
THE STEINER REARRANGEMENT IN ANY CODIMENSION

GIUSEPPE MARIA CAPRIANI

Abstract. We analyze the Steiner rearrangement in any codimension of Sobolev and BV
functions. In particular, we prove a Pólya-Szegő inequality for a large class of convex integrals.
Then, we give minimal assumptions under which functions attaining equality are necessarily
Steiner symmetric.

1. Introduction

Symmetrization techniques are a powerful tool to deal with those variational problems whose
extrema are expected to exhibit symmetry properties due either to the geometrical or to the
physical nature of the problem (see, for instance, the classical book [PS] and [K]).

As in the the isoperimetric theorem, it is well-known that the perimeter of a set decreases
under several types of symmetrizations such as polarization, standard Steiner symmetrization
or more general Steiner symmetrization with respect to a n− k dimensional plane.

Similarly, the so-called Pólya-Szegő inequality states that a large class of Dirichlet-type inte-
grals depending on the gradient of a real-valued function decreases under rearrangement opera-
tions such as the Schwarz spherical rearrangement or the Steiner rearrangement in codimension
k, see Definition 2.6.

In this framework, a natural question, which has been extensively studied in recent years,
is to give a characterization of the equality cases in the Pólya-Szegő inequality as well as in
inequalities concerning symmetrization of sets.

In the celebrated paper [BZ] Brothers and Ziemer characterized the equality cases in the
Pólya-Szegő inequality for the Schwarz rearrangement of a Sobolev function under the minimal
assumption that the set of critical points of the rearranged function has zero Lebesgue measure
(see also [FV] for an alternative proof). The corresponding inequality for BV functions was first
proved in [H], while a much finer analysis is carried out in [CF1], where also the equality cases
are characterized.

Concerning the standard Steiner symmetrization and its higher codimension version, the
validity of the isoperimetric inequality and of the Pólya-Szegő principle are also well-known, see
for instance a proof via polarization given in [BS] and the references therein. On the other hand,
the characterization of the equality cases seems to be a much harder problem. The first result
in this direction was proved in [CCF] in connection to the perimeter inequality for the standard
Steiner symmetrization. In analogy to what was pointed out in [BZ], also in this case it turns
out that such characterization may hold only under the assumption that the boundary of the set
is almost nowhere orthogonal to the symmetrization hyperplane. However this condition alone
is not yet enough and a connectedness assumption, in a suitable measure theoretic sense, must
be required on the set.

The equality cases in the Pólya-Szegő inequality for the standard Steiner rearrangement of
Sobolev andBV functions were investigated in [CF2]. Again, the crucial assumption was that the
set where the derivative of the extremal function in the direction orthogonal to the hyperplane
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of symmetrization vanishes is negligible. As for sets, also some connectedness and geometrical
assumptions have to be made on the domain supporting the function.

Very recently, in [BCF] the equality cases in the perimeter inequality for the Steiner sym-
metrization in codimension k were characterized using a different approach from the one in
[CCF], aimed to reduce the problem to a careful study of the barycentre of the sections of the
original set.

We further develop the analysis made in the above papers by considering the Pólya-Szegő
inequality for Dirichlet-type integrals of Sobolev functions or area-like integrals of BV functions.
First we prove the Pólya-Szegő inequality for general convex integrands f depending on the
gradient of a Sobolev function u. Besides convexity, we assume that f is non-negative, vanishes
at 0 and depends on the norm of the y-component of the gradient of u, y ∈ Rk being the direction
of symmetrization.

In order to characterize the equality cases, i.e., to show that u coincides with its Steiner
rearrangement uσ up to translations, the strict convexity of f is required together with the as-
sumption that ∇yuσ 6= 0 a.e.. Note that the result is false if one of the two previous assumptions
is dropped. As in [CF2], suitable assumptions on the domain Ω of u are also needed.

A similar analysis on the Pólya-Szegő inequality and on the characterization of the equality
cases is also carried out in the more general framework of functions of bounded variation. In
this case, however, one has to assume that f has linear growth at infinity and to suitably extend
the integral by taking into account the singular part of the gradient measure Du, see (2.18).

These results are proved via geometric measure theory arguments based on the isoperimetric
theorem, the coarea formula and fine properties of Sobolev and BV functions. In particular, to
deal with the BV case one has to rewrite the original functional, which in principle depends on
Du, as a functional defined on the graph of u and depending on the generalized normal to the
graph.

The latter approach could be also carried out in the Sobolev case and therefore we could have
chosen to deal from the beginning with BV functions and then to deduce the Sobolev case as
a corollary. However, we have preferred to give in the Sobolev case an independent proof that
avoids the heavy machinery required in the BV case.

It is also worth to mention that, though the general strategy follows the path set up in
previous papers, namely [CCF] and [CF2], we have to face here an extra substantial difficulty
which appears only when dealing with the Steiner rearrangement in codimension strictly larger
than 1. This difficulty appears for those functions that Almgren and Lieb, in [AL], called coarea
irregular (see the discussion at the end of Section 2). These functions, which can even be of
class C1, are precisely the ones where Schwarz rearrangement in discontinuous with respect to
the W 1,p norm.

Finally, the paper is organized as follows. In Section 2 we state and comment the main results
and in Section 3 we collect some background material on sets of finite perimeter and functions
of bounded variation. Section 4 is devoted to Sobolev functions while Section 5 deals with BV
functions and functionals depending on the normal.

2. Statement of the main results

Given two sets E and F , we denote the symmetric difference by E4F := (E ∪ F ) \ (E ∩ F ).
Given two open sets ω ⊂ Ω we write ω b Ω if ω is compactly contained in Ω, i.e., if ω ⊂ Ω and
ω is compact. Let n ≥ 2 and 1 ≤ k < n. We write a generic point z ∈ Rn as z = (x, y), where
x ∈ Rn−k and y ∈ Rk. In order to clarify the different roles of the variables we will also write
Rn = Rn−k × Rky and Rn+1 = Rn−k × Rky × Rt.
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Given a measurable set E ⊂ Rn−k × Rk, for x ∈ Rn−k we define the section of E at x as

(2.1) Ex :=
{
y ∈ Rk : (x, y) ∈ E

}
.

Then we define the projection of E as

(2.2) πn−k(E) :=
{
x ∈ Rn−k : (x, y) ∈ E

}
and the essential projection as

(2.3) π+
n−k(E) :=

{
x ∈ Rn−k : (x, y) ∈ E, L(x) > 0

}
,

where L(x) := Hk(Ex) and Hk is the k-dimensional Hausdorff measure. We define the Steiner
symmetral (in codimension k) Eσ of E as

(2.4) Eσ :=

{
(x, y) ∈ Rn−k × Rk : x ∈ π+

n−k(E), |y|k ≤ L(x)

ωk

}
,

where ωk is the volume of the k-dimensional ball.
When E ⊂ Rn−k × Rky × Rt, its Steiner symmetral Eσ is defined in the same way, after

replacing (2.1)–(2.4) by similar definitions. In particular, we set

Eσ :=

{
(x, y, t) ∈ Rn−k × Rky × Rt : (x, t) ∈ π+

n−k,t(E), |y|k ≤ L(x, t)

ωk

}
π+
n−k,t(E) :=

{
(x, t) ∈ Rn−k × Rt : (x, y, t) ∈ E, L(x, t) > 0

}
,

where L(x, t) := Hk+1(Ex,t) and Ex,t := {y ∈ Rk : (x, y, t) ∈ E}.
Given a non-negative measurable function u defined on E such that forHn−k-a.e. x ∈ π+

n−k(E)

(2.5) Hk ({y ∈ Ex : u(x, y) > t}) < +∞, ∀t > 0 ,

we define its Steiner rearrangement (in codimension k) uσ : Eσ → R as

(2.6) uσ(x, y) := inf
{
t > 0 : λu(x, t) ≤ ωk|y|k

}
,

where

λu(x, t) := Hk
({
y ∈ Rk : u0(x, y) > t

})
is the distribution function (in codimension k) of u(x, ·) and u0 is the extension of u by 0 outside
E. Clearly, uσ = 0 in Rn \ Eσ. Let us observe that

(2.7) uσ(x, ·) =
(
u(x, ·)

)∗
,

where
(
u(x, ·)

)∗
is the Schwarz rearrangement (which is also known as spherical symmetric

decreasing rearrangement) of u with respect to the last k variables. Let us recall its definition.
Given any non-negative measurable function q : Rk → R, such that Hn({y ∈ Rk : u(y) > t}) is
finite for all t > 0, the Schwarz rearrangement q∗ of q is defined as

q∗(y) := inf{t > 0 : µ(t) ≤ ωk|y|k} ,

where µ(t) := Hn{y ∈ Rk : q(y) > t} is the distribution function of u. The Schwarz rearrange-
ment satisfies an important property: it is non-expansive on Lp(Rk) for every 1 ≤ p < ∞ (see,
e.g., [LL, Theorem 3.5]), i.e., for every q1, q2 ∈ Lp(Rk)∫

Rk
|q∗1 − q∗2|

p ≤
∫
Rk
|q1 − q2|p ,
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and this clearly implies the continuity of the Schwarz rearrangement on Lp. Given any two non-
negative measurable functions u, v defined on E and satisfying (2.5), on applying the previous
inequality to u∗(x, ·) and v∗(x, ·) and integrating with respect to x, we see that

(2.8) ‖uσ − vσ‖Lp(Eσ) ≤ ‖u− v‖Lp(E) ,

for all 1 ≤ p < +∞. In particular the Steiner rearrangement is continuous on Lp.
Given any non-negative and measurable function u, we define the subgraph of u as

Su :=
{

(x, y, t) ∈ Rn+1 : (x, y) ∈ E, 0 < t < u(x, y)
}
.

Let us observe that for every (x, t) ∈ Rn−k × R+
t , then Hk((Su)x,t) = λu(x, t) and for

Hn−k-a.e. x ∈ Rn−k we have uσ(x, y) > t if and only if λu(x, t) > ωk|y|k. Hence, we easily
deduce that

(2.9) (Su)σ and Suσ are Hn+1 equivalent.

Moreover also the sets {(x, y) : u(x, y) > t}σ and {(x, y) : uσ(x, y) > t} are equivalent (modulo
Hn) for every t > 0. The latter fact assures us that u and uσ are equidistributed functions.
Actually, by the definition of the Steiner rearrangement, forHn−k-a.e. x ∈ πn−k(E) the functions
u(x, ·) and uσ(x, ·) are equidistributed. Therefore, Steiner rearrangement preserves any so-called
rearrangement invariant norm of a function, i.e., a norm depending only on the measure of its
level sets — here important examples are any Lebesgue, Lorentz or Orlicz norm.

Let f : Rn → [0,+∞) be a non-negative convex function vanishing at 0. We say that f is

radially symmetric with respect to the last k variables if there exists a function f̃ : Rn−k+1 →
[0,+∞) such that

(2.10) f(x, y) = f̃(x, |y|) ,
for every (x, y) ∈ Rn.

Given f as above and an open set Ω, we are interested in studying how functionals of the
type

u 7→
∫

Ω
f(∇u) dz

behave under Steiner rearrangement. The class of admissible functions for these functionals will
be

W 1,1
0,y (Ω) :=

{
u : Ω→ R : u0 ∈W 1,1(ω × Rky), ∀ω b πn−k(Ω), ω open

}
.

Roughly speaking, W 1,1
0,y (Ω) consists of those functions that are locally Sobolev with respect to

the x variable and globally Sobolev with zero trace (in some appropriate sense) with respect

to the y variable. Let us remark that this space is bigger than W 1,1
0 (Ω). For instance, if

Ω = [0, 2π]2, the function u = (sin y)/x ∈ W 1,1
0,y (Ω) but does not belong to W 1,1

0 (Ω). We can

define, in a similar way, also the space W 1,p
0,y (Ω) for p > 1. For ∇u = (∂1u, . . . , ∂nu) we set

∇xu := (∂1u, . . . , ∂n−ku) and ∇yu := (∂n−k+1u, . . . , ∂nu),

where ∂iu := ∂ziu(z) for i = 1, . . . , n.

Note that the Steiner rearrangement maps W 1,1
0,y (Ω) to W 1,1

0,y (Ωσ) (see [BS] and Proposition 4.1

below). Let us remark that in general the mapping is not continuous, see [AL].
We can now state the Pólya-Szegő principle for the Steiner rearrangement.

Theorem 2.1. Let f be a non-negative convex function, vanishing at 0 and satisfying (2.10).

Let Ω ⊂ Rn be an open set and u ∈W 1,1
0,y (Ω) be a non-negative function. Then

(2.11)

∫
Ωσ
f(∇uσ) dz ≤

∫
Ω
f(∇u) dz .
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In Theorem 2.1 the space W 1,1
0,y (Ω) can be replaced by any space W 1,p

0,y (Ω), see Remark 4.5.

We will call u an extremal if equality holds in (2.11). We are now interested to find minimal
assumptions to have a rigidity theorem for the extremals, i.e., in finding conditions that neces-
sarily imply an extremal u to be Steiner symmetric. It turns out that these assumptions concern
both the function u and the domain Ω.

Regarding u, we set, for x ∈ πn−k(Ω),

M(x) := inf{t > 0 : λu(x, t) = 0} .
Clearly, for Hn−k-a.e. x ∈ πn−k(Ω),

M(x) = ess sup{u(x, y) : y ∈ Ωx}.
Also, M is a measurable function in πn−k(Ω) and by (2.5) is finite for Hn−k-a.e. x ∈ πn−k(Ω).
We require that
(2.12)
Hn
(
{(x, y) ∈ Ω : ∇yu(x, y) = 0} ∩ {(x, y) ∈ Ω : either M(x) = 0 or u(x, y) < M(x)}

)
= 0 .

Roughly speaking, this condition means that the subgraph of u does not contain any non trivial
portion of a k-dimensional hyperplane in the y-direction, except at the highest value of u(x, ·).

Remark 2.2. It is known that the Schwarz rearrangement, in dimension n ≥ 2, shrinks the
set of critical points of a Sobolev function (see [AL]), while the Steiner rearrangement in codi-
mension 1 preserves its measure (see [B1]). Hence, by (2.7) and using the fact that the Steiner
rearrangement of a Sobolev function is still weakly differentiable (see Proposition 4.1), we have

Hn
(
{(x, y) ∈ Ω : ∇yu(x, y) = 0}

)
=

∫
πn−k(Ω)

Hk
(
{∇u(x, ·) = 0}

)
dHn−k(x)

≤
∫
πn−k(Ω)

Hk
(
{∇(u(x, ·))∗ = 0}

)
dHn−k(x)

= Hn
(
{(x, y) ∈ Ωσ : ∇yuσ(x, y) = 0}

)
.

Therefore, if u satisfies (2.12) then the same holds for uσ.

Regarding the open set Ω, we require that

(2.13) πn−k(Ω) is connected and Ω is bounded in the y direction,

i.e., there exists M > 0 such that Ωx ⊂ B(0,M) for every x ∈ πn−k(Ω), where B(0,M) is the
ball in Rk of radius M centered in 0. We also require that, in some sense, the boundary of Ω is
almost nowhere parallel to the y-direction inside the cylinder πn−k(Ω)× Rky . To be precise, we
shall assume that

Ω is of finite perimeter inside πn−k(Ω)× Rky and

Hn−1
(
{(x, y) ∈ ∂∗Ω : νΩ

y = 0} ∩ {πn−k(Ω)× Rky}
)

= 0 ,
(2.14)

where ∂∗Ω stands for the reduced boundary of Ω and νΩ
y is the y-component of the generalized

inner normal νΩ of Ω — see the next section for the definitions.
We can now state the following result which gives a characterization of the equality cases in

(2.11).

Theorem 2.3. Let f : Rn → R be a non-negative strictly convex function satisfying (2.10) and

vanishing in 0. Let Ω ⊂ Rn be an open set satisfying (2.13)−(2.14) and let u ∈ W 1,1
0,y (Ω) be a

non-negative function. If

(2.15)

∫
Ωσ
f(∇uσ) dz =

∫
Ω
f(∇u) dz < +∞ ,
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then, for Hn−k+1-a.e. (x, t) ∈ π+
n−k,t(Su) there exists R(x, t) > 0 such that the set

{y : u(x, y) > t} is equivalent to {|y| < R(x, t)} .

If in addition u satisfies (2.12), then uσ is equivalent to u up to a translation in the y-plane.

At first sight, one could think that the assumptions made in the above statements are too
strong. However, one can easily construct counterexamples even in codimension 1 (see [CF2])
showing that assumptions (2.12)−(2.14) cannot be weakened.

As we have seen before, if u satisfies condition (2.12), then the same condition holds for uσ.
In general the converse is not true, as one can see with some simple examples. However, it turns
out that if equality holds in the Pólya-Szegő inequality, then the two conditions are equivalent.

Proposition 2.4. Let f and Ω be as in Theorem 2.3 and let u ∈ W 1,1
0,y (Ω) be a non-negative

function. If equality (2.15) holds, then

Hn
(
{(x, y) ∈ Ω : ∇yu(x, y) = 0} ∩ {(x, y) ∈ Ω : either M(x) = 0 or u(x, y) < M(x)}

)
= 0

if and only if
(2.16)
Hn
(
{(x, y) ∈ Ωσ : ∇yuσ(x, y) = 0} ∩ {(x, y) ∈ Ωσ : either M(x) = 0 or uσ(x, y) < M(x)}

)
= 0 .

We now shift to the more general framework of functions of bounded variation. In this
context, it is still possible to show a Pólya-Szegő principle, provided that the involved functional
is properly defined. Consider any non-negative convex function in Rn growing linearly at infinity,
i.e., for all z ∈ Rn

(2.17) 0 ≤ f(z) ≤ C(1 + |z|) ,

for some positive constant C. Let us now define the recession function f∞ of f as

f∞(z) := lim
t→+∞

f(tz)

t
.

Then a standard extension of the functional
∫

Ω f(∇u) to the space BVloc(Ω) is defined as

(2.18) Jf (u; Ω) :=

∫
Ω
f(∇u) dz +

∫
Ω
f∞

(
Dsu

|Dsu|

)
d|Dsu| .

Here, ∇u stands for the approximate gradient of u, which agrees with the absolutely contin-
uous part, with respect to Hn, of the measure Du, the distributional derivative of u. Also, Dsu
is the singular part with respect to Hn and |Dsu| is its total variation. See the next section for
the relevant definitions. Actually, Theorem 5.8 states that Jf (u; Ω) coincides with the so-called
relaxed functional of

∫
Ω f(∇u) in BV (Ω) with respect to the L1

loc-convergence.
Then, a Pólya-Szegő principle for functionals of the form (2.18) holds in the space of BVloc(Ω)

functions vanishing in some appropriate sense on ∂Ω ∩ (πn−k(Ω)× Rky). To be precise, we set

BV0,y(Ω) :=
{
u : Ω→ R | u0 ∈ BV (ω × Rky) and |Du0|(ω × Rky) = |Du|

(
Ω ∩ (ω × Rky)

)
for every open set ω b πn−k(Ω)

}
.

Theorem 2.5. Let f : Rn → [0,+∞) be a convex function vanishing at 0 and satisfying (2.10)
and (2.17). Let Ω ⊂ Rn be an open set and let u ∈ BV0,y(Ω) be a non-negative function. Then

uσ ∈ BV (ω × Rky) for every open set ω b πn−k(Ω) and

(2.19) Jf (uσ; Ωσ) ≤ Jf (u; Ω) .
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As before, we are interested in finding suitable conditions ensuring that a function satisfying
the equality in (2.19) is Steiner symmetric. It turns out that one needs the same assumptions
on u and Ω as in Theorem 2.3. Note that now the vector ∇yu in (2.12) is the y-component of
the absolutely continuous part of the measure Du. However, in order to deal with the singular
part Dsu of Du we need some extra assumptions on the recession function f∞. We will assume
that for every x ∈ Rn−k, setting f∞(x, y) = f̃∞(x, |y|),

(2.20) f̃∞(x, ·) is strictly increasing on [0,+∞)

and that the function

(2.21) x 7→ f̃∞(x, 1) is strictly convex,

Theorem 2.6. Let f : Rn → [0,+∞) be a strictly convex function vanishing at 0 and satisfying
(2.10), (2.17), (2.20) and (2.21). Let Ω ⊂ Rn be an open set satisfying (2.13)−(2.14) and let
u ∈ BV0,y(Ω) be a non-negative function such that

(2.22) Jf (uσ; Ωσ) = Jf (u; Ω) < +∞ ,

Then, for Hn−k+1-a.e. (x, t) ∈ π+
n−k(Su) there exists R(x, t) > 0 such that the set

{y : u(x, y) > t} is equivalent to {|y| < R(x, t)} .

If in addition u satisfies condition (2.12), then u is equivalent to uσ up to a translation in the
y-plane.

The strategy in proving Theorems 2.5 and 2.6 is to convert the functional Jf into a geometrical
functional depending on the generalized inner normal and having the form

(2.23)

∫
∂∗E

F (νE) dHn .

Here, F : Rn+1 → [0,+∞] is a convex function positively 1-homogeneous vanishing in 0, i.e., for
every λ > 0 and (ξ1, . . . , ξn+1) ∈ Rn+1

(2.24) F (λξ1, . . . , λξn+1) = λF (ξ1, . . . , ξn+1) and F (0) = 0 .

Let us define

(2.25) Ff (ξ1, . . . , ξn+1) :=

{
f
(
− 1
ξn+1

(ξ1, . . . , ξn)
)

(−ξn+1) if ξn+1 < 0 ,

f∞(ξ1, . . . , ξn) if ξn+1 ≥ 0 .

The following result gives the link between the functional Jf and the functional in (2.23).

Proposition 2.7 ([CF2, Proposition 2.7]). Let f : Rn → [0,+∞) be a convex function vanishing
at 0 and satisfying (2.17). Then Ff is a convex function satisfying (2.24). Moreover, if Ω ⊂ Rn
is an open set, then for every non-negative function u ∈ BVloc(Ω)

(2.26) Jf (u; Ω) =

∫
∂∗Su∩(Ω×Rt)

Ff (νSu) dHn .

This allows us to reduce the proof of Theorem 2.5 to the proof of a Pólya-Szegő inequality
for functionals of the form (2.23), where in addition we assume that F is radial with respect to

the y variables, i.e., there exists a function F̃ : Rn−k+2 → [0,+∞] such that

(2.27) F (x, y, t) = F̃ (x, |y|, t) ,

for every (x, y, t) ∈ Rn+1. Clearly, the function F̃ is convex and positively 1-homogeneous.
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It turns out that if F satisfies (2.24) and (2.27) and if E ⊂ Rn+1 is a set of finite perimeter,
then

(2.28)

∫
∂∗Eσ

F (νE
σ
) dHn ≤

∫
∂∗E

F (νE) dHn ,

see Theorem 5.5. Then, Theorem 2.6 is proved thanks to Proposition 2.7 and to a first charac-
terization of the equality cases in (2.28) contained in Proposition 5.6. In addition, an essentially
complete characterization of the equality cases in (2.28) is given by Theorem 5.7.

Here, we want to point out that in order to give the characterization of the equality cases in
(2.15) one has to face with an extra difficulty. In fact, writing up

λu(x, t) = Hk
(
{y ∈ Rk : u0(x, y) > t} ∩ {∇yu 6= 0}

)
+Hk

(
{y ∈ Rk : u0(x, y) > t} ∩ {∇yu = 0}

)
=: λ1

u(x, t) + λ2
u(x, t) ,

it turns out that λ1
u(x, t) ∈ W 1,1

loc (Rn−k × R+
t ), while λ2 is just a BV function. However, when

k = 1 the distributional derivative Dλ2
u is purely singular with respect to the Lebesgue measure

on Rn−k × R+
t , while if k > 1 the measure Dλ2

u may contain also a non-trivial absolutely
continuous part. This fact was first observed in a celebrated paper by Almgren and Lieb [AL]
who showed that this phenomenon may occur even if u is a C1 function.

3. Background

Given an open set Ω ⊂ Rn, we denote with BV (Ω) the class of functions of bounded variation,
i.e., the family of functions in L1(Ω) whose distributional gradient Du is a vector-valued Radon
measure in Ω of finite total variation |Du|(Ω). The space BVloc(Ω) is defined accordingly. By
Lebesgue’s Decomposition Theorem, the measure Du can be split, with respect to the Lebesgue
measure, in two parts, the absolutely continuous part Dau and the singular part Dsu. It turns
out that Dau agrees Hn-a.e. with ∇u, the approximate gradient of u (see, e.g., [AFP, Defini-
tion 3.70]). Moreover, the set Du of all points where u is approximately differentiable satisfies
|Dsu|(Du) = 0 — see, e.g., [EG, §6.1, Theorem 4] or [AFP, Theorem 3.83].

A measurable set E ⊂ Rn is said to be of finite perimeter in an open set Ω ⊂ Rn if DχE is
a vector-valued Radon measure with finite total variation in Ω. The perimeter of E in a Borel
subset B of Ω is defined as P (E;B) := |DχE |(B). For B = Rn we will simply write P (E); if
χE ∈ BVloc(Ω) then we say that E has locally finite perimeter in Ω.

Denote by ux the function ux : Ωx → R defined by setting ux(y) := u(x, y) for all x ∈
πn−k(Ω), y ∈ Ωx. From [AFP, Theorems 3.103 and 3.107] we easily infer that for Hn−k-a.e. x ∈
πn−k(Ω) the function ux belongs to BV (Ωx) and that

(3.1) ∂iux(y) = ∂yiu(x, y), i = 1, . . . , k , for Hk-a.e. y ∈ Ωx .

The following theorem (see [GMS, §4.1.5, Theorem 1]) completely characterizes functions of
bounded variation in terms of their subgraphs. Let us remark that a slightly different notion of
subgraph is needed here. Given a function u : Ω ⊂ Rn → R, we set

S−u := {(x, y, t) ∈ Rn+1 : (x, y) ∈ Ω, t < u(x, y)} .

Theorem 3.1. Let Ω ⊂ Rn be a bounded open set and let u ∈ L1(Ω). Then S−u is a set of finite
perimeter in Ω× Rt if and only if u ∈ BV (Ω). Moreover, in this case,

P (S−u ;B × Rt) =

∫
B

√
1 + |∇u|2 dz + |Dsu|(B)

for every Borel set B ⊂ Ω.
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Let E be a set of finite perimeter in an open set Ω ⊂ Rn. For i = 1, . . . , n we denote by νEi the
derivative of the measure DiχE with respect to |DχE |. Then, the reduced boundary ∂∗E of E
consists of all points z of Ω such that the vector νE(z) := (νE1 (z), . . . , νEn (z)) exists and satisfies
|νE(z)| = 1. The vector νE(z) is called the generalized inner normal to E at z. Moreover (see,
e.g., [AFP, Theorem 3.59]), the following formulae hold:

DχE = νEHn−1 ∂∗E

|DχE | = Hn−1 ∂∗E

|DiχE | = |νEi |Hn−1 ∂∗E for i = 1, . . . , n .

(3.2)

Given any measurable set E ⊂ Rn, the density of E at x is defined as

Θ(E, x) := lim
r→0

Hn
(
E ∩B(x, r)

)
Hn
(
B(x, r)

) ,

provided that the limit on the right-hand side exists. Then, the measure theoretic boundary of
E is the Borel set defined as

∂ME := Rn \ {x ∈ Rn : either Θ(E, x) = 0 or Θ(E, x) = 1} .
Given any two measurable sets E1 and E2 in Rn, we have

(3.3) ∂M(E1 ∪ E2) ∪ ∂M(E1 ∩ E2) ⊂ ∂ME1 ∪ ∂ME2 .

Moreover, if a set E has locally finite perimeter in Ω, the following holds (see, e.g., [AFP,
Theorem 3.61])

(3.4) ∂∗E ∩ Ω ⊂ ∂ME ∩ Ω and Hn−1
(
(∂ME \ ∂∗E) ∩ Ω

)
= 0 .

The reduced boundary of level sets plays an important role in the coarea formula for functions
of bounded variations. In its general version (see, e.g., [AFP, Theorem 3.40]), it says that if
g : Ω→ [0,+∞] is any Borel function and u ∈ BV (Ω), then

(3.5)

∫
Ω
g d|Du| =

∫ +∞

−∞
dt

∫
Ω∩∂∗{u>t}

g dHn−1.

The following proposition is a special case of the coarea formula for rectifiable sets (see
[AFP, Theorem 2.93])

Proposition 3.2. Let Ω ⊂ Rn be an open set and let E be a set of finite perimeter in Ω. Let
g : Ω→ [0,+∞] be a Borel function. Then

(3.6)

∫
∂∗E∩Ω

g(z) |νΩ
y (z)| dHn−1(z) =

∫
πn−k(Ω)

dx

∫
(∂∗E∩Ω)x

g(x, y) dHk−1(y).

Next theorem links the approximate gradient of a function of bounded variation to the gen-
eralized inner normal to its subgraph — see [GMS, §4.1.5, Theorems 4 and 5].

Theorem 3.3. Let Ω be an open subset of Rn and let u ∈ BV (Ω). Then

(3.7) νS
−
u (x, y, t) =

 ∂1u(x, y)√
1 + |∇u|2

, . . . ,
∂nu(x, y)√
1 + |∇u|2

,
−1√

1 + |∇u|2


for Hn-a.e. (x, y, t) ∈ ∂∗S−u ∩ (Du × Rt) and

νS
−
u

t (x, y, t) = 0 for Hn-a.e. (x, t) ∈ ∂∗S−u ∩ [(Ω \ Du)× Rt].

In particular, if u ∈W 1,1(Ω), then (3.7) holds for Hn-a.e. (x, t) ∈ ∂∗S−u ∩ (Ω× Rt).
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By Theorem 3.1, if Ω is a bounded open set and u ∈ BV (Ω), the set S−u has finite perimeter
in Ω× Rt. Thus, also Su has finite perimeter in Ω× Rt; moreover

∂∗Su ∩ (Ω× R+
t ) = ∂∗S−u ∩ (Ω× R+

t )

νSu ≡ νS
−
u on ∂∗Su ∩ (Ω× R+

t ).
(3.8)

An important result we will use several times is Vol’pert’s Theorem on sections of sets of finite
perimeter — see [V] for the codimension 1 case and [BCF, Theorem 2.4] for the general case.

Theorem 3.4. Let E be a set of finite perimeter in Rn. For Hn−k-a.e. x ∈ Rn−k the following
assertions hold:

(i) Ex has finite perimeter in Rk;
(ii) Hk−1((∂∗(Ex)4(∂∗E)x) = 0;
(iii) For Hk−1-a.e. s such that (x, s) ∈ ∂∗(Ex):

(a) νEy (x, s) 6= 0;

(b) νEy (x, s) = νEx(s)|νEy (x, s)|.
In particular, there exists a Borel set GE ⊂ π+

n−k(E) such that Hn−k(π+
n−k(E) \ GE) = 0 and

(i)–(iii) hold for every x ∈ GE .

In view of the previous theorem, we will use the same notation ∂∗Ex to denote (∂∗E)x and
∂∗(Ex) when they coincide up to Hk−1 negligible sets.

Next result, proved in [BCF, Lemma 3.1], deals with some properties of the function L and
its derivatives. Recall from Section 2 that L(x) := Hk(Ex).

Lemma 3.5. Let E be any set of finite perimeter in Rn. Then, either L(x) = +∞ for
Hn−k-a.e. x ∈ Rn−k or L(x) < +∞ for Hn−k-a.e. x ∈ Rn−k and Hn(E) < +∞. Moreover,
in the latter case, L ∈ BV (Rn−k) and for any Borel set B ⊂ Rn−k

(3.9) DL(B) =

∫
∂∗E∩(B×Rk)∩{νEy =0}

νEx (x, y) dHn−1(x, y)

+

∫
B
dx

∫
∂∗Ex∩{νEy 6=0}

νEx (x, y)

|νEy (x, y)|
dHk−1(y) ,

DL GEσ = ∇LHn−k and for Hn−k-a.e. x ∈ GEσ

(3.10) ∇L(x) = Hk−1(∂∗Eσx )
νE

σ

x (x)

|νEσy (x)|
,

where we dropped the variable y for functions that are constant in ∂∗Eσx .

4. The Sobolev case

In this section we prove the Pólya-Szegő inequality for the Steiner rearrangement in codimen-
sion k of Sobolev functions and Theorem 2.3 concerning the equality cases.

We first observe that the Steiner rearrangement of a function in W 1,1
0,y (Ω) belongs to W 1,1

0,y (Ωσ).

Proposition 4.1. Let Ω ⊂ Rn be an open set and let u ∈ W 1,1
0,y (Ω) be a non-negative function.

Then uσ ∈W 1,1
0,y (Ωσ).

Proof. By [BS, Theorem 8.2] we know that if v ∈ W 1,1(Ω) is a non-negative function, then vσ

belongs to W 1,1(Ωσ). Given a non-negative function u ∈ W 1,1
0,y (Ω) and fixed ω b πn−k(Ω) we

can find a cut-off function ϕ ∈ C1
c (πn−k(Ω)) such that ϕ ≡ 1 in ω. Hence, the function v := ϕu

belongs to W 1,1(Ω). Then, vσ ∈W 1,1(Ωσ). Besides, vσ(x, y) = uσ(x, y) for all x ∈ ω and y ∈ Rk.
This proves the assertion. �
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Next lemma gives formulae for the approximate derivatives of the distribution function of a
Sobolev function.

Lemma 4.2. Let Ω ⊂ Rn be an open and bounded set, u : Ω → R be a non-negative function,
u ∈ W 1,1

0,y (Ω) satisfying (2.12). Then, λu ∈ W 1,1(ω × R+
t ) for every open set ω b πn−k(Ω) and

for Hn−k-a.e. x ∈ π+
n−k(Su),

(4.1) ∂tλu(x, t) = −
∫
∂∗{y:u(x,y)>t}

1

|∇yu|
dHk−1(y),

(4.2) ∂iλu(x, t) =

∫
∂∗{y:u(x,y)>t}

∂iu

|∇yu|
dHk−1(y) , i = 1, . . . , n− k,

for H1-a.e. t ∈ (0,M(x)).

Proof. Let r > 0 be large enough to have Ω ⊂ Rn−k × B(0, r) and let ω b πn−k(Ω) For
the sake of simplicity we shall identify the extension u0 with u. Hence, we may assume that
u ∈W 1,1(ω × Rky) and u(x, y) = 0 if |y| > r.

If ϕ ∈ C1
c (Ω× R+

t ), by Fubini’s Theorem we get, for i = 1 . . . , n− k,∫
ω×R+

t

∂iϕ(x, t)λu(x, t) dx dt =

∫
ω×Rky×R

+
t

∂iϕ(x, t)χSu(x, y, t) dx dy dt

=

∫
ω×Rky

dx dy

∫ u(x,y)

0
∂iϕ(x, t) dt

=

∫
ω×B(0,r)

∂i

[∫ u(x,y)

0
ϕ(x, t) dt

]
dx dy −

∫
ω×B(0,r)

ϕ(x, u(x, y))∂iu(x, y) dx dy

(4.3)

The first integral in the last expression vanishes over ω ×B(0, r). Applying the coarea formula
(3.6) and recalling that by Theorem 3.4

(∂∗Su)x,y ∩ R+
t = ∂∗(Su)x,y ∩ R+

t = ∂∗(0, u(x, y)) ∩ R+
t

for Hn-a.e. (x, y) ∈ ω ×B(0, r), we get∫
∂∗Su∩(ω×B(0,r)×R+

t )
ϕ(x, t)∂iu(x, y)|νSut (x, y, t)| dHn

=

∫
ω×B(0,r)

dx dy

∫
(∂∗Su)x,y∩R+

t

ϕ(x, t)∂iu(x, y) dH0(t)

=

∫
ω×B(0,r)

ϕ(x, u(x, y))∂iu(x, y) dx dy .

(4.4)

Moreover, from (3.7) and (3.8), we have

(4.5) νSu(x, y, t) =

 ∇xu(x, y)√
1 + |∇u|2

,
∇yu(x, y)√
1 + |∇u|2

,
−1√

1 + |∇u|2


for Hn-a.e. (x, y, t) ∈ ∂∗Su ∩ (ω ×B(0, r)× R+

t ).
Combining (4.3)−(4.5), we have∫

ω×R+
t

∂iϕ(x, t)λu(x, t) dx dt = −
∫
∂∗Su∩(ω×B(0,r)×R+

t )
ϕ(x, t)∂iu(x, y)|νSut (x, y, t)| dHn

= −
∫
∂∗Su∩(ω×B(0,r)×R+

t )
ϕ(x, t)∂iu(x, y) · 1√

1 + |∇u|2
dHn.

(4.6)
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The last equation implies that the distributional derivative Diλu is a finite Radon measure on
ω × R+

t . A similar argument shows that the same holds for Dtλu. Therefore, since∫
ω×R+

t

λu(x, t)dx dt =

∫
ω×Rky

u(x, y) dx dy < +∞ ,

we get λu ∈ L1(ω × R+
t ) and thus λu ∈ BV (ω × R+

t ).
Notice that (4.6) implies that for every ϕ ∈ C1

c (ω × R+
t ) we have

(4.7)

∫
ω×R+

t

ϕ(x, t) dDiλu =

∫
∂∗Su∩(ω×B(0,r)×R+

t )
ϕ(x, t) · ∂iu(x, y)√

1 + |∇u|2
dHn .

By density, the same equality holds for ϕ ∈ C(ω × R+
t ).

We claim that (4.7) holds also for every bounded Borel function in ω × R+
t . In fact, for any

Borel set B ⊂ ω × R+
t , define the Borel measure µ by setting

µ(B) := |Diλu|(B) +Hn
(
∂∗Su ∩ (B × Rky)

)
and let ϕ be any bounded Borel function in ω × R+

t . By Lusin’s Theorem, for any ε > 0 there
exists a function ϕε ∈ C(ω×R+

t ) such that ‖ϕε‖∞ ≤ ‖ϕ‖∞ and µ{(x, t) : ϕε(x, t) 6= ϕ(x, t)} < ε.
Since ϕε is continuous, equality (4.7) holds for ϕε, and hence the absolute value of the difference
of the left-hand side and the right-hand side is not greater than 4ε‖ϕ‖∞. From the arbitrariness
of ε, the claim follows.

Let g ∈ Cc(ω × R+
t ). From (4.7), (4.5) and using condition (2.12) with the coarea formula

(3.6), we get∫
ω×R+

t

g(x, t) dDiλu =

∫
∂∗Su∩(ω×Rky×R

+
t )
g(x, t)∂iu(x, y) · 1√

1 + |∇u|2
dHn

=

∫
∂∗Su∩(ω×Rky×R

+
t )
g(x, t)

∂iu(x, y)

|∇yu(x, y)|
|νSuy (x, y, t)| dHn

=

∫
ω×R+

t

g(x, t) dx dt

∫
(∂∗Su)x,t

∂iu(x, y)

|∇yu(x, y)|
dHk−1(y) .

Since g is arbitrary, we have that the measure Diλu is absolutely continuous with respect to
Hn−k+1 and is equal to (∫

(∂∗Su)x,t

∂iu(x, y)

|∇yu(x, y)|
dHk−1(y)

)
Hn−k+1 ,

thus proving that λu ∈ W 1,1(ω × R+
t ). Because of (ii) in Theorem 3.4, equation (4.2) holds for

Hn−k+1-a.e. (x, t) ∈ π+
n−k,t(Su) ∩ (ω × R+

t ).
Since

(4.8) π+
n−k,t(Su) is equivalent to

⋃
x∈π+

n−k(Su)

{x} × (0,M(x)) ,

we see that for Hn−k-a.e. x ∈ π+
n−k(Su) equation (4.2) holds for H1-a.e. t ∈ (0,M(x)).

It remains to prove (4.1): this follows from the same calculations and applying (3.1) and
(3.9). �
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Remark 4.3. If Ω and u are as in Lemma 4.2, then, by Proposition 4.1 uσ ∈ W 1,1
0,y (Ω), by

Remark 2.2 uσ satisfies condition (2.12) and we get that for Hn−k-a.e. x ∈ π+
n−k(Su)

∂tλu(x, t) = −H
k−1(∂∗{y : uσ(x, y) > t})

|∇yuσ|
|∂∗{y:uσ(x,y)>t}(4.9)

∂iλu(x, t) = Hk−1(∂∗{y : uσ(x, y) > t}) ∂iu
σ

|∇yuσ|
|∂∗{y:uσ(x,y)>t}(4.10)

The following approximation result will be useful in the proof of Theorem 2.1.

Lemma 4.4. Let ω ⊂ Rn−k be an open set and let u ∈W 1,p(ω × Rky), p ≥ 1, be a non-negative
function. Then for every ω′ b ω and for every ε > 0 there exists a non-negative Lipschitz
function w : Rn → R with compact support such that

Hn ({z ∈ Rn : w(z) > 0, ∇yw(z) = 0}) = 0 and(4.11)

‖u− w‖W 1,p(ω′×Rky) < ε .(4.12)

Proof. On multiplying u(x, y) by a smooth compactly supported cut-off function ϕ : Rn−k → R
with ϕ ≡ 1 on ω′, we can assume without loss of generality that u ∈ W 1,p(Rn). By den-
sity, for every choice of ε > 0 there exists a non-negative function uε ∈ C1

c (Rn) such that
‖u− uε‖W 1,p(Rn) < ε.

Let r > 1 be such that sptuε ⊂ B(0, r). Standard approximation results assure us that there

exists a polynomial pε such that ‖uε − pε‖C1(B̄(0,2r) < ε/rn/p. On replacing, if necessary, pε with

pε + ε/rn/p + δ|y|2, for δ > 0 sufficiently small, we may assume pε to be strictly positive and
∇ypε 6= 0Hn-a.e. on B̄(0, r).

Define ηr : Rn → R as

ηr(z) =


1 if |z| ≤ r
(4r2−|z|2)

3r2
if r < |z| ≤ 2r

0 if |z| > 2r

and let w = pεηr. Then there exists a constant c = c(n, p) > 0 such that ‖u− w‖W 1,p(Rn) < cε

and so equation (4.12) holds.
Finally, (4.11) is proven by considering that w(z) > 0 if and only if z ∈ B(0, 2r) and that

w ≡ pε on B(0, r) and w ≡ pεηr on B(0, 2r) \ B̄(0, r) and hence w is still a polynomial with
∇yw 6= 0Hn-a.e. �

Proof of Theorem 2.1. We are going to prove a stronger inequality that actually implies (2.11),
i.e.,

(4.13)

∫
B×Rky

f(∇uσ) dz ≤
∫
B×Rky

f(∇u) dz ,

for every Borel set B ⊂ πn−k(Ω). As before, we will identify u with its extension u0. We can
assume that the right-hand side of (4.13) has finite value. If not the inequality trivially holds.
Step 1. Let us first prove inequality (4.13) under additional assumptions: we assume that Ω

is bounded with respect to the last k components and that u ∈ W 1,1
0,y (Ω) is non-negative and

satisfies

(4.14) Hk
(
{y ∈ Rk : ∇yu(x, y) = 0} ∩ {y ∈ Rk : u(x, y) > 0}

)
= 0
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for Hn−k-a.e. x ∈ πn−k(Ω). By Remark 2.2, equation (4.14) holds also for uσ. On applying the
coarea formula (3.5) and (3.1), we get that

(4.15)

∫
{y:uσ(x,y)>0}

f(∇uσ) dy =

∫ +∞

0
dt

∫
∂∗{y:uσ(x,y)>t}

f(∇uσ)

|∇yuσ|
dHk−1 ,

for Hn−k-a.e. x ∈ πn−k(Ω). Hence, for any such x, assumption (2.10) and (4.9)−(4.10) give∫
∂∗{y:uσ(x,y)>t}

1

|∇yuσ|
f(∂1u

σ, . . . , ∂n−ku
σ, . . . , ∂nu

σ) dHk−1

=

∫
∂∗{y:uσ(x,y)>t}

1

|∇yuσ|
f̃(∂1u

σ, . . . , ∂n−ku
σ, |∇yuσ|) dHk−1

= −∂tλu(x, t)f̃

(
∇xλu(x, t)

−∂tλu(x, t)
,
Hk−1(∂∗{y : uσ(x, y) > t})

−∂tλu(x, t)

)
,

(4.16)

for H1-a.e. t > 0. Let us note that for Hn−k-a.e. x ∈ πn−k(Ω), the set {y : u(x, y) > t} ⊂ Rk
is of finite perimeter for H1-a.e. t > 0 and Hk({y : u(x, y) > t}) < +∞ for t > 0. By the
isoperimetric inequality in Rk,

(4.17) Hk−1(∂∗{y : uσ(x, y) > t}) ≤ Hk−1(∂∗{y : u(x, y) > t}) =

∫
∂∗{y:u(x,y)>t}

dHk−1

holds for Hn−k-a.e. x ∈ πn−k(Ω), for H1-a.e. t > 0. By assumption (2.10) the function f̃(ξ, ·) is
non decreasing in [0,+∞) for every ξ ∈ Rn−k. Therefore, (4.17) and Lemma 4.2 imply that for
Hn−k-a.e. x ∈ πn−k(Ω)

(4.18) − ∂tλu(x, t)f̃

(
∇xλu(x, t)

−∂tλu(x, t)
,
Hk−1(∂∗{y : uσ(x, y) > t})

−∂tλu(x, t)

)

≤ f̃

∫D ∂1u
|∇yu|dH

k−1∫
D

1
|∇yu|dH

k−1
, . . . ,

∫
D
∂n−ku
|∇yu| dH

k−1∫
D

1
|∇yu|dH

k−1
,

∫
D dH

k−1∫
D
dHk−1

|∇yu|

 · ∫
D

dHk−1

|∇yu|
=: I

for H1-a.e. t > 0, where D := ∂∗{y : u(x, y) > t}. Recalling that f is convex and so f̃ is,
Jensen’s inequality gives

(4.19) I ≤
∫
∂∗{y:u(x,y)>t}

1

|∇yu|
f̃(∇xu, |∇yu|) dHk−1.

Putting together (4.16), (4.18) and (4.19) we get

(4.20)

∫
∂∗{y:uσ(x,y)>t}

1

|∇yuσ|
f̃(∇xuσ, |∇yuσ|) dHk−1

≤
∫
∂∗{y:u(x,y)>t}

1

|∇yu|
f̃(∇xu, |∇yu|) dHk−1 ,

for Hn−k-a.e. x ∈ πn−k(Ω) and for H1-a.e. t > 0.
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Integrating (4.20), first with respect to t and then with respect to x, using equation (4.15)
for both u and uσ, yields∫

B×Rky
f(∇uσ) dx dy =

∫
B
dx

∫
∂∗{y:uσ(x,y)>0}

f(∇uσ) dy

=

∫
B
dx

∫ +∞

0
dt

∫
∂∗{y:uσ(x,y)>t}

f(∇uσ)

|∇yuσ|
dHk−1

≤
∫
B
dx

∫ +∞

0
dt

∫
∂∗{y:u(x,y)>t}

f(∇u)

|∇yu|
dHk−1

=

∫
B×Rky

f(∇u) dx dy .

(4.21)

Step 2. Let us remove the additional assumptions we used in Step 1. Let u ∈ W 1,1
0,y (Ω) be

non-negative and let ω b πn−k(Ω) be an open set. Lemma 4.4 gives the existence of a sequence
{uh} of non-negative Lipschitz functions, compactly supported in Rn, that satisfy (4.14) and
such that uh → u strongly in W 1,1(ω × Rky).

If we assume that

(4.22) 0 ≤ f(ξ) ≤ C(1 + |ξ|) for some C > 0, ∀ξ ∈ Rn,
then f is globally Lipschitz continuous and therefore f(∇uh)→ f(∇u) strongly in L1(ω × Rky).
The continuity of Steiner symmetrization, see equation (2.8), with respect to the L1-convergence
gives us uσh → uσ strongly in L1(ω×Rky). By semicontinuity (see, e.g., [B2, Theorem 4.2.8]) and
(4.21) we have∫

ω×Rky
f(∇uσ) dx dy ≤ lim inf

h→+∞

∫
ω×Rky

f(∇uσh) dx dy

≤ lim inf
h→+∞

∫
ω×Rky

f(∇uh) dx dy =

∫
ω×Rky

f(∇u) dx dy ,

and so (4.13) holds.
Let us remove assumption (4.22). Since f is non-negative and convex and satisfies (2.10),

there exist a sequence of vectors {aj} ⊂ Rn−k and two sequences of numbers {bj} ⊂ R, {cj} ⊂ R
such that

f(ξ) = sup
j∈N
{aj · ξx + bj |ξy|+ cj} = sup

j∈N
{(aj · ξx + bj |ξy|+ cj)

+} , ∀ξ ∈ Rn .

For N ∈ N define
fN (ξ) := sup

1≤j≤N
{(aj · ξx + bj |ξy|+ cj)

+} .

Clearly, fN (ξ)↗ f(ξ) pointwise monotonically. Observing that fN satisfies (2.10) and (4.22) we
get that (4.13) holds for such fN . Now the thesis follows by monotone convergence theorem. �

Remark 4.5. Actually, inequality (2.11) holds also for any u in W 1,p
0,y (Ω). To verify this,

define, for every ε > 0, uε := max{u − ε, 0}. Clearly, the support of uε has finite measure

in ω × Rky for every ω b πn−k(Ω). Therefore uε ∈ W 1,1
0,y (Ω). Since (uε)

σ = (uσ)ε and ∇uε =

∇uχ{u>ε}Hn-a.e. in Rn, by monotone convergence theorem and applying (4.13) to uε, we get∫
B×Rky

f(∇uσ) dz = lim
ε→0+

∫
B×Rky

f(∇(uσ)ε) dz = lim
ε→0+

∫
B×Rky

f(∇(uε)
σ) dz

≤ lim
ε→0+

∫
B×Rky

f(∇uε) dz =

∫
B×Rky

f(∇u) dz .
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We now pass to the equality cases. Next result shows that if equality holds in the Pólya-Szegő
inequality, then almost every (x, t)-section of the subgraph is equivalent to a ball.

Lemma 4.6. Let f : Rn → R be a non-negative strictly convex function satisfying (2.10) that

vanishes in 0 and let u ∈W 1,1
0,y (Ω) be a non-negative function. If equality (2.15) holds, then for

Hn−k+1-a.e. (x, t) ∈ π+
n−k,t(Su) there exists R(x, t) > 0 such that the set

{y : u(x, y) > t} is equivalent to {|y| < R(x, t)}.

Proof. We prove here the lemma under the additional assumption that u satisfies (2.12). For
the general case see Remark 5.10.

Assumption (2.15) and inequality (4.13) imply that

(4.23)

∫
B×Rky

f(∇uσ) dz =

∫
B×Rky

f(∇u) dz

for every Borel set B ⊂ πn−k(Ω). On choosing A := π+
n−k(Ω) ∩GSu ∩GSuσ , from Theorem 3.4

and (3.7) we see that Hn−k(π+
n−k(Ω) \A) = 0 and that ∇yu(x, y) 6= 0 on A× Rky .

Equality (4.23) assures us that equality holds in (4.21) with B replaced by A. By (2.12) u is
Hn-a.e. strictly positive in Ω, and therefore we have equalities also in (4.18) and (4.19). Since

f̃(ξ, ·) is strictly increasing in [0,+∞) we get an equality in (4.17). Applying the isoperimetric
theorem in Rk, is clear that {y : u(x, y) > t} is equivalent to a ball of radius R(x, t) for
Hn−k-a.e. x ∈ πn−k(Ω) and H1-a.e. t ∈ (0,M(x)). By the Hn-a.e. positivity of u, we have
that π+

n−k(Su) is equivalent to πn−k(Ω). Equation (4.8) implies that π+
n−k,t(Su) is equivalent to⋃

x∈πn−k(Ω){x} × (0,M(x)). Hence the lemma is proven. �

Proof of Proposition 2.4. The proof is based on the same induction argument of [BCF, Propo-
sition 3.6]. We already observed in Remark 2.2 that condition (2.12) implies (2.16). Let us now
prove the converse implication. The case k = 1 is proven in [CF2, Proposition 2.3].

Step 1. Let k > 1 and let v ∈ W 1,1
0,y (Ω) be a non-negative function satisfying (2.12) and such

that for Hn−k+1-a.e. (x, t) ∈ π+
n−k,t(Sv) the set {y : v(x, y) > t} is equivalent to a k-dimensional

ball. For i = 1, . . . , k, set

Ci := {(x, y) ∈ Ω : ∂yiv(x, y) = 0} ∩ {(x, y) ∈ Ω : either M(x) = 0 or v(x, y) < M(x)} .

We claim that for v as above Hn(Ci) = 0. Indeed, by Theorem 3.3, we see that the set

Ai = {(x, y, t) ∈ ∂∗Sv : νSvyi = 0} ∩ {(x, y, t) ∈ ∂∗Sv : either M(x) = 0 or t < M(x)}

satisfies

(4.24) Hn(Ai) ≥ Hn(Ci) .

From Theorem 3.4, up to Hk−1 negligible sets, we get

Aix,t = {y ∈ (∂∗Sv)x,t : ν
(Sv)x,t
yi = 0} ∩ {(x, y, t) ∈ ∂∗Sv : either M(x) = 0 or t < M(x)} .

Since almost every section of the subgraph of v is a ball, we see that Hk−1(Aix,t) = 0. Hence,
using (4.24), assumption (2.12) with Theorem 3.3 and the coarea formula, we have

Hn(Ci) ≤ Hn(Ai) = Hn(Ai ∩ {νSvy 6= 0}) =

∫
πn−k,t(∂∗Sv)

dx dt

∫
(∂∗Sv)x,t∩Aix,t

dHk−1

|νSvy |
= 0 ,

and so the claim is proven.
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Step 2. For i = 0, . . . , k define recursively Ω0 := Ω, Ωi := (Ωi−1)Si , where Si is the 1-
codimensional Steiner symmetrization with respect to yi. The functions ui are defined accord-
ingly. Assumption (2.15) and Theorem 2.1 imply that∫

Ωσ
f(∇uσ) dz =

∫
Ωk−1

f(∇uk−1) dz = · · · =
∫

Ω1

f(∇u1) dz =

∫
Ω
f(∇u) dz .

Hence, by Lemma 4.6, we see that Suk is equivalent to Suσ . From (2.16) and (4.24) we see that

Hn
(
{(x, y) ∈ Ωk : ∇yku

k(x, y) = 0} ∩ {(x, y) ∈ Ωk : either M(x) = 0 or 0 < uk < M(x)}
)

= 0 .

Since the assertion holds for k = 1, we deduce

Hn
(
{(x, y) ∈ Ωk−1 : ∇yk−1

uk−1 = 0)} ∩ {(x, y) ∈ Ωk−1 : M(x) = 0 or 0 < uk−1 < M(x)}
)

= 0

and this clearly implies that

Hn
(
{(x, y) ∈ Ωk−1 : ∇yuk−1 = 0} ∩ {either M(x) = 0 or 0 < uk−1 < M(x)}

)
= 0 .

The assertion now follows iterating this argument. �

Proof of Theorem 2.3. The first statement is Lemma 4.6, see also Remark 5.10.
By (2.9) it is sufficient to show that (Su)σ is equivalent to Su. From the previous statement,

we know that for Hn−k+1-a.e. (x, t) ∈ π+
n−k,t(Su) every section of (Su)x,t is equivalent to a ball in

Rk with radius R(x, t) and denote by b : Rn−k×Rt → Rn+1 the center of this ball. On replacing
u by uσ in Lemma 4.6, we see that for Hn−k+1-a.e. (x, t) ∈ π+

n−k,t((Su)σ) every (x, t) section of

(Su)σ is equivalent to a ball of the same radius R(x, t) and denote by b̃ : Rn−k × Rt → Rn+1

the center of the ball. From the very definition of the Steiner rearrangement we have that
b̃(x, t) ≡ (x, 0, t). Now it is sufficient to show that b− b̃ ≡ (0, c, 0) for some c ∈ Rk.

The case k = 1 is [CF2, Theorem 2.2]. Let k > 1 and for i = 1, . . . , k let Si be the Steiner
symmetrization in codimension 1 with respect to yi. Clearly, Ωσ = (Ωσ)Si = (ΩSi)σ and therefore
(2.11) implies

(4.25)

∫
Ωσ
f(∇uσ) dz ≤

∫
ΩSi

f(∇uSi) dz ≤
∫

Ω
f(∇u) dz ,

for i = 1, . . . , k. From (2.15) we get equalities in (4.25). Since almost every section (Su)x,t is a
ball, arguing as in Step 1 of the proof of Proposition 2.4 we get

Hn
(
{z ∈ Ω : ∂yiu(z) = 0} ∩ {z ∈ Ω : either M(z′) = 0 or u(z) < M(z′)}

)
= 0 ,

where z′ := (x, y1, . . . , yi−1, yi+1, . . . yk). Similarly, we also get that

Hn−1
(
{z ∈ ∂∗Ω : νΩ

yi = 0} ∩ {πn−1(Ω)× Ryi}
)

= 0 ,

where πn−1 is the projection on z′. Therefore, by the k = 1 case, we have that (b(x, t))y1 ≡ c1 for

some c1 ∈ R. Now iterate the procedure and obtain (b(x, t))y ≡ (c1, . . . , ck) and so b−b̃ ≡ (0, c, 0)
with c = (c1, . . . , ck). �

5. The BV case

In this section we are going to prove the Pólya-Szegő inequality for the Steiner rearrangement
of a function of bounded variation and the characterization of the equality cases. As already
observed in the introduction, we will first prove analogous results for geometrical functionals
depending on the generalized inner normal. In this setting, we will first show a Pólya-Szegő
principle in Theorem 5.5 an the characterization of the equality cases in Theorem 5.6.

Next two Lemmata will be used in the proof of Theorem 5.5.
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Lemma 5.1. Let U ⊂ Rn−k × Rt be an open set. Let F : Rn+1 → [0,+∞] be a convex
function satisfying (2.24) and (2.27) and let E be a set of finite perimeter in U × Rky such that

Hn+1(E ∩ (U × Rky)) < +∞. Then∫
∂∗Eσ∩(B×Rky)

F (νE
σ
) dHn ≤

∫
B
F̃

(
D1L

|DL|
, . . . ,

Dn−kL

|DL|
, 0,

DtL

|DL|

)
d|DL|

+ F̃ (0, . . . , 0, 1, 0)|DyχEσ |(B × Rky)
(5.1)

for every Borel set B ⊂ U .

Proof. Without loss of generality we can assume that B is a bounded open set.
Step 1. Let us prove inequality (5.1) assuming that F is everywhere finite, hence continuous.
By approximation we can find a sequence of functions {Lj} ⊂ C∞(B) such that Lj(x, t) > 0 for
every (x, t) ∈ B, Lj → L in L1(B), ∇Lj Hn ⇀ DL weakly* in the sense of measures and

(5.2)

∫
B
|∇Lj | dx dt→ |DL|(B) .

For j ∈ N define the sets Ej := {(x, y, t) : (x, t) ∈ B, ωk|y|k ≤ Lj(x, t)}. Then χEj → χEσ in

L1(B × Rky) and since

|DχEj |(B × Rky) = P (Ej ;B × Rky) ≤ C ,

for some constant depending only on B, we deduce that

(5.3) DχEj ⇀ DχEσ weakly* in B × Rky .

Using the convexity of F , assumption (2.24) and (3.2) we have∫
∂∗Eσ∩(B×Rky)

F (νE
σ
) dHn

≤
∫
∂∗Eσ∩(B×Rky)

F̃ (νE
σ

x , 0, νE
σ

t ) dHn +

∫
∂∗Eσ∩(B×Rky)

F̃ (0, νE
σ

y , 0) dHn

=

∫
B×Rky

F̃

(
DxχEσ

|DχEσ |
, 0,

DtχEσ

|DχEσ |

)
d|DχEσ |+ F̃ (0, 1, 0)

∫
∂∗Eσ∩(B×Rky)

|νEσy | dHn .

(5.4)

Using (5.3), Reshetnyak’s lower semicontinuity Theorem (see, e.g., [AFP, Theorem 2.38]) and
(3.2) we get∫

B×Rky
F̃

(
DxχEσ

|DχEσ |
, 0,

DtχEσ

|DχEσ |

)
d|DχEσ | ≤ lim inf

j→∞

∫
B×Rky

F̃

(
DxχEj
|DχEj |

, 0,
DtχEj
|DχEj |

)
d|DχEj |

= lim inf
j→∞

∫
∂∗Ej∩(B×Rky)

F̃ (ν
Ej
x , 0, ν

Ej
t ) dHn .

(5.5)

Since the functions Lj are smooth, for i = 1, . . . , n− k, t

ν
Ej
i (x, y, t) =

∂iLj(x, t)√
pj(x, t)2 + |∇Lj(x, t)|2
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for every (x, y, t) ∈ ∂∗Ej ∩ (B × Rky), where pj(x, t) stands for the perimeter of (Ej)x,t. Using

this equality with (5.4), (5.5) and (3.2) we see that∫
∂∗Eσ∩(B×Rky)

F (νE
σ
) dHn

≤ lim inf
j→∞

∫
∂∗Ej∩(B×Rky)

F

(
∂iLj√

p2
j + |∇Lj |2

, 0,
∂tLj√

p2
j + |∇Lj |2

)
dHn

+ F̃ (0, 1, 0)

∫
∂∗Eσ∩(B×Rky)

|νEσy | dHn

= lim inf
j→∞

∫
B
F̃ (∇xLj , 0, ∂tLj) dx dt+ F̃ (0, 1, 0)|DyχEσ |(B × Rky)

= lim inf
j→∞

∫
B
F̃

(
∇xLj
|∇Lj |

, 0,
∂tLj
|∇Lj |

)
|∇Lj | dx dt+ F̃ (0, 1, 0)|DyχEσ |(B × Rky) .

(5.6)

Since ∇Lj Hn ⇀ DL weakly* and (5.2) holds, we can apply Reshetnyak’s continuity Theorem
(see, e.g., [AFP, Theorem 2.39]) and get

(5.7) lim inf
j→∞

∫
B
F̃

(
∇xLj
|∇Lj |

, 0,
∂tLj
|∇Lj |

)
|∇Lj | dx dt =

∫
B
F̃

(
DxL

|DL|
, 0,

DtL

|DL|

)
d|DL| .

Then, inequality (5.1) follows combining (5.6) and (5.7).
Step 2. Let us remove the additional assumption made in Step 1. Since F is a convex function
satisfying (2.24) and (2.27), we see that there exists a sequence {(aj , bj , cj)} ⊂ Rn−k × R × R
such that

F (ξ) = sup
j∈N

{
(ξx · aj + |ξy|bj + ξtcj)

+
}
,

for every ξ ∈ Rn+1. Define, for N ∈ N,

FN (ξ) := sup
1≤j≤N

{
(ξx · aj + |ξy|bj + ξtcj)

+
}
.

Note that FN is a continuous function and satisfies (2.24) and (2.27). Since FN (ξ) ↗ F (ξ)
pointwise monotonically, inequality (5.1) follows applying Step 1 to the functions FN and using
the monotone convergence theorem. �

The following lemma gives informations on the gradient of the function L. It is a simple
variant of [CCF, Lemmata 3.1 and 3.2].

Lemma 5.2. Let U ⊂ Rn−k×Rt be an open set and let E be a set of finite perimeter in U ×Rky
such that Hn+1(E ∩ (U × Rky)) < +∞. Then L ∈ BV (U) and for any bounded Borel function g
in U

(5.8)

∫
U
g(x) dDiL(x) =

∫
U×Rky

g(x) dDi χE(x, y) , for i = 1, . . . , n− k, t .

Lemma 5.3. Let U ⊂ Rn−k×Rt be an open set and let F : Rn+1 → [0,+∞] be a convex function
satisfying (2.24). Let E be a set of finite perimeter in U×Rky such that Hn+1(E∩(U×Rky)) < +∞.
Then

(5.9)

∫
B
F̃

(
D1L

|DL|
, . . . ,

Dn−kL

|DL|
, 0,

DtL

|DL|

)
d|DL| ≤

∫
∂∗E∩(B×Rky)

F̃ (νE1 , . . . , ν
E
n−k, 0, ν

E
t ) dHn

for every Borel set B ⊂ U .
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Proof. As in the previous proof, we can assume that B is a bounded open set. Since F is a non-
negative convex function satisfying (2.24), there exists a sequence of vectors {αj} ∈ Rn−k × Rt
such that

(5.10) F (ξx, 0, ξt) = sup
j∈N

{
(αj · ξx,t)+

}
for every ξ ∈ Rn+1, where ξx,t = (ξx, ξt) ∈ Rn−k+1. Hence we deduce that (see, e.g., [AFP,
Lemma 2.35])

(5.11)

∫
B
F̃

(
DxL

|DL|
, 0,

DtL

|DL|

)
d|DL| = sup

{∑
j∈J

∫
Bj

(
αj ·

DL

|DL|

)+
d|DL|

}
,

where the supremum is extended over all finite sets J ⊂ N and all families {Bj}j∈J of pairwise
disjoint Borel subsets of B. For a fixed family {Bj}j∈J and a fixed j ∈ N let us define

Pj :=

{
(x, t) ∈ Bj : αj ·

DL

|DL|
(x, t) ≥ 0

}
.

Hence, on applying (5.8), we get∫
Bj

(
αj ·

DL

|DL|

)+
d|DL| =

∫
U
χPj (x, t)

(n−k∑
i=1

(αj)i
DiL

|DL|
+ (αj)t

DtL

|DL|

)
d|DL|

=
n−k∑
i=1

∫
U

(αj)i χPj (x, t) dDiL(x, t) +

∫
U
(αj)t χPj (x, t) dDtL(x, t)

=

n−k∑
i=1

∫
U×Rky

(αj)i χ(Pj×Rky)(x, y, t) dDiχE +

∫
U×Rky

(αj)t χ(Pj×Rky)(x, y, t) dDtχE .

Combining the last equality with (3.2) we have∫
Bj

(
αj ·

DL

|DL|

)+
d|DL| =

∫
∂∗E

χ(Pj×Rky)αj · νEx,t dHn ≤
∫
∂∗E

χ(Bj×Rky)

(
αj · νEx,t

)+
dHn .

Hence, on using (5.10) we see that∑
j∈J

∫
Bj

(
αj ·

DL

|DL|
)+
d|DL| ≤

∑
j∈J

∫
∂∗E∩(Bj×Rky)

F̃ (νEx , 0, ν
E
t ) dHn ≤

∫
∂∗E∩(B×Rky)

F̃ (νEx , 0, ν
E
t ) dHn .

Then, combining (5.11) and the last inequality, we get (5.9). �

Lemma 5.4. Let U ⊂ Rn−k×Rt be an open set and let E be a set of finite perimeter in U ×Rky
such that L(x, t) < +∞ for Hn-a.e. (x, t) ∈ U . Then, for every open set U ′ b U

(5.12) Hn+1(E ∩ (U ′ × Rky)) < +∞ .

Proof. Given an open set U ′ b U define

Eh = E ∩
(
U ′ ×B(0, h)

)
for h ∈ N .

Without loss of generality, let us assume that ∂U ′ is smooth. Since Eh has finite perimeter in
U ′ × Rky , then by (3.3) we see that

(5.13) ∂MEh ∩ (U ′ × Rky) ⊂
(
∂ME ∪ {|y| = h}

)
∩ (U ′ × Rky) .

Since Hn+1(Eh∩ (U ′×Rky)) < +∞, arguing as in the proof of Lemma 5.1 and using (5.13), (3.2)
and (3.4) we deduce that

P
(
(Eh)σ;U ′ × Rky

)
≤ P

(
Eh;U ′ × Rky

)
≤ C ,
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for some constant C depending only on U ′. Define mh = −
∫
U ′ Lh(x, t) dx dt, where Lh(x, t) stands

for Hn−k+1((Eh)x,t). Using the Poincaré inequality for functions of bounded variations (see, e.g.,
[AFP, Theorem 3.44]) we have that

(5.14)

∫
U ′
|Lh(x, t)−mh| dx dt ≤ C |DLh|(U ′) ≤ C P

(
(Eσh );U ′ × Rky

)
≤ C ,

for some constant C depending only on U ′. Up to subsequences, we have that mh → m for some
m ∈ [0,+∞]. As Lh(x, t)→ L(x, t) for Hn-a.e. (x, t) ∈ U ′, using (5.14) and Fatou’s Lemma we
infer that ∫

U ′
|L(x, t)−m| dx dt ≤ C .

Since L(x, t) is finite for Hn-a.e. (x, t) ∈ U ′, the last equation gives m < +∞ and L(x, t) ∈
L1(U ′). Hence, (5.12) follows. �

Theorem 5.5. Let F : Rn+1 → [0,+∞] be a convex function satisfying (2.24) and (2.27).
Let U ⊂ Rn−k × Rt be an open set and let E be a set of finite perimeter in U × Rky such that

L(x, t) < +∞ Hn−k+1-a.e. in U . Then

(5.15)

∫
∂∗Eσ∩(B×Rky)

F (νE
σ
) dHn ≤

∫
∂∗E∩(B×Rky)

F (νE) dHn

for every Borel set B ⊂ U . In particular, if E is a set of finite perimeter in Rn+1, then

(5.16)

∫
∂∗Eσ

F (νE
σ
) dHn ≤

∫
∂∗E

F (νE) dHn .

Proof. Step 1. Let us first assume that Hn+1(E ∩ (U ×Rky)) < +∞. Let GEσ be the set given
by Vol’pert’s Theorem 3.4. For any Borel set B ⊂ U define B1 = B \GEσ and B2 = B ∩GEσ .

By inequalities (5.1) and (5.9) we see that

(5.17)

∫
∂∗Eσ∩(B1×Rky)

F (νE
σ
) dHn ≤

∫
∂∗Eσ∩(B1×Rky)

F (νE) dHn + F̃ (0, 1, 0)|DyχEσ |(B1 × Rky) .

Moreover, by (3.2), coarea formula (3.6) and (ii) of Theorem 3.4 we get

(5.18) |DyχEσ |(B1 × Rky) =

∫
∂∗Eσ∩(B1×Rky)

|νEσy | dHn =

∫
B1

Hk−1
(
∂∗Eσx,t

)
dx dt = 0 ,

where the last equality holds since Hn(π+
n−k,t(E) ∩B1) = 0. Hence, (5.17) and (5.18) give

(5.19)

∫
∂∗Eσ∩(B1×Rky)

F (νE
σ
) dHn ≤

∫
∂∗E∩(B1×Rky)

F (νE) dHn .

For all (x, t) ∈ B2, we have νE
σ

y 6= 0 Hk−1-a.e. on ∂Eσx,t. Hence, since Eσx,t is a ball, we get

that indeed νE
σ

y 6= 0 at all point on ∂Eσx,t. Therefore, νE
σ

y 6= 0 for all point on ∂∗Eσ ∩ (B2×Rky)
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and we can apply the coarea formula, thus getting

(5.20)

∫
∂∗Eσ∩(B2×Rky)

F (νE
σ
) dHn

=

∫
∂∗Eσ∩(B2×Rky)

F̃

(
νE

σ

|νEσy |

)
|νEσy | dHn by (2.24) and (2.27)

=

∫
B2

dx dt

∫
∂∗(Eσ)x,t

F̃

(
νE

σ

x

|νEσy |
, 1,

νE
σ

t

|νEσy |

)
dHk−1(y) by (3.6)

=

∫
B2

F̃
(
∇xL(x, t),Hk−1(∂∗Eσx,t), ∂tL(x, t)

)
dx dt by (3.10).

≤
∫
B2

F̃
(
∇xL(x, t),Hk−1(∂∗Ex,t), ∂tL(x, t)

)
dx dt by the isoperimetric inequality .

Since F is a non-negative convex function satisfying (2.24) and (2.27), we see that there exists
a sequence of vectors {(ξh, ρh, τh)} ⊂ Rn−k × R× R such that

F̃ (x, r, t) = sup
h∈N

{
(x · ξh + rρh + tτh)+

}
.

Hence, we deduce that (see, e.g., [AFP, Lemma 2.35])

∫
B2

F̃
(
∇xL(x, t),Hk−1(∂∗Ex,t), ∂tL(x, t)

)
dx dt = sup

{∑
h∈H

∫
Ah

(
∇xL·ξh+p(x, t) ρh+∂tLτh

)+}
,

where p(x, t) := Hk−1(∂∗Ex,t) and the supremum is extended over all finite sets H ⊂ N and all
families {Ah}h∈H of pairwise disjoint Borel subsets of B2. For a fixed family {Ah}h∈H and a
fixed h ∈ N, define

Ph :=
{

(x, t) ∈ Ah : ∇xL(x, t) · ξh + p(x, t) ρh + ∂tL(x, t) τh ≥ 0
}
.

Let us define

g(x, t) :=

∫
∂∗Ex,t

νEx,t(x, y, t)

|νEy (x, y, t)|
dHk−1(y) .



THE STEINER REARRANGEMENT IN ANY CODIMENSION 23

From (3.9) and considering that DL is absolutely continuous on B2, setting Ãh := Ah ∩ Ph, we
have

∑
h∈H

∫
Ah

(
∇xL(x, t) · ξh + p(x, t)ρh + ∂tL(x, t)τh

)+
=
∑
h∈H

∫
Ãh

∇xL(x, t) · ξh + p(x, t)ρh + ∂tL(x, t)τh

=
∑
h∈H

[∫
∂∗E∩(Ãh×Rk)∩{νEy =0}

(ξh, τh) · νEx,t(x, y, t) dHn +

∫
Ãh

g(x, t) · (ξh, τh) + p(x, t)ρh dx dt

]

≤
∑
h∈H

[∫
∂∗E∩(Ãh×Rk)∩{νEy =0}

F̃ (νEx , 0, ν
E
t ) dHn

+

∫
Ãh

F̃

(∫
∂∗Ex,t

νEx
|νEy |

dHk−1,

∫
∂∗Ex,t

dHk−1,

∫
∂∗Ex,t

νEt
|νEy |

dHk−1

)
dx dt

]

≤
∑
h∈H

[∫
∂∗E∩(Ah×Rk)∩{νEy =0}

F (νE) dHn +

∫
Ah

dx dt

∫
∂∗Ex,t

F̃

(
νEx
|νEy |

, 1,
νEt
|νEy |

)
dHk−1(y)

]
=: J ,

(5.21)

where the last inequality is due to Jensen’s inequality. On applying the coarea formula, we see
that

J =
∑
h∈H

[∫
∂∗E∩(Ãh×Rk)∩{νEy =0}

F (νE) dHn +

∫
∂∗E∩(Ãh×Rk)∩{νEy 6=0}

F (ν) dHn
]

≤
∑
h∈H

[∫
∂∗E∩(Ah×Rk)∩{νEy =0}

F (νE) dHn +

∫
∂∗E∩(Ah×Rk)∩{νEy 6=0}

F (ν) dHn
]

=

∫
∂∗E∩(B2×Rk)

F (ν) dHn .

(5.22)

Now inequality (5.15) follows combining (5.19)−(5.22).
Step 2. If the set E is such that L(x, t) < +∞ for Hn−k+1-a.e. (x, t) ∈ U , then (5.15) follows
from Step 1 and from Lemma 5.4.
Step 3. It remains to prove (5.16). If E has finite perimeter in Rn+1, then the isoperimetric
inequality (see, e.g., [AFP, Theorem 3.46]) assures that either E or Rn+1 \E has finite measure.
In the first case (5.16) is proven by the above calculations taking U = Rn−k+1. In the second
one, (5.16) trivially holds, since Eσ is equivalent to Rn+1 and so ∂∗Eσ = ∅. �

In order to prove Theorem 2.6 we need some results for the equality cases in (5.15) and
(5.16). For this, we need to strengthen the assumptions. Namely, we require that for every
(x, t) ∈ Rn−k+1 and for every s1, s2 ∈ R+ with s1 < s2,

(5.23) F̃ (x, s1, t) < F̃ (x, s2, t) ,

whenever the right-hand side is finite.

Proposition 5.6. Let F : Rn+1 → [0,+∞] be a convex function satisfying (2.24), (2.27) and
(5.23) and let U ⊂ Rn−k ×Rt be an open set. Let E be a set of finite perimeter in U ×Rky such
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that L(x, t) < +∞ Hn−k+1-a.e. in U . If

(5.24)

∫
∂∗Eσ∩(U×Rky)

F (νE
σ
) dHn =

∫
∂∗E∩(U×Rky)

F (νE) dHn <∞ ,

then for Hn−k+1-a.e. (x, t) ∈ π+
n−k,t(E) ∩ U the section Ex,t is equivalent to a k-dimensional

ball.

Proof. Assumption (5.24) and inequality (5.15) assure us that

(5.25)

∫
∂∗Eσ∩(B×Rky)

F (νE
σ
) dHn =

∫
∂∗E∩(B×Rky)

F (νE) dHn

for every Borel set B ⊂ U . Possibly replacing U by U ′, where U ′ b U , from Lemma 5.4 we can
assume that Hn+1(E∩(U×Rky)) < +∞. Hence, on choosing B = U∩GE∩GEσ in (5.25) we have
equalities in (5.20). This, in combination with assumption (5.23) and the fact that the integrals
in (5.24) have finite value, gives us that Hk−1(∂∗Ex,t) = Hk−1(∂∗Eσx,t) for Hn−k+1-a.e. (x, t) ∈ B
and therefore for Hn−k+1-a.e. (x, t) ∈ π+

n−k,t(E)∩U . On applying the isoperimetric theorem the

result is proven. �

Theorem 5.5 and Proposition 5.6 are sufficient to prove Theorem 2.6. The problem of whether
a set satisfying (5.24) is necessarily Steiner symmetric or not is the content of the next result.
Here, we need stronger assumptions. In particular we require that the precise representative L∗

of L — see, e.g., [EG, §1.7.1] for the definition — satisfies

(5.26) L∗(x, t) > 0 for Hn−k−1-a.e. (x, t) ∈ U .
We introduce the following notation. Given i = 1, . . . , n − k, for (x, t) ∈ Rn−k × Rt we
write x̂i := (x1, . . . , xi−1, xi+1, . . . , xn−k, t) and t̂ := x. If g is a function defined on an open
set U ⊂ Rn−k × Rt, we set gx̂i := f|U∩Rx̂i

, where Rx̂i is the straight line passing through

(x1, . . . , xi−1, 0, xi+1, . . . , xn−k, t) and orthogonal to the hyperplane xi = 0. Then ft̂ is defined
accordingly.

Theorem 5.7. Let F : Rn+1 → [0,+∞) be a convex function satisfying (2.24), (2.27) and
(5.23). Let U ⊂ Rn−k×Rt be an open set and let E be a set of finite perimeter satisfying (5.26)
and such that

(5.27) L(x, t) < +∞ for Hn−k+1-a.e. (x, t) ∈ U .
Assume that there exists a convex set K ⊂ Rn−k × Rt such that the function

K 3 (ξx, ξt) 7→ F̃ (ξx, 1, ξt) is strictly convex and(
νEx
|νEy |

,
νEt
|νEy |

)
∈ K Hn-a.e. on ∂∗E ∩ (U × Rk) .

(5.28)

Assume also that

(5.29) Hn
({

(x, y, t) ∈ ∂∗Eσ : νE
σ

y (x, y, t) = 0
}
∩
(
U × Rky)

)
= 0 .

If (5.24) is fulfilled, then for each connected component Uα of U , E ∩ (Uα × Rky) is equivalent

to Eσ ∩ (Uα × Rky) up to translations in the y-plane. In particular, if U is connected and

Hn−k+1(π+
n−k,t(E) \ U) = 0, then E is equivalent to Eσ up to translations in the y-plane.

Proof. Step 1. Let Uα be any connected component of U . From Proposition 5.6 we know that
for Hn−k+1-a.e. (x, t) ∈ π+

n−k,t(E) ∩ Uα the section Ex,t is equivalent to a k-dimensional ball of

radius R(x, t) and clearly the same holds for Eσ with the same radius. Denote by b(x, t) and

b̃(x, t) the center of these balls. Since Eσ is Steiner symmetric we have that b̃(x, t) ≡ (x, 0, t).
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The result will follow if we show that β(x, t) :=
(
b(x, t)

)
y

is constant. Notice that β(x, t) is a

measurable function which, by (5.26) and (5.27) is finite a.e., and is equal to

β(x, t) =
1

L(x, t)

∫
Ex,t

y dy .

Step 2. Since equality (5.24) holds, arguing as in the proof of Proposition 2.4 we deduce that
condition (5.29) is equivalent to

(5.30) Hn
({

(x, y, t) ∈ ∂∗E : νEy (x, y, t) = 0
}
∩
(
U × Rky)

)
= 0 .

Therefore, using [BCF, Theorem 4.3] we get that the function βx̂i ∈ W
1,1
loc (U ∩Rx̂i ;Rk) and for

H1-a.e. xi ∈ U ∩Rx̂i

(5.31) β′x̂i(xi) =
1

L∗x̂i(xi)

∫
∂∗Ex,t

[y − βx̂i(xi)]
νEi (x, y, t)

|νEy (x, y, t)|
dHk−1(y) .

A similar equality holds for β′
t̂
(t).

By (5.25) we have equalities in (5.20) and (5.21). Hence, from (5.30) we get

F̃

(∫
∂∗Ex,t

νEx
|νEy |

dHk−1,

∫
∂∗Ex,t

dHk−1,

∫
∂∗Ex,t

νEt
|νEy |

dHk−1

)
=

∫
∂∗Ex,t

F

(
νEx
|νEy |

, 1,
νEt
|νEy |

)
.

From (5.28), νEx,t/|νEy | is constant with respect to y. Moreover, as ∂∗Ex,t is a sphere, |νEy | is

constant and so νEx,t is constant. Hence, from (5.31) we get

(5.32) β′x̂i(xi) =
1

L∗x̂i(xi)

νEi (x, t)

|νEy (x, t)|

∫
∂∗Ex,t

[y − βx̂i(xi)] dH
k−1(y) = 0 ,

where we dropped the variable y for functions that are constant in ∂∗Ex,t and the last equality
is due to the definition of the function β.
Step 3. We claim that β is constant. Indeed, if β is bounded, it is locally integrable. Therefore,
β ∈ L1

loc(Uα;Rk) and its restrictions βx̂i and βt̂ are absolutely continuous and integrable. Hence,
by a standard characterization of Sobolev functions (see, e.g., [EG, §4.9, Theorem 2]) we have

that β ∈ W 1,1
loc (Uα;Rk) and ∇β = 0 in Uα and so β is constant in Uα. For β = (β1, . . . , βk)

unbounded, fix T > 0 and define the truncated function βT as

βTj (x, t) :=


βj(x, t) if |βj(x, t)| ≤ T
T if βj(x, t) > T

−T if βj(x, t) < −T ,
for j = 1, . . . , k. Hence

(βTj,x̂i)
′ =

{
0 if |βj(x, t)| > T

β′j,x̂i if |βj(x, t)| ≤ T ,
with a similar equality holding for (βT

j,t̂i
)′. Therefore, since βT is bounded, from (5.32) and the

previous equality we deduce that βT = CT a.e. for some constant CT ∈ Rk. Finally, as

β(x, t) = lim
T→+∞

βT (x, t) = lim
T→∞

CT

and since β is finite a.e., we deduce that β is constant. �

After proving the results concerning functionals of the form (2.23), we deal now with the
Pólya-Szegő principle for BV functions. In the proof of Theorem 2.5 we will use Theorem 5.8
below, a consequence of relaxation results concerning BV functions, see e.g., [AFP, Theorem
5.47].
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Theorem 5.8 ([CF2, Theorem F]). Let f be a convex function satisfying (2.17). Let Ω ⊂ Rn
be an open set and let Jf be the functional defined by (2.18). If u ∈ BV (Ω) and {uj} is any
sequence in BV (Ω) such that uj → u in L1

loc(Ω), then

Jf (u; Ω) ≤ lim inf
j→+∞

Jf (uj ; Ω) .

Proof of Theorem 2.5. We are going to prove a stronger inequality than (2.19), i.e.,

(5.33) Jf (uσ;B × Rky) ≤ Jf (u;B × Rky) ,

for any Borel set B ⊂ πn−k(Ω). As before we identify u0 with u.
Step 1. Let us first prove that uσ ∈ BV (ω × Rky) for every open set ω b πn−k(Ω). Since

u ∈ BV0,y(Ω) then u ∈ BV (ω × Rky). Hence, by approximation we can find a sequence of

non-negative functions {uh} ⊂ C1(ω × Rky) such that uh → u in L1(U × Rky) and

lim
h→∞

∫
ω×Rky

|∇uh| dz = |Du|(Ω× Rky) .

By the continuity of the Steiner rearrangement — equation (2.8) — we get that (uh)σ → uσ in
L1(ω×Rky); moreover by (4.13) we have that the sequence ‖∇uσh‖L1(ω×Rky) is bounded. Therefore

(see, e.g., [AFP, Theorem 3.9]) we conclude that uσ ∈ BV (ω × Rky).
Step 2. Let us assume, for the moment, that u is compactly supported in Ω. By Theorem 3.1,
Su is a set of finite perimeter in Rn+1. On applying Proposition 2.7, Theorem 5.5 and (2.9) we
deduce that for every Borel set B ⊂ πn−k(Ω)

Jf (uσ;B × Rky) =

∫
∂∗Suσ∩(B×Rky×Rt)

Ff (νSuσ ) dHn

≤
∫
∂∗Su∩(B×Rky×Rt)

Ff (νSu) dHn = Jf (u;B × Rky) ,

hence (5.33) holds.
Step 3. Let us now drop the extra assumption. Fixed ω b πn−k(Ω) we can find a smooth
cutoff function compactly supported in πn−k(Ω) such that ϕ ≡ 1 on ω and a smooth function η
compactly supported in Rk with η ≡ 1 in B(0, 1). Let us define the functions

v(x, y) = u(x, y)ϕ(x) and vh(x, y) = v(x, y)η(
y

h
) , for h ∈ N .

Clearly, v ∈ BV (Rn) and vh → v as h → +∞ in L1(Rn). Hence, by Theorem 5.8 we deduce
that

(5.34) Jf (uσ;ω × Rky) = Jf (vσ;ω × Rky) ≤ lim inf
h→+∞

Jf (vσh ;ω × Rky) .

Moreover, since |D(v − vh)|(Rn)→ 0 as h→ +∞, we get

(5.35) lim inf
h→+∞

Jf (vh;ω × Rky) = Jf (v;ω × Rky) = Jf (u;ω × Rky) .

Now, for B = ω inequality (5.33) follows from (5.34), (5.35) and the second step applied to vh.
Then, the general case where B is any Borel set, is derived by approximation. �

Proof of Theorem 2.6. The proof is very similar to the one of Theorem 2.3. Thanks to (2.9), it
is sufficient to show that (Su)σ is equivalent to Su.
Step 1. We claim that for Hn−k+1-a.e. (x, t) ∈ π+

n−k(Su) there exists R(x, t) > 0 such that the
set

{y : u(x, y) > t} is equivalent to {|y| < R(x, t)} .
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From (2.22) and (5.33) we see that equality holds in (5.33) for any Borel set B ⊂ πn−k(Ω).
Given any open set ω b πn−k(Ω) let ϕ be a smooth cutoff function with compact support in
πn−k(Ω) such that ϕ ≡ 1 on ω. Identifying u with its extension u0, define v := uϕ. Then, we
have the following equality:

Jf (vσ;ω × Rky) = Jf (v;ω × Rky) .
Hence, on using Proposition 2.7 we get∫

∂∗Svσ∩(ω×Rky×Rt)
F (νSvσ ) dHn =

∫
∂∗Sv∩(ω×Rky×Rt)

F (νSv) dHn .

Since v belongs to BV (Rn) and it is non-negative, from (2.13) we deduce that v has compact
support and therefore Sv has finite perimeter in Rn+1. By the last equality and Lemma 5.9
below, the claim is proven from Proposition 5.6 and from the arbitrariness of ω.
Step 2. We have just proved that for Hn−k+1-a.e. (x, t) ∈ π+

n−k,t(Su) the (x, t) section of Su is

equivalent to a ball in Rk with radius R(x, t). Define b : Rn−k × Rt → Rn to be the center of
this ball. On applying Step 1 to the function uσ we see that for Hn−k+1-a.e. (x, t) ∈ π+

n−k,t(Suσ)

every section (Su)σx,t is equivalent to a ball of the same radius R(x, t) with center b̃(x, t). From

the definition of the Steiner rearrangement we get b̃(x, t) ≡ (x, 0, t). Now the Theorem follows

once we prove that b− b̃ ≡ (0, c, 0) for some c ∈ Rk.
The case k = 1 is [CF2, Theorem 2.5]. Let k > 1 and denote by Si the Steiner symmetrization

with respect to yi for i = 1, . . . , k. Since Ωσ = (Ωσ)Si = (ΩSi)σ, from (2.19) we have the following
inequalities

(5.36) Jf (uσ; Ωσ) ≤ Jf (uSi ; ΩSi) ≤ Jf (u; Ω) .

From the assumption (2.22) we get equalities in (5.36). Since almost every section (Su)x,t is a
ball, arguing as in Step 1 of the proof of Proposition 2.4 we get

Hn
(
{z ∈ Ω : ∂yiu(z) = 0} ∩ {z ∈ Ω : either M(z′) = 0 or u(z) < M(z′)}

)
= 0 ,

where z′ := (x, y1, . . . , yi−1, yi+1, . . . yk). Similarly we also have

Hn−1
(
{z ∈ ∂∗Ω : νΩ

yi = 0} ∩ {πn−1(Ω)× Ryi}
)

= 0 ,

where πn−1 is the projection on z′. Since Ωσ = (Ωσ)S1 , by the k = 1 case, we have that
(b(x, t))y1 ≡ c1 for some c1 ∈ R. Now iterate the procedure and obtain (b(x, t))y ≡ (c1, . . . , ck)

and so b− b̃ ≡ (0, c, 0) with c = (c1, . . . , ck). �

The following lemma shows how properties of the function f are inherited by Ff .

Lemma 5.9 (([CF2, Lemma 6.1]). Let f : Rn → [0,+∞) be a convex function vanishing at
0. Then, the functions Ff defined by (2.25) is a convex function satisfying (2.24). Moreover,
if in addition f is as in Theorem 2.6, then Ff satisfies (2.27), (5.23) and (5.28) with K =

Rn−k × (R−t ∪ {0}).

Remark 5.10. Here we want to observe that if f is a non-negative function as in Theorem
2.3, then the function Ff (ξ1, . . . , ξn+1), possibly attaining infinite value if ξn+1 ≥ 0, defined as

in (2.25) satisfies the assumptions of Proposition 5.6. However, if u ∈ W 1,1
0,y (Ω) then (2.26) still

holds and thus Lemma 4.6 follows arguing as in Step 1 of the proof of Theorem 2.6.
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