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Abstract. Motivated by some questions in continuum mechanics and analysis

in metric spaces, we give an intrinsic characterization of sequentially weak
lower semicontinuous functionals defined on Sobolev maps with values into

manifolds without embedding the target into Euclidean spaces.

0. Introduction

Equilibrium problems in several applied fields involve the minimization of en-
ergies defined on maps taking values into manifolds. We mention, for instance,
Eriksen-Leslie theory (see [12], [39]) and de Gennes Q-tensor theory of liquid crys-
tals (see [8], [3]), variational models for magnetostrictive materials, and more gener-
ally, variational theories for complex bodies, i.e. bodies whose macroscopic mechan-
ical behavior is influenced prominently by the material substructures at different
low scales (see [5], [28] and [29] for several examples of hyperelastic complex bodies
and related energies).

A common approach to study the existence of ground states for these mechanical
systems takes advantage of Nash isometric embeddings [33] to linearize the target
constraint and recast the problem into the usual Euclidean setting. In this way the
standard distributional calculus is restored, and classical tools of the direct methods
in the Calculus of Variations can be applied (cp. with [4], [20], [7], [15], [16], [17],
[32]).

In this note, instead, we give a characterization of sequentially weak lower semi-
continuous functionals defined on spaces of Sobolev maps with values into a Rie-
mannian manifold M based uniquely on the Riemannian properties of the target.
To this aim, we follow the intrinsic definition of Sobolev maps into metric spaces
introduced by Ambrosio [2] and Reshetnyak [35]. Building upon this, we provide
first a natural notion of approximate differentiability forM-valued maps, and then
we give a definition of quasiconvexity for integrands defined on a suitable bundle
over M, which characterizes the sequential weak lower semicontinuity of the cor-
responding functional as in Morrey’s celebrated results in the vectorial Calculus of
Variations [30, 31].

The motivations for this work come from the attempt to develop a robust tech-
nique in order to study lower semicontinuity properties of energies defined on spaces
of functions taking values into nonlinear singular spaces. Indeed, if on one hand
semicontinuity is clearly independent from the chosen embedding for the target
space, on the other hand many features enjoyed by classical vector valued Sobolev
maps do not hold anymore for general metric space valued maps. Thus, several
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arguments exploited in the Euclidean framework cannot be modified to prove anal-
ogous results for non-flat singular codomains which do not admit an Euclidean
embedding.

The aim of this note is then to show in a relatively simple but non-trivial case how
semicontinuity can be qualified intrinsically avoiding as much as possible specific
characteristics of the Euclidean structure. The techniques introduced here will
be, indeed, further developed in [14] to tackle the analysis of more sophisticated
and physically more plausible energies arising within multifields theories of complex
bodies (see [28]), for which smooth embedding in Euclidean spaces are not available.

From a mechanical perspective the non-uniqueness of the isometric embedding
in Nash theorems is relevant. For instance, in the general model building frame-
work of complex bodies it leads to different representations of the microstructure.
Therefore, the choice of one specific isometry has to be considered as a sort of ad-
ditional constitutive assumption on the model (cp. with [28]). Hence, the intrinsic
approach developed here frees the problem of establishing the lower semicontinuity
property from this drawback.

To our knowledge, few investigations on the semicontinuity properties of ener-
gies defined on Sobolev maps taking values into non-standard settings are present
in literature. We mention some previous results by Reshetnyak [37] for functionals
on metric space valued Sobolev functions holding true under convexity assumptions
of the integrands, a paper by Dacorogna et al. [7] developing an extrinsic approach
to (embedded) manifold constrained variational problems, and a recent paper by
C. De Lellis and the authors [9], where some of the ideas presented here are success-
fully employed to characterize lower semicontinuous energies for Almgren’s multiple
valued functions.

It is worth to point out that in our framework the hypotheses in Reshetnyak’s
paper turn out to be not necessary and, on the other hand, that several features en-
joyed by Almgren’s Q-valued functions, such as the Lipschitz approximation prop-
erty, are no longer available for manifold constrained Sobolev maps. Hence, in this
paper we establish a semicontinuity result which for some aspects is complemen-
tary to the ones known in literature and which, as said, will be used in conjunction
with those in order to deal with more pertinent energies for what concerns some
mechanical models for complex bodies.

A brief resume of the paper is as follows. The rest of the Introduction is dedicated
to fix the basic notations and introduce the main relevant notions for the analysis
we will develop: W 1,p(Ω,M) maps, for which we provide an intrinsic definition
of approximate differential, and quasiconvexity. Section 1 is devoted to the proof
of the approximate differentiability and the Calderón-Zygmund Lp-approximate
differentiability of M-valued Sobolev maps. In Section 2 we prove the main result
of the paper: the characterization of weak lower semicontinuous functionals in
terms of quasiconvexity of the corresponding energy densities (see Theorem 0.6).
Eventually, in Appendix A we recall some technical results instrumental for our
approach.

0.1. Basic assumptions. In order to illustrate the results, we introduce the fol-
lowing assumptions and notations. Throughout the whole paper, Ω will always be
a bounded open subset of the Euclidean space Rm endowed with canonical base
e1, . . . , em.
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In what follows we shall make quick recalls of some standard notions and results
in Riemannian geometry mainly referring to the book [11] for precise references.

For what concerns the target space, (Mn, g) will always denote a connected
Riemannian manifold of class at least C2 and dimension n, often indicated simply
byM. It is understood thatM satisfies the Hausdorff and countable basis axioms.
Moreover, we shall always suppose that M is complete, i.e. the exponential map
expu is defined on all of TuM for every point u ∈ M. Recall then that, by Hopf-
Rinow’s theorem, M endowed with the geodesic distance dM is a complete metric
space. In particular, for points u ∈ M we shall denote with Br(u) ⊆ M the open
ball with respect to the metric dM. Let us remark that with a slight abuse of
notation the Euclidean ball in Rm centred in x with radius r > 0 will be denoted
by Br(x).

As usual, TM will be the tangent bundle: points of TM are couples (u, v),
where u is in M and v is a tangent vector to M at u, in symbols v ∈ TuM. In
addition, we consider the vector bundle with base space M and total space the
linear homomorphisms Hom(Rm, TM), whose points are couples (u,A) with u in
M and A : Rm → TuM a linear map. For this bundle, π : Hom(Rm, TM) → M
denotes the projection map on M. Note that, with fixed u in M, Hom(Rm, TuM)
can be identified with (TuM)m through the identification

A ' (v1, . . . , vm) with vi = A ei ∈ TuM, for i = 1, . . . ,m.

Since we are going to consider continuous functionals defined on such bundles, we
specify that we endow TM with the induced Riemannian metric (see, for instance,
[11, Chapter 3, exercise 2]) whose distance is given, for (p, v), (q,w) ∈ TM, by

dTM
(
(p, v), (q,w)

)
:= inf

ϑ=(γ,X)

ˆ 1

0

√
|γ̇(t)|2g(γ(t)) + |∇γ̇(t)X(t)|2g(γ(t)) dt, (0.1)

where the infimum is taken among all smooth curves

[0, 1] 3 t 7→ ϑ(t) = (γ(t), X(t)) ∈ TM,

such that ϑ(0) = (p, v) and ϑ(1) = (q,w) – above ∇ denotes always the Levi-Civita
connection.

With this metric at disposal, we define a metric structure on Hom(Rm, TM)
simply specifying the distance,

D
(
(p,A), (q,B)) :=

√√√√ m∑
i=1

dTM
(
(p, vi), (q,wi)

)2
, (0.2)

where A ' (v1, . . . , vm) and B ' (w1, . . . ,wm) with the above identification. We
point out that, such choice being arbitrary, is however equivalent to any reasonable
metric which is compatible with the one on TM in the case m = 1.

Throughout the paper the letter C will denote a generic positive constant. We
assume this convention since it is not essential to distinguish from one specific
constant to another, leaving understood that the constant may change from line
to line. The parameters on which each constant C depends will be explicitely
highlighted.
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0.2. Manifold constrained Sobolev maps. Sobolev spaces of maps taking val-
ues into M are the functional analytic framework of the present paper. As ex-
plained in the introduction, we avoid any isometric embedding of the manifold into
Euclidean spaces, hence we are led to consider an intrinsic notion suitable for our
purposes. In addition, in view of the metric space analysis perspectives hinted to
above, we shall follow the metric space approach developed in different contexts by
Ambrosio [2] and Reshetnyak [35, 36, 37].

Definition 0.1. Let p ∈ [1,+∞]. We say that a map u belongs to W 1,p(Ω,M) if
there exists h ∈ Lp(Ω) such that, for every u0 ∈M,

(i) the map x 7→ dM(u(x), u0) is W 1,p(Ω);
(ii) |D

(
dM(u(x), u0)

)
| ≤ h(x) for Lm-a.e. x ∈ Ω.

Remark 0.2. It is very simple to see that maps u ∈W 1,p(Ω,M) are stable under
composition with Lipschitz functions, i.e. if ϕ :M→ Rν is Lipschitz then ϕ ◦ u ∈
W 1,p(Ω,Rν) and |D(ϕ ◦ u)| ≤ Lip(ϕ)h (see, for example, [35]). Moreover, there
exists an optimal h fulfilling (ii) above, denoted by |Du| and given by the following
expression (see, for example, Reshetnyak [35]):

|Du|(x) = sup
{ui}i∈N

|D
(
dM(u(x), ui)|,

where {ui}i∈N ⊂M is a countable dense set.

In the extrinsic theory, Sobolev spaces taking values into M are introduced by
means of an isometric embedding or, more generally, via the Kuratowskij’s isometric
embedding into `∞ for separable metric space targets. Let us point out that the two
approaches turn out to define the same function space in case the target domain
can be embedded into the dual of a separable Banach space (cp. with [19, Theorem
1.7], see also [18, Section 3]).

Related notions have been introduced in the theory of harmonic maps with met-
ric space targets in the works of Korevaar and Schoen [26] and Jost [22, 23], and
in the theory of analysis on metric spaces by Heinonen et al. [21] and Ohta [34].
Equivalences for all these approaches and the one adopted here have been estab-
lished partially in Reshetnyak [36] and Jost [24], and fully in Chiron [6].

Loosely speaking, in such general frameworks only the definition of the modulus
of the gradient is given. On the contrary, exploiting the linear structure of the
tangent spaces to M, we shall show that an approximate differential, according to
the following definition, can be introduced Lm-a.e. on Ω intrinsically.

To begin with, we rephrase the classical notion of differentiability according to
differential geometry into a metrical flavour. Let u : Ω ⊂ Rm →M and x ∈ Ω be
fixed. Then, the following assertions are equivalent:

(i) u is differentiable at x (according to differential geometry);
(ii) there exists a linear map A : Rm → Tu(x)M such that

dM

(
u(y), expu(x)(A(y − x))

)
= o(|y − x|) y → x.

In addition, in the last case the map A is unique and dux = A.
Essentially, this follows from the biLipschitz property of the exponential map in

a small neighborhood of the relevant point. We turn this pointwise characterization
into a definition in an approximate sense.
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Definition 0.3. Let u : Ω → M be a measurable function and x be a point of
approximate continuity of u. A linear map A : Rm → Tu(x)M is an approximate
differential of u at x if for all ε > 0

lim
ρ→0+

ρ−mLm
({
y ∈ Bρ(x) : dM

(
u(y), expu(x)(A(y − x))

)
≥ ε |x− y|

})
= 0.

(0.3)

Clearly, the approximate differential, when it exists, is unique and we denote it
by dux as in the smooth setting.

It is not hard to see that there exists a dimensional constant Cm > 0 such that
C−1
m ‖dux‖g(u(x)) ≤ |Du|(x) ≤ Cm‖dux‖g(u(x)) for Lm-a.e. x ∈ Ω, where |Du| is the

function introduced in Remark 0.2 and ‖ · ‖g(u(x)) denotes the operatorial norm of
dux,

‖dux‖g(u(x)) := sup
v∈Rm, |v|=1

|dux (v)|g(u(x)),

with |·|g(u) the norm in TuM induced by the metric g (for more details, see Remark
1.7).

Remark 0.4. It is proved in [19, Theorem 2.17] that the notion of Sobolev maps
in Definition 0.1 coincides with the classical one using an isometric embedding
i :M→ RN , namely W 1,p(Ω,M) = W 1,p

i (Ω,M), where

W 1,p
i (Ω,M) := {v ∈W 1,p(Ω,RN ) : v(x) ∈ i(M) Lm-a.e. in Ω}.

Moreover, for any u ∈ W 1,p(Ω,M), it is then easy to check that d(i ◦ u)x =
diu(x) ◦ dux for Lm-a.e. x ∈ Ω, where dux is the map in Definition 0.3.

We also notice that for Lipschitz maps u the approximate differentials dux induce
the family of seminorms introduced by Kirchheim [25] for the characterization of
metric differentiability. More precisely, it is shown in [25] that, given a Lipschitz
map w : Ω → (X, ‖ · ‖), with (X, ‖ · ‖) a Banach space, for Lm-a.e. x ∈ Ω there
exists a seminorm MD(w, x) such that

‖w(y)− w(z)‖ −MD(w, x)(y − z) = o(|y − x|+ |z − x|) as y, z → x.

Thus, once an isometric embedding i :M→ X of the metric space (M, dM) into
a Banach space (X, ‖ · ‖) is chosen (in passing we note that this is always possible),
it is easy to see that for a Lipschitz map u it holds

MD(i ◦ u, x)(y − z) = |dux(y − z)|g(u(x)).

Finally, we define weak (weak∗ if p = +∞) convergence in W 1,p(Ω,M) through
an equivalent characterization in the Euclidean case. To this aim, for any map
u ∈W 1,p(Ω,M), set

‖du‖pp :=

ˆ
Ω

‖dux‖pg(u(x)) dx for p < +∞;

‖du‖∞ := ess− supx∈Ω‖dux‖g(u(x)) for p = +∞.

Given u, uk ∈ W 1,p(Ω,M), we say that (uk)k∈N converges weakly (weakly∗) to u
provided uk → u in Lp(Ω,M) and supk ‖duk‖p < +∞.
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0.3. Quasiconvexity and lower semicontinuity. We consider continuous in-
tegrands f : Ω × Hom(Rm, TM) → [0,+∞). We say that f is admissible in
W 1,p(Ω,M) if, for p ∈ [1,+∞[,

0 ≤ f(x, u,A) ≤ C
(

1 + dpM(u, u0) + ‖A‖pg(u)

)
,

where u0 ∈M is a fixed point and C is a positive constant; or if f extends contin-
uously to Ω̄×Hom(Rm, TM) in case p = +∞.

As a consequence of the existence of the approximate differential, if p ∈ [1,+∞]
and f is an admissible integrand, for any map u ∈W 1,p(Ω,M), the following energy
is well-defined:

F (u) =

ˆ
Ω

f
(
x, u(x), dux

)
dx. (0.4)

We now introduce the notion of quasiconvexity for such functionals, which is a
natural generalization of Morrey’s definition. Set Cr := [−r/2, r/2]m for all r > 0.
If u ∈ M and ϕ ∈ C∞c (C1, TuM), for all x ∈ C1 we identify in the usual way the
spaces Tϕ(x)(TuM) and TuM. In particular, dϕx : Rm → Tϕ(x)(TuM) ' TuM can
be seen as an element of Hom(Rm, TuM) – thus giving sense to (0.5) below.

Definition 0.5. Let f : Ω × Hom(Rm, TM) → R be locally bounded. We say
that f is quasiconvex if, for every (x, u,A) ∈ Ω×Hom(Rm, TM) and for every test
function ϕ ∈ C∞c (C1, TuM),

f
(
x, u,A

)
≤
ˆ
C1

f
(
x, u,A+ dϕy

)
dy. (0.5)

Finally, we are in the position to state the main result of the paper.

Theorem 0.6. Let p ∈ [1,+∞] and f : Ω × Hom(Rm, TM) → [0,+∞) be a
continuous admissible integrand. If f is quasiconvex, then the functional F in
(0.4) is weakly (weakly∗) lower semicontinuous in W 1,p(Ω,M). Conversely, if F is
weakly∗ lower semicontinuous in W 1,∞(Ω,M), then f is quasiconvex.

We remark again that previous results in this setting usually regard the target
manifold as isometrically embedded into a linear space (cp. with [4], [17], [7], [32])
in order to exploit extrinsic arguments such as the existence and regularity of a
(local) closest point projection. Our proof, instead, is entirely relying within the
metric theory of manifold valued Sobolev spaces according to Definition 0.1.

1. Manifold-valued Sobolev functions

In this section we shall establish some basic preliminary results concerning the
theory of manifold constrained Sobolev maps which will be used in the proof of
Theorem 0.6.

To begin with, we show that manifold valued Sobolev maps are Lipschitz con-
tinuous on big pieces of Ω.

Lemma 1.1. Let u be in W 1,p(Ω,M), p ∈ [1,+∞]. Then, there exists a family of
Borel sets Ωλ ⊆ Ω such that Lm(Ω \ Ωλ) → 0 as λ → +∞ and u|Ωλ is Lipschitz
continuous.
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Proof. If p = +∞, then it is easily recognized from Definition 0.1 that u is Lipschitz
continuous and, hence, there is nothing to prove. Therefore, we may assume p <
+∞. Let h ∈ Lp(Ω) be an admissible function in Definition 0.1 (ii) and set

Ωλ :=
{
x ∈ Ω : M(h)(x) ≤ λ

}
,

where M is the maximal function operator (see [38] for the definition). Note that
the set Ωλ are increasing with respect to λ and moreover, by the standard weak
Lp − Lp estimate for the maximal function,

Lm(Ω \ Ωλ) ≤ C λ−p
ˆ

Ω

|h(x)|p dx→ 0 as λ→ +∞.

On the other hand, since by definition |D(d(u(x), u0))| ≤ h(x) for every u0 ∈ M
and Lm-a.e. x ∈ Ω, it follows that

M
(
D(d(u(x), u0))

)
≤ λ Lm-a.e. in Ωλ.

Then, a by now standard computation implies Lip(d(u, u0)|Ωλ) ≤ C λ, with C a
dimensional constant (see, for instance, [13, Section 6.6.3]). Since this holds for
every u0 ∈M, we infer easily that u|Ωλ is Cλ-Lipschitz as well. �

Remark 1.2. The existence of a Lipschitz approximation to a Sobolev map with
values intoM is not implied by Lemma 1.1. The answer to the problem of density of
regular mappings in W 1,p(Ω,M) is negative in general and depends on the topology
of M (see, for example [18, Theorem 2.3]).

On the contrary, the Lipschitz approximation property holds true in the more
singular case of Almgren’s Q-valued functions (cp. with [10]).

Lemma 1.1 allows us to prove the almost everywhere approximate differentiabil-
ity of Sobolev functions. In the proof below we keep using the notation introduced
in Lemma 1.1 to which we refer.

Corollary 1.3. Every map u ∈ W 1,p(Ω,M) is approximately differentiable Lm-
a.e. on Ω, i.e. for Lm-a.e. x ∈ Ω, there exists a (unique) linear map dux : Rm →
Tu(x)M such that, for all ε > 0,

lim
ρ→0+

ρ−mLm
({
y ∈ Bρ(x) : dM

(
u(y), expu(x)(dux(y − x))

)
≥ ε |x− y|

})
= 0.

(1.1)

Proof. Fix λ > 0. Since u|Ωλ is Lipschitz continuous, there exists ρ > 0 such that
we can cover Ωλ with finitely many balls Br(xi) such that u(Ωλ∩Br(xi)) ⊂ Ui with
(Ui, ϕi) a local chart, i.e. Ui open in M and ϕi : Ui ⊂M→ Rn a coordinate map.
Furthermore, being ϕi ◦ u Lipschitz continuous in Ωλ ∩ Br(xi), it is differentiable
Lm-a.e. there. More precisely, we can find a Lipschitz extension w of ϕi ◦ u to the
whole of Bρ(xi) with the same Lipschitz constant. Finally, recall that Rademacher’s
theorem implies the classical differentiability of w Lm-a.e. on Br(xi).

Consider points x ∈ Ωλ such that:

(a) Ωλ has density one in x;
(b) x ∈ Br(xi) is such that (ϕi ◦ u)|Ωλ is differentiable in x;
(c) x is a Lebesgue point for u.

We shall show that for every x enjoying (a)-(c), u is approximately differentiable
in x with

dux := dϕ−1
i |ϕi(u(x)) ◦ d(ϕi ◦ u)x, (1.2)
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where the differentials appearing on the right hand side are the standard differential
for Lipschitz maps. Set

Eρ :=
{
y ∈ Bρ(x) : dM

(
u(y), expu(x)(dux(y − x))

)
≥ ε |x− y|

}
,

and consider separately Eρ ∩Ωλ and Eρ \Ωλ. By item (a) it suffices to prove that
Lm(Eρ ∩ Ωλ) = o(ρm) as ρ → 0+. To this aim, we note for all y ∈ Bρ(x) ∩ Ωλ we
have

dM

(
u(y), expu(x) (dux(y − x))

)
≤ C|ϕi ◦ u(y)− ϕi ◦ expu(x) (dux(y − x)) |.

Note that the maps ϕi ◦ u and ϕi ◦ expu(x) (dux(· − x)) share in x the same differ-

entials by (1.2) as well as the same common value. Hence, it follows that

dM

(
u(y), expu(x) (dux(y − x))

)
≤ C f1(y) + C f2(y),

with

f1(y) := |ϕi ◦ u(y)− ϕi ◦ u(x)− d(ϕi ◦ u)x(y − x)|,
f2(y) := |ϕi ◦ expu(x) (dux(y − x))− ϕi ◦ u(x)− d(ϕi ◦ u)x(y − x)|.

Thus, we infer

Eρ ∩ Ωλ ⊆
{
y ∈ Bρ(x) ∩ Ωλ : f1(y) ≥ ε

2C
|y − x|

}⋃
⋃{

y ∈ Bρ(x) ∩ Ωλ : f2(y) ≥ ε

2C
|y − x|

}
.

The Lipschitz continuity of ϕi ◦ u and ϕi ◦ expu(x) (dux(· − x)) on Bρ(x) ∩ Ωλ for

small ρ > 0 implies that, for every point x satisfying (a)–(c), Lm(Eρ∩Ωλ) = o(ρm).
Finally, since (a)–(c) hold for a subset of Ωλ of full measure, and Lm(Ω\Ωλ)→ 0

as λ→ +∞, the proof is concluded. �

Remark 1.4. The representation formula given in (1.2) ensures measurability
of the approximate differential du. In addition, uniqueness and locality follows
straightforwardly from (1.1).

1.1. Lp-approximate differentiability. In this section we shall improve upon
Corollary 1.3. More precisely, in Proposition 1.6 we shall establish the Calderón-
Zygmund Lp-approximate differentiability property for maps in W 1,p(Ω,M).

We start off with a simple technical result.

Lemma 1.5. For every u ∈ M, let ru > 0 be the injectivity radius of M in
u. Then, for all r ∈ (0, ru/2), there exists a Lipschitz map θr : M → Br(u)
with θr|Br(u) = Id , θr|M\B2r(u) = u and Lip(θr) ≤ C, for some positive constant
C = C(u,M).

Proof. With fixed u ∈M and r ∈ (0, ru/2), let θr :M→M be the map

θr(z) := γz
(
(dM(z, u) ∧ (2 r − dM(z, u))) ∨ 0

)
,

where γz : [0,+∞) → M is any minimizing geodesic (hence parametrized by ar-
clength) starting from u and passing through z (its existence is guaranteed by the
Hopf-Rinow’s theorem).

The choice of r ∈ (0, ru/2) makes θr well-defined. Indeed, minimizing geodesics
are unique if z ∈ B2r(u), and for z ∈M \B2r(u) the argument of γz reduces to 0,
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so that γz(0) = u for any geodesic. In particular, by the very definition θr|Br(u) is
the identity, θr|M\B2r(u) = u, and θr takes values into Br(u).

Eventually, to show that θr is Lipschitz continuous, we note that it suffices to
prove that the restriction θr|B2r(u) enjoys such a property. The latter follows easily
again from the choice of r and the very definition of θr. �

Proposition 1.6. Let u ∈W 1,p(Ω,M). Then, for Lm-a.e. x ∈ Ω it holds

lim
r→0+

r−p−m
ˆ
Br(x)

dpM

(
u(y), expu(x) (dux(y − x))

)
dy = 0. (1.3)

Proof. We show (1.3) for all points x ∈ Ω of approximate differentiability of u, and
of approximate continuity for du and h in Definition 0.1. Let s < ru(x), where
ru(x) is as in Lemma 1.5 and let θs be the corresponding Lipschitz map. Then, we
estimate the left hand side in (1.3) as follows:

ˆ
Br(x)

dpM

(
u(y), expu(x) (dux(y − x))

)
dy ≤ C

ˆ
Br(x)

dpM (u(y), θs ◦ u(y)) dy

+ C

ˆ
Br(x)

dpM

(
θs ◦ u(y), expu(x) (dux(y − x))

)
dy =: I1 + I2. (1.4)

For what concerns I2, we note that, by assumption, x turns out to be a point of
approximate differentiability for the the vector-valued Sobolev map exp−1

u(x) ◦ θs ◦
u : Ω → Tu(x)M ' Rn. In addition, d(exp−1

u(x) ◦ θs ◦ u)x = dux follows from

d(θs)u(x) = Id . Therefore, the local Lipschitz continuity of expu(x) implies

I2 ≤ C
ˆ
Br(x)

∣∣∣exp−1
u(x) ◦ θs ◦ u(y)− d(exp−1

u(x) ◦ θs ◦ u)x(y − x)
∣∣∣p
g(u(x))

dy

= o(rm+p), (1.5)

by taking into account the classical Calderón-Zygmund Lp-differentiability of the
(standard) Sobolev map exp−1

u(x) ◦ θs◦ u (see Remark 0.2 and [13, Subsection 6.1.2]).

Regarding I1, consider the set H := {y ∈ Br(x) : dM(u(y), u(x)) > s}, and
note that dM(u(y), θs ◦ u(y)) = 0 for Lm-a.e. y ∈ Ω \ H. Since x is a point of
approximate continuity of u, it follows that

lim
r→0+

Lm(Br(x) ∩H)

rm
= 0. (1.6)

Moreover, denoting by {ui}i∈N a dense subset of M, the equality

dM(u, θs ◦ u) = sup
{ui}i∈N

|dM(u, ui)− dM(ui, θs ◦ u)|,

yields that dM(u, θs ◦ u) ∈W 1,p(Ω) and

|D (dM(u, θs ◦ u)) | ≤ sup
{ui}i∈N

|D (dM(u, ui)) |+ |D (dM(ui, θs ◦ u)) | ≤ C h. (1.7)

In view of (1.6) and (1.7), we can apply Poincaré inequality and get

I1 ≤ C rp
ˆ
Br(x)

|D (dM(u(y), θs ◦ u(y))) |p dy

≤ C rp
ˆ
Br(x)∩H

|h(y)|p dy = o(rm+p).
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The last estimate, together with (1.5), finishes the proof of (1.3). �

Remark 1.7. From Proposition 1.6, it is not difficult to show that there exists a
dimensional constant Cm > 0 such that

C−1
m ‖dux‖g(u(x)) ≤ |Du|(x) ≤ Cm‖dux‖g(u(x)).

For, being u|Ωλ and the distance function Lipschitz continuous, the distributional
gradient of dM(u(·), ui), i ∈ N, coincides with the pointwise approximate ones for
Lm-a.e. point in Ωλ. Hence, on one hand it is simple to verify that there exist
dimensional constants γm, Cm > 0 (which can be computed explicitely) such that,
for those points,∣∣D(dM(u(·), ui)

)
|y=x

∣∣ = γm lim
r→0

 
Br(x)∩Ωλ

∣∣dM(u(y), ui)− dM(u(x), ui)
∣∣

r
dy

≤ γm lim
r→0

 
Br(x)

dM(u(y), u(x))

r
dy

(1.3)
= γm lim

r→0

 
Br(x)

dM

(
expu(x) (dux(y − x)) , u(x)

)
r

dy

= γm lim
r→0

 
Br(x)

∣∣∣∣dux(y − xr
)∣∣∣∣

g(u(x))

dy ≤ Cm‖dux‖g(u(x)),

where we used that d(expu(x))0 = Id , thus implying that |Du|(x) ≤ Cm‖dux‖g(u(x)).

On the other hand, as shown by Ambrosio [2, Theorem 2.2 (ii)] for metric space
valued BV functions (the proof remaining unchanged – even simplified – for the

Sobolev class), |Du|(x) is the approximate limit of the quotient dM(u(y),u(x))
|y−x| for

Lm-a.e. x ∈ Ω, thus we get

|Du|(x) ≥ lim sup
r→0

γm
ωm rm

ˆ
Br(x)∩Ωλ

dM(u(y), u(x))

r
dy

(1.3)

≥ lim sup
r→0

γm
ωm rm

ˆ
Br(x)∩Ωλ

dM

(
expu(x) (dux(y − x)) , u(x)

)
r

dy

= γm lim
r→0

 
Br(x)

dM

(
expu(x) (dux(y − x)) , u(x)

)
r

dy

= γm lim
r→0

 
Br(x)

∣∣∣∣dux(y − xr
)∣∣∣∣

g(u(x))

dy ≥ C−1
m ‖dux‖g(u(x)),

since the left hand side of the last line is a norm for dux.
Indipendently from the consideration above, note that, if ϕ is any local coor-

dinate chart, from the local representation dux = dϕ−1|ϕ(x) ◦ d(ϕ ◦ u)x (cp. with
(1.1)) and Remark 0.2 it follows easily that du ∈ Lp (it is indeed enough to choose
local coordinates ϕ with equi-bounded Lipschitz constants, for example defined on
small normal neighborhoods).

2. Quasiconvexity and lower semicontinuity

In this section we prove Theorem 0.6.
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2.1. Necessity of quasiconvexity. We shall start off by showing that if F in
(0.4) is weakly∗ lower semicontinuous in W 1,∞(Ω,M) then f is quasiconvex.

Let (x, u,A) ∈ Ω × Hom(Rm, TM) and ϕ ∈ C∞c (C1, TuM). Assume without
loss of generality that ϕ is extended to the whole of Rm by C1-periodicity, and
set lA(y) := A(y − x) for simplicity of notation. For r > 0 small enough to have
Cr(x) := x+ Cr ⊆ Ω and k ∈ N, we define

ϕr,k(y) :=


expu

(
lA(y) +

r

k
ϕ

(
k (y − x)

r

))
if y ∈ Cr(x),

expu(lA(y)) if y ∈ Ω \ Cr(x).

Note that

ϕr,k⇀
∗ expu ◦ lA in W 1,∞(Ω,M) as k → +∞.

By the semicontinuity assumption of F , and the very definition of ϕr,k, we infer
that

F (expu ◦ lA, Cr(x)) ≤ lim inf
k→+∞

F (ϕr,k, Cr(x)). (2.1)

Now we calculate explicitely the two sides of (2.1) by scaling back variables to
the unit cube C1. We begin with the left hand side, that gives

F (expu ◦ lA, Cr(x)) =

ˆ
C1

f
(
x+ r z, expu(r A z), d(expu)rAz ◦A

)
rm dz.

Thus, by continuity of the integrand it follows that

lim
r→0

r−mF (expu ◦ lA, Cr(x)) = f(x, u,A). (2.2)

On the other hand, the right hand side of (2.1) can be rewritten as

F (ϕr,k, Cr(x)) =

= rm
ˆ
C1

f
(
x+ rz, expu

(
rAz +

r

k
ϕ(k z)

)
, d(expu)rAz+ r

kϕ(rz) ◦ (A+ dϕkz)
)
dz

= rm
ˆ
C1

f(x, u,A+ dϕkz) dz + rm ω(r), (2.3)

where ω(r) is defined by (2.3) and is clearly infinitesimal as r goes to 0 because
all the functions involved are continuous and d(expu)0 = Id . Further, using the
periodicity of ϕ we get

F (ϕr,k, Cr(x)) = rm
ˆ
C1

f(x, u,A+ dϕz) dz + rm ω(r). (2.4)

In conclusion, collecting (2.2) and (2.4), and taking the limit as r goes to 0, (2.1)
gives

f(x, u,A) ≤
ˆ
C1

f(x, u,A+ dϕz) dz,

thus proving the quasiconvexity of f .
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2.2. Sufficiency of quasiconvexity. Let f be as in the hypothesis of Theorem 0.6
and quasiconvex. We shall show that the corresponding functional F in (0.4) is
weakly (weakly∗ if p = +∞) lower semicontinuous on W 1,p(Ω,M). We give the
proof for p < +∞ and leave to the reader the easy modification for the remaining
case. We want to prove that, given uk⇀u, then

F (u) ≤ lim inf
k→+∞

F (uk).

Let us reformulate conveniently the thesis. Note first that there is no loss of
generality (up to extracting a subsequence which will never be renamed in the
sequel) in assuming that the inferior limit above is in fact a limit. Moreover, in
view of the growth hypothesis on f , we can assume as well that there exists a finite
positive measure µ on Ω such that

f(x, uk(x), (duk)x)Lm Ω⇀∗ µ.

Hence, it is clear that under these assumptions it suffices to show that

f(x, u(x), dux) ≤ dµ

dLm
(x) for Lm-a.e. x ∈ Ω. (2.5)

According to Lemma A.1, without relabeling the subsequence, we consider sets
Ωl, l ∈ N, such that properties in (i)–(iii) there are true for the sequence(

dM(u(x0), uk(x)))p + ‖d(uk)x‖pg(uk(x))

)
k∈N.

In particular, there exists a superlinear function ϕ such that, for all l ∈ N,

sup
k∈N

ˆ
Ωl

ϕ
(

(dM(u(x0), uk(x)))p + ‖d(uk)x‖pg(uk(x))

)
dx < +∞.

With fixed l ∈ N, up to subsequences, we may assume the existence of a positive
measure νl on Ω such that

ϕ
(

(dM(u(x0), uk(x)))p + ‖d(uk)x‖pg(uk(x))

)
χΩl(x)Lm Ω⇀∗ νl.

Finally, from the equi-boundness supk ‖duk‖p < +∞, we assume as well that there
exists a measure σ such that

‖d(uk)x‖g(uk(x)) Lm Ω⇀∗ σ.

We are now in the position to specify the points x for which we shall prove
inequality (2.5). For, we consider the subset Ω′l of points x ∈ Ωl such that:

(a) the function u is Lp-differentiable in x according to (1.3);
(b) Ωl has density one in x;

(c)
dµ

dLm
(x) +

dνl
dLm

(x) +
dσ

dLm
(x) < +∞.

Clearly Lm(Ωl \ Ω′l) = 0, so that Ω′ := ∪lΩ′l is a set of full measure in Ω. We shall
prove that inequality (2.5) is satisfied by all points belonging to Ω′.

To this aim we modify the sequence (uk)k∈N in two steps.
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2.2.1. Truncation. Fix l ∈ N and a point x0 ∈ Ω′l. Then choose radii ρk → 0 such
that µ(∂Cρk(x0)) = ν(∂Cρk(x0)) = σ(∂Cρk(x0)) = 0. Note that, by the choice of
ρk and item (c), we can extract a further subsequence (as usual not renamed) such
that  

Cρk (x0)

dpM(uk(y), u(y)) dy = o(ρpk), (2.6)

lim
k→+∞

 
Cρk (x0)

f(y, uk(y), d(uk)y) dy =
dµ

dLm
(x0) < +∞. (2.7)

sup
k

 
Cρk (x0)∩Ωl

ϕ
(

(dM(u(x0), uk(y)))p + ‖d(uk)y‖pg(uk(y))

)
dy < +∞, (2.8)

sup
k

 
Cρk (x0)

‖d(uk)y‖pg(uk(y)) dy < +∞. (2.9)

Note that, in particular, from item (a) and (2.6) we get 
Cρk (x0)

dpM

(
uk(y), expu(x0)(dux0

(y − x0))
)
dy = o(ρpk). (2.10)

We show now that we can reduce our computation to the case of a localized
bounded sequence in L∞. To this aim, let rk > 0 be such that rk → 0 and
ρk/rk → 0 as k → +∞. Consider the maps θrk provided by Lemma 1.5 with center
u(x0). Set vk := θrk ◦ uk and

Hk :=
{
y ∈ Cρk(x0) : uk(y) 6= vk(y)

}
.

Note that Hk =
{
y ∈ Cρk(x0) : dM(uk(y), u(x0)) > rk

}
. From this we deduce that

rpk L
m(Hk) ≤

ˆ
Hk

dpM(uk(y), u(x0)) dy

≤ C
ˆ
Cρk (x0)

dpM

(
uk(y), expu(x0)(dux0

(y − x0))
)
dy

+ C

ˆ
Hk

dpM

(
expu(x0)(dux0(y − x0)), u(x0)

)
dy

(2.10)

≤ o(ρp+mk ) + C ρpk L
m(Hk). (2.11)

The latter estimate implies that

ρ−mk Lm(Hk) ≤
(
1− C ρpk r

−p
k

)−1
r−pk o(ρpk); (2.12)

hence, by recalling the choice of rk, we infer that

ρ−mk Lm(Hk) = o(1). (2.13)

In turn, the previous inequality inserted in (2.11) implies also thatˆ
Hk

dpM(uk(y), u(x0)) dy = o(ρp+mk ). (2.14)

Therefore, the Lipschitz continuity of θrk , the locality of the approximate dif-
ferentials and the growth hypothesis on f , together with (2.8), (2.13) and (A.3) in
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Lemma A.2, imply that

ρ−mk

ˆ
Cρk (x0)∩Ωl

(
f(y, uk(y), d(uk)y)− f(y, vk(y), d(vk)y)

)
dy ≤

≤ C ρ−mk
ˆ
Hk∩Ωl

(
(dM(u(x0), uk))p + ‖d(uk)y‖pg(uk(y))

)
dy = o(1). (2.15)

Moreover, by definition of vk and Hk, we have that

 
Cρk (x0)

dpM(vk(y), u(y)) dy
(2.6)

≤ C

 
Cρk (x0)

dpM(vk(y), uk(y)) dy + o(ρpk)

≤ C ρ−mk
ˆ
Hk

dpM(vk(y), u(x0)) dy+

+ C ρ−mk

ˆ
Hk

dpM(uk(y), u(x0)) dy + o(ρpk)

≤ C rpk ρ
−m
k Lm(Hk) +

+ C ρ−mk

ˆ
Hk

dpM(uk(y), u(x0)) dy + o(ρpk)

(2.12), (2.14)

≤ o(ρpk). (2.16)

2.2.2. Reduction to the flat case. Since the vk’s take values in Brk(u(x0)), a set
contained in a normal coordinate chart, we are able to reduce to the case of maps
with values in a fixed tangent space,

wk := exp−1
u(x0) ◦vk : Cρk(x0)→ Tu(x0)M.

Let us first notice that (2.16) and item (a) in the definition of Ω′l imply the
estimate 
Cρk (x0)

|wk(y)− dux0
(y − x0)|pg(u(x0)) dy

≤ C
 
Cρk (x0)

dpM

(
vk(y), expu(x0)(dux0(y − x0))

)
dy

≤ C
 
Cρk (x0)

(
dpM (vk(y), u(y)) + dpM

(
u(y), expu(x0)(dux0

(y − x0))
))

dy

= o(ρpk). (2.17)

Next, we show that the continuity of the integrand f leads to

lim
k→+∞

ρ−mk

∣∣∣∣∣
ˆ
Cρk (x0)∩Ωl

(
f(y, vk(y), d(vk)y)− f(x0, u(x0), d(wk)y)

)
dy

∣∣∣∣∣ = 0,

(2.18)
where, for every y ∈ Cρk(x0) we identify, as usual, the tangent space to Tu(x0)M
at wk(y) with Tu(x0)M itself.
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To this aim, we notice that, for every t > 0, the integral on the left hand side of
(2.18) is dominated by the sum of the two terms in the sequel:

Ikt := C ρ−mk

ˆ
{y∈Cρk (x0)∩Ωl: ‖d(vk)y‖g(vk(y))≥t}

(
1 + ‖d(vk)y‖pg(vk(y))

)
dy,

and

Jkt := ρ−mk

ˆ
{y∈Cρk (x0)∩Ωl: ‖d(vk)y‖g(vk(y))<t}

∣∣f(y, vk(y), d(vk)y)− f(x0, u(x0), d(wk)y)
∣∣ dy.

Moreover, by (A.2) in Lemma A.2 and the equi-integrability of dvk in Ωl, which
easily follows from (2.8) and the very definition of vk itself, we have that

lim
t→+∞

sup
k
Ikt = 0.

Hence, to conclude (2.18) it is enough to show that for every t > 0 the term Jkt is
infinitesimal as k → +∞.

For this, the uniform continuity of the integrand f on compact sets provides us
with a modulus of continuity ωf,t such that

Jkt ≤ ωf,t
(
ρk + ‖D

(
(u(x0), dwk), (vk, dvk)

)
‖L∞(Cρk (x0))

)
,

where the distance D appearing on the right hand side is the one introduced in
(0.2) for Hom(Rm, TM). Therefore, if we show that

‖D
(
(u(x0), dwk), (vk, dvk)

)
‖L∞(Cρk (x0)) ≤ C rk, (2.19)

we are done with (2.18).

The proof of (2.19) follows easily from the definition of the distance D. Indeed,
consider any vector ei of the standard basis of Rm and note that for Lm-a.e. y ∈
Crk(x0), in the normal coordinates given by expu(x0), the points (vk(y), d(vk)y(ei))

and (u(x0), d(wk)y(ei)) are represented respectively by (p,W ) and (0,W ), where p
are the coordinates of vk(y).

Hence, we can estimate the distance between the two points by the length of
the curve which in normal coordinates reads as ϑ := (γ,X) : [0, 1] 3 t → (t p,W ).
Now, since γ is a geodesic radius, we have γ̇(t) = |p|g(u(x0)) r̂, where r̂ is the radial
versor. Moreover, by adopting Einstein convention of summing over the repeated
indices and thus setting r̂ = rj ∂j and W = W i ∂i, the definition of the Christoffel
symbols yields that

∇γ̇(t)X(t) = |p|g(u(x0)) r
jW i Γmij (γ(t)) ∂m,

from which it follows

|∇γ̇(t)X(t)|g(γ(t)) ≤ C |p|g(u(x0)) t sup
i,j,m
|Γmij (γ(t))|.
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Since in normal coordinates the Christoffel symbols are zero at the origin, it follows
that, for Lm-a.e. y ∈ Crk(x0),

dTM
(
(u(x0), d(wk)y(ei)), (vk(y), d(vk)y(ei))

)
≤

≤
ˆ 1

0

√
|γ̇(t)|2g(γ(t)) + |∇γ̇(t)X(t)|2g(γ(t)) dt

≤ C|p|g(u(x0))

(
1 + sup

u∈Brk (u(x0)),

i,j,m

|Γmij (u)|

)
≤ C rk,

thus leading clearly to (2.19).

Now we can conclude the argument as in the standard vectorial case. Scaling
back to the unit cube, we define a map zk : C1 → Tu(x0)M by

zk(y) := ρ−1
k wk(ρk y + x0).

Clearly, we can regard the map zk as taking values in Rn endowed with the metric
g(u(x0)). In addition, its differential can be represented by the corresponding
Jacobian matrix; so that, with a slight abuse of notations, from now on we shall
think of the integrands appearing below as standard variational ones.

By the definition of zk, (2.9) and (2.17), we have that
ˆ
C1

|zk(y)− dux0(y)|pg(u(x0)) dy
(2.17)

= o(1),

sup
k

ˆ
C1

‖d(zk)y‖pg(u(x0)) dy ≤ C sup
k

 
Cρk (x0)

‖d(uk)y‖pg(u(y)) dy
(2.9)
< +∞, (2.20)

while (2.15) and (2.18) lead to

lim
k→+∞

ρ−mk

ˆ
Cρk (x0)∩Ωl

f(y, uk(y), d(uk)y) dy =

= lim
k→+∞

ˆ
C1∩ρ−1

k (Ωl−x0)

f(x0, u(x0), d(zk)y) dy. (2.21)

Eventually, up to passing to a subsequence, since x0 is a point of density of Ωl,
we may assume that the increasing family of sets Pj := ∩k≥j ρ−1

k (Ωl − x0) satisfy
Lm(C1 \Pj)→ 0 as j → +∞. Then, classical sequential weak lower semicontinuity
results for Carathéodory quasiconvex functionals defined on (standard) Sobolev
spaces (see for instance [1, Theorem II.4] and [27, Theorem 1.1]) yield, for every
j ∈ N,

lim inf
k→+∞

ˆ
C1∩ ρ−1

k (Ωl−x0)

f(x0, u(x0), d(zk)y) dy ≥

≥ lim inf
k→+∞

ˆ
C1∩Pj

f(x0, u(x0), d(zk)y) dy ≥ Lm(C1 ∩ Pj)f(x0, u(x0), dux0
).

This inequality together with (2.7) and (2.21) concludes the proof of (2.5) by taking
the limit as j → +∞.
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Appendix A. Equi-integrability

As usual, in the following Ω ⊂ Rm denotes a bounded open set. We say that a
Borel function ϕ : [0,+∞)→ [0,+∞) is superlinear at infinity if

lim
t→+∞

ϕ(t)

t
= +∞.

A sequence of functions (zk)k∈N ⊂ L1(Ω) is said to be equi-integrable if there exists
a function ϕ superlinear at infinity such that

sup
k

ˆ
Ω

ϕ(|zk|) dx < +∞.

We state the following two lemmas which can be easily deduced from [9, Lemma
A.1 and Lemma 1.3], respectively. We provide some details of the proof of the first
one for the sake of convenience.

Lemma A.1. Let (zk)k∈N be a bounded sequence in L1(Ω). Then, there exists a
subsequence (kj)j∈N and a sequence of subsets Ωl ⊂ Ω such that:

(i) Ωl ⊆ Ωl+1 for every l ∈ N,
(ii) Lm(Ω \ Ωl) = o(1) as l→ +∞,
(iii) (zkjχΩl)j∈N is equi-integrable uniformly in l ∈ N, i.e. the same superlinear

function ϕ can be taken for every l.

Proof. [9, Lemma A.1] provides us with a subsequence (kj)j∈N such that (zkj ∨
(−2j) ∧ 2j)j∈N is equi-integrable (actually, the truncation levels in the proof of [9,
Lemma A.1] are selected as ±j but this choice is clearly not essential).

Set Ωl := ∩j≥l{x ∈ Ω : |zkj (x)| ≤ 2j}, then items (i) and (iii) are satisfied by
construction. Furthermore,

Lm(Ω \ Ωl) ≤ 2−l+1 sup
k
‖zk‖L1 , (A.1)

and the conclusion then follows. �

The next result can be obtained exactly as [9, Lemma 1.3].

Lemma A.2. Let (Ωl)l∈N be an increasing family of sets in Ω with Lm(Ω \ Ωl) =
o(1) as l→ +∞. Let zk ∈ L1(Ω) with zk ≥ 0, and assume that, for every l ∈ N,

sup
k

 
Cρk∩Ωl

ϕ(zk) < +∞,

where ρk → 0, and ϕ is superlinear at infinity. Then, for every l ∈ N it holds

lim
t→+∞

(
sup
k
ρ−mk

ˆ
{zk≥t}∩Ωl

zk

)
= 0, (A.2)

and, for sets Ak ⊆ Cρk such that Lm(Ak) = o(ρmk ),

lim
k→+∞

ρ−mk

ˆ
Ak∩Ωl

zk = 0. (A.3)
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[36] Yurĭi Grigor’evich Reshetnyak. Sobolev classes of functions with values in a metric space. ii.

Siberian Math. J., 45(4):709–721, 2004.
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