since ū is homotopic to v̄ and,
by construction, v̄](γ) = id ∈ π1(N) for all γ ∈ π1(T, t) < π1(M̄, (x, t)), we have
that ū](γ) = id ∈ π1(N) for all γ ∈ π1(T, t). On the other hand, by definition of ũ
we have that ũ](γ) = id ∈ π1(N) for all γ ∈ π1(T, t) and ũ]|π1(M,x) is conjugated
to ū]|π1(M,x). Accordingly, ũ] is conjugated to ū], so that ũ is homotopic to ū.
Since we have proved above that ū minimizes the energy in its homotopy class, this
together with (5) implies that EM̄ (ũ) = EM̄ (ū). Hence ũ is a smooth minimizer of
the energy in its homotopy class, it is thus harmonic and it has the aimed form.
Step c. We have shown that there exists a smooth map u : M → N such that
ũ(x, t) = u(x) = ū(x, T ) for all (x, t) ∈ M̄ . This map u is a minimizer of the f–
energy in its homotopy class. In fact, by contradiction suppose there exists another
map u0 : M → N homotopic to u with EMf (u0) < EMf (u). Then we can define

ũ0 : M̄ → N as ũ0(x, t) = u0(x) for all (x, t) ∈ M̄ and reasoning as above we

would get that ũ0 is homotopic to ũ and EM̄ (ũ0) < EM̄ (ũ). This would give the
contradiction.
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Hence u is a smooth minimizer of the f–energy in its homotopy class, and it is
therefore an f–harmonic map. �

To conclude this section, we would like to say some words to characterize the
f–harmonic representative in homotopy class. In fact, thanks to the relations be-
tween M and M̄ pointed out above, it is pretty easy to see how to generalize the
uniqueness results obtained in the harmonic setting by Schoen and Yau [29] when
M is parabolic (see also Remark 4 in [24] for the improved parabolic version). We
recall that a manifold M is said to be f–parabolic if for some (hence every) compact
set K ⊂M with non–empty interior the f–capacity of K is null, i.e.

Capf (K) = inf {Ef (ϕ) : ϕ ∈ C∞c (M), ϕ|K ≥ 1} = 0.

There exist several equivalent definitions of f–parabolicity. To our purpose, let
us just recall that M is f–parabolic if and only if every bounded f–subharmonic
function is necessarily constant. This equivalence can be easily proved by adapting
to the weighted setting the standard arguments used in the non–weighted case; see
e.g. [13]. Now, consider a compact set K ⊂M with non–empty interior and define
the compact set K̄ = K × T ⊂ M̄ . First, suppose Capf (K) = 0 in M . Then

by definition of f–capacity and by relation (3), it is clear that Cap(K̄) = 0 in
M̄ . On the other hand, suppose M̄ is parabolic. Let ψ : M → R be a bounded
f–subharmonic function. Defining ψ̄ : M̄ → R as in Proposition 2.5, we have that
ψ̄ is a bounded subharmonic function on M̄ . Hence ψ̄ and in turn ψ are constant.
This proves the following

Lemma 2.6. Let M be a complete Riemannian manifold and f ∈ C∞(M). Then
M is f–parabolic if and only if M̄ = M ×e−f T is parabolic.

Now, suppose M is f–parabolic, N is non–positively curved and we are given two
homotopic smooth f–harmonic maps u, v : M → N with finite f–energy. Defining
maps ū, v̄ : M̄ → N as above we have that ū and v̄ are smooth finite–energy
harmonic maps on the parabolic manifold M̄ , and they are homotopic since they
are constantly extended on the fiber T. Then we can apply Theorems 1 and 2 in
[29] to ū, v̄ to get

Theorem 2.7. Let M and N be complete Riemannian manifolds and assume that
M is f–parabolic,

i) Let u : M → N be a smooth f–harmonic map of finite f–energy. If
N Sect < 0, there’s no other f–harmonic map of finite f–energy homotopic
to u unless u(M) is contained in a geodesic of N .

ii) If N Sect ≤ 0 and u, v : M → N are homotopic smooth f–harmonic maps
of finite f–energy, then there is a continuous one–parameter family of maps
us : M → N with u0 = u and u1 = v such that every us is a f–harmonic
map of constant f–energy (independent of s) and for each q ∈M the curve
s 7→ us(q), s ∈ [0, 1], is a constant (independent of q) speed parametrization
of a geodesic.

The fact that the harmonic maps ūs : M̄ → N obtained in the proof of Theorem 2
in [29] have the form ūs(x, t) := us(x) for all (x, t) ∈ M̄ is not a direct consequence of
the statement of Theorem 2 in [29], but it can be easily deduced by the construction
given in Schoen and Yau’s proof.
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3. Vanishing results

A classical approach in harmonic maps theory leads to obtain vanishing results
for the harmonic representative, imposing some additional assumptions on the cur-
vature of M . In order to extend this part of the theory to our setting, we need a
Bochner formula for f–harmonic maps. Such a formula is well known for functions
[1], while for maps is essentialy contained in [15], Section 13. Since apparently no
explicit version is given in the literature, we give a detailed proof in the following.

Proposition 3.1. Let v : (Mm, 〈 , 〉M )→ (Nn, 〈 , 〉N ) be a C2 map. Then

1

2
∆f |dv|2 = |Ddv|2 + 〈dv, dτfv〉HS +

m∑
i=1

〈
dv(M Ricf (Ei, ·)]), dv(Ei)

〉
N

(6)

−
m∑

i,j=1

〈
N Riem(dv(Ei), dv(Ej))dv(Ej), dv(Ei)

〉
N
,

where {Ei}mi=1 is some chosen orthonormal frame on M .

Remark 3.2. Defining the (1, 1)–tensor field M rcf on M as

M rcf (X) := M Ricf (X, ·)]

for all vector fields X on M , we observe the following easy relation,
m∑
i=1

〈
dv(M Ricf (Ei, ·)]), dv(Ei)

〉
N

= trM
〈
dv(M rcf (·)), dv(·)

〉
N

=
〈
dv(M rcf ), dv

〉
HS

.

Proof. We start recalling the standard Bochner formula for the smooth map v, [9],

1

2
∆|dv|2 = |Ddv|2 + 〈dv, dτv〉HS +

m∑
i=1

〈
dv(M Ric(Ei, ·)]), dv(Ei)

〉
N

(7)

−
m∑

i,j=1

〈
N Riem(dv(Ei), dv(Ej))dv(Ej), dv(Ei)

〉
N
.

Inserting
1

2
∆f |dv|2HS =

1

2
∆|dv|2HS −

1

2
∇f(|dv|2HS)

and
〈dv, dτfv〉HS = 〈dv, dτv〉HS − 〈dv, d(i∇fdv)〉HS

in (7) we get

1

2
∆f |dv|2 = |Ddv|2 + 〈dv, dτfv〉HS +

m∑
i=1

〈
dv(M Ric(Ei, ·)]), dv(Ei)

〉
N

+ 〈dv, d(i∇fdv)〉HS −
1

2
∇f(|dv|2HS)

−
m∑

i,j=1

〈
N Riem(dv(Ei), dv(Ej))dv(Ej), dv(Ei)

〉
N
.

Hence (6) is proved once we show that

(8) 〈dv, d(i∇fdv)〉HS −
1

2
∇f(|dv|2HS) =

〈
dv(∇(·)∇f), dv

〉
HS

.
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Let {xa}ma=1 be a local coordinate chart on M at q ∈M and {θA}nA=1 and {EA}nA=1

orthonormal coframe and dual frame onN at v(q) respectively. Moreover denote the
components of the metric on M as

〈
∂
∂xa ,

∂
∂xb

〉
M

=: gab. We can write in coordinate

dv = vAa EA ⊗ dxa, and ∇f = fa
∂

∂xa
.

Then

i∇fdv = vAa f
aEA,

which gives

d(i∇fdv) =
(
vAabf

b + vAb f
b
a

)
EA ⊗ dxa

and

(9) 〈dv, d(i∇fdv)〉HS =

n∑
A=1

vAd v
A
abf

agdb +

n∑
A=1

vAd v
A
a f

a
bg
db.

Moreover,

∇(·)∇f =
(
fab + Γabdf

d
) ∂

∂xa
⊗ dxb,

from which

dv(∇(·)∇f) =
(
vAa f

a
b + vAa Γabdf

d
)
EA ⊗ dxb,

and

(10)
〈
dv(∇(·)∇f), dv

〉
HS

=

n∑
A=1

vAa f
a
bv
A
d g

bd + vAa v
A
c Γabdf

dgbd.

Here Γ denote the Christhoffel’s symbols on M , M∇ ∂
∂xa

∂
∂xb =: Γcab

∂
∂xc . Finally,

1

2
∇f(|dv|2HS) =

1

2

n∑
A=1

∇f
(〈(

θA ◦ dv
)]
,
(
θA ◦ dv

)]〉
M

)
=

n∑
A=1

〈
∇∇f

(
θA ◦ dv

)]
,
(
θA ◦ dv

)]〉
M
.

Since (
θA ◦ dv

)]
= vAa g

ab ∂

∂xb
,

we get

∇∇f
(
θA ◦ dv

)]
=
(
f c
(
vAa g

ab
)
c

+ favAd g
dcΓbac

) ∂

∂xb
,

and

(11)
1

2
∇f(|dv|2HS) =

n∑
A=1

vAb f
avAd g

dcΓbac + favAdag
bdvAb + favAd v

A
b

(
∂

∂xa
gdb
)
.

Combining (9), (10) and (11) we get that (8) is proved provided

(12) 2

n∑
A=1

vAb f
avAd g

dcΓbac + favAd v
A
b

(
∂

∂xa
gdb
)

= 0.

Now, since the Levi–Civita connection is compatible with the metric,

∂

∂xa
gbc = gdcΓ

d
ba + gdbΓ

d
ca
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and (
∂

∂xa
gbc
)
gcd = −gbc

(
∂

∂xa
gcd

)
,

from which
∂

∂xa
gbd = −gbcΓdca − gcdΓbca

and, in turn,

n∑
A=1

fa
[
2vAb v

A
d g

dcΓbac + vAd v
A
b

(
∂

∂xa
gdb
)]

=

n∑
A=1

fa
[
2vAb v

A
d g

dcΓbac − vAb vAd gbcΓdac − vAb vAd gdcΓbac
]

= 0.

This latter proves (12) and concludes the proof. �

We are now ready to prove the following vanishing result.

Theorem 3.3. Let Mm, Nn be complete Riemannian manifolds and f ∈ C∞(M,R).
Assume that M Ricf ≥ 0 and N Sect ≤ 0. Consider an f–harmonic map v : M → N
with finite f–energy Ef (v) < +∞. Then v is constant provided at least one of the
following assumption is satisfied

(b) there exists a constant C > 0 such that |f | ≤ C;
(c) f is convex and the set of its critical points is unbounded;
(d) Volf (M) :=

∫
M
e−fdVM = +∞;

(e) there is a point q0 ∈M such that M Ricf |q0 > 0;
(f) there is a point q1 ∈M such that M Ric(X,X)|q1 6= 0 for all 0 6= X ∈ Tq1M .

Moreover if

(g) N Sect < 0,

then either v is constant or the whole image v(M) is contained in a geodesic of N .

Remark 3.4. The case of M compact is in [15], p. 367. See also [28] for the
non–compact harmonic case.

We partially follow the proof given in [27] for solutions of generic Bochner–type
inequalities.

Proof. Set φ := |dv|HS and G(v) := |Ddv|2 − |∇|dv||2. Notice that

1

2
∆fφ

2 = φ∆fφ+ |∇φ|2.

Since v is f–harmonic, by the Bochner formula (6) and the Kato’s inequality we
get

φ∆fφ ≥ G(v) ≥ 0.(13)

Let ρ ∈ C∞c (M) to be chosen later. Then∫
M

ρ2φ∆fφe
−fdVM ≥

∫
M

ρ2G(v)e−fdVM ≥ 0.
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Stokes’ Theorem and Young’s inequality yield∫
M

ρ2φ∆fφe
−fdVM

=

∫
M

ρ2φdiv(e−f∇φ)dVM

= −
∫
M

2ρφ 〈∇ρ,∇φ〉M e−fdVM −
∫
M

ρ2|∇φ|2e−fdVM

≤ ε−1

∫
M

φ2|∇ρ|2e−fdVM − (1− ε)
∫
M

ρ2|∇φ|2e−fdVM

for any 0 < ε < 1. From this latter we get

0 ≤ (1− ε)
∫
M

ρ2|∇φ|2e−fdVM +

∫
M

ρ2G(v)e−fdVM(14)

≤ ε−1

∫
M

φ2|∇ρ|2e−fdVM .

Choose the smooth cut–off ρ = ρR s.t. ρ ≤ 1 on M , ρ|BR
≡ 1, ρ|M\B2R

≡ 0 and
|∇ρ| ≤ 2/R. Replacing ρ = ρR in (14) we obtain

0 ≤ (1− ε)
∫
BR

|∇φ|2e−fdVM +

∫
BR

G(v)e−fdVM(15)

≤ 4ε−1

R2

∫
B2R

φ2e−fdVM .

By the assumption Ef (v) < +∞ we can let R→∞ applying monotone convergence
at RHS to get ∇φ ≡ 0, i.e. φ = |dv| ≡ const., and

(16) 0 ≡ G(v) = |Ddv|2 − |∇φ|2 = |Ddv|2.
Suppose |dv| ≡ C > 0. Then the finiteness of the f–energy of v gives that
Volf (M) < +∞. If either |f | is uniformly bounded or f is convex and the set
of its critical points is unbounded, then Theorem 1.3 and 5.3 in [33] implies that
M has at least linear f–volume growth, giving a contradiction.
In general we have Ddv ≡ 0, i.e. v : M → N is totally geodesic, which in turn gives
that v is harmonic, i.e. τv = 0 and

(17) i∇fdv = dv(∇f) = τfv − τv ≡ 0.

Accordingly, the Bochner formula (6) reads

0 =

m∑
i=1

〈
dv(M Ricf (Ei, ·)]), dv(Ei)

〉
N

(18)

−
m∑

i,j=1

〈
N Riem(dv(Ei), dv(Ej))dv(Ej), dv(Ei)

〉
N
,

and by the curvature sign assumptions both

(19)

m∑
i=1

〈
dv(M Ric(Ei, ·)]), dv(Ei)

〉
N

+

m∑
i=1

〈
dv(M∇Ei∇f), dv(Ei)

〉
N

= 0

and
m∑

i,j=1

〈
N Riem(dv(Ei), dv(Ej))dv(Ej), dv(Ei)

〉
N

= 0.
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First, suppose that N Sect < 0, then dv(Ei) ‖ dv(Ej) for all i, j = 1, . . . , n and we
conclude that v(M) must be contained in a geodesic of N .
On the other hand, suppose that M Ricf |q0 > 0 at some point q0 ∈ M . Then
necessarily dv(q) = 0 which gives dv ≡ 0.
Moreover, since

0 = Ddv(X,Y ) = (DY dv)(X) = N∇dv(Y )dv(X)− dv(M∇YX)

for all X,Y vector fields on M , (17) implies〈
dv(M∇Ei

∇f), dv(Ei)
〉
N

= 〈Ddv(∇f,Ei), dv(Ei)〉N
=
〈
N∇dv(Ei)dv(∇f), dv(Ei)

〉
N

= 0

for each i = 1, . . . ,m. Since M Ricf ≥ 0, (19) in particular gives〈
dv(M Ric(Ei, ·)]), dv(Ei)

〉
N

= 0

for each i = 1, . . . ,m. Hence, if there exists some point q1 ∈ M such that
M Ric(X,X)|q1 6= 0 for all vector 0 6= X ∈ Tq1M , then v is once again necessarily
constant. �

Remark 3.5. Theorem 3.3 holds also in the more general assumption∫
BR

|dv|2e−fdVM = o(R),

instead of Ef (v) < +∞.

Remark 3.6. One could combine Proposition 2.4 or Proposition 2.5 above with
the vanishing result in the harmonic case to obtain directly a vanishing result for
f–harmonic maps. Nevertheless in this case the assumptions on M Ric are more
involved and less natural in view of the applications to weighted manifolds and
gradient Ricci solitons. Namely, one has that

M̃ Ric = M Ric +

[
Hess f +

df ⊗ df
m− 2

]
+

1

m− 2

[
∆f + |df |2

]
〈 , 〉M

where M̃ = (M, e−
2f

m−2 〈 , 〉M ), while

M̄ Ric(X,X) = M Ric(X,X) + Hess f(X,X)− < X,∇f >2,

for X ∈ TM < TM̄ , and

M̄ Ric(ν, ν) = ∆f − |df |2 = ∆ff,

for ν ∈ TT < TM̄ .

Remark 3.7. The statement of Theorem 3.3 is non–trivial, as shown in the fol-
lowing example.
Let Tn be the standard flat n–torus Rn/Zn. For the easiness of notation, here
we parameterize the torus as Tn = [−1, 1]n with the usual identifications on
the boundaries. Consider a map v : R2 × T = M → N = T3 and a function

f : R2 × T = M → R given by v(x, y, [z]) := ([0], [0], [z]) and f(x, y, [z]) := x2+y2

2 .

Since dv = dz ⊗ ∂
∂z is parallel, we have in particular that τv = 0. Moreover

df = xdx + ydy implies τfv = dv(∇f) = 0. As a consequence v is a non–constant
f–harmonic map (notably in a non–trivial homotopy class of maps), and in fact
none of the assumptions (b) to (f) of Theorem 3.3 is satisfied. In particular, (b) f
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is upper unbouded, (c) f is convex but with a bounded set of critical points, (d)
the f–volume of M satisfies

Volf (R2 × T) =

∫ 1

−1

∫
R2

e−
x2+y2

2 dxdydz = 4π < +∞,

(e) M Ricf ( ∂∂z ,
∂
∂z ) ≡ 0 and (f) M Ric ≡ 0.

Remark 3.8. A similar example shows that the weaker assumption suggested in
Remark 3.5 is sharp. In particular let M , N and v be as in Remark 3.7 but now

choose f(x, y, [z]) = x2

2 . With these choices, M Ricf (M) ≥ 0 and assumption (c)
of Theorem 3.3 is satisfied, but the f–volumes of geodesic balls have exactly linear
growth and in fact v is once again a non–constant f–harmonic map.

Combining Theorem 2.1 and Theorem 3.3 we get the following result, which
corresponds to the k ≡ 0 case of Theorem A.

Theorem 3.9. Let M be a complete Riemannian manifold and N a compact Rie-
mannian manifold with N Sect ≤ 0. Let f ∈ C∞(M) and suppose M Ricf ≥ 0.
Consider a continuous map u : M → N with finite f–energy Ef (u) < +∞. Then
u is homotopic to a constant provided at least one of the assumptions (b) to (f) of
Theorem 3.3 is satisfied.
On the other hand, if we assume that N Sect < 0, then u is homotopic either to a
constant or to a totally geodesic map whose image is contained in a geodesic of N .

4. Spectral assumptions

In this section we suppose that the underlying manifold M satisfies

M Ricf ≥ −k2

for some function k(x), provided

(20) λ1(−∆f −Hk2) ≥ 0

for some H > 1. As pointed out in Remark 1.1, this corresponds to ask that∫
M

|∇ϕ|2e−fdVM −
∫
M

Hk2ϕ2e−fdVM ≥ 0

for all ϕ ∈ C∞c (M). On the other hand, it was observed in [31, 2] that (20) is also
equivalent to ask that

λ1

(
−∆−

(
1

2
∆f − 1

4
|∇f |2 +Hk2

))
≥ 0.

Proceeding as in [27], we can show that Theorem 3.3 and Theorem 3.9 hold in these
more general assumptions. The result thus obtained, together with Theorem 3.9,
will complete the proof of Theorem A.

Theorem 4.1. Let Mm, Nn be complete Riemannian manifolds and f ∈ C∞(M,R).
Assume that M Ricf ≥ −k2 for some function k(x) 6≡ 0 satisfying (20) and that
N Sect ≤ 0. Then the following hold

(i) Any smooth f–harmonic map v : M → N with finite f–energy Ef (v) < +∞
is constant.

(ii) If N is compact, then any continuous map u : M → N with finite f–energy
Ef (u) < +∞ is homotopic to a constant.
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Proof. First we note that, thanks to Theorem 2.1, (i) trivially implies (ii).
To prove (i), we define objects as in the proof of Theorem 3.3. Choosing ϕ = ρφ,
(2) yields that∫

M

k2ρ2φ2e−fdVM ≤ (1 + δ)H−1

∫
M

ρ2|∇φ|2e−fdVM

+ (1 + δ−1)H−1

∫
M

φ2|∇ρ|2e−fdVM ,

for any fixed δ > 0. Proceeding as in the proof of Theorem 3.3 we note that
inequalities (13) and (14) are respectively replaced by

φ∆fφ ≥ G(v)− k2φ2 ≥ 0.

and

0 ≤ (1− ε−H−1(1 + δ))

∫
M

ρ2|∇φ|2e−fdVM +

∫
M

ρ2G(v)e−fdVM

≤ (ε−1 +H−1(1 + δ−1))

∫
M

φ2|∇ρ|2e−fdVM ,

up to choose δ small enough. From now on, the proof is the same as for the case
k ≡ 0. We have only to remark that the spectral assumption implies that M has
infinite volume, as observed in Remark 1.8 (b) in [22]. In fact, by contradiction,
if Volf (M) < +∞ (more generally if it has at most linear growth), then in (2)
we can choose ϕ = ϕR to be a family of cut–offs such that ϕR ≤ 1, ϕR|BR

≡ 1,
ϕR|M\B2R

≡ 0 and |∇ϕR| ≤ 2/R, and letting R→∞ we obtain that k ≡ 0. �

Remark 4.2. With respect to the standard f = 0 case, here we need H > 1
because no refined Kato inequality is given for f–harmonic maps. We recall that
for a smooth harmonic map v, the refined Kato inequality is the relation, [3, 5]

|Ddv|2 − |∇|dv||2 ≥ K|∇|dv||2

holding with K = 1/(m− 1). As a matter of fact, it turns out that such a constant
K > 0 can not exist for general f–harmonic maps. To see this, consider functions
v, f : R3 → R given by

v(x, y, z) :=

∫ x

0

e−
t2

2 dt, f(x, y, z) = −x
2

2
.

We have that

∆v =
∂2v

∂x2
= −xe− x2

2

and

〈∇f,∇v〉 =

〈
−x ∂

∂x
, e−

x2

2
∂

∂x

〉
= −xe− x2

2 ,

so that

τfv = ∆v − 〈∇f,∇v〉 = 0.

On the other hand d|∇v| = −xe− x2

2 dx and Ddv = −xe− x2

2 dx2, which implies

|Ddv|2 ≡ |∇|dv||2.
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5. Geometric context and applications

The importance of studying topological rigidity properties of weighted manifolds
under curvature restrictions arises from the need to understand the topology of
gradient Ricci solitons.

Concerning the shrinking side, i.e. Ricf = λ 〈 , 〉 for some constant λ > 0,
we mention that it is not difficult to see that the full conclusion of the classical
Myers–Bonnet theorem cannot be extended to Ricf . Indeed the Gaussian space

(Rm, 〈 , 〉can , e−|x|
2/2dVRm) is a non–compact, complete weighted manifold with

Ricf = 1 > 0. In order to recover compactness we have to impose, besides the
positive constant lower bound on Ricf , further conditions on the growth of f or
on its gradient, see [12, 11]. Nevertheless, as initially investigated in works of M.
Fernández–López and E. Garćıa–Ŕıo in the compact case, [12], and later in the
complete non–compact case by W. Wylie, [35], a close relationship beetween Ricf
and the fundamental group of a weighted manifold still survive. Namely, Myers–
type results in this contest establish the finiteness of the fundamental group if
Ricf ≥ c2 > 0 (and in particular for shrinking gradient Ricci solitons). Let us also
mention that very recently in [22] these results were extended in the direction of the
classical Ambrose theorem to complete weighted manifolds (Mm, 〈 , 〉M , e−fdVM )
such that, fixed a point o ∈M , for every unit speed geodesic γ issuing from γ(0) = o
we have

(i) M Ricf (γ̇, γ̇) ≥ µ ◦ γ + 〈∇g ◦ γ, γ̇〉M , (ii)

∫ +∞

0

µ ◦ γ(t)dt = +∞,

fore some functions µ ≥ 0 and g bounded. For more details see Theorem 9.1 in
[22].

We now come to analyze the topology of weighted manifolds (Mm, 〈 , 〉M , e−fdVM )
with M Ricf ≥ 0. Altough we are interested in particular to the study of topological
properties “in the small” we mention that very recently some results regarding the
topology at infinity of weighted manifolds with M Ricf ≥ 0 and in particular of
gradient steady Ricci solitons were obtained by O. Munteanu and J. Wang in [19].
In particular, they prove that gradient steady Ricci solitons are either connected
at infinity or they are isometric to a Ricci flat cylinder.
The following theorem encloses some known topological results in case M Ricf ≥
0 which are particularly relevant to our investigation. These are obtained in
[16, 33, 36] and adapting to weighted setting a result in [30]. Note that, in partic-
ular, the first part of conclusion (ii) and conclusions (iii) and (iv) apply to steady
gradient Ricci solitons, i.e. when M Ricf ≡ 0.

Theorem 5.1. Let (Mm, 〈 , 〉M , e−fdVM ) be an m–dimensional complete weighted
manifold, then the following hold:

(i) if M is compact, M Ricf ≥ 0 and M Ricf > 0 at one point then |π1(M)| <
∞;

(ii) if M is non–compact, M Ricf ≥ 0, and |f | is bounded, then M either satis-
fies the loops to infinity property or has a double covering which splits. In
particular if M Ricf > 0 then M satisfies the loops to infinity property;

(iii) if M is non–compact with M Ricf ≥ 0, |f | is bounded and D ⊂M is a pre-
compact set with simply connected boundary, then π1(D) can only contain
elements of order 2.
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(iv) if M is non–compact and M Ricf ≥ 0, and either f is a convex function
and attains its minimum or |f | is bounded, then b1(M) ≤ m.

As a first application of their vanishing result for the harmonic representative,
R. Schoen and S.–T. Yau, in [28], studied the topology of manifolds with non–
negative Ricci curvature. We can now naturally generalize their work to the case of
manifolds with non–negative Ricf curvature. Contrary to all the results contained
in Theorem 5.1, the technique used here can be extended, under the validity of the
spectral assumption (1) on ∆f , also to the more general case M Ricf ≥ −k2. In
particular as a consequence of Theorem A we obtain Corollary B, which predicts
information on the topology of compact domains with simply connected boundary
in a complete manifold M . While Corollary B (i) is a simple generalization of the
non–weighted results, the conclusion (ii) is new. In fact for f ≡ 0, at least one
of the conditions (a) or (c) of Theorem A is automatically satisfied, so that (ii) is
trivially contained in (i). Accordingly, in order to prove Corollary B in the weighted
setting, some further work is necessary. In particular we need the following result.

Theorem 5.2. Let M and N be complete Riemannian manifolds, u ∈ C2(M,N)
such that Ddu = 0 and rk(u) ≡ 1. Then u(M) ⊆ γ, γ geodetic of N and

(1) if γ is closed u](π1(M,x0)) ≤
〈

[γ]u(x0)

〉
≤ π1(N, u(x0));

(2) if γ is not closed then u](π1(M,x0)) = 1π1(N,u(x0)).

Proof. Since u is a totally geodesic map of rank 1, by standard arguments we
know that there exists a geodesic γ of N such that u(M) ⊂ γ. Without loss of
generality, we can take a constant speed parametrization γ : R → N . Fix an
element g ∈ π1(M,x0). In case γ is closed, hence periodic so that up to a linear
change of variable it can be reparametrized as γ : T→ N , we want to show that

(21) [u ◦ σ]u(x0) = [γ]lu(x0)

for some l ∈ Z and for some (hence any) continuous loop σ : [0, 1]→M based at x0,
i.e. σ(0) = σ(1) = x0, such that [σ]x0 = g. On the other hand, in case γ : R → N
is not closed, i.e. non–periodic, the thesis corresponds to prove that

(22) [u ◦ σ]u(x0) = 1π1(N,u(x0)).

First, we show that we can choose the continuous loop σ : [0, 1] → M based at
x0, [σ]x0

= g, in such a way that σ|(0,1) is a constant speed geodesic. To this end,

let M̃ be the universal cover of M and PM : M̃ → M the covering projection.
Fix an element x̃0 in the fiber P−1

M (x0). Then we can lift σ to a continuous path

σ̃ : [0, 1]→ M̃ which satisfies

PM ◦ σ̃(t) = σ(t), σ̃(0) = x̃0, σ̃(1) = x̃′0

for all t ∈ [0, 1] and for some x̃′0 ∈ P−1
M (x0) (possibly x̃0 = x̃′0). Consider a

constant speed (possibly constant) geodesic ν̃ : [0, 1] → M̃ joining x̃0 to x̃′0. Since

M̃ is simply connected there exists a homotopy H̃ relative to {x̃0, x̃
′
0} deforming

σ̃ into ν̃, i.e. H̃ ∈ C0([0, 1]2, M̃) and H̃(0, t) = σ̃(t), H̃(1, t) = ν̃(t), H̃(s, 0) = x̃0

and H̃(s, 1) = x̃′0 for all s, t ∈ [0, 1]. Hence we can project H̃ to the homotopy

H := PM ◦ H̃ ∈ C0([0, 1]2,M), so that the loop ν based at x0 defined by ν(t) :=
H(1, t) = PM (ν̃(t)) satisfies [ν]x0

= [σ]x0
= g and, since covering projection maps

are local isometries, ν|(0,1) is a geodesic.
Now, if u ◦ ν is constant, then clearly [u ◦ ν]u(x0) = 1π1(N,u(x0)), so that u]([ν]x) =
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1π1(N,u(x)).

On the other hand, suppose that u ◦ ν ∈ C0([0, 1], N) is not constant. Then, since
Ddu = 0, u◦ν is a non–trivial constant speed geodesic arc inN , i.e. N∇du(ν̇)du(ν̇) ≡
0, and u ◦ ν ⊂ γ. Since ν(0) = ν(1), ν can be seen as a continuous function on
T = [0, 1]/ ∼ smooth in (0, 1). Moreover, since Ddu = 0 and rk(u) ≡ 1, we have
that

du(ν̇(1)) ‖ du(ν̇(0)) and |du(ν̇(1))| = |du(ν̇(0))| 6= 0

in Tu(x0)N , and, since u ◦ ν|(0,1) is a non–trivial geodesic of N , necessarily it is

du(ν̇(1)) = du(ν̇(0)).

Then both γ and u ◦ ν are nontrivial closed geodesic of N , and u ◦ ν = γl (i.e. γ
covered l times) for some l ∈ Z. In particular we get u]([ν]x) = [γ]lu(x).

Since we have arbitrarily chosen the element g ∈ π1(M,x0), this permits to con-
clude. �

As a consequence of Theorem 5.2 and Theorem A we obtain the desired topo-
logical result.

Proof (of Corollary B). We give just an idea of the proof. For the details see the
proof of Theorem 6.21 in [25].
Consider a homomorphism σ ∈ Hom(π1(D), π1(N)). Since N is K(π, 1), according
to the theory of aspherical spaces there exists a map û : D → N such that σ = α◦û]
for some automorphism α ∈ Aut(π1(N)). Since ∂D is simply connected, û can be
extended to a map u : M → N such that u|M\D′ is constant for some compact
set D ⊂⊂ D′ ⊂⊂ M . Then u has finite f–energy and we can apply Theorem A.
First, if one of the condition (a) to (f) is satisfied, we deduce that u is homotopic
to a constant and accordingly the homomorphism σ is trivial. On the other hand,
if N Sect < 0, then Theorem A says that u is a totally geodesic map of rk(u) ≡ 1 so
that u(M) is contained in some geodesic γ of N . Hence, an application of Theorem
5.2 yields that, for some x0 in D,

û](π1(D,x0)) = u](π1(D,x0)) < u](π1(M,x0))

<
〈

[γ]u(x0)

〉
< π1(N, u(x0)).

�

Remark 5.3. When M is compact and (e) holds or M is complete non–compact
and (b) is satisfied, the conclusion of Corollary B (i) follows from Theorem 5.1 (i)
and (iii). Indeed, let ρ : π1(M)→ π1(N) be a non–trivial homomorphism of π1(M)
into the fundamental group of a compact manifold N with N Sect ≤ 0. Then every
g ∈ π1(M), and hence ρ(g), must have finite order. On the other hand by Cartan
theorem all non–trivial elements of the fundamental group of a complete Riemann-
ian manifold of non–positive curvature have infinite order. Contradiction.

Let us now consider the case where (Mm, 〈 , 〉M , e−fdVM ) supports an expanding
gradient Ricci soliton structure. Very recently in [18] it has been shown that a non–
trivial expanding Ricci soliton must be connected at infinity provided its scalar
curvature satisfies a suitable lower bound. Starting from Corollary B we can go a
step further in the understanding of the topology of this class of manifolds. Indeed,
in [18] the following lemma is proved. Letting MS denote the scalar curvature of M ,
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recall that by the scalar curvature estimates proved for expanding Ricci solitons,
mλ ≤ infM

MS ≤ 0 and MS(x) > mλ, unless M is Einstein and the soliton is
trivial (i.e. f is constant); see [26].

Lemma 5.4 (Lemma 5.3 in [18]). Let (Mm, 〈 , 〉M ,∇f) be a complete non–trivial
expanding gradient Ricci soliton. Define ρ := MS −mλ. Then ρ > 0 and∫

M

ρϕ2e−fdVM ≤
∫
M

|∇ϕ|2e−fdVM ,

for any ϕ ∈ C∞0 . In particular λ1(−∆f − ρ) ≥ 0.

Remark 5.5. As a consequence of Lemma 5.4 and Corollary 1.7 in [22] we observe
incidentally that for any complete non–trivial expanding Ricci soliton with scalar
curvature such that MS −mλ > c > 0 the quantity

∫
Br
|∇f |pe−fdVM has to grow

at least quadratically, for any p > 1.

The lower bound for the bottom of the spectrum of ∆f obtained in Lemma 5.4
permits to obtain conditions on the scalar curvature of an expanding gradient Ricci
soliton in order to guarantee condition (1) for some H > 1, where k 6≡ 0, and hence
to apply Corollary B under the assumption (a). Indeed, in order to conclude the
proof of Theorem C observe that if S > (m− 1)λ and H > 1,∫

M

(MS −mλ)ϕ2e−fdVM ≥ −
∫
M

Hλϕ2e−fdVM

for any ϕ ∈ C∞0 . By Lemma 5.4 this permits to deduce (2) with k2 = −λ.
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36. N. Yang, A note on nonnegative Bakry-Émery Ricci curvature, Arch. Math. (Basel) 93 (2009),
no. 5, 491–496.
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