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Abstract

Let H be a separable Hilbert space and let A : D(A) ⊂ H → H be a self-
adjoint operator with A ≤ ωI, ω > 0 and Tr

(
−A−1

)
<∞. We endow H with

the centered Gaussian measure µ with covariance operator Q = −1
2A
−1 and

consider a funtion U ∈ C3(H) with bounded derivatives up to the order 3, the
SDE dX = (AX −DU(X))dt+ dW (t), X(0) = x and the associated transition
semigroup Pt. We define the class BV (H, γ) of bounded variation functions
with respect to the probability measure γ(dx) = Z−1e−2U(x)µ(dx), where Z is
the normalization constant, through an integration by parts formula and prove
that Ptu ∈ W 1,1(H, γ) for t > 0, u ∈ BV (H, γ), and that u ∈ BV (H, γ) if and
only if the limit of ‖DPtu‖L1(H,γ) as t→ 0 is finite.
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1 Notations and preliminaries

Consider the stochastic differential equation in a separable Hilbert space H{
dX = (AX −DU(X))dt+ dW (t),
X(0) = x,

(1.1)

∗Scuola Normale Superiore, Piazza dei Cavalieri,7, 56126 Pisa, Italy, e–mail: l.ambrosio@sns.it,
g.daprato@sns.it
†School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052,

Australia, e–mail: B.Goldys@unsw.edu.au
‡Dipartimento di Matematica “Ennio De Giorgi”, Università del Salento, C.P.193, 73100, Lecce,
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where A : D(A) ⊂ H → H is self-adjoint,

A ≤ −ωI, ω > 0, and Tr
(
−A−1

)
<∞. (1.2)

We denote by {ek} an orthonormal basis on H and by {αk} a sequence of positive
numbers such that

Aek = −αkek, k ∈ N.

The potential U belongs to C3(H) is convex, DU , D2U , D3U are uniformly continuous
and bounded, and W is a cylindrical Wiener process in H. We denote by Cb(H;H) the
set of uniformly continuous and bounded mappings from H into H and by FCb(H;H)
the set of cylindrical vector fields from H to H, i.e., those of the form

∑n
k=1 fkek with

fk dependent only on 〈x, e1〉, . . . , 〈x, en〉. As an example, we can consider H = L2(0, 1)
and the potential U given by

U(x) =

∫ 1

0

sin(x(ξ))dξ, x ∈ H;

in this case, equation (1.1) reduces to the reaction-diffusion equation

dX = (AX − cosX)dt+ dW (t).

By assumption (1.2) the stochastic integral∫ t

0

e(t−s)AdW (s), t ≥ 0,

is well defined in H, see Theorem 5.2 in [8] and continuous in H, see [12]. Therefore,
for every x ∈ H equation (1.1) has a unique continuous in H solution defined as a
solution to the integral equation

X(t, x) = etAx−
∫ t

0

e(t−s)ADU(X(s, x))ds+

∫ t

0

e(t−s)AdW (s), t ≥ 0.

Since DU ∈ C1
b (H,H), the proof of this fact is standard. By Theorem 7.3.6 in [10],

for every t ≥ 0 the function H 3 x 7→ X(t, x) ∈ L2(Ω,F ,P;H) is differentiable
in all directions and its derivative, denoted ξ(t, x), belongs to L(H) for all t ≥ 0,
x ∈ H. Moreover, for every h ∈ H the function ξh(t, x) = ξ(t, x)h solves the partial
differential equation

d

dt
ξh(t, x) = (A−D2U(X(t, x)))ξh(t, x), ξh(0, x) = h. (1.3)

2



Computing the solution of the above equation we find that

〈ξ(t, x)ek, ek〉 = 〈etAek, ek〉 −
∫ t

0

〈e(t−s)AD2U(X(s, x))ξ(s, x)ek, ek〉ds,

whence, summing on k:

Tr [ξ(t, x)] = Tr [etA]−
∫ t

0

Tr [e(t−s)AD2U(X(s, x))ξ(s, x)]ds. (1.4)

Since

Tr [etA] =
∞∑
k=1

e−tαk ,

the trace of etA is finite for any t > 0 and summable near t = 0. Indeed,∫ 1

0

Tr [etA] dt =

∫ 1

0

∞∑
k=1

e−tαk dt ≤ 2
∞∑
k=1

1

αk
. (1.5)

As a consequence of (1.4), we have that ξ(t, x) is of trace class and

|Tr [ξ(t, x)]| ≤ Tr [etA] + ‖D2U‖Cb
∫ t

0

e−ω(t−s)Tr [e(t−s)A]] ds.

Since U is convex we deduce from (1.3) that

‖ξ(t, x)‖ ≤ e−ωt, ∀x ∈ H, t ≥ 0. (1.6)

We denote by Pt the transition semigroup,

Ptϕ(x) = E[ϕ(X(t, x))], ϕ ∈ Bb(H)

and by πt(x, ·) the law of X(t, x).
Let µ be the zero-mean Gaussian measure on H with the covariance operator

Q = −1
2
A−1. We note that from the boundedness hypothesis on DU it follows that U

has at most linear growth as |x| → ∞ and by the Fernique’s theorem e−2U ∈ L1(H,µ).
We may therefore define a log–concave probability measure

γ(dx) = Z−1e−2U(x)µ(dx),

where Z is the normalization constant. By Theorem 8.6.3 in [9] the measure γ is the
unique invariant measure for the semigroup Pt and Pt is symmetric in L2(H, γ). We
also set

ρ(x) = Z−1e−2U(x), x ∈ H,
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so that

D log ρ(x) = −2U(x).

Moreover, Pt is irreducible and Strong Feller, see e.g. [7, Theorems 3.11, 3.13] hence
by the Khasminski theorem Pt is regular (see for example Theorem 4.2.1 in [9]). In
particular the law πt(x, ·) of X(t, x) is equivalent to γ for any t > 0, x ∈ H.

We denote by N the infinitesimal generator of Pt in L2(H, γ). The generator N
is a perturbation of the Ornstein–Uhlenbeck operator

Lϕ =
1

2
Tr [D2ϕ] + 〈x,ADϕ〉, ∀ ϕ ∈ EA(H),

(where EA(H) is the space of exponential functions, that is the linear span of the set
of all real parts of functions x→ ei〈x,h〉, with h ∈ D(A)), that is

Nϕ = Lϕ− 〈DU,Dϕ〉, ∀ ϕ ∈ EA(H).

EA(H) is a core both for L and for N , see [7].
Finally, we denote by P ′t the transpose of Pt defined in the dual Cb(H;H)′ by

〈ϕ, P ′tν〉 = 〈Ptϕ, ν〉, ν ∈ Cb(H)′,

and use the same notation when acting (componentwise) on Cb(H;H)′.

Acknowledgments. The first author acknowledges support of the ERC ADG Grant
GeMeThnES. The last author is partially supported by PRIN 2008 M.I.U.R. (progetto
“Problemi variazionali con scale multiple”).

2 Functions of bounded variation

For every k ∈ N, set λk = 1
2αk

and recall the basic integration by parts formula∫
H

u 〈Dϕ, z〉 dγ =

∫
H

〈Du, z〉ϕdγ −
∫
H

uϕ 〈D log ρ, z〉 dγ

+

∫
H

〈Q−
1
2 z,Q−

1
2x〉uϕdγ, (2.1)

which is valid for any u, ϕ ∈ C1
b (H) and any z ∈ Q1/2(H). Notice that the series in

〈Q−1/2z,Q−1/2x〉 =
∞∑
k=1

λ−1k 〈z, ek〉〈x, ek〉,
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is convergent in L2(H,µ) because∫
H

|〈Q−1/2z,Q−1/2x〉|2µ(dx) = |Q−1/2z|2.

By (2.1) we have in particular that∫
H

uDkϕdγ = −
∫
H

Dkuϕdγ −
∫
H

uϕDk log ρ dγ +
1

λk

∫
H

xk uϕdγ. (2.2)

Setting

D∗kϕ = −Dkϕ− ϕDk log ρ+
1

λk
xk ϕ, (2.3)

we can write (2.2) as∫
H

uD∗kϕdγ =

∫
H

Dkuϕdγ.

We shall also introduce the divergence operator divγ, defined on FC1(H,H) by

divγF (x) :=
∑
k∈N

D∗k〈F, ek〉(x), x ∈ H.

Lemma 2.1. The gradient operator

D : C1
b (H)→ Lp(H, γ;H), u 7→ Du,

is closable in Lp(H, γ) for every p ∈ [1,∞).

Proof. Assume that (un) ∈ C1
b (H) and F ∈ Lp(H, γ;H) are such that

lim
n→∞

un = 0, in Lp(H, γ)

and

lim
n→∞

Dun = F, in Lp(H, γ;H).

Then by (2.1) it follows that∫
H

un 〈Dϕ, z〉 dγ =−
∫
H

〈Dun, z〉ϕdγ −
∫
H

un ϕ 〈D log ρ, z〉 dγ

+

∫
H

〈Q−
1
2 z,Q−

1
2x〉un ϕdγ.
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Now choose z ∈ Q(H) and ϕ such that ϕ
1+|·| ∈ C

1
b (H). Then we deduce∫

H

〈F, z〉ϕdγ = 0,

which implies F = 0 because Q(H) is dense in H and the space of all functions
ϕ ∈ C1

b (H) such that ϕ
1+|·| ∈ C1

b (H) is dense in Lp(H, γ) by a standard monotone
class argument.

We denote by H1,p(H, γ) the domain of the closure of D (which is still denoted
by D) in Lp(H, γ), 1 ≤ p <∞.

We now define weak gradients and weak Sobolev functions. We say that u ∈
L1(H, γ) possesses a weak gradient if there exists G ∈ L1(H, γ;H) such that∫

H

u(x) divγF (x) γ(dx) =

∫
H

〈DF (x), G(x)〉 γ(dx), ∀ F ∈ FC1
b (H;H). (2.4)

In this case we set Du = G. Then we denote by W 1,1(H, γ) the set of all u ∈ L1(H, γ)
which possess a weak gradient. Obviously, the inclusion H1,1(H, γ) ⊂ W 1,1(H, γ)
holds; we don’t if the converse is also true. However, the following holds.

Proposition 2.2. The space W 1,1(H, γ), endowed with the natural norm

‖u‖1,1 =

∫
H

|u| γ(dx) +

∫
H

|Du| γ(dx),

is a Banach space.

The proof is obtained passing to the limit in both sides of (2.4) and using the
completeness of L1(H, γ) and L1(H, γ;H).

Recalling that the dual of L1(H, γ;H) is precisely L∞(H, γ;H), see e.g. [11,
Corollary 1, page 282], we denote by D∗∞ the adjoint of the weak gradient in the
duality between L1(H, γ;H) and L∞(H, γ;H), i.e., F ∈ L∞(H, γ;H) belongs to the
domain D(D∗∞) if and only if∣∣∣∣∫

H

〈Dϕ(x), F (x)〉γ(dx)

∣∣∣∣ ≤ C

∫
H

|ϕ(x)|γ(dx),

for all ϕ ∈ W 1,1(H, γ) and some constant C > 0. In this case, there is g ∈ L∞(H, γ)
such that∫

H

u g dγ = −
∫
H

〈Du, F 〉 dγ, u ∈ W 1,1(H, γ),

we denote g by D∗∞F and notice that the inclusion FC1
b (H;H) ⊂ D(D∗∞) and the

equality D∗∞F = divγF hold.
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Example 2.3. Let F (x) = ψ(x)z, x ∈ H, where ψ ∈ W 1,1(H, γ) and z ∈ Q1/2(H),
and assume that ψ(x)(1 + |x|) ∈ L∞(H,µ). Then F ∈ D(D∗∞) and we have

D∗∞(F )(x) = −〈Dψ(x), z〉 − ψ(x)〈D log ρ(x), z〉+ ψ(x)〈Q−1/2x,Q−1/2z〉.

Let us come to BV functions. We recall that a vector-valued measure M is a
mapping defined on the Borel σ-algebra of H such that M(∅) = 0 and for every
sequence (Bn) of pairwise disjoint Borel sets we have

M

(⋃
n

Bn

)
=
∑
n

M (Bn) ,

where the series converges in the norm topology.
The total variation measure MTV of M is defined by

MTV (B) = sup
∑
n

|M (Bn)| , B Borel,

where the supremum is taken over all countable Borel partitions (Bn) of B. It is
well known that MTV is a countably additive positive measure. If it is finite we say
that M has finite total variation. We denote by M (H,H) ⊂ Cb(H;H)′ the set of all
vector-valued measures defined on the Borel σ-algebra of H which are of finite total
variation.

Let F ∈ Bb(H;H) and set Fk(x) = 〈F (x), ek〉, k ∈ N. We define the integral of
F with respect to M ∈M (H,H) by setting∫

H

〈F (x),M(dx)〉 =
∞∑
k=1

∫
H

Fk(x)Mk(dx),

where Mk(B) = 〈M(B), ek〉. Notice that the inequality∣∣∣∫
H

〈F (x),M(dx)〉
∣∣∣ ≤ ∫

H

|F (x)|MTV (dx) (2.5)

holds.

Definition 2.4. A function u ∈ L1(H, γ) is said to be of bounded variation if there
exists a vector measure Du ∈M (H;H) such that∫

H

u(x) divγF (x) γ(dx) =

∫
H

〈F (x), Du(dx)〉, ∀F ∈ FC1
b (H;H). (2.6)

We denote by BV (H, γ) the set of all bounded variation functions on H.
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If u ∈ BV (H, γ) we can easily show that

DuTV (H) = sup

{∫
H

〈u(x), divγF (x)〉 γ(dx) : F ∈ FC1
b (H;H), |F (x)| ≤ 1

}
. (2.7)

Remark 2.5. A function u ∈ L1(H, γ) is of bounded variation if and only if there
exists a vector measure Du ∈M (H;H),

Du(B) =
∞∑
h=1

Dku(B) ek, B ∈ B(H),

such that∫
H

u(x)D∗kϕ(x) γ(dx) =

∫
H

ϕ(x)Dku(dx), ∀ϕ ∈ C1
b (H), k ∈ N. (2.8)

Of course, (2.8) follows from (2.6) simply taking F (x) = ϕ(x)ek. The converse impli-
cation is also clear by linearity.

In order to investigate the space BV (H, γ), we need to show that the integration
by parts formula (2.6) holds with a larger class of test functions. Therefore, we
introduce the class D as follows

Definition 2.6. We say that F : H → H belongs to D if

(a) F ∈ C1
b (H,H) and DF ∈ Cb(H; L1(H)), where L1(H) is the space of trace

class operators. In this case we define the operator divF (x) = Tr [DF (x)].

(b) Q−1F ∈ Cb(H,H).

In the class F the following holds.

Lemma 2.7. If F ∈ D , then

D∗∞F (x) = −divF (x) + 〈Q−1x, F (x)〉 − 〈D log ρ(x), F (x)〉 (2.9)

In addition, if u ∈ BV (H, γ) and F ∈ D then the integration by parts formula∫
H

u(x)D∗∞F (x) γ(dx) =

∫
H

〈F (x), Du(dx)〉, (2.10)

holds.
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Proof. Taking into account that equality (2.9) holds for in FC1
b (H);H), we approx-

imate F with a sequence Fn in FC1
b (H);H) such that Fn → F and divFn → divF

pointwise with bounded norms. This allows us to extend (2.9) to D . The convergence
of Fn to F ensures that (2.10) passes to the limit and holds in D .

Let f be in D . Denoting by Pn the projection onto the linear span of {e1, . . . , en}
and defining Fn(x) = Pn (F (Pnx)), let us show that Fn → F and divFn → divF
pointwise with bounded norms. Since Pn converges to the identity, the stated con-
vergence of Fn to F is trivial. Coming to the divergence, set fk = 〈F, ek〉 and

Gn(x) =

[
n∑
h=1

Dkfk

]
(x)

and notice that Gn → divF in L1(H) and divFn(x) = G(Pnx). From condition (a)
in Definition 2.6 we deduce that the functions Gn are equicontinuous. Indeed, given
x0 ∈ H and ε > 0, there is δ > 0 such that

|x− x0| ≤ δ ⇒ ‖DF (x)−DF (x0)‖L1(H) =
∞∑
k=1

|Dkfk(x)−Dkfk(x0)| ≤ ε

and the equicontinuity of the Gn follows. Then, for x0, ε, δ as above, it suffices to
take n large enough to have |Pnx0 − x0| < δ and ‖divF −Gn‖L1(H) < ε to get

|divF (x0)− divγ Fn(x0)| ≤ |divF (x0)−Gn(x0)|+ |Gn(x0)−Gn(Pnx0)| < 2ε.

Remark 2.8. A function u ∈ L1(H, γ) belongs to W 1,1(H, γ) if and only if u ∈
BV (H, γ) and Du � γ. In this case, we denote by Du the density of the gradient
measure with respect to γ, which is the weak gradient of u, and obviously (2.10) holds
in the form∫

H

u(x)D∗F (x) γ(dx) =

∫
H

〈Du(x), F (x)〉 γ(dx), ∀ F ∈ D .

Besides the space BV (H, γ), we can consider the space BV (H,µ) studied in [1]
and defined in an obvious way setting U = 0. We compare the two spaces in the next
remark. To make clearer the presentation, we denote the two notions of gradient and
their adjoint operators by different symbols, namelyDγu, Dµu andD∗γF, D

∗
µF . Let us

start from a result concerning the differentiation of a product. The construction and
the relevant properties of the approximating functions un in its proof are justified by
Theorem 3.4 and Remark 4.3 below. Notice, however, that the argument in Remark
2.10 relies on (2.11) with γ = µ, hence the results in [1] could be invoked.
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Lemma 2.9. Assume that u ∈ BV (H, γ) and f ∈ C1
b (H). Then fu ∈ BV (H, γ) and

Dγ(fu) = fDγu+ uDfdγ. (2.11)

Proof. Let (un) ⊂ W 1,1(H, γ) be given by un = P1/nu, so that un → u in L1(H, γ)
and Dun → Du in Cb(H;H)′ by (4.3). Then∫

H

fuD∗∞Fdγ = lim
n→∞

∫
H

funD
∗
∞Fdγ

= lim
n→∞

∫
H

un〈Df, F 〉dγ + lim
n→∞

∫
H

f 〈Dun, F 〉 dγ

=

∫
H

u 〈Df, F 〉 dγ +

∫
H

f 〈F, dDu〉 .

Remark 2.10. Recall that the function U can be unbounded below, but with at most
linear growth. If U is unbounded, there is no relation between the spaces BV (H,µ)
and BV (H, γ). If U is bounded below, a case which is still interesting and non trivial,
then the inclusion BV (H,µ) ⊂ BV (H, γ) holds, and for u ∈ BV (H,µ), the equality
Dγu = ρDµu holds. Indeed, the inclusion L1(H,µ) ⊂ L1(H, γ) is trivial because ρ is
bounded. Moreover, observing that by (2.1)

D∗γF = D∗µF − 〈F,D log ρ〉 = D∗µF (x) + 2〈DU(x), F (x)〉

we have∫
H

D∗γF udγ =

∫
H

D∗µF udγ −
∫
H

〈F,D log ρ〉udγ

=

∫
H

D∗µF uρdµ−
∫
H

〈F,Dρ〉udµ =

∫
H

ρ〈F, dDµu〉

for every F ∈ D(D∗γ), therefore u ∈ BV (H; γ) and Dγu = ρDµu.
Finally, notice that the inclusion BV (H, γ) ⊂ BV (H,µ) holds only if ρ is bounded

away from 0, which is equivalent to saying that U is globally bounded, a case which is
not interesting. In fact, the equality Dγu = ρDµu shows that not even the inclusion
W 1,1(H; γ) ⊂ W 1,1(H;µ) can be true in general.

Example 2.11 (The perimeter of a halfspace). Let us recall that a Borel set B ⊂ H
is said to have finite perimeter if 1lB ∈ BV (H, γ). We show that the halfspace
B = {x ∈ H : 〈x, h〉 > c} has finite perimeter for any c ∈ R and h ∈ H. Clearly, we
have 1lB(x) = 1l(c,∞)(〈x, h〉). Let

mt(x) =
〈
x, etAh

〉
, σ2

t =
1

2

〈
(−A)−1

(
I − e−2tA

)
h, h
〉
,
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and

n(z) =
1√
2π
e−z

2/2, z ∈ R.

Then

Pt1lB(x) =

∫
H

1l(c,∞)

(〈
etAx+ y, h

〉
)
)
µt(dy) =

∫
R

1l(c,∞) (mt(x) + σtz)n(dz)

=

∫ ∞
c−mt(x)

σt

n(z)dz

and therefore

DPt1lB(x) =
1

σt
n

(
c−mt(x)

σt

)
e−tAh.

Then ∫
H

|DPt1lB(x)|µ(dx) =
∣∣e−tAh∣∣ ∫

R

1

σt
n

(
c− βtz
σt

)
n(z)dz

=
∣∣e−tAh∣∣ ∫

R

1

σt
n

(
z − αt
bt

)
1√
2π
e−c

2/2(σ2
t+β

2
t )

=
1√
2π

1√
σ2
t + β2

t

e−c
2/2(σ2

t+β
2
t )
∣∣e−tAh∣∣

where

β2
t =

1

2

〈
(−A)−1e2tAh, h

〉
, b2t =

σ2
t

σ2
t + β2

t

, αt =
βtc

σ2
t + β2

t

.

Then a result from [1] yields IB ∈ BV (H,µ) and

|Dµ1lB| (H) =
|h|

|(−A)−1/2h|
√
π
e−c

2/|(−A)−1/2h|2 .

Finally,

Dµ1lB = δ{〈x,h〉=c}h.

Invoking Proposition 2.10 we obtain

Dγ1lB = ρδ{〈x,h〉=c}h.
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3 The semigroup Pt in BV (H, γ)

In this section we show that for any u ∈ BV (H, γ) and any t > 0 we have Ptu ∈
W 1,1(H, γ). For this we need two main ingredients. The first one is the regularizing
power of the semigroup Pt, that is the fact that Pt is Strong Feller.

The second ingredient is the following commutation formula for DPt,

DPtϕ = P̂tDϕ, ϕ ∈ W 1,1(H, γ), (3.1)

where for any t > 0, P̂t is the bounded operator from L1(H, γ;H) in itself defined by

P̂tF (x) = E[ξ(t, x)∗F (X(t, x))], F ∈ L1(H, γ;H).

In discussing the properties of P̂t it is useful to realize that for any (x, h) ∈ H × H
the process (X(t, x), ξ(t, x, h)), with ξ(t, x, h) = ξ(t, x)h, is a Markov process because
it is the solution of the following stochastic differential equation

dX = (AX −DU(X))dt+ dW (t)

dξ = (Aξ −D2U(X)ξ)dt

X(0) = x, ξ(0) = h.

We denote by Vt, t ≥ 0, the corresponding transition semigroup

VtΦ(x, h) = E[Φ(X(t, x), ξ(t, x, h))],

where Φ ∈ C(H ×H) has a linear growth:

sup
x,h∈H

|Φ(x, h)|
1 + |x|+ |h|

<∞.

Hence,

Vs+t = VsVt, s, t ≥ 0.

Lemma 3.1. P̂t is a C0-semigroup on L2(H, γ;H) and P̂tF ∈ Cb(H;H) for every
t > 0. For any F ∈ EA(H;H), where EA(H;H) is the linear span of all functions
F : H → H of the form

F (x) = ϕ(x)h, h ∈ D(A), ϕ ∈ EA(H),

the infinitesimal generator N̂ of P̂t is given by

N̂F (x) = N̂(ϕ(·)h)(x) = Nϕ(x)h+ ϕ(x)(Ah−D2U(x)h). (3.2)

Moreover P̂t is symmetric and

DPtφ = P̂tDφ, φ ∈ W 1,2(H, γ). (3.3)
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Proof. Step 1. P̂t, t ≥ 0, is a C0-semigroup on L2(H, γ;H).

First, we show that P̂t is well-defined on L2(H, γ;H). Indeed, let F be of the form
F (x) = ϕ(x)h with ϕ ∈ L2(h, γ) (the linear span of such functions is dense in
L2(H, γ;H)). Then,

|P̂tF (x)| = |E[ξ∗(t, x)hϕ(X(t, x))]| ≤ e−ωt|h||E[ϕ(X(t, x))]| = e−ωt|h| |Ptϕ(x)|,

whence∫
H

|P̂tF (x)|2γ(dx) ≤ e−2ωt|h|2
∫
H

|Ptϕ(x)|2γ(dx) ≤ |h|2
∫
H

|ϕ(x)|2γ(dx).

Putting Φ(x, h) = 〈G(x), h〉 for G ∈ Cb(H;H) we find that

VtΦ(x, h) = E[〈G(X(t, x)), ξ(t, x, h)〉]

and 〈P̂tG(x), h〉 = VtΦ(x, h), and therefore

〈P̂t+sG(x), h〉 = Vt+sΦ(x, h) = Vt (VsΦ) (x, h) = E[(VsΦ) (X(t, x), ξ(t, x, h))]

=

∫
H×H

VsΦ(y, z)PX(t,x),ξ(t,x,h)(dy, dz)

=

∫
H×H

E[〈G (X(s, y)) , ξ(s, x, z)〉]PX(t,x),ξ(t,x,h)(dy, dz),

where PX(t,x),ξ(t,x,h) stands for the joint distribution of (X(t, x), ξ(t, x, h)) on H ×H.
Thereby

〈P̂t+sG(x), h〉 =

∫
H×H
〈P̂sG(y), z〉PX(t,x),ξ(t,x,h)(dy, dz)

= E[〈P̂sG(X(t, x)), ξ(t, x, h)〉] = 〈P̂tP̂sG(x), h〉.

This completes the proof of the semigroup property for P̂t, t ≥ 0. Since, in view of
(1.6), |P̂tF | ≤ |F | and t 7→ ξ∗(t, x)F (X(t, x)) is continuous, the semigroup P̂t, t ≥ 0,
extends to a semigroup on L2(H, γ;H) and the strong continuity follows by a standard
argument.

Step 2. Proof of (3.2) and symmetry of the semigroup.
For F = ϕh ∈ EA(H;H) we consider

P̂tF (x)− F (x)

t
=

E[(ξ∗(t, x)− I)F (X(t, x))]

t
+

E[F (X(t, x))]− F (x)

t
.

Then, using the Itô formula and the equation satisfied by ξ(t, x) we find that

lim
t→0

1

t
(P̂tF (x)− F (x)) = Nϕ(x)h+ ϕ(x)Ah− ϕ(x)D2U(x)h.
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Taking into account that N is symmetric in L2(H, γ), it is easily seen that

〈N̂F,G〉 = 〈N̂G, F 〉, F,G ∈ EA(H;H),

and since EA(H;H) is dense in L2(H, γ;H), it follows that

〈P̂tF,G〉 = 〈P̂tG,F 〉, F,G ∈ L2(H, γ;H).

Finally, using the definition of the semigroup P̂t, t ≥ 0, we find easily that (3.3)
holds.

Lemma 3.2. Assume that F ∈ D(D∗∞) and t > 0. Then P̂tF ∈ D(D∗∞) and we have

D∗∞P̂tF (x) = PtD
∗
∞F (x), x ∈ H. (3.4)

Proof. We have to show that for some constant C and all ϕ ∈ W 1,1(H, γ), we have

K :=

∣∣∣∣∫
H

〈Dϕ(x), P̂tF (x)〉γ(dx)

∣∣∣∣ ≤ C

∫
H

|ϕ(x)|γ(dx). (3.5)

We have in fact, thanks to (3.1),

K =

∣∣∣∣∫
H

〈P̂tDϕ(x), F (x)〉γ(dx)

∣∣∣∣ =

∣∣∣∣∫
H

〈DPtϕ(x), F (x)〉γ(dx)

∣∣∣∣ .
On the other hand, since F ∈ D(D∗∞) there exists C > 0 such that

K ≤ C

∫
H

|Ptϕ(x)|γ(dx) ≤ C

∫
H

|ϕ(x)|γ(dx).

So, (3.5) holds and (3.4) follows.

In order to prove that Ptu ∈ W 1,1(H, γ) for u ∈ BV (H, γ) we need to know that

the class D is invariant under P̂t. This is proved in the next lemma; we stress that
this is the only point where we need C3 regularity for U .

Lemma 3.3. If F ∈ D then P̂tF belongs to D for every t ≥ 0.

Proof. Let X(t, x) be the solution of Problem (1.1) and, for h ∈ H, let ξh be the
directional derivative of X as in Section 1. By Theorem [10, 7.3.6], the function
H 3 x 7→ X(t, x) is twice differentiable along all directions. Let us denote by ζ its
second derivative and, for every h ∈ H, set ζh = ζ(t, x)(h, h). Then, ζh solves the
problem

d

dt
ζh(t, x) = Aζh(t, x)−D2U(X(t, x))ζh(t, x)

−D3U(X(t, x))(ξh(t, x), ξh(t, x))
ζh(0, x) = 0.

(3.6)
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Notice that for h = ek we have

ζek(t, x) =

∫ t

0

e(t−s)Aζek(t, x)ds−
∫ t

0

e(t−s)AD3U(X(s, x))(ξek(s, x), ξek(s, x))ds,

whence, setting

T (t, x) =
∞∑
k=1

ζek(t, x),

we get, summing on k,

T (t, x) =

∫ t

0

e(t−s)AT (s, x)ds−
∫ t

0

Tr [ξ∗(s, x)e(t−s)AD3U(X(s, x))ξ(s, x)]ds.

Notice that by (1.5) the last integral is meaningful.

Fix now F ∈ D , and set G(t, x) = (P̂tF )(t, x). We claim that

Tr [DG(t, x)] = E [Tr [ξ∗(t, x)DF (X(t, x))ξ(t, x)]] +E[〈F (X(t, x)), T (t, x)〉], (3.7)

whence condition (a) in Definition 2.6 holds for G. In order to prove (3.7), write

〈G(t, x), ek〉 = E[〈F (X(t, x)), ξek(t, x)〉],

from which

Dk〈G(t, x), ek〉 = E[〈DF (X(t, x))ξ(t, x)ek, ξ(t, x)ek〉] +E[〈F (X(t, x)), ζek(t, x)〉].

Since

〈DF (X(t, x))ξ(t, x)ek, ξ(t, x)ek〉 = 〈ξ∗(t, x)DF (X(t, x))ξ(t, x)ek, ek〉,

identity (3.7) follows summing up over k.
Condition (b) in Definition 2.6 follows from the equality

〈Q−1x,G(t, x)〉 = E[〈Qξ(t, x)Q−1x,Q−1F (X(t, x))〉], (3.8)

which we are going to prove. First, let us check that the term Qξ(t, x)Q−1x is mean-
ingful. For, setting

vz(t, x) = Qξ(t, x)Q−1z = QξQ
−1z(t, x), (3.9)

we have

vz(t, x) = etAz −
∫ t

0

e(t−s)AD2U(X(s, x))vz(s, x)ds. (3.10)

Since by (3.9) we have Qξ(t, x)Q−1x = vx(t, x), it is enough to notice that equation
(3.10) has a unique solution. Then, we have

〈x,Q−1G(t, x)〉 = E[〈x,Q−1ξ(t, x)∗F (X(t, x))〉] = E[〈ξ(t, x)Q−1x, F (X(t, x))〉],

(3.8) follows and the thesis is proved because the right hand side is in Cb(H).
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Theorem 3.4. Let u ∈ BV (H, γ). Then for all t > 0 we have Ptu ∈ W 1,1(H, γ) and

lim sup
t→0

∫
H

|DPtu|dγ ≤ DuTV (H). (3.11)

Proof. Let u ∈ BV (H, γ) and t > 0. Then by the definition and applying (2.6) with
F ∈ D we have∫

H

u(x)D∗∞F (x)γ(dx) =

∫
H

〈F (x), Du(dx)〉, ∀ F ∈ D .

We first prove that Ptu ∈ BV (H, γ). In fact, from (3.4) and Lemma 3.3 it follows
that ∫

H

(Ptu)(x)D∗∞F (x)γ(dx) =

∫
H

u(x)PtD
∗
∞F (x)γ(dx) (3.12)

=

∫
H

u(x)D∗∞(P̂tF )(x)γ(dx) =

∫
H

〈P̂tF (x), Du(dx)〉 =

∫
H

〈F (x), P̂ ′t(Du)(dx)〉.

This shows that Ptu ∈ BV (H, γ) and DPtu = P̂ ′t(Du). We claim that

P̂ ′t(Du)� γ. (3.13)

Let in fact B ∈ B(H) be such that γ(B) = 0, and take h ∈ H. Write

〈P̂ ′t(Du)(B), h〉 =

∫
H

〈1lB(x)h, P̂ ′t(Du)(dx)〉 =

∫
H

〈P̂t(1lBh)(x), Du(dx)〉

=

∫
H

〈E[ξ∗(t, x)h1lB(X(t, x))], Du(dx)〉

≤
∫
H

|E[ξ∗(t, x)h1lB(X(t, x))]|DuTV (dx)

≤ e−ωt|h|
∫
H

E[1lB(X(t, x))]DuTV (dx)

= e−ωt|h|
∫
H

πt(x,B)DuTV (dx) = 0,

because πt(x, ·)� γ and γ(B) = 0.
From (3.13) and (3.12) we deduce that Ptu ∈ W 1,1(H, γ). Moreover∫

H

|DPtu(x)|γ(dx) = (P̂ ′t(Du))TV (H) ≤ DuTV (H)

and (3.11) follows.

16



Remark 3.5. Since by (2.7) the total variation of u ∈ BV (H, γ) is L1-lower semi-
continuous and Pt is strongly continuous, for u ∈ BV (H, γ) we have

DuTV (H) ≤ lim inf
t→0

∫
H

|DPtu|dγ,

which, combined with (3.11), gives that

DuTV (H) = lim
t→0

∫
H

|DPtu|dγ.

4 Sufficient condition for u ∈ BV (H, γ)

In order to prove the converse of Theorem 3.4, we first prove that the measure γ admits
a disintegration with log-concave fibers. Let us fix some notation. For k ≥ 1, consider
the orthogonal decomposition H = Hk ⊕H⊥k , where Hk = span ek. Accordingly, for
y ∈ H⊥k , we define the sections By = {s ∈ Hk : (s, y) ∈ B} for every B ⊂ H,
where we have identified x = s+ y with the pair (s, y). Denoting by π the orthogonal
projection onto H⊥k , set σ = π#(γ). By disintegration (see e.g. [5, Section 10.6]), for
σ-a.e. y ∈ H⊥k there is a measure γy such that

γ(B) =

∫
H⊥k

γy(By)σ(dy), B ⊂ H Borel set.

Lemma 4.1. For σ-a.e. y ∈ H⊥k the measure γy is log-concave and non degenerate.

Proof. We begin by noticing that, for finite Borel measures λ, ν in H⊥k , λ ≥ ν if and
only if λ(A) ≥ ν(A) for all open convex sets A ⊂ H⊥k . In the finite dimensional case
this is trivial, as the inequality holds on cubes, hence all open sets and eventually
on Borel sets. In the infinite dimensional case we are dealing with, we may consider
products of finite dimensional open balls with subspaces and deduce that all finite
dimensional projections λ̂, ν̂ of λ and ν satisfy λ̂ ≥ ν̂. Therefore, λ ≥ ν.

Let now A ⊂ H⊥k be an open convex set, A1, A2 ⊂ Hk open, t ∈]0, 1[. Identifying
H with Hk ⊗H⊥k , the inclusion

((1− t)(y + A1) + t(y + A2))× A ⊃ (1− t)((y + A1)× A) + t((y + A2)× A))

together with the log-concavity of γ gives∫
A

γy((1− t)(y + A1) + t(y + A2))σ(dy)

≥
(∫

A

(γy(y + A1))σ(dy)
)1−t(∫

A

(γy(y + A2))σ(dy)
)t
.
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By applying Holder’s inequality we get∫
A

γy((1− t)(y +A1) + t(y +A2))σ(dy) ≥
∫
A

(γy(y +A1))
1−t(γy(y +A2))

tσ(dy).

Now, the arbitrariness of the convex open set A gives

γy((1− t)(y + A1) + t(y + A2)) ≥ (γy(y + A1))
1−t(γy(y + A2))

t (4.1)

for σ-a.e. y ∈ H⊥k . A priori, the exceptional set depends on t, A1, A2, but the
separability of H and a simple density argument allow to find a σ-negligible set
N ⊂ H⊥k such that (4.1) holds for all y ∈ H⊥k \N and A1, A2 ⊂ H open.

In order to prove that γy is non degenerate for a.a. y ∈ H⊥k , let us recall that
(τk,t)#(γ) � γ, where τk,t(x) = x + tek is the translation along ek. Moreover, since
the translation acts orthogonally to H⊥k , the disintegration of (τk,t)#(γ) reads

(τk,t)#(γ)(B) =

∫
H⊥k

σ(dy)γy,t(By),

with the same measure σ = π#(γ). Therefore, if the measures γy were degenerate for
a non-negligible set of y, (τk,t)#(γ) could not be absolutely continuous with respect
to γ.

We are now in a position to show the following

Theorem 4.2. Let u ∈ L1(H, γ) and assume that Ptu ∈ W 1,1(H, γ) for t > 0 and
that

L := lim inf
t→0

∫
H

|DPtu|dγ < +∞. (4.2)

Then, u ∈ BV (H, γ) and DuTV (H) = L.

Proof. Using the notation introduced above, since for σ-a.e. y the measure γy is non
degenerate and log-concave, then (see [6] or [3, Theorem 9.4.11]) there is a convex
function vy such that γy(ds) = e−vy(s)ds. For any ϕ ∈ C1

b (R), setting f(x) = ϕ(xk),
we get∫

H

D∗kf(x)u(x)γ(dx) = lim
t→0

∫
H

D∗kf(x)Ptu(x)γ(dx) = lim
t→0

∫
H

f(x)DkPtu(x)γ(dx)

= lim
t→0

∫
H⊥k

σ(dy)

∫
Hk

ϕ(s)DkPtu(s, y)e−vy(s)ds. ≤ L
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This proves that the function uy(s) = u(y + sek) has (weighted) bounded variation
in R for σ-a.e. y ∈ H⊥k , with derivative Dγyuy. Let us check that the measure

νk(B) =

∫
H⊥k

Dγyuy(By)σ(dy)

gives the partial derivative Dku of u. Indeed, for F ∈ D(D∗∞), setting f = 〈F, ek〉,
we have∫

H

D∗kf(x)u(x)γ(dx) =

∫
H⊥k

∫
Hk

D∗kf(y + sek)u(y + sek)γy(ds)σ(dy)

=

∫
H⊥k

∫
Hk

f(y + sek)Dγyuy(ds)σ(dy) =

∫
H

fνk(dx).

Repeating the argument for every k we construct an H-valued measure Dγu such that
(2.6) holds. Finally, from (4.2) and Remark 4.3 it follows that Dγu has finite total
variation and the equality DuTV (H) = L holds.

Remark 4.3. Let us point out that DPtu → Du weakly∗ as vector measures, as
t→ 0. In fact,∫

H

〈F (x), DPtu(x)〉γ(dx) =

∫
H

D∗∞F (x)Ptu(x)γ(dx)→
∫
H

〈F (x), Du(dx)〉

for every F ∈ FC1
b (H;H). In order to show that

lim
t→0

∫
H

〈F (x), DPtu(x)〉γ(dx) =

∫
H

〈F (x), Du(dx)〉 (4.3)

for all F ∈ Cb(H;H) we may argue componentwise and check the tightness condition
presented in [2, Lemma 2.1], whence compactness follows from Prokhorov Theorem.
Therefore, taking (3.11) into account, we have only to show that

lim inf
t→0

∫
A

|DkPtu(x)|γ(dx) ≥ |Dku|(A), A ⊂ H open, k ∈ N. (4.4)

Let A ⊂ H be open, and notice that for every y ∈ H⊥k the section Ay is open as
well. Using the disintegration as in theorem 4.2 and the L1-lower semicontinuity of
the total variation on open sets in R, we have

|Dku|(A) =

∫
H⊥k

|Dγyuy|(Ay)σ(dy) ≤
∫
H⊥k

lim inf
t→0

∫
Ay

|DyPtu(s, y)|γy(ds)σ(dy)

≤ lim inf
t→0

∫
H⊥k

∫
Ay

|DyPtu(s, y)|γy(ds)σ(dy) = lim inf
t→0

∫
A

|DkPtu(x)|γ(dx).

Then the family of measures (DkPtu) is relatively compact and, since (4.3) holds on
a dense set, the proof is complete.
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